1
|
Huang D, Sun H, Su L, Yang F, Huang D, Gao H, Cao M. Inhibition of SIK1 Alleviates the Pathologies of Psoriasis by Disrupting IL-17 Signaling. Mediators Inflamm 2025; 2025:3540219. [PMID: 39959414 PMCID: PMC11828648 DOI: 10.1155/mi/3540219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/20/2025] [Indexed: 02/18/2025] Open
Abstract
Psoriasis is an inflammatory skin disease mediated by multiple immune cells, including T cells, macrophages, and dendritic cells, which exhibit complex pathologies and limited clinical treatment. Here, we found that salt-inducible kinase 1 (SIK1) was upregulated in the imiquimod (IMQ)-induced psoriasis mouse model. This increment may be due to a higher level of interleukin-17, which promoted the expression of SIK1 in keratinocytes. Inhibition of SIK1 kinase activity using a small molecular inhibitor (HG-9-91-01 or YKL-06-062) dramatically alleviated IMQ-induced psoriasis, showing reduced epidermal thickness, inflammation, and hyperproliferative epidermal keratinocytes. Our data demonstrated that SIK1 inhibitors HG-9-91-01 or YKL-06-062 blocked the expression of IL-17-induced proinflammatory cytokines and chemokines, including Il6, Kc, and Ccl20. Mechanistically, we found that SIK1 inhibitor HG-9-91-01 or YKL-06-062 suppressed the phosphorylation of Iκbα and P38. Consistently, SIK1 overexpression in keratinocytes promoted the activation of Iκbα and P38. Collectively, our results reveal that SIK1 participates to promote IL17-induced signaling through enhancing activation of NF-κB and MAPKs and exacerbates psoriasis-like skin inflammation. Thus, inhibition of SIK1 presents a potential new therapeutic target for psoriasis.
Collapse
Affiliation(s)
- Dongxuan Huang
- Department of Respiratory Medicine, Shenzhen Longhua District Central Hospital, Shenzhen 518110, China
| | - Huimin Sun
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong 518110, China
| | - Lianhui Su
- Department of Respiratory Medicine, Shenzhen Longhua District Central Hospital, Shenzhen 518110, China
| | - Fan Yang
- Department of Respiratory Medicine, Shenzhen Longhua District Central Hospital, Shenzhen 518110, China
| | - Dongsheng Huang
- Department of Respiratory Medicine, Shenzhen Longhua District Central Hospital, Shenzhen 518110, China
| | - Hanchao Gao
- Department of Nephrology, Shenzhen Longhua District Central Hospital, Shenzhen Longhua District Key Laboratory for Diagnosis and Treatment of Chronic Kidney Disease, Shenzhen 518110, China
| | - Mengtao Cao
- Department of Respiratory Medicine, Shenzhen Longhua District Central Hospital, Shenzhen 518110, China
- Department of Clinical Laboratory, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518110, China
| |
Collapse
|
2
|
Zhuo Z, Guo K, Luo Y, Yang Q, Wu H, Zeng R, Jiang R, Li J, Wei R, Lian Q, Sha W, Feng Y, Chen H. Targeted modulation of intestinal epithelial regeneration and immune response in ulcerative colitis using dual-targeting bilirubin nanoparticles. Theranostics 2024; 14:528-546. [PMID: 38169633 PMCID: PMC10758062 DOI: 10.7150/thno.87739] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/22/2023] [Indexed: 01/05/2024] Open
Abstract
Rationale: The therapeutic benefits of bilirubin in the treatment of ulcerative colitis (UC) are considerable, whereas the underlying mechanism of bilirubin on UC remains unclear remains unexplored. In addition, the weak hydrophilicity and toxicity have limited its translational applications. Methods: We have developed a colon dual-targeting nanoparticle, for orally delivering bilirubin through hydrogel encapsulation of hyaluronic acid (HA)-modified poly (lactic-co-glycolic acid) (PLGA) nanoparticles (HA-PLGABilirubin). Confocal microscopy and in vivo imaging were used to evaluate the uptake and the targeted property of HA-PLGABilirubin in UC. Immunohistochemistry, immunofluorescence, and transcriptomic analyses were applied to examine the therapeutic effect and potential mechanism of HA-PLGABilirubin in UC. Results: Our results indicated that HA-PLGAbilirubin can significantly enhance the release of bilirubin at simulated intestinal pH and demonstrate higher cellular uptake in inflammatory macrophages. Moreover, in vivo biodistribution studies revealed high uptake and retention of HA-PLGAbilirubin in inflamed colon tissue of UC mouse model, resulting in effective recovery of intestinal morphology and barrier function. Importantly, HA-PLGAbilirubin exerted potent therapeutic efficacy against ulcerative colitis through modulating the intestinal epithelial/stem cells regeneration, and the improvement of angiogenesis and inflammation. Furthermore, genome-wide RNA-seq analysis revealed transcriptional reprogramming of immune response genes in colon tissue upon HA-PLGAbilirubin treatment in UC mouse model. Conclusion: Overall, our work provides an efficient colon targeted drug delivery system to potentiate the treatment of ulcerative colitis via modulating intestinal epithelium regeneration and immune response in ulcerative colitis.
Collapse
Affiliation(s)
- Zewei Zhuo
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Kehang Guo
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
- Department of Critical Care Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Yujun Luo
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Qi Yang
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Huihuan Wu
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
- School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Ruijie Zeng
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
- Shantou University Medical College, Shantou 515041, China
| | - Rui Jiang
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
- School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Jingwei Li
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Rui Wei
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Qizhou Lian
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Cord Blood Bank, Guangzhou Institute of Eugenics and Perinatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, SAR, China
| | - Weihong Sha
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou 510006, China
- Shantou University Medical College, Shantou 515041, China
| | - Yuliang Feng
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford Old Road, B4495, Headington, Oxford OX3 7LD, UK
| | - Hao Chen
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou 510006, China
- Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
3
|
Huangfu L, Li R, Huang Y, Wang S. The IL-17 family in diseases: from bench to bedside. Signal Transduct Target Ther 2023; 8:402. [PMID: 37816755 PMCID: PMC10564932 DOI: 10.1038/s41392-023-01620-3] [Citation(s) in RCA: 103] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/16/2023] [Accepted: 08/22/2023] [Indexed: 10/12/2023] Open
Abstract
The interleukin-17 (IL-17) family comprises six members (IL-17A-17F), and recently, all of its related receptors have been discovered. IL-17 was first discovered approximately 30 years ago. Members of this family have various biological functions, including driving an inflammatory cascade during infections and autoimmune diseases, as well as boosting protective immunity against various pathogens. IL-17 is a highly versatile proinflammatory cytokine necessary for vital processes including host immune defenses, tissue repair, inflammatory disease pathogenesis, and cancer progression. However, how IL-17 performs these functions remains controversial. The multifunctional properties of IL-17 have attracted research interest, and emerging data have gradually improved our understanding of the IL-17 signaling pathway. However, a comprehensive review is required to understand its role in both host defense functions and pathogenesis in the body. This review can aid researchers in better understanding the mechanisms underlying IL-17's roles in vivo and provide a theoretical basis for future studies aiming to regulate IL-17 expression and function. This review discusses recent progress in understanding the IL-17 signaling pathway and its physiological roles. In addition, we present the mechanism underlying IL-17's role in various pathologies, particularly, in IL-17-induced systemic lupus erythematosus and IL-17-related tumor cell transformation and metastasis. In addition, we have briefly discussed promising developments in the diagnosis and treatment of autoimmune diseases and tumors.
Collapse
Affiliation(s)
- Longjie Huangfu
- School of Stomatology, Harbin Medical University, Harbin, 150001, P. R. China
| | - Ruiying Li
- Department of Oral Pathology, School of Stomatology, Hainan Medical University, Haikou, 571199, P. R. China
| | - Yamei Huang
- Department of Oral Pathology, School of Stomatology, Hainan Medical University, Haikou, 571199, P. R. China
| | - Shan Wang
- Department of Oral Pathology, School of Stomatology, Hainan Medical University, Haikou, 571199, P. R. China.
- Department of Stomatology, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570216, P. R. China.
| |
Collapse
|
4
|
Song M, Liang J, Wang L, Li W, Jiang S, Xu S, Tang L, Du Q, Liu G, Meng H, Zhai D, Shi S, Yang Y, Zhang L, Zhang B. IL-17A functions and the therapeutic use of IL-17A and IL-17RA targeted antibodies for cancer treatment. Int Immunopharmacol 2023; 123:110757. [PMID: 37579542 DOI: 10.1016/j.intimp.2023.110757] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/16/2023]
Abstract
Interleukin 17A (IL-17A) is a major member of the IL-17 cytokine family and is produced mainly by T helper 17 (Th17) cells. Other cells such as CD8+ T cells, γδ T cells, natural killer T cells and innate lymphoid-like cells can also produce IL-17A. In healthy individuals, IL-17A has a host-protective capacity, but excessive elevation of IL-17A is associated with the development of autoimmune diseases and cancer. Monoclonal antibodies (mAbs) targeting IL-17A (e.g., ixekizumab and secukinumab) or IL-17A receptor (IL-17RA) (e.g., brodalumab) would be investigated as potential treatments for these diseases. Currently, the application of IL-17A-targeted drugs in autoimmune diseases will provide new ideas for the treatment of tumors, and its combined application with immune checkpoint inhibitors has become a research hotspot. This article reviews the mechanism of action of IL-17A and the application of anti-IL-17A antibodies, focusing on the research progress on the mechanism of action and therapeutic blockade of IL-17A in various tumors such as colorectal cancer (CRC), lung cancer, gastric cancer and breast cancer. Moreover, we also include the results of therapeutic blockade in the field of cancer as well as recent advances in the regulation of IL-17A signaling.
Collapse
Affiliation(s)
- Meiying Song
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Jie Liang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Luoyang Wang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Wei Li
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Suli Jiang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Shuo Xu
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Lei Tang
- Department of Special Medicine, School of Basic Medical College, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Qiaochu Du
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Guixian Liu
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Haining Meng
- School of Emergency Medicine, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Dongchang Zhai
- Department of Special Medicine, School of Basic Medical College, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Shangheng Shi
- Department of Liver Transplantation, School of Clinical Medicine, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Yanyan Yang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Li Zhang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Bei Zhang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China.
| |
Collapse
|
5
|
Yuan Q, Peng N, Xiao F, Shi X, Zhu B, Rui K, Tian J, Lu L. New insights into the function of Interleukin-25 in disease pathogenesis. Biomark Res 2023; 11:36. [PMID: 37005677 PMCID: PMC10068183 DOI: 10.1186/s40364-023-00474-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/13/2023] [Indexed: 04/04/2023] Open
Abstract
Interleukin-25 (IL-25), also known as IL-17E, is a cytokine belonging to the IL-17 family. IL-25 is abundantly expressed by Th2 cells and various kinds of epithelial cells. IL-25 is an alarm signal generated upon cell injury or tissue damage to activate immune cells through the interaction with IL-17RA and IL-17RB receptors. The binding of IL-25 to IL-17RA/IL-17RB complex not only initiates and maintains type 2 immunity but also regulates other immune cells (e.g., macrophages and mast cells) via various signaling pathways. It has been well-documented that IL-25 is critically involved in the development of allergic disorders (e.g., asthma). However, the roles of IL-25 in the pathogenesis of other diseases and the underlying mechanisms are still unclear. This review presents current evidence on the roles of IL-25 in cancers, allergic disorders, and autoimmune diseases. Moreover, we discuss the unanswered key questions underlying IL-25-mediated disease pathology, which will provide new insights into the targeted therapy of this cytokine in clinical treatment.
Collapse
Affiliation(s)
- Qingfang Yuan
- Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Na Peng
- Department of Rheumatology, the Second People's Hospital, Three Gorges University, Yichang, China
| | - Fan Xiao
- Department of Pathology, Shenzhen Institute of Research and Innovation, The University of Hong Kong, Chongqing International Institute for Immunology, Chongqing, China
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong, China
| | - Xiaofei Shi
- Department of Rheumatology and Immunology, The First Affiliated Hospital, School of Medicine, Henan University of Science and Technology, Luoyang, China
| | - Bo Zhu
- Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Ke Rui
- Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| | - Jie Tian
- Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China.
| | - Liwei Lu
- Department of Rheumatology, the Second People's Hospital, Three Gorges University, Yichang, China.
- Department of Pathology, Shenzhen Institute of Research and Innovation, The University of Hong Kong, Chongqing International Institute for Immunology, Chongqing, China.
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong, China.
| |
Collapse
|
6
|
Yang W, He R, Qu H, Lian W, Xue Y, Wang T, Lin W, Zhu P, Xia M, Lai L, Wang Q. FXYD3 enhances IL-17A signaling to promote psoriasis by competitively binding TRAF3 in keratinocytes. Cell Mol Immunol 2023; 20:292-304. [PMID: 36693922 PMCID: PMC9971024 DOI: 10.1038/s41423-023-00973-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 12/26/2022] [Indexed: 01/26/2023] Open
Abstract
Psoriasis is a common chronic inflammatory skin disease characterized by inflammatory cell infiltration and epidermal hyperplasia. However, the regulatory complexity of cytokine and cellular networks still needs to be investigated. Here, we show that the expression of FXYD3, a member of the FXYD domain-containing regulators of Na+/K+ ATPases family, is significantly increased in the lesional skin of psoriasis patients and mice with imiquimod (IMQ)-induced psoriasis. IL-17A, a cytokine important for the development of psoriatic lesions, contributes to FXYD3 expression in human primary keratinocytes. FXYD3 deletion in keratinocytes attenuated the psoriasis-like phenotype and inflammation in an IMQ-induced psoriasis model. Importantly, FXYD3 promotes the formation of the IL-17R-ACT1 complex by competing with IL-17R for binding to TRAF3 and then enhances IL-17A signaling in keratinocytes. This promotes the activation of the NF-κB and MAPK signaling pathways and leads to the expression of proinflammatory factors. Our results clarify the mechanism by which FXYD3 serves as a mediator of IL-17A signaling in keratinocytes to form a positive regulatory loop to promote psoriasis exacerbation. Targeting FXYD3 may serve as a potential therapeutic approach in the treatment of psoriasis.
Collapse
Affiliation(s)
- Wenjuan Yang
- Institute of Immunology, Zhejiang University School of Medicine, 310058, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, 311121, Hangzhou, China
| | - Rukun He
- Institute of Immunology, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Hao Qu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China
| | - Wenwen Lian
- Institute of Immunology, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Yue Xue
- Institute of Immunology, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Tao Wang
- Institute of Immunology, Zhejiang University School of Medicine, 310058, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, 311121, Hangzhou, China
| | - Wenlong Lin
- Institute of Immunology, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Peishuo Zhu
- Institute of Immunology, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Meng Xia
- Institute of Immunology, Zhejiang University School of Medicine, 310058, Hangzhou, China.
| | - Lihua Lai
- Department of Pharmacology, Zhejiang University School of Medicine, 310058, Hangzhou, China.
| | - Qingqing Wang
- Institute of Immunology, Zhejiang University School of Medicine, 310058, Hangzhou, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, 311121, Hangzhou, China.
| |
Collapse
|
7
|
Shnayder NA, Ashhotov AV, Trefilova VV, Nurgaliev ZA, Novitsky MA, Vaiman EE, Petrova MM, Nasyrova RF. Cytokine Imbalance as a Biomarker of Intervertebral Disk Degeneration. Int J Mol Sci 2023; 24:ijms24032360. [PMID: 36768679 PMCID: PMC9917299 DOI: 10.3390/ijms24032360] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/09/2023] [Accepted: 01/17/2023] [Indexed: 01/27/2023] Open
Abstract
The intervertebral disk degeneration (IDD) and its associated conditions are an important problem in modern medicine. The onset of IDD may be in childhood and adolescence in patients with a genetic predisposition. IDD progresses with age, leading to spondylosis, spondylarthrosis, intervertebral disk herniation, and spinal stenosis. The purpose of this review is an attempt to summarize the data characterizing the patterns of production of pro-inflammatory and anti-inflammatory cytokines in IDD and to appreciate the prognostic value of cytokine imbalance as its biomarker. This narrative review demonstrates that the problem of evaluating the contribution of pro-inflammatory and anti-inflammatory cytokines to the maintenance or alteration of cytokine balance may be a new key to unlocking the mystery of IDD development and new therapeutic strategies for the treatment of IDD in the setting of acute and chronic inflammation. The presented data support the hypothesis that cytokine imbalance is one of the most important biomarkers of IDD.
Collapse
Affiliation(s)
- Natalia A. Shnayder
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
- Shared Core Facilities “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
- Correspondence: (N.A.S.); (R.F.N.); Tel.: +7-(812)-620-0220-7813 (N.A.S. & R.F.N.)
| | - Azamat V. Ashhotov
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
| | | | - Zaitun A. Nurgaliev
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
| | | | - Elena E. Vaiman
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
| | - Marina M. Petrova
- Shared Core Facilities “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Regina F. Nasyrova
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
- Correspondence: (N.A.S.); (R.F.N.); Tel.: +7-(812)-620-0220-7813 (N.A.S. & R.F.N.)
| |
Collapse
|
8
|
Li H, Wang N, Jiang Y, Wang H, Xin Z, An H, Pan H, Ma W, Zhang T, Wang X, Lin W. E3
ubiquitin ligase
NEDD4L
negatively regulates inflammation by promoting ubiquitination of
MEKK2. EMBO Rep 2022; 23:e54603. [PMID: 36161689 PMCID: PMC9638856 DOI: 10.15252/embr.202254603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/25/2022] [Accepted: 08/19/2022] [Indexed: 11/26/2022] Open
Abstract
Aberrant activation of inflammation signaling triggered by tumor necrosis factor α (TNF‐α), interleukin‐1 (IL‐1), and interleukin‐17 (IL‐17) is associated with immunopathology. Here, we identify neural precursor cells expressed developmentally down‐regulated gene 4‐like (NEDD4L), a HECT type E3 ligase, as a common negative regulator of signaling induced by TNF‐α, IL‐1, and IL‐17. NEDD4L modulates the degradation of mitogen‐activated protein kinase kinase kinase 2 (MEKK2) via constitutively and directly binding to MEKK2 and promotes its poly‐ubiquitination. In interleukin‐17 receptor (IL‐17R) signaling, Nedd4l knockdown or deficiency enhances IL‐17‐induced p38 and NF‐κB activation and the production of proinflammatory cytokines and chemokines in a MEKK2‐dependent manner. We further show that IL‐17‐induced MEKK2 Ser520 phosphorylation is required not only for downstream p38 and NF‐κB activation but also for NEDD4L‐mediated MEKK2 degradation and the subsequent shutdown of IL‐17R signaling. Importantly, Nedd4l‐deficient mice show increased susceptibility to IL‐17‐induced inflammation and aggravated symptoms of experimental autoimmune encephalomyelitis (EAE) in IL‐17R signaling‐dependent manner. These data suggest that NEDD4L acts as an inhibitor of IL‐17R signaling, which ameliorates the pathogenesis of IL‐17‐mediated autoimmune diseases.
Collapse
Affiliation(s)
- Hui Li
- Institute of Immunology and Department of Orthopedic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine Zhejiang China
- Department of Medical Oncology The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital) Hangzhou China
- Institute of Basic Medicine and Cancer (IBMC) Chinese Academy of Sciences Hangzhou China
| | - Ning Wang
- Institute of Immunology and Department of Orthopedic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine Zhejiang China
| | - Yu Jiang
- Institute of Immunology and Department of Orthopedic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine Zhejiang China
| | - Haofei Wang
- Institute of Immunology and Department of Orthopedic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine Zhejiang China
| | - Zengfeng Xin
- Institute of Immunology and Department of Orthopedic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine Zhejiang China
| | - Huazhang An
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital Jinan China
| | - Hao Pan
- Department of Urology, The First Affiliated Hospital, College of Medicine Zhejiang University Hangzhou China
| | - Wangqian Ma
- Department of Gastroenterology, The Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou China
| | - Ting Zhang
- Department of Radiation Oncology, The Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou China
| | - Xiaojian Wang
- Institute of Immunology and Department of Orthopedic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine Zhejiang China
| | - Wenlong Lin
- Institute of Immunology and Department of Orthopedic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine Zhejiang China
| |
Collapse
|
9
|
Acute cytotoxicity test of PM 2.5, NNK and BPDE in human normal bronchial epithelial cells: A comparison of a co-culture model containing macrophages and a mono-culture model. Toxicol In Vitro 2022; 85:105480. [PMID: 36152786 DOI: 10.1016/j.tiv.2022.105480] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 09/09/2022] [Accepted: 09/18/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND Based on extensive research on cytotoxicity of exogenous compounds in vitro, it is essential to develop a cell model that better mimics environment in vivo to explore cytotoxic mechanisms of exogenous compounds. METHODS A co-culture system was established using a transwell system with Beas-2B and U937 cells. Cells were treated with fine particulate matter (PM2.5; 25, 50 and 100 μg/mL), nicotine-derived nitrosamine ketone (NNK; 50, 100 and 200 μg/mL) and benzo(a)pyrene diol epoxide (BPDE; 0.5, 2 and 8 μM) for 24 h. Cell proliferation, apoptosis and cell cycle, DNA damage were detected by CCK-8 and EdU, flow cytometry, and comet assay, respectively. Differentially expressed transcript and cytokine concentrations were determined by transcriptome sequencing and Cytokine Array, respectively. RESULTS Compared with mono-culture, cell proliferation increased, apoptosis decreased, and DNA damage decreased in a dose-response relationship in co-culture. Gene expression profile was significantly different in co-culture, with significantly increased expression levels of 48 cytokines in co-culture. CONCLUSION Cytotoxic damage to Beas-2B cells induced by exogenous carcinogens, including PM2.5, NNK and BPDE, was significantly reduced in a co-culture system compared with a mono-culture system. The mechanism may be related to changes in expression of cytokines, such as LIF, and activation of related pathways, such as TNF signaling pathway. Cytotoxic damage to Beas-2B induced by PM2.5, NNK and BPDE, was significantly reduced in co-culture. The mechanism may be related to changes in expression of cytokines and activation of related pathways. These findings provide new insights into cytotoxicity and experimental basis for safety evaluations of exogenous carcinogens.
Collapse
|
10
|
Berger K, Arafat D, Chandrakasan S, Snapper SB, Gibson G. Targeted RNAseq Improves Clinical Diagnosis of Very Early-Onset Pediatric Immune Dysregulation. J Pers Med 2022; 12:919. [PMID: 35743704 PMCID: PMC9224647 DOI: 10.3390/jpm12060919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 02/05/2023] Open
Abstract
Despite increased use of whole exome sequencing (WES) for the clinical analysis of rare disease, overall diagnostic yield for most disorders hovers around 30%. Previous studies of mRNA have succeeded in increasing diagnoses for clearly defined disorders of monogenic inheritance. We asked if targeted RNA sequencing could provide similar benefits for primary immunodeficiencies (PIDs) and very early-onset inflammatory bowel disease (VEOIBD), both of which are difficult to diagnose due to high heterogeneity and variable severity. We performed targeted RNA sequencing of a panel of 260 immune-related genes for a cohort of 13 patients (seven suspected PID cases and six VEOIBD) and analyzed variants, splicing, and exon usage. Exonic variants were identified in seven cases, some of which had been previously prioritized by exome sequencing. For four cases, allele specific expression or lack thereof provided additional insights into possible disease mechanisms. In addition, we identified five instances of aberrant splicing associated with four variants. Three of these variants had been previously classified as benign in ClinVar based on population frequency. Digenic or oligogenic inheritance is suggested for at least two patients. In addition to validating the use of targeted RNA sequencing, our results show that rare disease research will benefit from incorporating contributing genetic factors into the diagnostic approach.
Collapse
Affiliation(s)
- Kiera Berger
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA; (K.B.); (D.A.)
| | - Dalia Arafat
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA; (K.B.); (D.A.)
| | - Shanmuganathan Chandrakasan
- Division of Bone Marrow Transplant, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - Scott B. Snapper
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children’s Hospital, Boston, MA 02115, USA;
| | - Greg Gibson
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA; (K.B.); (D.A.)
| |
Collapse
|
11
|
Shetty A, Tripathi SK, Junttila S, Buchacher T, Biradar R, Bhosale S, Envall T, Laiho A, Moulder R, Rasool O, Galande S, Elo L, Lahesmaa R. A systematic comparison of FOSL1, FOSL2 and BATF-mediated transcriptional regulation during early human Th17 differentiation. Nucleic Acids Res 2022; 50:4938-4958. [PMID: 35511484 PMCID: PMC9122603 DOI: 10.1093/nar/gkac256] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 03/30/2022] [Accepted: 04/19/2022] [Indexed: 12/21/2022] Open
Abstract
Th17 cells are essential for protection against extracellular pathogens, but their aberrant activity can cause autoimmunity. Molecular mechanisms that dictate Th17 cell-differentiation have been extensively studied using mouse models. However, species-specific differences underscore the need to validate these findings in human. Here, we characterized the human-specific roles of three AP-1 transcription factors, FOSL1, FOSL2 and BATF, during early stages of Th17 differentiation. Our results demonstrate that FOSL1 and FOSL2 co-repress Th17 fate-specification, whereas BATF promotes the Th17 lineage. Strikingly, FOSL1 was found to play different roles in human and mouse. Genome-wide binding analysis indicated that FOSL1, FOSL2 and BATF share occupancy over regulatory regions of genes involved in Th17 lineage commitment. These AP-1 factors also share their protein interacting partners, which suggests mechanisms for their functional interplay. Our study further reveals that the genomic binding sites of FOSL1, FOSL2 and BATF harbour hundreds of autoimmune disease-linked SNPs. We show that many of these SNPs alter the ability of these transcription factors to bind DNA. Our findings thus provide critical insights into AP-1-mediated regulation of human Th17-fate and associated pathologies.
Collapse
Affiliation(s)
| | | | | | | | - Rahul Biradar
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku 20520, Finland
| | - Santosh D Bhosale
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland
- Department of Biochemistry and Molecular Biology, Protein Research Group, University of Southern Denmark, Campusvej 55, Odense M, DK 5230, Denmark
| | - Tapio Envall
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland
| | - Asta Laiho
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku 20520, Finland
| | - Robert Moulder
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku 20520, Finland
| | - Omid Rasool
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku 20520, Finland
| | - Sanjeev Galande
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research (IISER), Pune 411008, India
- Department of Life Sciences, Shiv Nadar University, Delhi-NCR
| | - Laura L Elo
- Correspondence may also be addressed to Laura Elo. Tel: +358 29 450 2090;
| | - Riitta Lahesmaa
- To whom correspondence should be addressed. Tel: +358 29 450 2415;
| |
Collapse
|
12
|
Whetstone CE, Ranjbar M, Omer H, Cusack RP, Gauvreau GM. The Role of Airway Epithelial Cell Alarmins in Asthma. Cells 2022; 11:1105. [PMID: 35406669 PMCID: PMC8997824 DOI: 10.3390/cells11071105] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 02/01/2023] Open
Abstract
The airway epithelium is the first line of defense for the lungs, detecting inhaled environmental threats through pattern recognition receptors expressed transmembrane or intracellularly. Activation of pattern recognition receptors triggers the release of alarmin cytokines IL-25, IL-33, and TSLP. These alarmins are important mediators of inflammation, with receptors widely expressed in structural cells as well as innate and adaptive immune cells. Many of the key effector cells in the allergic cascade also produce alarmins, thereby contributing to the airways disease by driving downstream type 2 inflammatory processes. Randomized controlled clinical trials have demonstrated benefit when blockade of TSLP and IL-33 were added to standard of care medications, suggesting these are important new targets for treatment of asthma. With genome-wide association studies demonstrating associations between single-nucleotide polymorphisms of the TSLP and IL-33 gene and risk of asthma, it will be important to understand which subsets of asthma patients will benefit most from anti-alarmin therapy.
Collapse
Affiliation(s)
| | | | | | | | - Gail M. Gauvreau
- Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada; (C.E.W.); (M.R.); (H.O.); (R.P.C.)
| |
Collapse
|
13
|
Feng Y, Chen Z, Tu SQ, Wei JM, Hou YL, Kuang ZL, Kang XN, Ai H. Role of Interleukin-17A in the Pathomechanisms of Periodontitis and Related Systemic Chronic Inflammatory Diseases. Front Immunol 2022; 13:862415. [PMID: 35371044 PMCID: PMC8968732 DOI: 10.3389/fimmu.2022.862415] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/28/2022] [Indexed: 01/02/2023] Open
Abstract
Periodontitis is a chronic inflammatory and destructive disease caused by periodontal microbial infection and mediated by host immune response. As the main cause of loosening and loss of teeth in adults, it is considered to be one of the most common and serious oral diseases in the world. The co-existence of periodontitis and systemic chronic inflammatory diseases such as rheumatoid arthritis, psoriasis, inflammatory bowel disease, diabetes and so on is very common. It has been found that interleukin-17A (IL-17A) secreted by various innate and adaptive immune cells can activate a series of inflammatory cascade reactions, which mediates the occurrence and development of periodontitis and related systemic chronic inflammatory diseases. In this work, we review the role of IL-17A in the pathomechanisms of periodontitis and related systemic chronic inflammatory diseases, and briefly discuss the therapeutic potential of cytokine targeted agents that modulate the IL-17A signaling. A deep understanding of the possible molecular mechanisms in the relationship between periodontitis and systemic diseases will help dentists and physicians update their clinical diagnosis and treatment ideas.
Collapse
|
14
|
Suyama K, Sakai D, Watanabe M. The Role of IL-17-Mediated Inflammatory Processes in the Pathogenesis of Intervertebral Disc Degeneration and Herniation: A Comprehensive Review. Front Cell Dev Biol 2022; 10:857164. [PMID: 35309927 PMCID: PMC8927779 DOI: 10.3389/fcell.2022.857164] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/17/2022] [Indexed: 12/12/2022] Open
Abstract
It has been reported that degenerated and herniated lumbar intervertebral discs show high expression of IL-17, suggesting that local immune reactions occur in patients with low back pain. While clinical sample analyses from different laboratories confirm this, it is not deeply not known on how IL-17 is induced in the pathology and their interactions with other inflammatory responses. This conscience review organizes current laboratory findings on this topic and present trajectory for full understanding on the role of IL-17 in pathology of intervertebral disc disease.
Collapse
Affiliation(s)
- Kaori Suyama
- Department of Anatomy and Cellular Biology, Basic Medical Science, Tokai University School of Medicine, Isehara, Japan
| | - Daisuke Sakai
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Japan
- *Correspondence: Daisuke Sakai,
| | - Masahiko Watanabe
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Japan
| |
Collapse
|
15
|
Tan J, Li Z, Liu L, Liu H, Xue J. IL‐17 in intervertebral disc degeneration: mechanistic insights and therapeutic implications. Cell Biol Int 2022; 46:535-547. [PMID: 35066966 DOI: 10.1002/cbin.11767] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/28/2021] [Accepted: 01/04/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Jing‐Hua Tan
- The First Affiliated Hospital, Department of Spine Surgery, Hengyang Medical School, University of South ChinaHengyangHunan421001China
| | - Ze‐Peng Li
- The First Affiliated Hospital, Department of Spine Surgery, Hengyang Medical School, University of South ChinaHengyangHunan421001China
| | - Lu‐Lu Liu
- The First Affiliated Hospital, Department of Spine Surgery, Hengyang Medical School, University of South ChinaHengyangHunan421001China
| | - Hao Liu
- The First Affiliated Hospital, Department of Spine Surgery, Hengyang Medical School, University of South ChinaHengyangHunan421001China
| | - Jing‐Bo Xue
- The First Affiliated Hospital, Department of Spine Surgery, Hengyang Medical School, University of South ChinaHengyangHunan421001China
| |
Collapse
|
16
|
Zhang L, Liu M, Liu W, Hu C, Li H, Deng J, Cao Q, Wang Y, Hu W, Li Q. Th17/IL-17 induces endothelial cell senescence via activation of NF-κB/p53/Rb signaling pathway. J Transl Med 2021; 101:1418-1426. [PMID: 34172831 DOI: 10.1038/s41374-021-00629-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/29/2021] [Accepted: 06/14/2021] [Indexed: 12/19/2022] Open
Abstract
Cellular senescence is a key mechanism of age-related vascular endothelial dysfunction. Interleukin-17A (IL-17A) is an inflammatory cytokine produced by Th17 cells (a subgroup of helper T cells), which is a key factor in the development of atherosclerosis. However, the effect of IL-17A on the senescence of vascular endothelial cells is still unclear. In this study, we aimed to explore the role of IL-17A on endothelial cell senescence and its signaling pathways associated with senescence. The proportion of Th17 cells in the spleen and the expression levels of IL-17A, IL-6, and vascular cell adhesion molecule-1 (VCAM-1) in mice of different ages were increased with aging. In vitro experiments showed that proliferation was inhibited, senescent β-galactosidase and senescence-associated proteins (p16, p19, p21, and p53) of mouse aortic endothelial cells (MAECs) were increased with IL-17A treatment. Blocking the NF-κB pathway with ammonium pyrrolidinedithiocarbamate (PDTC) successfully inhibited IL-17A-induced expression of senescence-associated proteins. In conclusion, our data reveal a previously unsuspected link between IL-17A and endothelial cell senescence, which was mediated by the NF-κB /p53/Rb pathway.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Clinical Laboratory, Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui, PR China
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui, PR China
| | - Manli Liu
- Department of Clinical Laboratory, Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui, PR China
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui, PR China
| | - Wenhua Liu
- Department of Neurology, Wuhan No.1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Chaojie Hu
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui, PR China
| | - Hongqi Li
- Geriatric Cardiology Department, Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui, PR China
| | - Jie Deng
- Department of Clinical Laboratory, Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui, PR China
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui, PR China
| | - Qi Cao
- The Centre for Transplantation and Renal Research, Westmead Institute for Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Yiping Wang
- The Centre for Transplantation and Renal Research, Westmead Institute for Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Wei Hu
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, PR China.
| | - Qing Li
- Department of Clinical Laboratory, Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui, PR China.
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui, PR China.
| |
Collapse
|
17
|
Jie Z, Ko CJ, Wang H, Xie X, Li Y, Gu M, Zhu L, Yang JY, Gao T, Ru W, Tang SJ, Cheng X, Sun SC. Microglia promote autoimmune inflammation via the noncanonical NF-κB pathway. SCIENCE ADVANCES 2021; 7:eabh0609. [PMID: 34516909 PMCID: PMC8442891 DOI: 10.1126/sciadv.abh0609] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Microglia have been implicated in neuroinflammatory diseases, including multiple sclerosis and its animal model experimental autoimmune encephalomyelitis (EAE). We demonstrate that microglia mediate EAE disease progression via a mechanism relying on the noncanonical nuclear factor kB (NF-κB) pathway. Microglia-specific deletion of the noncanonical NF-κB-inducing kinase (NIK) impairs EAE disease progression. Although microglial NIK is dispensable for the initial phase of T cell infiltration into the central nervous system (CNS) and EAE disease onset, it is critical for the subsequent CNS recruitment of inflammatory T cells and monocytes. Our data suggest that following their initial CNS infiltration, T cells activate the microglial noncanonical NF-κB pathway, which synergizes with the T cell-derived cytokine granulocyte-macrophage colony-stimulating factor to induce expression of chemokines involved in the second-wave of T cell recruitment and disease progression. These findings highlight a mechanism of microglial function that is dependent on NIK signaling and required for EAE disease progression.
Collapse
Affiliation(s)
- Zuliang Jie
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston TX, USA
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Chun-Jung Ko
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston TX, USA
| | - Hui Wang
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston TX, USA
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Xiaoping Xie
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston TX, USA
| | - Yanchuan Li
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston TX, USA
| | - Meidi Gu
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston TX, USA
| | - Lele Zhu
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston TX, USA
| | - Jin-Young Yang
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston TX, USA
- Department of Biological Sciences, Pusan National University, Busan, South Korea
| | - Tianxiao Gao
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston TX, USA
| | - Wenjuan Ru
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Shao-Jun Tang
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Xuhong Cheng
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston TX, USA
| | - Shao-Cong Sun
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston TX, USA
- MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX, USA
- Corresponding author.
| |
Collapse
|
18
|
So T. The immunological significance of tumor necrosis factor receptor-associated factors (TRAFs). Int Immunol 2021; 34:7-20. [PMID: 34453532 DOI: 10.1093/intimm/dxab058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 07/27/2021] [Indexed: 01/03/2023] Open
Abstract
The tumor necrosis factor receptor (TNFR)-associated factor (TRAF) family of molecules are intracellular signaling adaptors and control diverse signaling pathways mediated not only by the TNFR superfamily and the Toll-like receptor/interleukin-1 receptor superfamily but also by unconventional cytokine receptors such as IL-6 and IL-17 receptors. There are seven family members, TRAF1 to TRAF7, in mammals. Exaggerated immune responses induced through TRAF signaling downstream of these receptors often lead to inflammatory and autoimmune diseases including rheumatoid arthritis, inflammatory bowel disease, psoriasis and autoinflammatory syndromes, and thus those signals are major targets for therapeutic intervention. For this reason, it has been very important to understand signaling mechanisms regulated by TRAFs that greatly impact on life/death decisions and the activation, differentiation and survival of cells of the innate and adaptive immune systems. Accumulating evidence suggests that dysregulated cellular expression and/or signaling of TRAFs causes overproduction of proinflammatory cytokines, which facilitates aberrant activation of immune cells. In this review, I will explain the structural and functional aspects that are responsible for the cellular activity and disease outcomes of TRAFs, and summarize the findings of recent studies on TRAFs in terms of how individual TRAF family molecules regulates biological and disease processes in the body in both positive and negative ways. This review also discusses how TRAF mutations contribute to human disease.
Collapse
Affiliation(s)
- Takanori So
- Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama, Japan
| |
Collapse
|
19
|
Jia YH, Liu JQ, Wang YC, Wang HT, Tao K, Zheng Z, Hu DH. [Research advances on the regulation of interleukin-17 signal transduction and the implication of interleukin-17 in sepsis]. ZHONGHUA SHAO SHANG ZA ZHI = ZHONGHUA SHAOSHANG ZAZHI = CHINESE JOURNAL OF BURNS 2021; 37:675-680. [PMID: 34304410 PMCID: PMC11917318 DOI: 10.3760/cma.j.cn501120-20200515-00266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Sepsis remains a leading cause of death in critical patients. Both excessive inflammatory response and long-term immunosuppression can lead to the death of sepsis patients. As a key pro-inflammatory cytokine, interleukin-17 (IL-17) plays an important role in the body's inflammatory response and immune system. The signal transduction of IL-17 is a key link in maintaining the body's health and participating in the onset and development of sepsis. This review mainly summarizes and discusses the regulation of IL-17 signal transduction and pathogenic and protective role of IL-17 in sepsis.
Collapse
Affiliation(s)
- Y H Jia
- Department of Burns and Cutaneous Surgery, Burn Center of PLA, the First Affiliated Hospital of Air Force Medical University, Xi'an 710032, China
| | - J Q Liu
- Department of Burns and Cutaneous Surgery, Burn Center of PLA, the First Affiliated Hospital of Air Force Medical University, Xi'an 710032, China
| | - Y C Wang
- Department of Burns and Cutaneous Surgery, Burn Center of PLA, the First Affiliated Hospital of Air Force Medical University, Xi'an 710032, China
| | - H T Wang
- Department of Burns and Cutaneous Surgery, Burn Center of PLA, the First Affiliated Hospital of Air Force Medical University, Xi'an 710032, China
| | - K Tao
- Department of Burns and Cutaneous Surgery, Burn Center of PLA, the First Affiliated Hospital of Air Force Medical University, Xi'an 710032, China
| | - Z Zheng
- Department of Burns and Cutaneous Surgery, Burn Center of PLA, the First Affiliated Hospital of Air Force Medical University, Xi'an 710032, China
| | - D H Hu
- Department of Burns and Cutaneous Surgery, Burn Center of PLA, the First Affiliated Hospital of Air Force Medical University, Xi'an 710032, China
| |
Collapse
|
20
|
Wu HH, Tsai LH, Huang CK, Hsu PH, Chen MY, Chen YI, Hu CM, Shen CN, Lee CC, Chang MC, Chang YT, Tien YW, Jeng YM, Lee EYHP, Lee WH. Characterization of initial key steps of IL-17 receptor B oncogenic signaling for targeted therapy of pancreatic cancer. Sci Transl Med 2021; 13:13/583/eabc2823. [PMID: 33658352 DOI: 10.1126/scitranslmed.abc2823] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 09/07/2020] [Accepted: 01/21/2021] [Indexed: 12/13/2022]
Abstract
The members of the interleukin-17 (IL-17) cytokine family and their receptors were identified decades ago. Unlike IL-17 receptor A (IL-17RA), which heterodimerizes with IL-17RB, IL-17RC, and IL-17RD and mediates proinflammatory gene expression, IL-17RB plays a distinct role in promoting tumor growth and metastasis upon stimulation with IL-17B. However, the molecular basis by which IL-17RB promotes oncogenesis is unknown. Here, we report that IL-17RB forms a homodimer and recruits mixed-lineage kinase 4 (MLK4), a dual kinase, to phosphorylate it at tyrosine-447 upon treatment with IL-17B in vitro. Higher amounts of phosphorylated IL-17RB in tumor specimens obtained from patients with pancreatic cancer correlated with worse prognosis. Phosphorylated IL-17RB recruits the ubiquitin ligase tripartite motif containing 56 to add lysine-63-linked ubiquitin chains to lysine-470 of IL-17RB, which further assembles NF-κB activator 1 (ACT1) and other factors to propagate downstream oncogenic signaling. Consequentially, IL-17RB mutants with substitution at either tyrosine-447 or lysine-470 lose their oncogenic activity. Treatment with a peptide consisting of amino acids 403 to 416 of IL-17RB blocks MLK4 binding, tyrosine-477 phosphorylation, and lysine-470 ubiquitination in vivo, thereby inhibiting tumorigenesis and metastasis and prolonging the life span of mice bearing pancreatic tumors. These results establish a clear pathway of how proximal signaling of IL-17RB occurs and provides insight into how this pathway provides a therapeutic target for pancreatic cancer.
Collapse
Affiliation(s)
- Heng-Hsiung Wu
- Drug Development Center, China Medical University, Taichung 40402, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| | - Lung-Hung Tsai
- Drug Development Center, China Medical University, Taichung 40402, Taiwan
| | - Chun-Kai Huang
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Pang-Hung Hsu
- Institute of Biochemistry and Molecular Biology, National Yang Ming University, Taipei 11221, Taiwan.,Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Mei-Yu Chen
- Drug Development Center, China Medical University, Taichung 40402, Taiwan
| | - Yi-Ing Chen
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Chun-Mei Hu
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Chia-Ning Shen
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Chen-Chen Lee
- Drug Development Center, China Medical University, Taichung 40402, Taiwan.,Department of Microbiology and Immunology, China Medical University, Taichung 40402, Taiwan
| | - Ming-Chu Chang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 10041, Taiwan
| | - Yu-Ting Chang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 10041, Taiwan
| | - Yu-Wen Tien
- Department of Surgery, National Taiwan University Hospital, Taipei 10041, Taiwan
| | - Yung-Ming Jeng
- Department of Pathology, National Taiwan University Hospital, Taipei 10041, Taiwan
| | - Eva Y-H P Lee
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan.,Department of Biological Chemistry, University of California, Irvine, CA 92697, USA
| | - Wen-Hwa Lee
- Drug Development Center, China Medical University, Taichung 40402, Taiwan. .,Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan.,Department of Biological Chemistry, University of California, Irvine, CA 92697, USA
| |
Collapse
|
21
|
Groen SS, Sinkeviciute D, Bay-Jensen AC, Thudium CS, Karsdal MA, Thomsen SF, Schett G, Nielsen SH. Exploring IL-17 in spondyloarthritis for development of novel treatments and biomarkers. Autoimmun Rev 2021; 20:102760. [PMID: 33485992 DOI: 10.1016/j.autrev.2021.102760] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 11/14/2020] [Indexed: 12/17/2022]
Abstract
Spondyloarthritis (SpA) is an umbrella term describing a family of chronic inflammatory rheumatic diseases. These diseases are characterised by inflammation of the axial skeleton, peripheral joints, and entheseal insertion sites throughout the body which can lead to structural joint damage including formation of axial syndesmophytes and peripheral osteophytes. Genetic evidence, preclinical and clinical studies indicate a clear role of interleukin (IL)- 23 and IL-17 as mediators in SpA pathogenesis. Targeting the IL-23/-17 pathways seems an efficient strategy for treatment of SpA patients, and despite the remaining challenges the pathway holds great promise for further advances and improved therapeutic opportunities. Much research is focusing on serological markers and imaging strategies to correctly diagnose patients in the early stages of SpA. Biomarkers may facilitate personalised medicine tailored to each patient's specific disease to optimise treatment efficacy and to monitor therapeutic response. This narrative review focuses on the IL-17 pathway in SpA-related diseases with emphasis on its role in pathogenesis, current approved IL-17 inhibitors, and the need for biomarkers reflecting core disease pathways for early diagnosis and measurement of disease activity, prognosis, and response to therapy.
Collapse
Affiliation(s)
- Solveig Skovlund Groen
- Immunoscience, Nordic Bioscience, Herlev, Denmark; Biomecial Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Dovile Sinkeviciute
- Immunoscience, Nordic Bioscience, Herlev, Denmark; Department of Clinical Sciences Lund, University of Lund, Lund, Sweden
| | | | | | | | - Simon Francis Thomsen
- Biomecial Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Dermatology, Bispebjerg Hospital, Copenhagen, Denmark
| | - Georg Schett
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Signe Holm Nielsen
- Immunoscience, Nordic Bioscience, Herlev, Denmark; Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
22
|
Borowczyk J, Shutova M, Brembilla NC, Boehncke WH. IL-25 (IL-17E) in epithelial immunology and pathophysiology. J Allergy Clin Immunol 2021; 148:40-52. [PMID: 33485651 DOI: 10.1016/j.jaci.2020.12.628] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 12/08/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023]
Abstract
IL-25, also known as IL-17E, is a unique cytokine of the IL-17 family. Indeed, IL-25 exclusively was shown to strongly induce expression of the cytokines associated with type 2 immunity. Although produced by several types of immune cells, such as T cells, dendritic cells, or group 2 innate lymphoid cells, a vast amount of IL-25 derives from epithelial cells. The functions of IL-25 have been actively studied in the context of physiology and pathology of various organs including skin, airways and lungs, gastrointestinal tract, and thymus. Accumulating evidence suggests that IL-25 is a "barrier surface" cytokine whose expression depends on extrinsic environmental factors and when upregulated may lead to inflammatory disorders such as atopic dermatitis, psoriasis, or asthma. This review summarizes the progress of the recent years regarding the effects of IL-25 on the regulation of immune response and the balance between its homeostatic and pathogenic role in various epithelia. We revisit IL-25's general and tissue-specific mechanisms of action, mediated signaling pathways, and transcription factors activated in immune and resident cells. Finally, we discuss perspectives of the IL-25-based therapies for inflammatory disorders and compare them with the mainstream ones that target IL-17A.
Collapse
Affiliation(s)
- Julia Borowczyk
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Maria Shutova
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | | | - Wolf-Henning Boehncke
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland; Division of Dermatology and Venereology, University Hospitals of Geneva, Geneva, Switzerland.
| |
Collapse
|
23
|
Ye J, Shi M, Chen W, Zhu F, Duan Q. Research Advances in the Molecular Functions and Relevant Diseases of TAOKs, Novel STE20 Kinase Family Members. Curr Pharm Des 2021; 26:3122-3133. [PMID: 32013821 DOI: 10.2174/1381612826666200203115458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/28/2020] [Indexed: 12/17/2022]
Abstract
As serine/threonine-protein kinases, Thousand and One Kinases(TAOKs) are members of the GCKlike superfamily, one of two well-known branches of the Ste20 kinase family. Within the last two decades, three functionally similar kinases, namely TAOK1-3, were identified. TAOKs are involved in many molecular and cellular events. Scholars widely believe that TAOKs act as kinases upstream of the MAPK cascade and as factors that interact with MST family kinases, the cytoskeleton, and apoptosis-associated proteins. Therefore, TAOKs are thought to function in tumorigenesis. Additionally, TAOKs participate in signal transduction induced by Notch, TCR, and IL-17. Recent studies found that TAOKs play roles in a series of diseases and conditions, such as the central nervous system dysfunction, herpes viral infection, immune system imbalance, urogenital system malformation during development, cardiovascular events, and childhood obesity. Therefore, inhibitory chemicals targeting TAOKs may be of great significance as potential drugs for these diseases.
Collapse
Affiliation(s)
- Junjie Ye
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Mingjun Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wei Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Feng Zhu
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, 541000, China
| | - Qiuhong Duan
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
24
|
Mechanism by which TRAF6 Participates in the Immune Regulation of Autoimmune Diseases and Cancer. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4607197. [PMID: 33294443 PMCID: PMC7714562 DOI: 10.1155/2020/4607197] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 11/06/2020] [Accepted: 11/17/2020] [Indexed: 11/24/2022]
Abstract
Tumor necrosis factor (TNF) receptor-associated factor 6 (TRAF6), an E3 ubiquitin ligase, is a signal transduction molecule shared by the interleukin-1 receptor (IL-1R)/Toll-like receptor (TLR) family and the TNFR superfamily. TRAF6 has a unique TRAF domain and RING finger domain that mediate intracellular signaling events. In the immune system, TRAF6-mediated signaling has been shown to be critical for the development, homeostasis, and activation of a variety of immune cells, including B cells, T cells, dendritic cells, and macrophages. Although the pathogenesis and etiology of autoimmune diseases and cancer are not fully understood, it is worth noting that existing studies have shown that TRAF6 is involved in the pathogenesis and development of a variety of these diseases. Herein, we reviewed the role of TRAF6 in certain immune cells, as well as the function and potential effect of TRAF6 in autoimmune diseases and cancer. Our review indicates that TRAF6 may be a novel target for autoimmune diseases and cancer.
Collapse
|
25
|
Liu T, Li S, Ying S, Tang S, Ding Y, Li Y, Qiao J, Fang H. The IL-23/IL-17 Pathway in Inflammatory Skin Diseases: From Bench to Bedside. Front Immunol 2020; 11:594735. [PMID: 33281823 PMCID: PMC7705238 DOI: 10.3389/fimmu.2020.594735] [Citation(s) in RCA: 185] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022] Open
Abstract
Interleukin-17 (IL-17) is an essential proinflammatory cytokine, which is mainly secreted by the CD4+ helper T cells (Th17 cells) and subsets of innate lymphoid cells. IL-17A is associated with the pathogenesis of inflammatory diseases, including psoriasis, atopic dermatitis, hidradenitis suppurativa, alopecia areata, pityriasis rubra pilaris, pemphigus, and systemic sclerosis. Interleukin-23 (IL-23) plays a pivotal role in stimulating the production of IL-17 by activating the Th17 cells. The IL-23/IL-17 axis is an important pathway for targeted therapy for inflammatory diseases. Emerging evidence from clinical trials has shown that monoclonal antibodies against IL-23, IL-17, and tumor necrosis factor are effective in the treatment of patients with psoriasis, atopic dermatitis, hidradenitis suppurativa, pityriasis rubra pilaris, pemphigus, and systemic sclerosis. Here, we summarize the latest knowledge about the biology, signaling, and pathophysiological functions of the IL-23/IL-17 axis in inflammatory skin diseases. The currently available biologics targeting the axis is also discussed.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jianjun Qiao
- Department of Dermatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hong Fang
- Department of Dermatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
26
|
Algood HMS. T Cell Cytokines Impact Epithelial Cell Responses during Helicobacter pylori Infection. THE JOURNAL OF IMMUNOLOGY 2020; 204:1421-1428. [PMID: 32152211 DOI: 10.4049/jimmunol.1901307] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/08/2019] [Indexed: 12/24/2022]
Abstract
The goal of this Brief Review is to highlight literature that demonstrates how cytokines made by T lymphocytes impact the gastric epithelium, especially during Helicobacter pylori infection. These cytokines effect many of the diverse functions of the epithelium and the epithelium's interactions with H. pylori The focal point of this Brief Review will be on how T cell cytokines impact antimicrobial function and barrier function and how T cell cytokines influence the development and progression of cancer. Furthermore, the modulation of epithelial-derived chemokines by H. pylori infection will be discussed.
Collapse
Affiliation(s)
- Holly M Scott Algood
- Veterans Affairs Tennessee Valley Healthcare Services, Nashville, TN 37212; Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37212; and Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37212
| |
Collapse
|
27
|
Zhang Q, Liao Y, Liu Z, Dai Y, Li Y, Li Y, Tang Y. Interleukin-17 and ischaemic stroke. Immunology 2020; 162:179-193. [PMID: 32935861 DOI: 10.1111/imm.13265] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/22/2020] [Accepted: 08/26/2020] [Indexed: 12/26/2022] Open
Abstract
Interleukin-17 (IL-17) is a cytokine family that includes 6 members, IL-17A through IL-17F, most of them are reported to have pro-inflammatory role. Through binding to their receptors (IL-17Rs), IL-17 activates the intracellular signalling pathways to play an important role in autoimmune diseases, including rheumatoid arthritis (RA) and multiple sclerosis (MS). Ischaemic stroke is a complex pathophysiological process mainly caused by regional cerebral ischaemia. Inflammatory factors contribute to the physiological process of stroke that leads to poor prognosis. IL-17 plays a crucial role in promoting inflammatory response and inducing secondary injury in post-stroke. Though immune cells and inflammatory factors have been reported to be involved in the damage of stroke, the functions of IL-17 in this process need to be elucidated. This review focuses on the pathological modulation and the mechanism of IL-17 family in ischaemic stroke and seeking to provide new insights for future therapies.
Collapse
Affiliation(s)
- Qiaohui Zhang
- Chinese Medical Institute, Beijing University of Chinese Medicine, Beijing, China
| | - Yan Liao
- Chinese Medical Institute, Beijing University of Chinese Medicine, Beijing, China
| | - Zhenquan Liu
- School of Chinese Materia Medical, Beijing University of Chinese Medicine, Beijing, China
| | - Yajie Dai
- Chinese Medical Institute, Beijing University of Chinese Medicine, Beijing, China
| | - Yunxin Li
- Chinese Medical Institute, Beijing University of Chinese Medicine, Beijing, China
| | - Yue Li
- School of Chinese Materia Medical, Beijing University of Chinese Medicine, Beijing, China
| | - Yibo Tang
- Chinese Medical Institute, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
28
|
Hu G, Zhang N, Li J, Wang J, Wu W, Li J, Tong W, Zhao X, Dai L, Zhang X. Tumor Necrosis Factor Receptor Associated Factor 3 Modulates Cartilage Degradation through Suppression of Interleukin 17 Signaling. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1701-1712. [PMID: 32416098 DOI: 10.1016/j.ajpath.2020.04.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 03/26/2020] [Accepted: 04/08/2020] [Indexed: 01/10/2023]
Abstract
Interleukin 17A (IL-17A) is critical in the pathogenesis of autoimmune diseases through driving inflammatory cascades. However, the role of IL-17 in osteoarthritis (OA) is not well understood. Tumor necrosis factor-receptor-associated factor 3 (TRAF3) is a receptor proximal negative regulator of IL-17 signaling. It remains unclear whether TRAF3 exerts regulatory effects on cartilage degradation and contributes to the pathogenesis of OA. In this study, we found that TRAF3 notably suppressed IL-17-induced NF-κB and mitogen-activated protein kinase activation and, subsequently, the production of matrix-degrading enzymes. TRAF3 depletion enhanced IL-17 signaling, along with increased matrix-degrading enzyme production. In vivo, cartilage destruction caused by surgery-induced OA was alleviated markedly both in 1l17a-deficient mice and in TRAF3 transgenic mice. In contrast, silencing TRAF3 through adenoviruses worsened cartilage degradation in experimental OA. Moreover, the destructive effect of IL-17 on cartilage was abolished in TRAF3 transgenic mice in an IL-17 intra-articular injection animal model. Similarly, genetic deletion of IL-17 blocked TRAF3 knockdown-mediated promotion of cartilage destruction, suggesting that the protective effect of TRAF3 on cartilage is mediated by its suppression of IL-17 signaling. Collectively, our results suggest that TRAF3 negatively regulates IL-17-mediated cartilage degradation and pathogenesis of OA, and may serve as a potential new therapy target for OA.
Collapse
Affiliation(s)
- Guoli Hu
- Department of Orthopedic Surgery, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; The Key Laboratory of Stem Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, China; Department of Orthopedic Surgery, Duke University School of Medicine, Durham, North Carolina
| | - Ning Zhang
- Department of Orthopedic Surgery, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; The Key Laboratory of Stem Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, China; Department of Orthopedic Surgery, Stanford University School of Medicine, Redwood City, California
| | - Jiao Li
- Department of Orthopedic Surgery, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; The Key Laboratory of Stem Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jing Wang
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen Wu
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Li
- Department of Orthopedic Surgery, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; The Key Laboratory of Stem Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wenxue Tong
- Department of Orthopedic Surgery, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; The Key Laboratory of Stem Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoying Zhao
- Department of Orthopedic Surgery, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; The Key Laboratory of Stem Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Liming Dai
- Department of Orthopedic Surgery, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoling Zhang
- Department of Orthopedic Surgery, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; The Key Laboratory of Stem Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
29
|
Wang S, Zhou L, Ling L, Meng X, Chu F, Zhang S, Zhou F. The Crosstalk Between Hippo-YAP Pathway and Innate Immunity. Front Immunol 2020; 11:323. [PMID: 32174922 PMCID: PMC7056731 DOI: 10.3389/fimmu.2020.00323] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/10/2020] [Indexed: 12/12/2022] Open
Abstract
Recognition of pathogen-associated molecular patterns (PAMPs) triggers expression of antiviral interferons and proinflammatory cytokines, which functions as the frontier of host defense against microbial pathogen invasion. Hippo-YAP pathway regulates cell proliferation, survival, differentiation and is involved in diverse life processes, including tissue homeostasis and tumor suppression. Emerging discoveries elucidated that the components of Hippo-YAP pathway, such as MST1/2, NDR1/2, and YAP/TAZ played crucial regulatory roles in innate immunity. Meanwhile the innate immune signaling also exhibited regulatory effect on Hippo-YAP pathway. As for the importance of these two pathways, it would be interesting to figure out the deeper biological implications of their interplays. This review focuses on the regulation between Hippo-YAP pathway and innate immune signaling. We also propose the possible contribution of these interplays to tumor development.
Collapse
Affiliation(s)
- Shuai Wang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Lili Zhou
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Li Ling
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Xuli Meng
- Department of Breast Surgery, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Feng Chu
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Suping Zhang
- Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Pharmacology, Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China
| | - Fangfang Zhou
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
30
|
IL-17 receptor-based signaling and implications for disease. Nat Immunol 2019; 20:1594-1602. [PMID: 31745337 DOI: 10.1038/s41590-019-0514-y] [Citation(s) in RCA: 342] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/10/2019] [Indexed: 12/12/2022]
Abstract
IL-17 is a highly versatile pro-inflammatory cytokine crucial for a variety of processes, including host defense, tissue repair, the pathogenesis of inflammatory disease and the progression of cancer. In contrast to its profound impact in vivo, IL-17 exhibits surprisingly moderate activity in cell-culture models, which presents a major knowledge gap about the molecular mechanisms of IL-17 signaling. Emerging studies are revealing a new dimension of complexity in the IL-17 pathway that may help explain its potent and diverse in vivo functions. Discoveries of new mRNA stabilizers and receptor-directed mRNA metabolism have provided insights into the means by which IL-17 cooperates functionally with other stimuli in driving inflammation, whether beneficial or destructive. The integration of IL-17 with growth-receptor signaling in specific cell types offers new understanding of the mitogenic effect of IL-17 on tissue repair and cancer. This Review summarizes new developments in IL-17 signaling and their pathophysiological implications.
Collapse
|
31
|
Kostareva OS, Gabdulkhakov AG, Kolyadenko IA, Garber MB, Tishchenko SV. Interleukin-17: Functional and Structural Features, Application as a Therapeutic Target. BIOCHEMISTRY (MOSCOW) 2019; 84:S193-S205. [PMID: 31213202 DOI: 10.1134/s0006297919140116] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cytokines of the IL-17 family play a key role in the host organism defense against bacterial and fungal infections. At the same time, upregulated synthesis of IL-17 cytokines is associated with immunoinflammatory and autoimmune diseases such as psoriasis, rheumatoid arthritis, systemic lupus erythematosus, and others. The members of this family are important therapeutic targets in the treatment of various human chronic inflammatory disorders. Elucidation of signaling pathways involving IL-17 family proteins and analysis of the structure of cytokine complexes with specific antibodies, inhibitors, and receptors are essential for the development of new drugs for the therapy of immunoinflammatory rheumatic diseases.
Collapse
Affiliation(s)
- O S Kostareva
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | - A G Gabdulkhakov
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - I A Kolyadenko
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - M B Garber
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - S V Tishchenko
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| |
Collapse
|
32
|
Swaidani S, Liu C, Zhao J, Bulek K, Li X. TRAF Regulation of IL-17 Cytokine Signaling. Front Immunol 2019; 10:1293. [PMID: 31316496 PMCID: PMC6610456 DOI: 10.3389/fimmu.2019.01293] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/21/2019] [Indexed: 01/23/2023] Open
Abstract
Tumor necrosis factor receptor (TNFR)-associated factors or (TRAFs) are important mediators of Interleukin-17 (IL-17) cytokine signaling and contribute to driving tissue responses that are crucial for protective immunity but are often implicated in immunopathology. By amplifying tissue immune activity, IL-17 cytokine pathways contribute to maintaining barrier function as well as activation of innate and adaptive immunity necessary for host defense. IL-17 receptors signaling is orchestrated in part, by the engagement of TRAFs and the subsequent unlocking of downstream cellular machinery that can promote pathogen clearance or contribute to immune dysregulation, chronic inflammation, and disease. Originally identified as signaling adaptors for TNFR superfamily, TRAF proteins can mediate the signaling of a variety of intercellular and extracellular stimuli and have been shown to regulate the downstream activity of many cytokine receptors including receptors for IL-1β, IL-2, IL-6, IL-17, IL-18, IL-33, type I IFNs, type III IFNs, GM-CSF, M-CSF, and TGF-β Toll-like receptors (TLRs), NOD-like receptors (NLRs), RIG-I- like receptors, and C-type lectin receptors. This review will focus on discussing studies that reveal our current understanding of how TRAFs mediate and regulate biochemical activities downstream of the IL-17 cytokines signaling.
Collapse
Affiliation(s)
- Shadi Swaidani
- Department of Inflammation and Immunity, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, United States.,Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, United States
| | - Caini Liu
- Department of Inflammation and Immunity, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, United States
| | - Junjie Zhao
- Department of Inflammation and Immunity, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, United States
| | - Katarzyna Bulek
- Department of Inflammation and Immunity, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, United States
| | - Xiaoxia Li
- Department of Inflammation and Immunity, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, United States
| |
Collapse
|
33
|
Dainichi T, Matsumoto R, Mostafa A, Kabashima K. Immune Control by TRAF6-Mediated Pathways of Epithelial Cells in the EIME (Epithelial Immune Microenvironment). Front Immunol 2019; 10:1107. [PMID: 31156649 PMCID: PMC6532024 DOI: 10.3389/fimmu.2019.01107] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/01/2019] [Indexed: 12/13/2022] Open
Abstract
In the protective responses of epithelial tissues, not only immune cells but also non-immune cells directly respond to external agents. Epithelial cells can be involved in the organization of immune responses through two phases. First, the exogenous harmful agents trigger the primary responses of the epithelial cells leading to various types of immune cell activation. Second, cytokines produced by the immune cells that are activated directly by the external agents and indirectly by the epithelial cell products elicit the secondary responses giving rise to further propagation of immune responses. TRAF6 is a ubiquitin E3 ligase, which intermediates between various types of receptors for exogenous agents or endogenous mediators and activation of subsequent transcriptional responses via NF-kappaB and MAPK pathways. TRAF6 ubiquitously participates in many protective responses in immune and non-immune cells. Particularly, epithelial TRAF6 has an essential role in the primary and secondary responses via driving type 17 response in psoriatic inflammation of the skin. Consistently, many psoriasis susceptibility genes encode the TRAF6 signaling players, such as ACT1 (TRAF3IP2), A20 (TNFAIP3), ABIN1 (TNIP1), IL-36Ra (IL36RN), IkappaBzeta (NFKBIZ), and CARD14. Herein, we describe the principal functions of TRAF6, especially in terms of positive and regulatory immune controls by interaction between immune cells and epithelial cells. In addition, we discuss how TRAF6 in the epithelial cells can organize the differentiation of immune responses and drive inflammatory loops in the epithelial immune microenvironment, which is termed EIME.
Collapse
Affiliation(s)
- Teruki Dainichi
- Department of Dermatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Reiko Matsumoto
- Department of Dermatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Alshimaa Mostafa
- Department of Dermatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Dermatology, Beni-Suef University, Beni-Suef, Egypt
| | - Kenji Kabashima
- Department of Dermatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Singapore Immunology Network (SIgN) and Institute of Medical Biology, Agency for Science, Technology and Research (ASTAR), Biopolis, Singapore, Singapore
| |
Collapse
|
34
|
Evasovic JM, Singer CA. Regulation of IL-17A and implications for TGF-β1 comodulation of airway smooth muscle remodeling in severe asthma. Am J Physiol Lung Cell Mol Physiol 2019; 316:L843-L868. [PMID: 30810068 PMCID: PMC6589583 DOI: 10.1152/ajplung.00416.2018] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 02/04/2019] [Accepted: 02/19/2019] [Indexed: 12/14/2022] Open
Abstract
Severe asthma develops as a result of heightened, persistent symptoms that generally coincide with pronounced neutrophilic airway inflammation. In individuals with severe asthma, symptoms are poorly controlled by high-dose inhaled glucocorticoids and often lead to elevated morbidity and mortality rates that underscore the necessity for novel drug target identification that overcomes limitations in disease management. Many incidences of severe asthma are mechanistically associated with T helper 17 (TH17) cell-derived cytokines and immune factors that mediate neutrophilic influx to the airways. TH17-secreted interleukin-17A (IL-17A) is an independent risk factor for severe asthma that impacts airway smooth muscle (ASM) remodeling. TH17-derived cytokines and diverse immune mediators further interact with structural cells of the airway to induce pathophysiological processes that impact ASM functionality. Transforming growth factor-β1 (TGF-β1) is a pivotal mediator involved in airway remodeling that correlates with enhanced TH17 activity in individuals with severe asthma and is essential to TH17 differentiation and IL-17A production. IL-17A can also reciprocally enhance activation of TGF-β1 signaling pathways, whereas combined TH1/TH17 or TH2/TH17 immune responses may additively impact asthma severity. This review seeks to provide a comprehensive summary of cytokine-driven T cell fate determination and TH17-mediated airway inflammation. It will further review the evidence demonstrating the extent to which IL-17A interacts with various immune factors, specifically TGF-β1, to contribute to ASM remodeling and altered function in TH17-driven endotypes of severe asthma.
Collapse
Affiliation(s)
- Jon M Evasovic
- Department of Pharmacology, School of Medicine, University of Nevada , Reno, Nevada
| | - Cherie A Singer
- Department of Pharmacology, School of Medicine, University of Nevada , Reno, Nevada
| |
Collapse
|
35
|
Zhu H, Wang Z, Yu J, Yang X, He F, Liu Z, Che F, Chen X, Ren H, Hong M, Wang J. Role and mechanisms of cytokines in the secondary brain injury after intracerebral hemorrhage. Prog Neurobiol 2019; 178:101610. [PMID: 30923023 DOI: 10.1016/j.pneurobio.2019.03.003] [Citation(s) in RCA: 215] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 03/07/2019] [Accepted: 03/16/2019] [Indexed: 12/18/2022]
Abstract
Intracerebral hemorrhage (ICH) is a common and severe cerebrovascular disease that has high mortality. Few survivors achieve self-care. Currently, patients receive only symptomatic treatment for ICH and benefit poorly from this regimen. Inflammatory cytokines are important participants in secondary injury after ICH. Increases in proinflammatory cytokines may aggravate the tissue injury, whereas increases in anti-inflammatory cytokines might be protective in the ICH brain. Inflammatory cytokines have been studied as therapeutic targets in a variety of acute and chronic brain diseases; however, studies on ICH are limited. This review summarizes the roles and functions of various pro- and anti-inflammatory cytokines in secondary brain injury after ICH and discusses pathogenic mechanisms and emerging therapeutic strategies and directions for treatment of ICH.
Collapse
Affiliation(s)
- Huimin Zhu
- Department of Neurology, Linyi People's Hospital, Linyi, Shandong 276003, China
| | - Zhiqiang Wang
- Central laboratory, Linyi People's Hospital, Linyi, Shandong 276003, China
| | - Jixu Yu
- Department of Neurology, Linyi People's Hospital, Linyi, Shandong 276003, China; Central laboratory, Linyi People's Hospital, Linyi, Shandong 276003, China; Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital, Boston, MA 02129, USA
| | - Xiuli Yang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Feng He
- Department of Neurology, Linyi People's Hospital, Linyi, Shandong 276003, China
| | - Zhenchuan Liu
- Department of Neurology, Linyi People's Hospital, Linyi, Shandong 276003, China.
| | - Fengyuan Che
- Department of Neurology, Linyi People's Hospital, Linyi, Shandong 276003, China; Central laboratory, Linyi People's Hospital, Linyi, Shandong 276003, China.
| | - Xuemei Chen
- Department of Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Honglei Ren
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Michael Hong
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jian Wang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
36
|
Perez-Chacon G, Adrados M, Vallejo-Cremades MT, Lefebvre S, Reed JC, Zapata JM. Dysregulated TRAF3 and BCL2 Expression Promotes Multiple Classes of Mature Non-hodgkin B Cell Lymphoma in Mice. Front Immunol 2019; 9:3114. [PMID: 30687320 PMCID: PMC6338067 DOI: 10.3389/fimmu.2018.03114] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 12/17/2018] [Indexed: 11/13/2022] Open
Abstract
TNF-Receptor Associated Factor (TRAF)-3 is a master regulator of B cell homeostasis and function. TRAF3 has been shown to bind and regulate various proteins involved in the control of innate and adaptive immune responses. Previous studies showed that TRAF3 overexpression renders B cells hyper-reactive to antigens and Toll-like receptor (TLR) agonists, while TRAF3 deficiency has been implicated in the development of a variety of B cell neoplasms. In this report, we show that transgenic mice overexpressing TRAF3 and BCL2 in B cells develop with high incidence severe lymphadenopathy, splenomegaly and lymphoid infiltrations into tissues and organs, which is the result of the growth of monoclonal and oligoclonal B cell neoplasms, as demonstrated by analysis of VHDJH gene rearrangement. FACS and immunohistochemical analyses show that different types of mature B cell neoplasms arise in TRAF3/BCL2 double-transgenic (tg) mice, all of which are characterized by the loss of surface IgM and IgD expression. However, two types of lymphomas are predominant: (1) mature B cell neoplasms consistent with diffuse large B cell lymphoma and (2) plasma cell neoplasms. The Ig isotypes expressed by the expanded B-cell clones included IgA, IgG, and IgM, with most having undergone somatic hypermutation. In contrast, mouse littermates representing all the other genotypes (TRAF3-/BCL2-; TRAF3+/BCL2-, and TRAF3-/BCL2+) did not develop significant lymphadenopathy or clonal B cell expansions within the observation period of 20 months. Interestingly, a large representation of the HCDR3 sequences expressed in the TRAF3-tg and TRAF3/BCL2-double-tg B cells are highly similar to those recognizing pathogen-associated molecular patterns and damage-associated molecular patterns, strongly suggesting a role for TRAF3 in promoting B cell differentiation in response to these antigens. Finally, allotransplantation of either splenocytes or cell-containing ascites from lymphoma-bearing TRAF3/BCL2 mice into SCID/NOD immunodeficient mice showed efficient transfer of the parental expanded B-cell clones. Altogether, these results indicate that TRAF3, perhaps by promoting exacerbated B cell responses to certain antigens, and BCL2, presumably by supporting survival of these clones, cooperate to induce mature B cell neoplasms in transgenic mice.
Collapse
Affiliation(s)
- Gema Perez-Chacon
- Instituto de Investigaciones Biomédicas "Alberto Sols", CSIC-UAM, Madrid, Spain.,Instituto de Investigación Hospital Universitario La Paz, Madrid, Spain
| | - Magdalena Adrados
- Instituto de Investigación del Hospital Universitario de La Princesa, Madrid, Spain
| | | | - Sophie Lefebvre
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - John C Reed
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Juan M Zapata
- Instituto de Investigaciones Biomédicas "Alberto Sols", CSIC-UAM, Madrid, Spain.,Instituto de Investigación Hospital Universitario La Paz, Madrid, Spain
| |
Collapse
|
37
|
Hippo kinase NDR2 inhibits IL-17 signaling by promoting Smurf1-mediated MEKK2 ubiquitination and degradation. Mol Immunol 2018; 105:131-136. [PMID: 30504095 DOI: 10.1016/j.molimm.2018.10.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/30/2018] [Accepted: 10/01/2018] [Indexed: 11/20/2022]
Abstract
NDR/LATS kinase family are conserved from yeast to man and their roles in inflammation remains largely unknown. In the present study, we show that knockdown of NDR2 significantly increases IL-17-induced IL-6, CXCL2 and CCL20 expression in Hela and HT-29 cells. Knockdown of NDR2 enhances IL-17-induced MAPK and NF-κB activation. NDR2 interacts with E3 ubiquitin protein ligase Smurf1, promotes Smurf1-mediated K48-linked ubiquitination of MEKK2 and inhibits expression of MEKK2. Consistently, knockdown of Smurf1 increases IL-17-induced IL-6, CXCL2 and CCL20 expression. On the other hand, overexpression of MEKK2 increases IL-17-induced IL-6 expression. These results suggest that NDR2 may play important roles in IL-17-associated inflammation by promoting Smurf1-mediated MEKK2 ubiquitination and degradation.
Collapse
|
38
|
Bishop GA, Stunz LL, Hostager BS. TRAF3 as a Multifaceted Regulator of B Lymphocyte Survival and Activation. Front Immunol 2018; 9:2161. [PMID: 30319624 PMCID: PMC6165887 DOI: 10.3389/fimmu.2018.02161] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 09/03/2018] [Indexed: 12/20/2022] Open
Abstract
The adaptor protein TNF receptor-associated factor 3 (TRAF3) serves as a powerful negative regulator in multiple aspects of B cell biology. Early in vitro studies in transformed cell lines suggested the potential of TRAF3 to inhibit signaling by its first identified binding receptor, CD40. However, because the canonical TRAF3 binding site on many receptors also mediates binding of other TRAFs, and whole-mouse TRAF3 deficiency is neonatally lethal, an accurate understanding of TRAF3's specific functions was delayed until conditional TRAF3-deficient mice were produced. Studies of B cell-specific TRAF3-deficient mice, complemented by investigations in normal and malignant mouse and human B cells, reveal that TRAF3 has powerful regulatory roles that are unique to this TRAF, as well as functions context-specific to the B cell. This review summarizes the current state of knowledge of these roles and functions. These include inhibition of signaling by plasma membrane receptors, negative regulation of intracellular receptors, and restraint of cytoplasmic NF- κB pathways. TRAF3 is also now known to function as a resident nuclear protein, and to impact B cell metabolism. Through these and additional mechanisms TRAF3 exerts powerful restraint upon B cell survival and activation. It is thus perhaps not surprising that TRAF3 has been revealed as an important tumor suppressor in B cells. The many and varied functions of TRAF3 in B cells, and new directions to pursue in future studies, are summarized and discussed here.
Collapse
Affiliation(s)
- Gail A. Bishop
- Department of Microbiology & Immunology, University of Iowa, Iowa City, IA, United States
- Department of Internal Medicine, University of Iowa, Iowa City, IA, United States
- Iowa City VA Health Care System, Iowa City, Iowa City, IA, United States
| | - Laura L. Stunz
- Department of Microbiology & Immunology, University of Iowa, Iowa City, IA, United States
| | - Bruce S. Hostager
- Department of Microbiology & Immunology, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
39
|
Shi JH, Sun SC. Tumor Necrosis Factor Receptor-Associated Factor Regulation of Nuclear Factor κB and Mitogen-Activated Protein Kinase Pathways. Front Immunol 2018; 9:1849. [PMID: 30140268 PMCID: PMC6094638 DOI: 10.3389/fimmu.2018.01849] [Citation(s) in RCA: 239] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 07/26/2018] [Indexed: 01/09/2023] Open
Abstract
Tumor necrosis factor receptor (TNFR)-associated factors (TRAFs) are a family of structurally related proteins that transduces signals from members of TNFR superfamily and various other immune receptors. Major downstream signaling events mediated by the TRAF molecules include activation of the transcription factor nuclear factor κB (NF-κB) and the mitogen-activated protein kinases (MAPKs). In addition, some TRAF family members, particularly TRAF2 and TRAF3, serve as negative regulators of specific signaling pathways, such as the noncanonical NF-κB and proinflammatory toll-like receptor pathways. Thus, TRAFs possess important and complex signaling functions in the immune system and play an important role in regulating immune and inflammatory responses. This review will focus on the role of TRAF proteins in the regulation of NF-κB and MAPK signaling pathways.
Collapse
Affiliation(s)
- Jian-Hong Shi
- Central Laboratory, Affiliated Hospital of Hebei University, Baoding, China
| | - Shao-Cong Sun
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
40
|
Jiang Y, Tian M, Lin W, Wang X, Wang X. Protein Kinase Serine/Threonine Kinase 24 Positively Regulates Interleukin 17-Induced Inflammation by Promoting IKK Complex Activation. Front Immunol 2018; 9:921. [PMID: 29760709 PMCID: PMC5936754 DOI: 10.3389/fimmu.2018.00921] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 04/13/2018] [Indexed: 12/26/2022] Open
Abstract
Interleukin 17 (IL-17) is a key inflammatory cytokine that plays a critical role in tissue inflammation and autoimmune diseases. However, its signaling remains poorly understood. In this study, we identified serine/threonine kinase 24 (Stk24) as a positive modulator of IL-17-mediated signaling and inflammation. Stk24 deficiency or knockdown markedly inhibited IL-17-induced phosphorylation of NF-κB and impaired IL-17-induced chemokines and cytokines expression. Stk24 overexpression greatly enhanced IL-17-induced NF-κB activation and expression of chemokines and cytokines in a kinase activity-independent manner. The IL-17-induced inflammatory response was significantly reduced in Stk24-deficient mice. In addition, the severity of experimental autoimmune encephalomyelitis was markedly reduced in mice with a deficiency of Stk24 in non-hematopoietic cells. We further demonstrated that Stk24 directly interacts with TAK1 and IKKβ and promotes the formation of TAK1/IKK complexes, leading to enhanced IKKβ/NF-κB activation and downstream cytokines and chemokines induction. Collectively, our findings suggest that Stk24 plays an important role in controlling IL-17-triggered inflammation and autoimmune diseases and provides new insight into the therapeutic targets of IL-17-mediated inflammatory disease.
Collapse
Affiliation(s)
- Yu Jiang
- Department of Clinical Laboratory Medicine, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,School of Medicine, Institute of Immunology, Zhejiang University, Hangzhou, China
| | - Miao Tian
- School of Medicine, Institute of Immunology, Zhejiang University, Hangzhou, China
| | - Wenlong Lin
- School of Medicine, Institute of Immunology, Zhejiang University, Hangzhou, China
| | - Xinyuan Wang
- School of Medicine, Institute of Immunology, Zhejiang University, Hangzhou, China
| | - Xiaojian Wang
- School of Medicine, Institute of Immunology, Zhejiang University, Hangzhou, China
| |
Collapse
|
41
|
Lin W, Wang N, Zhou K, Su F, Jiang Y, Shou J, Liu H, Ma C, Qian Y, Wang K, Wang X. RKIP mediates autoimmune inflammation by positively regulating IL-17R signaling. EMBO Rep 2018; 19:embr.201744951. [PMID: 29674348 DOI: 10.15252/embr.201744951] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 03/09/2018] [Accepted: 03/20/2018] [Indexed: 01/09/2023] Open
Abstract
Th17 cells contribute to the development of autoimmune diseases by secreting interleukin-17 (IL-17), which activates its receptor (IL-17R) that is expressed on epithelial cells, macrophages, microglia, and resident neuroectodermal cells. However, the mechanisms through which IL-17R-mediated signaling contributes to the development of autoimmune disease have not been completely elucidated. Here, we demonstrate that Raf-1 kinase inhibitor protein (RKIP) deficiency in mice ameliorates the symptoms of experimental autoimmune encephalomyelitis (EAE). Adoptive T-cell-transfer experiments demonstrate that RKIP plays a predominant role in Th17-mediated, but not in Th1-mediated immune responses. RKIP deficiency has no effect on Th17-cell differentiation ex vivo, nor does it affect Th17-cell differentiation in EAE mice. However, RKIP significantly promotes IL-17R-induced proinflammatory cytokine and chemokine production. Mechanistically, RKIP directly interacts with IL-17RA and Act1 to promote the formation of an IL-17R-Act1 complex, resulting in enhanced MAPK- and P65-mediated NF-κB activation and downstream cytokine production. Together, these findings indicate that RKIP functions as an essential modulator of the IL-17R-Act1 axis in IL-17R signaling, which promotes IL-17-induced inflammation and autoimmune neuroinflammation.
Collapse
Affiliation(s)
- Wenlong Lin
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Department of Respiratory Medicine, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ning Wang
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Kangxing Zhou
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Fasheng Su
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yu Jiang
- Department of Clinical Laboratory Medicine, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianan Shou
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Huan Liu
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chunmei Ma
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Youchun Qian
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kai Wang
- Department of Respiratory Medicine, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaojian Wang
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
42
|
Monin L, Gaffen SL. Interleukin 17 Family Cytokines: Signaling Mechanisms, Biological Activities, and Therapeutic Implications. Cold Spring Harb Perspect Biol 2018; 10:a028522. [PMID: 28620097 PMCID: PMC5732092 DOI: 10.1101/cshperspect.a028522] [Citation(s) in RCA: 227] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The cytokines of the interleukin 17 (IL-17) family play a central role in the control of infections, especially extracellular fungi. Conversely, if unrestrained, these inflammatory cytokines contribute to the pathology of numerous autoimmune and chronic inflammatory conditions. Recent advances have led to the approval of IL-17A-blocking biologics for the treatment of moderate to severe plaque psoriasis, but much remains to be understood about the biological functions, regulation, and signaling pathways downstream of these factors. In this review, we outline the current knowledge of signal transduction and known physiological activities of IL-17 family cytokines. We will highlight in particular the current understanding of these cytokines in the context of skin manifestations of disease.
Collapse
Affiliation(s)
- Leticia Monin
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Sarah L Gaffen
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| |
Collapse
|
43
|
Role of Interleukin- (IL-) 17 in the Pathogenesis and Targeted Therapies in Spondyloarthropathies. Mediators Inflamm 2018; 2018:2403935. [PMID: 29670461 PMCID: PMC5833467 DOI: 10.1155/2018/2403935] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 12/18/2017] [Accepted: 12/31/2017] [Indexed: 12/11/2022] Open
Abstract
Spondyloarthropathy (SpA) is a unique type of joint inflammation characterized by coexisting erosive bone damage and pathological new bone formation. Previous genetic association studies have demonstrated that several cytokine pathways play a critical role in the pathogenesis of ankylosing spondylitis (AS), psoriatic arthritis (PsA), and other types of SpA. In addition to several well-known proinflammatory cytokines, recent studies suggest that IL-17 plays a pivotal role in the pathogenesis of SpA. Further evidence from human and animal studies have defined that IL-17 and IL-17-producing cells contribute to tissue inflammation, autoimmunity, and host defense, leading to the following pathologic events associated with SpA. Recently, several clinical trials targeting IL-17 pathways demonstrated the positive response of IL-17 blockade in treating AS, indicating a great potential of IL-17-targeting therapy in SpA. In this review article, we have discussed the contributing role of IL-17 and different IL-17-producing cells in the pathogenesis of SpA and provided an outline of therapeutic application of the IL-17 blockade in the treatment of SpA. Other targeted cytokines associated with IL-17 axis in SpA will also be included.
Collapse
|
44
|
TAOK1 negatively regulates IL-17-mediated signaling and inflammation. Cell Mol Immunol 2018; 15:794-802. [PMID: 29400705 DOI: 10.1038/cmi.2017.158] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/18/2017] [Accepted: 11/19/2017] [Indexed: 12/31/2022] Open
Abstract
Interleukin 17 (IL-17) is an important cytokine that can induce tissue inflammation and is involved in the pathogenesis of numerous autoimmune diseases. However, the regulation of its signaling transduction has not been well described. In this study, we report that thousand and one kinase 1 (TAOK1) functions as a negative regulator of IL-17-mediated signal transduction and inflammation. TAOK1 knockdown promotes IL-17-induced cytokine and chemokine expression and the activation of mitogen-activated protein kinases and nuclear factor-κB. We further demonstrate that TAOK1 interacts with IL-17 receptor A (IL-17RA) independent of its kinase activity, and TAOK1 dose-dependently prevents the formation of the IL-17R-Act1 (nuclear factor activator 1, also known as tumor necrosis factor receptor-associated factor 3 interacting protein 2) complex. Consistent with this, TAOK1 deficiency exacerbates colitis in the 2,4,6-trinitrobenzenesulfonic acid)-induced experimental model of inflammatory bowel disease, likely by its promotion of the IL-17-mediated signaling pathway. TAOK1 expression is decreased in the colons of ulcerative colitis patients. In conclusion, these findings suggest that TAOK1 is involved in the development of IL-17-related autoimmune disorders.
Collapse
|
45
|
Nguyen PM, Putoczki TL. Could the inhibition of IL-17 or IL-18 be a potential therapeutic opportunity for gastric cancer? Cytokine 2018; 118:8-18. [PMID: 29396054 DOI: 10.1016/j.cyto.2018.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 01/08/2018] [Accepted: 01/08/2018] [Indexed: 02/07/2023]
Abstract
Chronic inflammation is recognized as a key tumor-promoting factor in a number of epithelial cancers, including gastric cancer (GC). The production of pro-inflammatory cytokines in the tumor microenvironment by both the innate and the adaptive immune response can activate signaling pathways that are associated with increased cell survival and proliferation of cancer cells. Among the cytokines that have most commonly been linked to inflammation-associated cancers, are the Th17 cell-associated cytokines IL-17A, IL-23, IL-22, and the IL-1 family members IL-1β and IL-18. However, whether their contribution to inflammation-associated cancers is universal, or specific to individual types of cancers, remains to be elucidated. This review will explore our current understanding of the known roles of these cytokines in gastritis and discuss how their therapeutic inhibition may be useful for GC.
Collapse
Affiliation(s)
- Paul M Nguyen
- Walter and Eliza Hall Institute of Medical Research, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Victoria 3052, Australia
| | - Tracy L Putoczki
- Walter and Eliza Hall Institute of Medical Research, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Victoria 3052, Australia.
| |
Collapse
|
46
|
Lalani AI, Zhu S, Gokhale S, Jin J, Xie P. TRAF molecules in inflammation and inflammatory diseases. ACTA ACUST UNITED AC 2017. [PMID: 29527458 DOI: 10.1007/s40495-017-0117-y] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Purpose of Review This review presents an overview of the current knowledge of TRAF molecules in inflammation with an emphasis on available human evidence and direct in vivo evidence of mouse models that demonstrate the contribution of TRAF molecules in the pathogenesis of inflammatory diseases. Recent Findings The tumor necrosis factor receptor (TNF-R)-associated factor (TRAF) family of cytoplasmic proteins was initially identified as signaling adaptors that bind directly to the intracellular domains of receptors of the TNF-R superfamily. It is now appreciated that TRAF molecules are widely employed in signaling by a variety of adaptive and innate immune receptors as well as cytokine receptors. TRAF-dependent signaling pathways typically lead to the activation of nuclear factor-κBs (NF-κBs), mitogen-activated protein kinases (MAPKs), or interferon-regulatory factors (IRFs). Most of these signaling pathways have been linked to inflammation, and therefore TRAF molecules were expected to regulate inflammation and inflammatory responses since their discovery in 1990s. However, direct in vivo evidence of TRAFs in inflammation and especially in inflammatory diseases had been lacking for many years, partly due to the difficulty imposed by early lethality of TRAF2-/-, TRAF3-/-, and TRAF6-/- mice. With the creation of conditional knockout and lineage-specific transgenic mice of different TRAF molecules, our understanding about TRAFs in inflammation and inflammatory responses has rapidly advanced during the past decade. Summary Increasing evidence indicates that TRAF molecules are versatile and indispensable regulators of inflammation and inflammatory responses and that aberrant expression or function of TRAFs contributes to the pathogenesis of inflammatory diseases.
Collapse
Affiliation(s)
- Almin I Lalani
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, New Jersey 08854
| | - Sining Zhu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, New Jersey 08854
| | - Samantha Gokhale
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, New Jersey 08854
| | - Juan Jin
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854
- Department of Pharmacology, Anhui Medical University, Meishan Road 81st, Shushan District, Hefei, Anhui province, China
| | - Ping Xie
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854
- Member, Rutgers Cancer Institute of New Jersey
| |
Collapse
|
47
|
Shao X, Chen S, Yang D, Cao M, Yao Y, Wu Z, Li N, Shen N, Li X, Song X, Qian Y. FGF2 cooperates with IL-17 to promote autoimmune inflammation. Sci Rep 2017; 7:7024. [PMID: 28765647 PMCID: PMC5539112 DOI: 10.1038/s41598-017-07597-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/28/2017] [Indexed: 01/29/2023] Open
Abstract
IL-17 is a pro-inflammatory cytokine implicated a variety of autoimmune diseases. We have recently reported that FGF2 cooperates with IL-17 to protect intestinal epithelium during dextran sodium sulfate (DSS)-induced colitis. Here, we report a pathogenic role of the FGF2-IL-17 cooperation in the pathogenesis of autoimmune arthritis. Combined treatment with FGF2 and IL-17 synergistically induced ERK activation as well as the production of cytokines and chemokines in human synovial intimal resident fibroblast-like synoviocytes (FLS). Furthermore, ectopic expression of FGF2 in mouse joints potentiated IL-17-induced inflammatory cytokine and chemokine production in the tissue. In the collagen-induced arthritis (CIA) model, while ectopic expression of FGF2 in vivo exacerbated tissue inflammation and disease symptom in the wild-type controls, the effect was largely blunted in Il17a−/− mice. Taken together, our study suggests that FGF2 cooperates with IL-17 to promote the pathogenesis of autoimmune arthritis by cooperating with IL-17 to induce inflammatory response.
Collapse
Affiliation(s)
- Xinrui Shao
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine/Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200025, China
| | - Siyuan Chen
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine/Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200025, China
| | - Daping Yang
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine/Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200025, China
| | - Mengtao Cao
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine/Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200025, China
| | - Yikun Yao
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine/Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200025, China
| | - Zhengxi Wu
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine/Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200025, China
| | - Ningli Li
- Shanghai Institute of Immunology, Institute of medical sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Nan Shen
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine/Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200025, China.,Shanghai Institute of Rheumatology, Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200001, China
| | - Xiaoxia Li
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, 44195, USA
| | - Xinyang Song
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Youcun Qian
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine/Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200025, China.
| |
Collapse
|
48
|
Dual Role of Act1 in Keratinocyte Differentiation and Host Defense: TRAF3IP2 Silencing Alters Keratinocyte Differentiation and Inhibits IL-17 Responses. J Invest Dermatol 2017; 137:1501-1511. [PMID: 28274739 DOI: 10.1016/j.jid.2016.12.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 12/08/2016] [Accepted: 12/09/2016] [Indexed: 12/16/2022]
Abstract
TRAF3IP2 is a candidate psoriasis susceptibility gene encoding Act1, an adaptor protein with ubiquitin ligase activity that couples the IL-17 receptor to downstream signaling pathways. We investigated the role of Act1 in keratinocyte responses to IL-17 using a tetracycline inducible short hairpin RNA targeting TRAF3IP2. Tetracycline exposure for 7 days effectively silenced TRAF3IP2 mRNA and Act1 protein, resulting in 761 genes with significant changes in expression (495 down, 266 up; >1.5-fold, P < 0.05). Gene ontology analysis showed that genes affected by TRAF3IP2 silencing are involved in epidermal differentiation, with early differentiation genes (KRT1, KRT10, DSC1, DSG1) being down-regulated and late differentiation genes (SPRR2, SPRR3, LCE3) being up-regulated. AP1 binding sites were enriched upstream of genes up-regulated by TRAF3IP2 silencing. Correspondingly, nuclear expression of FosB and Fra1 was increased in TRAF3IP2-silenced cells. Many genes involved in host defense were induced by IL-17 in a TRAF3IP2-dependent fashion. Inflammatory differentiation conditions (serum addition for 4 days postconfluence) markedly amplified these IL-17 responses and increased basal levels and TRAF3IP2 silencing-dependent up-regulation of multiple late differentiation genes. These findings suggest that TRAF3IP2 may alter both epidermal homeostasis and keratinocyte defense responses to influence psoriasis risk.
Collapse
|
49
|
Ma C, Lin W, Liu Z, Tang W, Gautam R, Li H, Qian Y, Huang H, Wang X. NDR1 protein kinase promotes IL-17- and TNF-α-mediated inflammation by competitively binding TRAF3. EMBO Rep 2017; 18:586-602. [PMID: 28219902 DOI: 10.15252/embr.201642140] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 01/15/2017] [Accepted: 01/18/2017] [Indexed: 01/17/2023] Open
Abstract
Interleukin 17 (IL-17) is an important inducer of tissue inflammation and is involved in numerous autoimmune diseases. However, how its signal transduction is regulated is not well understood. Here, we report that nuclear Dbf2-related kinase 1 (NDR1) functions as a positive regulator of IL-17 signal transduction and IL-17-induced inflammation. NDR1 deficiency or knockdown inhibits the IL-17-induced phosphorylation of p38, ERK1/2, and p65 and the expression of chemokines and cytokines, whereas the overexpression of NDR1 promotes IL-17-induced signaling independent of its kinase activity. Mechanistically, NDR1 interacts with TRAF3 and prevents its binding to IL-17R, which promotes the formation of an IL-17R-Act1-TRAF6 complex and downstream signaling. Consistent with this, IL-17-induced inflammation is significantly reduced in NDR1-deficient mice, and NDR1 deficiency significantly protects mice from MOG-induced experimental autoimmune encephalomyelitis (EAE) and 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis likely by its inhibition of IL-17-mediated signaling pathway. NDR1 expression is increased in the colons of ulcerative colitis (UC) patients. Taken together, these findings suggest that NDR1 is involved in the development of autoimmune diseases.
Collapse
Affiliation(s)
- Chunmei Ma
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wenlong Lin
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhiyong Liu
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wei Tang
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Rahul Gautam
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hui Li
- Department of Chemotherapy, Zhejiang Cancer Hospital, Hangzhou, China
| | - Youcun Qian
- Stem Cell Biology, Institute of Health Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaojian Wang
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
50
|
IL-17 Signaling: The Yin and the Yang. Trends Immunol 2017; 38:310-322. [PMID: 28254169 PMCID: PMC5411326 DOI: 10.1016/j.it.2017.01.006] [Citation(s) in RCA: 523] [Impact Index Per Article: 65.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/24/2017] [Accepted: 01/25/2017] [Indexed: 02/06/2023]
Abstract
Interleukin (IL)-17 is the founding member of a novel family of inflammatory cytokines. While the proinflammatory properties of IL-17 are key to its host-protective capacity, unrestrained IL-17 signaling is associated with immunopathology, autoimmune disease, and cancer progression. In this review we discuss both the activators and the inhibitors of IL-17 signal transduction, and also the physiological implications of these events. We highlight the surprisingly diverse means by which these regulators control expression of IL-17-dependent inflammatory genes, as well as the major target cells that respond to IL-17 signaling.
Collapse
|