1
|
Li Q, Lin L, Shou P, Liu K, Xue Y, Hu M, Ling W, Huang Y, Du L, Zheng C, Wang X, Zheng F, Zhang T, Wang Y, Shao C, Melino G, Shi Y, Wang Y. MHC class Ib-restricted CD8 + T cells possess strong tumoricidal activities. Proc Natl Acad Sci U S A 2023; 120:e2304689120. [PMID: 37856544 PMCID: PMC10614629 DOI: 10.1073/pnas.2304689120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/28/2023] [Indexed: 10/21/2023] Open
Abstract
The importance of classical CD8+ T cells in tumor eradication is well acknowledged. However, the anti-tumor activity of MHC (major histocompatibility complex) Ib-restricted CD8+ T (Ib-CD8+ T) cells remains obscure. Here, we show that CX3CR1-expressing Ib-CD8+ T cells (Ib-restricted CD8+ T cells) highly express cytotoxic factors, austerely resist exhaustion, and effectively eliminate various tumors. These Ib-CD8+ T cells can be primed by MHC Ia (MHC class Ia molecules) expressed on various cell types for optimal activation in a Tbet-dependent manner. Importantly, MHC Ia does not allogeneically activate Ib-CD8+ T cells, rather, sensitizes these cells for T cell receptor activation. Such effects were observed when MHC Ia+ cells were administered to tumor-bearing Kb-/-Db-/-mice. A similar population of tumoricidal CX3CR1+CD8+ T cells was identified in wild-type mice and melanoma patients. Adoptive transfer of Ib-CD8+ T cells to wild-type mice inhibited tumor progression without damaging normal tissues. Taken together, we demonstrate that MHC class Ia can prime Ib-CD8+ T cells for robust tumoricidal activities.
Collapse
Affiliation(s)
- Qing Li
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Liangyu Lin
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Peishun Shou
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Keli Liu
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Yueqing Xue
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Mingyuan Hu
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Weifang Ling
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Yin Huang
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Liming Du
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Chunxing Zheng
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Xuefeng Wang
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Fanjun Zheng
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Tao Zhang
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Yu Wang
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Changshun Shao
- The Third Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, Suzhou, Jiangsu215123, China
| | - Gerry Melino
- Department of Experimental Medicine, Tor Vergata Oncoscience Research, University of Rome Tor Vergata, Rome00133, Italy
| | - Yufang Shi
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
- The Third Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, Suzhou, Jiangsu215123, China
| | - Ying Wang
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| |
Collapse
|
2
|
Suzuki Y, Lutshumba J, Chen KC, Abdelaziz MH, Sa Q, Ochiai E. IFN-γ production by brain-resident cells activates cerebral mRNA expression of a wide spectrum of molecules critical for both innate and T cell-mediated protective immunity to control reactivation of chronic infection with Toxoplasma gondii. Front Cell Infect Microbiol 2023; 13:1110508. [PMID: 36875520 PMCID: PMC9975934 DOI: 10.3389/fcimb.2023.1110508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/18/2023] [Indexed: 02/17/2023] Open
Abstract
We previously demonstrated that brain-resident cells produce IFN-γ in response to reactivation of cerebral infection with Toxoplasma gondii. To obtain an overall landscape view of the effects of IFN-γ from brain-resident cells on the cerebral protective immunity, in the present study we employed NanoString nCounter assay and quantified mRNA levels for 734 genes in myeloid immunity in the brains of T and B cell-deficient, bone marrow chimeric mice with and without IFN-γ production by brain-resident cells in response to reactivation of cerebral T. gondii infection. Our study revealed that IFN-γ produced by brain-resident cells amplified mRNA expression for the molecules to activate the protective innate immunity including 1) chemokines for recruitment of microglia and macrophages (CCL8 and CXCL12) and 2) the molecules for activating those phagocytes (IL-18, TLRs, NOD1, and CD40) for killing tachyzoites. Importantly, IFN-γ produced by brain-resident cells also upregulated cerebral expression of molecules for facilitating the protective T cell immunity, which include the molecules for 1) recruiting effector T cells (CXCL9, CXCL10, and CXCL11), 2) antigen processing (PA28αβ, LMP2, and LMP7), transporting the processed peptides (TAP1 and TAP2), assembling the transported peptides to the MHC class I molecules (Tapasin), and the MHC class I (H2-K1 and H2-D1) and Ib molecules (H2-Q1, H-2Q2, and H2-M3) for presenting antigens to activate the recruited CD8+ T cells, 3) MHC class II molecules (H2-Aa, H2-Ab1, H2-Eb1, H2-Ea-ps, H2-DMa, H2-Ob, and CD74) to present antigens for CD4+ T cell activation, 4) co-stimulatory molecules (ICOSL) for T cell activation, and 5) cytokines (IL-12, IL-15, and IL-18) facilitating IFN-γ production by NK and T cells. Notably, the present study also revealed that IFN-γ production by brain-resident cells also upregulates cerebral expressions of mRNA for the downregulatory molecules (IL-10, STAT3, SOCS1, CD274 [PD-L1], IL-27, and CD36), which can prevent overly stimulated IFN-γ-mediated pro-inflammatory responses and tissue damages. Thus, the present study uncovered the previously unrecognized the capability of IFN-γ production by brain-resident cells to upregulate expressions of a wide spectrum of molecules for coordinating both innate and T cell-mediated protective immunity with a fine-tuning regulation system to effectively control cerebral infection with T. gondii.
Collapse
Affiliation(s)
- Yasuhiro Suzuki
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY, United States
- *Correspondence: Yasuhiro Suzuki,
| | - Jenny Lutshumba
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Kuey Chu Chen
- Department of Pharmacology and Nutritional Science, University of Kentucky College of Medicine, Lexington, KY, United States
- Genomics Core Laboratory, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Mohamed H. Abdelaziz
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Qila Sa
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Eri Ochiai
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY, United States
| |
Collapse
|
3
|
Ciurkiewicz M, Floess S, Beckstette M, Kummerfeld M, Baumgärtner W, Huehn J, Beineke A. Transcriptome analysis following neurotropic virus infection reveals faulty innate immunity and delayed antigen presentation in mice susceptible to virus-induced demyelination. Brain Pathol 2021; 31:e13000. [PMID: 34231271 PMCID: PMC8549031 DOI: 10.1111/bpa.13000] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 01/13/2023] Open
Abstract
Viral infections of the central nervous system cause acute or delayed neuropathology and clinical consequences ranging from asymptomatic courses to chronic, debilitating diseases. The outcome of viral encephalitis is partially determined by genetically programed immune response patterns of the host. Experimental infection of mice with Theiler's murine encephalomyelitis virus (TMEV) causes diverse neurologic diseases, including TMEV‐induced demyelinating disease (TMEV‐IDD), depending on the used mouse strain. The aim of the present study was to compare initial transcriptomic changes occurring in the brain of TMEV‐infected SJL (TMEV‐IDD susceptible) and C57BL/6 (TMEV‐IDD resistant) mice. Animals were infected with TMEV and sacrificed 4, 7, or 14 days post infection. RNA was isolated from brain tissue and analyzed by whole‐transcriptome sequencing. Selected differences were confirmed on a protein level by immunohistochemistry. In mock‐infected SJL and C57BL/6 mice, >200 differentially expressed genes (DEGs) were detected. Following TMEV‐infection, the number of DEGs increased to >700. Infected C57BL/6 mice showed a higher expression of transcripts related to antigen presentation via major histocompatibility complex (MHC) I, innate antiviral immune responses and cytotoxicity, compared with infected SJL animals. Expression of many of those genes was weaker or delayed in SJL mice, associated with a failure of viral clearance in this mouse strain. SJL mice showed prolonged elevation of MHC II and chemotactic genes compared with C57BL/6 mice, which presumably facilitates the induction of chronic demyelinating disease. In addition, elevated expression of several genes associated with immunomodulatory or –suppressive functions was observed in SJL mice. The exploratory study confirms previous observations in the model and provides an extensive list of new immunologic parameters potentially contributing to different outcomes of viral encephalitis in two mouse strains.
Collapse
Affiliation(s)
| | - Stefan Floess
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Michael Beckstette
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Maren Kummerfeld
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,Center for Systems Neuroscience, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Jochen Huehn
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Andreas Beineke
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,Center for Systems Neuroscience, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
4
|
Anderson CK, Reilly EC, Lee AY, Brossay L. Qa-1-Restricted CD8 + T Cells Can Compensate for the Absence of Conventional T Cells during Viral Infection. Cell Rep 2020; 27:537-548.e5. [PMID: 30970256 PMCID: PMC6472915 DOI: 10.1016/j.celrep.2019.03.059] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 02/18/2019] [Accepted: 03/15/2019] [Indexed: 12/30/2022] Open
Abstract
The role of non-classical T cells during viral infection remains poorly understood. Using the well-established murine model of CMV infection (MCMV) and mice deficient in MHC class Ia molecules, we found that non-classical CD8+ T cells robustly expand after MCMV challenge, become highly activated effectors, and are capable of forming durable memory. Interestingly, although these cells are restricted by MHC class Ib molecules, they respond similarly to conventional T cells. Remarkably, when acting as the sole component of the adaptive immune response, non-classical CD8+ T cells are sufficient to protect against MCMV-induced lethality. We also demonstrate that the MHC class Ib molecule Qa-1 (encoded by H2-T23) restricts a large, and critical, portion of this population. These findings reveal a potential adaptation of the host immune response to compensate for viral evasion of classical T cell immunity. Anderson et al. describe a heterogenous population of non-classical CD8+ T cells responding to MCMV. Importantly, this population can protect mice from MCMV-induced lethality in the absence of other adaptive immune cells. Among the MHC class Ib-restricted CD8+ T cells responding, Qa-1-specific cells are required for protection.
Collapse
Affiliation(s)
- Courtney K Anderson
- Department of Molecular Microbiology & Immunology, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA
| | - Emma C Reilly
- Department of Molecular Microbiology & Immunology, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA
| | - Angus Y Lee
- Cancer Research Laboratory, University of California, Berkeley, Berkeley, CA 94702, USA
| | - Laurent Brossay
- Department of Molecular Microbiology & Immunology, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
5
|
da Silva IL, Montero-Montero L, Ferreira E, Quintanilla M. New Insights Into the Role of Qa-2 and HLA-G Non-classical MHC-I Complexes in Malignancy. Front Immunol 2018; 9:2894. [PMID: 30574154 PMCID: PMC6292030 DOI: 10.3389/fimmu.2018.02894] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/26/2018] [Indexed: 12/20/2022] Open
Abstract
It is well established that the immune system can identify and destroy neoplastic transformed cells in a process known as immunosurveillance. Most studies have focused on the classical major histocompatibility complex (MHC) class Ia molecules, which are known to play an important role on the presentation of tumor antigens to the immune system in order to activate a response against tumor cells. However, a larger family of non-classical MHC class Ib-related molecules has received less attention. In this mini-review, we discuss the role of class Ib murine Qa-2 and its proposed human HLA-G homolog on immunosurveillance during embryogenesis and cancer. Whereas, both HLA-G and Qa-2 are involved in immune tolerance in pregnancy, the current evidence suggests that they play opposite roles in cancer. HLA-G appears to promote tumor progression while Qa-2 acts as a tumor suppressor awaking the immune system to reject tumor cells, as suggested by studies on different cancer cell models, such as melanoma, lymphoma, lung carcinoma, and our own results in mammary carcinoma.
Collapse
Affiliation(s)
- Istéfani L da Silva
- Center of Biological Sciences and Health, Federal University of the West of Bahia, Barreiras, Brazil
| | - Lucía Montero-Montero
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Enio Ferreira
- Laboratory of Compared Pathology, Department of General Pathology, Biological Science Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Miguel Quintanilla
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
6
|
Schindell BG, Webb AL, Kindrachuk J. Persistence and Sexual Transmission of Filoviruses. Viruses 2018; 10:E683. [PMID: 30513823 PMCID: PMC6316729 DOI: 10.3390/v10120683] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/16/2018] [Accepted: 11/20/2018] [Indexed: 12/27/2022] Open
Abstract
There is an increasing frequency of reports regarding the persistence of the Ebola virus (EBOV) in Ebola virus disease (EVD) survivors. During the 2014⁻2016 West African EVD epidemic, sporadic transmission events resulted in the initiation of new chains of human-to-human transmission. Multiple reports strongly suggest that these re-emergences were linked to persistent EBOV infections and included sexual transmission from EVD survivors. Asymptomatic infection and long-term viral persistence in EVD survivors could result in incidental introductions of the Ebola virus in new geographic regions and raise important national and local public health concerns. Alarmingly, although the persistence of filoviruses and their potential for sexual transmission have been documented since the emergence of such viruses in 1967, there is limited knowledge regarding the events that result in filovirus transmission to, and persistence within, the male reproductive tract. Asymptomatic infection and long-term viral persistence in male EVD survivors could lead to incidental transfer of EBOV to new geographic regions, thereby generating widespread outbreaks that constitute a significant threat to national and global public health. Here, we review filovirus testicular persistence and discuss the current state of knowledge regarding the rates of persistence in male survivors, and mechanisms underlying reproductive tract localization and sexual transmission.
Collapse
Affiliation(s)
- Brayden G Schindell
- Laboratory of Emerging and Re-Emerging Viruses, Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| | - Andrew L Webb
- Laboratory of Emerging and Re-Emerging Viruses, Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| | - Jason Kindrachuk
- Laboratory of Emerging and Re-Emerging Viruses, Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| |
Collapse
|
7
|
The Murine Polyomavirus MicroRNA Locus Is Required To Promote Viruria during the Acute Phase of Infection. J Virol 2018; 92:JVI.02131-17. [PMID: 29875236 DOI: 10.1128/jvi.02131-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 05/21/2018] [Indexed: 11/20/2022] Open
Abstract
Polyomaviruses (PyVs) can cause serious disease in immunosuppressed hosts. Several pathogenic PyVs encode microRNAs (miRNAs), small RNAs that regulate gene expression via RNA silencing. Despite recent advances in understanding the activities of PyV miRNAs, the biological functions of PyV miRNAs during in vivo infections are mostly unknown. The studies presented here used murine polyomavirus (MuPyV) as a model to assess the roles of the PyV miRNAs in a natural host. This analysis revealed that a MuPyV mutant that is unable to express miRNAs has enhanced viral DNA loads in select tissues at late times after infection. This is consistent with the PyV miRNAs functioning to reduce viral replication during the persistent phase of infection in a natural host. Additionally, the MuPyV miRNA locus promotes viruria during the acute phase of infection as evidenced by a defect in shedding during infection with the miRNA mutant virus. The viruria defect of the miRNA mutant virus could be rescued by infecting Rag2-/- mice. These findings implicate the miRNA locus as functioning in both the persistent and acute phases of infection and suggest a role for MuPyV miRNA in evading the adaptive immune response.IMPORTANCE MicroRNAs are expressed by diverse viruses, but for only a few is there any understanding of their in vivo function. PyVs can cause serious disease in immunocompromised hosts. Therefore, increased knowledge of how these viruses interact with the immune response is of clinical relevance. Here we show a novel activity for a viral miRNA locus in promoting virus shedding. This work indicates that in addition to any role for the PyV miRNA locus in long-term persistence, it also has biological activity during the acute phase. As this mutant phenotype is alleviated by infection of mice lacking an adaptive immune response, our work also connects the in vivo activity of the PyV miRNA locus to the immune response. Given that PyV-associated disease is associated with alterations in the immune response, our findings help to better understand how the balance between PyVs and the immune response becomes altered in pathogenic states.
Collapse
|
8
|
Sullivan LC, Walpole NG, Farenc C, Pietra G, Sum MJW, Clements CS, Lee EJ, Beddoe T, Falco M, Mingari MC, Moretta L, Gras S, Rossjohn J, Brooks AG. A conserved energetic footprint underpins recognition of human leukocyte antigen-E by two distinct αβ T cell receptors. J Biol Chem 2017; 292:21149-21158. [PMID: 28972140 PMCID: PMC5743087 DOI: 10.1074/jbc.m117.807719] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/20/2017] [Indexed: 11/06/2022] Open
Abstract
αβ T cell receptors (TCRs) interact with peptides bound to the polymorphic major histocompatibility complex class Ia (MHC-Ia) and class II (MHC-II) molecules as well as the essentially monomorphic MHC class Ib (MHC-Ib) molecules. Although there is a large amount of information on how TCRs engage with MHC-Ia and MHC-II, our understanding of TCR/MHC-Ib interactions is very limited. Infection with cytomegalovirus (CMV) can elicit a CD8+ T cell response restricted by the human MHC-Ib molecule human leukocyte antigen (HLA)-E and specific for an epitope from UL40 (VMAPRTLIL), which is characterized by biased TRBV14 gene usage. Here we describe an HLA-E-restricted CD8+ T cell able to recognize an allotypic variant of the UL40 peptide with a modification at position 8 (P8) of the peptide (VMAPRTLVL) that uses the TRBV9 gene segment. We report the structures of a TRBV9+ TCR in complex with the HLA-E molecule presenting the two peptides. Our data revealed that the TRBV9+ TCR adopts a different docking mode and molecular footprint atop HLA-E when compared with the TRBV14+ TCR-HLA-E ternary complex. Additionally, despite their differing V gene segment usage and different docking mechanisms, mutational analyses showed that the TCRs shared a conserved energetic footprint on the HLA-E molecule, focused around the peptide-binding groove. Hence, we provide new insights into how monomorphic MHC molecules interact with T cells.
Collapse
MESH Headings
- Amino Acid Sequence
- Binding Sites
- CD8-Positive T-Lymphocytes/cytology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cells, Cultured
- Clone Cells
- Conserved Sequence
- Crystallography, X-Ray
- Energy Metabolism
- Epitope Mapping
- Epitopes, T-Lymphocyte
- Histocompatibility Antigens Class I/chemistry
- Histocompatibility Antigens Class I/genetics
- Histocompatibility Antigens Class I/metabolism
- Humans
- Models, Molecular
- Molecular Docking Simulation
- Mutagenesis, Site-Directed
- Mutation
- Peptide Fragments/chemistry
- Peptide Fragments/genetics
- Peptide Fragments/metabolism
- Protein Conformation
- Protein Interaction Domains and Motifs
- Receptors, Antigen, T-Cell, alpha-beta/agonists
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/metabolism
- Viral Proteins/chemistry
- Viral Proteins/genetics
- Viral Proteins/metabolism
- HLA-E Antigens
Collapse
Affiliation(s)
- Lucy C Sullivan
- From the Department of Microbiology and Immunology and Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne 3000, Australia
| | - Nicholas G Walpole
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute and
| | - Carine Farenc
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute and
| | - Gabriella Pietra
- Department of Experimental Medicine (DiMES) and
- Unità Operativa Complessa Immunologia, Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Matthew J W Sum
- From the Department of Microbiology and Immunology and Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne 3000, Australia
| | - Craig S Clements
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute and
| | - Eleanor J Lee
- From the Department of Microbiology and Immunology and Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne 3000, Australia
| | - Travis Beddoe
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute and
| | - Michela Falco
- Istituto di Ricovero e Cura a Carattere Scientifico Ospedale Pediatrico Bambino Gesù, 00165 Roma, Italy, and
| | - Maria Cristina Mingari
- Department of Experimental Medicine (DiMES) and
- Unità Operativa Complessa Immunologia, Ospedale Policlinico San Martino, 16132 Genoa, Italy
- Center of Excellence for Biomedical Research, University of Genoa, 16132 Genoa, Italy
| | - Lorenzo Moretta
- Istituto di Ricovero e Cura a Carattere Scientifico Ospedale Pediatrico Bambino Gesù, 00165 Roma, Italy, and
| | - Stephanie Gras
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute and
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute and
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
- Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, Wales, United Kingdom
| | - Andrew G Brooks
- From the Department of Microbiology and Immunology and Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne 3000, Australia,
| |
Collapse
|
9
|
Lee LN, Bolinger B, Banki Z, de Lara C, Highton AJ, Colston JM, Hutchings C, Klenerman P. Adenoviral vaccine induction of CD8+ T cell memory inflation: Impact of co-infection and infection order. PLoS Pathog 2017; 13:e1006782. [PMID: 29281733 PMCID: PMC5760110 DOI: 10.1371/journal.ppat.1006782] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 01/09/2018] [Accepted: 11/29/2017] [Indexed: 12/14/2022] Open
Abstract
The efficacies of many new T cell vaccines rely on generating large populations of long-lived pathogen-specific effector memory CD8 T cells. However, it is now increasingly recognized that prior infection history impacts on the host immune response. Additionally, the order in which these infections are acquired could have a major effect. Exploiting the ability to generate large sustained effector memory (i.e. inflationary) T cell populations from murine cytomegalovirus (MCMV) and human Adenovirus-subtype (AdHu5) 5-beta-galactosidase (Ad-lacZ) vector, the impact of new infections on pre-existing memory and the capacity of the host's memory compartment to accommodate multiple inflationary populations from unrelated pathogens was investigated in a murine model. Simultaneous and sequential infections, first with MCMV followed by Ad-lacZ, generated inflationary populations towards both viruses with similar kinetics and magnitude to mono-infected groups. However, in Ad-lacZ immune mice, subsequent acute MCMV infection led to a rapid decline of the pre-existing Ad-LacZ-specific inflating population, associated with bystander activation of Fas-dependent apoptotic pathways. However, responses were maintained long-term and boosting with Ad-lacZ led to rapid re-expansion of the inflating population. These data indicate firstly that multiple specificities of inflating memory cells can be acquired at different times and stably co-exist. Some acute infections may also deplete pre-existing memory populations, thus revealing the importance of the order of infection acquisition. Importantly, immunization with an AdHu5 vector did not alter the size of the pre-existing memory. These phenomena are relevant to the development of adenoviral vectors as novel vaccination strategies for diverse infections and cancers. (241 words).
Collapse
MESH Headings
- Adenovirus Infections, Human/immunology
- Adenovirus Infections, Human/prevention & control
- Adenoviruses, Human/genetics
- Adenoviruses, Human/immunology
- Adenoviruses, Human/pathogenicity
- Animals
- CD8-Positive T-Lymphocytes/immunology
- Coinfection/immunology
- Coinfection/prevention & control
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Herpesviridae Infections/immunology
- Herpesviridae Infections/prevention & control
- Host-Pathogen Interactions/immunology
- Humans
- Immunologic Memory
- Lac Operon
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Models, Immunological
- Muromegalovirus/genetics
- Muromegalovirus/immunology
- Muromegalovirus/pathogenicity
- Receptors, Interleukin-18/deficiency
- Receptors, Interleukin-18/genetics
- Receptors, Interleukin-18/immunology
- Viral Vaccines/genetics
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- Lian N. Lee
- Peter Medawar Building and Translational Gastroenterology Unit, Oxford, United Kingdom
| | - Beatrice Bolinger
- Peter Medawar Building and Translational Gastroenterology Unit, Oxford, United Kingdom
- Schweizerischer Apothekerverband, pharmaSuisse, Bern, Switzerland
| | - Zoltan Banki
- Peter Medawar Building and Translational Gastroenterology Unit, Oxford, United Kingdom
- Division of Virology, Innsbruck Medical University, Innsbruck, Austria
| | - Catherine de Lara
- Peter Medawar Building and Translational Gastroenterology Unit, Oxford, United Kingdom
| | - Andrew J. Highton
- Peter Medawar Building and Translational Gastroenterology Unit, Oxford, United Kingdom
| | - Julia M. Colston
- Peter Medawar Building and Translational Gastroenterology Unit, Oxford, United Kingdom
| | - Claire Hutchings
- Peter Medawar Building and Translational Gastroenterology Unit, Oxford, United Kingdom
| | - Paul Klenerman
- Peter Medawar Building and Translational Gastroenterology Unit, Oxford, United Kingdom
| |
Collapse
|
10
|
Altman JD, Davis MM. MHC‐Peptide Tetramers to Visualize Antigen‐Specific T Cells. ACTA ACUST UNITED AC 2016; 115:17.3.1-17.3.44. [DOI: 10.1002/cpim.14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | - Mark M. Davis
- Stanford University School of Medicine and The Howard Hughes Medical Institute Palo Alto California
| |
Collapse
|
11
|
Anderson CK, Brossay L. The role of MHC class Ib-restricted T cells during infection. Immunogenetics 2016; 68:677-91. [PMID: 27368413 DOI: 10.1007/s00251-016-0932-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 05/22/2016] [Indexed: 01/02/2023]
Abstract
Even though major histocompatibility complex (MHC) class Ia and many Ib molecules have similarities in structure, MHC class Ib molecules tend to have more specialized functions, which include the presentation of non-peptidic antigens to non-classical T cells. Likewise, non-classical T cells also have unique characteristics, including an innate-like phenotype in naïve animals and rapid effector functions. In this review, we discuss the role of MAIT and NKT cells during infection but also the contribution of less studied MHC class Ib-restricted T cells such as Qa-1-, Qa-2-, and M3-restricted T cells. We focus on describing the types of antigens presented to non-classical T cells, their response and cytokine profile following infection, as well as the overall impact of these T cells to the immune system.
Collapse
Affiliation(s)
- Courtney K Anderson
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Box G-B618, Providence, RI, 02912, USA
| | - Laurent Brossay
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Box G-B618, Providence, RI, 02912, USA.
| |
Collapse
|
12
|
Nonclassical MHC Ib-restricted CD8+ T Cells Recognize Mycobacterium tuberculosis-Derived Protein Antigens and Contribute to Protection Against Infection. PLoS Pathog 2016; 12:e1005688. [PMID: 27272249 PMCID: PMC4896622 DOI: 10.1371/journal.ppat.1005688] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 05/18/2016] [Indexed: 12/26/2022] Open
Abstract
MHC Ib-restricted CD8+ T cells have been implicated in host defense against Mycobacterium tuberculosis (Mtb) infection. However, the relative contribution of various MHC Ib-restricted T cell populations to anti-mycobacterial immunity remains elusive. In this study, we used mice that lack MHC Ia (Kb-/-Db-/-), MHC Ia/H2-M3 (Kb-/-Db-/-M3-/-), or β2m (β2m-/-) to study the role of M3-restricted and other MHC Ib-restricted T cells in immunity against Mtb. Unlike their dominant role in Listeria infection, we found that M3-restricted CD8+ T cells only represented a small proportion of the CD8+ T cells responding to Mtb infection. Non-M3, MHC Ib-restricted CD8+ T cells expanded preferentially in the lungs of Mtb-infected Kb-/-Db-/-M3-/- mice, exhibited polyfunctional capacities and conferred protection against Mtb. These MHC Ib-restricted CD8+ T cells recognized several Mtb-derived protein antigens at a higher frequency than MHC Ia-restricted CD8+ T cells. The presentation of Mtb antigens to MHC Ib-restricted CD8+ T cells was mostly β2m-dependent but TAP-independent. Interestingly, a large proportion of Mtb-specific MHC Ib-restricted CD8+ T cells in Kb-/-Db-/-M3-/- mice were Qa-2-restricted while no considerable numbers of MR1 or CD1-restricted Mtb-specific CD8+ T cells were detected. Our findings indicate that nonclassical CD8+ T cells other than the known M3, CD1, and MR1-restricted CD8+ T cells contribute to host immune responses against Mtb infection. Targeting these MHC Ib-restricted CD8+ T cells would facilitate the design of better Mtb vaccines with broader coverage across MHC haplotypes due to the limited polymorphism of MHC class Ib molecules.
Collapse
|
13
|
Godfrey DI, Uldrich AP, McCluskey J, Rossjohn J, Moody DB. The burgeoning family of unconventional T cells. Nat Immunol 2016; 16:1114-23. [PMID: 26482978 DOI: 10.1038/ni.3298] [Citation(s) in RCA: 583] [Impact Index Per Article: 64.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 09/15/2015] [Indexed: 02/07/2023]
Abstract
While most studies of T lymphocytes have focused on T cells reactive to complexes of peptide and major histocompatibility complex (MHC) proteins, many other types of T cells do not fit this paradigm. These include CD1-restricted T cells, MR1-restricted mucosal associated invariant T cells (MAIT cells), MHC class Ib-reactive T cells, and γδ T cells. Collectively, these T cells are considered 'unconventional', in part because they can recognize lipids, small-molecule metabolites and specially modified peptides. Unlike MHC-reactive T cells, these apparently disparate T cell types generally show simplified patterns of T cell antigen receptor (TCR) expression, rapid effector responses and 'public' antigen specificities. Here we review evidence showing that unconventional T cells are an abundant component of the human immune system and discuss the immunotherapeutic potential of these cells and their antigenic targets.
Collapse
Affiliation(s)
- Dale I Godfrey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Australia.,Australian Research Council Centre of Excellence for Advanced Molecular Imaging, University of Melbourne, Parkville, Australia
| | - Adam P Uldrich
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Australia.,Australian Research Council Centre of Excellence for Advanced Molecular Imaging, University of Melbourne, Parkville, Australia
| | - James McCluskey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and The Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Australia.,Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Australia
| | - D Branch Moody
- Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
14
|
Durlanik S, Thiel A. Requirement of immune system heterogeneity for protective immunity. Vaccine 2015; 33:5308-12. [PMID: 26073012 DOI: 10.1016/j.vaccine.2015.05.096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 05/15/2015] [Accepted: 05/20/2015] [Indexed: 01/24/2023]
Abstract
Although our knowledge on the immune system and immunological memory has expanded enormously during the last decades, the development of strategies to induce robust protective memory against infections and tumors remains challenging. Intense efforts and immense resources have been put into the development of vaccines. However, effective tools to assess protective immunity, beyond neutralizing antibody titers and cytotoxic T cell activity, are still missing. Previous trials have primarily focused on individual cell subsets to induce and maintain protection while current research emphasizes the importance of functional heterogeneity and necessity of efficient communication within the immunological network. In this review, established knowledge as well as current perspectives on protective immunological memory will be discussed comprehensively.
Collapse
Affiliation(s)
- Sibel Durlanik
- Regenerative Immunology and Aging, Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité University Medicine, CVK, Föhrer Str. 15, Berlin 13353, Germany.
| | - Andreas Thiel
- Regenerative Immunology and Aging, Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité University Medicine, CVK, Föhrer Str. 15, Berlin 13353, Germany
| |
Collapse
|
15
|
Smith CJ, Turula H, Snyder CM. Systemic hematogenous maintenance of memory inflation by MCMV infection. PLoS Pathog 2014; 10:e1004233. [PMID: 24992722 PMCID: PMC4081724 DOI: 10.1371/journal.ppat.1004233] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 05/20/2014] [Indexed: 12/02/2022] Open
Abstract
Several low-grade persistent viral infections induce and sustain very large numbers of virus-specific effector T cells. This was first described as a response to cytomegalovirus (CMV), a herpesvirus that establishes a life-long persistent/latent infection, and sustains the largest known effector T cell populations in healthy people. These T cells remain functional and traffic systemically, which has led to the recent exploration of CMV as a persistent vaccine vector. However, the maintenance of this remarkable response is not understood. Current models propose that reservoirs of viral antigen and/or latently infected cells in lymph nodes stimulate T cell proliferation and effector differentiation, followed by migration of progeny to non-lymphoid tissues where they control CMV reactivation. We tested this model using murine CMV (MCMV), a natural mouse pathogen and homologue of human CMV (HCMV). While T cells within draining lymph nodes divided at a higher rate than cells elsewhere, antigen-dependent proliferation of MCMV-specific effector T cells was observed systemically. Strikingly, inhibition of T cell egress from lymph nodes failed to eliminate systemic T cell division, and did not prevent the maintenance of the inflationary populations. In fact, we found that the vast majority of inflationary cells, including most cells undergoing antigen-driven division, had not migrated into the parenchyma of non-lymphoid tissues but were instead exposed to the blood supply. Indeed, the immunodominance and effector phenotype of inflationary cells, both of which are primary hallmarks of memory inflation, were largely confined to blood-localized T cells. Together these results support a new model of MCMV-driven memory inflation in which most immune surveillance occurs in circulation, and in which most inflationary effector T cells are produced in response to viral antigen presented by cells that are accessible to the blood supply. Herpesviruses persist for the life of the host and must be continuously controlled by a robust immune surveillance effort. In the case of the cytomegalovirus (CMV), this ongoing immune surveillance promotes the accumulation of CMV-specific T cells in a process known as “memory inflation”. We and others have proposed that the ability to induce memory inflation may be an important benefit of CMV-based vaccine vectors that persist within the host and continuously boost the immune response. However, it has been difficult to determine where T cells are encountering CMV in the body, leading to many unanswered questions about the maintenance of this remarkable response. Previous models proposed that T cells encountered viral antigen within lymph nodes and then migrated to other tissues to prevent CMV reactivation. However, we found that the majority of T cells stimulated by CMV were present in circulation, where they could be sustained without the input from T cells localized to lymph nodes. In fact, two of the defining features of memory inflation - inflated numbers and an effector phenotype - were restricted to cells that were exposed to the blood. Thus, we propose that memory inflation during CMV infection is largely the result of immune surveillance that occurs in circulation.
Collapse
Affiliation(s)
- Corinne J. Smith
- Department of Microbiology and Immunology, Jefferson Medical College, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Holly Turula
- Department of Microbiology and Immunology, Jefferson Medical College, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Christopher M. Snyder
- Department of Microbiology and Immunology, Jefferson Medical College, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
16
|
Hofstetter AR, Evavold BD, Lukacher AE. Peptide immunization elicits polyomavirus-specific MHC class ib-restricted CD8 T cells in MHC class ia allogeneic mice. Viral Immunol 2013; 26:109-13. [PMID: 23374150 PMCID: PMC3578367 DOI: 10.1089/vim.2012.0052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Unlike the polymorphic MHC class Ia molecules, MHC class Ib molecules are oligomorphic or nonpolymorphic. We recently discovered a protective CD8 T cell response to mouse polyomavirus (MPyV) in H-2(b) haplotype mice that is restricted by H2-Q9, a member of the Qa-2 MHC class Ib family. Here, we demonstrate that immunization with a peptide corresponding to a virus capsid-derived peptide presented by Q9 also elicits MHC class Ib-restricted MPyV-specific CD8 T cells in mice of H-2(s) and H-2(g7) strains. These findings support the concept that immunization with a single MHC class Ib-restricted peptide can expand CD8 T cells in MHC class Ia allogeneic hosts.
Collapse
Affiliation(s)
- Amelia R. Hofstetter
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia.,Graduate Program in Immunology and Molecular Pathogenesis, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, Georgia
| | - Brian D. Evavold
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia
| | - Aron E. Lukacher
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
17
|
Delbue S, Comar M, Ferrante P. Review on the relationship between human polyomaviruses-associated tumors and host immune system. Clin Dev Immunol 2012; 2012:542092. [PMID: 22489251 PMCID: PMC3318214 DOI: 10.1155/2012/542092] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 01/11/2012] [Indexed: 02/05/2023]
Abstract
The polyomaviruses are small DNA viruses that can establish latency in the human host. The name polyomavirus is derived from the Greek roots poly-, which means "many," and -oma, which means "tumours." These viruses were originally isolated in mouse (mPyV) and in monkey (SV40). In 1971, the first human polyomaviruses BK and JC were isolated and subsequently demonstrated to be ubiquitous in the human population. To date, at least nine members of the Polyomaviridae family have been identified, some of them playing an etiological role in malignancies in immunosuppressed patients. Here, we describe the biology of human polyomaviruses, their nonmalignant and malignant potentials ability, and their relationship with the host immune response.
Collapse
Affiliation(s)
- Serena Delbue
- Laboratory of Transkìlational Research, Health Science Foundation Ettore Sansavini, Corso Garibaldi, 11-48022 Lugo, Italy.
| | | | | |
Collapse
|
18
|
Hofstetter AR, Ford ML, Sullivan LC, Wilson JJ, Hadley A, Brooks AG, Lukacher AE. MHC class Ib-restricted CD8 T cells differ in dependence on CD4 T cell help and CD28 costimulation over the course of mouse polyomavirus infection. THE JOURNAL OF IMMUNOLOGY 2012; 188:3071-9. [PMID: 22393155 DOI: 10.4049/jimmunol.1103554] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We recently identified a protective MHC class Ib-restricted CD8 T cell response to infection with mouse polyomavirus. These CD8 T cells recognize a peptide from aa 139-147 of the VP2 viral capsid protein bound to the nonpolymorphic H-2Q9 molecule, a member of the Qa-2 family of β(2)m-associated MHC class Ib molecules. Q9:VP2.139-specific CD8 T cells exhibit an unusual inflationary response characterized by a gradual expansion over 3 mo followed by a stable maintenance phase. We previously demonstrated that Q9:VP2.139-specific CD8 T cells are dependent on Ag for expansion, but not for long-term maintenance. In this study, we tested the hypothesis that the expansion and maintenance components of the Q9:VP2.139-specific T cell response are differentially dependent on CD4 T cell help and CD28 costimulation. Depletion of CD4(+) cells and CD28/CD40L blockade impaired expansion of Q9:VP2.139-specific CD8 T cells, and intrinsic CD28 signaling was sufficient for expansion. In contrast, CD4 T cell insufficiency, but not CD28/CD40L blockade, resulted in a decline in frequency of Q9:VP2.139-specific CD8 T cells during the maintenance phase. These results indicate that the Q9:VP2.139-specific CD8 T cell response to mouse polyomavirus infection depends on CD4 T cell help and CD28 costimulation for inflationary expansion, but only on CD4 T cell help for maintenance.
Collapse
Affiliation(s)
- Amelia R Hofstetter
- Department of Pathology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
O'Hara GA, Welten SPM, Klenerman P, Arens R. Memory T cell inflation: understanding cause and effect. Trends Immunol 2012; 33:84-90. [PMID: 22222196 DOI: 10.1016/j.it.2011.11.005] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 11/24/2011] [Accepted: 11/26/2011] [Indexed: 11/20/2022]
Abstract
Typically, during viral infections, T cells encounter antigen, undergo proliferative expansion and ultimately contract into a pool of memory cells. However, after infection with cytomegalovirus, a ubiquitous β-herpesvirus, T cell populations specific for certain epitopes do not contract but instead are maintained and/or accumulate at high frequencies with a characteristic effector-memory phenotype. This feature has also been noted after other infections, for example, by parvoviruses. We discuss this so-called memory T cell inflation and the factors involved in this phenomenon. Also, we consider the potential therapeutic use of memory T cell inflation as a vaccine strategy and the associated implications for immune senescence.
Collapse
Affiliation(s)
- Geraldine A O'Hara
- Peter Medawar Building for Pathogen Research, South Parks Road, Oxford OX1 4SY, UK.
| | | | | | | |
Collapse
|
20
|
Chen L, Jay DC, Fairbanks JD, He X, Jensen PE. An MHC class Ib-restricted CD8+ T cell response to lymphocytic choriomeningitis virus. THE JOURNAL OF IMMUNOLOGY 2011; 187:6463-72. [PMID: 22084437 DOI: 10.4049/jimmunol.1101171] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Conventional MHC class Ia-restricted CD8(+) T cells play a dominant role in the host response to virus infections, but recent studies indicate that T cells with specificity for nonclassical MHC class Ib molecules may also participate in host defense. To investigate the potential role of class Ib molecules in anti-viral immune responses, K(b-/-)D(b-/-)CIITA(-/-) mice lacking expression of MHC class Ia and class II molecules were infected with lymphocytic choriomeningitis virus (LCMV). These animals have a large class Ib-selected CD8(+) T cell population and they were observed to mediate partial (but incomplete) virus clearance during acute LCMV infection as compared with K(b-/-)D(b-/-)β(2)-microglobulin(-/-) mice that lack expression of both MHC class Ia and class Ib molecules. Infection was associated with expansion of splenic CD8(+) T cells and induction of granzyme B and IFN-γ effector molecules in CD8(+) T cells. Partial virus clearance was dependent on CD8(+) cells. In vitro T cell restimulation assays demonstrated induction of a population of β(2)-microglobulin-dependent, MHC class Ib-restricted CD8(+) T cells with specificity for viral Ags and yet to be defined nonclassical MHC molecules. MHC class Ib-restricted CD8(+) T cell responses were also observed after infection of K(b-/-)D(b-/-)mice despite the low number of CD8(+) T cells in these animals. Long-term infection studies demonstrated chronic infection and gradual depletion of CD8(+) T cells in K(b-/-)D(b-/-)CIITA(-/-) mice, demonstrating that class Ia molecules are required for viral clearance. These findings demonstrate that class Ib-restricted CD8(+) T cells have the potential to participate in the host immune response to LCMV.
Collapse
Affiliation(s)
- Lili Chen
- Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | | | | |
Collapse
|
21
|
Hufford MM, Kim TS, Sun J, Braciale TJ. Antiviral CD8+ T cell effector activities in situ are regulated by target cell type. J Exp Med 2011; 208:167-80. [PMID: 21187318 PMCID: PMC3023137 DOI: 10.1084/jem.20101850] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Accepted: 12/07/2010] [Indexed: 12/29/2022] Open
Abstract
Cytotoxic T lymphocytes (CTLs) play a prominent role in the resolution of viral infections through their capacity both to mediate contact-dependent lysis of infected cells and to release soluble proinflammatory cytokines and chemokines. The factors controlling these antiviral effector activities in vivo at infection sites are ill defined. Using a mouse model of influenza infection, we observed that the expression of CTL effector activity in the infected lungs is dictated by the target cell type encountered. CD45(+) lung infiltrating inflammatory mononuclear cells, particularly CD11c(hi) dendritic cells, trigger both CTL cytotoxicity and release of inflammatory mediators, whereas CD45(-) influenza-infected respiratory epithelial cells stimulate only CTL cytotoxicity. CTL proinflammatory mediator release is modulated by co-stimulatory ligands (CD80 and CD86) expressed by the CD45(+) inflammatory cells. These findings suggest novel mechanisms of control of CTL effector activity and have potentially important implications for the control of excess pulmonary inflammation and immunopathology while preserving optimal viral clearance during respiratory virus infections.
Collapse
Affiliation(s)
- Matthew M. Hufford
- Beirne B. Carter Center for Immunology Research, Department of Microbiology, and Department of Pathology, University of Virginia, Charlottesville, VA 22904
| | - Taeg S. Kim
- Beirne B. Carter Center for Immunology Research, Department of Microbiology, and Department of Pathology, University of Virginia, Charlottesville, VA 22904
| | - Jie Sun
- Beirne B. Carter Center for Immunology Research, Department of Microbiology, and Department of Pathology, University of Virginia, Charlottesville, VA 22904
| | - Thomas J. Braciale
- Beirne B. Carter Center for Immunology Research, Department of Microbiology, and Department of Pathology, University of Virginia, Charlottesville, VA 22904
| |
Collapse
|
22
|
Cho H, Choi HJ, Xu H, Felio K, Wang CR. Nonconventional CD8+ T cell responses to Listeria infection in mice lacking MHC class Ia and H2-M3. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 186:489-98. [PMID: 21098224 PMCID: PMC3068915 DOI: 10.4049/jimmunol.1002639] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD8(+) T cells restricted to MHC class Ib molecules other than H2-M3 have been shown to recognize bacterial Ags. However, the contribution of these T cells to immune responses against bacterial infection is not well defined. To investigate the immune potential of MHC class Ib-restricted CD8(+) T cells, we have generated mice that lack both MHC class Ia and H2-M3 molecules (K(b-/-)D (b-/-)M3(-/-)). The CD8(+) T cells present in K(b-/-)D (b-/-)M3(-/-) mice display an activated surface phenotype and are able to secrete IFN-γ rapidly upon anti-CD3 and anti-CD28 stimulation. Although the CD8(+) T cell population is reduced in K(b-/-)D (b-/-)M3(-/-) mice compared with that in K(b-/-)D (b-/-) mice, this population retains the capacity to expand significantly in response to primary infection with the bacteria Listeria monocytogenes. However, K(b-/-)D (b-/-)M3(-/-) CD8(+) T cells do not expand upon secondary infection, similar to what has been observed for H2-M3-restricted T cells. CD8(+) T cells isolated from Listeria-infected K(b-/-)D (b-/-)M3(-/-) mice exhibit cytotoxicity and secrete proinflammatory cytokines in response to Listeria-infected APCs. These T cells are protective against primary Listeria infection, as Listeria-infected K(b-/-)D (b-/-)M3(-/-) mice exhibit reduced bacterial burden compared with that of infected β(2)-microglobulin-deficient mice that lack MHC class Ib-restricted CD8(+) T cells altogether. In addition, adoptive transfer of Listeria-experienced K(b-/-)D (b-/-)M3(-/-) splenocytes protects recipient mice against subsequent Listeria infection in a CD8(+) T cell-dependent manner. These data demonstrate that other MHC class Ib-restricted CD8(+) T cells, in addition to H2-M3-restricted T cells, contribute to antilisterial immunity and may contribute to immune responses against other intracellular bacteria.
Collapse
Affiliation(s)
| | | | | | - Kyrie Felio
- Department of Microbiology and Immunology, Northwestern University, Chicago, IL 60611
| | - Chyung-Ru Wang
- Department of Microbiology and Immunology, Northwestern University, Chicago, IL 60611
| |
Collapse
|
23
|
Hofstetter AR, Sullivan LC, Lukacher AE, Brooks AG. Diverse roles of non-diverse molecules: MHC class Ib molecules in host defense and control of autoimmunity. Curr Opin Immunol 2010; 23:104-10. [PMID: 20970974 DOI: 10.1016/j.coi.2010.09.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 09/27/2010] [Indexed: 10/18/2022]
Abstract
While the prime function of classical MHC class I molecules (MHC-I) is to present peptide antigens to pathogen-specific cytotoxic T cells, non-classical MHC-I antigens perform a diverse array of functions in both innate and adaptive immunity. In this review we summarize recent evidence that non classical MHC-I molecules are not only recognized by pathogen-specific T cells but that they also serve as immunoregulatory molecules by stimulating a number of distinct non-conventional T cell subsets.
Collapse
Affiliation(s)
- Amelia R Hofstetter
- Department of Pathology, Emory University School of Medicine, Atlanta, GA 30322, United States
| | | | | | | |
Collapse
|
24
|
Ramaswami B, Popescu I, Macedo C, Metes D, Bueno M, Zeevi A, Shapiro R, Viscidi R, Randhawa PS. HLA-A01-, -A03-, and -A024-binding nanomeric epitopes in polyomavirus BK large T antigen. Hum Immunol 2009; 70:722-8. [PMID: 19446588 PMCID: PMC3086345 DOI: 10.1016/j.humimm.2009.05.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Revised: 05/01/2009] [Accepted: 05/08/2009] [Indexed: 11/19/2022]
Abstract
Polyomavirus BK (BKV) infections are increasingly recognized. The development of immune-monitoring strategies against BKV requires definition of antigenic epitopes. Bioinformatic algorithms were used to identify 60 BKV large T-antigen (LT-Ag) peptides predicted to bind HLA class I alleles. In vitro peptide binding was used to select a subset of 19 peptides for interferon (IFN)-gamma ELISPOT assays in 13 healthy subjects and 12 kidney transplant recipients. Four A01-, nine A03-, and five A24-binding immunogenic peptides were identified in 1 to 3 (14-67%) tested subjects in each group. BKV epitope sequences were identical to homologous JC virus sequences for 3 of 19 peptides and homologous SV40 sequences for 5 of 19 peptides. Homology modeling localized these epitopes to the helicase, origin of DNA binding, or J domains, respectively. In conclusion, we have identified multiple 9-mer BKV LT-Ag-derived immunogenic epitopes that bind HLA-A01, -A03, or -A24 molecules. Sequence alignments indicate that two epitopes, FLICKGVNK and RYWLFKGPI, are common to BKV, JC virus, and SV40 virus.
Collapse
MESH Headings
- Adult
- Antigens, Viral, Tumor/genetics
- Antigens, Viral, Tumor/immunology
- Antigens, Viral, Tumor/metabolism
- BK Virus/genetics
- BK Virus/immunology
- BK Virus/pathogenicity
- Cells, Cultured
- Computer Simulation
- Epitope Mapping
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/metabolism
- Female
- Graft Rejection/complications
- Graft Rejection/immunology
- Graft Rejection/pathology
- Graft Rejection/virology
- HLA-A Antigens/metabolism
- Humans
- Interferon-gamma/metabolism
- JC Virus/genetics
- JC Virus/immunology
- Kidney Transplantation
- Lymphocyte Activation
- Male
- Middle Aged
- Peptide Fragments/genetics
- Peptide Fragments/immunology
- Peptide Fragments/metabolism
- Polyomavirus Infections/complications
- Polyomavirus Infections/immunology
- Polyomavirus Infections/pathology
- Polyomavirus Infections/virology
- Protein Binding
- Sequence Alignment
- Simian virus 40/genetics
- Simian virus 40/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes/pathology
- Tumor Virus Infections/complications
- Tumor Virus Infections/immunology
- Tumor Virus Infections/pathology
- Tumor Virus Infections/virology
Collapse
Affiliation(s)
- Bala Ramaswami
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Swanson PA, Lukacher AE, Szomolanyi-Tsuda E. Immunity to polyomavirus infection: the polyomavirus-mouse model. Semin Cancer Biol 2009; 19:244-51. [PMID: 19505652 PMCID: PMC2694952 DOI: 10.1016/j.semcancer.2009.02.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 02/01/2009] [Accepted: 02/06/2009] [Indexed: 11/28/2022]
Abstract
A ubiquitous clinically silent murine pathogen, polyomavirus has enjoyed long-term co-evolution with the mouse, a highly tractable and genetically and immunologically informative small animal model. Thus, polyomavirus has provided a valuable experimental construct to decipher the host immune mechanisms that come into play to control systemic low-level persistent viral infections. Impaired immunosurveillance for infected cells puts the murine host at risk both to injury resulting from excessive direct virus cytolysis and development of virus-induced tumors. In this review, we present our current understanding of the multifaceted immune response invoked by the mouse to maintain détente with this potentially deleterious persistent natural pathogen, and discuss implications of these studies for therapeutic interventions for human polyomavirus infection.
Collapse
Affiliation(s)
- Phillip A. Swanson
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Aron E. Lukacher
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Eva Szomolanyi-Tsuda
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
26
|
Ramqvist T, Dalianis T. Murine polyomavirus tumour specific transplantation antigens and viral persistence in relation to the immune response, and tumour development. Semin Cancer Biol 2009; 19:236-43. [DOI: 10.1016/j.semcancer.2009.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 02/05/2009] [Accepted: 02/06/2009] [Indexed: 11/26/2022]
|
27
|
Abstract
Viruses that cause chronic infection constitute a stable but little-recognized part of our metagenome: our virome. Ongoing immune responses hold these chronic viruses at bay while avoiding immunopathologic damage to persistently infected tissues. The immunologic imprint generated by these responses to our virome defines the normal immune system. The resulting dynamic but metastable equilibrium between the virome and the host can be dangerous, benign, or even symbiotic. These concepts require that we reformulate how we assign etiologies for diseases, especially those with a chronic inflammatory component, as well as how we design and interpret genome-wide association studies, and how we vaccinate to limit or control our virome.
Collapse
Affiliation(s)
- Herbert W Virgin
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | | | |
Collapse
|
28
|
Swanson PA, Hofstetter AR, Wilson JJ, Lukacher AE. Cutting edge: shift in antigen dependence by an antiviral MHC class Ib-restricted CD8 T cell response during persistent viral infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 182:5198-202. [PMID: 19380764 PMCID: PMC2861783 DOI: 10.4049/jimmunol.0900421] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The requirement for Ag in maintaining memory CD8 T cells often differs between infections that are acutely resolved and those that persist. Using the mouse polyoma virus (PyV) persistent infection model, we recently described a novel CD8 T cell response directed to a PyV peptide presented by Q9, an MHC class Ib molecule. This antiviral Q9-restricted CD8 T cell response is characterized by a 3-mo expansion phase followed by a long-term plateau phase. In this study, we demonstrate that viral Ag is required for this protracted inflation phase but is dispensable for the maintenance of this Q9-restricted CD8 T cell response. Moreover, proliferation by memory T cells, not recruitment of naive PyV-specific T cells, is primarily responsible for Q9-restricted, anti-PyV CD8 T cell inflation. These data reveal a dynamic shift in Ag dependence by an MHC class Ib-restricted memory CD8 T cell response during a persistent viral infection.
Collapse
Affiliation(s)
| | | | | | - Aron E. Lukacher
- Department of Pathology, Emory University School of Medicine, Atlanta, GA 30322
| |
Collapse
|
29
|
Collins EJ, Riddle DS. TCR-MHC docking orientation: natural selection, or thymic selection? Immunol Res 2009; 41:267-94. [PMID: 18726714 DOI: 10.1007/s12026-008-8040-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
T cell receptors (TCR) dock on their peptide-major histocompatibility complex (pMHC) targets in a conserved orientation. Since amino acid sidechains are the foundation of specific protein-protein interactions, a simple explanation for the conserved docking orientation is that key amino acids encoded by the TCR and MHC genes have been selected and maintained through evolution in order to preserve TCR/pMHC binding. Expectations that follow from the hypothesis that TCR and MHC evolved to interact are discussed in light of the data that both support and refute them. Finally, an alternative and equally simple explanation for the driving force behind the conserved docking orientation is described.
Collapse
Affiliation(s)
- Edward J Collins
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, 804 Mary Ellen Jones Building, Chapel Hill, NC 27510, USA.
| | | |
Collapse
|