1
|
Khandokar Y, Cheng TY, Wang CJH, Cao TP, Nagampalli RSK, Sivaraman KK, Van Rhijn I, Rossjohn J, Moody DB, Le Nours J. Molecular basis for presentation of N-myristoylated peptides by the chicken YF1*7.1 molecule. J Biol Chem 2025:110253. [PMID: 40412526 DOI: 10.1016/j.jbc.2025.110253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/22/2025] [Accepted: 04/26/2025] [Indexed: 05/27/2025] Open
Abstract
Major Histocompatibility Complex I (MHC-I) and MHC-I-like molecules play a central role in mediating immunity. Through their conservation across all taxa of jawed vertebrates, the MHC-I-like proteins have adapted to present non-peptidic antigens to distinct T cell populations. While our understanding of the structure-function relationship of MHC-I and MHC-I-like molecules in humans and mice is well established, the nature of the antigens presented by MHC-I- like molecules in 'non-model' species remains unclear. Here, using a mammalian recombinant expression system combined with mass spectrometry approaches, we identified N-myristoylated peptides as endogenous ligands for the chicken MHC-I-like protein YF1*7.1. Given the importance of N-myristoylation in viral pathogenesis, we determined the crystal structure of YF1*7.1 in complex with two N-myristoylated peptides derived from Marek's disease virus (MDV), demonstrating the molecular basis that underpins the presentation of N-myristoylated peptides from MDV, a highly contagious and fatal viral neoplastic disease in chickens. Thus, the identified ligands are distinct from unmodified peptides found in classical MHC-I and -II as well as diverse amphipathic lipids captured by CD1 proteins. Collectively, our study lays the foundation for further molecular and functional characterization of YF1*7.1 and more broadly of the role of the MHC-I encoded by the MHC-Y gene cluster in protection against highly contagious viral neoplastic diseases in chickens.
Collapse
Affiliation(s)
- Yogesh Khandokar
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3168, Australia
| | - Tan Yun Cheng
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Carl J H Wang
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3168, Australia
| | - Thinh-Phat Cao
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3168, Australia
| | - Raghavendra S K Nagampalli
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3168, Australia
| | - Komagal Kannan Sivaraman
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3168, Australia
| | - Ildiko Van Rhijn
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands; Department of Medical Biology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3168, Australia; Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff CF14 4XN, UK.
| | - D Branch Moody
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Jérôme Le Nours
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3168, Australia.
| |
Collapse
|
2
|
Gopakumar G, Coppo MJC, Diaz-Méndez A, Hartley CA, Devlin JM. Clinical assessment and transcriptome analysis of host immune responses in a vaccination-challenge study using a glycoprotein G deletion mutant vaccine strain of infectious laryngotracheitis virus. Front Immunol 2025; 15:1458218. [PMID: 39926602 PMCID: PMC11802539 DOI: 10.3389/fimmu.2024.1458218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 12/17/2024] [Indexed: 02/11/2025] Open
Abstract
A glycoprotein-G-deleted live-attenuated vaccine strain of the infectious laryngotracheitis virus (ILTV), ΔgG-ILTV, is safe and efficacious against ILTV challenge. In the current study, the transcriptome of peripheral blood mononuclear cells (PBMCs) of the ΔgG-ILTV-vaccinated group of specific-pathogen-free chickens were compared to those of the nonvaccinated group at 7 days post-vaccination. Tracheal transcriptomes after challenge with virulent ILTV were compared between groups of the non-vaccinated-challenged and the vaccinated-challenged as well as the non-vaccinated-challenged and the uninfected chickens at 4 to 5 days post-challenge. The clinical outcomes after challenge between these groups were also evaluated. Significant differences were observed in the tracheal transcriptome of the non-vaccinated-challenged birds compared to the other two groups. Enriched gene ontologies and pathways that indicated heightened immune responses and impairments to ciliary and neuronal functions, cell junction components, and potential damages to cartilaginous and extracellular components in the trachea of the non-vaccinated-challenged birds were consistent with their severe tracheal pathology compared to the other two groups. On the contrary, the absence of any difference in the tracheal transcriptome between the vaccinated-challenged and the uninfected birds were reflected by the preservation of tracheal mucosal integrity in both groups and mild infiltration of leukocytes in the vaccinated-challenged birds. The results from this study demonstrated that vaccination with ΔgG-ILTV prevented the changes in tracheal transcriptome induced during ILTV challenge, resulting in clinical protection. Additionally, these results also provide insights into the molecular mechanisms underlying the tracheal pathology induced by ILTV infection.
Collapse
Affiliation(s)
- Gayathri Gopakumar
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Mauricio J. C. Coppo
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
- Escuela de Medicina Veterinaria, Universidad Andrés Bello, Concepción, Chile
| | - Andrés Diaz-Méndez
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Carol A. Hartley
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Joanne M. Devlin
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
3
|
Wu Z, Shih B, Macdonald J, Meunier D, Hogan K, Chintoan-Uta C, Gilhooley H, Hu T, Beltran M, Henderson NC, Sang HM, Stevens MP, McGrew MJ, Balic A. Development and function of chicken XCR1 + conventional dendritic cells. Front Immunol 2023; 14:1273661. [PMID: 37954617 PMCID: PMC10634274 DOI: 10.3389/fimmu.2023.1273661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/06/2023] [Indexed: 11/14/2023] Open
Abstract
Conventional dendritic cells (cDCs) are antigen-presenting cells (APCs) that play a central role in linking innate and adaptive immunity. cDCs have been well described in a number of different mammalian species, but remain poorly characterised in the chicken. In this study, we use previously described chicken cDC specific reagents, a novel gene-edited chicken line and single-cell RNA sequencing (scRNAseq) to characterise chicken splenic cDCs. In contrast to mammals, scRNAseq analysis indicates that the chicken spleen contains a single, chemokine receptor XCR1 expressing, cDC subset. By sexual maturity the XCR1+ cDC population is the most abundant mononuclear phagocyte cell subset in the chicken spleen. scRNAseq analysis revealed substantial heterogeneity within the chicken splenic XCR1+ cDC population. Immature MHC class II (MHCII)LOW XCR1+ cDCs expressed a range of viral resistance genes. Maturation to MHCIIHIGH XCR1+ cDCs was associated with reduced expression of anti-viral gene expression and increased expression of genes related to antigen presentation via the MHCII and cross-presentation pathways. To visualise and transiently ablate chicken XCR1+ cDCs in situ, we generated XCR1-iCaspase9-RFP chickens using a CRISPR-Cas9 knockin transgenesis approach to precisely edit the XCR1 locus, replacing the XCR1 coding region with genes for a fluorescent protein (TagRFP), and inducible Caspase 9. After inducible ablation, the chicken spleen is initially repopulated by immature CD1.1+ XCR1+ cDCs. XCR1+ cDCs are abundant in the splenic red pulp, in close association with CD8+ T-cells. Knockout of XCR1 prevented this clustering of cDCs with CD8+ T-cells. Taken together these data indicate a conserved role for chicken and mammalian XCR1+ cDCs in driving CD8+ T-cells responses.
Collapse
Affiliation(s)
- Zhiguang Wu
- The Roslin Institute, University of Edinburgh, Midlothian, United Kingdom
| | - Barbara Shih
- The Roslin Institute, University of Edinburgh, Midlothian, United Kingdom
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| | - Joni Macdonald
- The Roslin Institute, University of Edinburgh, Midlothian, United Kingdom
| | - Dominique Meunier
- The Roslin Institute, University of Edinburgh, Midlothian, United Kingdom
| | - Kris Hogan
- The Roslin Institute, University of Edinburgh, Midlothian, United Kingdom
| | | | - Hazel Gilhooley
- The Roslin Institute, University of Edinburgh, Midlothian, United Kingdom
| | - Tuanjun Hu
- The Roslin Institute, University of Edinburgh, Midlothian, United Kingdom
| | - Mariana Beltran
- Centre for Inflammation Research, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Neil C. Henderson
- Centre for Inflammation Research, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- Medical Research Council (MRC) Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Helen M. Sang
- The Roslin Institute, University of Edinburgh, Midlothian, United Kingdom
| | - Mark P. Stevens
- The Roslin Institute, University of Edinburgh, Midlothian, United Kingdom
| | - Michael J. McGrew
- The Roslin Institute, University of Edinburgh, Midlothian, United Kingdom
| | - Adam Balic
- The Roslin Institute, University of Edinburgh, Midlothian, United Kingdom
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
4
|
Witt KD. Role of MHC class I pathways in Mycobacterium tuberculosis antigen presentation. Front Cell Infect Microbiol 2023; 13:1107884. [PMID: 37009503 PMCID: PMC10050577 DOI: 10.3389/fcimb.2023.1107884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/23/2023] [Indexed: 03/17/2023] Open
Abstract
MHC class I antigen processing is an underappreciated area of nonviral host–pathogen interactions, bridging both immunology and cell biology, where the pathogen’s natural life cycle involves little presence in the cytoplasm. The effective response to MHC-I foreign antigen presentation is not only cell death but also phenotypic changes in other cells and stimulation of the memory cells ready for the next antigen reoccurrence. This review looks at the MHC-I antigen processing pathway and potential alternative sources of the antigens, focusing on Mycobacterium tuberculosis (Mtb) as an intracellular pathogen that co-evolved with humans and developed an array of decoy strategies to survive in a hostile environment by manipulating host immunity to its own advantage. As that happens via the selective antigen presentation process, reinforcement of the effective antigen recognition on MHC-I molecules may stimulate subsets of effector cells that act earlier and more locally. Vaccines against tuberculosis (TB) could potentially eliminate this disease, yet their development has been slow, and success is limited in the context of this global disease’s spread. This review’s conclusions set out potential directions for MHC-I-focused approaches for the next generation of vaccines.
Collapse
Affiliation(s)
- Karolina D. Witt
- Pandemic Sciences Institute, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- *Correspondence: Karolina D. Witt,
| |
Collapse
|
5
|
Farquhar R, Van Rhijn I, Moody DB, Rossjohn J, Shahine A. αβ T-cell receptor recognition of self-phosphatidylinositol presented by CD1b. J Biol Chem 2023; 299:102849. [PMID: 36587766 PMCID: PMC9900620 DOI: 10.1016/j.jbc.2022.102849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
CD1 glycoproteins present lipid-based antigens to T-cell receptors (TCRs). A role for CD1b in T-cell-mediated autoreactivity was proposed when it was established that CD1b can present self-phospholipids with short alkyl chains (∼C34) to T cells; however, the structural characteristics of this presentation and recognition are unclear. Here, we report the 1.9 Å resolution binary crystal structure of CD1b presenting a self-phosphatidylinositol-C34:1 and an endogenous scaffold lipid. Moreover, we also determined the 2.4 Å structure of CD1b-phosphatidylinositol complexed to an autoreactive αβ TCR, BC8B. We show that the TCR docks above CD1b and directly contacts the presented antigen, selecting for both the phosphoinositol headgroup and glycerol neck region via antigen remodeling within CD1b and allowing lateral escape of the inositol moiety through a channel formed by the TCR α-chain. Furthermore, through alanine scanning mutagenesis and surface plasmon resonance, we identified key CD1b residues mediating this interaction, with Glu-80 abolishing TCR binding. We in addition define a role for both CD1b α1 and CD1b α2 molecular domains in modulating this interaction. These findings suggest that the BC8B TCR contacts both the presented phospholipid and the endogenous scaffold lipid via a dual mechanism of corecognition. Taken together, these data expand our understanding into the molecular mechanisms of CD1b-mediated T-cell autoreactivity.
Collapse
Affiliation(s)
- Rachel Farquhar
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Ildiko Van Rhijn
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA; Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - D Branch Moody
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia; Institute of Infection and Immunity, Cardiff University, School of Medicine, Cardiff, United Kingdom.
| | - Adam Shahine
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
6
|
Chancellor A, Gadola SD, Mansour S. The versatility of the CD1 lipid antigen presentation pathway. Immunology 2018; 154:196-203. [PMID: 29460282 DOI: 10.1111/imm.12912] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/12/2018] [Accepted: 02/14/2018] [Indexed: 12/19/2022] Open
Abstract
The family of non-classical major histocompatibility complex (MHC) class-I like CD1 molecules has an emerging role in human disease. Group 1 CD1 includes CD1a, CD1b and CD1c, which function to display lipids on the cell surface of antigen-presenting cells for direct recognition by T-cells. The recent advent of CD1 tetramers and the identification of novel lipid ligands has contributed towards the increasing number of CD1-restricted T-cell clones captured. These advances have helped to identify novel donor unrestricted and semi-invariant T-cell populations in humans and new mechanisms of T-cell recognition. However, although there is an opportunity to design broadly acting lipids and harness the therapeutic potential of conserved T-cells, knowledge of their role in health and disease is lacking. We briefly summarize the current evidence implicating group 1 CD1 molecules in infection, cancer and autoimmunity and show that although CD1 are not as diverse as MHC, recent discoveries highlight their versatility as they exhibit intricate mechanisms of antigen presentation.
Collapse
Affiliation(s)
- Andrew Chancellor
- Faculty of Medicine, Academic Unit of Clinical and Experimental Sciences, Southampton, UK
| | - Stephan D Gadola
- Faculty of Medicine, Academic Unit of Clinical and Experimental Sciences, Southampton, UK.,F.Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Salah Mansour
- Faculty of Medicine, Academic Unit of Clinical and Experimental Sciences, Southampton, UK
| |
Collapse
|
7
|
Julià A, Absher D, López-Lasanta M, Palau N, Pluma A, Waite Jones L, Glossop JR, Farrell WE, Myers RM, Marsal S. Epigenome-wide association study of rheumatoid arthritis identifies differentially methylated loci in B cells. Hum Mol Genet 2018; 26:2803-2811. [PMID: 28475762 DOI: 10.1093/hmg/ddx177] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 05/02/2017] [Indexed: 12/20/2022] Open
Abstract
Epigenetic regulation of immune cell types could be critical for the development and maintenance of autoimmune diseases like rheumatoid arthritis (RA). B cells are highly relevant in RA, since patients express autoantibodies and depleting this cell type is a successful therapeutic approach. Epigenetic variation, such as DNA methylation, may mediate the pathogenic activity of B cells. In this study, we performed an epigenome-wide association study (EWAS) for RA with three different replication cohorts, to identify disease-specific alterations in DNA methylation in B cells. CpG methylation in isolated B lymphocytes was assayed on the Illumina HumanMethylation450 BeadChip in a discovery cohort of RA patients (N = 50) and controls (N = 75). Differential methylation was observed in 64 CpG sites (q < 0.05). Six biological pathways were also differentially methylated in RA B cells. Analysis in an independent cohort of patients (N = 15) and controls (N = 15) validated the association of 10 CpG sites located on 8 genes CD1C, TNFSF10, PARVG, NID1, DHRS12, ITPK1, ACSF3 and TNFRSF13C, and 2 intergenic regions. Differential methylation at the CBL signaling pathway was replicated. Using an additional case-control cohort (N = 24), the association between RA risk and CpGs cg18972751 at CD1C (P = 2.26 × 10-9) and cg03055671 at TNFSF10 (P = 1.67 × 10-8) genes was further validated. Differential methylation at genes CD1C, TNFSF10, PARVG, NID1, DHRS12, ITPK1, ACSF3, TNFRSF13C and intergenic region chr10p12.31 was replicated in a cohort of systemic lupus erythematosus (SLE) patients (N = 47) and controls (N = 56). Our results highlight genes that may drive the pathogenic activity of B cells in RA and suggest shared methylation patterns with SLE.
Collapse
Affiliation(s)
- Antonio Julià
- Rheumatology Research Group, Vall d'Hebron Research Institute, Barcelona 08035, Spain
| | - Devin Absher
- Absher Lab, HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | - María López-Lasanta
- Rheumatology Research Group, Vall d'Hebron Research Institute, Barcelona 08035, Spain
| | - Nuria Palau
- Rheumatology Research Group, Vall d'Hebron Research Institute, Barcelona 08035, Spain
| | - Andrea Pluma
- Rheumatology Research Group, Vall d'Hebron Research Institute, Barcelona 08035, Spain
| | - Lindsay Waite Jones
- Absher Lab, HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | - John R Glossop
- Institute for Science and Technology in Medicine, Keele University, Keele ST4?7QB, UK
| | - William E Farrell
- Institute for Science and Technology in Medicine, Keele University, Keele ST4?7QB, UK
| | - Richard M Myers
- Myers Lab, HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | - Sara Marsal
- Rheumatology Research Group, Vall d'Hebron Research Institute, Barcelona 08035, Spain
| |
Collapse
|
8
|
Kaczmarek R, Pasciak M, Szymczak-Kulus K, Czerwinski M. CD1: A Singed Cat of the Three Antigen Presentation Systems. Arch Immunol Ther Exp (Warsz) 2017; 65:201-214. [PMID: 28386696 PMCID: PMC5434122 DOI: 10.1007/s00005-017-0461-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/20/2017] [Indexed: 02/07/2023]
Abstract
Contrary to general view that the MHC Class I and II are the kapellmeisters of recognition and response to antigens, there is another big player in that part of immunity, represented by CD1 glycoproteins. In contrast to MHC Class I or II, which present peptides, CD1 molecules present lipids. Humans express five CD1 proteins (CD1a-e), four of which (CD1a-d) are trafficked to the cell surface, where they may display lipid antigens to T-cell receptors. This interaction may lead to both non-cognate and cognate T cell help to B cells, the latter eliciting anti-lipid antibody response. All CD1 proteins can bind a broad range of structurally different exogenous and endogenous lipids, but each shows a preference to one or more lipid classes. This unorthodox binding behavior is the result of elaborate architectures of CD1 binding clefts and distinct intracellular trafficking routes. Together, these features make CD1 system a versatile player in immune response, sitting at the crossroads of innate and adaptive immunity. While CD1 system may be involved in numerous infectious, inflammatory, and autoimmune diseases, its involvement may lead to opposite outcomes depending on different pathologies. Despite these ambiguities and complexity, CD1 system draws growing attention and continues to show glimmers of therapeutic potential. In this review, we summarize the current knowledge about CD1 proteins, their structures, lipid-binding profiles, and roles in immunity, and evaluate the role of CD1 proteins in eliciting humoral immune response.
Collapse
Affiliation(s)
- Radoslaw Kaczmarek
- Laboratory of Glycoconjugate Immunochemistry, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Mariola Pasciak
- Laboratory of Medical Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Katarzyna Szymczak-Kulus
- Laboratory of Glycoconjugate Immunochemistry, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Marcin Czerwinski
- Laboratory of Glycoconjugate Immunochemistry, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland. .,Faculty of Physiotherapy and Physical Education, Opole University of Technology, Opole, Poland.
| |
Collapse
|
9
|
Schjaerff M, Keller SM, Affolter VK, Kristensen AT, Moore PF. Cellular endocytic compartment localization of expressed canine CD1 molecules. Vet Immunol Immunopathol 2016; 182:11-21. [PMID: 27863541 DOI: 10.1016/j.vetimm.2016.08.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 08/03/2016] [Accepted: 08/31/2016] [Indexed: 11/27/2022]
Abstract
CD1 molecules are glycoproteins present primarily on dendritic cells (DCs), which recognize and present a variety of foreign- and self-lipid antigens to T-cells. Humans have five different CD1 isoforms that survey distinct cellular compartments allowing for recognition of a large repertoire of lipids. The canine CD1 family consists of seven functional CD1 molecules (canine CD1a2, CD1a6, CD1a8, CD1a9, CD1b, CD1c and CD1e) and one presumed non-functional isoform (canine CD1d) due to a disrupted gene structure. The aim of this study was to describe in vitro steady-state localization ptterns of canine CD1 isoforms and their correlation with endocytic organelles. GFP-fused canine CD1 293T cell transfectants were stained with markers for early endocytic compartments (EEA-1) and late endocytic/lysosomal compartments (LAMP-1), respectively, and analyzed by confocal microscopy. Canine CD1a molecules localized to the plasma membrane and partially to the early endocytic compartment, but not to late endosomes or lysosomes. In contrast, canine CD1b was highly associated with late endosomal/lysosomal compartments and showed a predominant intracellular expression pattern. Canine CD1c protein expression localized more promiscuously to both the early endosomal compartments and the late endosomal/lysosomal compartments. The canine CD1e molecule showed a strictly intracellular expression with a partial overlap with late endosomal/lysosomal compartments. Lastly, canine CD1d was expressed abnormally showing only a diminished GFP expression. In conclusion, canine CD1 transfectants show distinct localization patterns that are similar to human CD1 proteins with the exception of the canine CD1d isoform, which most likely is non-functional. These findings imply that canine CD1 localization overall resembles human CD1 trafficking patterns. This knowledge is important for the understanding of lipid antigen-receptor immunity in the dog.
Collapse
Affiliation(s)
- Mette Schjaerff
- Department of Veterinary Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, One Shields Avenue, Davis, 95616 CA, USA; Department of Veterinary Clinical and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Dyrlaegevej 16, 1870 Frederiksberg, Denmark
| | - Stefan M Keller
- Department of Veterinary Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, One Shields Avenue, Davis, 95616 CA, USA
| | - Verena K Affolter
- Department of Veterinary Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, One Shields Avenue, Davis, 95616 CA, USA
| | - Annemarie T Kristensen
- Department of Veterinary Clinical and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Dyrlaegevej 16, 1870 Frederiksberg, Denmark
| | - Peter F Moore
- Department of Veterinary Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, One Shields Avenue, Davis, 95616 CA, USA.
| |
Collapse
|
10
|
Morita D, Sugita M. Lipopeptides: a novel antigen repertoire presented by major histocompatibility complex class I molecules. Immunology 2016; 149:139-45. [PMID: 27402593 DOI: 10.1111/imm.12646] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 07/04/2016] [Accepted: 07/06/2016] [Indexed: 01/13/2023] Open
Abstract
Post-translationally modified peptides, such as those containing either phosphorylated or O-glycosylated serine/threonine residues, may be presented to cytotoxic T lymphocytes (CTLs) by MHC class I molecules. Most of these modified peptides are captured in the MHC class I groove in a similar manner to that for unmodified peptides. N-Myristoylated 5-mer lipopeptides have recently been identified as a novel chemical class of MHC class I-presented antigens. The rhesus classical MHC class I allele, Mamu-B*098, was found to be capable of binding N-myristoylated lipopeptides and presenting them to CTLs. A high-resolution X-ray crystallographic analysis of the Mamu-B*098:lipopeptide complex revealed that the myristic group as well as conserved C-terminal serine residue of the lipopeptide ligand functioned as anchors, whereas the short stretch of three amino acid residues located in the middle of the lipopeptides was only exposed externally with the potential to interact directly with specific T-cell receptors. Therefore, the modes of lipopeptide-ligand interactions with MHC class I and with T-cell receptors are novel and fundamentally distinct from that for MHC class I-presented peptides. Another lipopeptide-presenting MHC class I allele has now been identified, leading us to the prediction that MHC class I molecules may be separated on a functional basis into two groups: one presenting long peptides and the other presenting short lipopeptides. Since the N-myristoylation of viral proteins is often linked to pathogenesis, CTLs capable of sensing N-myristoylation may serve to control pathogenic viruses, raising the possibility for the development of a new type of lipopeptide vaccine.
Collapse
Affiliation(s)
- Daisuke Morita
- Laboratory of Cell Regulation, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Masahiko Sugita
- Laboratory of Cell Regulation, Institute for Virus Research, Kyoto University, Kyoto, Japan
| |
Collapse
|
11
|
Roy S, Ly D, Castro CD, Li NS, Hawk AJ, Altman JD, Meredith SC, Piccirilli JA, Moody DB, Adams EJ. Molecular Analysis of Lipid-Reactive Vδ1 γδ T Cells Identified by CD1c Tetramers. THE JOURNAL OF IMMUNOLOGY 2016; 196:1933-42. [PMID: 26755823 DOI: 10.4049/jimmunol.1502202] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/05/2015] [Indexed: 02/06/2023]
Abstract
CD1c is abundantly expressed on human dendritic cells (DC) and B cells, where it binds and displays lipid Ags to T cells. In this study, we report that CD1c tetramers carrying Mycobacterium tuberculosis phosphomycoketide bind γδ TCRs. An unbiased method of ligand-based TCR selection detects interactions only with Vδ1(+) TCRs, and mutational analyses demonstrate a role of the Vδ1 domain during recognition. These results strengthen evidence for a role of CD1c in the γδ T cell response, providing biophysical evidence for CD1c-γδ TCR interactions and a named foreign Ag. Surprisingly, TCRs also bind CD1c complexes formed with diverse lipids such as lysophosphatidylcholine, sulfatide, or mannosyl-phosophomycoketide, but not lipopeptide ligands. Dissection of TCR interactions with CD1c carrying foreign Ags, permissive ligands, and nonpermissive lipid ligands clarifies the molecular basis of the frequently observed but poorly understood phenomenon of mixed self- and foreign Ag reactivity in the CD1 system.
Collapse
Affiliation(s)
- Sobhan Roy
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637
| | - Dalam Ly
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA 02115; Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Caitlin D Castro
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637; Committee on Immunology, University of Chicago, Chicago, IL 60637
| | - Nan-Sheng Li
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637
| | - Andrew J Hawk
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637; Department of Pathology, University of Chicago, Chicago, IL 60637
| | - John D Altman
- Department of Microbiology and Immunology, Emory Vaccine Center at Yerkes, Emory University School of Medicine, Atlanta, GA 30329; and
| | - Stephen C Meredith
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637; Department of Pathology, University of Chicago, Chicago, IL 60637
| | - Joseph A Piccirilli
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637; Department of Chemistry, University of Chicago, Chicago, IL 60637
| | - D Branch Moody
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA 02115;
| | - Erin J Adams
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637; Committee on Immunology, University of Chicago, Chicago, IL 60637;
| |
Collapse
|
12
|
Shinya E, Shimizu M, Owaki A, Paoletti S, Mori L, De Libero G, Takahashi H. Hemopoietic cell kinase (Hck) and p21-activated kinase 2 (PAK2) are involved in the down-regulation of CD1a lipid antigen presentation by HIV-1 Nef in dendritic cells. Virology 2015; 487:285-95. [PMID: 26584215 DOI: 10.1016/j.virol.2015.10.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 10/21/2015] [Accepted: 10/24/2015] [Indexed: 11/28/2022]
Abstract
Dendritic cells (DCs) play a major role in in vivo pathogenesis of HIV-1 infection. Therefore, DCs may provide a promising strategy to control and eventually overcome the fatal infection. Especially, immature DCs express all CD1s, the non-MHC lipid antigen -presenting molecules, and HIV-1 Nef down-regulates CD1 expression besides MHC. Moreover, CD1d-restricted CD4(+) NKT cells are infected by HIV-1, reducing the number of these cells in HIV-1-infected individuals. To understand the exact role of DCs and CD1-mediated immune response during HIV-1 infection, Nef down-regulation of CD1a-restricted lipid/glycolipid Ag presentation in iDCs was analyzed. We demonstrated the involvement of the association of Nef with hemopoietic cell kinase (Hck) and p21-activated kinase 2 (PAK2), and that Hck, which is expressed strongly in iDCs, augmented this mutual interaction. Hck might be another therapeutic target to preserve the function of HIV-1 infected DCs, which are potential reservoirs of HIV-1 even after antiretroviral therapy.
Collapse
Affiliation(s)
- Eiji Shinya
- Department of Microbiology and Immunology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo city, Tokyo 113-8602, Japan
| | - Masumi Shimizu
- Department of Microbiology and Immunology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo city, Tokyo 113-8602, Japan
| | - Atsuko Owaki
- Department of Microbiology and Immunology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo city, Tokyo 113-8602, Japan
| | - Samantha Paoletti
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland
| | - Lucia Mori
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland
| | - Gennaro De Libero
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland
| | - Hidemi Takahashi
- Department of Microbiology and Immunology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo city, Tokyo 113-8602, Japan
| |
Collapse
|
13
|
Dellabona P, Consonni M, de Lalla C, Casorati G. Group 1 CD1-restricted T cells and the pathophysiological implications of self-lipid antigen recognition. ACTA ACUST UNITED AC 2015; 86:393-405. [PMID: 26514448 DOI: 10.1111/tan.12689] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
T cell responses are generally regarded as specific for protein-derived peptide antigens. This is based on the molecular paradigm dictated by the T cell receptor (TCR) recognition of peptide-major histocompatibility complexs, which provides the molecular bases of the specificity and restriction of the T cell responses. An increasing number of findings in the last 20 years have challenged this paradigm, by showing the existence of T cells specific for lipid antigens presented by CD1 molecules. CD1-restricted T cells have been proven to be frequent components of the immune system and to recognize exogenous lipids, derived from pathogenic bacteria, as well as cell-endogenous self-lipids. This represents a young and exciting area of research in immunology with intriguing biological bases and a potential direct impact on human health.
Collapse
Affiliation(s)
- P Dellabona
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milano, Italy
| | - M Consonni
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milano, Italy
| | - C de Lalla
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milano, Italy
| | - G Casorati
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milano, Italy
| |
Collapse
|
14
|
Salio M, Cerundolo V. Regulation of Lipid Specific and Vitamin Specific Non-MHC Restricted T Cells by Antigen Presenting Cells and Their Therapeutic Potentials. Front Immunol 2015; 6:388. [PMID: 26284072 PMCID: PMC4517378 DOI: 10.3389/fimmu.2015.00388] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 07/13/2015] [Indexed: 12/17/2022] Open
Abstract
Since initial reports, more than 25 years ago, that T cells recognize lipids in the context on non-polymorphic CD1 molecules, our understanding of antigen presentation to non-peptide-specific T cell populations has deepened. It is now clear that αβ T cells bearing semi-invariant T cell receptor, as well as subsets of γδ T cells, recognize a variety of self and non-self lipids and contribute to shaping immune responses via cross talk with dendritic cells and B cells. Furthermore, it has been demonstrated that small molecules derived from the microbial riboflavin biosynthetic pathway (vitamin B2) bind monomorphic MR1 molecules and activate mucosal-associated invariant T cells, another population of semi-invariant T cells. Novel insights in the biological relevance of non-peptide-specific T cells have emerged with the development of tetrameric CD1 and MR1 molecules, which has allowed accurate enumeration and functional analysis of CD1- and MR1-restricted T cells in humans and discovery of novel populations of semi-invariant T cells. The phenotype and function of non-peptide-specific T cells will be discussed in the context of the known distribution of CD1 and MR1 molecules by different subsets of antigen-presenting cells at steady state and following infection. Concurrent modulation of CD1 transcription and lipid biosynthetic pathways upon TLR stimulation, coupled with efficient lipid antigen processing, result in the increased cell surface expression of antigenic CD1-lipid complexes. Similarly, MR1 expression is almost undetectable in resting APC and it is upregulated following bacterial infection, likely due to stabilization of MR1 molecules by microbial antigens. The tight regulation of CD1 and MR1 expression at steady state and during infection may represent an important mechanism to limit autoreactivity, while promoting T cell responses to foreign antigens.
Collapse
Affiliation(s)
- Mariolina Salio
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Vincenzo Cerundolo
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
15
|
Siddiqui S, Visvabharathy L, Wang CR. Role of Group 1 CD1-Restricted T Cells in Infectious Disease. Front Immunol 2015; 6:337. [PMID: 26175733 PMCID: PMC4484338 DOI: 10.3389/fimmu.2015.00337] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 06/16/2015] [Indexed: 12/12/2022] Open
Abstract
The evolutionarily conserved CD1 family of antigen-presenting molecules presents lipid antigens rather than peptide antigens to T cells. CD1 molecules, unlike classical MHC molecules, display limited polymorphism, making CD1-restricted lipid antigens attractive vaccine targets that could be recognized in a genetically diverse human population. Group 1 CD1 (CD1a, CD1b, and CD1c)-restricted T cells have been implicated to play critical roles in a variety of autoimmune and infectious diseases. In this review, we summarize current knowledge and recent discoveries on the development of group 1 CD1-restricted T cells and their function in different infection models. In particular, we focus on (1) newly identified microbial and self-lipid antigens, (2) kinetics, phenotype, and unique properties of group 1 CD1-restricted T cells during infection, and (3) the similarities of group 1 CD1-restricted T cells to the closely related group 2 CD1-restricted T cells.
Collapse
Affiliation(s)
- Sarah Siddiqui
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine , Chicago, IL , USA
| | - Lavanya Visvabharathy
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine , Chicago, IL , USA
| | - Chyung-Ru Wang
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine , Chicago, IL , USA
| |
Collapse
|
16
|
Molecular basis of mycobacterial lipid antigen presentation by CD1c and its recognition by αβ T cells. Proc Natl Acad Sci U S A 2014; 111:E4648-57. [PMID: 25298532 DOI: 10.1073/pnas.1408549111] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
CD1c is a member of the group 1 CD1 family of proteins that are specialized for lipid antigen presentation. Despite high cell surface expression of CD1c on key antigen-presenting cells and the discovery of its mycobacterial lipid antigen presentation capability, the molecular basis of CD1c recognition by T cells is unknown. Here we present a comprehensive functional and molecular analysis of αβ T-cell receptor (TCR) recognition of CD1c presenting mycobacterial phosphomycoketide antigens. Our structure of CD1c with the mycobacterial phosphomycoketide (PM) shows similarities to that of CD1c-mannosyl-β1-phosphomycoketide in that the A' pocket accommodates the mycoketide alkyl chain; however, the phosphate head-group of PM is shifted ∼6 Å in relation to that of mannosyl-β1-PM. We also demonstrate a bona fide interaction between six human TCRs and CD1c-mycoketide complexes, measuring high to moderate affinities. The crystal structure of the DN6 TCR and mutagenic studies reveal a requirement of five complementarity determining region (CDR) loops for CD1c recognition. Furthermore, mutagenesis of CD1c reveals residues in both the α1 and α2 helices involved in TCR recognition, yet not entirely overlapping among the examined TCRs. Unlike patterns for MHC I, no archetypical binding footprint is predicted to be shared by CD1c-reactive TCRs, even when recognizing the same or similar antigens.
Collapse
|
17
|
The CD1 size problem: lipid antigens, ligands, and scaffolds. Cell Mol Life Sci 2014; 71:3069-79. [PMID: 24658584 DOI: 10.1007/s00018-014-1603-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 02/10/2014] [Accepted: 03/06/2014] [Indexed: 01/17/2023]
Abstract
Whereas research on CD1d has emphasized a few glycosyl ceramides, the broader family of four human CD1 antigen-presenting molecules binds hundreds of distinct self-lipids. Individual lipid types bind within CD1 grooves in different ways, such that they partially fill the groove, match the groove volume, or protrude substantially from the groove. These differing modes of binding can now be connected to differing immunological functions, as individual lipids can act as stimulatory antigens, inhibitory ligands, or space-filling scaffolds. Because each type of CD1 protein folds to produce antigen-binding grooves with differing sizes and shapes, CD1a, CD1b, CD1c, CD1d, and CD1e have distinct mechanisms of capturing self-lipids and exchanging them for foreign lipids. The size discrepancy between endogeneous lipids and groove volume is most pronounced for CD1b. Recent studies show that the large CD1b cavity can simultaneously bind two self-lipids, the antigen, and its scaffold lipid, which can be exchanged for one large bacterial lipid. In this review, we will highlight recent studies showing how cells regulate lipid antigen loading and the roles CD1 groove structures have in control of the presentation of chemically diverse lipids to T cells.
Collapse
|
18
|
Thirunavukkarasu S, de Silva K, Plain KM, J Whittington R. Role of host- and pathogen-associated lipids in directing the immune response in mycobacterial infections, with emphasis on Mycobacterium avium subsp. paratuberculosis. Crit Rev Microbiol 2014; 42:262-75. [PMID: 25163812 DOI: 10.3109/1040841x.2014.932327] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mycobacteria have a complex cell wall with a high lipid content that confers unique advantages for bacterial survival in the hostile host environment, leading to long-term infection. There is a wealth of evidence suggesting the role cell wall-associated lipid antigens play at the host-pathogen interface by contributing to bacterial virulence. One pathway that pathogenic mycobacteria use to subvert host immune pathways to their advantage is host cholesterol/lipid homeostasis. This review focuses on the possible role of pathogen- and host-associated lipids in the survival and persistence of pathogenic mycobacteria with emphasis on Mycobacterium avium subsp. paratuberculosis. We draw upon literature in diverse areas of infectious and metabolic diseases and explain a mechanism by which mycobacterial-induced changes in the host cellular energy state could account for phenomena that are a hallmark of chronic mycobacterial diseases.
Collapse
Affiliation(s)
| | - Kumudika de Silva
- a Faculty of Veterinary Science , University of Sydney , Camden , Australia
| | - Karren M Plain
- a Faculty of Veterinary Science , University of Sydney , Camden , Australia
| | | |
Collapse
|
19
|
De Libero G, Mori L. The T-Cell Response to Lipid Antigens of Mycobacterium tuberculosis. Front Immunol 2014; 5:219. [PMID: 24904574 PMCID: PMC4033098 DOI: 10.3389/fimmu.2014.00219] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 04/30/2014] [Indexed: 11/13/2022] Open
Abstract
T-cells recognize lipid antigens presented by dedicated antigen-presenting molecules that belong to the CD1 family. This review discusses the structural properties of CD1 molecules, the nature of mycobacterial lipid antigens, and the phenotypic and functional properties of T-cells recognizing mycobacterial lipids. In humans, the five CD1 genes encode structurally similar glycoproteins that recycle in and thus survey different cellular endosomal compartments. The structure of the CD1-lipid-binding pockets, their mode of intracellular recycling and the type of CD1-expressing antigen-presenting cells all contribute to diversify lipid immunogenicity and presentation to T-cells. Mycobacteria produce a large variety of lipids, which form stable complexes with CD1 molecules and stimulate specific T-cells. The structures of antigenic lipids may be greatly different from each other and each lipid may induce unique T-cells capable of discriminating small lipid structural changes. The important functions of some lipid antigens within mycobacterial cells prevent the generation of negative mutants capable of escaping this type of immune response. T-cells specific for lipid antigens are stimulated in tuberculosis and exert protective functions. The mechanisms of antigen recognition, the type of effector functions and the mode of lipid-specific T-cell priming are discussed, emphasizing recent evidence of the roles of lipid-specific T-cells in tuberculosis.
Collapse
Affiliation(s)
- Gennaro De Libero
- Singapore Immunology Network, Agency for Science, Technology and Research (ASTAR) , Singapore , Singapore ; Experimental Immunology, Department of Biomedicine, University Hospital Basel , Basel , Switzerland
| | - Lucia Mori
- Singapore Immunology Network, Agency for Science, Technology and Research (ASTAR) , Singapore , Singapore
| |
Collapse
|
20
|
Abstract
Over the past 15 years, investigators have shown that T lymphocytes can recognize not only peptides in the context of MHC class I and class II molecules but also foreign and self-lipids in association with the nonclassical MHC class I-like molecules, CD1 proteins. In this review, we describe the most recent events in the field, with particular emphasis on (a) structural and functional aspects of lipid presentation by CD1 molecules, (b) the development of CD1d-restricted invariant natural killer T (iNKT) cells and transcription factors required for their differentiation, (c) the ability of iNKT cells to modulate innate and adaptive immune responses through their cross talk with lymphoid and myeloid cells, and (d) MR1-restricted and group I (CD1a, CD1b, and CD1c)-restricted T cells.
Collapse
Affiliation(s)
- Mariolina Salio
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DU, United Kingdom;
| | | | | | | |
Collapse
|
21
|
Kasmar AG, Van Rhijn I, Magalhaes KG, Young DC, Cheng TY, Turner MT, Schiefner A, Kalathur RC, Wilson IA, Bhati M, Gras S, Birkinshaw RW, Tan LL, Rossjohn J, Shires J, Jakobsen S, Altman JD, Moody DB. Cutting Edge: CD1a tetramers and dextramers identify human lipopeptide-specific T cells ex vivo. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 191:4499-503. [PMID: 24089190 PMCID: PMC3845436 DOI: 10.4049/jimmunol.1301660] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Human CD1a mediates foreign Ag recognition by a T cell clone, but the nature of possible TCR interactions with CD1a/lipid are unknown. After incubating CD1a with a mycobacterial lipopeptide Ag, dideoxymycobactin (DDM), we identified and measured binding to a recombinant TCR (TRAV3/ TRBV3-1, KD of ≈100 μM). Detection of ternary CD1a/lipid/TCR interactions enabled development of CD1a tetramers and CD1a multimers with carbohydrate backbones (dextramers), which specifically stained T cells using a mechanism that was dependent on the precise stereochemistry of the peptide backbone and was blocked with a soluble TCR. Furthermore, sorting of human T cells from unrelated tuberculosis patients for bright DDM-dextramer staining allowed recovery of T cells that were activated by CD1a and DDM. These studies demonstrate that the mechanism of T cell activation by lipopeptides occurs via ternary interactions of CD1a/Ag/TCR. Furthermore, these studies demonstrate the existence of lipopeptide-specific T cells in humans ex vivo.
Collapse
Affiliation(s)
- Anne G Kasmar
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Sandberg JK, Andersson SK, Bächle SM, Nixon DF, Moll M. HIV-1 Vpu interference with innate cell-mediated immune mechanisms. Curr HIV Res 2013; 10:327-33. [PMID: 22524181 PMCID: PMC3412205 DOI: 10.2174/157016212800792513] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Revised: 03/06/2012] [Accepted: 03/14/2012] [Indexed: 12/26/2022]
Abstract
The HIV-1 accessory protein Vpu is emerging as a viral factor with a range of activities devoted to counteracting host innate immunity. Here, we review recent findings concerning the role of Vpu in hampering activation of cellular immune responses mediated by CD1d-restricted invariant natural killer T (iNKT) cells and natural killer (NK) cells. The two key findings are that Vpu interferes with CD1d expression and antigen presentation, and also with expression of the NK cell activation ligand NK-T and B cell antigen (NTB-A). Both these activities are mechanistically distinct from CD4 and Tetherin (BST-2) down-modulation. We summarize the mechanistic insights gained into Vpu interference with CD1d and NTB-A, as well as important challenges going forward, and discuss these mechanisms in the context of the role that iNKT and NK cells play in HIV-1 immunity and immunopathogenesis.
Collapse
Affiliation(s)
- Johan K Sandberg
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
23
|
Thirunavukkarasu S, Plain KM, Eckstein TM, de Silva K, Whittington RJ. Cellular and humoral immunogenicity of Mycobacterium avium subsp. paratuberculosis specific lipopentapeptide antigens. Res Vet Sci 2013; 95:123-9. [PMID: 23540605 DOI: 10.1016/j.rvsc.2013.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 02/28/2013] [Accepted: 03/03/2013] [Indexed: 11/27/2022]
Abstract
Paratuberculosis caused by Mycobacterium avium subsp. paratuberculosis (MAP) is a chronic infectious disease affecting domestic and wild ruminants. Antigens currently used for the diagnosis of paratuberculosis are whole-cell derived crude preparations. The identification of MAP-specific antigens for the specific and early diagnosis of this infection is strongly needed. This study assessed the ability of the MAP-specific synthetic lipopeptide antigen Para-LP-01 to invoke specific serum antibody (Ab) and cell-mediated immune (CMI) responses in sheep experimentally exposed to MAP S strain. Responses were compared to those elicited by the crude whole-cell derived MAP 316v antigen (316v). Para-LP-01 induced a significant serum Ab response in MAP-infected sheep in comparison with unexposed or uninfected sheep, but failed to induce detectable CMI responses including production of IFN-γ, IL-10 and lymphoproliferation, unlike 316v which invoked both CMI and serum Ab responses in MAP-exposed sheep. Para-LP-01 is a suitable antigen for serodiagnosis of MAP-infection in sheep. The differential induction of humoral and CMI responses by lipid based antigens could enhance current understanding of the role played by cell-wall associated lipid antigens in the pathogenesis of MAP-infection.
Collapse
Affiliation(s)
- Shyamala Thirunavukkarasu
- Faculty of Veterinary Science, The University of Sydney, 425 Werombi Road, Camden, NSW 2570, Australia
| | | | | | | | | |
Collapse
|
24
|
Ly D, Kasmar AG, Cheng TY, de Jong A, Huang S, Roy S, Bhatt A, van Summeren RP, Altman JD, Jacobs WR, Adams EJ, Minnaard AJ, Porcelli SA, Moody DB. CD1c tetramers detect ex vivo T cell responses to processed phosphomycoketide antigens. ACTA ACUST UNITED AC 2013; 210:729-41. [PMID: 23530121 PMCID: PMC3620358 DOI: 10.1084/jem.20120624] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
CD1c tetramers loaded with a phospholipid antigen from M. tuberculosis are recognized by human T cells. CD1c is expressed with high density on human dendritic cells (DCs) and B cells, yet its antigen presentation functions are the least well understood among CD1 family members. Using a CD1c-reactive T cell line (DN6) to complete an organism-wide survey of M. tuberculosis lipids, we identified C32 phosphomycoketide (PM) as a previously unknown molecule and a CD1c-presented antigen. CD1c binding and presentation of mycoketide antigens absolutely required the unusual, mycobacteria-specific lipid branching patterns introduced by polyketide synthase 12 (pks12). Unexpectedly, one TCR responded to diversely glycosylated and unglycosylated forms of mycoketide when presented by DCs and B cells. Yet cell-free systems showed that recognition was mediated only by the deglycosylated phosphoantigen. These studies identify antigen processing of a natural bacterial antigen in the human CD1c system, indicating that cells act on glycolipids to generate a highly simplified neoepitope composed of a sugar-free phosphate anion. Using knowledge of this processed antigen, we generated human CD1c tetramers, and demonstrate that CD1c–PM complexes stain T cell receptors (TCRs), providing direct evidence for a ternary interaction among CD1c-lipid-TCR. Furthermore, PM-loaded CD1c tetramers detect fresh human T cells from peripheral blood, demonstrating a polyclonal response to PM antigens in humans ex vivo.
Collapse
Affiliation(s)
- Dalam Ly
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Adams EJ, Luoma AM. The adaptable major histocompatibility complex (MHC) fold: structure and function of nonclassical and MHC class I-like molecules. Annu Rev Immunol 2013; 31:529-61. [PMID: 23298204 DOI: 10.1146/annurev-immunol-032712-095912] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The MHC fold is found in proteins that have a range of functions in the maintenance of an organism's health, from immune regulation to fat metabolism. Well adapted for antigen presentation, as seen for peptides in the classical MHC molecules and for lipids in CD1 molecules, the MHC fold has also been modified to perform Fc-receptor activity (e.g., FcRn) and for roles in host homeostasis (e.g., with HFE and ZAG). The more divergent MHC-like molecules, such as some of those that interact with the NKG2D receptor, represent the minimal MHC fold, doing away with the α3 domain and β2m while maintaining the α1/α2 platform domain for receptor engagement. Viruses have also co-opted the MHC fold for immune-evasive functions. The variations on the theme of a β-sheet topped by two semiparallel α-helices are discussed in this review, highlighting the fantastic adaptability of this fold for good and for bad.
Collapse
Affiliation(s)
- Erin J Adams
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637, USA.
| | | |
Collapse
|
26
|
Van Rhijn I, Ly D, Moody DB. CD1a, CD1b, and CD1c in immunity against mycobacteria. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 783:181-97. [PMID: 23468110 DOI: 10.1007/978-1-4614-6111-1_10] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The CD1 system is composed of five types of human CD1 proteins, CD1a, CD1b, CD1c, CD1d, and CD1e, and their mammalian orthologs. Each type of CD1 protein has a distinct antigen binding groove and shows differing patterns of expression within cells and in different tissues. Here we review the molecular mechanisms by which CD1a, CD1b, and CD1c capture distinct classes of self- and mycobacterial antigens. We discuss how CD1-restricted T cells participate in the immune response, emphasizing new evidence for mycobacterial recognition in vivo in human and non-human models.
Collapse
Affiliation(s)
- Ildiko Van Rhijn
- Division of Rheumatology, Harvard Medical School, Boston, MA, USA.
| | | | | |
Collapse
|
27
|
Seshadri C, Turner MT, Lewinsohn DM, Moody DB, Van Rhijn I. Lipoproteins are major targets of the polyclonal human T cell response to Mycobacterium tuberculosis. THE JOURNAL OF IMMUNOLOGY 2012. [PMID: 23197260 DOI: 10.4049/jimmunol.1201667] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Most vaccines and basic studies of T cell epitopes in Mycobacterium tuberculosis emphasize water-soluble proteins that are secreted into the extracellular space and presented in the context of MHC class II. Much less is known about the role of Ags retained within the cell wall. We used polyclonal T cells from infected humans to probe for responses to immunodominant Ags in the M. tuberculosis cell wall. We found that the magnitude of response to secreted or cell wall intrinsic compounds was similar among healthy controls, patients with latent tuberculosis, and patients with active tuberculosis. Individual responses to secreted Ags and cell wall extract were strongly correlated (r(2) = 0.495, p = 0.001), suggesting that T cells responding to cell wall and secreted Ags are present at similar frequency. Surprisingly, T cell stimulatory factors intrinsic to the cell wall partition into organic solvents; however, these responses are not explained by CD1-mediated presentation of lipids. Instead, we find that molecules soluble in organic solvents are dependent upon MHC class II and recognized by IFN-γ-secreting CD4(+) T cells. We reasoned that MHC class II-dependent Ags extracting into lipid mixtures might be found among triacylated lipoproteins present in mycobacteria. We used M. tuberculosis lacking prolipoprotein signal peptidase A (lspA), an enzyme required for lipoprotein synthesis, to demonstrate loss of polyclonal T cell responses. Our results demonstrate the use of bacterial genetics to identify lipoproteins as an unexpected and immunodominant class of cell wall-associated Ags targeted by the polyclonal human T cell response to M. tuberculosis.
Collapse
Affiliation(s)
- Chetan Seshadri
- Division of Rheumatology, Allergy, and Immunology, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | | | | | | | | |
Collapse
|
28
|
Diverse antigen presentation by the Group 1 CD1 molecule, CD1c. Mol Immunol 2012; 55:182-5. [PMID: 23127489 DOI: 10.1016/j.molimm.2012.10.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 10/07/2012] [Indexed: 11/21/2022]
Abstract
CD1 molecules are Major Histocompatibility Complex (MHC) class I-like proteins that present diverse lipid antigens to T cells. Most of our understanding of CD1 lipid presentation and T cell recognition has come from study of the invariant Natural Killer T cell recognition of CD1d. However, in addition to CD1d, humans possess three additional CD1 molecules: CD1a, CD1b and CD1c, referred to as the Group 1 CD1s. The lack of an appropriate murine molecule to probe the function and disease relevance of these molecules has hindered understanding their precise immunological role, despite their pivotal role in human immunity. In this perspective, we discuss the progress of functional and molecular studies of CD1c. CD1c has been shown to specifically present lipids from Mycobacterium tuberculosis and other related pathogenic mycobacteria. αβ T cells reactive to these lipids presented in the context of CD1c have been characterized and upon stimulation secrete IFN-γ, an important cytokine in tuberculosis disease clearance. Other ligands characterized for CD1c include PI and PC, a lipopeptide with a dodecameric peptide moiety and sulfatides. These structurally and chemically diverse ligands suggest that CD1c has the capacity to present a wide repertoire of antigens to reactive T cells. Indeed, a substantial percentage (∼2%) of the circulating αβ T cell population is reactive to CD1c presenting endogenous antigens, suggesting that this particular Group 1 molecule may play an important role in the human immune response.
Collapse
|
29
|
Mycoketide: a CD1c-presented antigen with important implications in mycobacterial infection. Clin Dev Immunol 2012; 2012:981821. [PMID: 22536277 PMCID: PMC3318773 DOI: 10.1155/2012/981821] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 01/24/2012] [Indexed: 11/18/2022]
Abstract
Mycobacterium tuberculosis and related mycobacteria species are unique in that the acid-fast bacilli possess a highly lipid-rich cell wall that not simply confers resistance to treatment with acid alcohol, but also controls their survival and virulence. It has recently been established that a fraction of the cell wall lipid components of mycobacteria can function as antigens targeted by the acquired immunity of the host. Human group 1 CD1 molecules (CD1a, CD1b, and CD1c) bind a pool of lipid antigens expressed by mycobacteria and present them to specific T cells, thereby mediating an effective pathway for host defense against tuberculosis. The contrasting and mutually complementary functions of CD1a and CD1b molecules in terms of the repertoire of antigens they bind have been well appreciated, but it remains to be established how CD1c may play a unique role. Nevertheless, recent advances in our understanding of the CD1c structure as well as the biosynthetic pathway of a CD1c-presented antigen, mannose-1, β-phosphomycoketide, expressed by pathogenic mycobacteria now unravel a new aspect of the group 1 CD1 biology that has not been appreciated in previous studies of CD1a and CD1b molecules.
Collapse
|
30
|
De Libero G, Mori L. Novel insights into lipid antigen presentation. Trends Immunol 2012; 33:103-11. [PMID: 22342205 DOI: 10.1016/j.it.2012.01.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 12/20/2011] [Accepted: 01/05/2012] [Indexed: 01/21/2023]
Abstract
T cells recognizing lipid antigens are present in large numbers in circulating blood. They exert multiple functions including immunoregulation, tumour surveillance and protection during infection. Here, we review the latest information on the mechanisms of lipid antigen presentation by CD1 molecules. Recent studies have provided insight into CD1 trafficking within the cell, lipid distribution and handling, CD1 maturation, lipid antigen processing and loading. The structural resolution of all human CD1 molecules has revealed unique features that correlate with function. Molecular mechanisms regulating CD1 expression and multiple evasion mechanisms evolved by viral and bacterial pathogens have been disclosed. With rapid progression, these studies have decoded lipid-specific immunity and have revealed the important immunological role of this type of antigen recognition.
Collapse
|
31
|
Haig NA, Guan Z, Li D, McMichael A, Raetz CRH, Xu XN. Identification of self-lipids presented by CD1c and CD1d proteins. J Biol Chem 2011; 286:37692-701. [PMID: 21900247 DOI: 10.1074/jbc.m111.267948] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The CD1 family consists of five proteins that are related to the peptide-presenting MHC class I family. T cells can recognize the presentation of both foreign and self-derived lipids on four CD1 family members. The identities of the self-lipids capable of stimulating autoreactive T cell responses remain elusive or controversial. Here, we employed mass spectrometry to analyze the lipid content of highly purified CD1c and CD1d protein samples. We report the identification of 11 novel self-lipids presented by CD1c and nine by CD1d. Rigorous controls provide strong evidence that the identified lipids were specifically loaded into the lipid-binding site of the CD1 molecules. The diverse but distinct population of lipids identified from each CD1 family member implies each present a different subset of self-lipids, and the enrichment of particular motifs indicates that the lipids that are presented by CD1 family members could be predicted. Finally, our results imply the CD1 system surveys the endoplasmic reticulum, Golgi apparatus, and/or secretory compartments, in addition to its well characterized surveillance of the endocytic and lysosomal compartments.
Collapse
Affiliation(s)
- Neil A Haig
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | | | | | | | | | | |
Collapse
|
32
|
Houser BL, Tilburgs T, Hill J, Nicotra ML, Strominger JL. Two unique human decidual macrophage populations. THE JOURNAL OF IMMUNOLOGY 2011; 186:2633-42. [PMID: 21257965 DOI: 10.4049/jimmunol.1003153] [Citation(s) in RCA: 250] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Several important events occur at the maternal-fetal interface, including generation of maternal-fetal tolerance, remodeling of the uterine smooth muscle and its spiral arteries and glands, and placental construction. Fetal-derived extravillous trophoblasts come in direct contact with maternal decidual leukocytes. Macrophages represent ∼20% of the leukocytes at this interface. In this study, two distinct subsets of CD14(+) decidual macrophages (dMs) are found to be present in first-trimester decidual tissue, CD11c(HI) and CD11c(LO). Gene expression analysis by RNA microarray revealed that 379 probes were differentially expressed between these two populations. Analysis of the two subsets revealed several clusters of coregulated genes that suggest distinct functions for these subsets in tissue remodeling, growth, and development. CD11c(HI) dMs express genes associated with lipid metabolism and inflammation, whereas CD11c(LO) dMs express genes associated with extracellular matrix formation, muscle regulation, and tissue growth. The CD11c(HI) dMs also differ from CD11c(LO) dMs in their ability to process protein Ag and are likely to be the major APCs in the decidua. Moreover, these populations each secrete both proinflammatory and anti-inflammatory cytokines that may contribute to the balance that establishes fetal-maternal tolerance. Thus, they do not fit the conventional M1/M2 categorization.
Collapse
Affiliation(s)
- Brandy L Houser
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | | | | | |
Collapse
|
33
|
Yang GB, Lei N, Zong CM, Duan JZ, Xing H, Shao Y. Elevated frequency of CD1c+ myeloid dendritic cells in the peripheral blood mononuclear cells of simian/human immunodeficiency virus (SHIV) and simian immunodeficiency virus (SIV) repeatedly infected Chinese rhesus macaques. Cell Immunol 2011; 271:36-43. [DOI: 10.1016/j.cellimm.2011.05.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 05/11/2011] [Accepted: 05/31/2011] [Indexed: 11/27/2022]
|
34
|
Antibody response to polyhistidine-tagged peptide and protein antigens attached to liposomes via lipid-linked nitrilotriacetic acid in mice. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 18:289-97. [PMID: 21159923 DOI: 10.1128/cvi.00425-10] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Particulate delivery systems enhance antibody responses to subunit antigens. However, covalent attachment of protein antigens can disrupt protein structure and mask critical epitopes, altering the antibody response to the antigen. In this report, we evaluate noncovalent metal chelation via nitrilotriacetic acid (NTA) as a nondestructive method to attach peptide and protein antigens to liposomes. Two model antigens, ovalbumin (OVA) and a peptide derived from the membrane-proximal region of HIV-1 gp41 (N-MPR), were polyhistidinylated and attached to liposomes via monovalent NTA (mono-NTA; K(D) [equilibrium dissociation constant], ∼10 μM), trivalent NTA (tris-NTA; K(D), ∼1 nM), or a covalent linkage. Attachment of N-MPR, but not OVA, to liposomes via an NTA lipid elicited stronger antibody responses in BALB/c mice than a formulation in which unassociated antigen was simply admixed with control liposomes lacking NTA. However, the tris-NTA linkage did not increase antibody responses to either N-MPR or OVA compared to the level for the mono-NTA linkage, despite the greater liposomal association of the antigen. For both antigens, covalently attaching them to a lipid elicited significantly stronger antibody responses than NTA-anchored antigens (OVA titer, 3.4 × 10(6) versus 1.4 × 10(6) to 1.6 × 10(6) [P < 0.001]; N-MPR titer, 4.4 × 10(4) versus 5.5 × 10(2) to 7.6 × 10(2) [P < 0.003]). The data indicate that NTA linkages may increase antibody titers to weak antigens such as N-MPR, but NTA-mediated attachment remains inferior to covalent conjugation. Moreover, enhancements in antigen-liposome affinity do not result in increased antibody titers. Thus, additional improvements of NTA-mediated conjugation technology are necessary to achieve an effective, nondestructive method for increasing the humoral response to antigens in particulate vaccines.
Collapse
|
35
|
Scharf L, Li NS, Hawk AJ, Garzón D, Zhang T, Fox LM, Kazen AR, Shah S, Haddadian EJ, Gumperz JE, Saghatelian A, Faraldo-Gómez JD, Meredith SC, Piccirilli JA, Adams EJ. The 2.5 Å structure of CD1c in complex with a mycobacterial lipid reveals an open groove ideally suited for diverse antigen presentation. Immunity 2010; 33:853-62. [PMID: 21167756 PMCID: PMC3010391 DOI: 10.1016/j.immuni.2010.11.026] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 09/20/2010] [Accepted: 11/25/2010] [Indexed: 11/30/2022]
Abstract
CD1 molecules function to present lipid-based antigens to T cells. Here we present the crystal structure of CD1c at 2.5 Å resolution, in complex with the pathogenic Mycobacterium tuberculosis antigen mannosyl-β1-phosphomycoketide (MPM). CD1c accommodated MPM's methylated alkyl chain exclusively in the A' pocket, aided by a unique exit portal underneath the α1 helix. Most striking was an open F' pocket architecture lacking the closed cavity structure of other CD1 molecules, reminiscent of peptide binding grooves of classical major histocompatibility complex molecules. This feature, combined with tryptophan-fluorescence quenching during loading of a dodecameric lipopeptide antigen, provides a compelling model by which both the lipid and peptide moieties of the lipopeptide are involved in CD1c presentation of lipopeptides.
Collapse
Affiliation(s)
- Louise Scharf
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, USA
| | - Nan-Sheng Li
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, USA
| | - Andrew J. Hawk
- Department of Pathology, University of Chicago, Chicago, USA
| | - Diana Garzón
- Theoretical Molecular Biophysics Group, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Tejia Zhang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, USA
| | - Lisa M. Fox
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Allison R. Kazen
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, USA
| | - Sneha Shah
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, USA
| | - Esmael J. Haddadian
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, USA
| | - Jenny E. Gumperz
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Alan Saghatelian
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, USA
| | - José D. Faraldo-Gómez
- Theoretical Molecular Biophysics Group, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
- Cluster of Excellence ‘Macromolecular Complexes’, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Stephen C. Meredith
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, USA
- Department of Pathology, University of Chicago, Chicago, USA
| | - Joseph A. Piccirilli
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, USA
- Department of Chemistry, University of Chicago, Chicago, USA
| | - Erin J. Adams
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, USA
- Committee on Immunology, University of Chicago, Chicago, USA
| |
Collapse
|
36
|
|
37
|
Kulkarni RR, Haeryfar SM, Sharif S. The invariant NKT cell subset in anti-viral defenses: a dark horse in anti-influenza immunity? J Leukoc Biol 2010; 88:635-643. [PMID: 20519638 DOI: 10.1189/jlb.0410191] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
iNKT cells, a small subset of αβ TCR+ T cells, are capable of producing large amounts of cytokines upon activation through their TCR. Unlike conventional T cells that express highly diverse TCRs, iNKT cells express a glycolipid-reactive invariant TCR-α chain paired with a limited number of β chain(s). These cells recognize glycolipid antigens when presented on CD1d molecules found on APC or other cells. Although the immunoregulatory roles of iNKT cells in the context of autoimmune disease are fairly well characterized, several lines of evidence highlight the importance of this cell type in immune responses against microbial insults caused by bacterial, viral, and parasitic pathogens. Recent studies that have investigated the role of iNKT cells in immune responses against influenza virus have suggested an important role for these cells in innate defense mechanisms as well as antibody- and cell-mediated responses. This review highlights the important contributions of iNKT cells to immune responses against viral pathogens with particular emphasis on immunity to influenza infections.
Collapse
Affiliation(s)
- R R Kulkarni
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | | | | |
Collapse
|
38
|
Gutzeit C, Raftery MJ, Peiser M, Tischer KB, Ulrich M, Eberhardt M, Stockfleth E, Giese T, Sauerbrei A, Morita CT, Schönrich G. Identification of an important immunological difference between virulent varicella-zoster virus and its avirulent vaccine: viral disruption of dendritic cell instruction. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 185:488-97. [PMID: 20525895 PMCID: PMC3033232 DOI: 10.4049/jimmunol.0902817] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Virulent varicella-zoster virus (VZV) can spread in immunocompetent humans, resulting in symptoms mostly of the skin. In contrast, vaccine Oka (V-Oka), the attenuated VZV vaccine strain, only rarely causes clinical reactions. The mechanisms underlying these pathogenetic differences are unclear. In this study, we comparatively analyzed the ability of virulent VZV and V-Oka to modulate instruction of dendritic cells (DCs) by innate signals. DCs isolated from normal human skin were susceptible to infection with VZV and V-Oka. Moreover, inflammatory DCs, which play a crucial role in the stimulation of Th1 immune responses, accumulated in herpes zoster lesions. Infection of inflammatory DCs generated in vitro with virulent VZV or V-Oka resulted in upregulation of CD1c. Upon coculture with CD1c-restricted innate cells, DCs developed a mature phenotype whether infected with virulent VZV or V-Oka. Intriguingly, a striking difference was detected on the functional level. The release of IFN-gamma and IL-12, the signature cytokines of Th1 responses, was enhanced by V-Oka but blocked by virulent VZV. V-Oka and virulent VZV efficiently synergized with CD40L, eliminating the possibility that CD40 signaling was a target of VZV-associated immune evasion. Instead, virulent VZV selectively interfered with signaling through TLR2, which is known to sense VZV. Thus, virulent VZV subverts Th1-promoting instruction of human DCs by blocking TLR2-mediated innate signals that prime IL-12 production by DCs. Taken together, our results demonstrate a novel immune-evasion mechanism of virulent VZV that has been lost during the attenuation process leading to the VZV vaccine strain.
Collapse
Affiliation(s)
- Cindy Gutzeit
- Institute of Virology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Martin J. Raftery
- Institute of Virology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Matthias Peiser
- Institute of Molecular Biology and Bioinformatics, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Karsten B. Tischer
- Institute of Virology, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Martina Ulrich
- Department of Dermatology, Venerology and Allergology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Melanie Eberhardt
- Institute of Virology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Eggert Stockfleth
- Department of Dermatology, Venerology and Allergology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Thomas Giese
- Institute of Immunology, University of Heidelberg, Heidelberg, Germany
| | - Andreas Sauerbrei
- Institute of Virology and Antiviral Therapy, Friedrich-Schiller University of Jena, Jena, Germany
| | - Craig T. Morita
- Division of Rheumatology, Department of Internal Medicine and the Interdisciplinary Graduate Program in Immunology, University of Iowa College of Medicine, Iowa City, IA 52242, USA
| | - Günther Schönrich
- Institute of Virology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
39
|
Wähe A, Kasmapour B, Schmaderer C, Liebl D, Sandhoff K, Nykjaer A, Griffiths G, Gutierrez MG. Golgi-to-phagosome transport of acid sphingomyelinase and prosaposin is mediated by sortilin. J Cell Sci 2010; 123:2502-11. [PMID: 20571055 DOI: 10.1242/jcs.067686] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Sortilin, also known as neurotensin receptor 3 (NTR3), is a transmembrane protein with a dual function. It acts as a receptor for neuromediators and growth factors at the plasma membrane, but it has also been implicated in binding and transport of some lysosomal proteins. However, the role of sortilin during phagosome maturation has not been investigated before. Here, we show that in macrophages, sortilin is mainly localized in the Golgi and transported to latex-bead phagosomes (LBPs). Using live-cell imaging and electron microscopy, we found that sortilin is delivered to LBPs in a manner that depends on its cytoplasmic tail. We also show that sortilin participates in the direct delivery of acid sphingomyelinase (ASM) and prosaposin (PS) to the phagosome, bypassing fusion with lysosomal compartments. Further analysis confirmed that ASM and PS are targeted to the phagosome by sortilin in a Brefeldin-A-sensitive pathway. Analysis of primary macrophages isolated from Sort1(-/-) mice indicated that the delivery of ASM and PS, but not pro-cathepsin D, to LBPs was severely impaired. We propose a pathway mediated by sortilin by which selected lysosomal proteins are transported to the phagosome along a Golgi-dependent route during the maturation of phagosomes.
Collapse
Affiliation(s)
- Anna Wähe
- European Molecular Biology Laboratory, Postfach 102209, 69117 Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Voss CY, Fry TJ, Coppes MJ, Blajchman MA. Extending the Horizon for Cell-Based Immunotherapy by Understanding the Mechanisms of Action of Photopheresis. Transfus Med Rev 2010; 24:22-32. [DOI: 10.1016/j.tmrv.2009.09.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
41
|
Lipid binding orientation within CD1d affects recognition of Borrelia burgorferi antigens by NKT cells. Proc Natl Acad Sci U S A 2009; 107:1535-40. [PMID: 20080535 DOI: 10.1073/pnas.0909479107] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Invariant natural killer T cells (iNKT cells) respond to CD1d-presented glycolipids from Borrelia burgdorferi, the causative agent of Lyme disease. Although mouse and human iNKT cells respond to different antigens based on subtle differences in their fatty acids, the mechanism by which fatty acid structure determines antigenic potency is not well understood. Here we show that the mouse and human CD1d present glycolipids having different fatty acids, based in part upon a difference at a single amino acid position that is involved in positioning the sugar epitope. CD1d also can bind nonantigenic lipids, however, but unexpectedly, mouse CD1d orients the two aliphatic chains of a nonantigenic lipid rotated 180 degrees, causing a dramatic repositioning of the exposed sugar. Therefore, our data reveal the biochemical basis for the high degree of antigenic specificity of iNKT cells for certain fatty acids, and they suggest how microbes could alter fatty acid biosynthesis as an immune evasion mechanism.
Collapse
|
42
|
Garzón D, Bond PJ, Faraldo-Gómez JD. Predicted structural basis for CD1c presentation of mycobacterial branched polyketides and long lipopeptide antigens. Mol Immunol 2009; 47:253-60. [PMID: 19828201 DOI: 10.1016/j.molimm.2009.09.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2009] [Accepted: 09/10/2009] [Indexed: 11/29/2022]
Abstract
CD1 proteins mediate the trafficking and presentation of a diverse range of lipid antigens to T-cell receptors, and thus play a key role in our adaptive immune system. Crystal structures of several CD1 isoforms reveal a highly conserved tertiary structure, but also great variability in the anatomy of their binding pockets, reflecting their distinct ligand specificity. The structure of one important member of the family, CD1c, remains unknown. CD1c is of great interest as it can present an unusual and potent lipid antigen, mannosyl-beta(1)-phosphomycoketide (MPM) from Mycobacterium tuberculosis, the causative agent of tuberculosis. CD1c has also been reported to present acetylated 12-amino-acid-long peptides (lipo-12), an observation with broad immunological implications but difficult to rationalize on structural grounds. To gain insights into the structural basis for the ligand specificity of CD1c, we have generated an atomic model of its binding domain using a detailed position-specific multiple-template homology modeling approach. This model reveals structural features unique to this isoform, particularly with regard to the so-called pocket F', which provide a compelling rationale for the ability of CD1c to bind not only branched alkyl chains such as in MPM, but also long lipopeptides comparable to those presented by MHC proteins. A model of CD1c with bound MPM was constructed and analyzed through molecular dynamics simulations, showing marked structural stability in the time-scale of 100 ns. A model of CD1c in complex with lipo-12 is also presented.
Collapse
Affiliation(s)
- Diana Garzón
- Theoretical Molecular Biophysics Group, Max Planck Institute of Biophysics, Max-von-Laue Strasse 3, 60438 Frankfurt am Main, Germany
| | | | | |
Collapse
|
43
|
Kasmar A, Rhijn IV, Moody DB. The evolved functions of CD1 during infection. Curr Opin Immunol 2009; 21:397-403. [PMID: 19541469 PMCID: PMC2725205 DOI: 10.1016/j.coi.2009.05.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Revised: 05/18/2009] [Accepted: 05/19/2009] [Indexed: 10/20/2022]
Abstract
CD1 proteins display lipid antigens to T cell receptors. Studies using CD1d tetramers and CD1d-deficient mice provide important insight into the immunological functions of invariant NK T cells (iNKT) during viral and bacterial infections. However, the mouse CD1 locus is atypical because it encodes only CD1d, whereas most mammalian species have retained many CD1 genes. Viewed from the perspective that CD1 is a diverse gene family that activates several of classes of T cells, new insights into lipid loading and infection response are emerging.
Collapse
Affiliation(s)
- Anne Kasmar
- Division of Rheumatology, Immunology and Allergy Brigham and Women's Hospital Harvard Medical School 1 Jimmy Fund Way Boston MA 02115
| | - Ildiko Van Rhijn
- Division of Infectious Diseases and Immunity, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - D. Branch Moody
- Division of Rheumatology, Immunology and Allergy Brigham and Women's Hospital Harvard Medical School 1 Jimmy Fund Way Boston MA 02115
| |
Collapse
|
44
|
Young DC, Kasmar A, Moraski G, Cheng TY, Walz AJ, Hu J, Xu Y, Endres GW, Uzieblo A, Zajonc D, Costello CE, Miller MJ, Moody DB. Synthesis of dideoxymycobactin antigens presented by CD1a reveals T cell fine specificity for natural lipopeptide structures. J Biol Chem 2009; 284:25087-96. [PMID: 19605355 DOI: 10.1074/jbc.m109.000802] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mycobacterium tuberculosis survival in cells requires mycobactin siderophores. Recently, the search for lipid antigens presented by the CD1a antigen-presenting protein led to the discovery of a mycobactin-like compound, dideoxymycobactin (DDM). Here we synthesize DDMs using solution phase and solid phase peptide synthesis chemistry. Comparison of synthetic standards to natural mycobacterial mycobactins by nuclear magnetic resonance and mass spectrometry allowed identification of an unexpected alpha-methyl serine unit in natural DDM. This finding further distinguishes these pre-siderophores as foreign compounds distinct from conventional peptides, and we provide evidence that this chemical variation influences the T cell response. One synthetic DDM recapitulated natural structures and potently stimulated T cells, making it suitable for patient studies of CD1a in infectious disease. DDM analogs differing in the stereochemistry of their butyrate or oxazoline moieties were not recognized by human T cells. Therefore, we conclude that T cells show precise specificity for both arms of the peptide, which are predicted to lie at the CD1a-T cell receptor interface.
Collapse
Affiliation(s)
- David C Young
- Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|