1
|
Wang X, Shao X, Wang M, Li Y, Geng T, Wang Y, Ding X, He Y, Jin H, Sun Y, Li Z, Meng X. Design, synthesis, anticancer activity evaluation and molecular dynamics study of pyrazine N-oxide-based SHP2 allosteric inhibitors. Eur J Med Chem 2025; 293:117687. [PMID: 40344735 DOI: 10.1016/j.ejmech.2025.117687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 04/23/2025] [Accepted: 04/24/2025] [Indexed: 05/11/2025]
Abstract
Src homology-2-containing protein tyrosine phosphatase 2 (SHP2), the first oncoprotein identified in the protein phosphatase family, has emerged as a promising anticancer target in recent years. Here, we report the discovery of a novel series of pyrazine N-oxide derivatives as potent SHP2 allosteric inhibitors and the identification of compound C5 as a highly potent and selective SHP2 allosteric inhibitor (SHP2WT IC50 = 0.023 μM, SHP2E76K IC50 = 0.119 μM). At the cellular level, C5 exerted significant antiproliferative effect on KYSE-520 and MV-411 cells (KYSE-520 IC50 = 6.97 μM, MV-411 IC50 = 0.67 μM) and induced apoptosis of MV-411 cells by downregulating the SHP2-mediated ERK cell signaling. Molecular dynamics simulations revealed that C5 could form stable hydrogen bond interactions, cation-π interactions and water bridges with key residues Glu110, Arg111, Phe113, Gly115 and Thr253, thereby effectively binding to the tunnel allosteric site of SHP2. Notably, the pyrazine N-oxide scaffold could additionally form a strong and stable hydrogen bond with Arg111. Collectively, this work uncovers a novel and potent scaffold as well as presents compound C5 as a promising lead for the development of new chemotypes of SHP2 allosteric inhibitors.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xiaoyu Shao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Meijing Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yan Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Tongtong Geng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yashuai Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xuyang Ding
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yichao He
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Hongwei Jin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Zhongjun Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| | - Xiangbao Meng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| |
Collapse
|
2
|
Zhang F, Liu Y, Zhu Y, Wang Q, Zhao X, Wang Q, Chen Y, Chen S. Molecular, clinical, and prognostic implications of RAS pathway alterations in adult acute myeloid leukemia. Leuk Lymphoma 2025; 66:753-763. [PMID: 39743890 DOI: 10.1080/10428194.2024.2441855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/28/2024] [Accepted: 12/01/2024] [Indexed: 01/04/2025]
Abstract
Alterations in the RAS pathway underscore the pathogenic complexity of acute myeloid leukemia (AML), yet the full spectrum, including CBL, NF1, PTPN11, KRAS, and NRAS, remains to be fully elucidated. In this retrospective study of 735 adult AML patients, the incidence of RAS pathway alterations was 32.4%, each with distinct clinical characteristics. Venetoclax combined with hypomethylating agents (VEN + HMA) did not significantly improve response rates compared to intensive chemotherapy (IC) group. In the IC group, PTPN11 mutations in the N-SH2 domain showed a trend toward poorer prognosis, though not statistically significant in multivariate analysis, while NRAS mutations correlated with improved outcomes. In the VEN + HMA group, PTPN11 mutations in the N-SH2 domain emerged as an independent adverse prognostic marker. NRAS or KRAS mutations showed no survival advantage compared to wild-type, aligning with their intermediate-risk classification in the 2024 ELN guidelines. These findings emphasize the need for treatment-specific risk stratification for RAS pathway mutations in AML.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/metabolism
- Male
- Female
- Middle Aged
- Adult
- Mutation
- Prognosis
- Aged
- Retrospective Studies
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Young Adult
- Aged, 80 and over
- Signal Transduction
- Biomarkers, Tumor/genetics
- Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics
- ras Proteins/metabolism
- ras Proteins/genetics
- Adolescent
- Proto-Oncogene Proteins p21(ras)/genetics
- GTP Phosphohydrolases/genetics
- Membrane Proteins
Collapse
Affiliation(s)
- Fenghong Zhang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Yizi Liu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Yiyan Zhu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Qingyuan Wang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Xiangyu Zhao
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Qian Wang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Yu Chen
- Department of Hematology, The Second Affiliated Hospital of Wannan Medical College, Wuhu, People's Republic of China
| | - Suning Chen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
3
|
Fu S, Guo Y, Peng Z, Zhang D, Chang Z, Xiao Y, Zhang Q, Yu L, Chen C, Chen Y, Zhao Y. Progression and perspectives in disease modeling for Juvenile myelomonocytic leukemia. Med Oncol 2024; 42:25. [PMID: 39652257 PMCID: PMC11628578 DOI: 10.1007/s12032-024-02549-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/26/2024] [Indexed: 12/12/2024]
Abstract
Juvenile myelomonocytic leukemia (JMML) is a rare myeloproliferative neoplasm occurring in infants and young children. JMML has been shown to be resistant to all conventional cytotoxic chemotherapy drugs, and current curative therapies still rely on hematopoietic stem cell transplantation, which carries a high risk of relapse post-transplantation. This underscores the urgent need for novel treatment strategies. However, the rarity of JMML poses a major limitation for research, as it is difficult to collect substantial primary research material. To gain a deeper insight into the underlying biological mechanisms of JMML, researchers are continuously improving and developing preclinical research models to better emulate the disease. Therefore, this review aims to delineate the various experimental models currently employed in JMML, including patient-derived cell-based models, cell models, and animal models. We will discuss the characterization of these models in the context of JMML, hoping to provide a valuable reference for researchers in this field.
Collapse
Affiliation(s)
- Shengyuan Fu
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Yao Guo
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Zhiyong Peng
- Nanfang-Chunfu Children's Institute of Hematology, Taixin Hospital, Dongguan, Guangdong, China
| | - Dengyang Zhang
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Zhiguang Chang
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Yan Xiao
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Qi Zhang
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Liuting Yu
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Chun Chen
- Department of Pediatrics, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China.
| | - Yun Chen
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China.
| | - Yuming Zhao
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China.
| |
Collapse
|
4
|
Fobare S, Sharpe C, Quinn K, Bryant K, Miles LA, Bowman RL, Cheney C, Furby C, Long M, Fyock K, Wronowski B, Lerma JR, Mullaney A, Mrózek K, Nicolet D, Sesterhenn T, Johnstone ME, Rai SN, Pasare C, Zimmermann N, Carroll AJ, Stone RM, Wang ES, Kolitz JE, Powell BL, Perentesis JP, Eisfeld AK, Hertlein E, Byrd JC. PTPN11 Mutation Clonal Hierarchy in Acute Myeloid Leukemia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.18.612239. [PMID: 39345464 PMCID: PMC11429687 DOI: 10.1101/2024.09.18.612239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Mutations in protein tyrosine phosphatase non-receptor type 11 ( PTPN11 ) have been considered late acquired mutations in acute myeloid leukemia (AML) development. To interrogate the ontogeny of PTPN11 mutations, we utilized single-cell DNA sequencing and identified that PTPN11 mutations can occur as initiating events in some AML patients when accompanied by strong oncogenic drivers, commonly NPM1 mutations. The co-driver role of PTPN11 mutations was confirmed in a novel murine model that exhibits an AML phenotype with early expansion of a diverse set of variably differentiated myeloid cells that engrafted into immunodeficient and immunocompetent mice. This immune diversity was reconstituted from early precursor cells when engrafted into immunodeficient mice. Moreover, immune diversity was also observed in the blast component of patient samples with NPM1 and PTPN11 mutations, providing novel antigen targets for immune based approaches in this subset of AML that is resistant to multiple targeted therapies.
Collapse
|
5
|
Zheng H, Zhao P, Tan Z, Yu WM, Werner J, Stieglitz E, Porter C, Chandrakasan S, Wechsler D, Mendez-Ferrer S, Qu CK. Prototypical innate immune mechanism hijacked by leukemia-initiating mutant stem cells for selective advantage and immune evasion in Ptpn11-associated juvenile myelomonocytic leukemia. RESEARCH SQUARE 2024:rs.3.rs-4450642. [PMID: 39149498 PMCID: PMC11326406 DOI: 10.21203/rs.3.rs-4450642/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Juvenile myelomonocytic leukemia (JMML), a clonal hematologic malignancy, originates from mutated hematopoietic stem cells (HSCs). The mechanism sustaining the persistence of mutant stem cells, leading to leukemia development, remains elusive. In this study, we conducted comprehensive examination of gene expression profiles, transcriptional factor regulons, and cell compositions/interactions throughout various stages of tumor cell development in Ptpn11 mutation-associated JMML. Our analyses revealed that leukemia-initiating Ptpn11 E76K/+ mutant stem cells exhibited de novo activation of the myeloid transcriptional program and aberrant developmental trajectories. These mutant stem cells displayed significantly elevated expression of innate immunity-associated anti-microbial peptides and pro-inflammatory proteins, particularly S100a9 and S100a8. Biological experiments confirmed that S100a9/S100a8 conferred a selective advantage to the leukemia-initiating cells through autocrine effects and facilitated immune evasion by recruiting and promoting immune suppressive myeloid-derived suppressor cells (MDSCs) in the microenvironment. Importantly, pharmacological inhibition of S100a9/S100a8 signaling effectively impeded leukemia development from Ptpn11 E76K/+ mutant stem cells. These findings collectively suggest that JMML tumor-initiating cells exploit evolutionarily conserved innate immune and inflammatory mechanisms to establish clonal dominance.
Collapse
Affiliation(s)
- Hong Zheng
- Department of Pediatrics, Aflac Cancer & Blood Disorders Center, Winship Cancer Institute, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, USA; Department of Pathophysiology, Anhui Medical University, Hefei, China
| | - Peng Zhao
- Department of Pediatrics, Aflac Cancer & Blood Disorders Center, Winship Cancer Institute, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, USA
| | - Zhenya Tan
- Department of Pathophysiology, Anhui Medical University, Hefei, China
| | - Wen-Mei Yu
- Department of Pediatrics, Aflac Cancer & Blood Disorders Center, Winship Cancer Institute, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, USA
| | - Juwita Werner
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of California San Francisco, San Francisco, USA
| | - Elliot Stieglitz
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of California San Francisco, San Francisco, USA
| | - Chris Porter
- Department of Pediatrics, Aflac Cancer & Blood Disorders Center, Winship Cancer Institute, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, USA
| | - Shanmuganathan Chandrakasan
- Department of Pediatrics, Aflac Cancer & Blood Disorders Center, Winship Cancer Institute, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, USA
| | - Daniel Wechsler
- Department of Pediatrics, Aflac Cancer & Blood Disorders Center, Winship Cancer Institute, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, USA
| | - Simon Mendez-Ferrer
- Department of Hematology, Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Cheng-Kui Qu
- Department of Pediatrics, Aflac Cancer & Blood Disorders Center, Winship Cancer Institute, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, USA
| |
Collapse
|
6
|
Kan C, Tan Z, Liu L, Liu B, Zhan L, Zhu J, Li X, Lin K, Liu J, Liu Y, Yang F, Wong M, Wang S, Zheng H. Phase separation of SHP2E76K promotes malignant transformation of mesenchymal stem cells by activating mitochondrial complexes. JCI Insight 2024; 9:e170340. [PMID: 38451719 PMCID: PMC11141883 DOI: 10.1172/jci.insight.170340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 03/05/2024] [Indexed: 03/09/2024] Open
Abstract
Mesenchymal stem cells (MSCs), suffering from diverse gene hits, undergo malignant transformation and aberrant osteochondral differentiation. Src homology region 2-containing protein tyrosine phosphatase 2 (SHP2), a nonreceptor protein tyrosine phosphatase, regulates multicellular differentiation, proliferation, and transformation. However, the role of SHP2 in MSC fate determination remains unclear. Here, we showed that MSCs bearing the activating SHP2E76K mutation underwent malignant transformation into sarcoma stem-like cells. We revealed that the SHP2E76K mutation in mouse MSCs led to hyperactive mitochondrial metabolism by activating mitochondrial complexes I and III. Inhibition of complexes I and III prevented hyperactive mitochondrial metabolism and malignant transformation of SHP2E76K MSCs. Mechanistically, we verified that SHP2 underwent liquid-liquid phase separation (LLPS) in SHP2E76K MSCs. SHP2 LLPS led to its dissociation from complexes I and III, causing their hyperactivation. Blockade of SHP2 LLPS by LLPS-defective mutations or allosteric inhibitors suppressed complex I and III hyperactivation as well as malignant transformation of SHP2E76K MSCs. These findings reveal that complex I and III hyperactivation driven by SHP2 LLPS promotes malignant transformation of SHP2E76K MSCs and suggest that inhibition of SHP2 LLPS could be a potential therapeutic target for the treatment of activated SHP2-associated cancers.
Collapse
Affiliation(s)
- Chen Kan
- Department of Pathophysiology, School of Basic Medical Sciences, Stem Cell Regeneration Research Center, Anhui Medical University, Hefei, China
| | - Zhenya Tan
- Department of Pathophysiology, School of Basic Medical Sciences, Stem Cell Regeneration Research Center, Anhui Medical University, Hefei, China
| | - Liwei Liu
- Department of Pathogen Biology and Immunology, School of Medical Technology, Anhui Medical College, Hefei, China
| | - Bo Liu
- Department of Cell Center, 901st Hospital of PLA Joint Logistic Support Force, Anhui, Hefei, China
| | - Li Zhan
- Department of Pathophysiology, School of Basic Medical Sciences, Stem Cell Regeneration Research Center, Anhui Medical University, Hefei, China
| | - Jicheng Zhu
- Department of Pathophysiology, School of Basic Medical Sciences, Stem Cell Regeneration Research Center, Anhui Medical University, Hefei, China
| | - Xiaofei Li
- Department of Pathophysiology, School of Basic Medical Sciences, Stem Cell Regeneration Research Center, Anhui Medical University, Hefei, China
| | - Keqiong Lin
- Department of Pathophysiology, School of Basic Medical Sciences, Stem Cell Regeneration Research Center, Anhui Medical University, Hefei, China
| | - Jia Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Stem Cell Regeneration Research Center, Anhui Medical University, Hefei, China
| | - Yakun Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Stem Cell Regeneration Research Center, Anhui Medical University, Hefei, China
| | - Fan Yang
- Department of Pathophysiology, School of Basic Medical Sciences, Stem Cell Regeneration Research Center, Anhui Medical University, Hefei, China
| | - Mandy Wong
- Department of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Siying Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Stem Cell Regeneration Research Center, Anhui Medical University, Hefei, China
| | - Hong Zheng
- Department of Pathophysiology, School of Basic Medical Sciences, Stem Cell Regeneration Research Center, Anhui Medical University, Hefei, China
| |
Collapse
|
7
|
Chen X, Keller SJ, Hafner P, Alrawashdeh AY, Avery TY, Norona J, Zhou J, Ruess DA. Tyrosine phosphatase PTPN11/SHP2 in solid tumors - bull's eye for targeted therapy? Front Immunol 2024; 15:1340726. [PMID: 38504984 PMCID: PMC10948527 DOI: 10.3389/fimmu.2024.1340726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 02/19/2024] [Indexed: 03/21/2024] Open
Abstract
Encoded by PTPN11, the Src-homology 2 domain-containing phosphatase 2 (SHP2) integrates signals from various membrane-bound receptors such as receptor tyrosine kinases (RTKs), cytokine and integrin receptors and thereby promotes cell survival and proliferation. Activating mutations in the PTPN11 gene may trigger signaling pathways leading to the development of hematological malignancies, but are rarely found in solid tumors. Yet, aberrant SHP2 expression or activation has implications in the development, progression and metastasis of many solid tumor entities. SHP2 is involved in multiple signaling cascades, including the RAS-RAF-MEK-ERK-, PI3K-AKT-, JAK-STAT- and PD-L1/PD-1- pathways. Although not mutated, activation or functional requirement of SHP2 appears to play a relevant and context-dependent dichotomous role. This mostly tumor-promoting and infrequently tumor-suppressive role exists in many cancers such as gastrointestinal tumors, pancreatic, liver and lung cancer, gynecological entities, head and neck cancers, prostate cancer, glioblastoma and melanoma. Recent studies have identified SHP2 as a potential biomarker for the prognosis of some solid tumors. Based on promising preclinical work and the advent of orally available allosteric SHP2-inhibitors early clinical trials are currently investigating SHP2-directed approaches in various solid tumors, either as a single agent or in combination regimes. We here provide a brief overview of the molecular functions of SHP2 and collate current knowledge with regard to the significance of SHP2 expression and function in different solid tumor entities, including cells in their microenvironment, immune escape and therapy resistance. In the context of the present landscape of clinical trials with allosteric SHP2-inhibitors we discuss the multitude of opportunities but also limitations of a strategy targeting this non-receptor protein tyrosine phosphatase for treatment of solid tumors.
Collapse
Affiliation(s)
- Xun Chen
- Department of General and Visceral Surgery, Center for Surgery, Medical Center University of Freiburg, Freiburg, Germany
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou, China
| | - Steffen Johannes Keller
- Department of General and Visceral Surgery, Center for Surgery, Medical Center University of Freiburg, Freiburg, Germany
| | - Philipp Hafner
- Department of General and Visceral Surgery, Center for Surgery, Medical Center University of Freiburg, Freiburg, Germany
| | - Asma Y. Alrawashdeh
- Department of General and Visceral Surgery, Center for Surgery, Medical Center University of Freiburg, Freiburg, Germany
| | - Thomas Yul Avery
- Department of General and Visceral Surgery, Center for Surgery, Medical Center University of Freiburg, Freiburg, Germany
| | - Johana Norona
- Department of General and Visceral Surgery, Center for Surgery, Medical Center University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jinxue Zhou
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou, China
| | - Dietrich Alexander Ruess
- Department of General and Visceral Surgery, Center for Surgery, Medical Center University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
8
|
Sodir NM, Pathria G, Adamkewicz JI, Kelley EH, Sudhamsu J, Merchant M, Chiarle R, Maddalo D. SHP2: A Pleiotropic Target at the Interface of Cancer and Its Microenvironment. Cancer Discov 2023; 13:2339-2355. [PMID: 37682219 PMCID: PMC10618746 DOI: 10.1158/2159-8290.cd-23-0383] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/20/2023] [Accepted: 07/27/2023] [Indexed: 09/09/2023]
Abstract
The protein phosphatase SHP2/PTPN11 has been reported to be a key modulator of proliferative pathways in a wide range of malignancies. Intriguingly, SHP2 has also been described as a critical regulator of the tumor microenvironment. Based on this evidence SHP2 is considered a multifaceted target in cancer, spurring the notion that the development of direct inhibitors of SHP2 would provide the twofold benefit of tumor intrinsic and extrinsic inhibition. In this review, we will discuss the role of SHP2 in cancer and the tumor microenvironment, and the clinical strategies in which SHP2 inhibitors are leveraged as combination agents to improve therapeutic response. SIGNIFICANCE The SHP2 phosphatase functions as a pleiotropic factor, and its inhibition not only hinders tumor growth but also reshapes the tumor microenvironment. Although their single-agent activity may be limited, SHP2 inhibitors hold the potential of being key combination agents to enhance the depth and the durability of tumor response to therapy.
Collapse
Affiliation(s)
- Nicole M. Sodir
- Department of Translational Oncology, Genentech, South San Francisco, California
| | - Gaurav Pathria
- Department of Oncology Biomarker Development, Genentech, South San Francisco, California
| | | | - Elizabeth H. Kelley
- Department of Discovery Chemistry, Genentech, South San Francisco, California
| | - Jawahar Sudhamsu
- Department of Structural Biology, Genentech, South San Francisco, California
| | - Mark Merchant
- Department of Translational Oncology, Genentech, South San Francisco, California
| | - Roberto Chiarle
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Danilo Maddalo
- Department of Translational Oncology, Genentech, South San Francisco, California
| |
Collapse
|
9
|
Takahashi-Kanemitsu A, Lu M, Knight CT, Yamamoto T, Hayashi T, Mii Y, Ooki T, Kikuchi I, Kikuchi A, Barker N, Susaki EA, Taira M, Hatakeyama M. The Helicobacter pylori CagA oncoprotein disrupts Wnt/PCP signaling and promotes hyperproliferation of pyloric gland base cells. Sci Signal 2023; 16:eabp9020. [PMID: 37463245 DOI: 10.1126/scisignal.abp9020] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/24/2023] [Indexed: 07/20/2023]
Abstract
Helicobacter pylori strains that deliver the oncoprotein CagA into gastric epithelial cells are the major etiologic agents of upper gastric diseases including gastric cancer. CagA promotes gastric carcinogenesis through interactions with multiple host proteins. Here, we show that CagA also disrupts Wnt-dependent planar cell polarity (Wnt/PCP), which orients cells within the plane of an epithelium and coordinates collective cell behaviors such as convergent extension to enable epithelial elongation during development. Ectopic expression of CagA in Xenopus laevis embryos impaired gastrulation, neural tube formation, and axis elongation, processes driven by convergent extension movements that depend on the Wnt/PCP pathway. Mice specifically expressing CagA in the stomach epithelium had longer pyloric glands and mislocalization of the tetraspanin proteins VANGL1 and VANGL2 (VANGL1/2), which are critical components of Wnt/PCP signaling. The increased pyloric gland length was due to hyperproliferation of cells at the gland base, where Lgr5+ stem and progenitor cells reside, and was associated with fewer differentiated enteroendocrine cells. In cultured human gastric epithelial cells, the N terminus of CagA interacted with the C-terminal cytoplasmic tails of VANGL1/2, which impaired Wnt/PCP signaling by inducing the mislocalization of VANGL1/2 from the plasma membrane to the cytoplasm. Thus, CagA may contribute to the development of gastric cancer by subverting a Wnt/PCP-dependent mechanism that restrains pyloric gland stem cell proliferation and promotes enteroendocrine differentiation.
Collapse
Affiliation(s)
- Atsushi Takahashi-Kanemitsu
- Department of Microbiology, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Department of Biochemistry and Systems Biomedicine, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Mengxue Lu
- Department of Microbiology, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Christopher Takaya Knight
- Department of Microbiology, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takayoshi Yamamoto
- Department of Biological Sciences, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan
| | - Takuo Hayashi
- Department of Human Pathology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yusuke Mii
- National Institute for Basic Biology and Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
- Japan Science and Technology Agency, PRESTO, Kawaguchi, Saitama 332-0012, Japan
| | - Takuya Ooki
- Department of Microbiology, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Laboratory of Microbial Carcinogenesis, Institute of Microbial Chemistry, Microbial Chemistry Research Foundation, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Ippei Kikuchi
- Department of Microbiology, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Laboratory of Microbial Carcinogenesis, Institute of Microbial Chemistry, Microbial Chemistry Research Foundation, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Akira Kikuchi
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Osaka 565-0871, Japan
| | - Nick Barker
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
- Division of Epithelial Stem Cell Biology, Cancer Research Institute, Kanazawa University, Kanazawa 924-1192, Japan
| | - Etsuo A Susaki
- Department of Biochemistry and Systems Biomedicine, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Masanori Taira
- Department of Biological Sciences, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Department of Biological Sciences, Faculty of Science and Engineering, Chuo University, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Masanori Hatakeyama
- Department of Microbiology, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Laboratory of Microbial Carcinogenesis, Institute of Microbial Chemistry, Microbial Chemistry Research Foundation, Shinagawa-ku, Tokyo 141-0021, Japan
- Research Center of Microbial Carcinogenesis, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido 060-0815, Japan
| |
Collapse
|
10
|
He C, Peng Z, Zhang D, Guo Y, Liang T, Zhao Y, Yu L, Zhang Q, Chang Z, Xiao Y, Li N, Xue H, Wu S, Zhao ZJ, Zhang C, Chen Y. Sunitinib selectively targets leukemogenic signaling of mutant SHP2 in juvenile myelomonocytic leukemia. Biochem Pharmacol 2023; 213:115588. [PMID: 37187274 DOI: 10.1016/j.bcp.2023.115588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/08/2023] [Accepted: 05/08/2023] [Indexed: 05/17/2023]
Abstract
Leukemogenic SHP2 mutations occur in 35% of patients with juvenile myelomonocytic leukemia (JMML), a hematopoietic malignancy with poor response to cytotoxic chemotherapy. Novel therapeutic strategies are urgently needed for patients with JMML. Previously, we established a novel cell model of JMML with HCD-57, a murine erythroleukemia cell line that depends on EPO for survival. SHP2-D61Y or -E76K drove the survival and proliferation of HCD-57 in absence of EPO. In this study, we identified sunitinib as a potent compound to inhibit SHP2-mutant cells by screening a kinase inhibitor library with our model. We used cell viability assay, colony formation assay, flow cytometry, immunoblotting, and a xenograft model to evaluate the effect of sunitinib against SHP2-mutant leukemia cells in vitro and in vivo. The treatment of sunitinib selectively induced apoptosis and cell cycle arrest in mutant SHP2-transformed HCD-57, but not parental cells. It also inhibited cell viability and colony formation of primary JMML cells with mutant SHP2, but not bone marrow mononuclear cells from healthy donors. Immunoblotting showed that the treatment of sunitinib blocked the aberrantly activated signals of mutant SHP2 with deceased phosphorylation levels of SHP2, ERK, and AKT. Furthermore, sunitinib effectively reduced tumor burdens of immune-deficient mice engrafted with mutant-SHP2 transformed HCD-57. Our data demonstrated that sunitinib selectively inhibited SHP2-mutant leukemia cells, which could serve as an effective therapeutic strategy for SHP2-mutant JMML in the future.
Collapse
Affiliation(s)
- Chunxiao He
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Zhiyong Peng
- Nanfang-Chunfu Children's Institute of Hematology, Taixin Hospital, Dongguan, Guangdong, China
| | - Dengyang Zhang
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yao Guo
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Tianqi Liang
- Department of Pediatrics, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Yuming Zhao
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Liuting Yu
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Qi Zhang
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Zhiguang Chang
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yan Xiao
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Na Li
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Hongman Xue
- Department of Pediatrics, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Shunjie Wu
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Zhizhuang Joe Zhao
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.
| | - Changhua Zhang
- Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, China.
| | - Yun Chen
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China.
| |
Collapse
|
11
|
Pasupuleti SK, Chao K, Ramdas B, Kanumuri R, Palam LR, Liu S, Wan J, Annesley C, Loh ML, Stieglitz E, Burke MJ, Kapur R. Potential clinical use of azacitidine and MEK inhibitor combination therapy in PTPN11-mutated juvenile myelomonocytic leukemia. Mol Ther 2023; 31:986-1001. [PMID: 36739480 PMCID: PMC10124140 DOI: 10.1016/j.ymthe.2023.01.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/17/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Juvenile myelomonocytic leukemia (JMML) is a rare myeloproliferative neoplasm of childhood. The molecular hallmark of JMML is hyperactivation of the Ras/MAPK pathway with the most common cause being mutations in the gene PTPN11, encoding the protein tyrosine phosphatase SHP2. Current strategies for treating JMML include using the hypomethylating agent, 5-azacitidine (5-Aza) or MEK inhibitors trametinib and PD0325901 (PD-901), but none of these are curative as monotherapy. Utilizing an Shp2E76K/+ murine model of JMML, we show that the combination of 5-Aza and PD-901 modulates several hematologic abnormalities often seen in JMML patients, in part by reducing the burden of leukemic hematopoietic stem and progenitor cells (HSC/Ps). The reduced JMML features in drug-treated mice were associated with a decrease in p-MEK and p-ERK levels in Shp2E76K/+ mice treated with the combination of 5-Aza and PD-901. RNA-sequencing analysis revealed a reduction in several RAS and MAPK signaling-related genes. Additionally, a decrease in the expression of genes associated with inflammation and myeloid leukemia was also observed in Shp2E76K/+ mice treated with the combination of the two drugs. Finally, we report two patients with JMML and PTPN11 mutations treated with 5-Aza, trametinib, and chemotherapy who experienced a clinical response because of the combination treatment.
Collapse
Affiliation(s)
- Santhosh Kumar Pasupuleti
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut Street, R4-168, Indianapolis, IN 46202, USA
| | - Karen Chao
- Department of Pediatrics, Children's Wisconsin, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Stanford University School of Medicine, Lucile Packard Children's Hospital, Palo Alto, CA, USA
| | - Baskar Ramdas
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut Street, R4-168, Indianapolis, IN 46202, USA
| | - Rahul Kanumuri
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut Street, R4-168, Indianapolis, IN 46202, USA
| | - Lakshmi Reddy Palam
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut Street, R4-168, Indianapolis, IN 46202, USA
| | - Sheng Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jun Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | - Elliot Stieglitz
- Department of Pediatrics, Benioff Children's Hospital, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Michael J Burke
- Department of Pediatrics, Children's Wisconsin, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Reuben Kapur
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut Street, R4-168, Indianapolis, IN 46202, USA; Department of Microbiology & Immunology, Indiana University School of Medicine, 1044 W. Walnut Street, R4-168, Indianapolis, IN 46202, USA.
| |
Collapse
|
12
|
Yan Y, Chen C, Li Z, Zhang J, Park N, Qu CK. Extracellular arginine is required but the arginine transporter CAT3 (Slc7a3) is dispensable for mouse normal and malignant hematopoiesis. Sci Rep 2022; 12:21832. [PMID: 36528691 PMCID: PMC9759514 DOI: 10.1038/s41598-022-24554-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 11/16/2022] [Indexed: 12/23/2022] Open
Abstract
Amino acid-mediated metabolism is one of the key catabolic and anabolic processes involved in diverse cellular functions. However, the role of the semi-essential amino acid arginine in normal and malignant hematopoietic cell development is poorly understood. Here we report that a continuous supply of exogenous arginine is required for the maintenance/function of normal hematopoietic stem cells (HSCs). Surprisingly, knockout of Slc7a3 (CAT3), a major L-arginine transporter, does not affect HSCs in steady-state or under stress. Although Slc7a3 is highly expressed in naïve and activated CD8 T cells, neither T cell development nor activation/proliferation is impacted by Slc7a3 depletion. Furthermore, the Slc7a3 deletion does not attenuate leukemia development driven by Pten loss or the oncogenic Ptpn11E76K mutation. Arginine uptake assays reveal that L-arginine uptake is not disrupted in Slc7a3 knockout cells. These data suggest that extracellular arginine is critically important for HSCs, but CAT3 is dispensable for normal hematopoiesis and leukemogenesis.
Collapse
Affiliation(s)
- Yuhan Yan
- grid.189967.80000 0001 0941 6502Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Winship Cancer Institute, Children’s Healthcare of Atlanta, Emory University School of Medicine, 1760 Haygood Drive NE, HSRB E302, Atlanta, GA 30322 USA
| | - Chao Chen
- grid.189967.80000 0001 0941 6502Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Winship Cancer Institute, Children’s Healthcare of Atlanta, Emory University School of Medicine, 1760 Haygood Drive NE, HSRB E302, Atlanta, GA 30322 USA
| | - Zhiguo Li
- grid.189967.80000 0001 0941 6502Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Winship Cancer Institute, Children’s Healthcare of Atlanta, Emory University School of Medicine, 1760 Haygood Drive NE, HSRB E302, Atlanta, GA 30322 USA
| | - Jing Zhang
- grid.189967.80000 0001 0941 6502Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Winship Cancer Institute, Children’s Healthcare of Atlanta, Emory University School of Medicine, 1760 Haygood Drive NE, HSRB E302, Atlanta, GA 30322 USA
| | - Narin Park
- grid.189967.80000 0001 0941 6502Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Winship Cancer Institute, Children’s Healthcare of Atlanta, Emory University School of Medicine, 1760 Haygood Drive NE, HSRB E302, Atlanta, GA 30322 USA
| | - Cheng-Kui Qu
- grid.189967.80000 0001 0941 6502Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Winship Cancer Institute, Children’s Healthcare of Atlanta, Emory University School of Medicine, 1760 Haygood Drive NE, HSRB E302, Atlanta, GA 30322 USA
| |
Collapse
|
13
|
Solman M, Woutersen DTJ, den Hertog J. Modeling (not so) rare developmental disorders associated with mutations in the protein-tyrosine phosphatase SHP2. Front Cell Dev Biol 2022; 10:1046415. [PMID: 36407105 PMCID: PMC9672471 DOI: 10.3389/fcell.2022.1046415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
Src homology region 2 (SH2)-containing protein tyrosine phosphatase 2 (SHP2) is a highly conserved protein tyrosine phosphatase (PTP), which is encoded by PTPN11 and is indispensable during embryonic development. Mutations in PTPN11 in human patients cause aberrant signaling of SHP2, resulting in multiple rare hereditary diseases, including Noonan Syndrome (NS), Noonan Syndrome with Multiple Lentigines (NSML), Juvenile Myelomonocytic Leukemia (JMML) and Metachondromatosis (MC). Somatic mutations in PTPN11 have been found to cause cancer. Here, we focus on the role of SHP2 variants in rare diseases and advances in the understanding of its pathogenesis using model systems.
Collapse
Affiliation(s)
- Maja Solman
- Hubrecht Institute-KNAW, University Medical Center Utrecht, Utrecht, Netherlands
| | | | - Jeroen den Hertog
- Hubrecht Institute-KNAW, University Medical Center Utrecht, Utrecht, Netherlands
- Institute Biology Leiden, Leiden University, Leiden, Netherlands
- *Correspondence: Jeroen den Hertog,
| |
Collapse
|
14
|
Cammann C, Israel N, Frentzel S, Jeron A, Topfstedt E, Schüler T, Simeoni L, Zenker M, Fehling HJ, Schraven B, Bruder D, Seifert U. T cell-specific constitutive active SHP2 enhances T cell memory formation and reduces T cell activation. Front Immunol 2022; 13:958616. [PMID: 35983034 PMCID: PMC9379337 DOI: 10.3389/fimmu.2022.958616] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
Upon antigen recognition by the T cell receptor (TCR), a complex signaling network orchestrated by protein-tyrosine kinases (PTKs) and protein-tyrosine phosphatases (PTPs) regulates the transmission of the extracellular signal to the nucleus. The role of the PTPs Src-homology 2 (SH2) domain-containing phosphatase 1 (SHP1, Ptpn6) and Src-homology 2 (SH2) domain-containing phosphatase 2 (SHP2, Ptpn11) have been studied in various cell types including T cells. Whereas SHP1 acts as an essential negative regulator of the proximal steps in T cell signalling, the role of SHP2 in T cell activation is still a matter of debate. Here, we analyzed the role of the constitutively active SHP2-D61Y-mutant in T cell activation using knock-in mice expressing the mutant form Ptpn11D61Y in T cells. We observed reduced numbers of CD8+ and increased numbers of CD4+ T cells in the bone marrow and spleen of young and aged SHP2-D61Y-mutant mice as well as in Influenza A Virus (IAV)-infected mice compared to controls. In addition, we found elevated frequencies of effector memory CD8+ T cells and an upregulation of the programmed cell death protein 1 (PD-1)-receptor on both CD4+ and CD8+ T cells. Functional analysis of SHP2-D61Y-mutated T cells revealed an induction of late apoptosis/necrosis, a reduced proliferation and altered signaling upon TCR stimulation. However, the ability of D61Y-mutant mice to clear viral infection was not affected. In conclusion, our data indicate an important regulatory role of SHP2 in T cell function, where the effect is determined by the kinetics of SHP2 phosphatase activity and differs in the presence of the permanently active and the temporally regulated phosphatase. Due to interaction of SHP2 with the PD-1-receptor targeting the protein-tyrosine phosphatase might be a valuable tool to enhance T cell activities in immunotherapy.
Collapse
Affiliation(s)
- Clemens Cammann
- Friedrich Loeffler-Institute for Medical Microbiology-Virology, University Medicine Greifswald, Greifswald, Germany
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Nicole Israel
- Friedrich Loeffler-Institute for Medical Microbiology-Virology, University Medicine Greifswald, Greifswald, Germany
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Sarah Frentzel
- Institute of Medical Microbiology, Infection Prevention and Control, Infection Immunology Group, Health Campus Immunology, Infectiology and Inflammation, Ottovon-Guericke-University Magdeburg, Magdeburg, Germany
- Immune Regulation Group, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Andreas Jeron
- Institute of Medical Microbiology, Infection Prevention and Control, Infection Immunology Group, Health Campus Immunology, Infectiology and Inflammation, Ottovon-Guericke-University Magdeburg, Magdeburg, Germany
- Immune Regulation Group, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Eylin Topfstedt
- Friedrich Loeffler-Institute for Medical Microbiology-Virology, University Medicine Greifswald, Greifswald, Germany
| | - Thomas Schüler
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Luca Simeoni
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Martin Zenker
- Institute of Human Genetics, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | | | - Burkhart Schraven
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Dunja Bruder
- Institute of Medical Microbiology, Infection Prevention and Control, Infection Immunology Group, Health Campus Immunology, Infectiology and Inflammation, Ottovon-Guericke-University Magdeburg, Magdeburg, Germany
- Immune Regulation Group, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Ulrike Seifert
- Friedrich Loeffler-Institute for Medical Microbiology-Virology, University Medicine Greifswald, Greifswald, Germany
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- *Correspondence: Ulrike Seifert,
| |
Collapse
|
15
|
Ramdas B, Yuen LD, Palam LR, Patel R, Pasupuleti SK, Jideonwo V, Zhang J, Maguire C, Wong E, Kanumuri R, Zhang C, Sandusky G, Chan RJ, Zhang C, Stieglitz E, Haneline L, Kapur R. Inhibition of BTK and PI3Kδ impairs the development of human JMML stem and progenitor cells. Mol Ther 2022; 30:2505-2521. [PMID: 35443935 PMCID: PMC9263321 DOI: 10.1016/j.ymthe.2022.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/13/2022] [Accepted: 04/16/2022] [Indexed: 10/18/2022] Open
Abstract
Juvenile myelomonocytic leukemia (JMML) is an aggressive myeloproliferative neoplasia that lacks effective targeted chemotherapies. Clinically, JMML manifests as monocytic leukocytosis, splenomegaly with consequential thrombocytopenia. Most commonly, patients have gain-of-function (GOF) oncogenic mutations in PTPN11 (SHP2), leading to Erk and Akt hyperactivation. Mechanism(s) involved in co-regulation of Erk and Akt in the context of GOF SHP2 are poorly understood. Here, we show that Bruton's tyrosine kinase (BTK) is hyperphosphorylated in GOF Shp2-bearing cells and utilizes B cell adaptor for PI3K to cooperate with p110δ, the catalytic subunit of PI3K. Dual inhibition of BTK and p110δ reduces the activation of both Erk and Akt. In vivo, individual targeting of BTK or p110δ in a mouse model of human JMML equally reduces monocytosis and splenomegaly; however, the combined treatment results in a more robust inhibition and uniquely rescues anemia and thrombocytopenia. RNA-seq analysis of drug-treated mice showed a profound reduction in the expression of genes associated with leukemic cell migration and inflammation, leading to correction in the infiltration of leukemic cells in the lung, liver, and spleen. Remarkably, in a patient derived xenograft model of JMML, leukemia-initiating stem and progenitor cells were potently inhibited in response to the dual drug treatment.
Collapse
Affiliation(s)
- Baskar Ramdas
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Lisa Deng Yuen
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Lakshmi Reddy Palam
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Roshini Patel
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Santhosh Kumar Pasupuleti
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Victoria Jideonwo
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ji Zhang
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Callista Maguire
- Department of Pathology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Eric Wong
- Department of Pediatrics, Benioff Children's Hospital, University of California, San Francisco, CA, USA
| | - Rahul Kanumuri
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Chujing Zhang
- Department of Pediatrics, Benioff Children's Hospital, University of California, San Francisco, CA, USA
| | - George Sandusky
- Department of Pathology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Rebecca J Chan
- Senior Director, Oncology, U.S. Medical Affairs, Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, CA, USA
| | - Chi Zhang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Elliot Stieglitz
- Department of Pediatrics, Benioff Children's Hospital, University of California, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Laura Haneline
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Reuben Kapur
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Molecular Biology and Biochemistry, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
16
|
Solman M, Blokzijl-Franke S, Piques F, Yan C, Yang Q, Strullu M, Kamel SM, Ak P, Bakkers J, Langenau DM, Cavé H, den Hertog J. Inflammatory response in hematopoietic stem and progenitor cells triggered by activating SHP2 mutations evokes blood defects. eLife 2022; 11:e73040. [PMID: 35535491 PMCID: PMC9119675 DOI: 10.7554/elife.73040] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 04/20/2022] [Indexed: 11/20/2022] Open
Abstract
Gain-of-function mutations in the protein-tyrosine phosphatase SHP2 are the most frequently occurring mutations in sporadic juvenile myelomonocytic leukemia (JMML) and JMML-like myeloproliferative neoplasm (MPN) associated with Noonan syndrome (NS). Hematopoietic stem and progenitor cells (HSPCs) are the disease propagating cells of JMML. Here, we explored transcriptomes of HSPCs with SHP2 mutations derived from JMML patients and a novel NS zebrafish model. In addition to major NS traits, CRISPR/Cas9 knock-in Shp2D61G mutant zebrafish recapitulated a JMML-like MPN phenotype, including myeloid lineage hyperproliferation, ex vivo growth of myeloid colonies, and in vivo transplantability of HSPCs. Single-cell mRNA sequencing of HSPCs from Shp2D61G zebrafish embryos and bulk sequencing of HSPCs from JMML patients revealed an overlapping inflammatory gene expression pattern. Strikingly, an anti-inflammatory agent rescued JMML-like MPN in Shp2D61G zebrafish embryos. Our results indicate that a common inflammatory response was triggered in the HSPCs from sporadic JMML patients and syndromic NS zebrafish, which potentiated MPN and may represent a future target for JMML therapies.
Collapse
Affiliation(s)
- Maja Solman
- Hubrecht Institute-KNAW and UMC UtrechtUtrechtNetherlands
| | | | - Florian Piques
- INSERM UMR_S1131, Institut de Recherche Saint-Louis, Université de ParisParisFrance
- Assistance Publique des Hôpitaux de Paris AP-HP, Hôpital Robert Debré, Département de GénétiqueParisFrance
| | - Chuan Yan
- Molecular Pathology Unit, Massachusetts General Hospital Research InstituteCharlestownUnited States
- Massachusetts General Hospital Cancer CenterCharlestownUnited States
- Center for Regenerative Medicine, Massachusetts General HospitalBostonUnited States
- Harvard Stem Cell InstituteCambridgeUnited States
| | - Qiqi Yang
- Molecular Pathology Unit, Massachusetts General Hospital Research InstituteCharlestownUnited States
- Massachusetts General Hospital Cancer CenterCharlestownUnited States
- Center for Regenerative Medicine, Massachusetts General HospitalBostonUnited States
- Harvard Stem Cell InstituteCambridgeUnited States
| | - Marion Strullu
- INSERM UMR_S1131, Institut de Recherche Saint-Louis, Université de ParisParisFrance
- Assistance Publique des Hôpitaux de Paris AP-HP, Hôpital Robert Debré, Service d’Onco-Hématologie PédiatriqueParisFrance
| | - Sarah M Kamel
- Hubrecht Institute-KNAW and UMC UtrechtUtrechtNetherlands
| | - Pakize Ak
- Hubrecht Institute-KNAW and UMC UtrechtUtrechtNetherlands
| | - Jeroen Bakkers
- Hubrecht Institute-KNAW and UMC UtrechtUtrechtNetherlands
- Department of Medical Physiology, Division of Heart and Lungs, UMC UtrechtUtrechtNetherlands
| | - David M Langenau
- Molecular Pathology Unit, Massachusetts General Hospital Research InstituteCharlestownUnited States
- Massachusetts General Hospital Cancer CenterCharlestownUnited States
- Center for Regenerative Medicine, Massachusetts General HospitalBostonUnited States
- Harvard Stem Cell InstituteCambridgeUnited States
| | - Hélène Cavé
- INSERM UMR_S1131, Institut de Recherche Saint-Louis, Université de ParisParisFrance
- Assistance Publique des Hôpitaux de Paris AP-HP, Hôpital Robert Debré, Département de GénétiqueParisFrance
| | - Jeroen den Hertog
- Hubrecht Institute-KNAW and UMC UtrechtUtrechtNetherlands
- Institute of Biology Leiden, Leiden UniversityLeidenNetherlands
| |
Collapse
|
17
|
Mouse Models of Frequently Mutated Genes in Acute Myeloid Leukemia. Cancers (Basel) 2021; 13:cancers13246192. [PMID: 34944812 PMCID: PMC8699817 DOI: 10.3390/cancers13246192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 01/19/2023] Open
Abstract
Acute myeloid leukemia is a clinically and biologically heterogeneous blood cancer with variable prognosis and response to conventional therapies. Comprehensive sequencing enabled the discovery of recurrent mutations and chromosomal aberrations in AML. Mouse models are essential to study the biological function of these genes and to identify relevant drug targets. This comprehensive review describes the evidence currently available from mouse models for the leukemogenic function of mutations in seven functional gene groups: cell signaling genes, epigenetic modifier genes, nucleophosmin 1 (NPM1), transcription factors, tumor suppressors, spliceosome genes, and cohesin complex genes. Additionally, we provide a synergy map of frequently cooperating mutations in AML development and correlate prognosis of these mutations with leukemogenicity in mouse models to better understand the co-dependence of mutations in AML.
Collapse
|
18
|
Bobone S, Pannone L, Biondi B, Solman M, Flex E, Canale VC, Calligari P, De Faveri C, Gandini T, Quercioli A, Torini G, Venditti M, Lauri A, Fasano G, Hoeksma J, Santucci V, Cattani G, Bocedi A, Carpentieri G, Tirelli V, Sanchez M, Peggion C, Formaggio F, den Hertog J, Martinelli S, Bocchinfuso G, Tartaglia M, Stella L. Targeting Oncogenic Src Homology 2 Domain-Containing Phosphatase 2 (SHP2) by Inhibiting Its Protein-Protein Interactions. J Med Chem 2021; 64:15973-15990. [PMID: 34714648 PMCID: PMC8591604 DOI: 10.1021/acs.jmedchem.1c01371] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We developed a new class of inhibitors of protein-protein interactions of the SHP2 phosphatase, which is pivotal in cell signaling and represents a central target in the therapy of cancer and rare diseases. Currently available SHP2 inhibitors target the catalytic site or an allosteric pocket but lack specificity or are ineffective for disease-associated SHP2 mutants. Considering that pathogenic lesions cause signaling hyperactivation due to increased levels of SHP2 association with cognate proteins, we developed peptide-based molecules with nanomolar affinity for the N-terminal Src homology domain of SHP2, good selectivity, stability to degradation, and an affinity for pathogenic variants of SHP2 that is 2-20 times higher than for the wild-type protein. The best peptide reverted the effects of a pathogenic variant (D61G) in zebrafish embryos. Our results provide a novel route for SHP2-targeted therapies and a tool for investigating the role of protein-protein interactions in the function of SHP2.
Collapse
Affiliation(s)
- Sara Bobone
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome 00133, Italy
| | - Luca Pannone
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome 00146, Italy.,Dipartimento di Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Barbara Biondi
- Institute of Biomolecular Chemistry, Padova Unit, CNR, Padova 35131, Italy
| | - Maja Solman
- Hubrecht institute-KNAW and University Medical Center Utrecht, Utrecht 3584 CT, The Netherlands
| | - Elisabetta Flex
- Dipartimento di Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Viviana Claudia Canale
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome 00133, Italy
| | - Paolo Calligari
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome 00133, Italy
| | - Chiara De Faveri
- Department of Chemical Sciences, University of Padova, Padova 35131, Italy
| | - Tommaso Gandini
- Department of Chemical Sciences, University of Padova, Padova 35131, Italy
| | - Andrea Quercioli
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome 00133, Italy
| | - Giuseppe Torini
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome 00133, Italy
| | - Martina Venditti
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome 00146, Italy
| | - Antonella Lauri
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome 00146, Italy
| | - Giulia Fasano
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome 00146, Italy
| | - Jelmer Hoeksma
- Hubrecht institute-KNAW and University Medical Center Utrecht, Utrecht 3584 CT, The Netherlands
| | - Valerio Santucci
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome 00133, Italy
| | - Giada Cattani
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome 00133, Italy
| | - Alessio Bocedi
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome 00133, Italy
| | - Giovanna Carpentieri
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome 00146, Italy.,Dipartimento di Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Valentina Tirelli
- Centre of Core Facilities, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Massimo Sanchez
- Centre of Core Facilities, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Cristina Peggion
- Department of Chemical Sciences, University of Padova, Padova 35131, Italy
| | - Fernando Formaggio
- Institute of Biomolecular Chemistry, Padova Unit, CNR, Padova 35131, Italy.,Department of Chemical Sciences, University of Padova, Padova 35131, Italy
| | - Jeroen den Hertog
- Institute of Biomolecular Chemistry, Padova Unit, CNR, Padova 35131, Italy.,Institute of Biology Leiden, Leiden University, Leiden 2333 BE, The Netherlands
| | - Simone Martinelli
- Dipartimento di Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Gianfranco Bocchinfuso
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome 00133, Italy
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome 00146, Italy
| | - Lorenzo Stella
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome 00133, Italy
| |
Collapse
|
19
|
Czako B, Sun Y, McAfoos T, Cross JB, Leonard PG, Burke JP, Carroll CL, Feng N, Harris AL, Jiang Y, Kang Z, Kovacs JJ, Mandal P, Meyers BA, Mseeh F, Parker CA, Yu SS, Williams CC, Wu Q, Di Francesco ME, Draetta G, Heffernan T, Marszalek JR, Kohl NE, Jones P. Discovery of 6-[(3 S,4 S)-4-Amino-3-methyl-2-oxa-8-azaspiro[4.5]decan-8-yl]-3-(2,3-dichlorophenyl)-2-methyl-3,4-dihydropyrimidin-4-one (IACS-15414), a Potent and Orally Bioavailable SHP2 Inhibitor. J Med Chem 2021; 64:15141-15169. [PMID: 34643390 DOI: 10.1021/acs.jmedchem.1c01132] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Src homology 2 (SH2) domain-containing phosphatase 2 (SHP2) plays a role in receptor tyrosine kinase (RTK), neurofibromin-1 (NF-1), and Kirsten rat sarcoma virus (KRAS) mutant-driven cancers, as well as in RTK-mediated resistance, making the identification of small-molecule therapeutics that interfere with its function of high interest. Our quest to identify potent, orally bioavailable, and safe SHP2 inhibitors led to the discovery of a promising series of pyrazolopyrimidinones that displayed excellent potency but had a suboptimal in vivo pharmacokinetic (PK) profile. Hypothesis-driven scaffold optimization led us to a series of pyrazolopyrazines with excellent PK properties across species but a narrow human Ether-à-go-go-Related Gene (hERG) window. Subsequent optimization of properties led to the discovery of the pyrimidinone series, in which multiple members possessed excellent potency, optimal in vivo PK across species, and no off-target activities including no hERG liability up to 100 μM. Importantly, compound 30 (IACS-15414) potently suppressed the mitogen-activated protein kinase (MAPK) pathway signaling and tumor growth in RTK-activated and KRASmut xenograft models in vivo.
Collapse
Affiliation(s)
- Barbara Czako
- IACS (Institute for Applied Cancer Science), University of Texas MD Anderson Cancer Center, 1881 East Road, Houston, Texas 77054, United States
| | - Yuting Sun
- TRACTION (Translational Research to AdvanCe Therapeutics and Innovation in Oncology) University of Texas MD Anderson Cancer Center, 1881 East Road, Houston, Texas 77054, United States
| | - Timothy McAfoos
- IACS (Institute for Applied Cancer Science), University of Texas MD Anderson Cancer Center, 1881 East Road, Houston, Texas 77054, United States
| | - Jason B Cross
- IACS (Institute for Applied Cancer Science), University of Texas MD Anderson Cancer Center, 1881 East Road, Houston, Texas 77054, United States
| | - Paul G Leonard
- IACS (Institute for Applied Cancer Science), University of Texas MD Anderson Cancer Center, 1881 East Road, Houston, Texas 77054, United States
| | - Jason P Burke
- IACS (Institute for Applied Cancer Science), University of Texas MD Anderson Cancer Center, 1881 East Road, Houston, Texas 77054, United States
| | - Christopher L Carroll
- IACS (Institute for Applied Cancer Science), University of Texas MD Anderson Cancer Center, 1881 East Road, Houston, Texas 77054, United States
| | - Ningping Feng
- TRACTION (Translational Research to AdvanCe Therapeutics and Innovation in Oncology) University of Texas MD Anderson Cancer Center, 1881 East Road, Houston, Texas 77054, United States
| | - Angela L Harris
- TRACTION (Translational Research to AdvanCe Therapeutics and Innovation in Oncology) University of Texas MD Anderson Cancer Center, 1881 East Road, Houston, Texas 77054, United States
| | - Yongying Jiang
- IACS (Institute for Applied Cancer Science), University of Texas MD Anderson Cancer Center, 1881 East Road, Houston, Texas 77054, United States
| | - Zhijun Kang
- IACS (Institute for Applied Cancer Science), University of Texas MD Anderson Cancer Center, 1881 East Road, Houston, Texas 77054, United States
| | - Jeffrey J Kovacs
- TRACTION (Translational Research to AdvanCe Therapeutics and Innovation in Oncology) University of Texas MD Anderson Cancer Center, 1881 East Road, Houston, Texas 77054, United States
| | - Pijus Mandal
- IACS (Institute for Applied Cancer Science), University of Texas MD Anderson Cancer Center, 1881 East Road, Houston, Texas 77054, United States
| | - Brooke A Meyers
- TRACTION (Translational Research to AdvanCe Therapeutics and Innovation in Oncology) University of Texas MD Anderson Cancer Center, 1881 East Road, Houston, Texas 77054, United States
| | - Faika Mseeh
- IACS (Institute for Applied Cancer Science), University of Texas MD Anderson Cancer Center, 1881 East Road, Houston, Texas 77054, United States
| | - Connor A Parker
- IACS (Institute for Applied Cancer Science), University of Texas MD Anderson Cancer Center, 1881 East Road, Houston, Texas 77054, United States
| | - Simon S Yu
- IACS (Institute for Applied Cancer Science), University of Texas MD Anderson Cancer Center, 1881 East Road, Houston, Texas 77054, United States
| | - Christopher C Williams
- IACS (Institute for Applied Cancer Science), University of Texas MD Anderson Cancer Center, 1881 East Road, Houston, Texas 77054, United States
| | - Qi Wu
- IACS (Institute for Applied Cancer Science), University of Texas MD Anderson Cancer Center, 1881 East Road, Houston, Texas 77054, United States
| | - Maria Emilia Di Francesco
- IACS (Institute for Applied Cancer Science), University of Texas MD Anderson Cancer Center, 1881 East Road, Houston, Texas 77054, United States
| | - Giulio Draetta
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Timothy Heffernan
- TRACTION (Translational Research to AdvanCe Therapeutics and Innovation in Oncology) University of Texas MD Anderson Cancer Center, 1881 East Road, Houston, Texas 77054, United States
| | - Joseph R Marszalek
- TRACTION (Translational Research to AdvanCe Therapeutics and Innovation in Oncology) University of Texas MD Anderson Cancer Center, 1881 East Road, Houston, Texas 77054, United States
| | - Nancy E Kohl
- Navire Inc., 421 Kipling Street, Palo Alto, California 94301, United States
| | - Philip Jones
- IACS (Institute for Applied Cancer Science), University of Texas MD Anderson Cancer Center, 1881 East Road, Houston, Texas 77054, United States
| |
Collapse
|
20
|
JMML tumor cells disrupt normal hematopoietic stem cells by imposing inflammatory stress through overproduction of IL-1β. Blood Adv 2021; 6:200-206. [PMID: 34555844 PMCID: PMC8753218 DOI: 10.1182/bloodadvances.2021005089] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/20/2021] [Indexed: 11/28/2022] Open
Abstract
Normal hematopoiesis is suppressed by JMML tumor cells as a result of the aberrant activation and exhaustion of stem cells. JMML cells impose inflammatory stress on normal stem cells by over production of IL-1β.
Development of normal blood cells is often suppressed in juvenile myelomonocytic leukemia (JMML), a myeloproliferative neoplasm (MPN) of childhood, causing complications and impacting therapeutic outcomes. However, the mechanism underlying this phenomenon remains uncharacterized. To address this question, we induced the most common mutation identified in JMML (Ptpn11E76K) specifically in the myeloid lineage with hematopoietic stem cells (HSCs) spared. These mice uniformly developed a JMML-like MPN. Importantly, HSCs in the same bone marrow (BM) microenvironment were aberrantly activated and differentiated at the expense of self-renewal. As a result, HSCs lost quiescence and became exhausted. A similar result was observed in wild-type (WT) donor HSCs when co-transplanted with Ptpn11E76K/+ BM cells into WT mice. Co-culture testing demonstrated that JMML/MPN cells robustly accelerated differentiation in mouse and human normal hematopoietic stem/progenitor cells. Cytokine profiling revealed that Ptpn11E76K/+ MPN cells produced excessive IL-1β, but not IL-6, T NF-α, IFN-γ, IL-1α, or other inflammatory cytokines. Depletion of the IL-1β receptor effectively restored HSC quiescence, normalized their pool size, and rescued them from exhaustion in Ptpn11E76K/+/IL-1R−/− double mutant mice. These findings suggest IL-1β signaling as a potential therapeutic target for preserving normal hematopoietic development in JMML.
Collapse
|
21
|
Induced Pluripotent Stem Cells to Model Juvenile Myelomonocytic Leukemia: New Perspectives for Preclinical Research. Cells 2021; 10:cells10092335. [PMID: 34571984 PMCID: PMC8465353 DOI: 10.3390/cells10092335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/24/2021] [Accepted: 08/31/2021] [Indexed: 11/16/2022] Open
Abstract
Juvenile myelomonocytic leukemia (JMML) is a malignant myeloproliferative disorder arising in infants and young children. The origin of this neoplasm is attributed to an early deregulation of the Ras signaling pathway in multipotent hematopoietic stem/progenitor cells. Since JMML is notoriously refractory to conventional cytostatic therapy, allogeneic hematopoietic stem cell transplantation remains the mainstay of curative therapy for most cases. However, alternative therapeutic approaches with small epigenetic molecules have recently entered the stage and show surprising efficacy at least in specific subsets of patients. Hence, the establishment of preclinical models to test novel agents is a priority. Induced pluripotent stem cells (IPSCs) offer an opportunity to imitate JMML ex vivo, after attempts to generate immortalized cell lines from primary JMML material have largely failed in the past. Several research groups have previously generated patient-derived JMML IPSCs and successfully differentiated these into myeloid cells with extensive phenotypic similarities to primary JMML cells. With infinite self-renewal and the capability to differentiate into multiple cell types, JMML IPSCs are a promising resource to advance the development of treatment modalities targeting specific vulnerabilities. This review discusses current reprogramming techniques for JMML stem/progenitor cells, related clinical applications, and the challenges involved.
Collapse
|
22
|
Role of lncRNA Morrbid in PTPN11(Shp2)E76K-driven juvenile myelomonocytic leukemia. Blood Adv 2021; 4:3246-3251. [PMID: 32697817 DOI: 10.1182/bloodadvances.2020002123] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/14/2020] [Indexed: 11/20/2022] Open
Abstract
Mutations in PTPN11, which encodes the protein tyrosine phosphatase SHP2, contribute to ∼35% of cases of juvenile myelomonocytic leukemia (JMML). A common clinical picture in children with JMML is that it presents as a constitutive hyperinflammatory syndrome, partially reminiscent of chronic myelomonocytic leukemia in adults. Thus, a component of JMML is associated with a hyperinflammatory state and abundant innate immune cells such as neutrophils and monocytes. Recently, we showed that the evolutionarily conserved mouse lncRNA Morrbid is specifically expressed in myeloid cells and uniquely represses the expression of the proapoptotic gene Bim to regulate the lifespan of myeloid cells. However, its role in JMML has not been investigated. In this study, we characterized the role of Morrbid and its target Bim, which are significantly dysregulated in Shp2E76K/+-bearing myeloid cells, in driving JMML. Loss of Morrbid in a mouse model of JMML driven by the Shp2E76K/+ mutation resulted in a significant correction of myeloid and erythroid cell abnormalities associated with JMML, including overall survival. Consistently, patients with JMML who had PTPN11, KRAS, and NRAS mutations and high expression of MORRBID manifested poor overall survival. Our results suggest that Morrbid contributes to JMML pathogenesis.
Collapse
|
23
|
Zhang J, Zhang Y, Qu B, Yang H, Hu S, Dong X. If small molecules immunotherapy comes, can the prime be far behind? Eur J Med Chem 2021; 218:113356. [PMID: 33773287 DOI: 10.1016/j.ejmech.2021.113356] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/15/2021] [Accepted: 02/28/2021] [Indexed: 02/07/2023]
Abstract
Anti-cancer immunotherapy, which includes cellular immunotherapy, immune checkpoint inhibitors and cancer vaccines, has transformed the treatment strategies of several malignancies in the past decades. Immune checkpoints blockade (ICB) is the most commonly tested therapy and has the potential to induce a durable immune response in different types of cancers. However, all approved immune checkpoint inhibitors (ICIs) are monoclonal antibodies (mAbs), which are fraught with disadvantages including lack of oral bioavailability, prolonged tissue retention and poor membrane permeability. Therefore, the research focus has shifted to developing small molecule inhibitors to obviate the limitations of mAbs. Given the complexity of the tumor micro-environment (TME), the combination of ICIs with various small molecule agonists/inhibitors are currently being tested in clinical trials to improve treatment outcomes and prevent tumor recurrence. In this review, we have summarized the mechanisms and therapeutic potential of several molecular targets, along with the current status of small molecule inhibitors.
Collapse
Affiliation(s)
- Jingyu Zhang
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Yu Zhang
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Bingxue Qu
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Haiyan Yang
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), PR China; Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, PR China
| | - Shengquan Hu
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China.
| | - Xiaowu Dong
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China; Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, 310058, PR China; Cancer Center of Zhejiang University, Hangzhou, 310058, PR China.
| |
Collapse
|
24
|
Dong L, Han D, Meng X, Xu M, Zheng C, Xia Q. Activating Mutation of SHP2 Establishes a Tumorigenic Phonotype Through Cell-Autonomous and Non-Cell-Autonomous Mechanisms. Front Cell Dev Biol 2021; 9:630712. [PMID: 33777940 PMCID: PMC7991796 DOI: 10.3389/fcell.2021.630712] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/04/2021] [Indexed: 01/18/2023] Open
Abstract
Gain-of-function mutation of SHP2 is a central regulator in tumorigenesis and cancer progression through cell-autonomous mechanisms. Activating mutation of SHP2 in microenvironment was identified to promote cancerous transformation of hematopoietic stem cell in non-autonomous mechanisms. It is interesting to see whether therapies directed against SHP2 in tumor or microenvironmental cells augment antitumor efficacy. In this review, we summarized different types of gain-of-function SHP2 mutations from a human disease. In general, gain-of-function mutations destroy the auto-inhibition state from wild-type SHP2, leading to consistency activation of SHP2. We illustrated how somatic or germline mutation of SHP2 plays an oncogenic role in tumorigenesis, stemness maintenance, invasion, etc. Moreover, the small-molecule SHP2 inhibitors are considered as a potential strategy for enhancing the efficacy of antitumor immunotherapy and chemotherapy. We also discussed the interconnection between phase separation and activating mutation of SHP2 in drug resistance of antitumor therapy.
Collapse
Affiliation(s)
- Lei Dong
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Da Han
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Xinyi Meng
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Mengchuan Xu
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Chuwen Zheng
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Qin Xia
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
25
|
You X, Ryu MJ, Cho E, Sang Y, Damnernsawad A, Zhou Y, Liu Y, Zhang J, Lee Y. Embryonic Expression of Nras G 12 D Leads to Embryonic Lethality and Cardiac Defects. Front Cell Dev Biol 2021; 9:633661. [PMID: 33681212 PMCID: PMC7928391 DOI: 10.3389/fcell.2021.633661] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/21/2021] [Indexed: 12/14/2022] Open
Abstract
Ras proteins control a complex intracellular signaling network. Gain-of-function mutations in RAS genes lead to RASopathy disorders in humans, including Noonan syndrome (NS). NS is the second most common syndromic cause of congenital heart disease. Although conditional expression of the NrasG12D/+ mutation in adult hematopoietic system is leukemogenic, its effects on embryonic development remain unclear. Here, we report that pan-embryonic expression of endogenous NrasG12D/+ by Mox2-Cre in mice caused embryonic lethality from embryonic day (E) 15.5 and developmental defects predominantly in the heart. At E13.5, NrasG12D/+; Mox2Cre/+ embryos displayed a moderate expansion of hematopoietic stem and progenitor cells without a significant impact on erythroid differentiation in the fetal liver. Importantly, the mutant embryos exhibited cardiac malformations resembling human congenital cardiac defects seen in NS patients, including ventricular septal defects, double outlet right ventricle, the hypertrabeculation/thin myocardium, and pulmonary valve stenosis. The mutant heart showed dysregulation of ERK, BMP, and Wnt pathways, crucial signaling pathways for cardiac development. Endothelial/endocardial-specific expression of NrasG12D/+ caused the cardiac morphological defects and embryonic lethality as observed in NrasG12D/+; Mox2Cre/+ mutants, but myocardial-specific expression of NrasG12D/+ did not. Thus, oncogenic NrasG12D mutation may not be compatible with embryonic survival.
Collapse
Affiliation(s)
- Xiaona You
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, United States
| | - Myung-Jeom Ryu
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, United States
| | - Eunjin Cho
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, United States
| | - Yanzhi Sang
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, United States
| | - Alisa Damnernsawad
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, United States
| | - Yun Zhou
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, United States
| | - Yangang Liu
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, United States
| | - Jing Zhang
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, United States
| | - Youngsook Lee
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
26
|
Zhu G, Xie J, Kong W, Xie J, Li Y, Du L, Zheng Q, Sun L, Guan M, Li H, Zhu T, He H, Liu Z, Xia X, Kan C, Tao Y, Shen HC, Li D, Wang S, Yu Y, Yu ZH, Zhang ZY, Liu C, Zhu J. Phase Separation of Disease-Associated SHP2 Mutants Underlies MAPK Hyperactivation. Cell 2020; 183:490-502.e18. [PMID: 33002410 DOI: 10.1016/j.cell.2020.09.002] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 04/19/2020] [Accepted: 08/31/2020] [Indexed: 02/08/2023]
Abstract
The non-receptor protein tyrosine phosphatase (PTP) SHP2, encoded by PTPN11, plays an essential role in RAS-mitogen-activated protein kinase (MAPK) signaling during normal development. It has been perplexing as to why both enzymatically activating and inactivating mutations in PTPN11 result in human developmental disorders with overlapping clinical manifestations. Here, we uncover a common liquid-liquid phase separation (LLPS) behavior shared by these disease-associated SHP2 mutants. SHP2 LLPS is mediated by the conserved well-folded PTP domain through multivalent electrostatic interactions and regulated by an intrinsic autoinhibitory mechanism through conformational changes. SHP2 allosteric inhibitors can attenuate LLPS of SHP2 mutants, which boosts SHP2 PTP activity. Moreover, disease-associated SHP2 mutants can recruit and activate wild-type (WT) SHP2 in LLPS to promote MAPK activation. These results not only suggest that LLPS serves as a gain-of-function mechanism involved in the pathogenesis of SHP2-associated human diseases but also provide evidence that PTP may be regulated by LLPS that can be therapeutically targeted.
Collapse
Affiliation(s)
- Guangya Zhu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201203, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jingjing Xie
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201203, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Wenna Kong
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201203, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jingfei Xie
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201203, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yichen Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lin Du
- Etern Biopharma Co. Ltd., Shanghai 201203, China
| | | | - Lin Sun
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201203, China
| | - Mingfeng Guan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201203, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Huan Li
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201203, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Tianxin Zhu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201203, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Hao He
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201203, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenying Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201203, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xi Xia
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201203, China
| | - Chen Kan
- Department of Pathophysiology, Anhui Medical University, Hefei 230032, China
| | - Youqi Tao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hong C Shen
- Roche Innovation Center Shanghai, Roche Pharma Research & Early Development, Shanghai 201203, China
| | - Dan Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Siying Wang
- Department of Pathophysiology, Anhui Medical University, Hefei 230032, China
| | - Yongguo Yu
- Department of Pediatric Endocrinology and Genetics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai 200092, China
| | - Zhi-Hong Yu
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research and Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA
| | - Zhong-Yin Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research and Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Jidong Zhu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201203, China; Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
27
|
Fattizzo B, Rosa J, Giannotta JA, Baldini L, Fracchiolla NS. The Physiopathology of T- Cell Acute Lymphoblastic Leukemia: Focus on Molecular Aspects. Front Oncol 2020; 10:273. [PMID: 32185137 PMCID: PMC7059203 DOI: 10.3389/fonc.2020.00273] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/17/2020] [Indexed: 12/12/2022] Open
Abstract
T-cell acute lymphoblastic leukemia/lymphoma is an aggressive hematological neoplasm whose classification is still based on immunophenotypic findings. Frontline treatment encompass high intensity combination chemotherapy with good overall survival; however, relapsing/refractory patients have very limited options. In the last years, the understanding of molecular physiopathology of this disease, lead to the identification of a subset of patients with peculiar genetic profile, namely “early T-cell precursors” lymphoblastic leukemia, characterized by dismal outcome and indication to frontline allogeneic bone marrow transplant. In general, the most common mutations occur in the NOTCH1/FBXW7 pathway (60% of adult patients), with a positive prognostic impact. Other pathogenic steps encompass transcriptional deregulation of oncogenes/oncosuppressors, cell cycle deregulation, kinase signaling (including IL7R-JAK-STAT pathway, PI3K/AKT/mTOR pathway, RAS/MAPK signaling pathway, ABL1 signaling pathway), epigenetic deregulation, ribosomal dysfunction, and altered expression of oncogenic miRNAs or long non-coding RNA. The insight in the genomic landscape of the disease paves the way to the use of novel targeted drugs that might improve the outcome, particularly in relapse/refractory patients. In this review, we analyse available literature on T-ALL pathogenesis, focusing on molecular aspects of clinical, prognostic, and therapeutic significance.
Collapse
Affiliation(s)
- Bruno Fattizzo
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy.,Dipartimento di Oncologia ed Oncoematologia, Università degli studi di Milano, Milan, Italy
| | - Jessica Rosa
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy.,Dipartimento di Oncologia ed Oncoematologia, Università degli studi di Milano, Milan, Italy
| | - Juri Alessandro Giannotta
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy.,Dipartimento di Oncologia ed Oncoematologia, Università degli studi di Milano, Milan, Italy
| | - Luca Baldini
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy.,Dipartimento di Oncologia ed Oncoematologia, Università degli studi di Milano, Milan, Italy
| | | |
Collapse
|
28
|
Therapeutic potential of targeting SHP2 in human developmental disorders and cancers. Eur J Med Chem 2020; 190:112117. [PMID: 32061959 DOI: 10.1016/j.ejmech.2020.112117] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/03/2020] [Accepted: 02/03/2020] [Indexed: 02/06/2023]
Abstract
Src homology 2 (SH2)-containing protein tyrosine phosphatase 2 (SHP2), encoded by PTPN11, regulates cell proliferation, differentiation, apoptosis and survival via releasing intramolecular autoinhibition and modulating various signaling pathways, such as mitogen-activated protein kinase (MAPK) pathway. Mutations and aberrant expression of SHP2 are implicated in human developmental disorders, leukemias and several solid tumors. As an oncoprotein in some cancers, SHP2 represents a rational target for inhibitors to interfere. Nevertheless, its tumor suppressive effect has also been uncovered, indicating the context-specificity. Even so, two types of SHP2 inhibitors including targeting catalytic pocket and allosteric sites have been developed associated with resolved cocrystal complexes. Herein, we describe its structure, biological function, deregulation in human diseases and summarize recent advance in development of SHP2 inhibitors, trying to give an insight into the therapeutic potential in future.
Collapse
|
29
|
Yu K, Yin Y, Ma D, Lu T, Wei D, Xiong J, Zhou Z, Zhang T, Zhang S, Fang Q, Wang J. Shp2 activation in bone marrow microenvironment mediates the drug resistance of B-cell acute lymphoblastic leukemia through enhancing the role of VCAM-1/VLA-4. Int Immunopharmacol 2020; 80:106008. [PMID: 31978797 DOI: 10.1016/j.intimp.2019.106008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/09/2019] [Accepted: 10/25/2019] [Indexed: 02/03/2023]
Abstract
B-cell acute lymphoblastic leukemia (B-ALL) is immune to the chemotherapy-induced apoptosis as a result of the protection of bone marrow mesenchymal stromal cells (BMSCs). However, the precise underlying mechanism of such protection remains unclear so far. In this experiment, protein tyrosine phosphatase 2 (Shp2), which was encoded by the PTPN11 gene, was highly expressed in BMSCs of the newly diagnosed and the recurrent B-ALL patients. The plasmid-induced (including Shp2 E76K) Shp2 activation in BMSCs (Shp2-activated BMSCs) markedly increased the BMSCs-mediated resistance of leukemia cells both in vitro and in vivo. Additionally, studies in vitro suggested that, the expression of vascular cell adhesion molecule 1 (VCAM-1) was markedly up-regulated in Shp2-activated BMSCs, and VCAM-1 expression in BMSCs of B-ALL patients was negatively correlated with Shp2 expression. Down-regulation of VCAM-1 in BMSCs using siRNA reversed the resistance of CCRF-SB cells mediated by the Shp2-activated BMSCs. As for the molecular mechanism, the PI3K/AKT pathway mediated the regulation of VCAM-1 by Shp2. Blocking the very late antigen-4 (VLA-4) by antibodies in CCRF-SB cells dramatically reversed the resistance of CCRF-SB cells mediated by the Shp2-activated BMSCs, and decreased the adhesion effects of both CCRF-SB cells and BMSCs. In conclusion, Shp2 activation in BMSCs up-regulates VCAM-1 expression through increasing the PI3K/AKT phosphorylation level, and targeting the VCAM-1/VLA-4 signaling may serve as a clinically relevant mechanism to overcome the BMSCs-mediated chemoresistance of B-ALL cells.
Collapse
Affiliation(s)
- Kunlin Yu
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Laboratory of Hematopoietic Stem Cell Transplantation Centre of Guizhou Province, Guiyang, Guizhou, China; College of Pharmacy, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yi Yin
- Department of Imaging, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Dan Ma
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Laboratory of Hematopoietic Stem Cell Transplantation Centre of Guizhou Province, Guiyang, Guizhou, China
| | - Tingting Lu
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Laboratory of Hematopoietic Stem Cell Transplantation Centre of Guizhou Province, Guiyang, Guizhou, China
| | - Danna Wei
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Laboratory of Hematopoietic Stem Cell Transplantation Centre of Guizhou Province, Guiyang, Guizhou, China
| | - Jie Xiong
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Laboratory of Hematopoietic Stem Cell Transplantation Centre of Guizhou Province, Guiyang, Guizhou, China.
| | - Zheng Zhou
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Laboratory of Hematopoietic Stem Cell Transplantation Centre of Guizhou Province, Guiyang, Guizhou, China.
| | - Tianzhuo Zhang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Laboratory of Hematopoietic Stem Cell Transplantation Centre of Guizhou Province, Guiyang, Guizhou, China
| | - Siyu Zhang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Laboratory of Hematopoietic Stem Cell Transplantation Centre of Guizhou Province, Guiyang, Guizhou, China; College of Pharmacy, Guizhou Medical University, Guiyang, Guizhou, China
| | - Qin Fang
- Department of Pharmacy, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China.
| | - Jishi Wang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Laboratory of Hematopoietic Stem Cell Transplantation Centre of Guizhou Province, Guiyang, Guizhou, China.
| |
Collapse
|
30
|
After 95 years, it's time to eRASe JMML. Blood Rev 2020; 43:100652. [PMID: 31980238 DOI: 10.1016/j.blre.2020.100652] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 12/07/2019] [Accepted: 12/23/2019] [Indexed: 12/16/2022]
Abstract
Juvenile myelomonocytic leukaemia (JMML) is a rare clonal disorder of early childhood. Constitutive activation of the RAS pathway is the initial event in JMML. Around 90% of patients diagnosed with JMML carry a mutation in the PTPN11, NRAS, KRAS, NF1 or CBL genes. It has been demonstrated that after this first genetic event, an additional somatic mutation or epigenetic modification is involved in disease progression. The available genetic and clinical data have enabled researchers to establish relationships between JMML and several clinical conditions, including Noonan syndrome, Ras-associated lymphoproliferative disease, and Moyamoya disease. Despite scientific progress and the development of more effective treatments, JMML is still a deadly disease: the 5-year survival rate is ~50%. Here, we report on recent research having led to a better understanding of the genetic and molecular mechanisms involved in JMML.
Collapse
|
31
|
Xu C, Wu X, Lu M, Tang L, Yao H, Wang J, Ji X, Hussain M, Wu J, Wu X. Protein tyrosine phosphatase 11 acts through RhoA/ROCK to regulate eosinophil accumulation in the allergic airway. FASEB J 2019; 33:11706-11720. [PMID: 31361966 PMCID: PMC6902720 DOI: 10.1096/fj.201900698r] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Src homology domain 2-containing protein tyrosine phosphatase 2 (SHP2) participates in multiple cell functions including cell shape, movement, and differentiation. Therefore, we investigated the potential role of SHP2 in eosinophil recruitment into lungs in allergic airway inflammation and explored the underlying mechanism. Both SHP2 and Ras homolog family member A (RhoA) kinase were robustly activated in the airway eosinophils of children with allergic asthma and of a mouse model with allergic airway inflammation. Moreover, inhibition of SHP2 activity by its specific inhibitors reverses the dephosphorylation of p190-A Rho GTPase-activating protein and in turn attenuates RhoA/Rho-associated protein kinase (ROCK) signaling, resulting in the attenuation of eosinophil migration in response to platelet-activating factor stimulation. Specifically, SHP2 deletion in myeloid cells did not affect the number and classification of circulating leukocytes but significantly attenuated the allergen-induced inflammatory cell, especially eosinophil, infiltration into lungs, and airway hyperreactivity. Notably, genetic interaction between RhoA and SHP2 indicated that RhoA inactivation and SHP2 deletion synergistically attenuated the allergen-induced eosinophil infiltration into lungs and airway hyperreactivity, whereas overexpression of active RhoA robustly restored the SHP2 deletion-resultant attenuation of allergen-induced eosinophil recruitment into lungs and airway hyperreactivity as well. Thus, this study demonstrates that SHP2 via RhoA/ROCK signaling regulates eosinophil recruitment in allergic airway inflammation and possibly in allergic asthma.-Xu, C., Wu, X., Lu, M., Tang, L., Yao, H., Wang, J., Ji, X., Hussain, M., Wu, J., Wu, X. Protein tyrosine phosphatase 11 acts through RhoA/ROCK to regulate eosinophil accumulation in the allergic airway.
Collapse
Affiliation(s)
- Chengyun Xu
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiling Wu
- Department of Respiratory Medicine, The Affiliated Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Meiping Lu
- Department of Respiratory Medicine, The Affiliated Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lanfang Tang
- Department of Respiratory Medicine, The Affiliated Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hongyi Yao
- Department of Pharmacy, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jirong Wang
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xing Ji
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Musaddique Hussain
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Junsong Wu
- Department of Orthopedic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ximei Wu
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
32
|
Hochstetler CL, Feng Y, Sacma M, Davis AK, Rao M, Kuan CY, You LR, Geiger H, Zheng Y. KRas G12D expression in the bone marrow vascular niche affects hematopoiesis with inflammatory signals. Exp Hematol 2019; 79:3-15.e4. [PMID: 31669153 DOI: 10.1016/j.exphem.2019.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/14/2019] [Accepted: 10/16/2019] [Indexed: 12/12/2022]
Abstract
The bone marrow (BM) niche is an important milieu where hematopoietic stem and progenitor cells (HSPCs) are maintained. Previous studies have indicated that genetic mutations in various components of the niche can affect hematopoiesis and promote hematologic abnormalities, but the impact of abnormal BM endothelial cells (BMECs), a crucial niche component, on hematopoiesis remains incompletely understood. To dissect how genetic alterations in BMECs could affect hematopoiesis, we have employed a novel inducible Tie2-CreERT2 mouse model, with a tdTomato fluorescent reporter, to introduce an oncogenic KRasG12D mutation specifically in the adult endothelial cells. Tie2-CreERT2;KRasG12D mice had significantly more leukocytes and myeloid cells in the blood with mostly normal BM HSPC populations and developed splenomegaly. Genotyping polymerase chain reaction revealed KRasG12D activation in BMECs but not hematopoietic cells, confirming that the phenotype is due to the aberrant BMECs. Competitive transplant assays revealed that BM cells from the KRasG12D mice contained significantly fewer functional hematopoietic stem cells, and immunofluorescence imaging showed that the hematopoietic stem cells in the mutant mice were localized farther away from BM vasculature and closer to the endosteal area. RNA sequencing analyses found an inflammatory gene network, especially tumor necrosis factor α, as a possible contributor. Together, our results implicate an abnormal endothelial niche in compromising normal hematopoiesis.
Collapse
Affiliation(s)
- Cindy L Hochstetler
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Yuxin Feng
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Mehmet Sacma
- Institute of Molecular Medicine and Stem Cell Aging, University of Ulm, Ulm, Germany
| | - Ashley K Davis
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Mahil Rao
- Division of Pediatric Critical Care, Department of Pediatrics, Stanford University, Stanford, California
| | - Chia-Yi Kuan
- Department of Neuroscience, University of Virginia, Charlottesville, Virginia
| | - Li-Ru You
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan; Cancer Progression Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Hartmut Geiger
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Institute of Molecular Medicine and Stem Cell Aging, University of Ulm, Ulm, Germany
| | - Yi Zheng
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio.
| |
Collapse
|
33
|
Cai Z, Kotzin JJ, Ramdas B, Chen S, Nelanuthala S, Palam LR, Pandey R, Mali RS, Liu Y, Kelley MR, Sandusky G, Mohseni M, Williams A, Henao-Mejia J, Kapur R. Inhibition of Inflammatory Signaling in Tet2 Mutant Preleukemic Cells Mitigates Stress-Induced Abnormalities and Clonal Hematopoiesis. Cell Stem Cell 2019; 23:833-849.e5. [PMID: 30526882 DOI: 10.1016/j.stem.2018.10.013] [Citation(s) in RCA: 260] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 03/09/2018] [Accepted: 10/09/2018] [Indexed: 12/17/2022]
Abstract
Inflammation is a risk factor for cancer development. Individuals with preleukemic TET2 mutations manifest clonal hematopoiesis and are at a higher risk of developing leukemia. How inflammatory signals influence the survival of preleukemic hematopoietic stem and progenitor cells (HSPCs) is unclear. We show a rapid increase in the frequency and absolute number of Tet2-KO mature myeloid cells and HSPCs in response to inflammatory stress, which results in enhanced production of inflammatory cytokines, including interleukin-6 (IL-6), and resistance to apoptosis. IL-6 induces hyperactivation of the Shp2-Stat3 signaling axis, resulting in increased expression of a novel anti-apoptotic long non-coding RNA (lncRNAs), Morrbid, in Tet2-KO myeloid cells and HSPCs. Expression of activated Shp2 in HSPCs phenocopies Tet2 loss with regard to hyperactivation of Stat3 and Morrbid. In vivo, pharmacologic inhibition of Shp2 or Stat3 or genetic loss of Morrbid in Tet2 mutant mice rescues inflammatory-stress-induced abnormalities in HSPCs and mature myeloid cells, including clonal hematopoiesis.
Collapse
Affiliation(s)
- Zhigang Cai
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Microbiology & Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Jonathan J Kotzin
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Baskar Ramdas
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sisi Chen
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sai Nelanuthala
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Lakshmi Reddy Palam
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Ruchi Pandey
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Raghuveer Singh Mali
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yan Liu
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Mark R Kelley
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - George Sandusky
- Department of Pathology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Morvarid Mohseni
- Lab Head Oncology, Novartis Institutes of Biomedical Research, Cambridge, MA, USA
| | - Adam Williams
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; Department of Genetics and Genomic Sciences, University of Connecticut Health Center, Farmington, CT 06032, USA
| | - Jorge Henao-Mejia
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Protective Immunity, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Reuben Kapur
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Microbiology & Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
34
|
The Impact of PI3-kinase/RAS Pathway Cooperating Mutations in the Evolution of KMT2A-rearranged Leukemia. Hemasphere 2019; 3:e195. [PMID: 31723831 PMCID: PMC6746018 DOI: 10.1097/hs9.0000000000000195] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 12/11/2022] Open
Abstract
Leukemia is an evolutionary disease and evolves by the accrual of mutations within a clone. Those mutations that are systematically found in all the patients affected by a certain leukemia are called "drivers" as they are necessary to drive the development of leukemia. Those ones that accumulate over time but are different from patient to patient and, therefore, are not essential for leukemia development are called "passengers." The first studies highlighting a potential cooperating role of phosphatidylinositol 3-kinase (PI3K)/RAS pathway mutations in the phenotype of KMT2A-rearranged leukemia was published 20 years ago. The recent development in more sensitive sequencing technologies has contributed to clarify the contribution of these mutations to the evolution of KMT2A-rearranged leukemia and suggested that these mutations might confer clonal fitness and enhance the evolvability of KMT2A-leukemic cells. This is of particular interest since this pathway can be targeted offering potential novel therapeutic strategies to KMT2A-leukemic patients. This review summarizes the recent progress on our understanding of the role of PI3K/RAS pathway mutations in initiation, maintenance, and relapse of KMT2A-rearranged leukemia.
Collapse
|
35
|
Ni F, Yu WM, Wang X, Fay ME, Young KM, Qiu Y, Lam WA, Sulchek TA, Cheng T, Scadden DT, Qu CK. Ptpn21 Controls Hematopoietic Stem Cell Homeostasis and Biomechanics. Cell Stem Cell 2019; 24:608-620.e6. [PMID: 30880025 DOI: 10.1016/j.stem.2019.02.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 09/11/2018] [Accepted: 02/11/2019] [Indexed: 12/31/2022]
Abstract
Hematopoietic stem cell (HSC) quiescence is a tightly regulated process crucial for hematopoietic regeneration, which requires a healthy and supportive microenvironmental niche within the bone marrow (BM). Here, we show that deletion of Ptpn21, a protein tyrosine phosphatase highly expressed in HSCs, induces stem cell egress from the niche due to impaired retention within the BM. Ptpn21-/- HSCs exhibit enhanced mobility, decreased quiescence, increased apoptosis, and defective reconstitution capacity. Ptpn21 deletion also decreased HSC stiffness and increased physical deformability, in part by dephosphorylating Spetin1 (Tyr246), a poorly described component of the cytoskeleton. Elevated phosphorylation of Spetin1 in Ptpn21-/- cells impaired cytoskeletal remodeling, contributed to cortical instability, and decreased cell rigidity. Collectively, these findings show that Ptpn21 maintains cellular mechanics, which is correlated with its important functions in HSC niche retention and preservation of hematopoietic regeneration capacity.
Collapse
Affiliation(s)
- Fang Ni
- Division of Hematology/Oncology, Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Winship Cancer Institute, Children's Healthcare of Atlanta, Emory University, Atlanta, GA 30322, USA
| | - Wen-Mei Yu
- Division of Hematology/Oncology, Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Winship Cancer Institute, Children's Healthcare of Atlanta, Emory University, Atlanta, GA 30322, USA
| | - Xinyi Wang
- Division of Hematology/Oncology, Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Winship Cancer Institute, Children's Healthcare of Atlanta, Emory University, Atlanta, GA 30322, USA
| | - Meredith E Fay
- Division of Hematology/Oncology, Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Winship Cancer Institute, Children's Healthcare of Atlanta, Emory University, Atlanta, GA 30322, USA; The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Katherine M Young
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Yongzhi Qiu
- Division of Hematology/Oncology, Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Winship Cancer Institute, Children's Healthcare of Atlanta, Emory University, Atlanta, GA 30322, USA; The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Wilbur A Lam
- Division of Hematology/Oncology, Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Winship Cancer Institute, Children's Healthcare of Atlanta, Emory University, Atlanta, GA 30322, USA; The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Todd A Sulchek
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences, Tianjin 300020, China
| | - David T Scadden
- Center for Regenerative Medicine and MGH Cancer Center, Massachusetts General Hospital, Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Harvard University, Boston, MA 02114, USA
| | - Cheng-Kui Qu
- Division of Hematology/Oncology, Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Winship Cancer Institute, Children's Healthcare of Atlanta, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
36
|
Ni F, Yu WM, Li Z, Graham DK, Jin L, Kang S, Rossi MR, Li S, Broxmeyer HE, Qu CK. Critical role of ASCT2-mediated amino acid metabolism in promoting leukaemia development and progression. Nat Metab 2019; 1:390-403. [PMID: 31535081 PMCID: PMC6750232 DOI: 10.1038/s42255-019-0039-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Amino acid (AA) metabolism is involved in diverse cellular functions, including cell survival and growth, however it remains unclear how it regulates normal hematopoiesis versus leukemogenesis. Here, we report that knockout of Slc1a5 (ASCT2), a transporter of neutral AAs, especially glutamine, results in mild to moderate defects in bone marrow and mature blood cell development under steady state conditions. In contrast, constitutive or induced deletion of Slc1a5 decreases leukemia initiation and maintenance driven by the oncogene MLL-AF9 or Pten deficiency. Survival of leukemic mice is prolonged following Slc1a5 deletion, and pharmacological inhibition of ASCT2 also decreases leukemia development and progression in xenograft models of human acute myeloid leukemia. Mechanistically, loss of ASCT2 generates a global effect on cellular metabolism, disrupts leucine influx and mTOR signaling, and induces apoptosis in leukemic cells. Given the substantial difference in reliance on ASCT2-mediated AA metabolism between normal and malignant blood cells, this in vivo study suggests ASCT2 as a promising therapeutic target for the treatment of leukemia.
Collapse
Affiliation(s)
- Fang Ni
- Department of Pediatrics, Division of Hematology/Oncology, Aflac Cancer and Blood Disorders Center, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Wen-Mei Yu
- Department of Pediatrics, Division of Hematology/Oncology, Aflac Cancer and Blood Disorders Center, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Zhiguo Li
- Department of Pediatrics, Division of Hematology/Oncology, Aflac Cancer and Blood Disorders Center, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Douglas K Graham
- Department of Pediatrics, Division of Hematology/Oncology, Aflac Cancer and Blood Disorders Center, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Lingtao Jin
- Department of Hematology/Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Sumin Kang
- Department of Hematology/Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Michael R Rossi
- Department of Radiation Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Shiyong Li
- Department of Pathology and Laboratory Medicine, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Hal E Broxmeyer
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Cheng-Kui Qu
- Department of Pediatrics, Division of Hematology/Oncology, Aflac Cancer and Blood Disorders Center, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
37
|
Juvenile myelomonocytic leukemia: who's the driver at the wheel? Blood 2019; 133:1060-1070. [PMID: 30670449 DOI: 10.1182/blood-2018-11-844688] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 01/10/2019] [Indexed: 01/16/2023] Open
Abstract
Juvenile myelomonocytic leukemia (JMML) is a unique clonal hematopoietic disorder of early childhood. It is classified as an overlap myeloproliferative/myelodysplastic neoplasm by the World Health Organization and shares some features with chronic myelomonocytic leukemia in adults. JMML pathobiology is characterized by constitutive activation of the Ras signal transduction pathway. About 90% of patients harbor molecular alterations in 1 of 5 genes (PTPN11, NRAS, KRAS, NF1, or CBL), which define genetically and clinically distinct subtypes. Three of these subtypes, PTPN11-, NRAS-, and KRAS-mutated JMML, are characterized by heterozygous somatic gain-of-function mutations in nonsyndromic children, whereas 2 subtypes, JMML in neurofibromatosis type 1 and JMML in children with CBL syndrome, are defined by germline Ras disease and acquired biallelic inactivation of the respective genes in hematopoietic cells. The clinical course of the disease varies widely and can in part be predicted by age, level of hemoglobin F, and platelet count. The majority of children require allogeneic hematopoietic stem cell transplantation for long-term leukemia-free survival, but the disease will eventually resolve spontaneously in ∼15% of patients, rendering the prospective identification of these cases a clinical necessity. Most recently, genome-wide DNA methylation profiles identified distinct methylation signatures correlating with clinical and genetic features and highly predictive for outcome. Understanding the genomic and epigenomic basis of JMML will not only greatly improve precise decision making but also be fundamental for drug development and future collaborative trials.
Collapse
|
38
|
Wu X, Xu G, Li X, Xu W, Li Q, Liu W, Kirby KA, Loh ML, Li J, Sarafianos SG, Qu CK. Small Molecule Inhibitor that Stabilizes the Autoinhibited Conformation of the Oncogenic Tyrosine Phosphatase SHP2. J Med Chem 2018; 62:1125-1137. [PMID: 30457860 DOI: 10.1021/acs.jmedchem.8b00513] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Genetic mutations in the phosphatase PTPN11 (SHP2) are associated with childhood leukemias. These mutations cause hyperactivation of SHP2 due to the disruption of the autoinhibitory conformation. By targeting the activation-associated protein conformational change, we have identified an SHP2 inhibitor ( E)-1-(1-(5-(3-(2,4-dichlorophenyl)acryloyl)-2-ethoxy-4-hydroxybenzyl)-1,2,5,6-tetrahydropyridin-3-yl)-1 H-benzo[ d]imidazol-2(3 H)-one (LY6, 1) using computer-aided drug design database screening combined with cell-based assays. This compound inhibited SHP2 with an IC50 value of 9.8 μM, 7-fold more selective for SHP2 than the highly related SHP1. Fluorescence titration, thermal shift, and microscale thermophoresis quantitative binding assays confirmed its direct binding to SHP2. This compound was further verified to effectively inhibit SHP2-mediated cell signaling and proliferation. Furthermore, mouse and patient leukemia cells with PTPN11 activating mutations were more sensitive to this inhibitor than wild-type cells. This small molecule SHP2 inhibitor has a potential to serve as a lead compound for further optimization studies to develop novel anti-SHP2 therapeutic agents.
Collapse
Affiliation(s)
- Xiaoqin Wu
- Department of Pediatrics, Division of Hematology/Oncology, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta , Emory University School of Medicine , Atlanta , Georgia 30322 , United States
| | - Gang Xu
- Department of Medicine, Division of Hematology and Oncology, Case Comprehensive Cancer Center , Case Western Reserve University , Cleveland , Ohio 44106 , United States
| | - Xiaobo Li
- Department of Pediatrics, Division of Hematology/Oncology, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta , Emory University School of Medicine , Atlanta , Georgia 30322 , United States.,Department of Medicine, Division of Hematology and Oncology, Case Comprehensive Cancer Center , Case Western Reserve University , Cleveland , Ohio 44106 , United States
| | - Weiren Xu
- Department of Medicine, Division of Hematology and Oncology, Case Comprehensive Cancer Center , Case Western Reserve University , Cleveland , Ohio 44106 , United States
| | - Qianjin Li
- Department of Pediatrics, Division of Hematology/Oncology, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta , Emory University School of Medicine , Atlanta , Georgia 30322 , United States
| | - Wei Liu
- Department of Medicine, Division of Hematology and Oncology, Case Comprehensive Cancer Center , Case Western Reserve University , Cleveland , Ohio 44106 , United States
| | - Karen A Kirby
- Department of Pediatrics, Laboratory of Biochemical Pharmacology , Emory University School of Medicine , Atlanta , Georgia 30322 , United States
| | - Mignon L Loh
- Department of Pediatrics, Division of Pediatric Hematology-Oncology , University of California, San Francisco , San Francisco , California 94122 , United States
| | - Jun Li
- School of Pharmacy , Anhui Medical University , Hefei 230032 , China
| | - Stefan G Sarafianos
- Department of Pediatrics, Laboratory of Biochemical Pharmacology , Emory University School of Medicine , Atlanta , Georgia 30322 , United States
| | - Cheng-Kui Qu
- Department of Pediatrics, Division of Hematology/Oncology, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta , Emory University School of Medicine , Atlanta , Georgia 30322 , United States.,Department of Medicine, Division of Hematology and Oncology, Case Comprehensive Cancer Center , Case Western Reserve University , Cleveland , Ohio 44106 , United States
| |
Collapse
|
39
|
Gagné-Sansfacon J, Langlois A, Langlois MJ, Coulombe G, Tremblay S, Vaillancourt-Lavigueur V, Qu CK, Menendez A, Rivard N. The tyrosine phosphatase Shp-2 confers resistance to colonic inflammation by driving goblet cell function and crypt regeneration. J Pathol 2018; 247:135-146. [PMID: 30376595 PMCID: PMC6519201 DOI: 10.1002/path.5177] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 08/30/2018] [Accepted: 12/25/2018] [Indexed: 12/18/2022]
Abstract
The Src homology‐2 domain‐containing tyrosine phosphatase 2 (SHP‐2) regulates many cellular processes, including proliferation, differentiation and survival. Polymorphisms in the gene encoding SHP‐2 are associated with an increased susceptibility to develop ulcerative colitis. We recently reported that intestinal epithelial cell (IEC)‐specific deletion of Shp‐2 in mice (Shp‐2IEC‐KO) leads to chronic colitis and colitis‐associated cancer. This suggests that SHP‐2‐dependent signaling protects the colonic epithelium against inflammation and colitis‐associated cancer development. To verify this hypothesis, we generated mice expressing the Shp‐2 E76K activated form specifically in IEC. Our results showed that sustained Shp‐2 activation in IEC increased intestine and crypt length, correlating with increased cell proliferation and migration. Crypt regeneration capacity was also markedly enhanced, as revealed by ex vivo organoid culture. Shp‐2 activation alters the secretory cell lineage, as evidenced by increased goblet cell numbers and mucus secretion. Notably, these mice also demonstrated elevated ERK signaling in IEC and exhibited resistance against both chemical‐ and Citrobacter rodentium‐induced colitis. In contrast, mice with IEC‐specific Shp‐2 deletion displayed reduced ERK signaling and rapidly developed chronic colitis. Remarkably, expression of an activated form of Braf in Shp‐2‐deficient mice restored ERK activation, goblet cell production and prevented colitis. Altogether, our results indicate that chronic activation of Shp‐2/ERK signaling in the colonic epithelium confers resistance to mucosal erosion and colitis. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Jessica Gagné-Sansfacon
- Department of Anatomy and Cell Biology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Ariane Langlois
- Department of Anatomy and Cell Biology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Marie-Josée Langlois
- Department of Anatomy and Cell Biology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Geneviève Coulombe
- Department of Anatomy and Cell Biology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Sarah Tremblay
- Department of Microbiology and Infectiology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Vanessa Vaillancourt-Lavigueur
- Department of Anatomy and Cell Biology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Cheng-Kui Qu
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Alfredo Menendez
- Department of Microbiology and Infectiology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Nathalie Rivard
- Department of Anatomy and Cell Biology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
| |
Collapse
|
40
|
SHP2-Mediated Signal Networks in Stem Cell Homeostasis and Dysfunction. Stem Cells Int 2018; 2018:8351374. [PMID: 29983715 PMCID: PMC6015663 DOI: 10.1155/2018/8351374] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/16/2018] [Accepted: 05/28/2018] [Indexed: 12/17/2022] Open
Abstract
Stem cells, including embryonic stem cells (ESCs) and adult stem cells, play a central role in mammal organism development and homeostasis. They have two unique properties: the capacity for self-renewal and the ability to differentiate into many specialized cell types. Src homology region 2- (SH2-) containing protein tyrosine phosphatase 2 (SHP-2), a nonreceptor protein tyrosine phosphatase encoded by protein tyrosine phosphatase nonreceptor type 11 gene (PTPN11), regulates multicellular differentiation, proliferation, and survival through numerous conserved signal pathways. Gain-of-function (GOF) or loss-of-function (LOF) SHP2 in various cells, especially for stem cells, disrupt organism self-balance and lead to a plethora of diseases, such as cancer, maldevelopment, and excessive hyperblastosis. However, the exact mechanisms of SHP2 dysfunction in stem cells remain unclear. In this review, we intended to raise the attention and clarify the framework of SHP2-mediated signal pathways in various stem cells. Establishment of integrated signal architecture, from ESCs to adult stem cells, will help us to understand the changes of dynamic, multilayered pathways in response to SHP2 dysfunction. Overall, better understanding the functions of SHP2 in stem cells provides a new avenue to treat SHP2-associated diseases.
Collapse
|
41
|
Tarnawsky SP, Yu WM, Qu CK, Chan RJ, Yoder MC. Hematopoietic-restricted Ptpn11E76K reveals indolent MPN progression in mice. Oncotarget 2018; 9:21831-21843. [PMID: 29774106 PMCID: PMC5955130 DOI: 10.18632/oncotarget.25073] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 03/21/2018] [Indexed: 12/15/2022] Open
Abstract
Juvenile Myelomonocytic Leukemia (JMML) is a pediatric myeloproliferative neoplasm (MPN) that has a poor prognosis. Somatic mutations in Ptpn11 are the most frequent cause of JMML and they commonly occur in utero. Animal models of mutant Ptpn11 have probed the signaling pathways that contribute to JMML. However, existing models may inappropriately exacerbate MPN features by relying on non-hematopoietic-restricted Cre-loxP strains or transplantations into irradiated recipients. In this study we generate hematopoietic-restricted models of Ptpn11E76K-mediated disease using Csf1r-MCM and Flt3Cre. We show that these animals have indolent MPN progression despite robust GM-CSF hypersensitivity and Ras-Erk hyperactivation. Rather, the dominant pathology is pronounced thrombocytopenia with expanded extramedullary hematopoiesis. Furthermore, we demonstrate that the timing of tamoxifen administration in Csf1r-MCM mice can specifically induce recombinase activity in either fetal or adult hematopoietic progenitors. We take advantage of this technique to show more rapid monocytosis following Ptpn11E76K expression in fetal progenitors compared with adult progenitors. Finally, we demonstrate that Ptpn11E76K results in the progressive reduction of T cells, most notably of CD4+ and naïve T cells. This corresponds to an increased frequency of T cell progenitors in the thymus and may help explain the occasional emergence of T-cell leukemias in JMML patients. Overall, our study is the first to describe the consequences of hematopoietic-restricted Ptpn11E76K expression in the absence of irradiation. Our techniques can be readily adapted by other researchers studying somatically-acquired blood disorders.
Collapse
Affiliation(s)
- Stefan P Tarnawsky
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Wen-Mei Yu
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Cheng-Kui Qu
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Rebecca J Chan
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mervin C Yoder
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
42
|
Zheng H, Yu WM, Waclaw RR, Kontaridis MI, Neel BG, Qu CK. Gain-of-function mutations in the gene encoding the tyrosine phosphatase SHP2 induce hydrocephalus in a catalytically dependent manner. Sci Signal 2018; 11:11/522/eaao1591. [PMID: 29559584 DOI: 10.1126/scisignal.aao1591] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Catalytically activating mutations in Ptpn11, which encodes the protein tyrosine phosphatase SHP2, cause 50% of Noonan syndrome (NS) cases, whereas inactivating mutations in Ptpn11 are responsible for nearly all cases of the similar, but distinct, developmental disorder Noonan syndrome with multiple lentigines (NSML; formerly called LEOPARD syndrome). However, both types of disease mutations are gain-of-function mutations because they cause SHP2 to constitutively adopt an open conformation. We found that the catalytic activity of SHP2 was required for the pathogenic effects of gain-of-function, disease-associated mutations on the development of hydrocephalus in the mouse. Targeted pan-neuronal knockin of a Ptpn11 allele encoding the active SHP2 E76K mutant resulted in hydrocephalus due to aberrant development of ependymal cells and their cilia. These pathogenic effects of the E76K mutation were suppressed by the additional mutation C459S, which abolished the catalytic activity of SHP2. Moreover, ependymal cells in NSML mice bearing the inactive SHP2 mutant Y279C were also unaffected. Mechanistically, the SHP2 E76K mutant induced developmental defects in ependymal cells by enhancing dephosphorylation and inhibition of the transcription activator STAT3. Whereas STAT3 activity was reduced in Ptpn11E76K/+ cells, the activities of the kinases ERK and AKT were enhanced, and neural cell-specific Stat3 knockout mice also manifested developmental defects in ependymal cells and cilia. These genetic and biochemical data demonstrate a catalytic-dependent role of SHP2 gain-of-function disease mutants in the pathogenesis of hydrocephalus.
Collapse
Affiliation(s)
- Hong Zheng
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Wen-Mei Yu
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ronald R Waclaw
- Divisions of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Maria I Kontaridis
- Department of Medicine, Division of Cardiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Benjamin G Neel
- Laura and Isaac Perlmutter Cancer Center, New York University, New York, NY 10016, USA
| | - Cheng-Kui Qu
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
43
|
Gagné-Sansfaçon J, Coulombe G, Langlois MJ, Langlois A, Paquet M, Carrier J, Feng GS, Qu CK, Rivard N. SHP-2 phosphatase contributes to KRAS-driven intestinal oncogenesis but prevents colitis-associated cancer development. Oncotarget 2018; 7:65676-65695. [PMID: 27582544 PMCID: PMC5323184 DOI: 10.18632/oncotarget.11601] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 08/13/2016] [Indexed: 02/07/2023] Open
Abstract
A major risk factor of developing colorectal cancer (CRC) is the presence of chronic inflammation in the colon. In order to understand how inflammation contributes to CRC development, the present study focused on SHP-2, a tyrosine phosphatase encoded by PTPN11 gene in which polymorphisms have been shown to be markers of colitis susceptibility. Conversely, gain-of-function mutations in PTPN11 gene (E76 residue) have been found in certain sporadic CRC. Results shown herein demonstrate that SHP-2 expression was markedly increased in sporadic human adenomas but not in advanced colorectal tumors. SHP-2 silencing inhibited proliferative, invasive and tumoral properties of both intestinal epithelial cells (IECs) transformed by oncogenic KRAS and of human CRC cells. IEC-specific expression of a SHP-2E76K activated mutant in mice was not sufficient to induce tumorigenesis but markedly promoted tumor growth under the ApcMin/+ background. Conversely, mice with a conditional deletion of SHP-2 in IECs developed colitis-associated adenocarcinomas with age, associated with sustained activation of Wnt/β-catenin, NFκB and STAT3 signalings in the colonic mucosae. Moreover, SHP-2 epithelial deficiency considerably increased tumor load in ApcMin/+ mice, shifting tumor incidence toward the colon. Overall, these results reveal that SHP-2 can exert opposing functions in the large intestine: it can promote or inhibit tumorigenesis depending of the inflammatory context.
Collapse
Affiliation(s)
- Jessica Gagné-Sansfaçon
- Department of Anatomy and Cell Biology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Geneviève Coulombe
- Department of Anatomy and Cell Biology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Marie-Josée Langlois
- Department of Anatomy and Cell Biology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Ariane Langlois
- Department of Anatomy and Cell Biology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Marilene Paquet
- Département de microbiologie et pathologie, Université de Montréal, St-Hyacinthe, QC, Canada
| | - Julie Carrier
- Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Gen-Sheng Feng
- Department of Pathology and Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Cheng-Kui Qu
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Nathalie Rivard
- Department of Anatomy and Cell Biology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
44
|
Zhang Q, Shibani A, Sadikovic B, Howlett CJ, Ang LC. An aggressive multifocal primary CNS histiocytosis with PTPN11 (Shp2)
mutation. Neuropathol Appl Neurobiol 2018; 44:240-243. [DOI: 10.1111/nan.12404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Q. Zhang
- Department of Pathology and Laboratory Medicine; Schulich School of Medicine and Dentistry; Western University; London ON Canada
| | - A. Shibani
- Brandon Regional Health Centre; Brandon MB Canada
| | - B. Sadikovic
- Department of Pathology and Laboratory Medicine; Schulich School of Medicine and Dentistry; Western University; London ON Canada
| | - C. J. Howlett
- Department of Pathology and Laboratory Medicine; Schulich School of Medicine and Dentistry; Western University; London ON Canada
| | - L.-C. Ang
- Department of Pathology and Laboratory Medicine; Schulich School of Medicine and Dentistry; Western University; London ON Canada
| |
Collapse
|
45
|
Yu ZH, Zhang ZY. Regulatory Mechanisms and Novel Therapeutic Targeting Strategies for Protein Tyrosine Phosphatases. Chem Rev 2018; 118:1069-1091. [PMID: 28541680 PMCID: PMC5812791 DOI: 10.1021/acs.chemrev.7b00105] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
An appropriate level of protein phosphorylation on tyrosine is essential for cells to react to extracellular stimuli and maintain cellular homeostasis. Faulty operation of signal pathways mediated by protein tyrosine phosphorylation causes numerous human diseases, which presents enormous opportunities for therapeutic intervention. While the importance of protein tyrosine kinases in orchestrating the tyrosine phosphorylation networks and in target-based drug discovery has long been recognized, the significance of protein tyrosine phosphatases (PTPs) in cellular signaling and disease biology has historically been underappreciated, due to a large extent to an erroneous assumption that they are largely constitutive and housekeeping enzymes. Here, we provide a comprehensive examination of a number of regulatory mechanisms, including redox modulation, allosteric regulation, and protein oligomerization, that control PTP activity. These regulatory mechanisms are integral to the myriad PTP-mediated biochemical events and reinforce the concept that PTPs are indispensable and specific modulators of cellular signaling. We also discuss how disruption of these PTP regulatory mechanisms can cause human diseases and how these diverse regulatory mechanisms can be exploited for novel therapeutic development.
Collapse
Affiliation(s)
- Zhi-Hong Yu
- Department of Medicinal Chemistry and Molecular Pharmacology, Department of Chemistry, Center for Cancer Research, and Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907
| | - Zhong-Yin Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, Department of Chemistry, Center for Cancer Research, and Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907
| |
Collapse
|
46
|
Zhang Q, Li Y, Zhao R, Wang X, Fan C, Xu Y, Liu Y, Li J, Wang S. The gain-of-function mutation E76K in SHP2 promotes CAC tumorigenesis and induces EMT via the Wnt/β-catenin signaling pathway. Mol Carcinog 2018; 57:619-628. [PMID: 29323748 DOI: 10.1002/mc.22785] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 11/30/2017] [Accepted: 01/09/2018] [Indexed: 12/21/2022]
Abstract
SHP2 is encoded by the protein tyrosine phosphatase 11 (Ptpn11) gene. Several gain-of-function (GOF) mutations in Ptpn11 have been identified in human hematopoietic malignancies and solid tumors. In addition, the mutation rate for SHP2 is the highest for colorectal cancer (CRC) among solid tumors. The E76K GOF mutation is the most common and active SHP2 mutation; however, the pathogenic effects and function of this mutation in CRC tumor progression have not been well characterized. The Wnt/β-catenin (CTNNB1) signaling pathway is crucial for CRC, and excessive activation of this pathway has been observed in several tumors. We used Ptpn11E76K conditional knock-in mice to study this GOF mutation in colitis-associated CRC (CAC) and used the CRC cell lines HT29 and HCT116 to determine the relationship between SHP2 and Wnt/β-catenin signaling. Ptpn11E76K conditional knock-in mice exhibited aggravated inflammation and increased CAC tumorigenesis. In vitro, SHP2E76K and SHP2WT promoted malignant biological behaviors of CRC cells and induced epithelial-mesenchymal transition (EMT) via the Wnt/β-catenin signaling pathway. Together, our results showed that SHP2E76K acts as an oncogene that promotes the tumorigenesis and metastasis of CRC.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, P. R. China.,Department of Infectious, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, P. R. China
| | - Yao Li
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, P. R. China.,Department of Infectious, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, P. R. China
| | - Rongrong Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, P. R. China
| | - Xinyi Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, P. R. China
| | - Chuling Fan
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, P. R. China
| | - Youzhi Xu
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, P. R. China
| | - Yakun Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, P. R. China
| | - Jiabin Li
- Department of Infectious, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, P. R. China
| | - Siying Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, P. R. China
| |
Collapse
|
47
|
Wang Y, Huang J, Rong L, Wu P, Kang M, Zhang X, Lu Q, Fang Y. Impact of age on the survival of pediatric leukemia: an analysis of 15083 children in the SEER database. Oncotarget 2018; 7:83767-83774. [PMID: 27590519 PMCID: PMC5347803 DOI: 10.18632/oncotarget.11765] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 08/26/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND & AIMS Age at diagnosis is a key factor for predicting the prognosis of pediatric leukemia especially regarding the survivorship assessment. In this study, we aimed to assess the impact of this prognostic factor such as age in children with pediatric leukemia. METHODS In this study, Surveillance, Epidemiology, and End Results Program-registered children with leukemia during 1988-2013 were analyzed. All patients were divided into five groups according to the age at the time of diagnosis (<1, 1-4, 5-9, 10-15, >15 years old). Kaplan-Meier and multivariable Cox regression models were used to evaluate leukemia survival outcomes and risk factors. RESULTS There was significant variability in pediatric leukemia survival by age at diagnosis including ALL, AML and CML subtypes. According to the survival curves in each group, survival rate were peaked among children diagnosed at 1–4 years and steadily declined among those diagnosed at older ages in children with ALL. Infants (<1 year) had the lowest survivorship in children with either ALL or AML. However, children (1-4 years) harbored the worst prognosis suffering from CML. A stratified analysis of the effect of age at diagnosis was validated as independent predictors for the prognosis of pediatric leukemia. CONCLUSIONS Age at diagnosis remained to be a crucial determinant of the survival variability of pediatric leukemia patients.
Collapse
Affiliation(s)
- Yaping Wang
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jie Huang
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Liucheng Rong
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Peng Wu
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Meiyun Kang
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Xuejie Zhang
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Qin Lu
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yongjun Fang
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
48
|
Abstract
PURPOSE OF REVIEW SH2 domain-containing tyrosine phosphatase 2 (SHP2), encoded by PTPN11 plays an important role in regulating signaling from cell surface receptor tyrosine kinases during normal development as well as oncogenesis. Herein we review recently discovered roles of SHP2 in normal and aberrant hematopoiesis along with novel strategies to target it. RECENT FINDINGS Cell autonomous role of SHP2 in normal hematopoiesis and leukemogenesis has long been recognized. The review will discuss the newly discovered role of SHP2 in lineage specific differentiation. Recently, a noncell autonomous role of oncogenic SHP2 has been reported in which activated SHP2 was shown to alter the bone marrow microenvironment resulting in transformation of donor derived normal hematopoietic cells and development of myeloid malignancy. From being considered as an 'undruggable' target, recent development of allosteric inhibitor has made it possible to specifically target SHP2 in receptor tyrosine kinase driven malignancies. SUMMARY SHP2 has emerged as an attractive target for therapeutic targeting in hematological malignancies for its cell autonomous and microenvironmental effects. However a better understanding of the role of SHP2 in different hematopoietic lineages and its crosstalk with signaling pathways activated by other genetic lesions is required before the promise is realized in the clinic.
Collapse
|
49
|
Tarnawsky SP, Yoshimoto M, Deng L, Chan RJ, Yoder MC. Yolk sac erythromyeloid progenitors expressing gain of function PTPN11 have functional features of JMML but are not sufficient to cause disease in mice. Dev Dyn 2017; 246:1001-1014. [PMID: 28975680 DOI: 10.1002/dvdy.24598] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 09/20/2017] [Accepted: 09/21/2017] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Accumulating evidence suggests the origin of juvenile myelomonocytic leukemia (JMML) is closely associated with fetal development. Nevertheless, the contribution of embryonic progenitors to JMML pathogenesis remains unexplored. We hypothesized that expression of JMML-initiating PTPN11 mutations in HSC-independent yolk sac erythromyeloid progenitors (YS EMPs) would result in a mouse model of pediatric myeloproliferative neoplasm (MPN). RESULTS E9.5 YS EMPs from VavCre+;PTPN11D61Y embryos demonstrated growth hypersensitivity to granulocyte-macrophage colony-stimulating factor (GM-CSF) and hyperactive RAS-ERK signaling. Mutant EMPs engrafted the spleens of neonatal recipients, but did not cause disease. To assess MPN development during unperturbed hematopoiesis we generated CSF1R-MCM+;PTPN11E76K ;ROSAYFP mice in which oncogene expression was restricted to EMPs. Yellow fluorescent protein-positive progeny of mutant EMPs persisted in tissues one year after birth and demonstrated hyperactive RAS-ERK signaling. Nevertheless, these mice had normal survival and did not demonstrate features of MPN. CONCLUSIONS YS EMPs expressing mutant PTPN11 demonstrate functional and molecular features of JMML but do not cause disease following transplantation nor following unperturbed development. Developmental Dynamics 246:1001-1014, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Stefan P Tarnawsky
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Momoko Yoshimoto
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Lisa Deng
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Rebecca J Chan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Mervin C Yoder
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
50
|
Deng L, Virts EL, Kapur R, Chan RJ. Pharmacologic inhibition of PI3K p110δ in mutant Shp2E76K-expressing mice. Oncotarget 2017; 8:84776-84781. [PMID: 29156682 PMCID: PMC5689572 DOI: 10.18632/oncotarget.21455] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 09/08/2017] [Indexed: 01/13/2023] Open
Abstract
Juvenile myelomonocytic leukemia is a childhood malignancy that lacks effective chemotherapies and thus has poor patient outcomes. PI3K p110δ has been found to promote hyperproliferation of cells expressing mutant Shp2. In this study, we tested the efficacy of a PI3Kδ inhibitor in mice expressing the Shp2 gain-of-function mutation, E76K. We found that in vivo treatment of mice led to significantly decreased splenomegaly, reduced frequency of bone marrow progenitor cells, and increased terminally differentiated peripheral blood myeloid cells. The survival of drug-treated mice was significantly prolonged compared to vehicle-treated controls, although mice from both groups ultimately succumbed to a similar myeloid cell expansion. PI3Kδ inhibitors are currently used to treat patients with relapsed lymphoid malignancies, such as chronic lymphocytic leukemia. The current findings provide evidence for using PI3Kδ inhibitors as a treatment strategy for JMML and potentially other myeloid diseases.
Collapse
Affiliation(s)
- Lisa Deng
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Elizabeth L Virts
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Reuben Kapur
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Rebecca J Chan
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|