1
|
Sim MJW, Li B, Long EO. Peptide-specific natural killer cell receptors. OXFORD OPEN IMMUNOLOGY 2025; 6:iqaf003. [PMID: 40297637 PMCID: PMC12036969 DOI: 10.1093/oxfimm/iqaf003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/09/2025] [Accepted: 04/15/2025] [Indexed: 04/30/2025] Open
Abstract
Class I and II human leukocyte antigens (HLA-I and HLA-II) present peptide antigens for immunosurveillance by T cells. HLA molecules also form ligands for a plethora of innate, germline-encoded receptors. Many of these receptors engage HLA molecules in a peptide sequence independent manner, with binding sites outside the peptide binding groove. However, some receptors, typically expressed on natural killer (NK) cells, engage the HLA presented peptide directly. Remarkably, some of these receptors display exquisite specificity for peptide sequences, with the capacity to detect sequences conserved in pathogens. Here, we review evidence for peptide-specific NK cell receptors (PSNKRs) and discuss their potential roles in immunity.
Collapse
Affiliation(s)
- Malcolm J W Sim
- Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| | - Beining Li
- Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| | - Eric O Long
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, United States of America
| |
Collapse
|
2
|
Mai C, Fukui A, Saeki S, Takeyama R, Yamaya A, Shibahara H. Expression of NKp46 and other activating inhibitory receptors on uterine endometrial NK cells in females with various reproductive failures: A review. Reprod Med Biol 2025; 24:e12610. [PMID: 39807425 PMCID: PMC11725765 DOI: 10.1002/rmb2.12610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/18/2024] [Indexed: 01/16/2025] Open
Abstract
Background Uterine endometrial natural killer (uNK) cells represent major leukocytes in the mid-secretory phase of the cell cycle, and their number is further increased during early pregnancy. The activating and inhibitory receptors expressed on their surface mediate various functions of uNK cells, such as cytotoxicity, cytokine production, spiral artery remodeling, and self-recognition. Methods This study reviewed the most recent information (PubMed database, 175 articles included) regarding the activating and inhibitory receptors on uNK cells in human females with healthy pregnancies and the evidence indicating their significance in various reproductive failures. Main Findings Numerous studies have indicated that the natural cytotoxic receptors, killer cell immunoglobulin-like receptors, and C-type lectin receptors, particularly those expressed on uNK cells, play crucial roles in successful pregnancy. Conclusion As studies on human uNK cells are limited owing to the low availability of fertile samples, and the extrapolation of animal models has certain limitations, the in vivo role of uNK cells has not yet been fully elucidated. However, immunotherapies focusing on modulating uNK cell function have been controversial in terms of pregnancy outcomes. Further research is required to elucidate the role of uNK cells in reproduction.
Collapse
Affiliation(s)
- Chuxian Mai
- Department of Obstetrics and GynecologySchool of Medicine, Hyogo Medical UniversityNishinomiyaHyogoJapan
- Reproductive Medicine Centre, Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological DiseasesFirst Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Atsushi Fukui
- Department of Obstetrics and GynecologySchool of Medicine, Hyogo Medical UniversityNishinomiyaHyogoJapan
| | - Shinichiro Saeki
- Department of Obstetrics and GynecologySchool of Medicine, Hyogo Medical UniversityNishinomiyaHyogoJapan
| | - Ryu Takeyama
- Department of Obstetrics and GynecologySchool of Medicine, Hyogo Medical UniversityNishinomiyaHyogoJapan
| | - Ayano Yamaya
- Department of Obstetrics and GynecologySchool of Medicine, Hyogo Medical UniversityNishinomiyaHyogoJapan
| | - Hiroaki Shibahara
- Department of Obstetrics and GynecologySchool of Medicine, Hyogo Medical UniversityNishinomiyaHyogoJapan
| |
Collapse
|
3
|
Mariuzza RA, Singh P, Karade SS, Shahid S, Sharma VK. Recognition of Self and Viral Ligands by NK Cell Receptors. Immunol Rev 2025; 329:e13435. [PMID: 39748148 PMCID: PMC11695704 DOI: 10.1111/imr.13435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 12/10/2024] [Indexed: 01/04/2025]
Abstract
Natural killer (NK) cells are essential elements of the innate immune response against tumors and viral infections. NK cell activation is governed by NK cell receptors that recognize both cellular (self) and viral (non-self) ligands, including MHC, MHC-related, and non-MHC molecules. These diverse receptors belong to two distinct structural families, the C-type lectin superfamily and the immunoglobulin superfamily. NK receptors include Ly49s, KIRs, LILRs, and NKG2A/CD94, which bind MHC class I (MHC-I) molecules, and NKG2D, which binds MHC-I paralogs such MICA and ULBP. Other NK receptors recognize tumor-associated antigens (NKp30, NKp44, NKp46), cell-cell adhesion proteins (KLRG1, CD96), or genetically coupled C-type lectin-like ligands (NKp65, NKR-P1). Additionally, cytomegaloviruses have evolved various immunoevasins, such as m157, m12, and UL18, which bind NK receptors and act as decoys to enable virus-infected cells to escape NK cell-mediated lysis. We review the remarkable progress made in the past 25 years in determining structures of representatives of most known NK receptors bound to MHC, MHC-like, and non-MHC ligands. Together, these structures reveal the multiplicity of solutions NK receptors have developed to recognize these molecules, and thereby mediate crucial interactions for regulating NK cytolytic activity by self and viral ligands.
Collapse
Affiliation(s)
- Roy A. Mariuzza
- W. M. Keck Laboratory for Structural BiologyUniversity of Maryland Institute for Bioscience and Biotechnology ResearchRockvilleMarylandUSA
- Department of Cell Biology and Molecular GeneticsUniversity of MarylandCollege ParkMarylandUSA
| | - Pragya Singh
- W. M. Keck Laboratory for Structural BiologyUniversity of Maryland Institute for Bioscience and Biotechnology ResearchRockvilleMarylandUSA
- College of Natural and Mathematical SciencesUniversity of MarylandCollege ParkMarylandUSA
| | - Sharanbasappa S. Karade
- W. M. Keck Laboratory for Structural BiologyUniversity of Maryland Institute for Bioscience and Biotechnology ResearchRockvilleMarylandUSA
- Department of Cell Biology and Molecular GeneticsUniversity of MarylandCollege ParkMarylandUSA
| | - Salman Shahid
- W. M. Keck Laboratory for Structural BiologyUniversity of Maryland Institute for Bioscience and Biotechnology ResearchRockvilleMarylandUSA
- Department of Cell Biology and Molecular GeneticsUniversity of MarylandCollege ParkMarylandUSA
| | - Vijay Kumar Sharma
- W. M. Keck Laboratory for Structural BiologyUniversity of Maryland Institute for Bioscience and Biotechnology ResearchRockvilleMarylandUSA
- Department of Cell Biology and Molecular GeneticsUniversity of MarylandCollege ParkMarylandUSA
| |
Collapse
|
4
|
Mukisa J, Kyobe S, Amujal M, Katagirya E, Diphoko T, Sebetso G, Mwesigwa S, Mboowa G, Retshabile G, Williams L, Mlotshwa B, Matshaba M, Jjingo D, Kateete DP, Joloba ML, Mardon G, Hanchard N, Hollenbach JA. High KIR diversity in Uganda and Botswana children living with HIV. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.03.626612. [PMID: 39677597 PMCID: PMC11642868 DOI: 10.1101/2024.12.03.626612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Killer-cell immunoglobulin-like receptors (KIRs) are essential components of the innate immune system found on the surfaces of natural killer (NK) cells. The KIRs encoding genes are located on chromosome 19q13.4 and are genetically diverse across populations. KIRs are associated with various disease states including HIV progression, and are linked to transplantation rejection and reproductive success. However, there is limited knowledge on the diversity of KIRs from Uganda and Botswana HIV-infected paediatric cohorts, with high endemic HIV rates. We used next-generation sequencing technologies on 312 (246 Uganda, 66 Botswana) samples to generate KIR allele data and employed customised bioinformatics techniques for allelic, allotype and disease association analysis. We show that these sample sets from Botswana and Uganda have different KIRs of different diversities. In Uganda, we observed 147 vs 111 alleles in the Botswana cohort, which had a more than 1 % frequency. We also found significant deviation towards homozygosity for the KIR3DL2 gene for both rapid (RPs) and long-term non-progressors (LTNPs)in the Ugandan cohort. The frequency of the bw4-80I ligand was also significantly higher among the LTNPs than RPs (8.9 % Vs 2.0%, P-value: 0.032). In the Ugandan cohort, KIR2DS4*001 (OR: 0.671, 95 % CI: 0.481-0.937, FDR adjusted Pc=0.142) and KIR2DS4*006 (OR: 2.519, 95 % CI: 1.085-5.851, FDR adjusted Pc=0.142) were not associated with HIV disease progression after adjustment for multiple testing. Our study results provide additional knowledge of the genetic diversity of KIRs in African populations and provide evidence that will inform future immunogenetics studies concerning human disease susceptibility, evolution and host immune responses.
Collapse
Affiliation(s)
- John Mukisa
- Department of Immunology and Molecular Biology, Makerere University, College of Health Sciences, P.O.BOX 7072, Kampala, Uganda
| | - Samuel Kyobe
- Department of Medical Microbiology, Makerere University, College of Health Sciences, P.O.BOX 7072, Kampala, Uganda
| | - Marion Amujal
- Department of Immunology and Molecular Biology, Makerere University, College of Health Sciences, P.O.BOX 7072, Kampala, Uganda
| | - Eric Katagirya
- Department of Immunology and Molecular Biology, Makerere University, College of Health Sciences, P.O.BOX 7072, Kampala, Uganda
| | - Thabo Diphoko
- Department of Biological Sciences, University of Botswana, Gaborone, Botswana
| | - Gaseene Sebetso
- Department of Biological Sciences, University of Botswana, Gaborone, Botswana
| | - Savannah Mwesigwa
- Department of Immunology and Molecular Biology, Makerere University, College of Health Sciences, P.O.BOX 7072, Kampala, Uganda
| | - Gerald Mboowa
- Department of Immunology and Molecular Biology, Makerere University, College of Health Sciences, P.O.BOX 7072, Kampala, Uganda
- Global Pathogen Genomics, Broad Institute, Cambridge, USA
| | - Gaone Retshabile
- Department of Biological Sciences, University of Botswana, Gaborone, Botswana
| | - Lesedi Williams
- Department of Biological Sciences, University of Botswana, Gaborone, Botswana
| | - Busisiwe Mlotshwa
- Department of Biological Sciences, University of Botswana, Gaborone, Botswana
| | - Mogomotsi Matshaba
- Botswana-Baylor Children’s Clinical Centre of Excellence, P/Bag BR 129, Gaborone, Botswana
| | - Daudi Jjingo
- College of Computing and Information Sciences, Makerere University, Kampala, Uganda
- African Center of Excellence in Bioinformatics and Data Science, Makerere University, Kampala, Uganda
| | - David P. Kateete
- Department of Immunology and Molecular Biology, Makerere University, College of Health Sciences, P.O.BOX 7072, Kampala, Uganda
| | - Moses L. Joloba
- Department of Immunology and Molecular Biology, Makerere University, College of Health Sciences, P.O.BOX 7072, Kampala, Uganda
| | - Graeme Mardon
- Department of Molecular and Human Genetics and Department of Pathology, Baylor College of Medicine, Houston, Texas, USA
| | - Neil Hanchard
- National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Jill A. Hollenbach
- Department of Neurology and Department of Epidemiology and Biostatistics, University of California San Francisco, CA, 94158, USA
| |
Collapse
|
5
|
Wang D, Dou L, Sui L, Xue Y, Xu S. Natural killer cells in cancer immunotherapy. MedComm (Beijing) 2024; 5:e626. [PMID: 38882209 PMCID: PMC11179524 DOI: 10.1002/mco2.626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/18/2024] Open
Abstract
Natural killer (NK) cells, as innate lymphocytes, possess cytotoxic capabilities and engage target cells through a repertoire of activating and inhibitory receptors. Particularly, natural killer group 2, member D (NKG2D) receptor on NK cells recognizes stress-induced ligands-the MHC class I chain-related molecules A and B (MICA/B) presented on tumor cells and is key to trigger the cytolytic response of NK cells. However, tumors have developed sophisticated strategies to evade NK cell surveillance, which lead to failure of tumor immunotherapy. In this paper, we summarized these immune escaping strategies, including the downregulation of ligands for activating receptors, upregulation of ligands for inhibitory receptors, secretion of immunosuppressive compounds, and the development of apoptosis resistance. Then, we focus on recent advancements in NK cell immune therapies, which include engaging activating NK cell receptors, upregulating NKG2D ligand MICA/B expression, blocking inhibitory NK cell receptors, adoptive NK cell therapy, chimeric antigen receptor (CAR)-engineered NK cells (CAR-NK), and NKG2D CAR-T cells, especially several vaccines targeting MICA/B. This review will inspire the research in NK cell biology in tumor and provide significant hope for improving cancer treatment outcomes by harnessing the potent cytotoxic activity of NK cells.
Collapse
Affiliation(s)
- DanRu Wang
- National Key Lab of Immunity and Inflammation and Institute of Immunology Naval Medical University Shanghai China
| | - LingYun Dou
- National Key Lab of Immunity and Inflammation and Institute of Immunology Naval Medical University Shanghai China
| | - LiHao Sui
- National Key Lab of Immunity and Inflammation and Institute of Immunology Naval Medical University Shanghai China
| | - Yiquan Xue
- National Key Lab of Immunity and Inflammation and Institute of Immunology Naval Medical University Shanghai China
| | - Sheng Xu
- National Key Lab of Immunity and Inflammation and Institute of Immunology Naval Medical University Shanghai China
- Shanghai Institute of Stem Cell Research and Clinical Translation Dongfang Hospital Shanghai China
| |
Collapse
|
6
|
Nowak J, Witkowska A, Rogatko-Koroś M, Malinowska A, Graczyk-Pol E, Nestorowicz-Kałużna K, Flaga A, Szlendak U, Wnorowska A, Gawron A. Molecular relapse monitoring reveals the domination of impaired NK cell education over impaired inhibition in missing KIR-ligand recognition in patients after unrelated hematopoietic stem cell transplantation for malignant diseases. HLA 2024; 103:e15364. [PMID: 38312022 DOI: 10.1111/tan.15364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/05/2023] [Accepted: 01/18/2024] [Indexed: 02/06/2024]
Abstract
Transplantation of HLA and/or KIR mismatched allogeneic hematopoietic stem cells can lead NK cells to different states of activation/inhibition or education/resetting and change anti-tumor immunosurveillance. In this study, we used molecular relapse monitoring to investigate a correlation between either missing ligand recognition or variation of the cognate iKIR-HLA pairs with clinical outcomes in patients with hematological malignancies requiring allogeneic hematopoietic stem cell transplantation (allo-HSCT). Patients (N = 418) with acute myeloid leukemia (AML), chronic myeloid leukemia (CML), acute lymphoblastic leukemia (ALL), myelodysplastic syndrome (MDS), or lymphoma receiving T-cell repleted graft from HLA-matched or partly mismatched unrelated donors between 2012 and 2020 in our center were included in this study. Missing-ligand recognition was assessed through the presence or absence of recipients' HLA ligand for a particular inhibitory KIR (iKIR) exhibited by the donor. Inhibitory KIR-HLA pair number variation was defined by loss or gain of a new cognate pair of HLA-KIR within the new HLA environment of the recipient, compared with the donor's one. Considering the results of our research, we drew the following conclusions: (i) loss of iKIR-HLA cognate pair for C1, C2, and/or Bw4 groups led to significant deterioration of disease-free survival (DFS), molecular relapse, overall survival (OS) and non-relapse mortality (NRM) for patients undergoing allo-HSCT in the standard phase of the disease. This phenomenon was not observed in patients who underwent transplantation in advanced hematological cancer. (ii) The missing ligand recognition had no impact if the proportion of HLA mismatches was not considered; however, adjustments of HLA mismatch level in the compared groups highlighted the adverse effect of the missing ligand constellation. (iii) The adverse effect of adjusted missing ligand suggests a predominance of lost NK cell education over lost NK cell inhibition in posttransplant recipients' new HLA environment. Our results suggested that donors with the loss of an iKIR-HLA cognate pair after transplantation should be avoided, and donors who provided an additional iKIR-HLA cognate pair should be preferred in the allo-HSCT donor selection process.
Collapse
Affiliation(s)
- Jacek Nowak
- Department of Immunogenetics, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Agnieszka Witkowska
- Department of Immunogenetics, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Marta Rogatko-Koroś
- Department of Immunogenetics, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Agnieszka Malinowska
- Department of Immunogenetics, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Elżbieta Graczyk-Pol
- Department of Immunogenetics, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | | | - Anna Flaga
- Department of Immunogenetics, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Urszula Szlendak
- Department of Immunogenetics, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Anna Wnorowska
- Department of Immunogenetics, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Agnieszka Gawron
- Department of Immunogenetics, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| |
Collapse
|
7
|
Farias TD, Brugiapaglia S, Croci S, Magistroni P, Curcio C, Zguro K, Fallerini C, Fava F, Pettini F, Kichula KM, Pollock NR, Font-Porterias N, Palmer WH, Marin WM, Baldassarri M, Bruttini M, Hollenbach JA, Hendricks AE, Meloni I, Novelli F, GEN-COVID Multicenter Study Group, Renieri A, Furini S, Norman PJ, Amoroso A. HLA-DPB1*13:01 associates with enhanced, and KIR2DS4*001 with diminished protection from developing severe COVID-19. HLA 2024; 103:e15251. [PMID: 37850268 PMCID: PMC10873037 DOI: 10.1111/tan.15251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 08/22/2023] [Accepted: 09/26/2023] [Indexed: 10/19/2023]
Abstract
Extreme polymorphism of HLA and killer-cell immunoglobulin-like receptors (KIR) differentiates immune responses across individuals. Additional to T cell receptor interactions, subsets of HLA class I act as ligands for inhibitory and activating KIR, allowing natural killer (NK) cells to detect and kill infected cells. We investigated the impact of HLA and KIR polymorphism on the severity of COVID-19. High resolution HLA class I and II and KIR genotypes were determined from 403 non-hospitalized and 1575 hospitalized SARS-CoV-2 infected patients from Italy collected in 2020. We observed that possession of the activating KIR2DS4*001 allotype is associated with severe disease, requiring hospitalization (OR = 1.48, 95% CI 1.20-1.85, pc = 0.017), and this effect is greater in individuals homozygous for KIR2DS4*001 (OR = 3.74, 95% CI 1.75-9.29, pc = 0.003). We also observed the HLA class II allotype, HLA-DPB1*13:01 protects SARS-CoV-2 infected patients from severe disease (OR = 0.49, 95% CI 0.33-0.74, pc = 0.019). These association analyses were replicated using logistic regression with sex and age as covariates. Autoantibodies against IFN-α associated with COVID-19 severity were detected in 26% of 156 hospitalized patients tested. HLA-C*08:02 was more frequent in patients with IFN-α autoantibodies than those without, and KIR3DL1*01502 was only present in patients lacking IFN-α antibodies. These findings suggest that KIR and HLA polymorphism is integral in determining the clinical outcome following SARS-CoV-2 infection, by influencing the course both of innate and adaptive immunity.
Collapse
Affiliation(s)
- Ticiana D.J. Farias
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA
| | - Silvia Brugiapaglia
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, 10126, Italy
- Laboratory of Tumor Immunology Center for Experimental Research and Medical Studies, Città della Salute e della Scienza di Torino, Turin, 10126, Italy
| | - Susanna Croci
- Medical Genetics, University of Siena, Siena, 53100, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, 53100, Italy
| | - Paola Magistroni
- Immunogenetics and Transplant Biology, Azienda Ospedaliera Universitaria, Città della Salute e della Scienza di Torino, Turin, 10126, Italy
| | - Claudia Curcio
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, 10126, Italy
- Laboratory of Tumor Immunology Center for Experimental Research and Medical Studies, Città della Salute e della Scienza di Torino, Turin, 10126, Italy
| | - Kristina Zguro
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, 53100, Italy
| | - Chiara Fallerini
- Medical Genetics, University of Siena, Siena, 53100, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, 53100, Italy
| | - Francesca Fava
- Medical Genetics, University of Siena, Siena, 53100, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, 53100, Italy
- Genetica Medica, Azienda Ospedaliero-Universitaria Senese, Siena, 53100, Italy
| | - Francesco Pettini
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, 53100, Italy
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, 53100, Italy
| | - Katherine M. Kichula
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA
| | - Nicholas R. Pollock
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA
| | - Neus Font-Porterias
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA
| | - William H. Palmer
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA
| | - Wesley M. Marin
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Margherita Baldassarri
- Medical Genetics, University of Siena, Siena, 53100, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, 53100, Italy
| | - Mirella Bruttini
- Medical Genetics, University of Siena, Siena, 53100, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, 53100, Italy
- Genetica Medica, Azienda Ospedaliero-Universitaria Senese, Siena, 53100, Italy
| | - Jill A. Hollenbach
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Audrey E. Hendricks
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA
- Department of Mathematical and Statistical Sciences, and Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA
| | - Ilaria Meloni
- Medical Genetics, University of Siena, Siena, 53100, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, 53100, Italy
| | - Francesco Novelli
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, 10126, Italy
- Laboratory of Tumor Immunology Center for Experimental Research and Medical Studies, Città della Salute e della Scienza di Torino, Turin, 10126, Italy
- Molecular Biotechnology Center, University of Turin, Turin, 10126, Italy
| | | | - Alessandra Renieri
- Medical Genetics, University of Siena, Siena, 53100, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, 53100, Italy
- Genetica Medica, Azienda Ospedaliero-Universitaria Senese, Siena, 53100, Italy
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, 53100, Italy
| | - Simone Furini
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, 53100, Italy
| | - Paul J. Norman
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA
| | - Antonio Amoroso
- Immunogenetics and Transplant Biology, Azienda Ospedaliera Universitaria, Città della Salute e della Scienza di Torino, Turin, 10126, Italy
- Department of Medical Sciences, University of Turin, Turin, 10126, Italy
| |
Collapse
|
8
|
Nersesian S, Carter EB, Lee SN, Westhaver LP, Boudreau JE. Killer instincts: natural killer cells as multifactorial cancer immunotherapy. Front Immunol 2023; 14:1269614. [PMID: 38090565 PMCID: PMC10715270 DOI: 10.3389/fimmu.2023.1269614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/30/2023] [Indexed: 12/18/2023] Open
Abstract
Natural killer (NK) cells integrate heterogeneous signals for activation and inhibition using germline-encoded receptors. These receptors are stochastically co-expressed, and their concurrent engagement and signaling can adjust the sensitivity of individual cells to putative targets. Against cancers, which mutate and evolve under therapeutic and immunologic pressure, the diversity for recognition provided by NK cells may be key to comprehensive cancer control. NK cells are already being trialled as adoptive cell therapy and targets for immunotherapeutic agents. However, strategies to leverage their naturally occurring diversity and agility have not yet been developed. In this review, we discuss the receptors and signaling pathways through which signals for activation or inhibition are generated in NK cells, focusing on their roles in cancer and potential as targets for immunotherapies. Finally, we consider the impacts of receptor co-expression and the potential to engage multiple pathways of NK cell reactivity to maximize the scope and strength of antitumor activities.
Collapse
Affiliation(s)
- Sarah Nersesian
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | - Emily B. Carter
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | - Stacey N. Lee
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | | | - Jeanette E. Boudreau
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
9
|
Wang T, Qi J, Wang M, Xu H, Wu J, Shang L, Chen L, Li Y. Correlation between human leukocyte antigen ligands and killer cell immunoglobulin-like receptors in aplastic anemia patients from Shaanxi Han. Immunogenetics 2023; 75:445-454. [PMID: 37592108 DOI: 10.1007/s00251-023-01316-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/15/2023] [Indexed: 08/19/2023]
Abstract
Regulating natural killer (NK) cell responses in hematological malignancies largely depend on molecular interactions between killer cell immunoglobulin-like receptors (KIR) and human leukocyte antigen (HLA) class I ligands. The goal of the current study was to examine the key functions of KIR genes, gene combinations of KIR-HLA, and KIR genotypes in genetic predisposition to aplastic anemia (AA). Herein, the genotyping of 16 KIR genes and HLA-A, -B, and -C ligands were performed in 72 AA patients and 150 healthy controls using PCR evaluations with sequence-specific primers using standard assays. According to the obtained results, AA patients had an increased incidence of activating KIR and KIR2DS4 (P = 0.465 × 10-4, Pc = 0.837 × 10-3, OR = 20.81, 95% CI = 2.786-155.5) compared to controls. KIR/HLA class I ligand profile KIR2DS4/C1 (P = 0.350 × 10-4, Pc = 0.630 × 10-3, OR = 8.944, 95% CI = 2.667-29.993) was significantly elevated in AA patients compared to healthy controls. Genotype AA1 (P = 0.003, OR = 2.351, 95% CI = 1.325-4.172) were increased, and AA195 (P = 0.006, OR = 0.060, 95% CI = 0.004-1.023) was decreased among AA cases compared to controls. Our findings indicated that KIR2DS4 may play a role in the pathogenesis of AA. This study revealed the contribution of KIR genes in the etiology of AA cases.
Collapse
Affiliation(s)
- Tianju Wang
- HLA Typing Laboratory, Blood Center of the Shaanxi Province, Institute of Xi'an Blood Bank, Xi'an, Shaanxi, 710061, China
| | - Jun Qi
- HLA Typing Laboratory, Blood Center of the Shaanxi Province, Institute of Xi'an Blood Bank, Xi'an, Shaanxi, 710061, China.
| | - Manni Wang
- HLA Typing Laboratory, Blood Center of the Shaanxi Province, Institute of Xi'an Blood Bank, Xi'an, Shaanxi, 710061, China
| | - Hua Xu
- HLA Typing Laboratory, Blood Center of the Shaanxi Province, Institute of Xi'an Blood Bank, Xi'an, Shaanxi, 710061, China
| | - Junhua Wu
- HLA Typing Laboratory, Blood Center of the Shaanxi Province, Institute of Xi'an Blood Bank, Xi'an, Shaanxi, 710061, China
| | - Lixia Shang
- HLA Typing Laboratory, Blood Center of the Shaanxi Province, Institute of Xi'an Blood Bank, Xi'an, Shaanxi, 710061, China
| | - Le Chen
- HLA Typing Laboratory, Blood Center of the Shaanxi Province, Institute of Xi'an Blood Bank, Xi'an, Shaanxi, 710061, China
| | - Yuhui Li
- HLA Typing Laboratory, Blood Center of the Shaanxi Province, Institute of Xi'an Blood Bank, Xi'an, Shaanxi, 710061, China
| |
Collapse
|
10
|
Sim MJW, Brennan P, Wahl KL, Lu J, Rajagopalan S, Sun PD, Long EO. Innate receptors with high specificity for HLA class I-peptide complexes. Sci Immunol 2023; 8:eadh1781. [PMID: 37683038 DOI: 10.1126/sciimmunol.adh1781] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 08/08/2023] [Indexed: 09/10/2023]
Abstract
Genetic studies associate killer cell immunoglobulin-like receptors (KIRs) and their HLA class I ligands with a variety of human diseases. The basis for these associations and the relative contribution of inhibitory and activating KIR to NK cell responses are unclear. Because KIR binding to HLA-I is peptide dependent, we performed systematic screens, which totaled more than 3500 specific interactions, to determine the specificity of five KIR for peptides presented by four HLA-C ligands. Inhibitory KIR2DL1 was largely peptide sequence agnostic and could bind ~60% of hundreds of HLA-peptide complexes tested. Inhibitory KIR2DL2, KIR2DL3, and activating KIR2DS1 and KIR2DS4 bound only 10% and down to 1% of HLA-peptide complexes tested, respectively. Activating KIR2DS1, previously described as weak, had high binding affinity for HLA-C, with high peptide sequence specificity. Our data revealed MHC-restricted peptide recognition by germline-encoded NK receptors and suggest that NK cell responses can be shaped by HLA-I-bound immunopeptidomes in the context of disease or infection.
Collapse
Affiliation(s)
- Malcolm J W Sim
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD 20852, USA
| | - Paul Brennan
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD 20852, USA
| | - Katherine L Wahl
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD 20852, USA
| | - Jinghua Lu
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD 20852, USA
| | - Sumati Rajagopalan
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD 20852, USA
| | - Peter D Sun
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD 20852, USA
| | - Eric O Long
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD 20852, USA
| |
Collapse
|
11
|
Palmer WH, Leaton LA, Codo AC, Crute B, Roest J, Zhu S, Petersen J, Tobin RP, Hume PS, Stone M, van Bokhoven A, Gerich ME, McCarter MD, Zhu Y, Janssen WJ, Vivian JP, Trowsdale J, Getahun A, Rossjohn J, Cambier J, Loh L, Norman PJ. Polymorphic KIR3DL3 expression modulates tissue-resident and innate-like T cells. Sci Immunol 2023; 8:eade5343. [PMID: 37390222 PMCID: PMC10360443 DOI: 10.1126/sciimmunol.ade5343] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 06/07/2023] [Indexed: 07/02/2023]
Abstract
Most human killer cell immunoglobulin-like receptors (KIR) are expressed by natural killer (NK) cells and recognize HLA class I molecules as ligands. KIR3DL3 is a conserved but polymorphic inhibitory KIR recognizing a B7 family ligand, HHLA2, and is implicated for immune checkpoint targeting. The expression profile and biological function of KIR3DL3 have been somewhat elusive, so we searched extensively for KIR3DL3 transcripts, revealing highly enriched expression in γδ and CD8+ T cells rather than NK cells. These KIR3DL3-expressing cells are rare in the blood and thymus but more common in the lungs and digestive tract. High-resolution flow cytometry and single-cell transcriptomics showed that peripheral blood KIR3DL3+ T cells have an activated transitional memory phenotype and are hypofunctional. The T cell receptor (TCR) usage is biased toward genes from early rearranged TCR-α variable segments or Vδ1 chains. In addition, we show that TCR-mediated stimulation can be inhibited through KIR3DL3 ligation. Whereas we detected no impact of KIR3DL3 polymorphism on ligand binding, variants in the proximal promoter and at residue 86 can reduce expression. Together, we demonstrate that KIR3DL3 is up-regulated alongside unconventional T cell stimulation and that individuals may vary in their ability to express KIR3DL3. These results have implications for the personalized targeting of KIR3DL3/HHLA2 checkpoint inhibition.
Collapse
Affiliation(s)
- William H. Palmer
- Department of Biomedical Informatics, University of
Colorado School of Medicine, Aurora, CO, USA
- Department of Immunology & Microbiology, University of
Colorado School of Medicine, Aurora, CO, USA
| | - Laura Ann Leaton
- Department of Biomedical Informatics, University of
Colorado School of Medicine, Aurora, CO, USA
- Department of Immunology & Microbiology, University of
Colorado School of Medicine, Aurora, CO, USA
| | - Ana Campos Codo
- Department of Biomedical Informatics, University of
Colorado School of Medicine, Aurora, CO, USA
- Department of Immunology & Microbiology, University of
Colorado School of Medicine, Aurora, CO, USA
| | - Bergren Crute
- Department of Immunology & Microbiology, University of
Colorado School of Medicine, Aurora, CO, USA
| | - James Roest
- Infection and Immunity Program and Department of
Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash
University, Clayton, Victoria, Australia
| | - Shiying Zhu
- Infection and Immunity Program and Department of
Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash
University, Clayton, Victoria, Australia
| | - Jan Petersen
- Infection and Immunity Program and Department of
Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash
University, Clayton, Victoria, Australia
| | - Richard P. Tobin
- Department of Surgery, Division of Surgical Oncology,
University of Colorado School of Medicine, Aurora, CO, USA
| | - Patrick S. Hume
- Department of Medicine, National Jewish Health, Denver, CO,
USA
| | - Matthew Stone
- Department of Surgery, Division of Surgical Oncology,
University of Colorado School of Medicine, Aurora, CO, USA
| | - Adrie van Bokhoven
- Department of Pathology, University of Colorado School of
Medicine, Aurora, CO, USA
| | - Mark E. Gerich
- Division of Gastroenterology and Hepatology, University of
Colorado School of Medicine, Aurora, CO, USA
| | - Martin D. McCarter
- Department of Surgery, Division of Surgical Oncology,
University of Colorado School of Medicine, Aurora, CO, USA
| | - Yuwen Zhu
- Department of Surgery, Division of Surgical Oncology,
University of Colorado School of Medicine, Aurora, CO, USA
| | | | - Julian P. Vivian
- Infection and Immunity Program and Department of
Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash
University, Clayton, Victoria, Australia
| | | | - Andrew Getahun
- Department of Immunology & Microbiology, University of
Colorado School of Medicine, Aurora, CO, USA
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of
Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash
University, Clayton, Victoria, Australia
- Institute of Infection and Immunity, Cardiff University,
School of Medicine, Heath Park, Cardiff, UK
| | - John Cambier
- Department of Immunology & Microbiology, University of
Colorado School of Medicine, Aurora, CO, USA
| | - Liyen Loh
- Department of Immunology & Microbiology, University of
Colorado School of Medicine, Aurora, CO, USA
- Department of Microbiology and Immunology, University of
Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville,
Australia
| | - Paul J. Norman
- Department of Biomedical Informatics, University of
Colorado School of Medicine, Aurora, CO, USA
- Department of Immunology & Microbiology, University of
Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
12
|
De Re V, Tornesello ML, Racanelli V, Prete M, Steffan A. Non-Classical HLA Class 1b and Hepatocellular Carcinoma. Biomedicines 2023; 11:1672. [PMID: 37371767 PMCID: PMC10296335 DOI: 10.3390/biomedicines11061672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
A number of studies are underway to gain a better understanding of the role of immunity in the pathogenesis of hepatocellular carcinoma and to identify subgroups of individuals who may benefit the most from systemic therapy according to the etiology of their tumor. Human leukocyte antigens play a key role in antigen presentation to T cells. This is fundamental to the host's defense against pathogens and tumor cells. In addition, HLA-specific interactions with innate lymphoid cell receptors, such those present on natural killer cells and innate lymphoid cell type 2, have been shown to be important activators of immune function in the context of several liver diseases. More recent studies have highlighted the key role of members of the non-classical HLA-Ib and the transcript adjacent to the HLA-F locus, FAT10, in hepatocarcinoma. The present review analyzes the major contribution of these molecules to hepatic viral infection and hepatocellular prognosis. Particular attention has been paid to the association of natural killer and Vδ2 T-cell activation, mediated by specific HLA class Ib molecules, with risk assessment and novel treatment strategies to improve immunotherapy in HCC.
Collapse
Affiliation(s)
- Valli De Re
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), 33081 Aviano, Italy;
| | - Maria Lina Tornesello
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, 80131 Naples, Italy;
| | - Vito Racanelli
- Department of Interdisciplinary Medicine, School of Medicine, ‘Aldo Moro’ University of Bari, 70124 Bari, Italy; (V.R.); (M.P.)
| | - Marcella Prete
- Department of Interdisciplinary Medicine, School of Medicine, ‘Aldo Moro’ University of Bari, 70124 Bari, Italy; (V.R.); (M.P.)
| | - Agostino Steffan
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), 33081 Aviano, Italy;
| |
Collapse
|
13
|
Palmer WH, Norman PJ. The impact of HLA polymorphism on herpesvirus infection and disease. Immunogenetics 2023; 75:231-247. [PMID: 36595060 PMCID: PMC10205880 DOI: 10.1007/s00251-022-01288-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/24/2022] [Indexed: 01/04/2023]
Abstract
Human Leukocyte Antigens (HLA) are cell surface molecules, central in coordinating innate and adaptive immune responses, that are targets of strong diversifying natural selection by pathogens. Of these pathogens, human herpesviruses have a uniquely ancient relationship with our species, where coevolution likely has reciprocating impact on HLA and viral genomic diversity. Consistent with this notion, genetic variation at multiple HLA loci is strongly associated with modulating immunity to herpesvirus infection. Here, we synthesize published genetic associations of HLA with herpesvirus infection and disease, both from case/control and genome-wide association studies. We analyze genetic associations across the eight human herpesviruses and identify HLA alleles that are associated with diverse herpesvirus-related phenotypes. We find that whereas most HLA genetic associations are virus- or disease-specific, HLA-A*01 and HLA-A*02 allotypes may be more generally associated with immune susceptibility and control, respectively, across multiple herpesviruses. Connecting genetic association data with functional corroboration, we discuss mechanisms by which diverse HLA and cognate receptor allotypes direct variable immune responses during herpesvirus infection and pathogenesis. Together, this review examines the complexity of HLA-herpesvirus interactions driven by differential T cell and Natural Killer cell immune responses.
Collapse
Affiliation(s)
- William H. Palmer
- Department of Biomedical Informatics, University of Colorado, Aurora, CO USA
- Department of Immunology & Microbiology, University of Colorado, Aurora, CO USA
| | - Paul J. Norman
- Department of Biomedical Informatics, University of Colorado, Aurora, CO USA
- Department of Immunology & Microbiology, University of Colorado, Aurora, CO USA
| |
Collapse
|
14
|
Gowdavally S, Tsamadou C, Platzbecker U, Sala E, Valerius T, Klein S, Kröger N, Wulf G, Einsele H, Thurner L, Schaefer-Eckart K, Freitag S, Casper J, Dürholt M, Kaufmann M, Hertenstein B, Ringhoffer M, Schmeller S, Neuchel C, Rode I, Amann EM, Richter A, Schrezenmeier H, Mytilineos J, Fuerst D. KIR2DS4 and its variant KIR1D in KIR-AA genotype donors showed differential survival impact in patients with lymphoid disease after HLA-matched unrelated hematopoietic stem cell transplantation. Transplant Cell Ther 2023:S2666-6367(23)01236-8. [PMID: 37150297 DOI: 10.1016/j.jtct.2023.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/07/2023] [Indexed: 05/09/2023]
Abstract
Previous studies illustrated associations between presence of activating killer cell immunoglobulin-like receptor (KIR) genes and lower susceptibility to hematologic malignancies in humans. In addition, favorable hematopoietic stem cell transplantation (HSCT) outcomes were reported in patients, who received transplants from donors with KIR genotypes dominant for activating KIR receptors. However, the association of activating KIR genes on an allelic level with disease and their impact on HSCT outcome has been only scarcely investigated. To this end, we genotyped a large transplantation cohort for KIR two Ig domains and short cytoplasmic tail 4 (KIR2DS4) polymorphisms and investigated their association with disease. We next investigated the impact of KIR-AA genotype donor KIR2DS4 polymorphisms (AA/KIR2DS4 versus (vs.) AA/KIR1D), on clinical outcome of HSCT in patient subgroups (myeloid vs. lymphoid). Among 2810 transplant pairs, 68.8% (n=1934) were 10/10 human leukocyte antigen (HLA) matched and 31.2% (n=876) were 9/10 HLA-matched. The distribution of KIR one Ig domain (KIR1D) in patients vs. donors was equal (P value = 0.205). Multivariate analysis in 10/10 HLA-matched patients with lymphoid disease showed improved HSCT outcome (overall survival (OS): hazard ratio (HR) 0.62, P=0.002; disease free survival (DFS): HR 0.70, P=0.011; graft-versus-host disease free and relapse-free survival (GRFS): HR 0.67, P=0.002; non-relapse mortality (NRM): HR 0.55, P<0.001) when they received grafts from AA/KIR1D donors. This effect was not seen in either 9/10 HLA-matched patients with lymphoid disease or patients with myeloid disease. Our study indicates that the presence of KIR1D alleles is not associated with disease in patients and interestingly, using grafts from AA/KIR1D donors translated into a beneficial survival outcome in 10/10 HLA-matched patients with lymphoid disease.
Collapse
Affiliation(s)
- Sowmya Gowdavally
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden Wuerttemberg - Hessen, Ulm, and University Hospital Ulm, Germany; Institute of Transfusion Medicine, University of Ulm, Germany
| | - Chrysanthi Tsamadou
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden Wuerttemberg - Hessen, Ulm, and University Hospital Ulm, Germany; Institute of Transfusion Medicine, University of Ulm, Germany
| | - Uwe Platzbecker
- Department of Hematology/Oncology, University of Leipzig, Germany
| | - Elisa Sala
- Department of Internal Medicine III, University of Ulm, Germany
| | - Thomas Valerius
- Section for Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian Albrechts University, Kiel, Germany
| | - Stefan Klein
- Universitätsmedizin Mannheim, Med. Klinik III, Mannheim, Germany
| | - Nicolaus Kröger
- Department of Stem Cell Transplantation, University Hospital Hamburg Eppendorf, Germany
| | - Gerald Wulf
- Hematology and Medical Oncology, University Medicine Goettingen
| | - Hermann Einsele
- Department of Internal Medicine II, University Hospital Würzburg, Germany
| | - Lorenz Thurner
- Department Internal Medicine I, Universitätsklinikum des Saarlandes, Homburg, Germany
| | | | - Sebastian Freitag
- Department of Medicine III, Hematology/Oncology/Palliative Care, Rostock University Medical Center, Rostock,Germany
| | - Jochen Casper
- Department of Oncology and Hematology, Klinikum Oldenburg, University Clinic, Oldenburg, Germany
| | | | - Martin Kaufmann
- 2nd Department of Internal Medicine, Oncology and Hematology, Robert Bosch Hospital Stuttgart, Germany
| | | | - Mark Ringhoffer
- Medizinische Klinik III, Städtisches Klinikum Karlsruhe, Germany
| | - Sandra Schmeller
- DRST - German Registry for Stem Cell Transplantation, Ulm, Germany
| | - Christine Neuchel
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden Wuerttemberg - Hessen, Ulm, and University Hospital Ulm, Germany; Institute of Transfusion Medicine, University of Ulm, Germany
| | - Immanuel Rode
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden Wuerttemberg - Hessen, Ulm, and University Hospital Ulm, Germany; Institute of Transfusion Medicine, University of Ulm, Germany
| | - Elisa Maria Amann
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden Wuerttemberg - Hessen, Ulm, and University Hospital Ulm, Germany; Institute of Transfusion Medicine, University of Ulm, Germany
| | - Anita Richter
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden Wuerttemberg - Hessen, Ulm, and University Hospital Ulm, Germany; Institute of Transfusion Medicine, University of Ulm, Germany
| | - Hubert Schrezenmeier
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden Wuerttemberg - Hessen, Ulm, and University Hospital Ulm, Germany; Institute of Transfusion Medicine, University of Ulm, Germany
| | - Joannis Mytilineos
- DRST - German Registry for Stem Cell Transplantation, Ulm, Germany; ZKRD - Zentrales Knochenmarkspender-Register für Deutschland, German National Bone Marrow Donor Registry, Germany
| | - Daniel Fuerst
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden Wuerttemberg - Hessen, Ulm, and University Hospital Ulm, Germany; Institute of Transfusion Medicine, University of Ulm, Germany.
| |
Collapse
|
15
|
Margolis DJ, Mitra N, Hoffstad OJ, Chopra A, Phillips EJ. KIR Allelic Variation and the Remission of Atopic Dermatitis Over Time. Immunohorizons 2023; 7:30-40. [PMID: 36637513 PMCID: PMC10329861 DOI: 10.4049/immunohorizons.2200095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 01/14/2023] Open
Abstract
Atopic dermatitis (AD) is a common chronic skin disease. Although generally thought to be a disease of T-cell dysregulation, recent studies have suggested that immune dysregulation of NK cells is also important. Killer cell Ig-like receptors (KIRs) are involved with NK cell regulation. The Pediatric Eczema Elective Registry is a U.S. nationwide longitudinal cohort with up to 10 y of follow-up in which 655 children had DNA available for full allelic KIR sequencing. Every 6 mo, AD activity was reported by Pediatric Eczema Elective Registry children. Using generalized estimating equations, we evaluated the association of KIR allelic variation in concert with known HLA binding ligands and whether the child reported AD in "remission" (no skin lesions and not using AD medication). KIR2DS4*001:01 (odds ratio 0.53, 95% CI [0.32, 0.88]) and KIR2DL4*001:02 (0.54, [0.33, 0.89]) in the presence of C*04:01 had the largest effect on decreasing the likelihood of AD remission. The haplotype KIR 2DL4*001:02 ∼ 2DS4*001:01 ∼ 3DL2*002:01 (0.77, [0.60, 0.99]) was also associated with a decreased likelihood of AD remission. Our findings add to the general body of evidence of a growing literature on the importance of NK cells with respect to the immunopathogenesis and natural history of AD.
Collapse
Affiliation(s)
- David J. Margolis
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Nandita Mitra
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ole J. Hoffstad
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Abha Chopra
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia; and
| | - Elizabeth J. Phillips
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia; and
- Department of Medicine Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
16
|
Legaz I, Bolarín JM, Campillo JA, Moya-Quiles MR, Miras M, Muro M, Minguela A, Álvarez-López MR. Killer Cell Immunoglobulin-like Receptors (KIR) and Human Leucocyte Antigen C (HLA-C) Increase the Risk of Long-Term Chronic Liver Graft Rejection. Int J Mol Sci 2022; 23:ijms232012155. [PMID: 36293011 PMCID: PMC9603177 DOI: 10.3390/ijms232012155] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
Chronic liver rejection (CR) represents a complex clinical situation because many patients do not respond to increased immunosuppression. Killer cell immunoglobulin-like receptors/Class I Human Leukocyte Antigens (KIR/HLA-I) interactions allow for predicting Natural Killer (NK) cell alloreactivity and influence the acute rejection of liver allograft. However, its meaning in CR liver graft remains controversial. KIR and HLA genotypes were studied in 513 liver transplants using sequence-specific oligonucleotides (PCR-SSO) methods. KIRs, human leucocyte antigen C (HLA-C) genotypes, KIR gene mismatches, and the KIR/HLA-ligand were analyzed and compared in overall transplants with CR (n = 35) and no-chronic rejection (NCR = 478). Activating KIR (aKIR) genes in recipients (rKIR2DS2+ and rKIR2DS3+) increased CR compared with NCR groups (p = 0.013 and p = 0.038). The inhibitory KIR (iKIR) genes in recipients rKIR2DL2+ significantly increased the CR rate compared with their absence (9.1% vs. 3.7%, p = 0.020). KIR2DL3 significantly increases CR (13.1% vs. 5.2%; p = 0.008). There was no influence on NCR. CR was observed in HLA-I mismatches (MM). The absence of donor (d) HLA-C2 ligand (dC2−) ligand increases CR concerning their presence (13.1% vs. 5.6%; p = 0.018). A significant increase of CR was observed in rKIR2DL3+/dC1− (p = 0.015), rKIR2DS4/dC1− (p = 0.014) and rKIR2DL3+/rKIR2DS4+/dC1− (p = 0.006). Long-term patient survival was significantly lower in rKIR2DS1+rKIR2DS4+/dC1− at 5–10 years post-transplant. This study shows the influence of rKIR/dHLA-C combinations and aKIR gene-gene mismatches in increasing CR and KIR2DS1+/C1-ligands and the influence of KIR2DS4+/C1-ligands in long-term graft survival.
Collapse
Affiliation(s)
- Isabel Legaz
- Department of Legal and Forensic Medicine, Biomedical Research Institute (IMIB), Regional Campus of International Excellence “Campus Mare Nostrum”, Faculty of Medicine, University of Murcia, 30120 Murcia, Spain
- Correspondence: ; Tel.: +34-868883957; Fax: +34-868834307
| | - Jose Miguel Bolarín
- Department of Legal and Forensic Medicine, Biomedical Research Institute (IMIB), Regional Campus of International Excellence “Campus Mare Nostrum”, Faculty of Medicine, University of Murcia, 30120 Murcia, Spain
| | - Jose Antonio Campillo
- Immunology Service, Instituto Murciano de Investigación biosanitaria (IMIB), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Hospital Clínico Universitario Virgen de la Arrixaca (HCUVA), 30120 Murcia, Spain
| | - María R. Moya-Quiles
- Immunology Service, Instituto Murciano de Investigación biosanitaria (IMIB), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Hospital Clínico Universitario Virgen de la Arrixaca (HCUVA), 30120 Murcia, Spain
| | - Manuel Miras
- Digestive Medicine Service, Hospital Clínico Universitario Virgen de la Arrixaca (HCUVA), 30120 Murcia, Spain
| | - Manuel Muro
- Immunology Service, Instituto Murciano de Investigación biosanitaria (IMIB), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Hospital Clínico Universitario Virgen de la Arrixaca (HCUVA), 30120 Murcia, Spain
| | - Alfredo Minguela
- Immunology Service, Instituto Murciano de Investigación biosanitaria (IMIB), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Hospital Clínico Universitario Virgen de la Arrixaca (HCUVA), 30120 Murcia, Spain
| | - María R. Álvarez-López
- Immunology Service, Instituto Murciano de Investigación biosanitaria (IMIB), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Hospital Clínico Universitario Virgen de la Arrixaca (HCUVA), 30120 Murcia, Spain
| |
Collapse
|
17
|
Jennifer Zhang Q. Donor selection based on NK alloreactivity for patients with hematological malignancies. Hum Immunol 2022; 83:695-703. [PMID: 35965181 DOI: 10.1016/j.humimm.2022.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/12/2022] [Accepted: 07/26/2022] [Indexed: 12/30/2022]
Abstract
Natural killer (NK) cells are an important defender against infections and tumors. Their function is regulated by the balance of inhibitory and activating receptors. Among all inhibitory NK receptors: killer immunoglobulin-like receptors (KIR) and CD94/NKG2A recognize human leukocyte antigen (HLA) Class I molecules, allowing NK cells to be 'licensed' to avoid autoreactivity, but be fully functional at the same time. Licensed NK cells can target malignant cells with altered or downregulated/missing 'self' antigens. NK cell attacking malignant cells is one of the mechanisms of graft-versus-leukemia (GVL) effect. Numerous studies have demonstrated that NK cells improve hematopoietic stem cell transplantation (HCT) survival by reducing relapse mortality through GVL effect. Therapeutic strategies, such as adoptive alloreactive NK cell transfer, CAR-NK cells, antibodies against NKG2A and KIR2DL1-3, have been utilized to treat hematological malignancies in HCT. In this review, NK cell functions, NK cell receptors and ligands, as well as common alloreactive NK donor selection algorithms for patients with hematological malignancies in the setting of HCT are discussed. The goal of this review is to provide insights on the controversial results and provide better understanding and resources on how to perform alloreactive donor NK cell selection in HCT.
Collapse
Affiliation(s)
- Qiuheng Jennifer Zhang
- UCLA Immunogenetics Center, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles 90095, USA.
| |
Collapse
|
18
|
Vollmers S, Lobermeyer A, Niehrs A, Fittje P, Indenbirken D, Nakel J, Virdi S, Brias S, Trenkner T, Sauer G, Peine S, Behrens GM, Lehmann C, Meurer A, Pauli R, Postel N, Roider J, Scholten S, Spinner CD, Stephan C, Wolf E, Wyen C, Richert L, Norman PJ, Sauter J, Schmidt AH, Hoelzemer A, Altfeld M, Körner C. Host KIR/HLA-C Genotypes Determine HIV-Mediated Changes of the NK Cell Repertoire and Are Associated With Vpu Sequence Variations Impacting Downmodulation of HLA-C. Front Immunol 2022; 13:922252. [PMID: 35911762 PMCID: PMC9334850 DOI: 10.3389/fimmu.2022.922252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 06/13/2022] [Indexed: 12/29/2022] Open
Abstract
NK cells play a pivotal role in viral immunity, utilizing a large array of activating and inhibitory receptors to identify and eliminate virus-infected cells. Killer-cell immunoglobulin-like receptors (KIRs) represent a highly polymorphic receptor family, regulating NK cell activity and determining the ability to recognize target cells. Human leukocyte antigen (HLA) class I molecules serve as the primary ligand for KIRs. Herein, HLA-C stands out as being the dominant ligand for the majority of KIRs. Accumulating evidence indicated that interactions between HLA-C and its inhibitory KIR2DL receptors (KIR2DL1/L2/L3) can drive HIV-1-mediated immune evasion and thus may contribute to the intrinsic control of HIV-1 infection. Of particular interest in this context is the recent observation that HIV-1 is able to adapt to host HLA-C genotypes through Vpu-mediated downmodulation of HLA-C. However, our understanding of the complex interplay between KIR/HLA immunogenetics, NK cell-mediated immune pressure and HIV-1 immune escape is still limited. Therefore, we investigated the impact of specific KIR/HLA-C combinations on the NK cell receptor repertoire and HIV-1 Vpu protein sequence variations of 122 viremic, untreated HIV-1+ individuals. Compared to 60 HIV-1- controls, HIV-1 infection was associated with significant changes within the NK cell receptor repertoire, including reduced percentages of NK cells expressing NKG2A, CD8, and KIR2DS4. In contrast, the NKG2C+ and KIR3DL2+ NK cell sub-populations from HIV-1+ individuals was enlarged compared to HIV-1- controls. Stratification along KIR/HLA-C genotypes revealed a genotype-dependent expansion of KIR2DL1+ NK cells that was ultimately associated with increased binding affinities between KIR2DL1 and HLA-C allotypes. Lastly, our data hinted to a preferential selection of Vpu sequence variants that were associated with HLA-C downmodulation in individuals with high KIR2DL/HLA-C binding affinities. Altogether, our study provides evidence that HIV-1-associated changes in the KIR repertoire of NK cells are to some extent predetermined by host KIR2DL/HLA-C genotypes. Furthermore, analysis of Vpu sequence polymorphisms indicates that differential KIR2DL/HLA-C binding affinities may serve as an additional mechanism how host genetics impact immune evasion by HIV-1.
Collapse
Affiliation(s)
| | | | | | - Pia Fittje
- Leibniz Institute of Virology, Hamburg, Germany
| | | | | | | | - Sebastien Brias
- Leibniz Institute of Virology, Hamburg, Germany
- First Department of Medicine, Division of Infectious Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Gabriel Sauer
- Department I for Internal Medicine, University Hospital of Cologne, Cologne, Germany
| | - Sven Peine
- Institute for Transfusion Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Georg M.N. Behrens
- Department for Rheumatology and Clinical Immunology, Hannover Medical School, Hannover, Germany
| | - Clara Lehmann
- Department I for Internal Medicine, Division of Infectious Diseases, University Hospital Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Anja Meurer
- Center for Internal Medicine and Infectiology, Munich, Germany
| | - Ramona Pauli
- Medizinisches Versorgungszentrum (MVZ) am Isartor, Munich, Germany
| | - Nils Postel
- Prinzmed, Practice for Infectious Diseases, Munich, Germany
| | - Julia Roider
- Department of Internal Medicine IV, Department of Infectious Diseases, Ludwig-Maximilians University Munich, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | | | - Christoph D. Spinner
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
- Technical University of Munich, School of Medicine, University Hospital rechts der Isar, Department of Internal Medicine II, Munich, Germany
| | - Christoph Stephan
- Infectious Diseases Unit, Goethe-University Hospital Frankfurt, Frankfurt, Germany
| | | | - Christoph Wyen
- Department I for Internal Medicine, Division of Infectious Diseases, University Hospital Cologne, Cologne, Germany
- Praxis am Ebertplatz, Cologne, Germany
| | - Laura Richert
- University of Bordeaux, Inserm U1219 Bordeaux Population Health, Inria Sistm, Bordeaux, France
| | - Paul J. Norman
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Aurora, CO, United States
- Department of Immunology and Microbiology, University of Colorado, Aurora, CO, United States
| | | | | | - Angelique Hoelzemer
- Leibniz Institute of Virology, Hamburg, Germany
- First Department of Medicine, Division of Infectious Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Marcus Altfeld
- Leibniz Institute of Virology, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Christian Körner
- Leibniz Institute of Virology, Hamburg, Germany
- *Correspondence: Christian Körner,
| |
Collapse
|
19
|
Zamir MR, Shahi A, Salehi S, Amirzargar A. Natural killer cells and killer cell immunoglobulin-like receptors in solid organ transplantation: Protectors or opponents? Transplant Rev (Orlando) 2022; 36:100723. [DOI: 10.1016/j.trre.2022.100723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 10/16/2022]
|
20
|
Bernard NF, Alsulami K, Pavey E, Dupuy FP. NK Cells in Protection from HIV Infection. Viruses 2022; 14:v14061143. [PMID: 35746615 PMCID: PMC9231282 DOI: 10.3390/v14061143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 02/05/2023] Open
Abstract
Some people, known as HIV-exposed seronegative (HESN) individuals, remain uninfected despite high levels of exposure to HIV. Understanding the mechanisms underlying their apparent resistance to HIV infection may inform strategies designed to protect against HIV infection. Natural Killer (NK) cells are innate immune cells whose activation state depends on the integration of activating and inhibitory signals arising from cell surface receptors interacting with their ligands on neighboring cells. Inhibitory NK cell receptors use a subset of major histocompatibility (MHC) class I antigens as ligands. This interaction educates NK cells, priming them to respond to cells with reduced MHC class I antigen expression levels as occurs on HIV-infected cells. NK cells can interact with both autologous HIV-infected cells and allogeneic cells bearing MHC antigens seen as non self by educated NK cells. NK cells are rapidly activated upon interacting with HIV-infected or allogenic cells to elicit anti-viral activity that blocks HIV spread to new target cells, suppresses HIV replication, and kills HIV-infected cells before HIV reservoirs can be seeded and infection can be established. In this manuscript, we will review the epidemiological and functional evidence for a role for NK cells in protection from HIV infection.
Collapse
Affiliation(s)
- Nicole F. Bernard
- Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, QC H4A3J1, Canada; (K.A.); (E.P.); (F.P.D.)
- Division of Experimental Medicine, McGill University, Montreal, QC H4A 3J1, Canada
- Infectious Diseases, Immunology and Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Division of Clinical Immunology, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Correspondence: ; Tel.: +1-(514)-934-1934 (ext. 44584)
| | - Khlood Alsulami
- Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, QC H4A3J1, Canada; (K.A.); (E.P.); (F.P.D.)
- Division of Experimental Medicine, McGill University, Montreal, QC H4A 3J1, Canada
- Infectious Diseases, Immunology and Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Erik Pavey
- Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, QC H4A3J1, Canada; (K.A.); (E.P.); (F.P.D.)
- Infectious Diseases, Immunology and Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Franck P. Dupuy
- Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, QC H4A3J1, Canada; (K.A.); (E.P.); (F.P.D.)
- Infectious Diseases, Immunology and Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
21
|
NKG2C+ NK Cells for Immunotherapy of Glioblastoma Multiforme. Int J Mol Sci 2022; 23:ijms23105857. [PMID: 35628668 PMCID: PMC9148069 DOI: 10.3390/ijms23105857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 12/20/2022] Open
Abstract
In glioblastoma, non-classical human leucocyte antigen E (HLA-E) and HLA-G are frequently overexpressed. HLA-E loaded with peptides derived from HLA class I and from HLA-G contributes to inhibition of natural killer (NK) cells with expression of the inhibitory receptor CD94/NKG2A. We investigated whether NK cells expressing the activating CD94/NKG2C receptor counterpart were able to exert anti-glioma effects. NKG2C+ subsets were preferentially expanded by a feeder cell line engineered to express an artificial disulfide-stabilized trimeric HLA-E ligand (HLA-E*spG). NK cells expanded by a feeder cell line, which facilitates outgrowth of conventional NKG2A+, and fresh NK cells, were included for comparison. Expansion via the HLA-E*spG feeder cells selectively increased the fraction of NKG2C+ NK cells, which displayed a higher frequency of KIR2DL2/L3/S2 and CD16 when compared to expanded NKG2A+ NK cells. NKG2C+ NK cells exhibited increased cytotoxicity against K562 and KIR:HLA-matched and -mismatched primary glioblastoma multiforme (GBM) cells when compared to NKG2A+ NK cells and corresponding fresh NK cells. Cytotoxic responses of NKG2C+ NK cells were even more pronounced when utilizing target cells engineered with HLA-E*spG. These findings support the notion that NKG2C+ NK cells have potential therapeutic value for treating gliomas.
Collapse
|
22
|
Chen R, Yi H, Zhen J, Fan M, Xiao L, Yu Q, Yang Z, Ning L, Deng Z, Chen G. Donor with HLA-C2 is associated with acute rejection following liver transplantation in southern Chinese. HLA 2022; 100:133-141. [PMID: 35509131 DOI: 10.1111/tan.14651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/17/2022] [Accepted: 04/29/2022] [Indexed: 02/06/2023]
Abstract
Apart from presenting peptides to T cells, class I HLA molecules serve as ligands for KIRs and regulate the response of NK cells. The role played by HLA and KIR in the acute rejection (AR) following liver transplantation has been controversial. In this retrospective study, we assessed the influence of class I HLA alleles, HLA matching between donor-recipient pairs, recipient KIR and donor HLA ligands on AR following liver transplantation in southern Chinese. 143 recipients and 78 donors obtained from a single transplant center were included in the study cohort. 33 recipients with histologically confirmed AR were observed. We found that the incidence of AR did not correlate with donor or recipient class I HLA alleles and HLA matching. Neither recipient KIR gene nor the KIR genotype was associated with AR, moreover, high-resolution genotyping of 14 functional KIR genes of recipients showed that no KIR allele was independently associated with AR. However, the frequency of HLA-C2+ donor significantly increased in AR group compared with NAR group (52.9% vs. 24.6%, P = 0.03). In the presence of HLA-C2 by the donor allograft, AR was more frequently observed in recipients with normal expressed KIR2DS4 (43.8% vs. 15.0%, P = 0.03). Donor with HLA-C2 is therefore a major determinant of AR, which can confer risk effect in liver transplantation. Our findings can provide valuable clues for better understanding pathogenesis of AR and have important clinical implications in liver transplantation for Chinese. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Rui Chen
- Immunogenetics Laboratory, Shenzhen Blood Center, Shenzhen, Guangdong, China
| | - Huimin Yi
- Liver Transplantation Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jianxin Zhen
- Central Laboratory, Shenzhen Baoan Women's and Children's Hospital, Shenzhen, Guangdong, China
| | - Mingming Fan
- Liver Transplantation Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Lulu Xiao
- Tissue Typing Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qiong Yu
- Immunogenetics Laboratory, Shenzhen Blood Center, Shenzhen, Guangdong, China
| | - Zhichao Yang
- Immunogenetics Laboratory, Shenzhen Blood Center, Shenzhen, Guangdong, China
| | - Li Ning
- Shenzhen Institute of Transfusion Medicine, Shenzhen Blood Center, Shenzhen, Guangdong, China
| | - Zhihui Deng
- Immunogenetics Laboratory, Shenzhen Blood Center, Shenzhen, Guangdong, China
| | - Guihua Chen
- Liver Transplantation Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
23
|
Bruijnesteijn J, de Groot N, de Vos-Rouweler AJM, de Groot NG, Bontrop RE. Comparative genetics of KIR haplotype diversity in humans and rhesus macaques: the balancing act. Immunogenetics 2022; 74:313-326. [PMID: 35291021 DOI: 10.1007/s00251-022-01259-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/01/2022] [Indexed: 12/25/2022]
Abstract
The role of natural killer (NK) cells is tightly modulated by interactions of killer cell immunoglobulin-like receptors (KIR) with their ligands of the MHC class I family. Several characteristics of the KIR gene products are conserved in primate evolution, like the receptor structures and the variegated expression pattern. At the genomic level, however, the clusters encoding the KIR family display species-specific diversity, reflected by differential gene expansions and haplotype architecture. The human KIR cluster is extensively studied in large cohorts from various populations, which revealed two KIR haplotype groups, A and B, that represent more inhibitory and more activating functional profiles, respectively. So far, genomic KIR analyses in large outbred populations of non-human primate species are lacking. In this study, we roughly quadrupled the number of rhesus macaques studied for their KIR transcriptome (n = 298). Using segregation analysis, we defined 112 unique KIR region configurations, half of which display a more inhibitory profile, whereas the other half has a more activating potential. The frequencies and functional potential of these profiles might mirror the human KIR haplotype groups. However, whereas the human group A and B KIR haplotypes are confined to largely fixed organizations, the haplotypes in macaques feature highly variable gene content. Moreover, KIR homozygosity was hardly encountered in this panel of macaques. This study exhibits highly diverse haplotype architectures in humans and macaques, which nevertheless might have an equivalent effect on the modulation of NK cell activity.
Collapse
Affiliation(s)
- Jesse Bruijnesteijn
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, 2288 GJ, Rijswijk, the Netherlands.
| | - Nanine de Groot
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, 2288 GJ, Rijswijk, the Netherlands
| | - Annemiek J M de Vos-Rouweler
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, 2288 GJ, Rijswijk, the Netherlands
| | - Natasja G de Groot
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, 2288 GJ, Rijswijk, the Netherlands
| | - Ronald E Bontrop
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, 2288 GJ, Rijswijk, the Netherlands
- Theoretical Biology and Bioinformatics Group, Utrecht University, 3527, Utrecht, the Netherlands
| |
Collapse
|
24
|
Hovhannisyan A, Madelian V, Avagyan S, Nazaretyan M, Hyussyan A, Sirunyan A, Arakelyan R, Manukyan Z, Yepiskoposyan L, Mayilyan KR, Jordan F. HLA-C*04:01 Affects HLA Class I Heterozygosity and Predicted Affinity to SARS-CoV-2 Peptides, and in Combination With Age and Sex of Armenian Patients Contributes to COVID-19 Severity. Front Immunol 2022; 13:769900. [PMID: 35185875 PMCID: PMC8850920 DOI: 10.3389/fimmu.2022.769900] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/13/2022] [Indexed: 12/14/2022] Open
Abstract
The novel SARS-CoV-2 coronavirus infection has become a global health concern, causing the COVID-19 pandemic. The disease symptoms and outcomes depend on the host immunity, in which the human leukocyte antigen (HLA) molecules play a distinct role. The HLA alleles have an inter-population variability, and understanding their link to the COVID-19 in an ethnically distinct population may contribute to personalized medicine. The present study aimed at detecting associations between common HLA alleles and COVID-19 susceptibility and severity in Armenians. In 299 COVID-19 patients (75 asymptomatic, 102 mild/moderate, 122 severe), the association between disease severity and classic HLA-I and II loci was examined. We found that the advanced age, male sex of patients, and sex and age interaction significantly contributed to the severity of the disease. We observed that an age-dependent effect of HLA-B*51:01 carriage [odds ratio (OR)=0.48 (0.28-0.80), Pbonf <0.036] is protective against severe COVID-19. Contrary, the HLA-C*04:01 allele, in a dose-dependent manner, was associated with a significant increase in the disease severity [OR (95% CI) =1.73 (1.20-2.49), Pbonf <0.021] and an advancing age (P<0.013). The link between HLA-C*04:01 and age was secondary to a stronger association between HLA-C*04:01 and disease severity. However, HLA-C*04:01 exerted a sex-dependent differential distribution between clinical subgroups [females: P<0.0012; males: P=0.48]. The comparison of HLA-C*04:01 frequency between subgroups and 2,781 Armenian controls revealed a significant incidence of HLA-C*04:01 deficiency in asymptomatic COVID-19. HLA-C*04:01 homozygous genotype in patients blueprinted a decrease in heterozygosity of HLA-B and HLA class-I loci. In HLA-C*04:01 carriers, these changes translated to the SARS-CoV-2 peptide presentation predicted inefficacy by HLA-C and HLA class-I molecules, simultaneously enhancing the appropriate HLA-B potency. In patients with clinical manifestation, due to the high prevalence of HLA-C*04:01, these effects provided a decrease of the HLA class-I heterozygosity and an ability to recognize SARS-CoV-2 peptides. Based on our observations, we developed a prediction model involving demographic variables and HLA-C*04:01 allele for the identification of potential cases with the risk of hospitalization (the area under the curve (AUC) = 86.2%) or severe COVID-19 (AUC =71%).
Collapse
Affiliation(s)
- Anahit Hovhannisyan
- Institute of Molecular Biology, National Academy of Sciences, Yerevan, Armenia
- Russian-Armenian University, Yerevan, Armenia
| | - Vergine Madelian
- Armenian Bone Marrow Donor Registry Charitable Trust, Yerevan, Armenia
| | - Sevak Avagyan
- Armenian Bone Marrow Donor Registry Charitable Trust, Yerevan, Armenia
| | - Mihran Nazaretyan
- Armenian Bone Marrow Donor Registry Charitable Trust, Yerevan, Armenia
| | - Armine Hyussyan
- Armenian Bone Marrow Donor Registry Charitable Trust, Yerevan, Armenia
| | - Alina Sirunyan
- Armenian Bone Marrow Donor Registry Charitable Trust, Yerevan, Armenia
| | | | | | | | - Karine R. Mayilyan
- Institute of Molecular Biology, National Academy of Sciences, Yerevan, Armenia
| | - Frieda Jordan
- Armenian Bone Marrow Donor Registry Charitable Trust, Yerevan, Armenia
| |
Collapse
|
25
|
Downing J, D'Orsogna L. High-resolution human KIR genotyping. Immunogenetics 2022; 74:369-379. [PMID: 35050404 PMCID: PMC9262774 DOI: 10.1007/s00251-021-01247-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/23/2021] [Indexed: 12/12/2022]
Abstract
Killer immunoglobulin-like receptors (KIR) regulate the function of natural killer cells through interactions with various ligands on the surface of cells, thereby determining whether natural killer (NK) cells are to be activated or inhibited from killing the cell being interrogated. The genes encoding these proteins display extensive variation through variable gene content, copy number and allele polymorphism. The combination of KIR genes and their ligands is implicated in various clinical settings including haematopoietic stem cell and solid organ transplant and infectious disease progression. The determination of KIR genes has been used as a factor in the selection of optimal stem cell donors with haplotype variations in recipient and donor giving differential clinical outcomes. Methods to determine KIR genes have primarily involved ascertaining the presence or absence of genes in an individual. With the more recent introduction of massively parallel clonal next-generation sequencing and single molecule very long read length third-generation sequencing, high-resolution determination of KIR alleles has become feasible. Determining the extent and functional impact of allele variation has the potential to lead to further optimisation of clinical outcomes as well as a deeper understanding of the functional properties of the receptors and their interactions with ligands. This review summarizes recently published high-resolution KIR genotyping methods and considers the various advantages and disadvantages of the approaches taken. In addition the application of allele level genotyping in the setting of transplantation and infectious disease control is discussed.
Collapse
Affiliation(s)
- Jonathan Downing
- Department of Clinical Immunology, PathWest, Perth, WA, Australia. .,School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia.
| | - Lloyd D'Orsogna
- Department of Clinical Immunology, PathWest, Perth, WA, Australia.,School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
26
|
de Brito Vargas L, Beltrame MH, Ho B, Marin WM, Dandekar R, Montero-Martín G, Fernández-Viña MA, Hurtado AM, Hill KR, Tsuneto LT, Hutz MH, Salzano FM, Petzl-Erler ML, Hollenbach JA, Augusto DG. Remarkably Low KIR and HLA Diversity in Amerindians Reveals Signatures of Strong Purifying Selection Shaping the Centromeric KIR Region. Mol Biol Evol 2022; 39:msab298. [PMID: 34633459 PMCID: PMC8763117 DOI: 10.1093/molbev/msab298] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The killer-cell immunoglobulin-like receptors (KIR) recognize human leukocyte antigen (HLA) molecules to regulate the cytotoxic and inflammatory responses of natural killer cells. KIR genes are encoded by a rapidly evolving gene family on chromosome 19 and present an unusual variation of presence and absence of genes and high allelic diversity. Although many studies have associated KIR polymorphism with susceptibility to several diseases over the last decades, the high-resolution allele-level haplotypes have only recently started to be described in populations. Here, we use a highly innovative custom next-generation sequencing method that provides a state-of-art characterization of KIR and HLA diversity in 706 individuals from eight unique South American populations: five Amerindian populations from Brazil (three Guarani and two Kaingang); one Amerindian population from Paraguay (Aché); and two urban populations from Southern Brazil (European and Japanese descendants from Curitiba). For the first time, we describe complete high-resolution KIR haplotypes in South American populations, exploring copy number, linkage disequilibrium, and KIR-HLA interactions. We show that all Amerindians analyzed to date exhibit the lowest numbers of KIR-HLA interactions among all described worldwide populations, and that 83-97% of their KIR-HLA interactions rely on a few HLA-C molecules. Using multiple approaches, we found signatures of strong purifying selection on the KIR centromeric region, which codes for the strongest NK cell educator receptors, possibly driven by the limited HLA diversity in these populations. Our study expands the current knowledge of KIR genetic diversity in populations to understand KIR-HLA coevolution and its impact on human health and survival.
Collapse
Affiliation(s)
- Luciana de Brito Vargas
- Programa de Pós-Graduação em Genética, Departamento de Genética, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Marcia H Beltrame
- Programa de Pós-Graduação em Genética, Departamento de Genética, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Brenda Ho
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Wesley M Marin
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Ravi Dandekar
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | | | | | - A Magdalena Hurtado
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA
| | - Kim R Hill
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA
| | - Luiza T Tsuneto
- Departamento de Análises Clínicas, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - Mara H Hutz
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Francisco M Salzano
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Maria Luiza Petzl-Erler
- Programa de Pós-Graduação em Genética, Departamento de Genética, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Jill A Hollenbach
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - Danillo G Augusto
- Programa de Pós-Graduação em Genética, Departamento de Genética, Universidade Federal do Paraná, Curitiba, PR, Brazil
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
27
|
Hajeer A, Jawdat D, Massadeh S, Aljawini N, Abedalthagafi MS, Arabi YM, Alaamery M. Association of KIR gene polymorphisms with COVID-19 disease. Clin Immunol 2022; 234:108911. [PMID: 34929414 PMCID: PMC8683215 DOI: 10.1016/j.clim.2021.108911] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/08/2021] [Accepted: 12/15/2021] [Indexed: 12/18/2022]
Abstract
Background Methods Results Conclusions
Collapse
|
28
|
Yang Y, Bai H, Wu Y, Chen P, Zhou J, Lei J, Ye X, Brown AJ, Zhou X, Shu T, Chen Y, Wei P, Yin L. The Activating receptor KIR2DS2 bound to HLA-C1 reveals the novel recognition features of activating receptor. Immunology 2021; 165:341-354. [PMID: 34967442 DOI: 10.1111/imm.13439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 11/30/2021] [Accepted: 12/15/2021] [Indexed: 11/05/2022] Open
Abstract
Killer cell immunoglobulin-like receptors (KIRs) are important receptors for regulating the killing of virus-infected or cancer cells of natural killer (NK) cells. KIR2DS2 can recognize peptides derived from hepatitis C virus (HCV) or global flaviviruses (such as dengue and Zika) presented by HLA-C*0102 to activate NK cells, and have shown promising results when used for cancer immunotherapy. Here, we present the complex structure of KIR2DS2 with HLA-C*0102 at a resolution of 2.5Å. Our structure reveals that KIR2DS2 can bind HLA-C*0102 and HLA-A*1101 in two different directions. Moreover, Tyr45 (in activating receptor KIR2DS2) and Phe45 (in inhibitory KIRs) distinguish the two different binding models and binding affinity between activating KIRs and inhibitory KIRs. The conserved "AT" motif of the peptide mediates recognition and determines the peptide specificity of recognition. These structural characteristic shed light on how KIRs activate NK cells and can provide a molecular basis for immunotherapy by NK cells.
Collapse
Affiliation(s)
- Yi Yang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Hua Bai
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yankang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Peng Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jin Zhou
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jun Lei
- Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiang Ye
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Alex J Brown
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, USA.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Xi Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, CAS, Wuhan, China
| | - Ting Shu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, CAS, Wuhan, China
| | - Yongshun Chen
- Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Pengcheng Wei
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China.,Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, USA
| | - Lei Yin
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
29
|
Killer-cell immunoglobulin-like receptor genotype and haplotype combinations in children treated for acute lymphoblastic leukemia. Cent Eur J Immunol 2021; 46:210-216. [PMID: 34764789 PMCID: PMC8568030 DOI: 10.5114/ceji.2021.108178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/28/2020] [Indexed: 11/17/2022] Open
Abstract
Introduction Acute lymphoblastic leukemia (ALL) is the most common malignancy diagnosed in children. The factors predisposing to ALL remain mostly unknown. Natural killer (NK) cells are a component of innate immunity. Their role is to eliminate cells that were infected with viruses or underwent a neoplastic transformation. The activity of NK cells is regulated by their activating and inhibitory receptors, inter alia killer-cell immunoglobulin-like receptors (KIRs). The available data about a link between the incidence of ALL and KIR genotype are highly inconclusive, and further research is needed to explain whether such a relationship truly exists. The aim of this study was to analyze KIR genotype and haplotype combinations in children treated for ALL. Material and methods The study included 49 children diagnosed with ALL at 1.2-19.8 years of age. The control group was composed of 43 healthy subjects aged between 1.2 and 21.9 years. DNA was isolated using QIAamp DNA Mini kits. KIR genotypes were identified by a polymerase chain reaction (PCR) with sequence-specific primers (SSPs). The analysis also included KIR haplotype combinations: AA, AB and BB. Results Patients with ALL and controls did not differ significantly in the frequencies of individual KIR genes and haplotypes. However, the overall frequency of all 6 activating KIR genes in patients with ALL was significantly higher than in the controls (24.5% vs. 4.7%, p = 0.019). Conclusions The findings presented here imply that individual KIR genes do not play a significant role in the pathogenesis of ALL. Nevertheless, a higher number of activating KIR genes may constitute a risk factor for this malignancy.
Collapse
|
30
|
Vollmers S, Lobermeyer A, Körner C. The New Kid on the Block: HLA-C, a Key Regulator of Natural Killer Cells in Viral Immunity. Cells 2021; 10:cells10113108. [PMID: 34831331 PMCID: PMC8620871 DOI: 10.3390/cells10113108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 11/01/2022] Open
Abstract
The human leukocyte antigen system (HLA) is a cluster of highly polymorphic genes essential for the proper function of the immune system, and it has been associated with a wide range of diseases. HLA class I molecules present intracellular host- and pathogen-derived peptides to effector cells of the immune system, inducing immune tolerance in healthy conditions or triggering effective immune responses in pathological situations. HLA-C is the most recently evolved HLA class I molecule, only present in humans and great apes. Differentiating from its older siblings, HLA-A and HLA-B, HLA-C exhibits distinctive features in its expression and interaction partners. HLA-C serves as a natural ligand for multiple members of the killer-cell immunoglobulin-like receptor (KIR) family, which are predominately expressed by natural killer (NK) cells. NK cells are crucial for the early control of viral infections and accumulating evidence indicates that interactions between HLA-C and its respective KIR receptors determine the outcome and progression of viral infections. In this review, we focus on the unique role of HLA-C in regulating NK cell functions and its consequences in the setting of viral infections.
Collapse
|
31
|
Association analysis of KIR/HLA genotype with liver cirrhosis, hepatocellular carcinoma, and NUC freedom in chronic hepatitis B patients. Sci Rep 2021; 11:21424. [PMID: 34728722 PMCID: PMC8563771 DOI: 10.1038/s41598-021-01014-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/21/2021] [Indexed: 11/21/2022] Open
Abstract
Natural killer cells are modulated through the binding of killer cell immunoglobulin-like receptors (KIRs) with human leukocyte antigen (HLA) class I ligands. This study investigated the association of KIR/HLA pairs with progression to liver cirrhosis, hepatocellular carcinoma (HCC) development, and nucleot(s)ide (NUC) treatment freedom in hepatitis B virus (HBV) infection. KIR, HLA-Bw, and HLA-C were genotyped in 280 Japanese HBV patients for clinical comparisons. No significant associations of KIR/HLA pairs were detected in terms of liver cirrhosis development. The KIR2DS3 positive rate was significantly higher in patients with HCC (n = 39) than in those without (n = 241) [30.8% vs. 14.9%, odds ratio (OR) 2.53, P = 0.015]. The KIR3DL1/HLA-Bw4 pair rate was significantly lower in the NUC freedom group (n = 20) than in the NUC continue group (n = 114) (25.0% vs. 52.6%, OR 0.30, P = 0.042). In conclusion, this study indicated remarkable associations of KIR/HLA with HCC development (KIR2DS3) and freedom from NUC therapy (KIR3DL1/HLA-Bw4) in HBV patients, although the number of cases was insufficient for statistical purposes. Additional multi-center analyses of larger groups are needed to clarify whether KIR/HLA pairs play a role in HBV patient status.
Collapse
|
32
|
Relevance of Polymorphic KIR and HLA Class I Genes in NK-Cell-Based Immunotherapies for Adult Leukemic Patients. Cancers (Basel) 2021; 13:cancers13153767. [PMID: 34359667 PMCID: PMC8345033 DOI: 10.3390/cancers13153767] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Immunotherapies are promising approaches to curing different acute leukemias. Natural killer (NK) cells are lymphocytes that are efficient in the elimination of leukemic cells. NK-cell-based immunotherapies are particularly attractive, but the landscape of the heterogeneity of NK cells must be deciphered. This review provides an overview of the polymorphic KIR and HLA class I genes that modulate the NK cell repertoire and how these markers can improve the outcomes of patients with acute leukemia. A better knowledge of these genetic markers that are linked to NK cell subsets that are efficient against hematological diseases will optimize hematopoietic stem-cell donor selection and NK immunotherapy design. Abstract Since the mid-1990s, the biology and functions of natural killer (NK) cells have been deeply investigated in healthy individuals and in people with diseases. These effector cells play a particularly crucial role after allogeneic hematopoietic stem-cell transplantation (HSCT) through their graft-versus-leukemia (GvL) effect, which is mainly mediated through polymorphic killer-cell immunoglobulin-like receptors (KIRs) and their cognates, HLA class I ligands. In this review, we present how KIRs and HLA class I ligands modulate the structural formation and the functional education of NK cells. In particular, we decipher the current knowledge about the extent of KIR and HLA class I gene polymorphisms, as well as their expression, interaction, and functional impact on the KIR+ NK cell repertoire in a physiological context and in a leukemic context. In addition, we present the impact of NK cell alloreactivity on the outcomes of HSCT in adult patients with acute leukemia, as well as a description of genetic models of KIRs and NK cell reconstitution, with a focus on emergent T-cell-repleted haplo-identical HSCT using cyclosphosphamide post-grafting (haplo-PTCy). Then, we document how the immunogenetics of KIR/HLA and the immunobiology of NK cells could improve the relapse incidence after haplo-PTCy. Ultimately, we review the emerging NK-cell-based immunotherapies for leukemic patients in addition to HSCT.
Collapse
|
33
|
Bernal E, Gimeno L, Alcaraz MJ, Quadeer AA, Moreno M, Martínez-Sánchez MV, Campillo JA, Gomez JM, Pelaez A, García E, Herranz M, Hernández-Olivo M, Martínez-Alfaro E, Alcaraz A, Muñoz Á, Cano A, McKay MR, Muro M, Minguela A. Activating Killer-Cell Immunoglobulin-Like Receptors Are Associated With the Severity of Coronavirus Disease 2019. J Infect Dis 2021; 224:229-240. [PMID: 33928374 PMCID: PMC8135764 DOI: 10.1093/infdis/jiab228] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/23/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Etiopathogenesis of the clinical variability of the coronavirus disease 2019 (COVID-19) remains mostly unknown. In this study, we investigate the role of killer cell immunoglobulin-like receptor (KIR)/human leukocyte antigen class-I (HLA-I) interactions in the susceptibility and severity of COVID-19. METHODS We performed KIR and HLA-I genotyping and natural killer cell (NKc) receptors immunophenotyping in 201 symptomatic patients and 210 noninfected controls. RESULTS The NKcs with a distinctive immunophenotype, suggestive of recent activation (KIR2DS4low CD16low CD226low CD56high TIGIThigh NKG2Ahigh), expanded in patients with severe COVID-19. This was associated with a higher frequency of the functional A-telomeric activating KIR2DS4 in severe versus mild and/or moderate patients and controls (83.7%, 55.7% and 36.2%, P < 7.7 × 10-9). In patients with mild and/or moderate infection, HLA-B*15:01 was associated with higher frequencies of activating B-telomeric KIR3DS1 compared with patients with other HLA-B*15 subtypes and noninfected controls (90.9%, 42.9%, and 47.3%; P < .002; Pc = 0.022). This strongly suggests that HLA-B*15:01 specifically presenting severe acute respiratory syndrome coronavirus 2 peptides could form a neoligand interacting with KIR3DS1. Likewise, a putative neoligand for KIR2DS4 could arise from other HLA-I molecules presenting severe acute respiratory syndrome coronavirus 2 peptides expressed on infected an/or activated lung antigen-presenting cells. CONCLUSIONS Our results support a crucial role of NKcs in the clinical variability of COVID-19 with specific KIR/ligand interactions associated with disease severity.
Collapse
Affiliation(s)
- Enrique Bernal
- Infectious Disease Unit, Reina Sofia University Hospital and the Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | - Lourdes Gimeno
- Immunology Service, Hospital Clínico Universitario Virgen de la Arrixaca (HCUVA) and Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain.,Human Anatomy Department, University of Murcia, Murcia, Spain
| | - María J Alcaraz
- Infectious Disease Unit, Reina Sofia University Hospital and the Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | - Ahmed A Quadeer
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Marta Moreno
- Internal Medicine Service, Hospital Universitario Morales Meseguer, Murcia, Spain
| | - María V Martínez-Sánchez
- Immunology Service, Hospital Clínico Universitario Virgen de la Arrixaca (HCUVA) and Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | - José A Campillo
- Immunology Service, Hospital Clínico Universitario Virgen de la Arrixaca (HCUVA) and Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | - Jose M Gomez
- Internal Medicine Service, Hospital Universitario Morales Meseguer, Murcia, Spain
| | - Ana Pelaez
- Internal Medicine Service, Hospital Rafael Méndez, Lorca, Spain
| | - Elisa García
- Infectious Disesase Unit, Hospital Clínico Universitario Virgen de la Arrixaca (HCUVA) and Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | - Maite Herranz
- Internal Medicine Service, Hospital Universitario Morales Meseguer, Murcia, Spain
| | | | | | - Antonia Alcaraz
- Infectious Disease Unit, Reina Sofia University Hospital and the Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | - Ángeles Muñoz
- Infectious Disease Unit, Reina Sofia University Hospital and the Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | - Alfredo Cano
- Infectious Disease Unit, Reina Sofia University Hospital and the Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | - Matthew R McKay
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.,Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Manuel Muro
- Immunology Service, Hospital Clínico Universitario Virgen de la Arrixaca (HCUVA) and Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | - Alfredo Minguela
- Immunology Service, Hospital Clínico Universitario Virgen de la Arrixaca (HCUVA) and Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| |
Collapse
|
34
|
Li P, Jiang X, Zhang G, Trabucco JT, Raciti D, Smith C, Ringwald M, Marai GE, Arighi C, Shatkay H. Utilizing image and caption information for biomedical document classification. Bioinformatics 2021; 37:i468-i476. [PMID: 34252939 PMCID: PMC8346654 DOI: 10.1093/bioinformatics/btab331] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2021] [Indexed: 11/15/2022] Open
Abstract
Motivation Biomedical research findings are typically disseminated through publications. To simplify access to domain-specific knowledge while supporting the research community, several biomedical databases devote significant effort to manual curation of the literature—a labor intensive process. The first step toward biocuration requires identifying articles relevant to the specific area on which the database focuses. Thus, automatically identifying publications relevant to a specific topic within a large volume of publications is an important task toward expediting the biocuration process and, in turn, biomedical research. Current methods focus on textual contents, typically extracted from the title-and-abstract. Notably, images and captions are often used in publications to convey pivotal evidence about processes, experiments and results. Results We present a new document classification scheme, using both image and caption information, in addition to titles-and-abstracts. To use the image information, we introduce a new image representation, namely Figure-word, based on class labels of subfigures. We use word embeddings for representing captions and titles-and-abstracts. To utilize all three types of information, we introduce two information integration methods. The first combines Figure-words and textual features obtained from captions and titles-and-abstracts into a single larger vector for document representation; the second employs a meta-classification scheme. Our experiments and results demonstrate the usefulness of the newly proposed Figure-words for representing images. Moreover, the results showcase the value of Figure-words, captions and titles-and-abstracts in providing complementary information for document classification; these three sources of information when combined, lead to an overall improved classification performance. Availability and implementation Source code and the list of PMIDs of the publications in our datasets are available upon request.
Collapse
Affiliation(s)
- Pengyuan Li
- Department of Computer and Information Sciences, University of Delaware, Newark, DE 19716, USA
| | - Xiangying Jiang
- Department of Computer and Information Sciences, University of Delaware, Newark, DE 19716, USA.,Amazon, Seattle, WA 98109, USA
| | - Gongbo Zhang
- Department of Computer and Information Sciences, University of Delaware, Newark, DE 19716, USA.,Google, Mountain View, CA 94043, USA
| | - Juan Trelles Trabucco
- Department of Computer Science, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Daniela Raciti
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | - G Elisabeta Marai
- Department of Computer Science, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Cecilia Arighi
- Department of Computer and Information Sciences, University of Delaware, Newark, DE 19716, USA
| | - Hagit Shatkay
- Department of Computer and Information Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
35
|
Shen C, Ge Z, Dong C, Wang C, Shao J, Cai W, Huang P, Fan H, Li J, Zhang Y, Yue M. Genetic Variants in KIR/HLA-C Genes Are Associated With the Susceptibility to HCV Infection in a High-Risk Chinese Population. Front Immunol 2021; 12:632353. [PMID: 34220799 PMCID: PMC8253047 DOI: 10.3389/fimmu.2021.632353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 05/31/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND KIR/HLA-C signaling pathway influences the innate immune response which is the first defense to hepatitis C virus (HCV) infection. The aim of this study was to determine the association between the genetic polymorphisms of KIR/HLA-C genes and the outcomes of HCV infection in a high-risk Chinese population. METHODS In this case-control study, four single nucleotide polymorphisms (SNPs) of KIR/HLA-C genes (KIR2DS4/KIR2DS1/KIR2DL1 rs35440472, HLA-C rs2308557, HLA-C rs1130838, and HLA-C rs2524094) were genotyped by TaqMan assay among drug users and hemodialysis (HD) patients including 1,378 uninfected control cases, 307 subjects with spontaneous viral clearance, and 217 patients with persistent HCV infection. Bioinformatics analysis was used to functionally annotate the SNPs. RESULTS After logistic regression analysis, the rs35440472-A and rs1130838-A alleles were found to be associated with a significantly elevated risk of HCV infection (OR = 1.562, 95% CI: 1.229-1.987, P < 0.001; OR = 2.134, 95% CI: 1.180-3.858, P = 0.012, respectively), which remained significant after Bonferroni correction (0.05/4). The combined effect of their risk alleles and risk genotypes (rs35440472-AA and rs1130838-AA) were linked to the increased risk of HCV infection in a locus-dosage manner (all Ptrend < 0.001). Based on the SNPinfo web server, rs35440472 was predicted to be a transcription factor binding site (TFBS) while rs1130838 was predicted to have a splicing (ESE or ESS) function. CONCLUSION KIR2DS4/KIR2DS1/KIR2DL1 rs35440472-A and HLA-C rs1130838-A variants are associated with increased susceptibility to HCV infection in a high-risk Chinese population.
Collapse
Affiliation(s)
- Chao Shen
- Department of Epidemiology and Biostatistics, Key Laboratory of Infectious Diseases, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhijun Ge
- Department of Critical Care Medicine, The Affiliated Yixing Hospital of Jiangsu University, Yixing, China
| | - Chen Dong
- Department of Epidemiology and Statistics, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Chunhui Wang
- Institute of Epidemiology and Microbiology, Eastern Theater Command Centers for Disease Control and Prevention, Nanjing, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jianguo Shao
- Department of Digestive Medicine, Third Affiliated Hospital of Nantong University, Nantong, China
| | - Weihua Cai
- Department of General Surgery, Third Affiliated Hospital of Nantong University, Nantong, China
| | - Peng Huang
- Department of Epidemiology and Biostatistics, Key Laboratory of Infectious Diseases, School of Public Health, Nanjing Medical University, Nanjing, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Haozhi Fan
- Department of Information, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jun Li
- Department of Infectious Diseases, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yun Zhang
- Institute of Epidemiology and Microbiology, Eastern Theater Command Centers for Disease Control and Prevention, Nanjing, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ming Yue
- Department of Infectious Diseases, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
36
|
Guethlein LA, Beyzaie N, Nemat-Gorgani N, Wang T, Ramesh V, Marin WM, Hollenbach JA, Schetelig J, Spellman SR, Marsh SGE, Cooley S, Weisdorf DJ, Norman PJ, Miller JS, Parham P. Following Transplantation for Acute Myelogenous Leukemia, Donor KIR Cen B02 Better Protects against Relapse than KIR Cen B01. THE JOURNAL OF IMMUNOLOGY 2021; 206:3064-3072. [PMID: 34117109 DOI: 10.4049/jimmunol.2100119] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/10/2021] [Indexed: 12/11/2022]
Abstract
In the treatment of acute myelogenous leukemia with allogeneic hematopoietic cell transplantation, we previously demonstrated that there is a greater protection from relapse of leukemia when the hematopoietic cell transplantation donor has either the Cen B/B KIR genotype or a genotype having two or more KIR B gene segments. In those earlier analyses, KIR genotyping could only be assessed at the low resolution of gene presence or absence. To give the analysis greater depth, we developed high-resolution KIR sequence-based typing that defines all the KIR alleles and distinguishes the expressed alleles from those that are not expressed. We now describe and analyze high-resolution KIR genotypes for 890 donors of this human transplant cohort. Cen B01 and Cen B02 are the common CenB haplotypes, with Cen B02 having evolved from Cen B01 by deletion of the KIR2DL5, 2DS3/5, 2DP1, and 2DL1 genes. We observed a consistent trend for Cen B02 to provide stronger protection against relapse than Cen B01 This correlation indicates that protection depends on the donor having inhibitory KIR2DL2 and/or activating KIR2DS2, and is enhanced by the donor lacking inhibitory KIR2DL1, 2DL3, and 3DL1. High-resolution KIR typing has allowed us to compare the strength of the interactions between the recipient's HLA class I and the KIR expressed by the donor-derived NK cells and T cells, but no clinically significant interactions were observed. The trend observed between donor Cen B02 and reduced relapse of leukemia points to the value of studying ever larger transplant cohorts.
Collapse
Affiliation(s)
- Lisbeth A Guethlein
- Department of Structural Biology, Stanford University, Stanford, CA.,Department of Microbiology and Immunology, Stanford University, Stanford, CA
| | - Niassan Beyzaie
- Department of Structural Biology, Stanford University, Stanford, CA.,Department of Microbiology and Immunology, Stanford University, Stanford, CA
| | - Neda Nemat-Gorgani
- Department of Structural Biology, Stanford University, Stanford, CA.,Department of Microbiology and Immunology, Stanford University, Stanford, CA
| | - Tao Wang
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI
| | | | - Wesley M Marin
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Jill A Hollenbach
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | | | - Stephen R Spellman
- Center for International Blood and Marrow Transplant Research, Minneapolis, MN
| | - Steven G E Marsh
- Anthony Nolan Research Institute, Royal Free Campus, London, United Kingdom.,University College London Cancer Institute, Royal Free Campus, London, United Kingdom
| | - Sarah Cooley
- Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, MN; and
| | - Daniel J Weisdorf
- Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, MN; and
| | - Paul J Norman
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Denver, Aurora, CO
| | - Jeffrey S Miller
- Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, MN; and
| | - Peter Parham
- Department of Structural Biology, Stanford University, Stanford, CA; .,Department of Microbiology and Immunology, Stanford University, Stanford, CA
| |
Collapse
|
37
|
Abstract
In all human cells, human leukocyte antigen (HLA) class I glycoproteins assemble with a peptide and take it to the cell surface for surveillance by lymphocytes. These include natural killer (NK) cells and γδ T cells of innate immunity and αβ T cells of adaptive immunity. In healthy cells, the presented peptides derive from human proteins, to which lymphocytes are tolerant. In pathogen-infected cells, HLA class I expression is perturbed. Reduced HLA class I expression is detected by KIR and CD94:NKG2A receptors of NK cells. Almost any change in peptide presentation can be detected by αβ CD8+ T cells. In responding to extracellular pathogens, HLA class II glycoproteins, expressed by specialized antigen-presenting cells, present peptides to αβ CD4+ T cells. In comparison to the families of major histocompatibility complex (MHC) class I, MHC class II and αβ T cell receptors, the antigenic specificity of the γδ T cell receptors is incompletely understood.
Collapse
Affiliation(s)
- Zakia Djaoud
- Department of Structural Biology and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, USA; ,
| | - Peter Parham
- Department of Structural Biology and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, USA; ,
| |
Collapse
|
38
|
Martínez-Sánchez MV, Fuster JL, Campillo JA, Galera AM, Bermúdez-Cortés M, Llinares ME, Ramos-Elbal E, Pascual-Gázquez JF, Fita AM, Martínez-Banaclocha H, Galián JA, Gimeno L, Muro M, Minguela A. Expression of NK Cell Receptor Ligands on Leukemic Cells Is Associated with the Outcome of Childhood Acute Leukemia. Cancers (Basel) 2021; 13:cancers13102294. [PMID: 34064810 PMCID: PMC8151902 DOI: 10.3390/cancers13102294] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/21/2021] [Accepted: 05/06/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Natural killer cells (NK cells) of the innate immune system are suspected of playing an important role in eliminating residual leukemia cells during maintenance chemotherapy given to children with acute lymphoblastic leukemia for about two years. This study analyzes the expression of ligands for the receptors that regulate the function of NK cells on leukemic cells of more than one hundred children with acute lymphoid and myeloid leukemia. Our results show that the loss of expression of some molecules involved in the activation of NK cells is associated with poorer survival. In addition, a genetic combination of molecules that interact to regulate NK cell function seems to be associated with a higher relapse rate during/after chemotherapy and shorter patient survival. Children who carry this genetic combination are refractory to current chemotherapy treatments, and stem cell transplantation does not seem to contribute to their cure either, and therefore, they should be considered as candidates for alternative biological therapies that might offer better results. Abstract Acute leukemia is the most common malignancy in children. Most patients are cured, but refractory/relapsed AML and ALL are the first cause of death from malignancy in children. Maintenance chemotherapy in ALL has improved survival by inducing leukemic cell apoptosis, but immune surveillance effectors such as NK cells might also contribute. The outcome of B-ALL (n = 70), T-ALL (n = 16), and AML (n = 16) pediatric patients was evaluated according to leukemic cell expression of ligands for activating and inhibiting receptors that regulate NK cell functioning. Increased expression of ULBP-1, a ligand for NKG2D, but not that of CD112 or CD155, ligands for DNAM-1, was associated with poorer 5-year event-free survival (5y-EFS, 77.6% vs. 94.9%, p < 0.03). Reduced expression of HLA-C on leukemic cells in patients with the KIR2DL1/HLA-C*04 interaction was associated with a higher rate of relapse (17.6% vs. 4.4%, p = 0.035) and lower 5y-EFS (70.6% vs. 92.6%, p < 0.002). KIR2DL1/HLA-C*04 interaction was an independent predictive factor of events (HR = 4.795, p < 0.005) or death (HR = 6.731, p < 0.005) and might provide additional information to the current risk stratification. Children who carry the KIR2DL1/HLA-C*04 interaction were refractory to current chemotherapy treatments, including allogeneic stem cell transplantation; therefore, they should be considered as candidates for alternative biological therapies that might offer better results.
Collapse
Affiliation(s)
- María Victoria Martínez-Sánchez
- Immunology Service, Clinic University Hospital Virgen de la Arrixaca and Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (M.V.M.-S.); (J.A.C.); (H.M.-B.); (J.A.G.); (L.G.); (M.M.)
| | - José Luis Fuster
- Pediatric Oncohematology Department, Clinic University Hospital Virgen de la Arrixaca and Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (J.L.F.); (A.M.G.); (M.B.-C.); (M.E.L.); (E.R.-E.); (J.F.P.-G.); (A.M.F.)
| | - José Antonio Campillo
- Immunology Service, Clinic University Hospital Virgen de la Arrixaca and Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (M.V.M.-S.); (J.A.C.); (H.M.-B.); (J.A.G.); (L.G.); (M.M.)
| | - Ana María Galera
- Pediatric Oncohematology Department, Clinic University Hospital Virgen de la Arrixaca and Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (J.L.F.); (A.M.G.); (M.B.-C.); (M.E.L.); (E.R.-E.); (J.F.P.-G.); (A.M.F.)
| | - Mar Bermúdez-Cortés
- Pediatric Oncohematology Department, Clinic University Hospital Virgen de la Arrixaca and Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (J.L.F.); (A.M.G.); (M.B.-C.); (M.E.L.); (E.R.-E.); (J.F.P.-G.); (A.M.F.)
| | - María Esther Llinares
- Pediatric Oncohematology Department, Clinic University Hospital Virgen de la Arrixaca and Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (J.L.F.); (A.M.G.); (M.B.-C.); (M.E.L.); (E.R.-E.); (J.F.P.-G.); (A.M.F.)
| | - Eduardo Ramos-Elbal
- Pediatric Oncohematology Department, Clinic University Hospital Virgen de la Arrixaca and Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (J.L.F.); (A.M.G.); (M.B.-C.); (M.E.L.); (E.R.-E.); (J.F.P.-G.); (A.M.F.)
| | - Juan Francisco Pascual-Gázquez
- Pediatric Oncohematology Department, Clinic University Hospital Virgen de la Arrixaca and Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (J.L.F.); (A.M.G.); (M.B.-C.); (M.E.L.); (E.R.-E.); (J.F.P.-G.); (A.M.F.)
| | - Ana María Fita
- Pediatric Oncohematology Department, Clinic University Hospital Virgen de la Arrixaca and Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (J.L.F.); (A.M.G.); (M.B.-C.); (M.E.L.); (E.R.-E.); (J.F.P.-G.); (A.M.F.)
| | - Helios Martínez-Banaclocha
- Immunology Service, Clinic University Hospital Virgen de la Arrixaca and Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (M.V.M.-S.); (J.A.C.); (H.M.-B.); (J.A.G.); (L.G.); (M.M.)
| | - José Antonio Galián
- Immunology Service, Clinic University Hospital Virgen de la Arrixaca and Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (M.V.M.-S.); (J.A.C.); (H.M.-B.); (J.A.G.); (L.G.); (M.M.)
| | - Lourdes Gimeno
- Immunology Service, Clinic University Hospital Virgen de la Arrixaca and Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (M.V.M.-S.); (J.A.C.); (H.M.-B.); (J.A.G.); (L.G.); (M.M.)
- Human Anatomy Department, University of Murcia (UM), 30100 Murcia, Spain
| | - Manuel Muro
- Immunology Service, Clinic University Hospital Virgen de la Arrixaca and Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (M.V.M.-S.); (J.A.C.); (H.M.-B.); (J.A.G.); (L.G.); (M.M.)
| | - Alfredo Minguela
- Immunology Service, Clinic University Hospital Virgen de la Arrixaca and Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (M.V.M.-S.); (J.A.C.); (H.M.-B.); (J.A.G.); (L.G.); (M.M.)
- Correspondence: ; Tel.: +34-968-395-379
| |
Collapse
|
39
|
Tao S, He Y, Kichula KM, Wang J, He J, Norman PJ, Zhu F. High-Resolution Analysis Identifies High Frequency of KIR-A Haplotypes and Inhibitory Interactions of KIR With HLA Class I in Zhejiang Han. Front Immunol 2021; 12:640334. [PMID: 33995358 PMCID: PMC8121542 DOI: 10.3389/fimmu.2021.640334] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/07/2021] [Indexed: 12/24/2022] Open
Abstract
Killer cell immunoglobulin-like receptors (KIR) interact with human leukocyte antigen (HLA) class I molecules, modulating critical NK cell functions in the maintenance of human health. Characterizing the distribution and characteristics of KIR and HLA allotype diversity across defined human populations is thus essential for understanding the multiple associations with disease, and for directing therapies. In this study of 176 Zhejiang Han individuals from Southeastern China, we describe diversity of the highly polymorphic KIR and HLA class I genes at high resolution. KIR-A haplotypes, which carry four inhibitory receptors specific for HLA-A, B or C, are known to associate with protection from infection and some cancers. We show the Chinese Southern Han from Zhejiang are characterized by a high frequency of KIR-A haplotypes and a high frequency of C1 KIR ligands. Accordingly, interactions of inhibitory KIR2DL3 with C1+HLA are more frequent in Zhejiang Han than populations outside East Asia. Zhejiang Han exhibit greater diversity of inhibitory than activating KIR, with three-domain inhibitory KIR exhibiting the greatest degree of polymorphism. As distinguished by gene copy number and allele content, 54 centromeric and 37 telomeric haplotypes were observed. We observed 6% of the population to have KIR haplotypes containing large-scale duplications or deletions that include complete genes. A unique truncated haplotype containing only KIR2DL4 in the telomeric region was also identified. An additional feature is the high frequency of HLA-B*46:01, which may have arisen due to selection pressure from infectious disease. This study will provide further insight into the role of KIR and HLA polymorphism in disease susceptibility of Zhejiang Chinese.
Collapse
Affiliation(s)
- Sudan Tao
- Blood Center of Zhejiang Province, Key Laboratory of Blood Safety Research of Zhejiang Province, Hangzhou, China
| | - Yanmin He
- Blood Center of Zhejiang Province, Key Laboratory of Blood Safety Research of Zhejiang Province, Hangzhou, China
| | - Katherine M. Kichula
- Division of Biomedical Informatics and Personalized Medicine, and Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Jielin Wang
- Blood Center of Zhejiang Province, Key Laboratory of Blood Safety Research of Zhejiang Province, Hangzhou, China
| | - Ji He
- Blood Center of Zhejiang Province, Key Laboratory of Blood Safety Research of Zhejiang Province, Hangzhou, China
| | - Paul J. Norman
- Division of Biomedical Informatics and Personalized Medicine, and Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Faming Zhu
- Blood Center of Zhejiang Province, Key Laboratory of Blood Safety Research of Zhejiang Province, Hangzhou, China
| |
Collapse
|
40
|
Tao S, Kichula KM, Harrison GF, Farias TDJ, Palmer WH, Leaton LA, Hajar CGN, Zefarina Z, Edinur HA, Zhu F, Norman PJ. The combinatorial diversity of KIR and HLA class I allotypes in Peninsular Malaysia. Immunology 2021; 162:389-404. [PMID: 33283280 PMCID: PMC7968402 DOI: 10.1111/imm.13289] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/18/2020] [Accepted: 11/21/2020] [Indexed: 12/16/2022] Open
Abstract
Killer cell immunoglobulin-like receptors (KIRs) interact with polymorphic human leucocyte antigen (HLA) class I molecules, modulating natural killer (NK) cell functions and affecting both the susceptibility and outcome of immune-mediated diseases. The KIR locus is highly diverse in gene content, copy number and allelic polymorphism within individuals and across geographical populations. To analyse currently under-represented Asian and Pacific populations, we investigated the combinatorial diversity of KIR and HLA class I in 92 unrelated Malay and 75 Malaysian Chinese individuals from the Malay Peninsula. We identified substantial allelic and structural diversity of the KIR locus in both populations and characterized novel variations at each analysis level. The Malay population is more diverse than Malay Chinese, likely representing a unique history including admixture with immigrating populations spanning several thousand years. Characterizing the Malay population are KIR haplotypes with large structural variants present in 10% individuals, and KIR and HLA alleles previously identified in Austronesian populations. Despite the differences in ancestries, the proportion of HLA allotypes that serve as KIR ligands is similar in each population. The exception is a significantly reduced frequency of interactions of KIR2DL1 with C2+ HLA-C in the Malaysian Chinese group, caused by the low frequency of C2+ HLA. One likely implication is a greater protection from preeclampsia, a pregnancy disorder associated with KIR2DL1, which shows higher incidence in the Malay than in the Malaysian Chinese. This first complete, high-resolution, characterization of combinatorial diversity of KIR and HLA in Malaysians will form a valuable reference for future clinical and population studies.
Collapse
Affiliation(s)
- Sudan Tao
- Division of Biomedical Informatics and Personalized MedicineDepartment of Immunology and MicrobiologyUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
- Blood Center of Zhejiang ProvinceKey Laboratory of Blood Safety Research of Zhejiang ProvinceHangzhouZhejiangChina
| | - Katherine M. Kichula
- Division of Biomedical Informatics and Personalized MedicineDepartment of Immunology and MicrobiologyUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
| | - Genelle F. Harrison
- Division of Biomedical Informatics and Personalized MedicineDepartment of Immunology and MicrobiologyUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
| | - Ticiana Della Justina Farias
- Division of Biomedical Informatics and Personalized MedicineDepartment of Immunology and MicrobiologyUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
| | - William H. Palmer
- Division of Biomedical Informatics and Personalized MedicineDepartment of Immunology and MicrobiologyUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
| | - Laura Ann Leaton
- Division of Biomedical Informatics and Personalized MedicineDepartment of Immunology and MicrobiologyUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
| | | | - Zulkafli Zefarina
- School of Medical SciencesUniversiti Sains Malaysia, Health CampusKelantanMalaysia
| | - Hisham Atan Edinur
- School of Health SciencesUniversiti Sains Malaysia, Health CampusKelantanMalaysia
| | - Faming Zhu
- Blood Center of Zhejiang ProvinceKey Laboratory of Blood Safety Research of Zhejiang ProvinceHangzhouZhejiangChina
| | - Paul J. Norman
- Division of Biomedical Informatics and Personalized MedicineDepartment of Immunology and MicrobiologyUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
| |
Collapse
|
41
|
Sakuraba A, Haider H, Sato T. Population Difference in Allele Frequency of HLA-C*05 and Its Correlation with COVID-19 Mortality. Viruses 2020; 12:E1333. [PMID: 33233780 PMCID: PMC7699862 DOI: 10.3390/v12111333] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/13/2020] [Accepted: 11/19/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND coronavirus disease 2019 (COVID-19) causes severe illness including cytokine storms, but mortality among countries differs largely. In the present study, we investigated the association between human leukocyte antigen (HLA) class I, which plays a major role in susceptibility to viral infections, and the mortality of COVID-19. METHODS data of allele frequencies of HLA-A, -B and -C and COVID-19 mortality were obtained for 74 countries from the Allele Frequency Net Database and worldometer.info. Association between allele frequency of each HLA and mortality was assessed by linear regression followed by multivariable regression. Subsequently, association of HLA-C*05 to its receptor KIR2DS4fl, expressed on natural killer (NK) cells, and differential mortality to historic pandemics were analyzed. RESULTS HLA-A*01, -B*07, -B*08, -B*44 and -C*05 were significantly associated with the risk of deaths (adjusted p = 0.040, 0.00081, 0.047, 0.0022, 0.00032, respectively), but only HLA-C*05 remained statistically significant (p = 0.000027) after multivariable regression. A 1% increase in the allele frequency of HLA-C*05 was associated with an increase of 44 deaths/million. Countries with different mortality could be categorized by the distribution of HLA-C*05 and its receptor KIR2DS4fl, which in combination cause NK cell-induced hyperactive immune response. Countries with similar ethnic and/or geographic background responded in a similar pattern to each pandemic. CONCLUSIONS we demonstrated that allele frequency of HLA-C*05 and the distribution pattern with its receptor KIR2DS4fl strongly correlated with COVID-19 mortality. Host genetic variance of innate immunity may contribute to the difference in mortality among various countries and further investigation using patient samples is warranted.
Collapse
Affiliation(s)
- Atsushi Sakuraba
- Section of Gastroenterology, Hepatology, and Nutrition, University of Chicago Medicine, Chicago, IL 60637, USA;
| | - Haider Haider
- Section of Gastroenterology, Hepatology, and Nutrition, University of Chicago Medicine, Chicago, IL 60637, USA;
| | - Toshiro Sato
- Department of Organoid Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan;
- Corona Virus Task Force, Keio University School of Medicine, Tokyo 160-8582, Japan
| |
Collapse
|
42
|
Ursu LD, Calenic B, Diculescu M, Dima A, Stoian IT, Constantinescu I. Clinical and histopathological changes in different KIR gene profiles in chronic HCV Romanian patients. Int J Immunogenet 2020; 48:16-24. [PMID: 32961633 DOI: 10.1111/iji.12515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/27/2020] [Accepted: 09/02/2020] [Indexed: 11/30/2022]
Abstract
Hepatitis C virus (HCV)-infected individuals may have a faster progression of liver fibrosis, cirrhosis and hepatocellular carcinoma (HCC) development when influenced by host, viral and environmental factors. Hepatitis C virus disease progression is also associated with genetic variants of specific killer cell immunoglobulin-like receptors (KIRs) and genes of the major histocompatibility complex (MHC). The aim of the present study was to correlate clinical, virologic and biochemical parameters and to evaluate the possible influence of KIR genes and their HLA class I ligands in patients infected with hepatitis C virus. The present study analysed a total of 127 chronic HCV-infected patients for various biochemical and genetics factors that can influence disease progression and prognosis. Liver function parameters such as alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma-glutamyl transferase (GGT), direct bilirubin (DB), alpha-fetoprotein (AFP), HCV RNA levels and fibrosis indices were analysed using well-established biochemical methods. At the same time, KIR and HLA genotyping was performed using a polymerase chain reaction sequence-specific primer technique. Analysis of HLA class I and HLA ligands revealed that HLA-C*12:02 and HLA-A3 and HLA-A11 were positively associated with the F3-F4 fibrosis group (p = .026; OR = 8.717, CI = 1.040-73.077; respectively, p = .047; OR = 2.187; 95% CI = 1.066-4.486). KIR2DL2-positive patients had high median levels of AST after treatment and direct bilirubin levels when compared to KIR2DL2-negative patients (p = .013, respectively, p = .028). KIR2DL2/KIR2DL2-C1C1 genotype was associated with increased AST, ALT and GGT levels. A higher GGT level was also observed in KIR2DS2-C1-positive patients when compared to KIR2DS2-C1-negative patients. The present research demonstrates several links between specific clinical, virologic and biochemical parameters and the expression of KIR genes and their HLA ligands in HCV-infected patients. These connections should be taken into account when considering disease development and treatment.
Collapse
Affiliation(s)
- Larisa Denisa Ursu
- Centre for Immunogenetics and Virology, Fundeni Clinical Institute, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Bogdan Calenic
- Department of Biochemistry, Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Mircea Diculescu
- Gastroenterology and Hepatology Department, Fundeni Clinical Institute, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Alina Dima
- Rheumatology Department, Colentina Clinical Hospital, Bucharest, Romania
| | - Iulia Teodora Stoian
- Centre for Immunogenetics and Virology, Fundeni Clinical Institute, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Ileana Constantinescu
- Centre for Immunogenetics and Virology, Fundeni Clinical Institute, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
43
|
Hanson AL, International Genetics of Ankylosing Spondylitis Consortium, Vukcevic D, Leslie S, Harris J, Lê Cao KA, Kenna TJ, Brown MA. Epistatic interactions between killer immunoglobulin-like receptors and human leukocyte antigen ligands are associated with ankylosing spondylitis. PLoS Genet 2020; 16:e1008906. [PMID: 32804949 PMCID: PMC7451988 DOI: 10.1371/journal.pgen.1008906] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 08/27/2020] [Accepted: 06/03/2020] [Indexed: 12/14/2022] Open
Abstract
The killer immunoglobulin-like receptors (KIRs), found predominantly on the surface of natural killer (NK) cells and some T-cells, are a collection of highly polymorphic activating and inhibitory receptors with variable specificity for class I human leukocyte antigen (HLA) ligands. Fifteen KIR genes are inherited in haplotypes of diverse gene content across the human population, and the repertoire of independently inherited KIR and HLA alleles is known to alter risk for immune-mediated and infectious disease by shifting the threshold of lymphocyte activation. We have conducted the largest disease-association study of KIR-HLA epistasis to date, enabled by the imputation of KIR gene and HLA allele dosages from genotype data for 12,214 healthy controls and 8,107 individuals with the HLA-B*27-associated immune-mediated arthritis, ankylosing spondylitis (AS). We identified epistatic interactions between KIR genes and their ligands (at both HLA subtype and allele resolution) that increase risk of disease, replicating analyses in a semi-independent cohort of 3,497 cases and 14,844 controls. We further confirmed that the strong AS-association with a pathogenic variant in the endoplasmic reticulum aminopeptidase gene ERAP1, known to alter the HLA-B*27 presented peptidome, is not modified by carriage of the canonical HLA-B receptor KIR3DL1/S1. Overall, our data suggests that AS risk is modified by the complement of KIRs and HLA ligands inherited, beyond the influence of HLA-B*27 alone, which collectively alter the proinflammatory capacity of KIR-expressing lymphocytes to contribute to disease immunopathogenesis. Cells of the immune system utilise various cell-surface receptors to differentiate between healthy and infected or malignant cells, enabling targeted inflammatory responses while minimising damage to self-tissue. In instances where the immune system fails to correctly differentiate healthy from diseased tissue, or inflammatory activity is poorly regulated, autoimmune or autoinflammatory conditions can develop. Here we have investigated a possible role for a class of immune-cell activating and inhibitory receptors in the pathogenesis of ankylosing spondylitis (AS), a common but poorly understood inflammatory arthritis in which the immune system causes severe damage to the joints of the pelvis and spine. Using genetic information from 12,214 healthy controls and 8,107 individuals with AS we were able to identify combinations of independently inherited immune cell receptors and their ligands that increase or decrease an individual’s risk of disease. This research provides new insight into the nature of co-inherited genetic factors that may collectively alter the proinflammatory capacity of immune cells, contributing to the immunopathogenesis of immune-mediated diseases.
Collapse
Affiliation(s)
- Aimee L. Hanson
- University of Queensland Diamantina Institute, University of Queensland, Brisbane, Queensland, Australia
| | | | - Damjan Vukcevic
- Melbourne Integrative Genomics, School of Mathematics and Statistics, University of Melbourne, Parkville, Victoria, Australia
- Data Science, Murdoch Children’s Research Institute, Parkville, Victoria, Australia
| | - Stephen Leslie
- Melbourne Integrative Genomics, School of Mathematics and Statistics, University of Melbourne, Parkville, Victoria, Australia
- Data Science, Murdoch Children’s Research Institute, Parkville, Victoria, Australia
- School of Biosciences, University of Melbourne, Parkville, Victoria Australia
| | - Jessica Harris
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
- Translational Research Institute, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Kim-Anh Lê Cao
- Melbourne Integrative Genomics, School of Mathematics and Statistics, University of Melbourne, Parkville, Victoria, Australia
| | - Tony J. Kenna
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
- Translational Research Institute, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Matthew A. Brown
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
- Translational Research Institute, Princess Alexandra Hospital, Brisbane, Queensland, Australia
- * E-mail:
| |
Collapse
|
44
|
Chaisri S, Jumnainsong A, Romphruk A, Leelayuwat C. The effect of KIR and HLA polymorphisms on dengue infection and disease severity in northeastern Thais. Med Microbiol Immunol 2020; 209:613-620. [PMID: 32524212 DOI: 10.1007/s00430-020-00685-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 06/02/2020] [Indexed: 10/24/2022]
Abstract
Killer cell immunoglobulin-like receptors (KIRs) are cell surface receptors on natural killer (NK) cells and subsets of T cells. The interaction between KIRs and their cognate ligands (Human leukocyte antigen class I molecules, HLA class I) modulates the immune response of NK cells, in particular through clearance of virus-infected cells. Here, we investigated the effect of KIRs and HLA ligands on dengue infections and disease severity. The KIRs and HLA ligands were identified in 235 healthy controls (HC) and 253 dengue patients (DEN) using polymerase chain reaction with sequence specific primer (PCR-SSP); moreover, DEN was classified to 100 dengue fever (DF) and 153 dengue haemorrhagic fever (DHF). Risks were expressed as odds ratios (ORs) and 95% confidence intervals (CIs) with significance set at a two-tailed P value of < 0.05. The Bonferroni correction was applied for multiple comparisons. Twelve significant associations were observed in dengue infections and disease severity; however, two outcomes survived after the Bonferroni correction. Of these, HLA-A11 was associated with an increased risk to develop dengue disease (OR 2.41, 95% CI 1.62-3.60, Pc = 0.004), while KIR3DS1+ Bw4 was a protective genotype to developing DHF (OR 0.28, 95% CI 0.16-0.48, Pc < 0.001). This study revealed an important role of KIR and HLA ligands in innate immune responses to dengue viral infections and, in particular, their effect on clinical outcomes and disease severity.
Collapse
Affiliation(s)
- Suwit Chaisri
- Chulabhorn International College of Medicine (CICM), Thammasat University, Pathum Thani, 12121, Thailand.,The Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Amonrat Jumnainsong
- The Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand.,Department of Clinical Immunology and Transfusion Sciences, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Amornrat Romphruk
- The Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand.,Blood Transfusion Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Chanvit Leelayuwat
- The Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand. .,Department of Clinical Immunology and Transfusion Sciences, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
45
|
Auer ED, Tong HV, Amorim LM, Malheiros D, Hoan NX, Issler HC, Petzl-Erler ML, Beltrame MH, Boldt ABW, Toan NL, Song LH, Velavan TP, Augusto DG. Natural killer cell receptor variants and chronic hepatitis B virus infection in the Vietnamese population. Int J Infect Dis 2020; 96:541-547. [PMID: 32422377 DOI: 10.1016/j.ijid.2020.05.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES Genes of host immunity play an important role in disease pathogenesis and are determinants of clinical courses of infections, including hepatitis B virus (HBV). Killer-cell immunoglobulin-like receptor (KIR), expressed on the surface of natural killer cells (NK), regulate NK cell cytotoxicity by interacting with human leukocyte antigen (HLA) class I molecules and are candidates for influencing the course of HBV. This study evaluated whether variations in KIR gene content and HLA-C ligands are associated with HBV and with the development of liver cirrhosis and hepatocellular carcinoma. METHODS A Vietnamese study cohort (HBV n = 511; controls n = 140) was genotyped using multiplex sequence-specific polymerase chain reaction (PCR-SSP) followed by melting curve analysis. RESULTS The presence of the functional allelic group of KIR2DS4 was associated with an increased risk of chronic HBV (OR = 1.86, pcorr = 0.02), while KIR2DL2+HLA-C1 (OR = 0.62, pcorr = 0.04) and KIR2DL3+HLA-C1 (OR = 0.48, pcorr = 0.04) were associated with a decreased risk. The pair KIR2DL3+HLA-C1 was associated with liver cirrhosis (OR = 0.40, pcorr = 0.01). The presence of five or more activating KIR variants was associated with hepatocellular carcinoma (OR = 0.53, pcorr = 0.04). CONCLUSIONS KIR gene content variation and combinations KIR-HLA influence the outcome of HBV infection.
Collapse
Affiliation(s)
- Eduardo Delabio Auer
- Programa de Pós-Graduação em Genética, Departamento de Genética, Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Hoang Van Tong
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany; Department of Pathophysiology, Vietnam Military Medical University, Hanoi, Viet Nam; Vietnamese German Center for Medical Research (VGCARE), Hanoi, Viet Nam
| | - Leonardo Maldaner Amorim
- Programa de Pós-Graduação em Genética, Departamento de Genética, Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Danielle Malheiros
- Programa de Pós-Graduação em Genética, Departamento de Genética, Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Nghiem Xuan Hoan
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany; Vietnamese German Center for Medical Research (VGCARE), Hanoi, Viet Nam; Institute of Clinical Infectious Diseases, Hanoi, Viet Nam
| | - Hellen Caroline Issler
- Programa de Pós-Graduação em Genética, Departamento de Genética, Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Maria Luiza Petzl-Erler
- Programa de Pós-Graduação em Genética, Departamento de Genética, Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Márcia Holsbach Beltrame
- Programa de Pós-Graduação em Genética, Departamento de Genética, Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Angelica Beate Winter Boldt
- Programa de Pós-Graduação em Genética, Departamento de Genética, Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Nguyen Linh Toan
- Department of Pathophysiology, Vietnam Military Medical University, Hanoi, Viet Nam; Vietnamese German Center for Medical Research (VGCARE), Hanoi, Viet Nam
| | - Le Huu Song
- Vietnamese German Center for Medical Research (VGCARE), Hanoi, Viet Nam; Institute of Clinical Infectious Diseases, Hanoi, Viet Nam
| | - Thirumalaisamy P Velavan
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany; Vietnamese German Center for Medical Research (VGCARE), Hanoi, Viet Nam; Faculty of Medicine, Duy Tan University, Da Nang, Viet Nam.
| | - Danillo G Augusto
- Programa de Pós-Graduação em Genética, Departamento de Genética, Universidade Federal do Paraná (UFPR), Curitiba, Brazil.
| |
Collapse
|
46
|
Falco M, Pende D, Munari E, Vacca P, Mingari MC, Moretta L. Natural killer cells: From surface receptors to the cure of high-risk leukemia (Ceppellini Lecture). HLA 2020; 93:185-194. [PMID: 30828978 PMCID: PMC6767140 DOI: 10.1111/tan.13509] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 12/28/2022]
Abstract
Natural killer (NK) cells are innate immune effector cells involved in the first line of defense against viral infections and malignancies. In the last three decades, the identification of HLA class I‐specific inhibitory killer immunoglobulin‐like receptors (KIR) and of the main activating receptors has strongly improved our understanding of the mechanisms regulating NK cell functions. The increased knowledge on how NK cells discriminate healthy cells from damaged cells has made it possible to transfer basic research notions to clinical applications. Of particular relevance is the strong NK‐mediated anti‐leukemia effect in haploidentical hematopoietic stem cell transplantation to cure high‐risk leukemia.
Collapse
Affiliation(s)
- Michela Falco
- Laboratorio di Immunologia Clinica e Sperimentale, IRCCS Istituto G. Gaslini, Genoa, Italy
| | - Daniela Pende
- Laboratorio di Immunologia, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Enrico Munari
- Department of Pathology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar, Italy
| | - Paola Vacca
- Department of Immunology, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Maria C Mingari
- Laboratorio di Immunologia, IRCCS Ospedale Policlinico San Martino, Genoa, Italy.,Department of Experimental Medicine (DIMES) and CEBR, Università di Genova, Genoa, Italy
| | - Lorenzo Moretta
- Department of Immunology, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| |
Collapse
|
47
|
Njiomegnie GF, Read SA, Fewings N, George J, McKay F, Ahlenstiel G. Immunomodulation of the Natural Killer Cell Phenotype and Response during HCV Infection. J Clin Med 2020; 9:jcm9041030. [PMID: 32268490 PMCID: PMC7230811 DOI: 10.3390/jcm9041030] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 03/30/2020] [Indexed: 12/15/2022] Open
Abstract
Hepatitis C virus (HCV) infection develops into chronic hepatitis in over two-thirds of acute infections. While current treatments with direct-acting antivirals (DAAs) achieve HCV eradication in >95% of cases, no vaccine is available and re-infection can readily occur. Natural killer (NK) cells represent a key cellular component of the innate immune system, participating in early defence against infectious diseases, viruses, and cancers. When acute infection becomes chronic, however, NK cell function is altered. This has been well studied in the context of HCV, where changes in frequency and distribution of NK cell populations have been reported. While activating receptors are downregulated on NK cells in both acute and chronic infection, NK cell inhibiting receptors are upregulated in chronic HCV infection, leading to altered NK cell responsiveness. Furthermore, chronic activation of NK cells following HCV infection contributes to liver inflammation and disease progression through enhanced cytotoxicity. Consequently, the NK immune response is a double-edged sword that is a significant component of the innate immune antiviral response, but persistent activation can drive tissue damage during chronic infection. This review will summarise the role of NK cells in HCV infection, and the changes that occur during HCV therapy.
Collapse
Affiliation(s)
- Gaitan Fabrice Njiomegnie
- Blacktown Clinical School and Research Centre, Western Sydney University, Blacktown 2148, NSW, Australia (S.A.R.)
- Storr Liver Centre, Westmead Institute for Medical Research, University of Sydney, Westmead 2145, NSW, Australia
| | - Scott A. Read
- Blacktown Clinical School and Research Centre, Western Sydney University, Blacktown 2148, NSW, Australia (S.A.R.)
- Storr Liver Centre, Westmead Institute for Medical Research, University of Sydney, Westmead 2145, NSW, Australia
- Blacktown Hospital, Blacktown 2148, NSW, Australia
| | - Nicole Fewings
- Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, Westmead 2145, NSW, Australia
- Westmead Clinical School, University of Sydney, Westmead 2145, NSW, Australia
| | - Jacob George
- Blacktown Clinical School and Research Centre, Western Sydney University, Blacktown 2148, NSW, Australia (S.A.R.)
- Storr Liver Centre, Westmead Institute for Medical Research, University of Sydney, Westmead 2145, NSW, Australia
- Westmead Clinical School, University of Sydney, Westmead 2145, NSW, Australia
- Westmead Hospital, Westmead 2145, NSW, Australia
| | - Fiona McKay
- Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, Westmead 2145, NSW, Australia
- Westmead Clinical School, University of Sydney, Westmead 2145, NSW, Australia
| | - Golo Ahlenstiel
- Blacktown Clinical School and Research Centre, Western Sydney University, Blacktown 2148, NSW, Australia (S.A.R.)
- Storr Liver Centre, Westmead Institute for Medical Research, University of Sydney, Westmead 2145, NSW, Australia
- Blacktown Hospital, Blacktown 2148, NSW, Australia
- Westmead Clinical School, University of Sydney, Westmead 2145, NSW, Australia
- Correspondence: ; Tel.: +61-2-9851-6073
| |
Collapse
|
48
|
Damele L, Ottonello S, Mingari MC, Pietra G, Vitale C. Targeted Therapies: Friends or Foes for Patient's NK Cell-Mediated Tumor Immune-Surveillance? Cancers (Basel) 2020; 12:cancers12040774. [PMID: 32218226 PMCID: PMC7226262 DOI: 10.3390/cancers12040774] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/14/2020] [Accepted: 03/23/2020] [Indexed: 12/30/2022] Open
Abstract
In the last 20 years there has been a huge increase in the number of novel drugs for cancer treatment. Most of them exploit their ability to target specific oncogenic mutations in the tumors (targeted therapies–TT), while others target the immune-checkpoint inhibitor molecules (ICI) or the epigenetic DNA modifications. Among them, TT are the longest established drugs exploited against a wide spectrum of both solid and hematological tumors, often with reasonable costs and good efficacy as compared to other innovative therapies (i.e., ICI). Although they have greatly improved the treatment of cancer patients and their survival, patients often relapse or develop drug-resistance, leading to the impossibility to eradicate the disease. The outcome of TT has been often correlated with their ability to affect not only tumor cells, but also the repertoire of immune cells and their ability to interact with cancer cells. Thus, the possibility to create novel synergies among drugs an immunotherapy prompted scientists and physicians to deeply characterize the effects of TT on immune cells both by in-vitro and by ex-vivo analyses. In this context, NK cells may represent a key issue, since they have been shown to exert a potent anti-tumor activity, both against hematological malignancies and solid tumors. In the present review we will discuss most recent ex-vivo analyses that clarify the effect of TT treatment on patient’s NK cells comparing them with clinical outcome and previous in-vitro data.
Collapse
Affiliation(s)
- Laura Damele
- UO Immunologia IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (L.D.); (S.O.); (M.C.M.); (G.P.)
| | - Selene Ottonello
- UO Immunologia IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (L.D.); (S.O.); (M.C.M.); (G.P.)
| | - Maria Cristina Mingari
- UO Immunologia IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (L.D.); (S.O.); (M.C.M.); (G.P.)
- Dipartimento Medicina Sperimentale (DIMES), Università degli Studi di Genova, 16132 Genoa, Italy
- Centre of Excellence for Biomedical Research (CEBR), Università degli Studi di Genova, 16132 Genoa, Italy
| | - Gabriella Pietra
- UO Immunologia IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (L.D.); (S.O.); (M.C.M.); (G.P.)
- Dipartimento Medicina Sperimentale (DIMES), Università degli Studi di Genova, 16132 Genoa, Italy
| | - Chiara Vitale
- UO Immunologia IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (L.D.); (S.O.); (M.C.M.); (G.P.)
- Dipartimento Medicina Sperimentale (DIMES), Università degli Studi di Genova, 16132 Genoa, Italy
- Correspondence:
| |
Collapse
|
49
|
Chou YC, Chen CH, Chen MJ, Chang CW, Chen PH, Yu MH, Chen YJ, Tsai EM, Yang PS, Lin SY, Tzeng CR. Killer cell immunoglobulin-like receptors (KIR) and human leukocyte antigen-C (HLA-C) allorecognition patterns in women with endometriosis. Sci Rep 2020; 10:4897. [PMID: 32184413 PMCID: PMC7078270 DOI: 10.1038/s41598-020-61702-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/24/2020] [Indexed: 12/22/2022] Open
Abstract
Endometriosis shares similarities with several autoimmune diseases. The human leukocyte antigen (HLA)-C genotype is associated with several human autoimmune diseases. HLA-C is a ligand of killer cell immunoglobulin receptors (KIRs) and is an essential regulator of natural killer cell activity, which is associated with endometriosis progression. Polymorphisms in HLA-C and KIR affect the activity of NK cells and susceptibility to several diseases. Therefore, we attempted to investigate an association between HLA-C genotype and KIR polymorphism and the occurrence of endometriosis. We tested the association of certain KIR and HLA-C combinations and the development of endometriosis by characterizing both KIR and HLA-C genes in 147 women with endometriosis and 117 controls. The HLA-C genotypes and KIR polymorphisms were analyzed via DNA-based method for higher-resolution genotyping. We found that the occurrence of HLA-C*03:03*01 was increased in endometriosis than in control groups. Analysis of various KIR haplotypes revealed differences between the endometriosis and control cohorts. The number of KIR centromeric A/A haplotypes was increased in the endometriosis group than controls. Moreover, the endometriosis cohort was characterized by reduced number of KIR2DS2-positive individuals in the Han Chinese population. Our current findings suggest that the KIR and HLA-C genotypes are associated with the pathogenesis of endometriosis.
Collapse
Affiliation(s)
- Ya-Ching Chou
- Center for Reproductive Medicine & Sciences, Department of Obstetrics and Gynecology, Taipei Medical University Hospital, Taipei, Taiwan.,Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan.,Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Chiao Tung University, Hsinchu, Taiwan
| | - Chi-Huang Chen
- Center for Reproductive Medicine & Sciences, Department of Obstetrics and Gynecology, Taipei Medical University Hospital, Taipei, Taiwan.,Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ming-Jer Chen
- Department of Obstetrics and Gynecology and Women's Health, Taichung Veterans General Hospital, Taichung, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Ching-Wen Chang
- Center for Reproductive Medicine & Sciences, Department of Obstetrics and Gynecology, Taipei Medical University Hospital, Taipei, Taiwan
| | - Pi-Hua Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Obstetrics and Gynecology, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Mu-Hsien Yu
- Department of Obstetrics & Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Jen Chen
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Eing-Mei Tsai
- General Research Centers of R&D office, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Reproductive Medicine, Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Peng-Sheng Yang
- Center for Reproductive Medicine & Sciences, Department of Obstetrics and Gynecology, Taipei Medical University Hospital, Taipei, Taiwan
| | - Shyr-Yeu Lin
- Center for Reproductive Medicine & Sciences, Department of Obstetrics and Gynecology, Taipei Medical University Hospital, Taipei, Taiwan.,Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chii-Ruey Tzeng
- Center for Reproductive Medicine & Sciences, Department of Obstetrics and Gynecology, Taipei Medical University Hospital, Taipei, Taiwan. .,Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
50
|
Blunt MD, Khakoo SI. Activating killer cell immunoglobulin-like receptors: Detection, function and therapeutic use. Int J Immunogenet 2020; 47:1-12. [PMID: 31755661 DOI: 10.1111/iji.12461] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 10/24/2019] [Indexed: 12/15/2022]
Abstract
Killer cell immunoglobulin-like receptors (KIRs) have a central role in the control of natural killer (NK) cell function. The functions of the activating KIRs, as compared to those of the inhibitory KIR, have been more difficult to define due to difficulties in antibody-mediated identification and their apparent low affinities for HLA class I. Immunogenetic studies have shown associations of activating KIRs with the outcome of autoimmune diseases, pregnancy-associated disorders, infectious diseases and cancers. Activating KIR are thus thought to have important roles in the control of natural killer cell functions and their role in disease. In this review, we discuss current knowledge on activating KIR, their ligands and, their roles in the pathogenesis and potential therapy of human diseases.
Collapse
Affiliation(s)
- Matthew D Blunt
- Clinical and Experimental Sciences, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, UK
| | - Salim I Khakoo
- Clinical and Experimental Sciences, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, UK
| |
Collapse
|