1
|
Lee JH. ATM in immunobiology: From lymphocyte development to cancer immunotherapy. Transl Oncol 2025; 52:102268. [PMID: 39752906 PMCID: PMC11754496 DOI: 10.1016/j.tranon.2024.102268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/14/2024] [Accepted: 12/30/2024] [Indexed: 01/25/2025] Open
Abstract
Ataxia Telangiectasia Mutated (ATM) is a protein kinase traditionally known for its role in DNA damage response and cell cycle regulation. However, emerging research has revealed its multifaceted and crucial functions in the immune system. This comprehensive review explores the diverse roles of ATM in immune regulation, from lymphocyte development to its involvement in cancer immunotherapy. The review describes ATM's critical functions in V(D)J recombination and class switch recombination, highlighting its importance in adaptive immunity. It examines ATM's role in innate immunity, particularly in NF-κB signaling and cytokine production. Furthermore, the review analyzes the impact of ATM deficiency on oxidative stress and mitochondrial function in immune cells, providing insights into the immunological defects observed in Ataxia Telangiectasia (A-T). The article explores ATM's significance in maintaining hematopoietic stem cell function and its implications for bone marrow transplantation and gene therapy. Additionally, it addresses ATM's involvement in inflammation and immune senescence, linking DNA damage response to age-related immune decline. Finally, this review highlights the emerging role of ATM in cancer immunotherapy, where its inhibition shows promise in enhancing immune checkpoint blockade therapy. This review synthesizes current knowledge on ATM's functions in the immune system, offering insights into the pathophysiology of ATM-related disorders and potential therapeutic strategies for immune-related conditions and cancer immunotherapy.
Collapse
Affiliation(s)
- Ji-Hoon Lee
- Department of Biological Sciences, Research Center of Ecomimetics, Chonnam National University, Gwangju 61186, South Korea.
| |
Collapse
|
2
|
An JB, Hathcock KS, Steinberg SM, Choo-Wosoba HM, Hodes RJ. ATM-deficient murine thymic T-cell lymphoblastic lymphomas are PTEN-deficient and require AKT signaling for survival. PLoS One 2024; 19:e0312864. [PMID: 39637056 PMCID: PMC11620668 DOI: 10.1371/journal.pone.0312864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/14/2024] [Indexed: 12/07/2024] Open
Abstract
Mice deficient in the ataxia telangiectasia mutated (ATM) kinase have impaired responses to genotoxic and oxidative stressors, predisposing them to develop thymic T-cell lymphoblastic lymphomas (T-LBL) resembling human T-cell acute lymphoblastic leukemias (T-ALL). A previous study identified genomic deletions of the gene encoding PTEN, a negative regulator of PI3K/AKT/mTOR signaling, in a subset of murine ATM-deficient (ATMKO) thymic T-LBLs; however, the frequency and consequences of these deletions were not defined. The present study demonstrates that the majority of established cultures of ATMKO T-LBLs isolated from ATMKO thymi have a variety of genomic Pten alterations and fail to express functional PTEN protein. In addition, all T-LBLs demonstrate constitutive expression of pAKT, indicating the presence of activated AKT signaling, and are sensitive to treatment with the pan-AKT inhibitor MK-2206, suggesting that these lymphomas are dependent on pAKT signaling for their survival. Lastly, ATM-deficiency itself does not cause loss of PTEN or dysregulated AKT signaling, as ATM-deficient non-malignant thymocytes express wild-type levels of PTEN and lack detectable pAKT. This study demonstrates for the first time that the majority of ATM-deficient thymic T-LBLs lose PTEN expression and all depend on AKT signaling for survival, suggesting their potential use as an animal model for PI3K/AKT/MTOR pathway dysfunction in human T-ALL.
Collapse
Affiliation(s)
- Joseph B. An
- National Cancer Institute (NCI), National Institutes of Health (NIH), Experimental Immunology Branch, Bethesda, MD, United States of America
| | - Karen S. Hathcock
- National Cancer Institute (NCI), National Institutes of Health (NIH), Experimental Immunology Branch, Bethesda, MD, United States of America
| | - Seth M. Steinberg
- Biostatistics and Data Management Section, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, United States of America
| | - Hyoyoung M. Choo-Wosoba
- Biostatistics and Data Management Section, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, United States of America
| | - Richard J. Hodes
- National Cancer Institute (NCI), National Institutes of Health (NIH), Experimental Immunology Branch, Bethesda, MD, United States of America
- National Institute on Aging (NIA), NIH, Bethesda, MD, United States of America
| |
Collapse
|
3
|
Wu GS, Culberson EJ, Allyn BM, Bassing CH. Poor-Quality Vβ Recombination Signal Sequences and the DNA Damage Response ATM Kinase Collaborate to Establish TCRβ Gene Repertoire and Allelic Exclusion. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2583-2592. [PMID: 35534211 PMCID: PMC9133172 DOI: 10.4049/jimmunol.2100489] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 03/23/2022] [Indexed: 06/03/2023]
Abstract
The monoallelic expression (allelic exclusion) of diverse lymphocyte Ag receptor genes enables specific immune responses. Allelic exclusion is achieved by asynchronous initiation of V(D)J recombination between alleles and protein encoded by successful rearrangement on the first allele signaling permanent inhibition of V rearrangement on the other allele. The ATM kinase that guides DNA repair and transiently suppresses V(D)J recombination also helps impose allelic exclusion through undetermined mechanisms. At the TCRβ locus, one Vβ gene segment (V31) rearranges only by inversion, whereas all other Vβ segments rearrange by deletion except for rare cases in which they rearrange through inversion following V31 rearrangement. The poor-quality recombination signal sequences (RSSs) of V31 and V2 help establish TCRβ gene repertoire and allelic exclusion by stochastically limiting initiation of Vβ rearrangements before TCRβ protein-signaled permanent silencing of Vβ recombination. We show in this study in mice that ATM functions with these RSSs and the weak V1 RSS to shape TCRβ gene repertoire by restricting their Vβ segments from initiating recombination and hindering aberrant nonfunctional Vβ recombination products, especially during inversional V31 rearrangements. We find that ATM collaborates with the V1 and V2 RSSs to help enforce allelic exclusion by facilitating competition between alleles for initiation and functional completion of rearrangements of these Vβ segments. Our data demonstrate that the fundamental genetic DNA elements that underlie inefficient Vβ recombination cooperate with ATM-mediated rapid DNA damage responses to help establish diversity and allelic exclusion of TCRβ genes.
Collapse
Affiliation(s)
- Glendon S Wu
- Immunology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; and
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Erica J Culberson
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Brittney M Allyn
- Immunology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; and
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Craig H Bassing
- Immunology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; and
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
4
|
Milanovic M, Shao Z, Estes VM, Wang XS, Menolfi D, Lin X, Lee BJ, Xu J, Cupo OM, Wang D, Zha S. FATC Domain Deletion Compromises ATM Protein Stability, Blocks Lymphocyte Development, and Promotes Lymphomagenesis. THE JOURNAL OF IMMUNOLOGY 2021; 206:1228-1239. [PMID: 33536256 DOI: 10.4049/jimmunol.2000967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 01/04/2021] [Indexed: 12/21/2022]
Abstract
Ataxia-telangiectasia mutated (ATM) kinase is a master regulator of the DNA damage response, and loss of ATM leads to primary immunodeficiency and greatly increased risk for lymphoid malignancies. The FATC domain is conserved in phosphatidylinositol-3-kinase-related protein kinases (PIKKs). Truncation mutation in the FATC domain (R3047X) selectively compromised reactive oxygen species-induced ATM activation in cell-free assays. In this article, we show that in mouse models, knock-in ATM-R3057X mutation (Atm RX , corresponding to R3047X in human ATM) severely compromises ATM protein stability and causes T cell developmental defects, B cell Ig class-switch recombination defects, and infertility resembling ATM-null. The residual ATM-R3057X protein retains minimal yet functional measurable DNA damage-induced checkpoint activation and significantly delays lymphomagenesis in Atm RX/RX mice compared with Atm -/- . Together, these results support a physiological role of the FATC domain in ATM protein stability and show that the presence of minimal residual ATM-R3057X protein can prevent growth retardation and delay tumorigenesis without restoring lymphocyte development and fertility.
Collapse
Affiliation(s)
- Maja Milanovic
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Zhengping Shao
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Verna M Estes
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Xiaobin S Wang
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032.,Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Demis Menolfi
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Xiaohui Lin
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Brian J Lee
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Jun Xu
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093
| | - Olivia M Cupo
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Dong Wang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093
| | - Shan Zha
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032; .,Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032.,Division of Pediatric Oncology, Hematology and Stem Cell Transplantation, Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032; and.,Department of Immunology and Microbiology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032
| |
Collapse
|
5
|
Milanovic M, Sprinzen L, Menolfi D, Lee JH, Yamamoto K, Li Y, Lee BJ, Xu J, Estes VM, Wang D, Mckinnon PJ, Paull TT, Zha S. The Cancer-Associated ATM R3008H Mutation Reveals the Link between ATM Activation and Its Exchange. Cancer Res 2021; 81:426-437. [PMID: 33239428 PMCID: PMC8137556 DOI: 10.1158/0008-5472.can-20-2447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/14/2020] [Accepted: 11/18/2020] [Indexed: 11/16/2022]
Abstract
ATM kinase is a tumor suppressor and a master regulator of the DNA damage response. Most cancer-associated alterations to ATM are missense mutations at the PI3-kinase regulatory domain (PRD) or the kinase domain. Expression of kinase-dead (KD) ATM protein solely accelerates lymphomagenesis beyond ATM loss. To understand how PRD suppresses lymphomagenesis, we introduced the cancer-associated PRD mutation R3008H (R3016 in mouse) into mice. R3008H abrogated DNA damage- and oxidative stress-induced activation of ATM without consistently affecting ATM protein stability and recruitment. In contrast to the early embryonic lethality of AtmKD/KD mice, AtmR3016H (AtmR/R ) mice were viable, immunodeficient, and displayed spontaneous craniofacial abnormalities and delayed lymphomagenesis compared with Atm-/- controls. Mechanistically, R3008H rescued the tardy exchange of ATM-KD at DNA damage foci, indicating that PRD coordinates ATM activation with its exchange at DNA-breaks. Taken together, our results reveal a unique tumorigenesis profile for PRD mutations that is distinct from null or KD mutations. SIGNIFICANT: This study functionally characterizes the most common ATM missense mutation R3008H in cancer and identifies a unique role of PI3-kinase regulatory domain in ATM activation.
Collapse
Affiliation(s)
- Maja Milanovic
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York City, New York
| | - Lisa Sprinzen
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York City, New York
- Department of Pathology and Cell Biology, Pathobiology and Human Disease Graduate Program, Vagelos College for Physicians and Surgeons, Columbia University, New York, New York
| | - Demis Menolfi
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York City, New York
| | - Ji-Hoon Lee
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas
| | - Kenta Yamamoto
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York City, New York
- Department of Pathology and Cell Biology, Pathobiology and Human Disease Graduate Program, Vagelos College for Physicians and Surgeons, Columbia University, New York, New York
| | - Yang Li
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Brian J Lee
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York City, New York
| | - Jun Xu
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California
| | - Verna M Estes
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York City, New York
| | - Dong Wang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California
| | - Peter J Mckinnon
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Tanya T Paull
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas
| | - Shan Zha
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York City, New York.
- Division of Pediatric Oncology, Hematology and Stem Cell Transplantation, Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York City, New York
| |
Collapse
|
6
|
Carrassa L, Colombo I, Damia G, Bertoni F. Targeting the DNA damage response for patients with lymphoma: Preclinical and clinical evidences. Cancer Treat Rev 2020; 90:102090. [DOI: 10.1016/j.ctrv.2020.102090] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/09/2020] [Accepted: 08/11/2020] [Indexed: 12/11/2022]
|
7
|
Katarkar A, Bottoni G, Clocchiatti A, Goruppi S, Bordignon P, Lazzaroni F, Gregnanin I, Ostano P, Neel V, Dotto GP. NOTCH1 gene amplification promotes expansion of Cancer Associated Fibroblast populations in human skin. Nat Commun 2020; 11:5126. [PMID: 33046701 PMCID: PMC7550609 DOI: 10.1038/s41467-020-18919-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 09/09/2020] [Indexed: 12/23/2022] Open
Abstract
Cancer associated fibroblasts (CAFs) are a key component of the tumor microenvironment. Genomic alterations in these cells remain a point of contention. We report that CAFs from skin squamous cell carcinomas (SCCs) display chromosomal alterations, with heterogeneous NOTCH1 gene amplification and overexpression that also occur, to a lesser extent, in dermal fibroblasts of apparently unaffected skin. The fraction of the latter cells harboring NOTCH1 amplification is expanded by chronic UVA exposure, to which CAFs are resistant. The advantage conferred by NOTCH1 amplification and overexpression can be explained by NOTCH1 ability to block the DNA damage response (DDR) and ensuing growth arrest through suppression of ATM-FOXO3a association and downstream signaling cascade. In an orthotopic model of skin SCC, genetic or pharmacological inhibition of NOTCH1 activity suppresses cancer/stromal cells expansion. Here we show that NOTCH1 gene amplification and increased expression in CAFs are an attractive target for stroma-focused anti-cancer intervention.
Collapse
Affiliation(s)
- Atul Katarkar
- Department of Biochemistry, University of Lausanne, 1066, Epalinges, Switzerland
| | - Giulia Bottoni
- Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, MA, 02129, USA.,Department of Dermatology, Harvard Medical School, Boston, MA, 02125, USA
| | - Andrea Clocchiatti
- Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, MA, 02129, USA.,Department of Dermatology, Harvard Medical School, Boston, MA, 02125, USA
| | - Sandro Goruppi
- Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, MA, 02129, USA.,Department of Dermatology, Harvard Medical School, Boston, MA, 02125, USA
| | - Pino Bordignon
- Department of Biochemistry, University of Lausanne, 1066, Epalinges, Switzerland
| | - Francesca Lazzaroni
- Department of Biochemistry, University of Lausanne, 1066, Epalinges, Switzerland
| | - Ilaria Gregnanin
- Cancer Genomics Laboratory, Edo and Elvo Tempia Valenta Foundation, Biella, 13900, Italy
| | - Paola Ostano
- Cancer Genomics Laboratory, Edo and Elvo Tempia Valenta Foundation, Biella, 13900, Italy
| | - Victor Neel
- Department of Dermatology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - G Paolo Dotto
- Department of Biochemistry, University of Lausanne, 1066, Epalinges, Switzerland. .,Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, MA, 02129, USA. .,Department of Dermatology, Harvard Medical School, Boston, MA, 02125, USA. .,International Cancer Prevention Institute, 1066, Epalinges, Switzerland.
| |
Collapse
|
8
|
Bianchi JJ, Murigneux V, Bedora-Faure M, Lescale C, Deriano L. Breakage-Fusion-Bridge Events Trigger Complex Genome Rearrangements and Amplifications in Developmentally Arrested T Cell Lymphomas. Cell Rep 2020; 27:2847-2858.e4. [PMID: 31167132 PMCID: PMC6581794 DOI: 10.1016/j.celrep.2019.05.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 02/15/2019] [Accepted: 05/01/2019] [Indexed: 12/30/2022] Open
Abstract
To reveal the relative contribution of the recombination activating gene (RAG)1/2 nuclease to lymphomagenesis, we conducted a genome-wide analysis of T cell lymphomas from p53-deficient mice expressing or lacking RAG2. We found that while p53−/− lymphoblastic T cells harbor primarily ectopic DNA deletions, Rag2−/−p53−/− T cell lymphomas display complex genomic rearrangements associated with amplification of the chromosomal location 9qA4-5.3. We show that this amplicon is generated by breakage-fusion-bridge during mitosis and arises distinctly in T cell lymphomas originating from an early progenitor stage. Notably, we report amplification of the corresponding syntenic region (11q23) in a subset of human leukemia leading to the overexpression of several cancer genes, including MLL/KMT2A. Our findings provide direct evidence that lymphocytes undergo malignant transformation through distinct genome architectural routes that are determined by both RAG-dependent and RAG-independent DNA damage and a block in cell development. Lymphomas from RAG2/p53- and p53-deficient mice bear distinct genome architectures Block in T cell development leads to 9qA4-5.3 rearrangements and amplifications Breakage-fusion-bridge events trigger 9qA4-5.3 aberrations in early T cell lymphomas The syntenic region 11q23 is amplified in some human hematological cancers
Collapse
Affiliation(s)
- Joy J Bianchi
- Genome Integrity, Immunity and Cancer Unit, Equipe Labellisée Ligue Contre le Cancer, Department of Immunology, Department of Genomes and Genetics, Institut Pasteur, 75015 Paris, France; Cellule Pasteur, University of Paris René Descartes, Sorbonne Paris Cité, 75015 Paris, France
| | - Valentine Murigneux
- Genome Integrity, Immunity and Cancer Unit, Equipe Labellisée Ligue Contre le Cancer, Department of Immunology, Department of Genomes and Genetics, Institut Pasteur, 75015 Paris, France
| | - Marie Bedora-Faure
- Genome Integrity, Immunity and Cancer Unit, Equipe Labellisée Ligue Contre le Cancer, Department of Immunology, Department of Genomes and Genetics, Institut Pasteur, 75015 Paris, France
| | - Chloé Lescale
- Genome Integrity, Immunity and Cancer Unit, Equipe Labellisée Ligue Contre le Cancer, Department of Immunology, Department of Genomes and Genetics, Institut Pasteur, 75015 Paris, France
| | - Ludovic Deriano
- Genome Integrity, Immunity and Cancer Unit, Equipe Labellisée Ligue Contre le Cancer, Department of Immunology, Department of Genomes and Genetics, Institut Pasteur, 75015 Paris, France.
| |
Collapse
|
9
|
Wang XS, Lee BJ, Zha S. The recent advances in non-homologous end-joining through the lens of lymphocyte development. DNA Repair (Amst) 2020; 94:102874. [PMID: 32623318 DOI: 10.1016/j.dnarep.2020.102874] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/16/2020] [Accepted: 05/24/2020] [Indexed: 12/17/2022]
Abstract
Lymphocyte development requires ordered assembly and subsequent modifications of the antigen receptor genes through V(D)J recombination and Immunoglobulin class switch recombination (CSR), respectively. While the programmed DNA cleavage events are initiated by lymphocyte-specific factors, the resulting DNA double-strand break (DSB) intermediates activate the ATM kinase-mediated DNA damage response (DDR) and rely on the ubiquitously expressed classical non-homologous end-joining (cNHEJ) pathway including the DNA-dependent protein kinase (DNA-PK), and, in the case of CSR, also the alternative end-joining (Alt-EJ) pathway, for repair. Correspondingly, patients and animal models with cNHEJ or DDR defects develop distinct types of immunodeficiency reflecting their specific DNA repair deficiency. The unique end-structure, sequence context, and cell cycle regulation of V(D)J recombination and CSR also provide a valuable platform to study the mechanisms of, and the interplay between, cNHEJ and DDR. Here, we compare and contrast the genetic consequences of DNA repair defects in V(D)J recombination and CSR with a focus on the newly discovered cNHEJ factors and the kinase-dependent structural roles of ATM and DNA-PK in animal models. Throughout, we try to highlight the pending questions and emerging differences that will extend our understanding of cNHEJ and DDR in the context of primary immunodeficiency and lymphoid malignancies.
Collapse
Affiliation(s)
- Xiaobin S Wang
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, United States; Graduate Program of Pathobiology and Molecular Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, United States
| | - Brian J Lee
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, United States
| | - Shan Zha
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, United States; Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, United States; Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, United States; Department of Immunology and Microbiology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, United States.
| |
Collapse
|
10
|
Endogenous topoisomerase II-mediated DNA breaks drive thymic cancer predisposition linked to ATM deficiency. Nat Commun 2020; 11:910. [PMID: 32060399 PMCID: PMC7021672 DOI: 10.1038/s41467-020-14638-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 01/22/2020] [Indexed: 01/02/2023] Open
Abstract
The ATM kinase is a master regulator of the DNA damage response to double-strand breaks (DSBs) and a well-established tumour suppressor whose loss is the cause of the neurodegenerative and cancer-prone syndrome Ataxia-Telangiectasia (A-T). A-T patients and Atm−/− mouse models are particularly predisposed to develop lymphoid cancers derived from deficient repair of RAG-induced DSBs during V(D)J recombination. Here, we unexpectedly find that specifically disturbing the repair of DSBs produced by DNA topoisomerase II (TOP2) by genetically removing the highly specialised repair enzyme TDP2 increases the incidence of thymic tumours in Atm−/− mice. Furthermore, we find that TOP2 strongly colocalizes with RAG, both genome-wide and at V(D)J recombination sites, resulting in an increased endogenous chromosomal fragility of these regions. Thus, our findings demonstrate a strong causal relationship between endogenous TOP2-induced DSBs and cancer development, confirming these lesions as major drivers of ATM-deficient lymphoid malignancies, and potentially other conditions and cancer types. The ATM kinase is a key regulator of the DNA damage response to double-strand breaks (DSBs) and its homozygous loss in patients predisposes to lymphoid malignancies. Here, the authors develop a Tdp2−/−Atm−/− double-deficient mouse model to uncover topoisomerase II-induced DSBs as significant drivers of the genomic rearrangements that underpin these tumours.
Collapse
|
11
|
Menolfi D, Zha S. ATM, ATR and DNA-PKcs kinases-the lessons from the mouse models: inhibition ≠ deletion. Cell Biosci 2020; 10:8. [PMID: 32015826 PMCID: PMC6990542 DOI: 10.1186/s13578-020-0376-x] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 01/14/2020] [Indexed: 01/11/2023] Open
Abstract
DNA damage, especially DNA double strand breaks (DSBs) and replication stress, activates a complex post-translational network termed DNA damage response (DDR). Our review focuses on three PI3-kinase related protein kinases-ATM, ATR and DNA-PKcs, which situate at the apex of the mammalian DDR. They are recruited to and activated at the DNA damage sites by their respective sensor protein complexes-MRE11/RAD50/NBS1 for ATM, RPA/ATRIP for ATR and KU70-KU80/86 (XRCC6/XRCC5) for DNA-PKcs. Upon activation, ATM, ATR and DNA-PKcs phosphorylate a large number of partially overlapping substrates to promote efficient and accurate DNA repair and to coordinate DNA repair with other DNA metabolic events (e.g., transcription, replication and mitosis). At the organism level, robust DDR is critical for normal development, aging, stem cell maintenance and regeneration, and physiological genomic rearrangements in lymphocytes and germ cells. In addition to endogenous damage, oncogene-induced replication stresses and genotoxic chemotherapies also activate DDR. On one hand, DDR factors suppress genomic instability to prevent malignant transformation. On the other hand, targeting DDR enhances the therapeutic effects of anti-cancer chemotherapy, which led to the development of specific kinase inhibitors for ATM, ATR and DNA-PKcs. Using mouse models expressing kinase dead ATM, ATR and DNA-PKcs, an unexpected structural function of these kinases was revealed, where the expression of catalytically inactive kinases causes more genomic instability than the loss of the proteins themselves. The spectrum of genomic instabilities and physiological consequences are unique for each kinase and depends on their activating complexes, suggesting a model in which the catalysis is coupled with DNA/chromatin release and catalytic inhibition leads to the persistence of the kinases at the DNA lesion, which in turn affects repair pathway choice and outcomes. Here we discuss the experimental evidences supporting this mode of action and their implications in the design and use of specific kinase inhibitors for ATM, ATR and DNA-PKcs for cancer therapy.
Collapse
Affiliation(s)
- Demis Menolfi
- Institute for Cancer Genetics, College of Physicians & Surgeons, Columbia University, New York, NY 10032 USA
| | - Shan Zha
- Institute for Cancer Genetics, College of Physicians & Surgeons, Columbia University, New York, NY 10032 USA
- Department of Pathology and Cell Biology, College of Physicians & Surgeons, Columbia University, New York, NY 10032 USA
- Division of Pediatric Oncology, Hematology and Stem Cell Transplantation, Department of Pediatrics, College of Physicians & Surgeons, Columbia University, New York, NY 10032 USA
| |
Collapse
|
12
|
Musilli S, Abramowski V, Roch B, de Villartay JP. An in vivo study of the impact of deficiency in the DNA repair proteins PAXX and XLF on development and maturation of the hemolymphoid system. J Biol Chem 2020; 295:2398-2406. [PMID: 31915249 DOI: 10.1074/jbc.ac119.010924] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 01/03/2020] [Indexed: 12/22/2022] Open
Abstract
Repair of DNA double-strand breaks by the nonhomologous end joining pathway is central for proper development of the adaptive immune system. This repair pathway involves eight factors, including XRCC4-like factor (XLF)/Cernunnos and the paralog of XRCC4 and XLF, PAXX nonhomologous end joining factor (PAXX). Xlf-/- and Paxx-/- mice are viable and exhibit only a mild immunophenotype. However, mice lacking both PAXX and XLF are embryonic lethal because postmitotic neurons undergo massive apoptosis in embryos. To decipher the roles of PAXX and XLF in both variable, diversity, and joining recombination and immunoglobulin class switch recombination, here, using Cre/lox-specific deletion to prevent double-KO embryonic lethality, we developed two mouse models of a conditional Xlf KO in a Paxx-/- background. Cre expressed under control of the iVav or CD21 promoter enabled Xlf deletion in early hematopoietic progenitors and splenic mature B cells, respectively. We demonstrate the XLF and PAXX interplay during variable, diversity, and joining recombination in vivo but not during class switch recombination, for which PAXX appeared to be fully dispensable. Xlf/Paxx double KO in hematopoietic progenitors resulted in a shorter lifespan associated with onset of thymic lymphomas, revealing a genome caretaking function of XLF/PAXX.
Collapse
Affiliation(s)
- Stefania Musilli
- Laboratory of Genome Dynamics in the Immune System, Imagine Institute, INSERM UMR 1163, Université de Paris, 75015 Paris, France
| | - Vincent Abramowski
- Laboratory of Genome Dynamics in the Immune System, Imagine Institute, INSERM UMR 1163, Université de Paris, 75015 Paris, France
| | - Benoit Roch
- Laboratory of Genome Dynamics in the Immune System, Imagine Institute, INSERM UMR 1163, Université de Paris, 75015 Paris, France
| | - Jean-Pierre de Villartay
- Laboratory of Genome Dynamics in the Immune System, Imagine Institute, INSERM UMR 1163, Université de Paris, 75015 Paris, France.
| |
Collapse
|
13
|
Nbn-Mre11 interaction is required for tumor suppression and genomic integrity. Proc Natl Acad Sci U S A 2019; 116:15178-15183. [PMID: 31285322 DOI: 10.1073/pnas.1905305116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We derived a mouse model in which a mutant form of Nbn/Nbs1mid8 (hereafter Nbnmid8) exhibits severely impaired binding to the Mre11-Rad50 core of the Mre11 complex. The Nbn mid8 allele was expressed exclusively in hematopoietic lineages (in Nbn -/mid8vav mice). Unlike Nbn flox/floxvav mice with Nbn deficiency in the bone marrow, Nbn -/mid8vav mice were viable. Nbn -/mid8vav mice hematopoiesis was profoundly defective, exhibiting reduced cellularity of thymus and bone marrow, and stage-specific blockage of B cell development. Within 6 mo, Nbn -/mid8 mice developed highly penetrant T cell leukemias. Nbn -/mid8vav leukemias recapitulated mutational features of human T cell acute lymphoblastic leukemia (T-ALL), containing mutations in NOTCH1, TP53, BCL6, BCOR, and IKZF1, suggesting that Nbn mid8 mice may provide a venue to examine the relationship between the Mre11 complex and oncogene activation in the hematopoietic compartment. Genomic analysis of Nbn -/mid8vav malignancies showed focal amplification of 9qA2, causing overexpression of MRE11 and CHK1 We propose that overexpression of MRE11 compensates for the metastable Mre11-Nbnmid8 interaction, and that selective pressure for overexpression reflects the essential role of Nbn in promoting assembly and activity of the Mre11 complex.
Collapse
|
14
|
Nicolas L, Cols M, Smolkin R, Fernandez KC, Yewdell WT, Yen WF, Zha S, Vuong BQ, Chaudhuri J. Cutting Edge: ATM Influences Germinal Center Integrity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 202:3137-3142. [PMID: 31028119 PMCID: PMC6529280 DOI: 10.4049/jimmunol.1801033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 04/09/2019] [Indexed: 01/21/2023]
Abstract
The DNA damage response protein ATM has long been known to influence class switch recombination in ex vivo-cultured B cells. However, an assessment of B cell-intrinsic requirement of ATM in humoral responses in vivo was confounded by the fact that its germline deletion affects T cell function, and B:T cell interactions are critical for in vivo immune responses. In this study, we demonstrate that B cell-specific deletion of ATM in mice leads to reduction in germinal center (GC) frequency and size in response to immunization. We find that loss of ATM induces apoptosis of GC B cells, likely due to unresolved DNA lesions in cells attempting to undergo class-switch recombination. Accordingly, suboptimal GC responses in ATM-deficient animals are characterized by decreased titers of class-switched Abs and decreased rates of somatic hypermutation. These results unmask the critical B cell-intrinsic role of ATM in maintaining an optimal GC response following immunization.
Collapse
Affiliation(s)
- Laura Nicolas
- Immunology Program, Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Montserrat Cols
- Immunology Program, Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Ryan Smolkin
- Immunology Program, Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Keith C Fernandez
- Immunology Program, Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY 10065
| | - William T Yewdell
- Immunology Program, Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Wei-Feng Yen
- Immunology Program, Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Shan Zha
- Institute for Cancer Genetics, Department of Pediatrics, Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032; and
| | - Bao Q Vuong
- Department of Biology, City College of New York, City University of New York, New York, NY 10031
| | - Jayanta Chaudhuri
- Immunology Program, Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065;
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY 10065
| |
Collapse
|
15
|
ATM, DNA-PKcs and ATR: shaping development through the regulation of the DNA damage responses. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s42764-019-00003-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
The Role for the DSB Response Pathway in Regulating Chromosome Translocations. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1044:65-87. [PMID: 29956292 DOI: 10.1007/978-981-13-0593-1_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In response to DNA double strand breaks (DSB), mammalian cells activate the DNA Damage Response (DDR), a network of factors that coordinate their detection, signaling and repair. Central to this network is the ATM kinase and its substrates at chromatin surrounding DSBs H2AX, MDC1 and 53BP1. In humans, germline inactivation of ATM causes Ataxia Telangiectasia (A-T), an autosomal recessive syndrome of increased proneness to hematological malignancies driven by clonal chromosomal translocations. Studies of cancers arising in A-T patients and in genetically engineered mouse models (GEMM) deficient for ATM and its substrates have revealed complex, multilayered roles for ATM in translocation suppression and identified functional redundancies between ATM and its substrates in this context. "Programmed" DSBs at antigen receptor loci in developing lymphocytes employ ubiquitous DDR factors for signaling and repair and have been particularly useful for mechanistic studies because they are region-specific and can be monitored in vitro and in vivo. In this context, murine thymocytes deficient for ATM recapitulate the molecular events that lead to transformation in T cells from A-T patients and provide a widely used model to study the mechanisms that suppress RAG recombinase-dependent translocations. Similarly, analyses of the fate of Activation induced Cytidine Deaminase (AID)-dependent DSBs during mature B cell Class Switch Recombination (CSR) have defined the genetic requirements for end-joining and translocation suppression in this setting. Moreover, a unique role for 53BP1 in the promotion of synapsis of distant DSBs has emerged from these studies.
Collapse
|
17
|
Lin SG, Ba Z, Alt FW, Zhang Y. RAG Chromatin Scanning During V(D)J Recombination and Chromatin Loop Extrusion are Related Processes. Adv Immunol 2018; 139:93-135. [PMID: 30249335 DOI: 10.1016/bs.ai.2018.07.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An effective adaptive immune system depends on the ability of developing B and T cells to generate diverse immunoglobulin (Ig) and T cell receptor repertoires, respectively. Such diversity is achieved through a programmed somatic recombination process whereby germline V, D, and J segments of antigen receptor loci are assembled to form the variable region V(D)J exons of Ig and TCRs. Studies of this process, termed V(D)J recombination, have provided key insights into our understanding of a variety of general gene regulatory and DNA repair processes over the last several decades. V(D)J recombination is initiated by the RAG endonuclease which generates DNA double-stranded breaks at the borders of V, D, and J segments. In this review, we cover recent work that has elucidated RAG structure and work that revealed that RAG has a novel chromatin scanning activity, likely mediated by chromatin loop extrusion, that contributes to its ability to locate V, D, J gene segment substrates within large chromosomal loop domains bounded by CTCF-binding elements (CBEs). This latter function, coupled with the role CBE-based chromatin loop domains and subdomains within them play in focusing V(D)J recombination activity within antigen receptor loci, provide mechanistic explanations for long-standing questions regarding V(D)J segment usage diversification and in limiting potentially deleterious off-target RAG-initiated recombination events genome-wide. This review will focus mainly on studies of the mouse Ig heavy chain locus, but the principles described also apply to other Ig loci and to TCR loci in mice and humans.
Collapse
Affiliation(s)
- Sherry G Lin
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, and Department of Genetics, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, United States
| | - Zhaoqing Ba
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, and Department of Genetics, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, United States
| | - Frederick W Alt
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, and Department of Genetics, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, United States.
| | - Yu Zhang
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, and Department of Genetics, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
18
|
Tan TK, Zhang C, Sanda T. Oncogenic transcriptional program driven by TAL1 in T-cell acute lymphoblastic leukemia. Int J Hematol 2018; 109:5-17. [PMID: 30145780 DOI: 10.1007/s12185-018-2518-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/21/2018] [Accepted: 08/06/2018] [Indexed: 12/12/2022]
Abstract
TAL1/SCL is a prime example of an oncogenic transcription factor that is abnormally expressed in acute leukemia due to the replacement of regulator elements. This gene has also been recognized as an essential regulator of hematopoiesis. TAL1 expression is strictly regulated in a lineage- and stage-specific manner. Such precise control is crucial for the switching of the transcriptional program. The misexpression of TAL1 in immature thymocytes leads to a widespread series of orchestrated downstream events that affect several different cellular machineries, resulting in a lethal consequence, namely T-cell acute lymphoblastic leukemia (T-ALL). In this article, we will discuss the transcriptional regulatory network and downstream target genes, including protein-coding genes and non-coding RNAs, controlled by TAL1 in normal hematopoiesis and T-cell leukemogenesis.
Collapse
Affiliation(s)
- Tze King Tan
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, 14 Medical Drive, #12-01, Singapore, 117599, Singapore
| | - Chujing Zhang
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, 14 Medical Drive, #12-01, Singapore, 117599, Singapore
| | - Takaomi Sanda
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, 14 Medical Drive, #12-01, Singapore, 117599, Singapore. .,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore.
| |
Collapse
|
19
|
Zaki-Dizaji M, Akrami SM, Abolhassani H, Rezaei N, Aghamohammadi A. Ataxia telangiectasia syndrome: moonlighting ATM. Expert Rev Clin Immunol 2017; 13:1155-1172. [PMID: 29034753 DOI: 10.1080/1744666x.2017.1392856] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Ataxia-telangiectasia (A-T) a multisystem disorder primarily characterized by cerebellar degeneration, telangiectasia, immunodeficiency, cancer susceptibility and radiation sensitivity. Identification of the gene defective in this syndrome, ataxia-telangiectasia mutated gene (ATM), and further characterization of the disorder together with a greater insight into the function of the ATM protein have expanded our knowledge about the molecular pathogenesis of this disease. Area covered: In this review, we have attempted to summarize the different roles of ATM signaling that have provided new insights into the diverse clinical phenotypes exhibited by A-T patients. Expert commentary: ATM, in addition to DNA repair response, is involved in many cytoplasmic roles that explain diverse phenotypes of A-T patients. It seems accumulation of DNA damage, persistent DNA damage response signaling, and chronic oxidative stress are the main players in the pathogenesis of this disease.
Collapse
Affiliation(s)
- Majid Zaki-Dizaji
- a Department of Medical Genetics, School of Medicine , Tehran University of Medical Sciences , Tehran , Iran.,b Research Center for Immunodeficiencies, Children's Medical Center , Tehran University of Medical Science , Tehran , Iran
| | - Seyed Mohammad Akrami
- a Department of Medical Genetics, School of Medicine , Tehran University of Medical Sciences , Tehran , Iran
| | - Hassan Abolhassani
- b Research Center for Immunodeficiencies, Children's Medical Center , Tehran University of Medical Science , Tehran , Iran.,c Division of Clinical Immunology, Department of Laboratory Medicine , Karolinska Institute at Karolinska University Hospital Huddinge , Stockholm , Sweden.,d Primary Immunodeficiency Diseases Network (PIDNet ), Universal Scientific Education and Research Network (USERN) , Stockholm , Sweden
| | - Nima Rezaei
- b Research Center for Immunodeficiencies, Children's Medical Center , Tehran University of Medical Science , Tehran , Iran.,e Department of Immunology and Biology, School of Medicine , Tehran University of Medical Sciences , Tehran , Iran.,f Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA) , Universal Scientific Education and Research Network (USERN) , Tehran , Iran
| | - Asghar Aghamohammadi
- b Research Center for Immunodeficiencies, Children's Medical Center , Tehran University of Medical Science , Tehran , Iran
| |
Collapse
|
20
|
Sanda T, Leong WZ. TAL1 as a master oncogenic transcription factor in T-cell acute lymphoblastic leukemia. Exp Hematol 2017; 53:7-15. [PMID: 28652130 DOI: 10.1016/j.exphem.2017.06.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 06/11/2017] [Indexed: 11/29/2022]
Abstract
In hematopoietic cell development, the transcriptional program is strictly regulated in a lineage- and stage-specific manner that requires a number of transcription factors to work in a cascade or in a loop, in addition to interactions with nonhematopoietic cells in the microenvironment. Disruption of the transcriptional program alters the cellular state and may predispose cells to the acquisition of genetic abnormalities. Early studies have shown that proteins that promote cell differentiation often serve as tumor suppressors, whereas inhibitors of those proteins act as oncogenes in the context of acute leukemia. A prime example is T-cell acute lymphoblastic leukemia (T-ALL), a malignant disorder characterized by clonal proliferation of immature stage thymocytes. Although a relatively small number of genetic abnormalities are observed in T-ALL, these abnormalities are crucial for leukemogenesis. Many oncogenes and tumor suppressors in T-ALL are transcription factors that are required for normal hematopoiesis. The transformation process in T-ALL is efficient and orchestrated; the oncogene disrupts the transcriptional program directing T-cell differentiation and also uses its native ability as a master transcription factor in hematopoiesis. This imbalance in the transcriptional program is a primary determinant underlying the molecular pathogenesis of T-ALL. In this review, we focus on the oncogenic transcription factor TAL1 and the tumor-suppressor E-proteins and discuss the malignant cell state, the transcriptional circuit, and the consequence of molecular abnormalities in T-ALL.
Collapse
Affiliation(s)
- Takaomi Sanda
- Cancer Science Institute of Singapore, National University of Singapore, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Wei Zhong Leong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| |
Collapse
|
21
|
New diagnosis of atypical ataxia-telangiectasia in a 17-year-old boy with T-cell acute lymphoblastic leukemia and a novel ATM mutation. J Hum Genet 2017; 62:581-584. [PMID: 28123174 PMCID: PMC5404952 DOI: 10.1038/jhg.2017.6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/25/2016] [Accepted: 01/03/2017] [Indexed: 01/09/2023]
Abstract
Ataxia-telangiectasia (A-T) is an autosomal recessive chromosome breakage
disorder caused by mutations in the ATM gene. Typically it
presents in early childhood with progressive cerebellar dysfunction along with
immunodeficiency and oculocutaneous telangiectasia. An increased risk of
malignancy is also associated with the syndrome and, rarely, may be the
presenting feature in small children. We describe a 17-year-old boy with slurred
speech, mild motor delays and learning disability diagnosed with atypical A-T in
the setting of T-cell acute lymphoblastic leukemia. Suspicion for A-T was raised
after review of a peripheral blood karyotype demonstrating rearrangements
involving chromosomes 7 and/or 14. The diagnosis was confirmed after molecular
testing identified a novel homozygous missense variant in ATM
(c.5585T>A; p.Leu1862His) that resulted in protein instability and
abolished serine/threonine protein kinase activity. To our knowledge, this is
the first report of concurrent A-T and lymphoid malignancy diagnoses in an older
child or adult with only mild neurological disease. Our experience suggests that
screening for the disorder should be considered in any individual with lymphoid
malignancy and neurological findings, especially as radiation and certain
chemotherapy protocols are contraindicated in A-T.
Collapse
|
22
|
Rothblum-Oviatt C, Wright J, Lefton-Greif MA, McGrath-Morrow SA, Crawford TO, Lederman HM. Ataxia telangiectasia: a review. Orphanet J Rare Dis 2016; 11:159. [PMID: 27884168 PMCID: PMC5123280 DOI: 10.1186/s13023-016-0543-7] [Citation(s) in RCA: 389] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 11/16/2016] [Indexed: 12/15/2022] Open
Abstract
DEFINITION OF THE DISEASE Ataxia telangiectasia (A-T) is an autosomal recessive disorder primarily characterized by cerebellar degeneration, telangiectasia, immunodeficiency, cancer susceptibility and radiation sensitivity. A-T is often referred to as a genome instability or DNA damage response syndrome. EPIDEMIOLOGY The world-wide prevalence of A-T is estimated to be between 1 in 40,000 and 1 in 100,000 live births. CLINICAL DESCRIPTION A-T is a complex disorder with substantial variability in the severity of features between affected individuals, and at different ages. Neurological symptoms most often first appear in early childhood when children begin to sit or walk. They have immunological abnormalities including immunoglobulin and antibody deficiencies and lymphopenia. People with A-T have an increased predisposition for cancers, particularly of lymphoid origin. Pulmonary disease and problems with feeding, swallowing and nutrition are common, and there also may be dermatological and endocrine manifestations. ETIOLOGY A-T is caused by mutations in the ATM (Ataxia Telangiectasia, Mutated) gene which encodes a protein of the same name. The primary role of the ATM protein is coordination of cellular signaling pathways in response to DNA double strand breaks, oxidative stress and other genotoxic stress. DIAGNOSIS The diagnosis of A-T is usually suspected by the combination of neurologic clinical features (ataxia, abnormal control of eye movement, and postural instability) with one or more of the following which may vary in their appearance: telangiectasia, frequent sinopulmonary infections and specific laboratory abnormalities (e.g. IgA deficiency, lymphopenia especially affecting T lymphocytes and increased alpha-fetoprotein levels). Because certain neurological features may arise later, a diagnosis of A-T should be carefully considered for any ataxic child with an otherwise elusive diagnosis. A diagnosis of A-T can be confirmed by the finding of an absence or deficiency of the ATM protein or its kinase activity in cultured cell lines, and/or identification of the pathological mutations in the ATM gene. DIFFERENTIAL DIAGNOSIS There are several other neurologic and rare disorders that physicians must consider when diagnosing A-T and that can be confused with A-T. Differentiation of these various disorders is often possible with clinical features and selected laboratory tests, including gene sequencing. ANTENATAL DIAGNOSIS Antenatal diagnosis can be performed if the pathological ATM mutations in that family have been identified in an affected child. In the absence of identifying mutations, antenatal diagnosis can be made by haplotype analysis if an unambiguous diagnosis of the affected child has been made through clinical and laboratory findings and/or ATM protein analysis. GENETIC COUNSELING Genetic counseling can help family members of a patient with A-T understand when genetic testing for A-T is feasible, and how the test results should be interpreted. MANAGEMENT AND PROGNOSIS Treatment of the neurologic problems associated with A-T is symptomatic and supportive, as there are no treatments known to slow or stop the neurodegeneration. However, other manifestations of A-T, e.g. immunodeficiency, pulmonary disease, failure to thrive and diabetes can be treated effectively.
Collapse
Affiliation(s)
| | - Jennifer Wright
- The Ataxia Telangiectasia Clinical Center, Johns Hopkins Medical Institutions, Baltimore, Maryland USA
| | - Maureen A. Lefton-Greif
- The Ataxia Telangiectasia Clinical Center, Departments of Pediatrics and Pediatric Respiratory Sciences, Johns Hopkins Medical Institutions, Baltimore, Maryland USA
| | - Sharon A. McGrath-Morrow
- The Ataxia Telangiectasia Clinical Center, Departments of Pediatrics and Pediatric Respiratory Sciences, Johns Hopkins Medical Institutions, Baltimore, Maryland USA
| | - Thomas O. Crawford
- The Ataxia Telangiectasia Clinical Center, Departments of Pediatrics and Neurology, Johns Hopkins Medical Institutions, Baltimore, Maryland USA
| | - Howard M. Lederman
- The Ataxia Telangiectasia Clinical Center, Departments of Pediatrics, Medicine and Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland USA
| |
Collapse
|
23
|
Yue Y, Leung SG, Liu Y, Huang Y, Grundt K, Østvold AC, Jen KY, Schild D, Mao JH, Wiese C. Nucks1 synergizes with Trp53 to promote radiation lymphomagenesis in mice. Oncotarget 2016; 7:61874-61889. [PMID: 27542204 PMCID: PMC5308697 DOI: 10.18632/oncotarget.11297] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 08/01/2016] [Indexed: 12/22/2022] Open
Abstract
NUCKS1 is a 27 kD vertebrate-specific protein, with a role in the DNA damage response. Here, we show that after 4 Gy total-body X-irradiation, Trp53+/- Nucks1+/- mice more rapidly developed tumors, particularly thymic lymphoma (TL), than Trp53+/- mice. TLs in both cohorts showed loss of heterozygosity (LOH) of the Trp53+ allele in essentially all cases. In contrast, LOH of the Nucks1+ allele was rare. Nucks1 expression correlated well with Nucks1 gene dosage in normal thymi, but was increased in the majority of TLs from Trp53+/- Nucks1+/- mice, suggesting that elevated Nucks1 message may be associated with progression towards malignancy in vivo. Trp53+/- Nucks1+/- mice frequently succumbed to CD4- CD8- TLs harboring translocations involving Igh but not Tcra/d, indicating TLs in Trp53+/- Nucks1+/- mice mostly originated prior to the double positive stage and at earlier lineage than TLs in Trp53+/- mice. Monoclonal rearrangements at Tcrb were more prevalent in TLs from Trp53+/- Nucks1+/- mice, as was infiltration of primary TL cells to distant organs (liver, kidney and spleen). We propose that, in the context of Trp53 deficiency, wild type levels of Nucks1 are required to suppress radiation-induced TL, likely through the role of the NUCKS1 protein in the DNA damage response.
Collapse
Affiliation(s)
- Yangbo Yue
- Department of Organismal Systems and Bioresilience, Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Present address: Department of Dermatology, University of Texas, Southwestern Medical Center, Dallas, TX 75390, USA
| | - Stanley G. Leung
- Department of Organismal Systems and Bioresilience, Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Yueyong Liu
- Department of Organismal Systems and Bioresilience, Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Yurong Huang
- Department of Organismal Systems and Bioresilience, Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kirsten Grundt
- Department of Molecular Medicine, Institute of Basic Medical Science, University of Oslo, 0317 Oslo, Norway
| | - Anne-Carine Østvold
- Department of Molecular Medicine, Institute of Basic Medical Science, University of Oslo, 0317 Oslo, Norway
| | - Kuang-Yu Jen
- Department of Pathology and Laboratory Medicine, University of California, Davis, CA 95817, USA
| | - David Schild
- Department of Organismal Systems and Bioresilience, Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jian-Hua Mao
- Department of Organismal Systems and Bioresilience, Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Claudia Wiese
- Department of Organismal Systems and Bioresilience, Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
24
|
Yamamoto K, Wang J, Sprinzen L, Xu J, Haddock CJ, Li C, Lee BJ, Loredan DG, Jiang W, Vindigni A, Wang D, Rabadan R, Zha S. Kinase-dead ATM protein is highly oncogenic and can be preferentially targeted by Topo-isomerase I inhibitors. eLife 2016; 5. [PMID: 27304073 PMCID: PMC4957979 DOI: 10.7554/elife.14709] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 06/14/2016] [Indexed: 12/20/2022] Open
Abstract
Missense mutations in ATM kinase, a master regulator of DNA damage responses, are found in many cancers, but their impact on ATM function and implications for cancer therapy are largely unknown. Here we report that 72% of cancer-associated ATM mutations are missense mutations that are enriched around the kinase domain. Expression of kinase-dead ATM (Atm(KD/-)) is more oncogenic than loss of ATM (Atm(-/-)) in mouse models, leading to earlier and more frequent lymphomas with Pten deletions. Kinase-dead ATM protein (Atm-KD), but not loss of ATM (Atm-null), prevents replication-dependent removal of Topo-isomerase I-DNA adducts at the step of strand cleavage, leading to severe genomic instability and hypersensitivity to Topo-isomerase I inhibitors. Correspondingly, Topo-isomerase I inhibitors effectively and preferentially eliminate Atm(KD/-), but not Atm-proficientor Atm(-/-) leukemia in animal models. These findings identify ATM kinase-domain missense mutations as a potent oncogenic event and a biomarker for Topo-isomerase I inhibitor based therapy.
Collapse
Affiliation(s)
- Kenta Yamamoto
- Institute for Cancer Genetics, Columbia Unviersity, New York, United States.,Department of Pathology and Cell Biology, Columbia University, New York, United States.,College of Physicians and Surgeons, Columbia University, New York, United States.,Pathobiology and Molecular Medicine Graduate Program, Columbia University, New York, United States
| | - Jiguang Wang
- Department of Biomedical Informatics, Columbia University, New York, United States.,Department of Systems Biology, Columbia University, New York, United States.,College of Physicians & Surgeons, Columbia University, New York, United States
| | - Lisa Sprinzen
- Institute for Cancer Genetics, Columbia Unviersity, New York, United States.,Department of Pathology and Cell Biology, Columbia University, New York, United States.,College of Physicians and Surgeons, Columbia University, New York, United States.,Pathobiology and Molecular Medicine Graduate Program, Columbia University, New York, United States
| | - Jun Xu
- Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California San Diego, La Jolla, United States
| | - Christopher J Haddock
- Edward A Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, United States
| | - Chen Li
- Institute for Cancer Genetics, Columbia Unviersity, New York, United States.,Department of Pathology and Cell Biology, Columbia University, New York, United States.,College of Physicians and Surgeons, Columbia University, New York, United States
| | - Brian J Lee
- Institute for Cancer Genetics, Columbia Unviersity, New York, United States.,Department of Pathology and Cell Biology, Columbia University, New York, United States.,College of Physicians and Surgeons, Columbia University, New York, United States
| | - Denis G Loredan
- Institute for Cancer Genetics, Columbia Unviersity, New York, United States.,Department of Pathology and Cell Biology, Columbia University, New York, United States.,College of Physicians and Surgeons, Columbia University, New York, United States
| | - Wenxia Jiang
- Institute for Cancer Genetics, Columbia Unviersity, New York, United States.,Department of Pathology and Cell Biology, Columbia University, New York, United States.,College of Physicians and Surgeons, Columbia University, New York, United States
| | - Alessandro Vindigni
- Edward A Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, United States
| | - Dong Wang
- Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California San Diego, La Jolla, United States
| | - Raul Rabadan
- Department of Biomedical Informatics, Columbia University, New York, United States.,Department of Systems Biology, Columbia University, New York, United States.,College of Physicians & Surgeons, Columbia University, New York, United States
| | - Shan Zha
- Institute for Cancer Genetics, Columbia Unviersity, New York, United States.,Department of Pathology and Cell Biology, Columbia University, New York, United States.,College of Physicians and Surgeons, Columbia University, New York, United States.,Division of Pediatric Oncology, Hematology and Stem Cell Transplantation, Columbia University, New York, United States.,Department of Pediatrics, Columbia University, New York, United States.,College of Physicians & Surgeons, Columbia University, New York, United States
| |
Collapse
|
25
|
Neal JA, Xu Y, Abe M, Hendrickson E, Meek K. Restoration of ATM Expression in DNA-PKcs-Deficient Cells Inhibits Signal End Joining. THE JOURNAL OF IMMUNOLOGY 2016; 196:3032-42. [PMID: 26921311 DOI: 10.4049/jimmunol.1501654] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 01/26/2016] [Indexed: 11/19/2022]
Abstract
Unlike most DNA-dependent protein kinase, catalytic subunit (DNA-PKcs)-deficient mouse cell strains, we show in the present study that targeted deletion of DNA-PKcs in two different human cell lines abrogates VDJ signal end joining in episomal assays. Although the mechanism is not well defined, DNA-PKcs deficiency results in spontaneous reduction of ATM expression in many cultured cell lines (including those examined in this study) and in DNA-PKcs-deficient mice. We considered that varying loss of ATM expression might explain differences in signal end joining in different cell strains and animal models, and we investigated the impact of ATM and/or DNA-PKcs loss on VDJ recombination in cultured human and rodent cell strains. To our surprise, in DNA-PKcs-deficient mouse cell strains that are proficient in signal end joining, restoration of ATM expression markedly inhibits signal end joining. In contrast, in DNA-PKcs-deficient cells that are deficient in signal end joining, complete loss of ATM enhances signal (but not coding) joint formation. We propose that ATM facilitates restriction of signal ends to the classical nonhomologous end-joining pathway.
Collapse
Affiliation(s)
- Jessica A Neal
- Department of Microbiology and Molecular Genetics, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824; Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824
| | - Yao Xu
- Department of Microbiology and Molecular Genetics, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824; Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824
| | - Masumi Abe
- National Institute of Radiological Sciences, Chiba 263-8555, Japan; and
| | - Eric Hendrickson
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Katheryn Meek
- Department of Microbiology and Molecular Genetics, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824; Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824;
| |
Collapse
|
26
|
Lescale C, Abramowski V, Bedora-Faure M, Murigneux V, Vera G, Roth DB, Revy P, de Villartay JP, Deriano L. RAG2 and XLF/Cernunnos interplay reveals a novel role for the RAG complex in DNA repair. Nat Commun 2016; 7:10529. [PMID: 26833222 PMCID: PMC4740868 DOI: 10.1038/ncomms10529] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 12/22/2015] [Indexed: 12/22/2022] Open
Abstract
XRCC4-like factor (XLF) functions in classical non-homologous end-joining (cNHEJ) but is dispensable for the repair of DNA double-strand breaks (DSBs) generated during V(D)J recombination. A long-standing hypothesis proposes that, in addition to its canonical nuclease activity, the RAG1/2 proteins participate in the DNA repair phase of V(D)J recombination. Here we show that in the context of RAG2 lacking the C-terminus domain (Rag2c/c mice), XLF deficiency leads to a profound lymphopenia associated with a severe defect in V(D)J recombination and, in the absence of p53, increased genomic instability at V(D)J sites. In addition, Rag2c/cXLF−/−p53−/− mice develop aggressive pro-B cell lymphomas bearing complex chromosomal translocations and gene amplifications involving Igh and c-myc/pvt1 loci. Our results reveal an unanticipated functional interplay between the RAG complex and XLF in repairing RAG-induced DSBs and maintaining genome integrity during antigen receptor gene assembly. Antigen receptor diversity relies on careful DNA cleavage and repair. Here the authors identify a functional interplay between RAG2 and XLF during V(D)J recombination, revealing an important role for the RAG complex in repairing induced DNA double-strand breaks and maintaining genome integrity.
Collapse
Affiliation(s)
- Chloé Lescale
- Departments of Immunology and Genomes and Genetics, Institut Pasteur, CNRS-URA 1961, Paris 75015, France
| | - Vincent Abramowski
- Laboratory of Genome Dynamics in the Immune System, INSERM UMR1163, Université Paris Descartes Sorbonne Paris Cité, Institut Imagine, Paris 75015, France
| | - Marie Bedora-Faure
- Departments of Immunology and Genomes and Genetics, Institut Pasteur, CNRS-URA 1961, Paris 75015, France
| | - Valentine Murigneux
- Departments of Immunology and Genomes and Genetics, Institut Pasteur, CNRS-URA 1961, Paris 75015, France
| | - Gabriella Vera
- Laboratory of Genome Dynamics in the Immune System, INSERM UMR1163, Université Paris Descartes Sorbonne Paris Cité, Institut Imagine, Paris 75015, France
| | - David B Roth
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Patrick Revy
- Laboratory of Genome Dynamics in the Immune System, INSERM UMR1163, Université Paris Descartes Sorbonne Paris Cité, Institut Imagine, Paris 75015, France
| | - Jean-Pierre de Villartay
- Laboratory of Genome Dynamics in the Immune System, INSERM UMR1163, Université Paris Descartes Sorbonne Paris Cité, Institut Imagine, Paris 75015, France
| | - Ludovic Deriano
- Departments of Immunology and Genomes and Genetics, Institut Pasteur, CNRS-URA 1961, Paris 75015, France
| |
Collapse
|
27
|
Prochazkova J, Loizou JI. Programmed DNA breaks in lymphoid cells: repair mechanisms and consequences in human disease. Immunology 2016; 147:11-20. [PMID: 26455503 PMCID: PMC4988471 DOI: 10.1111/imm.12547] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 10/05/2015] [Accepted: 10/06/2015] [Indexed: 01/08/2023] Open
Abstract
In recent years, several novel congenital human disorders have been described with defects in lymphoid B-cell and T-cell functions that arise due to mutations in known and/or novel components of DNA repair and damage response pathways. Examples include impaired DNA double-strand break repair, as well as compromised DNA damage-induced signal transduction, including phosphorylation and ubiquitination. These disorders reinforce the importance of genome stability pathways in the development of lymphoid cells in humans. Furthermore, these conditions inform our knowledge of the biology of the mechanisms of genome stability and in some cases may provide potential routes to help exploit these pathways therapeutically. Here we review the mechanisms that repair programmed DNA lesions that occur during B-cell and T-cell development, as well as human diseases that arise through defects in these pathways.
Collapse
Affiliation(s)
- Jana Prochazkova
- CeMM Research Centre for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Joanna I. Loizou
- CeMM Research Centre for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| |
Collapse
|
28
|
Prochazkova J, Sakaguchi S, Owusu M, Mazouzi A, Wiedner M, Velimezi G, Moder M, Turchinovich G, Hladik A, Gurnhofer E, Hayday A, Behrens A, Knapp S, Kenner L, Ellmeier W, Loizou JI. DNA Repair Cofactors ATMIN and NBS1 Are Required to Suppress T Cell Activation. PLoS Genet 2015; 11:e1005645. [PMID: 26544571 PMCID: PMC4636180 DOI: 10.1371/journal.pgen.1005645] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 10/12/2015] [Indexed: 12/11/2022] Open
Abstract
Proper development of the immune system is an intricate process dependent on many factors, including an intact DNA damage response. The DNA double-strand break signaling kinase ATM and its cofactor NBS1 are required during T cell development and for the maintenance of genomic stability. The role of a second ATM cofactor, ATMIN (also known as ASCIZ) in T cells is much less clear, and whether ATMIN and NBS1 function in synergy in T cells is unknown. Here, we investigate the roles of ATMIN and NBS1, either alone or in combination, using murine models. We show loss of NBS1 led to a developmental block at the double-positive stage of T cell development, as well as reduced TCRα recombination, that was unexpectedly neither exacerbated nor alleviated by concomitant loss of ATMIN. In contrast, loss of both ATMIN and NBS1 enhanced DNA damage that drove spontaneous peripheral T cell hyperactivation, proliferation as well as excessive production of proinflammatory cytokines and chemokines, leading to a highly inflammatory environment. Intriguingly, the disease causing T cells were largely proficient for both ATMIN and NBS1. In vivo this resulted in severe intestinal inflammation, colitis and premature death. Our findings reveal a novel model for an intestinal bowel disease phenotype that occurs upon combined loss of the DNA repair cofactors ATMIN and NBS1.
Collapse
Affiliation(s)
- Jana Prochazkova
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Shinya Sakaguchi
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Vienna, Austria
| | - Michel Owusu
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Abdelghani Mazouzi
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Marc Wiedner
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Georgia Velimezi
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Martin Moder
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Gleb Turchinovich
- London Research Institute, Cancer Research UK, London, United Kingdom
| | - Anastasiya Hladik
- Department of Medicine I, Laboratory of Infection Biology, Medical University of Vienna, Vienna, Austria
| | - Elisabeth Gurnhofer
- Clinical Institute for Pathology, Medical University Vienna, Vienna, Austria
| | - Adrian Hayday
- London Research Institute, Cancer Research UK, London, United Kingdom
| | - Axel Behrens
- London Research Institute, Cancer Research UK, London, United Kingdom
| | - Sylvia Knapp
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Department of Medicine I, Laboratory of Infection Biology, Medical University of Vienna, Vienna, Austria
| | - Lukas Kenner
- Clinical Institute for Pathology, Medical University Vienna, Vienna, Austria
| | - Wilfried Ellmeier
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Vienna, Austria
| | - Joanna I. Loizou
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| |
Collapse
|
29
|
Majumder K, Bassing CH, Oltz EM. Regulation of Tcrb Gene Assembly by Genetic, Epigenetic, and Topological Mechanisms. Adv Immunol 2015; 128:273-306. [PMID: 26477369 DOI: 10.1016/bs.ai.2015.07.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The adaptive immune system endows mammals with an ability to recognize nearly any foreign invader through antigen receptors that are expressed on the surface of all lymphocytes. This defense network is generated by V(D)J recombination, a set of sequentially controlled DNA cleavage and repair events that assemble antigen receptor genes from physically separated variable (V), joining (J), and sometimes diversity (D) gene segments. The recombination process itself must be stringently regulated to minimize oncogenic translocations involving chromosomes that harbor immunoglobulin and T cell receptor loci. Indeed, V(D)J recombination is controlled at several levels, including tissue-, developmental stage-, allele-, and gene segment-specificity. These levels of control are imposed by a collection of architectural and regulatory elements that are distributed throughout each antigen receptor locus. Together, the genetic elements regulate developmental changes in chromatin, transcription, and locus topology that promote or disfavor long-range recombination. This chapter focuses on the cross talk between these mechanisms at the T cell receptor beta (Tcrb) locus, and how they sculpt a diverse TCRβ repertoire while maintaining monospecificity of this antigen receptor on each mature T lymphocyte. We also discuss how insights obtained from studies of Tcrb are more generally relevant to our understanding of gene regulation strategies employed by mammals.
Collapse
Affiliation(s)
- Kinjal Majumder
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Craig H Bassing
- Division of Cancer Pathobiology, Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA; Abramson Family Cancer Research Institute, Cell and Molecular Biology Graduate Program, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Eugene M Oltz
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA.
| |
Collapse
|
30
|
Pinkney KA, Jiang W, Lee BJ, Loredan DG, Li C, Bhagat G, Zha S. Haploinsufficiency of Bcl11b suppresses the progression of ATM-deficient T cell lymphomas. J Hematol Oncol 2015. [PMID: 26219558 PMCID: PMC4518599 DOI: 10.1186/s13045-015-0191-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Bcl11b is a transcription factor important for T cell development and also a tumor-suppressor gene that is hemizygously inactivated in ~10% human T cell acute lymphoblastic leukemia (T-ALL) and several murine T-ALL models, including ATM(-/-) thymic lymphomas. Here we report that heterozygous loss of Bcl11b (Bcl11b(+/-)) unexpectedly reduced lethal thymic lymphoma in ATM(-/-) mice by suppressing lymphoma progression, but not initiation. The suppression was associated with a T cell-mediated immune response in ATM(-/-)Bcl11b(+/-) mice, revealing a haploid insufficient function of Bcl11b in immune modulation against lymphoma and offering an explanation for the complex relationship between Bcl11b status with T-ALL prognosis.
Collapse
Affiliation(s)
- Kerice A Pinkney
- Department of Pediatrics, Division of Hematology, Oncology and Stem Cell Transplantation, Columbia University, 1130 St Nicholas Ave, New York, NY, 10032, USA. .,Current address: Joe DiMaggio's Children's Hospital, 1150 North 35th Avenue, Suite 100, Hollywood, FL, 33021, USA.
| | - Wenxia Jiang
- Institute for Cancer Genetics, Columbia University, 1130 St Nicholas Ave, RM 503B, New York, NY, 10032, USA. .,Herbert Irving Comprehensive Cancer Research Center, Columbia University, 1130 St Nicholas Ave, New York, NY, 10032, USA.
| | - Brian J Lee
- Institute for Cancer Genetics, Columbia University, 1130 St Nicholas Ave, RM 503B, New York, NY, 10032, USA.
| | - Denis G Loredan
- Institute for Cancer Genetics, Columbia University, 1130 St Nicholas Ave, RM 503B, New York, NY, 10032, USA.
| | - Chen Li
- Institute for Cancer Genetics, Columbia University, 1130 St Nicholas Ave, RM 503B, New York, NY, 10032, USA.
| | - Govind Bhagat
- Herbert Irving Comprehensive Cancer Research Center, Columbia University, 1130 St Nicholas Ave, New York, NY, 10032, USA. .,Department of Pathology and Cell Biology, College for Physicians and Surgeons, Columbia University, 1130 St Nicholas Ave, New York, NY, 10032, USA.
| | - Shan Zha
- Institute for Cancer Genetics, Columbia University, 1130 St Nicholas Ave, RM 503B, New York, NY, 10032, USA. .,Herbert Irving Comprehensive Cancer Research Center, Columbia University, 1130 St Nicholas Ave, New York, NY, 10032, USA. .,Department of Pediatrics, Division of Hematology, Oncology and Stem Cell Transplantation, Columbia University, 1130 St Nicholas Ave, New York, NY, 10032, USA. .,Department of Pathology and Cell Biology, College for Physicians and Surgeons, Columbia University, 1130 St Nicholas Ave, New York, NY, 10032, USA.
| |
Collapse
|
31
|
Yamamoto K, Lee BJ, Li C, Dubois RL, Hobeika E, Bhagat G, Zha S. Early B-cell-specific inactivation of ATM synergizes with ectopic CyclinD1 expression to promote pre-germinal center B-cell lymphomas in mice. Leukemia 2015; 29:1414-24. [PMID: 25676421 PMCID: PMC5282516 DOI: 10.1038/leu.2015.41] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/22/2015] [Accepted: 02/06/2015] [Indexed: 01/12/2023]
Abstract
Ataxia telangiectasia-mutated (ATM) kinase is a master regulator of the DNA damage response. ATM is frequently inactivated in human B-cell non-Hodgkin lymphomas, including ~50% of mantle cell lymphomas (MCLs) characterized by ectopic expression of CyclinD1. Here we report that early and robust deletion of ATM in precursor/progenitor B cells causes cell autonomous, clonal mature B-cell lymphomas of both pre- and post-germinal center (GC) origins. Unexpectedly, naive B-cell-specific deletion of ATM is not sufficient to induce lymphomas in mice, highlighting the important tumor suppressor function of ATM in immature B cells. Although EμCyclinD1 is not sufficient to induce lymphomas, EμCyclinD1 accelerates the kinetics and increases the incidence of clonal lymphomas in ATM-deficient B-cells and skews the lymphomas toward pre-GC-derived small lymphocytic neoplasms, sharing morphological features of human MCL. This is in part due to CyclinD1-driven expansion of ATM-deficient naive B cells with genomic instability, which promotes the deletions of additional tumor suppressor genes (i.e. Trp53, Mll2, Rb1 and Cdkn2a). Together these findings define a synergistic function of ATM and CyclinD1 in pre-GC B-cell proliferation and lymphomagenesis and provide a prototypic animal model to study the pathogenesis of human MCL.
Collapse
Affiliation(s)
- Kenta Yamamoto
- Institute for Cancer Genetics, College for Physicians and Surgeons, Columbia University, New York, NY 10032
- Graduate Program for Pathobiology and Molecular Medicine, College for Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Brian J. Lee
- Institute for Cancer Genetics, College for Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Chen Li
- Institute for Cancer Genetics, College for Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Richard L. Dubois
- Institute for Cancer Genetics, College for Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Elias Hobeika
- Centre for Biological Signaling Studies BIOSS, Albert-Ludwigs-Universität Freiburg, Department of Molecular Immunology, Faculty of Biology, Albert-Ludwigs-Universität Freiburg and Max Planck Institute for Immunobiology, Stübeweg 51, 79108 Freiburg, Germany
| | - Govind Bhagat
- Department of Pathology and Cell Biology, College for Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Shan Zha
- Institute for Cancer Genetics, College for Physicians and Surgeons, Columbia University, New York, NY 10032
- Department of Pathology and Cell Biology, College for Physicians and Surgeons, Columbia University, New York, NY 10032
- Department of Pediatrics, College for Physicians and Surgeons, Columbia University, New York, NY 10032
| |
Collapse
|
32
|
Aberrant TCRδ rearrangement underlies the T-cell lymphocytopenia and t(12;14) translocation associated with ATM deficiency. Blood 2015; 125:2665-8. [PMID: 25721125 DOI: 10.1182/blood-2015-01-622621] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 02/21/2015] [Indexed: 11/20/2022] Open
Abstract
Ataxia telangiectasia mutated (ATM) is a protein kinase and a master regulator of DNA-damage responses. Germline ATM inactivation causes ataxia-telangiectasia (A-T) syndrome with severe lymphocytopenia and greatly increased risk for T-cell lymphomas/leukemia. Both A-T and T-cell prolymphoblastic leukemia patients with somatic mutations of ATM frequently carry inv(14;14) between the T-cell receptor α/δ (TCRα/δ) and immunoglobulin H loci, but the molecular origin of this translocation remains elusive. ATM(-/-) mice recapitulate lymphocytopenia of A-T patients and routinely succumb to thymic lymphomas with t(12;14) translocation, syntenic to inv(14;14) in humans. Here we report that deletion of the TCRδ enhancer (Eδ), which initiates TCRδ rearrangement, significantly improves αβ T cell output and effectively prevents t(12;14) translocations in ATM(-/-) mice. These findings identify the genomic instability associated with V(D)J recombination at the TCRδ locus as the molecular origin of both lymphocytopenia and the signature t(12;14) translocations associated with ATM deficiency.
Collapse
|
33
|
Ehrlich LA, Yang-Iott K, DeMicco A, Bassing CH. Somatic inactivation of ATM in hematopoietic cells predisposes mice to cyclin D3 dependent T cell acute lymphoblastic leukemia. Cell Cycle 2015; 14:388-98. [PMID: 25659036 PMCID: PMC4614830 DOI: 10.4161/15384101.2014.988020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 11/07/2014] [Indexed: 11/19/2022] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a cancer of immature T cells that exhibits heterogeneity of oncogenic lesions, providing an obstacle for development of more effective and less toxic therapies. Inherited deficiency of ATM, a regulator of the cellular DNA damage response, predisposes young humans and mice to T-ALLs with clonal chromosome translocations. While acquired ATM mutation or deletion occurs in pediatric T-ALLs, the role of somatic ATM alterations in T-ALL pathogenesis remains unknown. We demonstrate here that somatic Atm inactivation in haematopoietic cells starting as these cells differentiate in utero predisposes mice to T-ALL at similar young ages and harboring analogous translocations as germline Atm-deficient mice. However, some T-ALLs from haematopoietic cell specific deletion of Atm were of more mature thymocytes, revealing that the developmental timing and celluar origin of Atm inactivation influences the phenotype of ATM-deficient T-ALLs. Although it has been hypothesized that ATM suppresses cancer by preventing deletion and inactivation of TP53, we find that Atm inhibits T-ALL independent of Tp53 deletion. Finally, we demonstrate that the Cyclin D3 protein that drives immature T cell proliferation is essential for transformation of Atm-deficient thymocytes. Our study establishes a pre-clinical model for pediatric T-ALLs with acquired ATM inactivation and identifies the cell cycle machinery as a therapeutic target for this aggressive childhood T-ALL subtype.
Collapse
Affiliation(s)
- Lori A Ehrlich
- Division of Oncology, Department of Pediatrics; Children's Hospital of Philadelphia; Philadelphia, PA USA
- Division of Cancer Pathobiology; Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia; Philadelphia, PA USA
- Abramson Family Cancer Research Institute; Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania; Philadelphia, PA USA
| | - Katherine Yang-Iott
- Division of Cancer Pathobiology; Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia; Philadelphia, PA USA
- Abramson Family Cancer Research Institute; Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania; Philadelphia, PA USA
| | - Amy DeMicco
- Division of Cancer Pathobiology; Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia; Philadelphia, PA USA
- Abramson Family Cancer Research Institute; Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania; Philadelphia, PA USA
- Cell and Molecular Biology Graduate Group; Perelman School of Medicine of the University of Pennsylvania; Philadelphia, PA USA
| | - Craig H Bassing
- Division of Cancer Pathobiology; Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia; Philadelphia, PA USA
- Abramson Family Cancer Research Institute; Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania; Philadelphia, PA USA
- Cell and Molecular Biology Graduate Group; Perelman School of Medicine of the University of Pennsylvania; Philadelphia, PA USA
| |
Collapse
|
34
|
Strain background determines lymphoma incidence in Atm knockout mice. Neoplasia 2014; 16:129-36. [PMID: 24709420 DOI: 10.1593/neo.131980] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 02/07/2014] [Accepted: 02/10/2014] [Indexed: 11/18/2022] Open
Abstract
About 10% to 30% of patients with ataxia-telangiectasia (A-T) develop leukemias or lymphomas. There is considerable interpatient variation in the age of onset and leukemia/lymphoma type. The incomplete penetrance and variable age of onset may be attributable to several factors. These include competing mortality from other A-T-associated pathologies, particularly neurodegeneration and interstitial lung disease, allele-specific effects of ataxia-telangiectasia mutated (ATM) gene mutations. There is also limited evidence from clinical observations and studies using Atm knockout mice that modifier genes may account for some variation in leukemia/lymphoma susceptibility. We have introgressed the Atm(tm1Awb) knockout allele (Atm(-)) onto several inbred murine strains and observed differences in thymic lymphoma incidence and latency between Atm(-/-) mice on the different strain backgrounds and between their F1 hybrids. The lymphomas that arose in these mice had a pattern of sequence gains and losses that were similar to those previously described by others. These results provide further evidence for the existence of modifier genes controlling lymphomagenesis in individuals carrying defective copies of Atm, at least in mice, the characterized Atm(-) congenic strain set provides a resource with which to identify these genes. In addition, we found that fewer than expected Atm(-/-) pups were weaned on two strain backgrounds and that there was no correlation between body weight of young Atm-/- mice and lymphoma incidence or latency.
Collapse
|
35
|
Chromosome instability induced by Mps1 and p53 mutation generates aggressive lymphomas exhibiting aneuploidy-induced stress. Proc Natl Acad Sci U S A 2014; 111:13427-32. [PMID: 25197064 DOI: 10.1073/pnas.1400892111] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aneuploidy is a hallmark of human solid cancers that arises from errors in mitosis and results in gain and loss of oncogenes and tumor suppressors. Aneuploidy poses a growth disadvantage for cells grown in vitro, suggesting that cancer cells adapt to this burden. To understand better the consequences of aneuploidy in a rapidly proliferating adult tissue, we engineered a mouse in which chromosome instability was selectively induced in T cells. A flanked by Lox mutation was introduced into the monopolar spindle 1 (Mps1) spindle-assembly checkpoint gene so that Cre-mediated recombination would create a truncated protein (Mps1(DK)) that retained the kinase domain but lacked the kinetochore-binding domain and thereby weakened the checkpoint. In a sensitized p53(+/-) background we observed that Mps1(DK/DK) mice suffered from rapid-onset acute lymphoblastic lymphoma. The tumors were highly aneuploid and exhibited a metabolic burden similar to that previously characterized in aneuploid yeast and cultured cells. The tumors nonetheless grew rapidly and were lethal within 3-4 mo after birth.
Collapse
|
36
|
Tepsuporn S, Hu J, Gostissa M, Alt FW. Mechanisms that can promote peripheral B-cell lymphoma in ATM-deficient mice. Cancer Immunol Res 2014; 2:857-66. [PMID: 24913718 PMCID: PMC4156541 DOI: 10.1158/2326-6066.cir-14-0090] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The Ataxia Telangiectasia-mutated (ATM) kinase senses DNA double-strand breaks (DSB) and facilitates their repair. In humans, ATM deficiency predisposes to B- and T-cell lymphomas, but in mice it leads only to thymic lymphomas. We tested the hypothesis that increased DSB frequency at a cellular oncogene could promote B-cell lymphoma by generating ATM-deficient mice with a V(D)J recombination target (DJβ cassette) within c-myc intron 1 ("DA" mice). We also generated ATM-deficient mice carrying an Eμ-Bcl-2 transgene (AB mice) to test whether enhanced cellular survival could promote B-cell lymphomas. About 30% of DA or AB mice and nearly 100% of mice harboring the combined genotypes (DAB mice) developed mature B-cell lymphomas. In all genotypes, B-cell tumors harbored oncogenic c-myc amplification generated by breakage-fusion-bridge (BFB) from dicentric chromosomes formed through fusion of IgH V(D)J recombination-associated DSBs on chromosome 12 to sequences downstream of c-myc on chromosome 15. AB tumors demonstrate that B lineage cells harboring spontaneous DSBs leading to IgH/c-myc dicentrics are blocked from progressing to B-cell lymphomas by cellular apoptotic responses. DA and DAB tumor translocations were strictly linked to the cassette, but occurred downstream, frequently in a 6-kb region adjacent to c-myc that harbors multiple cryptic V(D)J recombination targets, suggesting that bona fide V(D)J target sequences may activate linked cryptic targets. Our findings indicate that ATM deficiency allows IgH V(D)J recombination DSBs in developing B cells to generate dicentric translocations that, via BFB cycles, lead to c-myc-activating oncogenic translocations and amplifications in mature B cells.
Collapse
Affiliation(s)
- Suprawee Tepsuporn
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital; and Department of Genetics, Harvard Medical School, Boston, Massachusetts
| | - Jiazhi Hu
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital; and Department of Genetics, Harvard Medical School, Boston, Massachusetts
| | - Monica Gostissa
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital; and Department of Genetics, Harvard Medical School, Boston, Massachusetts
| | - Frederick W Alt
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital; and Department of Genetics, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
37
|
Hu J, Tepsuporn S, Meyers RM, Gostissa M, Alt FW. Developmental propagation of V(D)J recombination-associated DNA breaks and translocations in mature B cells via dicentric chromosomes. Proc Natl Acad Sci U S A 2014; 111:10269-74. [PMID: 24982162 PMCID: PMC4104897 DOI: 10.1073/pnas.1410112111] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Mature IgM(+) B-cell lymphomas that arise in certain ataxia telangiectasia-mutated (ATM)-deficient compound mutant mice harbor translocations that fuse V(D)J recombination-initiated IgH double-strand breaks (DSBs) on chromosome 12 to sequences downstream of c-myc on chromosome 15, generating dicentric chromosomes and c-myc amplification via a breakage-fusion-bridge mechanism. As V(D)J recombination DSBs occur in developing progenitor B cells in the bone marrow, we sought to elucidate a mechanism by which such DSBs contribute to oncogenic translocations/amplifications in mature B cells. For this purpose, we applied high-throughput genome-wide translocation sequencing to study the fate of introduced c-myc DSBs in splenic IgM(+) B cells stimulated for activation-induced cytidine deaminase (AID)-dependent IgH class switch recombination (CSR). We found frequent translocations of c-myc DSBs to AID-initiated DSBs in IgH switch regions in wild-type and ATM-deficient B cells. However, c-myc also translocated frequently to newly generated DSBs within a 35-Mb region downstream of IgH in ATM-deficient, but not wild-type, CSR-activated B cells. Moreover, we found such DSBs and translocations in activated B cells that did not express AID or undergo CSR. Our findings indicate that ATM deficiency leads to formation of chromosome 12 dicentrics via recombination-activating gene-initiated IgH DSBs in progenitor B cells and that these dicentrics can be propagated developmentally into mature B cells where they generate new DSBs downstream of IgH via breakage-fusion-bridge cycles. We propose that dicentrics formed by joining V(D)J recombination-associated IgH DSBs to DSBs downstream of c-myc in ATM-deficient B lineage cells similarly contribute to c-myc amplification and mature B-cell lymphomas.
Collapse
Affiliation(s)
- Jiazhi Hu
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Suprawee Tepsuporn
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Robin M Meyers
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Monica Gostissa
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Frederick W Alt
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
38
|
Larmonie NSD, Dik WA, Meijerink JPP, Homminga I, van Dongen JJM, Langerak AW. Breakpoint sites disclose the role of the V(D)J recombination machinery in the formation of T-cell receptor (TCR) and non-TCR associated aberrations in T-cell acute lymphoblastic leukemia. Haematologica 2014; 98:1173-84. [PMID: 23904235 DOI: 10.3324/haematol.2012.082156] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aberrant recombination between T-cell receptor genes and oncogenes gives rise to chromosomal translocations that are genetic hallmarks in several subsets of human T-cell acute lymphoblastic leukemias. The V(D)J recombination machinery has been shown to play a role in the formation of these T-cell receptor translocations. Other, non-T-cell receptor chromosomal aberrations, such as SIL-TAL1 deletions, have likewise been recognized as V(D)J recombination associated aberrations. Despite the postulated role of V(D)J recombination, the extent of the V(D)J recombination machinery involvement in the formation of T-cell receptor and non-T-cell receptor aberrations in T-cell acute lymphoblastic leukemia is still poorly understood. We performed a comprehensive in silico and ex vivo evaluation of 117 breakpoint sites from 22 different T-cell receptor translocation partners as well as 118 breakpoint sites from non-T-cell receptor chromosomal aberrations. Based on this extensive set of breakpoint data, we provide a comprehensive overview of T-cell receptor and oncogene involvement in T-ALL. Moreover, we assessed the role of the V(D)J recombination machinery in the formation of chromosomal aberrations, and propose an up-dated mechanistic classification on how the V(D)J recombination machinery contributes to the formation of T-cell receptor and non-T-cell receptor aberrations in human T-cell acute lymphoblastic leukemia.
Collapse
Affiliation(s)
- Nicole S D Larmonie
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | | | | | | | | | | |
Collapse
|
39
|
Kumar V, Alt FW, Oksenych V. Reprint of "Functional overlaps between XLF and the ATM-dependent DNA double strand break response". DNA Repair (Amst) 2014; 17:52-63. [PMID: 24767946 DOI: 10.1016/j.dnarep.2014.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 01/14/2014] [Accepted: 01/24/2014] [Indexed: 02/08/2023]
Abstract
Developing B and T lymphocytes generate programmed DNA double strand breaks (DSBs) during the V(D)J recombination process that assembles exons that encode the antigen-binding variable regions of antibodies. In addition, mature B lymphocytes generate programmed DSBs during the immunoglobulin heavy chain (IgH) class switch recombination (CSR) process that allows expression of different antibody heavy chain constant regions that provide different effector functions. During both V(D)J recombination and CSR, DSB intermediates are sensed by the ATM-dependent DSB response (DSBR) pathway, which also contributes to their joining via classical non-homologous end-joining (C-NHEJ). The precise nature of the interplay between the DSBR and C-NHEJ pathways in the context of DSB repair via C-NHEJ remains under investigation. Recent studies have shown that the XLF C-NHEJ factor has functional redundancy with several members of the ATM-dependent DSBR pathway in C-NHEJ, highlighting unappreciated major roles for both XLF as well as the DSBR in V(D)J recombination, CSR and C-NHEJ in general. In this review, we discuss current knowledge of the mechanisms that contribute to the repair of DSBs generated during B lymphocyte development and activation with a focus on potential functionally redundant roles of XLF and ATM-dependent DSBR factors.
Collapse
Affiliation(s)
- Vipul Kumar
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Genetics, Harvard Medical School, Boston, MA 02115, United States
| | - Frederick W Alt
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Genetics, Harvard Medical School, Boston, MA 02115, United States.
| | - Valentyn Oksenych
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Genetics, Harvard Medical School, Boston, MA 02115, United States.
| |
Collapse
|
40
|
Chaumeil J, Micsinai M, Ntziachristos P, Roth DB, Aifantis I, Kluger Y, Deriano L, Skok JA. The RAG2 C-terminus and ATM protect genome integrity by controlling antigen receptor gene cleavage. Nat Commun 2014; 4:2231. [PMID: 23900513 PMCID: PMC3903180 DOI: 10.1038/ncomms3231] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Accepted: 07/02/2013] [Indexed: 01/16/2023] Open
Abstract
Tight control of antigen-receptor gene rearrangement is required to preserve genome integrity and prevent the occurrence of leukemia and lymphoma. Nonetheless, mistakes can happen, leading to the generation of aberrant rearrangements, such as Tcra/d-Igh inter-locus translocations that are a hallmark of ATM deficiency. Current evidence indicates that these translocations arise from the persistence of unrepaired breaks converging at different stages of thymocyte differentiation. Here we show that a defect in feedback control of RAG2 activity gives rise to bi-locus breaks and damage on Tcra/d and Igh in the same T cell at the same developmental stage, which provides a direct mechanism for generating these inter-locus rearrangements. Both the RAG2 C-terminus and ATM prevent bi-locus RAG-mediated cleavage through modulation of 3D conformation (higher order loops) and nuclear organization of the two loci. This limits the number of potential substrates for translocation and provides an important mechanism for protecting genome stability.
Collapse
Affiliation(s)
- Julie Chaumeil
- Department of Pathology, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Kumar V, Alt FW, Oksenych V. Functional overlaps between XLF and the ATM-dependent DNA double strand break response. DNA Repair (Amst) 2014; 16:11-22. [PMID: 24674624 DOI: 10.1016/j.dnarep.2014.01.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 01/14/2014] [Accepted: 01/24/2014] [Indexed: 11/27/2022]
Abstract
Developing B and T lymphocytes generate programmed DNA double strand breaks (DSBs) during the V(D)J recombination process that assembles exons that encode the antigen-binding variable regions of antibodies. In addition, mature B lymphocytes generate programmed DSBs during the immunoglobulin heavy chain (IgH) class switch recombination (CSR) process that allows expression of different antibody heavy chain constant regions that provide different effector functions. During both V(D)J recombination and CSR, DSB intermediates are sensed by the ATM-dependent DSB response (DSBR) pathway, which also contributes to their joining via classical non-homologous end-joining (C-NHEJ). The precise nature of the interplay between the DSBR and C-NHEJ pathways in the context of DSB repair via C-NHEJ remains under investigation. Recent studies have shown that the XLF C-NHEJ factor has functional redundancy with several members of the ATM-dependent DSBR pathway in C-NHEJ, highlighting unappreciated major roles for both XLF as well as the DSBR in V(D)J recombination, CSR and C-NHEJ in general. In this review, we discuss current knowledge of the mechanisms that contribute to the repair of DSBs generated during B lymphocyte development and activation with a focus on potential functionally redundant roles of XLF and ATM-dependent DSBR factors.
Collapse
Affiliation(s)
- Vipul Kumar
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Genetics, Harvard Medical School, Boston, MA 02115, United States
| | - Frederick W Alt
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Genetics, Harvard Medical School, Boston, MA 02115, United States.
| | - Valentyn Oksenych
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Genetics, Harvard Medical School, Boston, MA 02115, United States.
| |
Collapse
|
42
|
Chen Y, Yang R, Guo P, Ju Z. Gadd45a deletion aggravates hematopoietic stem cell dysfunction in ATM-deficient mice. Protein Cell 2014; 5:80-9. [PMID: 24474198 PMCID: PMC3938854 DOI: 10.1007/s13238-013-0017-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 12/25/2013] [Indexed: 11/29/2022] Open
Abstract
Ataxia telangiectasia mutated (ATM) kinase plays an essential role in the maintenance of genomic stability. ATM-deficient (ATM−/−) mice exhibit hematopoietic stem cell (HSC) dysfunction and a high incidence of lymphoma. Gadd45a controls cell cycle arrest, apoptosis and DNA repair, and is involved in the ATM-p53 mediated DNA damage response. However, the role of Gadd45a in regulating the functionality of ATM−/− HSCs is unknown. Here we report that Gadd45a deletion did not rescue the defects of T-cells and B-cells development in ATM−/− mice. Instead, ATM and Gadd45a double knockout (ATM−/− Gadd45a−/−) HSCs exhibited an aggravated defect in long-term self-renewal capacity compared to ATM−/− HSCs in HSC transplantation experiments. Further experiments revealed that the aggravated defect of ATM−/− Gadd45a−/− HSCs was due to a reduction of cell proliferation, associated with an accumulation of DNA damage and subsequent activation of DNA damage response including an up-regulation of p53-p21 signaling pathway. Additionally, ATM−/− Gadd45a−/− mice showed an increased incidence of hematopoietic malignancies, as well as an increased rate of metastasis than ATM−/− mice. In conclusion, Gadd45a deletion aggravated the DNA damage accumulation, which subsequently resulted in a further impaired self-renewal capacity and an increased malignant transformation in ATM−/− HSCs.
Collapse
Affiliation(s)
- Yulin Chen
- Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, 311121, China
| | | | | | | |
Collapse
|
43
|
Ehrlich LA, Yang-Iott K, Bassing CH. Tcrδ translocations that delete the Bcl11b haploinsufficient tumor suppressor gene promote atm-deficient T cell acute lymphoblastic leukemia. Cell Cycle 2014; 13:3076-82. [PMID: 25486566 PMCID: PMC4615123 DOI: 10.4161/15384101.2014.949144] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 07/16/2014] [Indexed: 11/19/2022] Open
Abstract
ATM is the master regulator of the cellular response to DNA double strand breaks (DSBs). Deficiency of ATM predisposes humans and mice to αβ T lymphoid cancers with clonal translocations between the T cell receptor (TCR) α/δ locus and a 450 kb region of synteny on human chromosome 14 and mouse chromosome 12. While these translocations target and activate the TCL1 oncogene at 14q32 to cause T cell pro-lymphocytic leukemia (T-PLL), the TCRα/δ;14q32 translocations in ATM-deficient T cell acute lymphoblastic leukemia (T-ALL) have not been characterized and their role in cancer pathogenesis remains unknown. The corresponding lesion in Atm-deficient mouse T-ALLs is a chromosome t(12;14) translocation with Tcrδ genes fused to sequences on chromosome 12; although these translocations do not activate Tcl1, they delete the Bcl11b haploinsufficient tumor suppressor gene. To assess whether Tcrδ translocations that inactivate one copy of Bcl11b promote transformation of Atm-deficient cells, we analyzed Atm(-/-) mice with mono-allelic Bcl11b deletion initiating in thymocytes concomitant with Tcrδ recombination. Inactivation of one Bcl11b copy had no effect on the predisposition of Atm(-/-) mice to clonal T-ALLs. Yet, none of these T-ALLs had a clonal chromosome t(12;14) translocation that deleted Bcl11b indicating that Tcrδ translocations that inactivate a copy of Bcl11b promote transformation of Atm-deficient thymocytes. Our data demonstrate that antigen receptor locus translocations can cause cancer by deleting a tumor suppressor gene. We discuss the implications of these findings for the etiology and therapy of T-ALLs associated with ATM deficiency and TCRα/δ translocations targeting the 14q32 cytogenetic region.
Collapse
Affiliation(s)
- Lori A Ehrlich
- Division of Oncology; Department of Pediatrics; Children's Hospital of Philadelphia; Philadelphia, PA USA
- Division of Cancer Pathobiology; Department of Pathology and Laboratory Medicine; Center for Childhood Cancer Research; Children's Hospital of Philadelphia; Philadelphia, PA USA
- Abramson Family Cancer Research Institute; Department of Pathology and Laboratory Medicine; Perelman School of Medicine at the University of Pennsylvania; Philadelphia, PA USA
| | - Katherine Yang-Iott
- Division of Cancer Pathobiology; Department of Pathology and Laboratory Medicine; Center for Childhood Cancer Research; Children's Hospital of Philadelphia; Philadelphia, PA USA
- Abramson Family Cancer Research Institute; Department of Pathology and Laboratory Medicine; Perelman School of Medicine at the University of Pennsylvania; Philadelphia, PA USA
| | - Craig H Bassing
- Division of Cancer Pathobiology; Department of Pathology and Laboratory Medicine; Center for Childhood Cancer Research; Children's Hospital of Philadelphia; Philadelphia, PA USA
- Abramson Family Cancer Research Institute; Department of Pathology and Laboratory Medicine; Perelman School of Medicine at the University of Pennsylvania; Philadelphia, PA USA
| |
Collapse
|
44
|
Chaumeil J, Skok JA. A new take on v(d)j recombination: transcription driven nuclear and chromatin reorganization in rag-mediated cleavage. Front Immunol 2013; 4:423. [PMID: 24367365 PMCID: PMC3853590 DOI: 10.3389/fimmu.2013.00423] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 11/20/2013] [Indexed: 12/30/2022] Open
Abstract
It is nearly 30 years since the Alt lab first put forward the accessibility model, which proposes that cleavage of the various antigen receptor loci is controlled by lineage and stage specific factors that regulate RAG access. Numerous labs have since demonstrated that locus opening is regulated at multiple levels that include sterile transcription, changes in chromatin packaging, and alterations in locus conformation. Here we focus on the interplay between transcription and RAG binding in facilitating targeted cleavage. We discuss the results of recent studies that implicate transcription in regulating nuclear organization and altering the composition of resident nucleosomes to promote regional access to the recombinase machinery. Additionally we include new data that provide insight into the role of the RAG proteins in defining nuclear organization in recombining T cells.
Collapse
Affiliation(s)
- Julie Chaumeil
- Department of Pathology, New York University School of Medicine , New York, NY , USA
| | - Jane A Skok
- Department of Pathology, New York University School of Medicine , New York, NY , USA
| |
Collapse
|
45
|
Abstract
The field of anatomic pathology has changed significantly over the last decades and, as a result of the technological developments in molecular pathology and genetics, has had increasing pressures put on it to become quantitative and to provide more information about protein expression on a cellular level in tissue sections. Multispectral imaging (MSI) has a long history as an advanced imaging modality and has been used for over a decade now in pathology to improve quantitative accuracy, enable the analysis of multicolor immunohistochemistry, and drastically reduce the impact of contrast-robbing tissue autofluorescence common in formalin-fixed, paraffin-embedded tissues. When combined with advanced software for the automated segmentation of different tissue morphologies (eg, tumor vs stroma) and cellular and subcellular segmentation, MSI can enable the per-cell quantitation of many markers simultaneously. This article covers the role that MSI has played in anatomic pathology in the analysis of formalin-fixed, paraffin-embedded tissue sections, discusses the technological aspects of why MSI has been adopted, and provides a review of the literature of the application of MSI in anatomic pathology.
Collapse
|
46
|
Coussens M, Wendland RL, Deriano L, Lindsay CR, Arnal SM, Roth DB. RAG2's acidic hinge restricts repair-pathway choice and promotes genomic stability. Cell Rep 2013; 4:870-8. [PMID: 23994475 PMCID: PMC4008148 DOI: 10.1016/j.celrep.2013.07.041] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 06/25/2013] [Accepted: 07/25/2013] [Indexed: 11/21/2022] Open
Abstract
V(D)J recombination-associated DNA double-strand breaks (DSBs) are normally repaired by the high-fidelity classical nonhomologous end-joining (cNHEJ) machinery. Previous studies implicated the recombination-activating gene (RAG)/DNA postcleavage complex (PCC) in regulating pathway choice by preventing access to inappropriate repair mechanisms such as homologous recombination (HR) and alternative NHEJ (aNHEJ). Here, we report that RAG2's "acidic hinge," previously of unknown function, is critical for several key steps. Mutations that reduce the hinge's negative charge destabilize the PCC, disrupt pathway choice, permit repair of RAG-mediated DSBs by the translocation-prone aNHEJ machinery, and reduce genomic stability in developing lymphocytes. Structural predictions and experimental results support our hypothesis that reduced flexibility of the hinge underlies these outcomes. Furthermore, sequence variants present in the human population reduce the hinge's negative charge, permit aNHEJ, and diminish genomic integrity.
Collapse
Affiliation(s)
- Marc Coussens
- Department of Pathology, New York University School of Medicine, New York, New York, 10016, USA
| | - Rebecca L. Wendland
- Department of Pathology, New York University School of Medicine, New York, New York, 10016, USA
| | - Ludovic Deriano
- Department of Pathology, New York University School of Medicine, New York, New York, 10016, USA
- Lymphocyte Development and Oncogenesis Unit, Department of Immunology, Pasteur Institute, Paris, 75015, France
| | - Cory R. Lindsay
- Department of Pathology, New York University School of Medicine, New York, New York, 10016, USA
- Department of Pathology and Laboratory Medicine and Abramson Family Cancer Research Institute, Raymond and Ruth Perelman School of Medicine of The University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Suzzette M. Arnal
- Department of Pathology, New York University School of Medicine, New York, New York, 10016, USA
| | - David B. Roth
- Department of Pathology, New York University School of Medicine, New York, New York, 10016, USA
- Department of Pathology and Laboratory Medicine and Abramson Family Cancer Research Institute, Raymond and Ruth Perelman School of Medicine of The University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| |
Collapse
|
47
|
Rybanska-Spaeder I, Reynolds TL, Chou J, Prakash M, Jefferson T, Huso DL, Desiderio S, Franco S. 53BP1 is limiting for NHEJ repair in ATM-deficient model systems that are subjected to oncogenic stress or radiation. Mol Cancer Res 2013; 11:1223-34. [PMID: 23858098 DOI: 10.1158/1541-7786.mcr-13-0252-t] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
UNLABELLED The DNA damage response (DDR) factors ataxia telangiectasia mutated (ATM) and p53 binding protein 1 (53BP1) function as tumor suppressors in humans and mice, but the significance of their mutual interaction to the suppression of oncogenic translocations in vivo has not been investigated. To address this question, the phenotypes of compound mutant mice lacking 53BP1 and ATM (Trp53bp1(-/-)/Atm(-/-)), relative to single mutants, were examined. These analyses revealed that loss of 53BP1 markedly decreased the latency of T-lineage lymphomas driven by RAG-dependent oncogenic translocations in Atm(-/-) mice (average survival, 14 and 23 weeks for Trp53bp1(-/-)/Atm(-/-) and Atm(-/-) mice, respectively). Mechanistically, 53BP1 deficiency aggravated the deleterious effect of ATM deficiency on nonhomologous end-joining (NHEJ)-mediated double-strand break repair. Analysis of V(D)J recombinase-mediated coding joints and signal joints in Trp53bp1(-/-)/Atm(-/-) primary thymocytes is, however, consistent with canonical NHEJ-mediated repair. Together, these findings indicate that the greater NHEJ defect in the double mutant mice resulted from decreased efficiency of rejoining rather than switching to an alternative NHEJ-mediated repair mechanism. Complementary analyses of irradiated primary cells indicated that defects in cell-cycle checkpoints subsequently function to amplify the NHEJ defect, resulting in more frequent chromosomal breaks and translocations in double mutant cells throughout the cell cycle. Finally, it was determined that 53BP1 is dispensable for the formation of RAG-mediated hybrid joints in Atm(-/-) thymocytes but is required to suppress large deletions in a subset of hybrid joints. IMPLICATIONS The current study uncovers novel ATM-independent functions for 53BP1 in the suppression of oncogenic translocations and in radioprotection.
Collapse
Affiliation(s)
- Ivana Rybanska-Spaeder
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, 1550 Orleans Street, CRB II, Rm#405, Baltimore, MD 21287.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Chaumeil J, Micsinai M, Ntziachristos P, Deriano L, Wang JMH, Ji Y, Nora EP, Rodesch MJ, Jeddeloh JA, Aifantis I, Kluger Y, Schatz DG, Skok JA. Higher-order looping and nuclear organization of Tcra facilitate targeted rag cleavage and regulated rearrangement in recombination centers. Cell Rep 2013; 3:359-70. [PMID: 23416051 DOI: 10.1016/j.celrep.2013.01.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 01/01/2013] [Accepted: 01/16/2013] [Indexed: 11/16/2022] Open
Abstract
V(D)J recombination is essential for generating a diverse array of B and T cell receptors that can recognize and combat foreign antigens. As with any recombination event, tight control is essential to prevent the occurrence of genetic anomalies that drive cellular transformation. One important aspect of regulation is directed targeting of the RAG recombinase. Indeed, RAG accumulates at the 3' end of individual antigen receptor loci poised for rearrangement; however, it is not known whether focal binding is involved in regulating cleavage, and what mechanisms lead to enrichment of RAG in this region. Here, we show that monoallelic looping out of the 3' end of the T cell receptor α (Tcra) locus, coupled with transcription and increased chromatin/nuclear accessibility, is linked to focal RAG binding and ATM-mediated regulation of monoallelic cleavage on looped-out 3' regions. Our data identify higher-order loop formation as a key determinant of directed RAG targeting and the maintenance of genome stability.
Collapse
Affiliation(s)
- Julie Chaumeil
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Boboila C, Alt FW, Schwer B. Classical and alternative end-joining pathways for repair of lymphocyte-specific and general DNA double-strand breaks. Adv Immunol 2013; 116:1-49. [PMID: 23063072 DOI: 10.1016/b978-0-12-394300-2.00001-6] [Citation(s) in RCA: 203] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Classical nonhomologous end joining (C-NHEJ) is one of the two major known pathways for the repair of DNA double-strand breaks (DSBs) in mammalian cells. Our understanding of C-NHEJ has been derived, in significant part, through studies of programmed physiologic DNA DSBs formed during V(D)J recombination in the developing immune system. Studies of immunoglobulin heavy-chain (IgH) class-switch recombination (CSR) also have revealed that there is an "alternative" end-joining process (A-EJ) that can function, relatively robustly, in the repair of DSBs in activated mature B lymphocytes. This A-EJ process has also been implicated in the formation of oncogenic translocations found in lymphoid tumors. In this review, we discuss our current understanding of C-NHEJ and A-EJ in the context of V(D)J recombination, CSR, and the formation of chromosomal translocations.
Collapse
Affiliation(s)
- Cristian Boboila
- Howard Hughes Medical Institute, Immune Disease Institute, Program in Cellular and Molecular Medicine, Children's Hospital Boston, Boston, Massachusetts, USA
| | | | | |
Collapse
|
50
|
ATM deficiency augments constitutively nuclear cyclin D1-driven genomic instability and lymphomagenesis. Oncogene 2013; 33:129-33. [PMID: 23318439 DOI: 10.1038/onc.2012.577] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 10/10/2012] [Accepted: 10/14/2012] [Indexed: 12/18/2022]
Abstract
Cyclin D1 deregulation is implicated in the genesis of multiple human cancers. Importantly, nuclear cyclin D1 retention during S-phase promotes DNA re-replication and subsequent genomic instability, providing a direct correlation between aberrant cyclin D1/CDK4 activity, transcriptional regulation and double strand DNA break (DSB) induction. Together, these molecular events catalyze the genomic instability necessary for neoplastic transformation. Given that replication-associated DNA damage is central to cyclin D1-driven neoplasia, inactivation of critical checkpoint mediators should augment cyclin D1-dependent tumorigenesis in vivo. To interrogate potential synergy between constitutively nuclear cyclin D1 expression and impaired DSB-induced checkpoint integrity, Ataxia Telangiectasia Mutated (ATM)-deficient mice harboring the Eμ-D1T286A transgene were generated and evaluated for tumor onset. Eμ-D1T286A/ATM-/- mice exhibit dramatically accelerated incidence of both B- and T-cell lymphomas relative to Eμ-D1T286A or ATM-/- control cohorts. Lymphomas exhibit clonal chromosomal alterations distinct from ATM-/- mice, which typically acquire translocations involving the Tcrα/δ locus during V(D)J recombination, and instead harbor alterations at the c-Myc locus. Collectively, these findings reveal an intricate relationship wherein nuclear cyclin D1/CDK4 drives genomic instability in the absence of ATM function and clonal selection of cells harboring alterations within the murine c-Myc locus, ultimately facilitating transformation and tumor formation.
Collapse
|