1
|
Ohm B, Giannou AD, Harriman D, Oh J, Jungraithmayr W, Zazara DE. Chimerism and immunological tolerance in solid organ transplantation. Semin Immunopathol 2025; 47:27. [PMID: 40387984 DOI: 10.1007/s00281-025-01052-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 05/05/2025] [Indexed: 05/20/2025]
Abstract
In solid organ transplantation, chimerism inevitably occurs via the coexistence of donor-derived cells from the graft and host cells throughout the recipient. However, long-term immunosuppressive treatment is needed to suppress host immune responses to the foreign organ graft. The deliberate induction of stable mixed bone marrow chimerism to achieve donor-specific immunological tolerance in solid organ graft recipients is an ambitious goal that may significantly contribute to the long-term survival of solid organ grafts and their recipients. While this strategy has been effectively established in laboratory animals and some promising clinical case series have been reported, widespread clinical application is still limited by the toxicity of the necessary conditioning regimens. On the other hand, the naturally occurring chimeric state resulting from the bidirectional transplacental cell trafficking during pregnancy, the so-called feto-maternal microchimerism, can also induce immune tolerance and thus influence the outcome of mother-to-child or child-to-mother organ transplantation. This review provides an overview of the field's historical development, clinical results, and underlying principles of (micro) chimerism-based tolerance.
Collapse
Affiliation(s)
- Birte Ohm
- Department of Thoracic Surgery, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Anastasios D Giannou
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- General Surgery, Liver, Pancreas and Intestinal Transplant Unit, Hospital Universitario-Fundación Favaloro, Buenos Aires, Argentina
- Department of Urologic Sciences, University of British Columbia, Vancouver, Canada
| | - David Harriman
- Department of Urologic Sciences, University of British Columbia, Vancouver, Canada
| | - Jun Oh
- University Children's Hospital, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Wolfgang Jungraithmayr
- Department of Thoracic Surgery, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, Freiburg, Germany
- Division of Thoracic Surgery, Rostock University Medical Center, Rostock, Germany
- Department of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Dimitra E Zazara
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
- University Children's Hospital, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
- Division for Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
| |
Collapse
|
2
|
Li W, Terada Y, Bai YZ, Yokoyama Y, Shepherd HM, Amrute JM, Bery AI, Liu Z, Gauthier JM, Terekhova M, Bharat A, Ritter JH, Puri V, Hachem RR, Turnquist HR, Sage PT, Alessandrini A, Artyomov MN, Lavine KJ, Nava RG, Krupnick AS, Gelman AE, Kreisel D. Maintenance of graft tissue-resident Foxp3+ cells is necessary for lung transplant tolerance in mice. J Clin Invest 2025; 135:e178975. [PMID: 40100295 PMCID: PMC12077894 DOI: 10.1172/jci178975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/06/2025] [Indexed: 03/20/2025] Open
Abstract
Mechanisms that mediate allograft tolerance differ between organs. We have previously shown that Foxp3+ T cell-enriched bronchus-associated lymphoid tissue (BALT) is induced in tolerant murine lung allografts and that these Foxp3+ cells suppress alloimmune responses locally and systemically. Here, we demonstrated that Foxp3+ cells that reside in tolerant lung allografts differed phenotypically and transcriptionally from those in the periphery and were clonally expanded. Using a mouse lung retransplant model, we showed that recipient Foxp3+ cells were continuously recruited to the BALT within tolerant allografts. We identified distinguishing features of graft-resident and newly recruited Foxp3+ cells and showed that graft-infiltrating Foxp3+ cells acquired transcriptional profiles resembling those of graft-resident Foxp3+ cells over time. Allografts underwent combined antibody-mediated rejection and acute cellular rejection when recruitment of recipient Foxp3+ cells was prevented. Finally, we showed that local administration of IL-33 could expand and activate allograft-resident Foxp3+ cells, providing a platform for the design of tolerogenic therapies for lung transplant recipients. Our findings establish graft-resident Foxp3+ cells as critical orchestrators of lung transplant tolerance and highlight the need to develop lung-specific immunosuppression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Marina Terekhova
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Ankit Bharat
- Department of Surgery, Northwestern University, Chicago, Illinois, USA
| | - Jon H. Ritter
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri, USA
| | | | | | - Hēth R. Turnquist
- Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Peter T. Sage
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Alessandro Alessandrini
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Maxim N. Artyomov
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Kory J. Lavine
- Department of Medicine, and
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri, USA
| | | | | | - Andrew E. Gelman
- Department of Surgery
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Daniel Kreisel
- Department of Surgery
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
3
|
Pellegrino B, David K, Rabani S, Lampert B, Tran T, Doherty E, Piecychna M, Meza-Romero R, Leng L, Hershkovitz D, Vandenbark AA, Bucala R, Becker-Herman S, Shachar I. CD74 promotes the formation of an immunosuppressive tumor microenvironment in triple-negative breast cancer in mice by inducing the expansion of tolerogenic dendritic cells and regulatory B cells. PLoS Biol 2024; 22:e3002905. [PMID: 39576827 PMCID: PMC11623796 DOI: 10.1371/journal.pbio.3002905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 12/06/2024] [Accepted: 10/18/2024] [Indexed: 11/24/2024] Open
Abstract
CD74 is a cell-surface receptor for the cytokine macrophage migration inhibitory factor (MIF). MIF binding to CD74 induces a signaling cascade resulting in the release of its cytosolic intracellular domain (CD74-ICD), which regulates transcription in naïve B and chronic lymphocytic leukemia (CLL) cells. In the current study, we investigated the role of CD74 in the regulation of the immunosuppressive tumor microenvironment (TME) in triple-negative breast cancer (TNBC). TNBC is the most aggressive breast cancer subtype and is characterized by massive infiltration of immune cells to the tumor microenvironment, making this tumor a good candidate for immunotherapy. The tumor and immune cells in TNBC express high levels of CD74; however, the function of this receptor in the tumor environment has not been extensively characterized. Regulatory B cells (Bregs) and tolerogenic dendritic cells (tol-DCs) were previously shown to attenuate the antitumor immune response in TNBC. Here, we demonstrate that CD74 enhances tumor growth by inducing the expansion of tumor-infiltrating tol-DCs and Bregs. Utilizing CD74-KO mice, Cre-flox mice lacking CD74 in CD23+ mature B cells, mice lacking CD74 in the CD11c+ population, and a CD74 inhibitor (DRQ), we elucidate the mechanism by which CD74 inhibits antitumor immunity. MIF secreted from the tumor cells activates CD74 expressed on DCs. This activation induces the binding of CD74-ICD to the SP1 promotor, resulting in the up-regulation of SP1 expression. SP1 binds the IL-1β promotor, leading to the down-regulation of its transcription. The reduced levels of IL-1β lead to decreased antitumor activity by allowing expansion of the tol-DC, which induces the expansion of the Breg population, supporting the cross-talk between these 2 populations. Taken together, these results suggest that CD74+ CD11c+ DCs are the dominant cell type involved in the regulation of TNBC progression. These findings indicate that CD74 might serve as a novel therapeutic target in TNBC.
Collapse
Affiliation(s)
- Bianca Pellegrino
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Keren David
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Stav Rabani
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Bar Lampert
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Thuy Tran
- Yale Cancer Center and School of Medicine, New Haven, Connecticut, United States of America
| | - Edward Doherty
- Yale Cancer Center and School of Medicine, New Haven, Connecticut, United States of America
| | - Marta Piecychna
- Yale Cancer Center and School of Medicine, New Haven, Connecticut, United States of America
| | - Roberto Meza-Romero
- Neuroimmunology Research, VA Portland Health Care System, Portland, Oregon, United States of America
- Department of Neurology, Oregon Health & Science University, Portland, Oregon, United States of America
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Lin Leng
- Yale Cancer Center and School of Medicine, New Haven, Connecticut, United States of America
| | - Dov Hershkovitz
- Insitute of Pathology, Sourasky Medical Center, Tel Aviv, Israel
| | - Arthur A. Vandenbark
- Neuroimmunology Research, VA Portland Health Care System, Portland, Oregon, United States of America
- Department of Neurology, Oregon Health & Science University, Portland, Oregon, United States of America
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Richard Bucala
- Yale Cancer Center and School of Medicine, New Haven, Connecticut, United States of America
| | - Shirly Becker-Herman
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Idit Shachar
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
4
|
Kanazawa R, Goto R, Harada T, Ota T, Kobayashi N, Shibuya K, Ganchiku Y, Watanabe M, Zaitsu M, Kawamura N, Shimamura T, Taketomi A. Early graft-infiltrating lymphocytes are not associated with graft rejection in a mouse model of skin transplantation. Scand J Immunol 2024; 100:e13397. [PMID: 39080853 DOI: 10.1111/sji.13397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 06/13/2024] [Accepted: 06/24/2024] [Indexed: 11/05/2024]
Abstract
Graft-infiltrating lymphocytes (GILs) play an important role in promoting rejection after organ transplantation. We recently reported that GILs that accumulated up to 3 days post-transplantation did not promote rejection, whereas GILs present 3-5 days post-transplantation promoted rejection in a mouse heart transplantation model. However, the immunological behaviour of GILs in murine skin transplantation remains unclear. GILs were isolated on days 3, 5 or 7 post-transplantation from C57BL/6 (B6) allogeneic skin grafts transplanted onto BALB/c mice. BALB/c Rag2-/- γc-/- mice (BRGs) underwent B6 skin graft transplantation 10 weeks after adoptive transfer of day 3, 5, or 7 GILs. BRGs reconstituted with day 5 or 7 GILs completely rejected B6 grafts. However, when B6 grafts harvested from recipient BALB/c mice on day 5 or 7 were re-transplanted into BRGs, half of the re-transplanted day 5 grafts established long-term survival, although all re-transplanted day 7 grafts were rejected. BRGs reconstituted with day 3 GILs did not reject B6 grafts. Consistently, re-transplantation using day 3 skin grafts resulted in no rejection. Administration of anti-CD25 antibodies did not prevent the phenomenon observed for the day 3 skin grafts. Furthermore, BRGs reconstituted with splenocytes from naïve BALB/c mice immediately rejected the naïve B6 skin grafts and the re-transplanted day 3 B6 grafts, suggesting that day 3 GILs were unable to induce allograft rejection during the rejection process. In conclusion, the immunological role of GILs depends on the time since transplantation. Day 3 GILs had neither protective nor alloreactive effects in the skin transplant model.
Collapse
Affiliation(s)
- Ryo Kanazawa
- Department of Gastroenterological Surgery 1, Hokkaido University, Sapporo, Japan
| | - Ryoichi Goto
- Department of Gastroenterological Surgery 1, Hokkaido University, Sapporo, Japan
| | - Takuya Harada
- Department of Gastroenterological Surgery 1, Hokkaido University, Sapporo, Japan
| | - Takuji Ota
- Department of Gastroenterological Surgery 1, Hokkaido University, Sapporo, Japan
| | - Nozomi Kobayashi
- Department of Gastroenterological Surgery 1, Hokkaido University, Sapporo, Japan
| | - Kazuaki Shibuya
- Department of Gastroenterological Surgery 1, Hokkaido University, Sapporo, Japan
| | - Yoshikazu Ganchiku
- Department of Gastroenterological Surgery 1, Hokkaido University, Sapporo, Japan
| | - Masaaki Watanabe
- Department of Transplant Surgery, Hokkaido University, Sapporo, Japan
| | - Masaaki Zaitsu
- Department of Gastroenterological Surgery 1, Hokkaido University, Sapporo, Japan
| | - Norio Kawamura
- Department of Transplant Surgery, Hokkaido University, Sapporo, Japan
| | - Tsuyoshi Shimamura
- Division of Organ Transplantation, Hokkaido University Hospital, Sapporo, Japan
| | - Akinobu Taketomi
- Department of Gastroenterological Surgery 1, Hokkaido University, Sapporo, Japan
- Department of Transplant Surgery, Hokkaido University, Sapporo, Japan
| |
Collapse
|
5
|
Oya Y, Tanaka Y, Nakazawa T, Matsumura R, Glass DD, Nakajima H, Shevach EM. Polyclonally Derived Alloantigen-Specific T Regulatory Cells Exhibit Target-Specific Suppression and Capture MHC Class II from Dendritic Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1891-1903. [PMID: 38683146 DOI: 10.4049/jimmunol.2300780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 04/01/2024] [Indexed: 05/01/2024]
Abstract
Foxp3+ T regulatory (Treg) cells prevent allograft rejection and graft-versus-host disease. Although polyclonal Tregs have been used both in animal models and in humans, the fine specificity of their suppressive function is poorly defined. We have generated mouse recipient-derived alloantigen-specific Tregs in vitro and explored the fine specificity of their suppressive function and their mechanism of action in vitro and in vivo. In vitro, when alloantigen and peptide Ag were both presented on the same dendritic cell, both responses were suppressed by iTregs specific either for the alloantigen or for the peptide Ag. In vivo, iTreg suppression was limited to the cognate Ag, and no bystander suppression was observed when both allo-antigen and peptide Ag were present on the same dendritic cell. In vitro, alloantigen-specific Tregs captured cognate MHC but failed to capture noncognate MHC. Our results demonstrate that a polyclonal population of iTregs generated from naive T cells can mediate highly specific function in vivo and support the view that Treg therapy, even with unselected polyclonal populations, is likely to be target antigen-specific and that bystander responses to self-antigens or to infectious agents are unlikely.
Collapse
Affiliation(s)
- Yoshihiro Oya
- Laboratory of Autoimmune Diseases, Department of Clinical Research, National Hospital Organization Chibahigashi National Hospital, Chiba City, Chiba, Japan
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
- Department of Rheumatology, Allergy and Clinical Immunology, National Hospital Organization Chibahigashi National Hospital, Chiba City, Chiba, Japan
| | - Yasuyo Tanaka
- Laboratory of Autoimmune Diseases, Department of Clinical Research, National Hospital Organization Chibahigashi National Hospital, Chiba City, Chiba, Japan
| | - Takuya Nakazawa
- Department of Rheumatology, Allergy and Clinical Immunology, National Hospital Organization Chibahigashi National Hospital, Chiba City, Chiba, Japan
| | - Ryutaro Matsumura
- Department of Rheumatology, Allergy and Clinical Immunology, National Hospital Organization Chibahigashi National Hospital, Chiba City, Chiba, Japan
| | - Deborah D Glass
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Hiroshi Nakajima
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University Hospital, Chiba City, Chiba, Japan
| | - Ethan M Shevach
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
6
|
Xu X, Chen Y, Kong L, Li X, Chen D, Yang Z, Wang J. Potential biomarkers for immune monitoring after renal transplantation. Transpl Immunol 2024; 84:102046. [PMID: 38679337 DOI: 10.1016/j.trim.2024.102046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/04/2024] [Accepted: 04/14/2024] [Indexed: 05/01/2024]
Abstract
Renal transplantation represents the foremost efficacious approach for ameliorating end-stage renal disease. Despite the current state of advanced renal transplantation techniques and the established postoperative immunosuppression strategy, a subset of patients continues to experience immune rejection during both the early and late postoperative phases, ultimately leading to graft loss. Consequently, the identification of immunobiomarkers capable of predicting the onset of immune rejection becomes imperative in order to facilitate early intervention strategies and enhance long-term prognoses. Upon reviewing the pertinent literature, we identified several indicators that could potentially serve as immune biomarkers to varying extents. These include the T1/T2 ratio, Treg/Th17 ratio, IL-10/TNF-α ratio, IL-33, IL-34, IL-6, IL-4, other cytokines, and NOX2/4.
Collapse
Affiliation(s)
- Xiaoyu Xu
- Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Yi Chen
- Shandong Medical College, Jinan, China
| | | | - Xianduo Li
- Department of Urology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Dongdong Chen
- Department of Urology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Zhe Yang
- Department of Urology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China.
| | - Jianning Wang
- Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China; Department of Urology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China.
| |
Collapse
|
7
|
Wardell CM, Fung VC, Chen E, Haque M, Gillies J, Spanier JA, Mojibian M, Fife BT, Levings MK. Short Report: CAR Tregs mediate linked suppression and infectious tolerance in islet transplantation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.06.588414. [PMID: 38645184 PMCID: PMC11030375 DOI: 10.1101/2024.04.06.588414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Regulatory T cells (Tregs) have potential as a cell-based therapy to prevent or treat transplant rejection and autoimmunity. Using an HLA-A2-specific chimeric antigen receptor (A2-CAR), we previously showed that adoptive transfer of A2-CAR Tregs limited anti-HLA-A2 alloimmunity. However, it was unknown if A2-CAR Tregs could also limit immunity to autoantigens. Using a model of HLA-A2+ islet transplantation into immunodeficient non-obese diabetic mice, we investigated if A2-CAR Tregs could control diabetes induced by islet-autoreactive (BDC2.5) T cells. In mice transplanted with HLA-A2+ islets, A2-CAR Tregs reduced BDC2.5 T cell engraftment, proliferation and cytokine production, and protected mice from diabetes. Tolerance to islets was systemic, including protection of the HLA-A2negative endogenous pancreas. In tolerant mice, a significant proportion of BDC2.5 T cells gained FOXP3 expression suggesting that long-term tolerance is maintained by de novo Treg generation. Thus, A2-CAR Tregs mediate linked suppression and infectious tolerance and have potential therapeutic use to simultaneously control both allo- and autoimmunity in islet transplantation.
Collapse
Affiliation(s)
- Christine M. Wardell
- BC Children’s Hospital Research Institute, University of British Columbia; Vancouver, BC, Canada
- Dept of Surgery, University of British Columbia; Vancouver, BC, Canada
| | - Vivian C.W. Fung
- BC Children’s Hospital Research Institute, University of British Columbia; Vancouver, BC, Canada
- Dept of Surgery, University of British Columbia; Vancouver, BC, Canada
| | - Eleanor Chen
- BC Children’s Hospital Research Institute, University of British Columbia; Vancouver, BC, Canada
- Dept of Surgery, University of British Columbia; Vancouver, BC, Canada
| | - Manjurul Haque
- BC Children’s Hospital Research Institute, University of British Columbia; Vancouver, BC, Canada
- Dept of Surgery, University of British Columbia; Vancouver, BC, Canada
| | - Jana Gillies
- BC Children’s Hospital Research Institute, University of British Columbia; Vancouver, BC, Canada
- Dept of Surgery, University of British Columbia; Vancouver, BC, Canada
| | - Justin A. Spanier
- Center for Immunology, University of Minnesota Medical School; Minneapolis, MN, USA
- Center for Autoimmune Disease Research, Department of Medicine, University of Minnesota Medical School; Minneapolis, MN, USA
- Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota Medical School; Minneapolis, MN, USA
| | - Majid Mojibian
- BC Children’s Hospital Research Institute, University of British Columbia; Vancouver, BC, Canada
- Dept of Surgery, University of British Columbia; Vancouver, BC, Canada
| | - Brian T. Fife
- Center for Immunology, University of Minnesota Medical School; Minneapolis, MN, USA
- Center for Autoimmune Disease Research, Department of Medicine, University of Minnesota Medical School; Minneapolis, MN, USA
- Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota Medical School; Minneapolis, MN, USA
| | - Megan K. Levings
- BC Children’s Hospital Research Institute, University of British Columbia; Vancouver, BC, Canada
- Dept of Surgery, University of British Columbia; Vancouver, BC, Canada
- School of Biomedical Engineering, University of British Columbia; Vancouver, BC, Canada
| |
Collapse
|
8
|
LeGuern C, Markmann JF. Regulatory CD4 + T cells: permanent or temporary suppressors of immunity. Front Immunol 2024; 15:1293892. [PMID: 38404584 PMCID: PMC10890821 DOI: 10.3389/fimmu.2024.1293892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/26/2024] [Indexed: 02/27/2024] Open
Affiliation(s)
- Christian LeGuern
- Center for Transplantation Sciences, Massachusetts General Brigham, Harvard Medical School, Boston, MA, United States
| | | |
Collapse
|
9
|
Annamalai C, Kute V, Sheridan C, Halawa A. Hematopoietic cell-based and non-hematopoietic cell-based strategies for immune tolerance induction in living-donor renal transplantation: A systematic review. Transplant Rev (Orlando) 2023; 37:100792. [PMID: 37709652 DOI: 10.1016/j.trre.2023.100792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/24/2023] [Accepted: 08/17/2023] [Indexed: 09/16/2023]
Abstract
INTRODUCTION Despite its use to prevent acute rejection, lifelong immunosuppression can adversely impact long-term patient and graft outcomes. In theory, immunosuppression withdrawal is the ultimate goal of kidney transplantation, and is made possible by the induction of immunological tolerance. The purpose of this paper is to review the safety and efficacy of immune tolerance induction strategies in living-donor kidney transplantation, both chimerism-based and non-chimerism-based. The impact of these strategies on transplant outcomes, including acute rejection, allograft function and survival, cost, and immune monitoring, will also be discussed. MATERIALS AND METHODS Databases such as PubMed, Scopus, and Web of Science, as well as additional online resources such as EBSCO, were exhaustively searched. Adult living-donor kidney transplant recipients who developed chimerism-based tolerance after concurrent bone marrow or hematopoietic stem cell transplantation or those who received non-chimerism-based, non-hematopoietic cell therapy using mesenchymal stromal cells, dendritic cells, or regulatory T cells were studied between 2000 and 2021. Individual sources of evidence were evaluated critically, and the strength of evidence and risk of bias for each outcome of the transplant tolerance study were assessed. RESULTS From 28,173 citations, 245 studies were retrieved after suitable exclusion and duplicate removal. Of these, 22 studies (2 RCTs, 11 cohort studies, 6 case-control studies, and 3 case reports) explicitly related to both interventions (chimerism- and non-chimerism-based immune tolerance) were used in the final review process and were critically appraised. According to the findings, chimerism-based strategies fostered immunotolerance, allowing for the safe withdrawal of immunosuppressive medications. Cell-based therapy, on the other hand, frequently did not induce tolerance except for minimising immunosuppression. As a result, the rejection rates, renal allograft function, and survival rates could not be directly compared between these two groups. While chimerism-based tolerance protocols posed safety concerns due to myelosuppression, including infections and graft-versus-host disease, cell-based strategies lacked these adverse effects and were largely safe. There was a lack of direct comparisons between HLA-identical and HLA-disparate recipients, and the cost implications were not examined in several of the retrieved studies. Most studies reported successful immunosuppressive weaning lasting at least 3 years (ranging up to 11.4 years in some studies), particularly with chimerism-based therapy, while only a few investigators used immune surveillance techniques. The studies reviewed were often limited by selection, classification, ascertainment, performance, and attrition bias. CONCLUSIONS This review demonstrates that chimerism-based hematopoietic strategies induce immune tolerance, and a substantial number of patients are successfully weaned off immunosuppression. Despite the risk of complications associated with myelosuppression. Non-chimerism-based, non-hematopoietic cell protocols, on the other hand, have been proven to facilitate immunosuppression minimization but seldom elicit immunological tolerance. However, the results of this review must be interpreted with caution because of the non-randomised study design, potential confounding, and small sample size of the included studies. Further validation and refinement of tolerogenic protocols in accordance with local practice preferences is also warranted, with an emphasis on patient selection, cost ramifications, and immunological surveillance based on reliable tolerance assays.
Collapse
Affiliation(s)
- Chandrashekar Annamalai
- Postgraduate School of Medicine, Institute of Teaching and Learning, Faculty of Health and Life Sciences, University of Liverpool, UK.
| | - Vivek Kute
- Nephrology and Transplantation, Institute of Kidney Diseases and Research Center and Dr. H L Trivedi Institute of Transplantation Sciences (IKDRC-ITS), Ahmedabad, India
| | - Carl Sheridan
- Department of Eye and Vision Science, Ocular Cell Transplantation, Faculty of Health and Life Sciences, University of Liverpool, UK
| | - Ahmed Halawa
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| |
Collapse
|
10
|
Aghbash PS, Rasizadeh R, Arefi V, Nahand JS, Baghi HB. Immune-checkpoint expression in antigen-presenting cells (APCs) of cytomegaloviruses infection after transplantation: as a diagnostic biomarker. Arch Microbiol 2023; 205:280. [PMID: 37430000 DOI: 10.1007/s00203-023-03623-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 07/12/2023]
Abstract
Cytomegalovirus (CMV), a member of the Herpesviridae family, mostly causes only slight feverish symptoms or can be asymptomatic in immunocompetent individuals. However, it is known to be particularly a significant cause of morbidity in immunocompromised patients, including transplant recipients, whose immune system has been weakened due to the consumption of immunosuppressor drugs. Therefore, the diagnosis of CMV infection after transplantation is crucial. New diagnostic methods for the quick detection of CMV have been developed as a result of understanding the clinical importance of invasive CMV. Antigen-presenting cells (APCs) and T cells are important components of the immune system and it may be possible to diagnose viral infections using immunological markers, such as lymphocytosis, cytotoxic T lymphocytes (CTL), and serum cytokine levels. Moreover, PD-1, CTLA 4, and TIGIT, which are expressed on certain T cells and antigen-presenting cells, are over-expressed during the infection. The assessment of CMV infection based on T cell and APC activity, and the expression of immunological checkpoints, can be helpful for the diagnosis of transplant patients at risk for CMV infection. In this review, we will investigate how immune checkpoints affect immune cells and how they impair organ transplantation after CMV infection.
Collapse
Affiliation(s)
- Parisa Shiri Aghbash
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reyhaneh Rasizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Arefi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, 5166/15731, Iran
- Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, 5166/15731, Iran
| | - Hossein Bannazadeh Baghi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, 5166/15731, Iran.
| |
Collapse
|
11
|
Giannoukakis N. Tolerogenic dendritic cells in type 1 diabetes: no longer a concept. Front Immunol 2023; 14:1212641. [PMID: 37388741 PMCID: PMC10303908 DOI: 10.3389/fimmu.2023.1212641] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/31/2023] [Indexed: 07/01/2023] Open
Abstract
Tolerogenic dendritic cells (tDC) arrest the progression of autoimmune-driven dysglycemia into clinical, insulin-requiring type 1 diabetes (T1D) and preserve a critical mass of β cells able to restore some degree of normoglycemia in new-onset clinical disease. The safety of tDC, generated ex vivo from peripheral blood leukocytes, has been demonstrated in phase I clinical studies. Accumulating evidence shows that tDC act via multiple layers of immune regulation arresting the action of pancreatic β cell-targeting effector lymphocytes. tDC share a number of phenotypes and mechanisms of action, independent of the method by which they are generated ex vivo. In the context of safety, this yields confidence that the time has come to test the best characterized tDC in phase II clinical trials in T1D, especially given that tDC are already being tested for other autoimmune conditions. The time is also now to refine purity markers and to "universalize" the methods by which tDC are generated. This review summarizes the current state of tDC therapy for T1D, presents points of intersection of the mechanisms of action that the different embodiments use to induce tolerance, and offers insights into outstanding matters to address as phase II studies are imminent. Finally, we present a proposal for co-administration and serially-alternating administration of tDC and T-regulatory cells (Tregs) as a synergistic and complementary approach to prevent and treat T1D.
Collapse
Affiliation(s)
- Nick Giannoukakis
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
| |
Collapse
|
12
|
Sugiyama Y, Harada T, Kamei Y, Yasuda T, Mashimo T, Nishikimi A, Maruyama M. A senolytic immunotoxin eliminates p16 INK4a-positive T cells and ameliorates age-associated phenotypes of CD4 + T cells in a surface marker knock-in mouse. Exp Gerontol 2023; 174:112130. [PMID: 36822486 DOI: 10.1016/j.exger.2023.112130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/29/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023]
Abstract
Senescent cells were recently shown to play a role in aging-related malfunctions and pathologies. This consensus has been facilitated by evidence from senolytic model mice capable of eliminating senescent cells in tissues using well-characterized senescent markers, such as p16INK4a (hereafter p16). However, since the incomplete or artificial gene expression regulatory regions of manipulated marker genes affect their cognate expression, it currently remains unclear whether these models accurately reflect physiological senescence. We herein describe a novel approach to eliminate p16-expressing cells from mice at any given point in time, generating a new type of knock-in model, p16hCD2 mice and a toxin-conjugated anti-human CD2 antibody (hCD2-SAP) as an inducer. p16hCD2 mice possess an intact Cdkn2a locus that includes a p16 coding region and human CD2 (hCD2) expression unit. We confirmed cognate p16-associated hCD2 expression in mouse embryonic fibroblasts (MEFs) and in several tissues, such as the spleen, liver, and skin. We detected chronological increases in the hCD2-positive population in T lymphocytes that occurred in a p16-dependent manner, which reflected physiological aging. We then confirmed the high sensitivity of hCD2-SAP to hCD2 and validated its efficacy to remove p16-positive cells, particularly in T lymphocytes. The multiple administration of hCD2-SAP for a prolonged p16-positive cell deficiency partially restored aging-related phenotypes in T lymphocytes, such as the contraction of the CD4+ naïve population and expansion of senescence-associated T cells. Our novel approach of targeting p16-positive senescent cells will provide novel insights into the mechanisms underlying physiological aging in vivo.
Collapse
Affiliation(s)
- Yuma Sugiyama
- Department of Inflammation and Immunosenescence, Geroscience Research Center, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Tanenobu Harada
- Department of Inflammation and Immunosenescence, Geroscience Research Center, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Yuka Kamei
- Department of Inflammation and Immunosenescence, Geroscience Research Center, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Tomoharu Yasuda
- Department of Immunology, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
| | - Tomoji Mashimo
- Laboratory Animal Research Center, Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Akihiko Nishikimi
- Biosafety Division, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan.
| | - Mitsuo Maruyama
- Department of Inflammation and Immunosenescence, Geroscience Research Center, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan; Department of Aging Research, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| |
Collapse
|
13
|
Chandran S, Tang Q. Impact of interleukin-6 on T cells in kidney transplant recipients. Am J Transplant 2022; 22 Suppl 4:18-27. [PMID: 36453710 DOI: 10.1111/ajt.17209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 09/23/2022] [Indexed: 12/02/2022]
Abstract
Interleukin-6 (IL-6), a multifunctional proinflammatory cytokine, plays a key role in T cell activation, survival, and differentiation. Acting as a switch that induces the differentiation of naïve T cells into Th17 cells and inhibits their development into regulatory T cells, IL-6 promotes rejection and abrogates tolerance. Therapies that target IL-6 signaling include antibodies to IL-6 and the IL-6 receptor and inhibitors of janus kinases; several of these therapeutics have demonstrated robust clinical efficacy in autoimmune and inflammatory diseases. Clinical trials of IL-6 inhibition in kidney transplantation have focused primarily on its effects on B cells, plasma cells, and HLA antibodies. In this review, we summarize the impact of IL-6 on T cells in experimental models of transplant and describe the effects of IL-6 inhibition on the T cell compartment in kidney transplant recipients.
Collapse
Affiliation(s)
- Sindhu Chandran
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Qizhi Tang
- Department of Surgery, Diabetes Center, Gladstone-UCSF Institute of Genome Immunology, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
14
|
Tang Q, Leung J, Peng Y, Sanchez-Fueyo A, Lozano JJ, Lam A, Lee K, Greenland JR, Hellerstein M, Fitch M, Li KW, Esensten JH, Putnam AL, Lares A, Nguyen V, Liu W, Bridges ND, Odim J, Demetris AJ, Levitsky J, Taner T, Feng S. Selective decrease of donor-reactive T regs after liver transplantation limits T reg therapy for promoting allograft tolerance in humans. Sci Transl Med 2022; 14:eabo2628. [PMID: 36322627 PMCID: PMC11016119 DOI: 10.1126/scitranslmed.abo2628] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2024]
Abstract
Promoting immune tolerance to transplanted organs can minimize the amount of immunosuppressive drugs that patients need to take, reducing lifetime risks of mortality and morbidity. Regulatory T cells (Tregs) are essential for immune tolerance, and preclinical studies have shown their therapeutic efficacy in inducing transplantation tolerance. Here, we report the results of a phase 1/2 trial (ARTEMIS, NCT02474199) of autologous donor alloantigen-reactive Treg (darTreg) therapy in individuals 2 to 6 years after receiving a living donor liver transplant. The primary efficacy endpoint was calcineurin inhibitor dose reduction by 75% with stable liver function tests for at least 12 weeks. Among 10 individuals who initiated immunosuppression withdrawal, 1 experienced rejection before planned darTreg infusion, 5 received darTregs, and 4 were not infused because of failure to manufacture the minimal infusible dose of 100 × 106 cells. darTreg infusion was not associated with adverse events. Two darTreg-infused participants reached the primary endpoint, but an insufficient number of recipients were treated for assessing the efficacy of darTregs. Mechanistic studies revealed generalized Treg activation, senescence, and selective reduction of donor reactivity after liver transplantation. Overall, the ARTEMIS trial features a design concept for evaluating the efficacy of Treg therapy in transplantation. The mechanistic insight gained from the study may help guide the design of future trials.
Collapse
Affiliation(s)
- Qizhi Tang
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA
| | - Joey Leung
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Yani Peng
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Alberto Sanchez-Fueyo
- Institute of Liver Studies, School of Immunology and Microbial Sciences, King’s College London University, London WC2R 2LS, UK
| | - Juan-Jose Lozano
- Bioinformatic Platform, Biomedical Research Center in Hepatic and Digestive Diseases, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Alice Lam
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Karim Lee
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - John R. Greenland
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
- Medical Service, San Francisco VA Health Care System, San Francisco, CA 94121, USA
| | - Marc Hellerstein
- Nutrition Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Mark Fitch
- Nutrition Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kelvin W. Li
- Nutrition Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jonathan H. Esensten
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA
- Department of Lab Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Amy L. Putnam
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Angela Lares
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Vinh Nguyen
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Weihong Liu
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Nancy D. Bridges
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20852, USA
| | - Jonah Odim
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20852, USA
| | - Anthony J. Demetris
- Thomas E. Starzl Transplantation Institute and Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Josh Levitsky
- Department of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Timucin Taner
- Departments of Surgery and Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Sandy Feng
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
15
|
Andrade MS, Young JS, Pollard JM, Yin D, Alegre ML, Chong AS. Linked sensitization by memory CD4+ T cells prevents costimulation blockade–induced transplantation tolerance. JCI Insight 2022; 7:159205. [PMID: 35674134 PMCID: PMC9220839 DOI: 10.1172/jci.insight.159205] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/22/2022] [Indexed: 11/17/2022] Open
Abstract
Dominant infectious tolerance explains how brief tolerance-inducing therapies result in lifelong tolerance to donor antigens and “linked” third-party antigens, while recipient sensitization and ensuing immunological memory prevent the successful induction of transplant tolerance. In this study, we juxtapose these 2 concepts to test whether mechanisms of dominant infectious tolerance can control a limited repertoire of memory T and B cells. We show that sensitization to a single donor antigen is sufficient to prevent stable transplant tolerance, rendering it unstable. Mechanistic studies revealed that recall antibody responses and memory CD8+ T cell expansion were initially controlled, but memory CD4+Foxp3– T cell (Tconv) responses were not. Remarkably, naive donor-specific Tconvs at tolerance induction also acquired a resistance to tolerance, proliferating and acquiring a phenotype similar to memory Tconvs. This phenomenon of “linked sensitization” underscores the challenges of reprogramming a primed immune response toward tolerance and identifies a potential therapeutic checkpoint for synergizing with costimulation blockade to achieve transplant tolerance in the clinic.
Collapse
|
16
|
Lei J, Coronel MM, Yolcu ES, Deng H, Grimany-Nuno O, Hunckler MD, Ulker V, Yang Z, Lee KM, Zhang A, Luo H, Peters CW, Zou Z, Chen T, Wang Z, McCoy CS, Rosales IA, Markmann JF, Shirwan H, García AJ. FasL microgels induce immune acceptance of islet allografts in nonhuman primates. SCIENCE ADVANCES 2022; 8:eabm9881. [PMID: 35559682 PMCID: PMC9106299 DOI: 10.1126/sciadv.abm9881] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/30/2022] [Indexed: 05/23/2023]
Abstract
Islet transplantation to treat insulin-dependent diabetes is greatly limited by the need for maintenance immunosuppression. We report a strategy through which cotransplantation of allogeneic islets and streptavidin (SA)-FasL-presenting microgels to the omentum under transient rapamycin monotherapy resulted in robust glycemic control, sustained C-peptide levels, and graft survival in diabetic nonhuman primates for >6 months. Surgical extraction of the graft resulted in prompt hyperglycemia. In contrast, animals receiving microgels without SA-FasL under the same rapamycin regimen rejected islet grafts acutely. Graft survival was associated with increased number of FoxP3+ cells in the graft site with no significant changes in T cell systemic frequencies or responses to donor and third-party antigens, indicating localized tolerance. Recipients of SA-FasL microgels exhibited normal liver and kidney metabolic function, demonstrating safety. This localized immunomodulatory strategy succeeded with unmodified islets and does not require long-term immunosuppression, showing translational potential in β cell replacement for treating type 1 diabetes.
Collapse
Affiliation(s)
- Ji Lei
- Center for Transplantation Science, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - María M. Coronel
- Woodruff School of Mechanical Engineering and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Esma S. Yolcu
- Departments of Child Health and Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA
- Department of Microbiology and Immunology, Institute for Cellular Therapeutics, University of Louisville, Louisville, KY, USA
| | - Hongping Deng
- Center for Transplantation Science, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Orlando Grimany-Nuno
- Department of Microbiology and Immunology, Institute for Cellular Therapeutics, University of Louisville, Louisville, KY, USA
| | - Michael D. Hunckler
- Woodruff School of Mechanical Engineering and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Vahap Ulker
- Departments of Child Health and Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Zhihong Yang
- Center for Transplantation Science, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kang M. Lee
- Center for Transplantation Science, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexander Zhang
- Center for Transplantation Science, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Hao Luo
- Department of General Surgery, General Hospital of Western Theater Command, Chengdu, China
| | - Cole W. Peters
- Center for Transplantation Science, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Zhongliang Zou
- Center for Transplantation Science, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tao Chen
- Cellular Therapy Department, Xiang’an Hospital, Xiamen University Medical School, Xiamen, China
| | - Zhenjuan Wang
- Center for Transplantation Science, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Colleen S. McCoy
- Division of Comparative Medicine, Massachusetts Institute of Technology, Boston, MA, USA
| | - Ivy A. Rosales
- Center for Transplantation Science, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - James F. Markmann
- Center for Transplantation Science, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Haval Shirwan
- Departments of Child Health and Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA
- Department of Microbiology and Immunology, Institute for Cellular Therapeutics, University of Louisville, Louisville, KY, USA
| | - Andrés J. García
- Woodruff School of Mechanical Engineering and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
17
|
Hall BM, Verma ND, Tran GT, Hodgkinson SJ. Transplant Tolerance, Not Only Clonal Deletion. Front Immunol 2022; 13:810798. [PMID: 35529847 PMCID: PMC9069565 DOI: 10.3389/fimmu.2022.810798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
The quest to understand how allogeneic transplanted tissue is not rejected and how tolerance is induced led to fundamental concepts in immunology. First, we review the research that led to the Clonal Deletion theory in the late 1950s that has since dominated the field of immunology and transplantation. At that time many basic mechanisms of immune response were unknown, including the role of lymphocytes and T cells in rejection. These original observations are reassessed by considering T regulatory cells that are produced by thymus of neonates to prevent autoimmunity. Second, we review "operational tolerance" induced in adult rodents and larger animals such as pigs. This can occur spontaneously especially with liver allografts, but also can develop after short courses of a variety of rejection inhibiting therapies. Over time these animals develop alloantigen specific tolerance to the graft but retain the capacity to reject third-party grafts. These animals have a "split tolerance" as peripheral lymphocytes from these animals respond to donor alloantigen in graft versus host assays and in mixed lymphocyte cultures, indicating there is no clonal deletion. Investigation of this phenomenon excludes many mechanisms, including anti-donor antibody blocking rejection as well as anti-idiotypic responses mediated by antibody or T cells. This split tolerance is transferred to a second immune-depleted host by T cells that retain the capacity to effect rejection of third-party grafts by the same host. Third, we review research on alloantigen specific inhibitory T cells that led to the first identification of the CD4+CD25+T regulatory cell. The key role of T cell derived cytokines, other than IL-2, in promoting survival and expansion of antigen specific T regulatory cells that mediate transplant tolerance is reviewed. The precise methods for inducing and diagnosing operational tolerance remain to be defined, but antigen specific T regulatory cells are key mediators.
Collapse
Affiliation(s)
- Bruce M. Hall
- Immune Tolerance Laboratory, School of Medicine, University of New South Wales (UNSW) Sydney, Ingham Institute, and Renal Service and Multiple Sclerosis Clinic, Liverpool Hospital, Liverpool, NSW, Australia
| | | | | | | |
Collapse
|
18
|
Horwitz JK, Bin S, Fairchild RL, Keslar KS, Yi Z, Zhang W, Pavlov VI, Li Y, Madsen JC, Cravedi P, Heeger PS. Linking erythropoietin to regulatory T-cell-dependent allograft survival through myeloid cells. JCI Insight 2022; 7:158856. [PMID: 35389892 PMCID: PMC9220923 DOI: 10.1172/jci.insight.158856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/06/2022] [Indexed: 12/03/2022] Open
Abstract
Erythropoietin (EPO) has multiple nonerythropoietic functions, including immune modulation, but EPO’s effects in transplantation remain incompletely understood. We tested the mechanisms linking EPO administration to prolongation of murine heterotopic heart transplantation using WT and conditional EPO receptor–knockout (EPOR-knockout) mice as recipients. In WT controls, peritransplant administration of EPO synergized with CTLA4-Ig to prolong allograft survival (P < 0.001), reduce frequencies of donor-reactive effector CD8+ T cells in the spleen (P < 0.001) and in the graft (P < 0.05), and increase frequencies and total numbers of donor-reactive Tregs (P < 0.01 for each) versus CTLA4-Ig alone. Studies performed in conditional EPOR-knockout recipients showed that each of these differences required EPOR expression in myeloid cells but not in T cells. Analysis of mRNA isolated from spleen monocytes showed that EPO/EPOR ligation upregulated macrophage-expressed, antiinflammatory, regulatory, and pro-efferocytosis genes and downregulated selected proinflammatory genes. Taken together, the data support the conclusion that EPO promotes Treg-dependent murine cardiac allograft survival by crucially altering the phenotype and function of macrophages. Coupled with our previous documentation that EPO promotes Treg expansion in humans, the data support the need for testing the addition of EPO to costimulatory blockade-containing immunosuppression regimens in an effort to prolong human transplant survival.
Collapse
Affiliation(s)
- Julian K Horwitz
- Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | - Sofia Bin
- Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | - Robert L Fairchild
- Department of Immunology, Cleveland Clinic, Cleveland, United States of America
| | - Karen S Keslar
- Department of Immunology, Cleveland Clinic, Cleveland, United States of America
| | - Zhengzi Yi
- Translational Transplant Research Center, Icahn School of medicine at Mount Sinai, New York, United States of America
| | - Weijia Zhang
- Translational Transplant Research Center, Icahn school of Medicine at Mount Sinai, New York, United States of America
| | - Vasile I Pavlov
- Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | - Yansui Li
- Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | - Joren C Madsen
- Department of Surgery, Massachusetts General Hospital, Boston, United States of America
| | - Paolo Cravedi
- Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | - Peter S Heeger
- Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, United States of America
| |
Collapse
|
19
|
Li P, Zhang Y, Li Q, Zhang Y. Effect of HO-1-modified BMMSCs on immune function in liver transplantation. Sci Rep 2022; 12:3046. [PMID: 35197503 PMCID: PMC8866406 DOI: 10.1038/s41598-022-06141-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 01/25/2022] [Indexed: 11/10/2022] Open
Abstract
We examined whether haem oxygenase-1 (HO-1) could enhance the immunosuppressive effects of bone marrow mesenchymal stem cells (BMMSCs) on the rejection of transplanted liver allografts in rats. The animals were divided into three groups: the normal saline (NS) group, BMMSC group and HO-1/BMMSCs group. In vitro, the extraction, culture and HO-1 transfection of BMMSCs were performed. Mixed lymphocyte response (MLR) analysis of HO-1/BMMSCs efficacy was performed. The rejection model of orthotopic liver transplantation in rats was established when BMMSCs and HO-1/BMMSCs were transfused via the portal vein. To reduce research bias, we established an isogenic Liver transplantation model of (LEW → LEW) and (BN → BN), which can achieve tolerance. Changes in histopathology and liver function in the transplanted liver and changes in regulatory T cell (Tregs), natural killer (NK) cells and cytokines after transplantation were observed in the different groups. The severe acute rejection after liver transplantation on postoperative Day 10 was observed in the NS group. The BMMSC group showed strong protective effects against rejection within the first 10 days after transplantation, while HO-1/BMMSCs showed stronger effects on rejection than BMMSCs alone. In addition, the activity of natural killer (NK) cells decreased significantly, the levels of regulatory T cells (Tregs), interleukin-10 (IL-10) and transforming growth factor-β (TGF-β) increased significantly and the levels of interleukin-2 (IL-2), interleukin-6 (IL-6), interleukin-17 (IL-17), interleukin-23 (IL-23), tumour necrosis factor-α (TNF-α) and interferon-γ (IFN-γ) decreased significantly in the HO-1/BMMSC group compared with the BMMSC group. HO-1/BMMSCs showed better immunosuppressive effects after liver transplantation than the other treatments. Our findings reveal that HO-1 can enhance the effects of BMMSCs on inhibiting acute rejection in orthotopic liver transplantation in rats.
Collapse
Affiliation(s)
- Peng Li
- Department of Hepatobiliary Surgery, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, China
| | - Yuyi Zhang
- Department of Obstetrics and Gynaecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, China.
| | - Qiongxia Li
- Department of Digestive Endoscopy Centre, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, China
| | - Yubo Zhang
- Department of Stomatology, Xinchang Hospital Affiliated with Wenzhou Medical University, Shaoxing, 312500, China.
| |
Collapse
|
20
|
Lamarthée B, Marchal A, Charbonnier S, Blein T, Leon J, Martin E, Rabaux L, Vogt K, Titeux M, Delville M, Vinçon H, Six E, Pallet N, Michonneau D, Anglicheau D, Legendre C, Taupin JL, Nemazanyy I, Sawitzki B, Latour S, Cavazzana M, André I, Zuber J. Transient mTOR inhibition rescues 4-1BB CAR-Tregs from tonic signal-induced dysfunction. Nat Commun 2021; 12:6446. [PMID: 34750385 PMCID: PMC8575891 DOI: 10.1038/s41467-021-26844-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 10/25/2021] [Indexed: 12/30/2022] Open
Abstract
The use of chimeric antigen receptor (CAR)-engineered regulatory T cells (Tregs) has emerged as a promising strategy to promote immune tolerance. However, in conventional T cells (Tconvs), CAR expression is often associated with tonic signaling, which can induce CAR-T cell dysfunction. The extent and effects of CAR tonic signaling vary greatly according to the expression intensity and intrinsic properties of the CAR. Here, we show that the 4-1BB CSD-associated tonic signal yields a more dramatic effect in CAR-Tregs than in CAR-Tconvs with respect to activation and proliferation. Compared to CD28 CAR-Tregs, 4-1BB CAR-Tregs exhibit decreased lineage stability and reduced in vivo suppressive capacities. Transient exposure of 4-1BB CAR-Tregs to a Treg stabilizing cocktail, including an mTOR inhibitor and vitamin C, during ex vivo expansion sharply improves their in vivo function and expansion after adoptive transfer. This study demonstrates that the negative effects of 4-1BB tonic signaling in Tregs can be mitigated by transient mTOR inhibition.
Collapse
MESH Headings
- Animals
- CD28 Antigens/immunology
- CD28 Antigens/metabolism
- Graft vs Host Disease/immunology
- Graft vs Host Disease/therapy
- HLA-A2 Antigen/immunology
- HLA-A2 Antigen/metabolism
- Humans
- Immunosuppressive Agents/pharmacology
- Immunotherapy, Adoptive/methods
- Jurkat Cells
- Male
- Mice, Inbred NOD
- Mice, Knockout
- Mice, SCID
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- Signal Transduction/drug effects
- Signal Transduction/immunology
- Sirolimus/pharmacology
- T-Lymphocytes, Regulatory/cytology
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- TOR Serine-Threonine Kinases/antagonists & inhibitors
- TOR Serine-Threonine Kinases/immunology
- TOR Serine-Threonine Kinases/metabolism
- Transplantation, Heterologous
- Tumor Necrosis Factor Receptor Superfamily, Member 9/immunology
- Tumor Necrosis Factor Receptor Superfamily, Member 9/metabolism
- Mice
Collapse
Affiliation(s)
- Baptiste Lamarthée
- Laboratoire de lymphohématopoïèse humaine, INSERM UMR 1163, IHU IMAGINE, Paris, France
| | - Armance Marchal
- Laboratoire de lymphohématopoïèse humaine, INSERM UMR 1163, IHU IMAGINE, Paris, France
| | - Soëli Charbonnier
- Laboratoire de lymphohématopoïèse humaine, INSERM UMR 1163, IHU IMAGINE, Paris, France
| | - Tifanie Blein
- Laboratoire de lymphohématopoïèse humaine, INSERM UMR 1163, IHU IMAGINE, Paris, France
| | - Juliette Leon
- Department of Immunology, Harvard Medical School, Boston, MA, 02115, USA
| | - Emmanuel Martin
- Lymphocyte activation and susceptibility to EBV, INSERM UMR 1163, IHU IMAGINE, Paris, France
| | - Lucas Rabaux
- Laboratoire de lymphohématopoïèse humaine, INSERM UMR 1163, IHU IMAGINE, Paris, France
| | - Katrin Vogt
- Department of Immunology, Charité University Hospital, Berlin, Germany
| | - Matthias Titeux
- Maladie génétique cutanée, INSERM UMR 1163, IHU IMAGINE, Paris, France
| | - Marianne Delville
- Laboratoire de lymphohématopoïèse humaine, INSERM UMR 1163, IHU IMAGINE, Paris, France
- Université de Paris, Paris, France
- Service de Biothérapie et Thérapie Génique Clinique, Assistance Publique-Hôpitaux de Paris, Hôpital Necker, Paris, France
| | - Hélène Vinçon
- Laboratoire de lymphohématopoïèse humaine, INSERM UMR 1163, IHU IMAGINE, Paris, France
| | - Emmanuelle Six
- Laboratoire de lymphohématopoïèse humaine, INSERM UMR 1163, IHU IMAGINE, Paris, France
| | - Nicolas Pallet
- Université de Paris, INSERM U1138, Centre de Recherche des Cordeliers, 75006, Paris, France
| | | | - Dany Anglicheau
- Université de Paris, Paris, France
- Service de Transplantation rénale adulte, Assistance Publique-Hôpitaux de Paris, Hôpital Necker, Paris, France
- INSERM U1151, Institut Necker Enfants Malades, Paris, France
| | - Christophe Legendre
- Université de Paris, Paris, France
- Service de Transplantation rénale adulte, Assistance Publique-Hôpitaux de Paris, Hôpital Necker, Paris, France
| | - Jean-Luc Taupin
- Université de Paris, Paris, France
- Laboratoire d'immunologie et histocompatibilité, Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Paris, France
| | - Ivan Nemazanyy
- Plateforme de Métabolique, Structure Fédérative de Recherche, Necker, INSERM US24/CNRS UMS, 3633, Paris, France
| | - Birgit Sawitzki
- Department of Immunology, Charité University Hospital, Berlin, Germany
| | - Sylvain Latour
- Lymphocyte activation and susceptibility to EBV, INSERM UMR 1163, IHU IMAGINE, Paris, France
| | - Marina Cavazzana
- Laboratoire de lymphohématopoïèse humaine, INSERM UMR 1163, IHU IMAGINE, Paris, France
- Université de Paris, Paris, France
- Service de Biothérapie et Thérapie Génique Clinique, Assistance Publique-Hôpitaux de Paris, Hôpital Necker, Paris, France
| | - Isabelle André
- Laboratoire de lymphohématopoïèse humaine, INSERM UMR 1163, IHU IMAGINE, Paris, France
| | - Julien Zuber
- Laboratoire de lymphohématopoïèse humaine, INSERM UMR 1163, IHU IMAGINE, Paris, France.
- Université de Paris, Paris, France.
- Service de Transplantation rénale adulte, Assistance Publique-Hôpitaux de Paris, Hôpital Necker, Paris, France.
| |
Collapse
|
21
|
Ganchiku Y, Goto R, Kanazawa R, Ota T, Shibuya K, Fukasaku Y, Kobayashi N, Igarashi R, Kawamura N, Zaitsu M, Watanabe M, Taketomi A. Functional roles of graft-infiltrating lymphocytes during early-phase post-transplantation in mouse cardiac transplantation models. Transpl Int 2021; 34:2547-2561. [PMID: 34687578 DOI: 10.1111/tri.14146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/17/2021] [Accepted: 10/20/2021] [Indexed: 11/28/2022]
Abstract
Immunological behavior of graft-infiltrating lymphocytes (GILs) determines the graft fate (i.e., rejection or acceptance). Nevertheless, the functional alloreactivity and the phenotype of GILs at various times during the early post-transplantation phase have not been fully elucidated. We examined the immunological activities of early-phase GILs using a murine model of cardiac transplantation. GILs from 120-h allografts, but not 72-h allografts, showed robust activation and produced proinflammatory cytokines. In particular, a significant increase in CD69+ T-bet+ Nur77+ T cells was detected in 120-h allografts. Furthermore, isolated GILs were used to reconstitute BALB/c Rag2-/- γc-/- (BRG) mice. BRG mice reconstituted with 120-h GILs displayed donor-specific immune reactivity and rejected donor strain cardiac allografts; conversely, 72-h GILs exhibited weak anti-donor reactivity and did not reject allografts. These findings were confirmed by re-transplantation of cardiac allografts into BRG mice at 72-h post-transplantation. Re-transplanted allografts continued to function for >100 days, despite the presence of CD3+ GILs. In conclusion, the immunological behavior of GILs considerably differs over time during the early post-transplantation phase. A better understanding of the functional role of early-phase GILs may clarify the fate determination process in the graft-site microenvironment.
Collapse
Affiliation(s)
- Yoshikazu Ganchiku
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Ryoichi Goto
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Ryo Kanazawa
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Takuji Ota
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kazuaki Shibuya
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yasutomo Fukasaku
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Nozomi Kobayashi
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Rumi Igarashi
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Norio Kawamura
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Masaaki Zaitsu
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Masaaki Watanabe
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Akinobu Taketomi
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
22
|
Browning LM, Miller C, Kuczma M, Pietrzak M, Jing Y, Rempala G, Muranski P, Ignatowicz L, Kraj P. Bone Morphogenic Proteins Are Immunoregulatory Cytokines Controlling FOXP3 + T reg Cells. Cell Rep 2021; 33:108219. [PMID: 33027660 DOI: 10.1016/j.celrep.2020.108219] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 07/28/2020] [Accepted: 09/10/2020] [Indexed: 12/23/2022] Open
Abstract
Bone morphogenic proteins (BMPs) are members of the transforming growth factor β (TGF-β) cytokine family promoting differentiation, homeostasis, and self-renewal of multiple tissues. We show that signaling through the bone morphogenic protein receptor 1α (BMPR1α) sustains expression of FOXP3 in Treg cells in peripheral lymphoid tissues. BMPR1α signaling promotes molecular circuits supporting acquisition and preservation of Treg cell phenotype and inhibiting differentiation of pro-inflammatory effector Th1/Th17 CD4+ T cell. Mechanistically, increased expression of KDM6B (JMJD3) histone demethylase, an antagonist of the polycomb repressive complex 2, underlies lineage-specific changes of T cell phenotypes associated with abrogation of BMPR1α signaling. These results reveal that BMPs are immunoregulatory cytokines mediating maturation and stability of peripheral FOXP3+ regulatory T cells (Treg cells) and controlling generation of iTreg cells. Thus, we establish that BMPs, a large cytokine family, are an essential link between stromal tissues and the adaptive immune system involved in sustaining tissue homeostasis by promoting immunological tolerance.
Collapse
Affiliation(s)
- Lauren M Browning
- Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529, USA
| | - Caroline Miller
- Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529, USA
| | - Michal Kuczma
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Maciej Pietrzak
- Department of Biomedical Informatics, Ohio State University, Columbus, OH 43210, USA
| | - Yu Jing
- Center for Bioelectrics, Old Dominion University, Norfolk, VA 23529, USA
| | - Grzegorz Rempala
- College of Public Health, Ohio State University, Columbus, OH 43210, USA
| | - Pawel Muranski
- Columbia University Medical Center, New York, NY 10032, USA
| | - Leszek Ignatowicz
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Piotr Kraj
- Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529, USA.
| |
Collapse
|
23
|
Suuring M, Moreau A. Regulatory Macrophages and Tolerogenic Dendritic Cells in Myeloid Regulatory Cell-Based Therapies. Int J Mol Sci 2021; 22:7970. [PMID: 34360736 PMCID: PMC8348814 DOI: 10.3390/ijms22157970] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 12/12/2022] Open
Abstract
Myeloid regulatory cell-based therapy has been shown to be a promising cell-based medicinal approach in organ transplantation and for the treatment of autoimmune diseases, such as type 1 diabetes, rheumatoid arthritis, Crohn's disease and multiple sclerosis. Dendritic cells (DCs) are the most efficient antigen-presenting cells and can naturally acquire tolerogenic properties through a variety of differentiation signals and stimuli. Several subtypes of DCs have been generated using additional agents, including vitamin D3, rapamycin and dexamethasone, or immunosuppressive cytokines, such as interleukin-10 (IL-10) and transforming growth factor-beta (TGF-β). These cells have been extensively studied in animals and humans to develop clinical-grade tolerogenic (tol)DCs. Regulatory macrophages (Mregs) are another type of protective myeloid cell that provide a tolerogenic environment, and have mainly been studied within the context of research on organ transplantation. This review aims to thoroughly describe the ex vivo generation of tolDCs and Mregs, their mechanism of action, as well as their therapeutic application and assessment in human clinical trials.
Collapse
Affiliation(s)
| | - Aurélie Moreau
- Centre de Recherche en Transplantation et Immunologie—UMR1064, INSERM—ITUN, Nantes Université, CHU Nantes, 44000 Nantes, France;
| |
Collapse
|
24
|
|
25
|
Waldmann H. Regulatory T cells and transplantation tolerance: Emerging from the darkness? Eur J Immunol 2021; 51:1580-1591. [PMID: 33961297 DOI: 10.1002/eji.202048795] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/29/2021] [Accepted: 05/05/2021] [Indexed: 12/11/2022]
Abstract
The field of tissue transplantation has revolutionized the treatment of patients with failing organs. Its success, thus far, has depended on combinations of immunosuppressive drugs that damp host immunity, while also imposing numerous unwanted side-effects. There is a longstanding recognition that better treatment outcomes, will come from replacing these drugs, fully or in part, by taking advantage of tractable physiological mechanisms of self-tolerance. The past 50 years have seen many advances in the field of self-tolerance, but perhaps, the most tractable of these has been the more recent discovery of a subset T-cells (Treg) whose role is to regulate or damp immunity. This article is intended to first provide the reader with some historical background to explain why we have been slow to identify these cells, despite numerous clues to their existence, and also to indicate how little we know about how they achieve their regulatory function in averting transplant rejection. However, as is often the case in immunology, the therapeutic needs often dictate that our advances move to translation even before detailed explanations of the science are available. The final part of the article will briefly summarize how Treg are being harnessed as agents to interface with or perhaps, replace current drug combinations.
Collapse
Affiliation(s)
- Herman Waldmann
- Sir William Dunn School, University of Oxford, Oxford, OX13RE, UK
| |
Collapse
|
26
|
Li W, Gauthier JM, Tong AY, Terada Y, Higashikubo R, Frye CC, Harrison MS, Hashimoto K, Bery AI, Ritter JH, Nava RG, Puri V, Wong BW, Lavine KJ, Bharat A, Krupnick AS, Gelman AE, Kreisel D. Lymphatic drainage from bronchus-associated lymphoid tissue in tolerant lung allografts promotes peripheral tolerance. J Clin Invest 2021; 130:6718-6727. [PMID: 33196461 DOI: 10.1172/jci136057] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 09/03/2020] [Indexed: 12/29/2022] Open
Abstract
Tertiary lymphoid organs are aggregates of immune and stromal cells including high endothelial venules and lymphatic vessels that resemble secondary lymphoid organs and can be induced at nonlymphoid sites during inflammation. The function of lymphatic vessels within tertiary lymphoid organs remains poorly understood. During lung transplant tolerance, Foxp3+ cells accumulate in tertiary lymphoid organs that are induced within the pulmonary grafts and are critical for the local downregulation of alloimmune responses. Here, we showed that tolerant lung allografts could induce and maintain tolerance of heterotopic donor-matched hearts through pathways that were dependent on the continued presence of the transplanted lung. Using lung retransplantation, we showed that Foxp3+ cells egressed from tolerant lung allografts via lymphatics and were recruited into donor-matched heart allografts. Indeed, survival of the heart allografts was dependent on lymphatic drainage from the tolerant lung allograft to the periphery. Thus, our work indicates that cellular trafficking from tertiary lymphoid organs regulates immune responses in the periphery. We propose that these findings have important implications for a variety of disease processes that are associated with the induction of tertiary lymphoid organs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jon H Ritter
- Pathology & Immunology, Washington University in St. Louis, St. Louis, Missouri, USA
| | | | | | | | | | - Ankit Bharat
- Department of Surgery, Northwestern University, Chicago, Illinois, USA
| | | | - Andrew E Gelman
- Departments of Surgery.,Pathology & Immunology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Daniel Kreisel
- Departments of Surgery.,Pathology & Immunology, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
27
|
Abstract
Since it was shown in the early 1950s that it is possible to induce transplantation tolerance in neonates, immune tolerance strategies have been actively pursued. It was found that T cells play a critical role in graft rejection, but can also be major players in mediating transplantation tolerance. Consequently, many experimental systems focused on T cells, often with a complete exclusion of B cells from in vivo animal models. It is now becoming clear that in addition to T cells, B cells can mediate graft rejection and transplantation tolerance. In this issue of the JCI, Khiew et al. investigated the contribution of alloreactive B cells to transplantation tolerance using a mouse cardiac transplantation model. The authors revealed a distinct tolerant B cell phenotype possessing the ability to suppress naive B cells. These data lead to a better understanding of B cell contributions to transplantation tolerance, and may inform the development of future immune tolerance protocols.
Collapse
|
28
|
Tran LM, Thomson AW. Detection and Monitoring of Regulatory Immune Cells Following Their Adoptive Transfer in Organ Transplantation. Front Immunol 2020; 11:614578. [PMID: 33381125 PMCID: PMC7768032 DOI: 10.3389/fimmu.2020.614578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022] Open
Abstract
Application of cell-based immunotherapy in organ transplantation to minimize the burden of immunosuppressive medication and promote allograft tolerance has expanded significantly over the past decade. Adoptively transferred regulatory immune cells prolong allograft survival and transplant tolerance in pre-clinical models. Many cell products are currently under investigation in early phase human clinical trials designed to assess feasibility and safety. Despite rapid advances in manufacturing practices, defining the appropriate protocol that will optimize in vivo conditions for tolerance induction remains a major challenge and depends heavily on understanding the fate, biodistribution, functional stability and longevity of the cell product after administration. This review focuses on in vivo detection and monitoring of various regulatory immune cell types administered for allograft tolerance induction in both pre-clinical animal models and early human clinical trials. We discuss the current status of various non-invasive methods for tracking regulatory cell products in the context of organ transplantation and implications for enhanced understanding of the therapeutic potential of cell-based therapy in the broad context of control of immune-mediated inflammatory disorders.
Collapse
Affiliation(s)
- Lillian M Tran
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Angus W Thomson
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
29
|
Morante-Palacios O, Fondelli F, Ballestar E, Martínez-Cáceres EM. Tolerogenic Dendritic Cells in Autoimmunity and Inflammatory Diseases. Trends Immunol 2020; 42:59-75. [PMID: 33293219 DOI: 10.1016/j.it.2020.11.001] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 12/11/2022]
Abstract
Dendritic cells (DCs), the most efficient antigen-presenting cells, are necessary for the effective activation of naïve T cells. DCs can also acquire tolerogenic functions in vivo and in vitro in response to various stimuli, including interleukin (IL)-10, transforming growth factor (TGF)-β, vitamin D3, corticosteroids, and rapamycin. In this review, we provide a wide perspective on the regulatory mechanisms, including crosstalk with other cell types, downstream signaling pathways, transcription factors, and epigenetics, underlying the acquisition of tolerogenesis by DCs, with a special focus on human studies. Finally, we present clinical assays targeting, or based on, tolerogenic DCs in inflammatory diseases. Our discussion provides a useful resource for better understanding the biology of tolerogenic DCs and their manipulation to improve the immunological fitness of patients with certain inflammatory conditions.
Collapse
Affiliation(s)
- Octavio Morante-Palacios
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916 Badalona, Barcelona, Spain; Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Barcelona, Spain
| | - Federico Fondelli
- Division of Immunology, Germans Trias i Pujol Hospital, LCMN, Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Barcelona, Spain; Department of Cell Biology, Physiology, Immunology, Autonomous University of Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Esteban Ballestar
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916 Badalona, Barcelona, Spain; Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Barcelona, Spain.
| | - Eva M Martínez-Cáceres
- Division of Immunology, Germans Trias i Pujol Hospital, LCMN, Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Barcelona, Spain; Department of Cell Biology, Physiology, Immunology, Autonomous University of Barcelona, 08193 Bellaterra, Barcelona, Spain.
| |
Collapse
|
30
|
Transplantation Tolerance: Expanded and Selective Roles for B Cells. Transplantation 2020; 104:2459-2460. [PMID: 33214493 DOI: 10.1097/tp.0000000000003411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Zhao Y, Hu W, Chen P, Cao M, Zhang Y, Zeng C, Hara H, Cooper DKC, Mou L, Luan S, Gao H. Immunosuppressive and metabolic agents that influence allo‐ and xenograft survival by in vivo expansion of T regulatory cells. Xenotransplantation 2020; 27:e12640. [PMID: 32892428 DOI: 10.1111/xen.12640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/06/2020] [Accepted: 08/17/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Yanli Zhao
- Department of Nephrology Shenzhen Longhua District Central Hospital Affiliated Central Hospital of Shenzhen Longhua District Guangdong Medical University Shenzhen China
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center Institute of Translational Medicine Shenzhen University Health Science Center, Shenzhen University School of Medicine First Affiliated Hospital of Shenzhen UniversityShenzhen Second People’s Hospital Shenzhen China
- Department of Medical Laboratory Shenzhen Longhua District Central Hospital Affiliated Central Hospital of Shenzhen Longhua District Guangdong Medical University Shenzhen China
| | | | - Pengfei Chen
- Department of Nephrology Shenzhen Longhua District Central Hospital Affiliated Central Hospital of Shenzhen Longhua District Guangdong Medical University Shenzhen China
- Department of Medical Laboratory Shenzhen Longhua District Central Hospital Affiliated Central Hospital of Shenzhen Longhua District Guangdong Medical University Shenzhen China
| | - Mengtao Cao
- Department of Nephrology Shenzhen Longhua District Central Hospital Affiliated Central Hospital of Shenzhen Longhua District Guangdong Medical University Shenzhen China
- Department of Medical Laboratory Shenzhen Longhua District Central Hospital Affiliated Central Hospital of Shenzhen Longhua District Guangdong Medical University Shenzhen China
| | - Yingwei Zhang
- Department of Nephrology Shenzhen Longhua District Central Hospital Affiliated Central Hospital of Shenzhen Longhua District Guangdong Medical University Shenzhen China
| | - Changchun Zeng
- Department of Medical Laboratory Shenzhen Longhua District Central Hospital Affiliated Central Hospital of Shenzhen Longhua District Guangdong Medical University Shenzhen China
| | - Hidetaka Hara
- Xenotransplantation Program Department of Surgery University of Alabama at Birmingham Birmingham AL USA
| | - David K. C. Cooper
- Xenotransplantation Program Department of Surgery University of Alabama at Birmingham Birmingham AL USA
| | - Lisha Mou
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center Institute of Translational Medicine Shenzhen University Health Science Center, Shenzhen University School of Medicine First Affiliated Hospital of Shenzhen UniversityShenzhen Second People’s Hospital Shenzhen China
| | - Shaodong Luan
- Department of Nephrology Shenzhen Longhua District Central Hospital Affiliated Central Hospital of Shenzhen Longhua District Guangdong Medical University Shenzhen China
| | - Hanchao Gao
- Department of Nephrology Shenzhen Longhua District Central Hospital Affiliated Central Hospital of Shenzhen Longhua District Guangdong Medical University Shenzhen China
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center Institute of Translational Medicine Shenzhen University Health Science Center, Shenzhen University School of Medicine First Affiliated Hospital of Shenzhen UniversityShenzhen Second People’s Hospital Shenzhen China
- Department of Medical Laboratory Shenzhen Longhua District Central Hospital Affiliated Central Hospital of Shenzhen Longhua District Guangdong Medical University Shenzhen China
| |
Collapse
|
32
|
Mannie MD, DeOca KB, Bastian AG, Moorman CD. Tolerogenic vaccines: Targeting the antigenic and cytokine niches of FOXP3 + regulatory T cells. Cell Immunol 2020; 355:104173. [PMID: 32712270 PMCID: PMC7444458 DOI: 10.1016/j.cellimm.2020.104173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 02/06/2023]
Abstract
FOXP3+ regulatory T cells (Tregs) constitute a critical barrier that enforces tolerance to both the self-peptidome and the extended-self peptidome to ensure tissue-specific resistance to autoimmune, allergic, and other inflammatory disorders. Here, we review intuitive models regarding how T cell antigen receptor (TCR) specificity and antigen recognition efficiency shape the Treg and conventional T cell (Tcon) repertoires to adaptively regulate T cell maintenance, tissue-residency, phenotypic stability, and immune function in peripheral tissues. Three zones of TCR recognition efficiency are considered, including Tcon recognition of specific low-efficiency self MHC-ligands, Treg recognition of intermediate-efficiency agonistic self MHC-ligands, and Tcon recognition of cross-reactive high-efficiency agonistic foreign MHC-ligands. These respective zones of TCR recognition efficiency are key to understanding how tissue-resident immune networks integrate the antigenic complexity of local environments to provide adaptive decisions setting the balance of suppressive and immunogenic responses. Importantly, deficiencies in the Treg repertoire appear to be an important cause of chronic inflammatory disease. Deficiencies may include global deficiencies in Treg numbers or function, subtle 'holes in the Treg repertoire' in tissue-resident Treg populations, or simply Treg insufficiencies that are unable to counter an overwhelming molecular mimicry stimulus. Tolerogenic vaccination and Treg-based immunotherapy are two therapeutic modalities meant to restore dominance of Treg networks to reverse chronic inflammatory disease. Studies of these therapeutic modalities in a preclinical setting have provided insight into the Treg niche, including the concept that intermediate-efficiency TCR signaling, high IFN-β concentrations, and low IL-2 concentrations favor Treg responses and active dominant mechanisms of immune tolerance. Overall, the purpose here is to assimilate new and established concepts regarding how cognate TCR specificity of the Treg repertoire and the contingent cytokine networks provide a foundation for understanding Treg suppressive strategy.
Collapse
Affiliation(s)
- Mark D Mannie
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States.
| | - Kayla B DeOca
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States
| | - Alexander G Bastian
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States
| | - Cody D Moorman
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States
| |
Collapse
|
33
|
Hashimoto H, McCallion O, Kempkes RWM, Hester J, Issa F. Distinct metabolic pathways mediate regulatory T cell differentiation and function. Immunol Lett 2020; 223:53-61. [PMID: 32360534 DOI: 10.1016/j.imlet.2020.04.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/05/2020] [Accepted: 04/18/2020] [Indexed: 12/27/2022]
Abstract
Investigation of the cellular metabolic pathways of immune cells, or immunometabolism, is a field of increasing interest. An understanding of immunometabolism provides routes to modifying T cell function for therapeutic purposes. Here, we review immunometabolism with a specific focus on regulatory T cells (Tregs). While T cells are known to switch their metabolic profile from oxidative phosphorylation to aerobic glycolysis upon activation, in vitro-induced Tregs display alternate metabolic characteristics which may be related to their specialised suppressive function. Recent data suggest that the preferential pathways employed by Tregs differ in vivo and ex vivo. Metabolic 'harshness', particularly the deterioration of glycolysis, positively affects Treg differentiation and function, while negatively correlating with Treg clonal expansion and migratory capacity. These context-dependent findings provide new insights into the behaviour of Tregs with implications for both tumour immunology and autoimmunity. This review examines the field in detail, offering an overview of our current understanding of Treg immunometabolism.
Collapse
Affiliation(s)
- Hisashi Hashimoto
- Transplantation Research and Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Level 6, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, United Kingdom
| | - Oliver McCallion
- Transplantation Research and Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Level 6, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, United Kingdom
| | - Rosalie W M Kempkes
- Transplantation Research and Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Level 6, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, United Kingdom
| | - Joanna Hester
- Transplantation Research and Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Level 6, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, United Kingdom
| | - Fadi Issa
- Transplantation Research and Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Level 6, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, United Kingdom.
| |
Collapse
|
34
|
Waldmann H, Graca L. Infectious tolerance. What are we missing? Cell Immunol 2020; 354:104152. [PMID: 32585469 DOI: 10.1016/j.cellimm.2020.104152] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/10/2020] [Accepted: 06/10/2020] [Indexed: 11/16/2022]
Affiliation(s)
- Herman Waldmann
- Sir William Dunn School of Pathology, South Parks Road, Oxford OX13RE, UK.
| | - Luis Graca
- Instituto de Medecina Molecular, Faculdade de medicina da Universidade de Lisboa, Avenida professor Egas Moniz, 1649-028 Lisboa, Portugal.
| |
Collapse
|
35
|
Rodriguez-Barbosa JI, Schneider P, Graca L, Bühler L, Perez-Simon JA, del Rio ML. The Role of TNFR2 and DR3 in the In Vivo Expansion of Tregs in T Cell Depleting Transplantation Regimens. Int J Mol Sci 2020; 21:E3347. [PMID: 32397343 PMCID: PMC7247540 DOI: 10.3390/ijms21093347] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 01/05/2023] Open
Abstract
Regulatory T cells (Tregs) are essential for the maintenance of tolerance to self and non-self through cell-intrinsic and cell-extrinsic mechanisms. Peripheral Tregs survival and clonal expansion largely depend on IL-2 and access to co-stimulatory signals such as CD28. Engagement of tumor necrosis factor receptor (TNFR) superfamily members, in particular TNFR2 and DR3, contribute to promote peripheral Tregs expansion and sustain their survival. This property can be leveraged to enhance tolerance to allogeneic transplants by tipping the balance of Tregs over conventional T cells during the course of immune reconstitution. This is of particular interest in peri-transplant tolerance induction protocols in which T cell depletion is applied to reduce the frequency of alloreactive T cells or in conditioning regimens that allow allogeneic bone marrow transplantation. These conditioning regimens are being implemented to limit long-term side effects of continuous immunosuppression and facilitate the establishment of a state of donor-specific tolerance. Lymphopenia-induced homeostatic proliferation in response to cytoreductive conditioning is a window of opportunity to enhance preferential expansion of Tregs during homeostatic proliferation that can be potentiated by agonist stimulation of TNFR.
Collapse
Affiliation(s)
- Jose-Ignacio Rodriguez-Barbosa
- Transplantation Immunobiology, School of Biology and Biotechnology, Institute of Molecular Biology, Genomics and Proteomics, University of Leon, 24071 Leon, Spain;
| | - Pascal Schneider
- Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland;
| | - Luis Graca
- School of Medicine, Institute of Molecular Medicine, University of Lisbon, Avenida Professor Egas Moniz, 1649-028 Lisbon, Portugal;
| | - Leo Bühler
- Faculty of Science and Medicine, Section of Medicine, University of Fribourg, 1700 Fribourg, Switzerland;
| | - Jose-Antonio Perez-Simon
- Department of Hematology, Institute of Biomedicine (IBIS/CSIC), University Hospital Virgen del Rocio, 41013 Sevilla, Spain;
| | - Maria-Luisa del Rio
- Transplantation Immunobiology, School of Biology and Biotechnology, Institute of Molecular Biology, Genomics and Proteomics, University of Leon, 24071 Leon, Spain;
| |
Collapse
|
36
|
Batra L, Shrestha P, Zhao H, Woodward KB, Togay A, Tan M, Grimany-Nuno O, Malik MT, Coronel MM, García AJ, Shirwan H, Yolcu ES. Localized Immunomodulation with PD-L1 Results in Sustained Survival and Function of Allogeneic Islets without Chronic Immunosuppression. THE JOURNAL OF IMMUNOLOGY 2020; 204:2840-2851. [PMID: 32253240 DOI: 10.4049/jimmunol.2000055] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/17/2020] [Indexed: 12/14/2022]
Abstract
Allogeneic islet transplantation is limited by adverse effects of chronic immunosuppression used to control rejection. The programmed cell death 1 pathway as an important immune checkpoint has the potential to obviate the need for chronic immunosuppression. We generated an oligomeric form of programmed cell death 1 ligand chimeric with core streptavidin (SA-PDL1) that inhibited the T effector cell response to alloantigens and converted T conventional cells into CD4+Foxp3+ T regulatory cells. The SA-PDL1 protein was effectively displayed on the surface of biotinylated mouse islets without a negative impact islet viability and insulin secretion. Transplantation of SA-PDL1-engineered islet grafts with a short course of rapamycin regimen resulted in sustained graft survival and function in >90% of allogeneic recipients over a 100-d observation period. Long-term survival was associated with increased levels of intragraft transcripts for innate and adaptive immune regulatory factors, including IDO-1, arginase-1, Foxp3, TGF-β, IL-10, and decreased levels of proinflammatory T-bet, IL-1β, TNF-α, and IFN-γ as assessed on day 3 posttransplantation. T cells of long-term graft recipients generated a proliferative response to donor Ags at a similar magnitude to T cells of naive animals, suggestive of the localized nature of tolerance. Immunohistochemical analyses showed intense peri-islet infiltration of T regulatory cells in long-term grafts and systemic depletion of this cell population resulted in prompt rejection. The transient display of SA-PDL1 protein on the surface of islets serves as a practical means of localized immunomodulation that accomplishes sustained graft survival in the absence of chronic immunosuppression with potential clinical implications.
Collapse
Affiliation(s)
- Lalit Batra
- Institute for Cellular Therapeutics, School of Medicine, University of Louisville, Louisville, KY 40202.,Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY 40202
| | - Pradeep Shrestha
- Institute for Cellular Therapeutics, School of Medicine, University of Louisville, Louisville, KY 40202.,Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY 40202
| | - Hong Zhao
- Institute for Cellular Therapeutics, School of Medicine, University of Louisville, Louisville, KY 40202.,Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY 40202
| | - Kyle B Woodward
- Institute for Cellular Therapeutics, School of Medicine, University of Louisville, Louisville, KY 40202.,Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY 40202
| | - Alper Togay
- Institute for Cellular Therapeutics, School of Medicine, University of Louisville, Louisville, KY 40202
| | - Min Tan
- Institute for Cellular Therapeutics, School of Medicine, University of Louisville, Louisville, KY 40202.,Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY 40202
| | - Orlando Grimany-Nuno
- Institute for Cellular Therapeutics, School of Medicine, University of Louisville, Louisville, KY 40202.,Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY 40202
| | - Mohammad Tariq Malik
- Institute for Cellular Therapeutics, School of Medicine, University of Louisville, Louisville, KY 40202.,Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY 40202
| | - María M Coronel
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| | - Andrés J García
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332.,Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332; and
| | - Haval Shirwan
- Institute for Cellular Therapeutics, School of Medicine, University of Louisville, Louisville, KY 40202; .,Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY 40202.,Department of Child Health, School of Medicine, University of Missouri, Columbia, MO 65211
| | - Esma S Yolcu
- Institute for Cellular Therapeutics, School of Medicine, University of Louisville, Louisville, KY 40202; .,Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY 40202.,Department of Child Health, School of Medicine, University of Missouri, Columbia, MO 65211
| |
Collapse
|
37
|
Matsunami M, Rosales IA, Adam BA, Oura T, Mengel M, Smith RN, Lee H, Cosimi AB, Colvin RB, Kawai T. Long-term Kinetics of Intragraft Gene Signatures in Renal Allograft Tolerance Induced by Transient Mixed Chimerism. Transplantation 2019; 103:e334-e344. [PMID: 31397805 PMCID: PMC6814550 DOI: 10.1097/tp.0000000000002911] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Renal allograft tolerance (TOL) has been successfully induced in nonhuman primates (NHPs) and humans through the induction of transient mixed chimerism. To elucidate the mechanisms of TOL, we compared local immunologic responses in renal allografts with those in T-cell-mediated rejection (TCMR) and chronic antibody-mediated rejection (CAMR) in NHPs. METHODS Using the NanoString nCounter platform, we retrospectively studied 52 mRNAs in 256 kidney allograft samples taken from NHP kidney recipients of donor BMT. No immunosuppression was given after 1-month post-donor BMT. Recipients who achieved TOL (n = 13) survived for >1840 ± 1724 days with normal kidney function, while recipients with CAMR (n = 13) survived for 899 ± 550 days with compromised graft function, and recipients with TCMR (n = 15) achieved only short-term survival (132 ± 69 days). RESULTS The most prominent difference between the groups was FOXP3, which was significantly higher in TOL than in CAMR and TCMR, both early (<1 y, P < 0.01) and late (≥1 y, P < 0.05) after transplant. Other mRNAs related to regulatory T cells (Treg), such as IL10, TGFB, and GATA3, were also high in TOL. In contrast, transcripts of inflammatory cytokines were higher in TCMR, while activated endothelium-associated transcripts were higher in CAMR than in TOL. The receiver operating characteristic analyses revealed that intragraft FOXP3 and CAV1 can reliably distinguish TOL from CAMR. CONCLUSIONS High FOXP3 and other Treg-related mRNAs together with suppressed inflammatory responses and endothelial activation in renal allografts suggest that intragraft enrichment of Treg is a critical mechanism of renal allograft TOL induced by transient mixed chimerism.
Collapse
Affiliation(s)
- Masatoshi Matsunami
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Ivy A. Rosales
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Benjamin A. Adam
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Tetsu Oura
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Michael Mengel
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Rex-Neal Smith
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Hang Lee
- Department of Biostatistics, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - A. Benedict Cosimi
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Robert B. Colvin
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Tatsuo Kawai
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
38
|
Yu S, Su C, Luo X. Impact of infection on transplantation tolerance. Immunol Rev 2019; 292:243-263. [PMID: 31538351 PMCID: PMC6961566 DOI: 10.1111/imr.12803] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/29/2019] [Accepted: 09/03/2019] [Indexed: 12/12/2022]
Abstract
Allograft tolerance is the ultimate goal of organ transplantation. Current strategies for tolerance induction mainly focus on inhibiting alloreactive T cells while promoting regulatory immune cells. Pathogenic infections may have direct impact on both effector and regulatory cell populations, therefore can alter host susceptibility to transplantation tolerance induction as well as impair the quality and stability of tolerance once induced. In this review, we will discuss existing data demonstrating the effect of infections on transplantation tolerance, with particular emphasis on the role of the stage of infection (acute, chronic, or latent) and the stage of tolerance (induction or maintenance) in this infection-tolerance interaction. While the deleterious effect of acute infection on tolerance is mainly driven by proinflammatory cytokines induced shortly after the infection, chronic infection may generate exhausted T cells that could in fact facilitate transplantation tolerance. In addition to pathogenic infections, commensal intestinal microbiota also has numerous significant immunomodulatory effects that can shape the host alloimmunity following transplantation. A comprehensive understanding of these mechanisms is crucial for the development of therapeutic strategies for robustly inducing and stably maintaining transplantation tolerance while preserving host anti-pathogen immunity in clinically relevant scenarios.
Collapse
Affiliation(s)
- Shuangjin Yu
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, United States
- Division of Organ transplantation, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Chang Su
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, United States
| | - Xunrong Luo
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, United States
- Duke Transplant Center, Duke University School of Medicine, Durham, NC 27710, United States
| |
Collapse
|
39
|
Howie D, Ten Bokum A, Cobbold SP, Yu Z, Kessler BM, Waldmann H. A Novel Role for Triglyceride Metabolism in Foxp3 Expression. Front Immunol 2019; 10:1860. [PMID: 31456800 PMCID: PMC6701200 DOI: 10.3389/fimmu.2019.01860] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 07/23/2019] [Indexed: 12/17/2022] Open
Abstract
Lipid metabolism plays a key role in many cellular processes. We show here that regulatory T cells have enhanced lipid storage within subcellular lipid droplets (LD). They also express elevated amounts of both isoforms of diacylglycerol acyl transferase (DGAT1 & 2), enzymes required for the terminal step of triacylglycerol synthesis. In regulatory T-cells (Tregs), the conversion of diacylglycerols to triacylglycerols serves two additional purposes other than lipid storage. First, we demonstrate that it protects T cells from the toxic effects of saturated long chain fatty acids. Second, we show that Triglyceride formation is essential for limiting activation of protein kinase C via free diacyl glycerol moieties. Inhibition of DGAT1 resulted in elevated active PKC and nuclear NFKB, as well as impaired Foxp3 induction in response to TGFβ. Thus, Tregs utilize a positive feedback mechanism to promote sustained expression of Foxp3 associated with control of LD formation.
Collapse
Affiliation(s)
- Duncan Howie
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Annemieke Ten Bokum
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Stephen Paul Cobbold
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Zhanru Yu
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, United Kingdom
| | - Benedikt M Kessler
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, United Kingdom
| | - Herman Waldmann
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
40
|
Ghosh A, Liao A, O’Leary C, Mercer J, Tylee K, Goenka A, Holley R, Jones SA, Bigger BW. Strategies for the Induction of Immune Tolerance to Enzyme Replacement Therapy in Mucopolysaccharidosis Type I. Mol Ther Methods Clin Dev 2019; 13:321-333. [PMID: 30976609 PMCID: PMC6441787 DOI: 10.1016/j.omtm.2019.02.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 02/24/2019] [Indexed: 01/16/2023]
Abstract
Enzyme replacement therapy with laronidase is an established treatment for Mucopolysaccharidosis type I (MPS I), but its efficacy may be limited by the development of anti-drug antibodies, which inhibit cellular uptake of the enzyme. In a related disorder, infantile Pompe disease, immune tolerance induction with low-dose, short-course methotrexate appears to reduce antibody formation. We investigated a similar regimen using oral methotrexate in three MPS I patients. All patients developed anti-laronidase immunoglobulin G (IgG) and immunoglobulin M (IgM) antibodies, and they had clinically relevant levels of cellular uptake inhibition. We then explored several immune tolerance induction strategies in MPS I mice: (1) methotrexate, (2) combination of non-depleting anti-CD4 and anti-CD8 monoclonal antibodies, (3) methotrexate with anti-CD4 and anti-CD8 monoclonals, (4) anti-CD4 monoclonal, and (5) anti-CD8 monoclonal. Treated mice received 10 weekly laronidase injections, and laronidase was delivered with adjuvant on day 49 to further challenge the immune system. Most regimens were only partially effective at reducing antibody responses, but two courses of non-depleting anti-CD4 monoclonal antibody (mAb) ablated immune responses to laronidase in seven of eight MPS I mice (87.5%), even after adjuvant stimulation. Immune tolerance induction with methotrexate does not appear to be effective in MPS I patients, but use of non-depleting anti-CD4 monoclonal is a promising strategy.
Collapse
Affiliation(s)
- Arunabha Ghosh
- Stem Cell and Neurotherapies, Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK
- Willink Biochemical Genetics Unit, Manchester Centre for Genomic Medicine, St. Mary’s Hospital, Manchester, UK
| | - Aiyin Liao
- Stem Cell and Neurotherapies, Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK
| | - Claire O’Leary
- Stem Cell and Neurotherapies, Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK
| | - Jean Mercer
- Willink Biochemical Genetics Unit, Manchester Centre for Genomic Medicine, St. Mary’s Hospital, Manchester, UK
| | - Karen Tylee
- Willink Biochemical Genetics Unit, Manchester Centre for Genomic Medicine, St. Mary’s Hospital, Manchester, UK
| | - Anu Goenka
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, UK
| | - Rebecca Holley
- Stem Cell and Neurotherapies, Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK
| | - Simon A. Jones
- Willink Biochemical Genetics Unit, Manchester Centre for Genomic Medicine, St. Mary’s Hospital, Manchester, UK
| | - Brian W. Bigger
- Stem Cell and Neurotherapies, Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
41
|
Abstract
With the advent of the concept of dominant tolerance and the subsequent discovery of CD4+ regulatory T cells expressing the transcription factor FOXP3 (Tregs), almost all productive as well as nonproductive immune responses can be compartmentalized to a binary of immune effector T cells and immune regulatory Treg populations. A beneficial immune response warrants the timely regulation by Tregs, whereas a nonproductive immune response indicates insufficient effector functions or an outright failure of tolerance. There are ample reports supporting role of Tregs in suppressing spontaneous auto-immune diseases as well as promoting immune evasion by cancers. To top up their importance, several non-immune functions like tissue homeostasis and regeneration are also being attributed to Tregs. Hence, after being in the center stage of basic and translational immunological research, Tregs are making the next jump towards clinical studies. Therefore, newer small molecules, biologics as well as adoptive cell therapy (ACT) approaches are being tested to augment or undermine Treg responses in the context of autoimmunity and cancer. In this brief review, we present the strategies to modulate Tregs towards a favorable clinical outcome.
Collapse
Affiliation(s)
- Amit Sharma
- Academy of Immunology and Microbiology, Institute for Basic Science (IBS) , Pohang , Republic of Korea.,Division of Integrative Biosciences & Biotechnology, Pohang University of Science and Technology (POSTECH) , Pohang , Republic of Korea
| | - Dipayan Rudra
- Academy of Immunology and Microbiology, Institute for Basic Science (IBS) , Pohang , Republic of Korea.,Division of Integrative Biosciences & Biotechnology, Pohang University of Science and Technology (POSTECH) , Pohang , Republic of Korea
| |
Collapse
|
42
|
Vanherwegen AS, Eelen G, Ferreira GB, Ghesquière B, Cook DP, Nikolic T, Roep B, Carmeliet P, Telang S, Mathieu C, Gysemans C. Vitamin D controls the capacity of human dendritic cells to induce functional regulatory T cells by regulation of glucose metabolism. J Steroid Biochem Mol Biol 2019; 187:134-145. [PMID: 30481575 DOI: 10.1016/j.jsbmb.2018.11.011] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/21/2018] [Accepted: 11/23/2018] [Indexed: 12/13/2022]
Abstract
Tolerogenic dendritic cells (tolDCs) instruct regulatory T cells (Tregs) to dampen autoimmunity. Active vitamin D3 (1α,25-dihydroxyvitamin D3; 1α,25(OH)2D3) imprints human monocyte-derived DCs with tolerogenic properties by reprogramming their glucose metabolism. Here we identify the glycolytic enzyme 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 4 (PFKFB4) as a critical checkpoint and direct transcriptional target of 1α,25(OH)2D3 in determining the tolDC profile. Using tracer metabolomics, we show that PFKFB4 activity is essential for glucose metabolism, especially for glucose oxidation, which is elevated upon 1α,25(OH)2D3 exposure. Pharmacological inhibition of PFKFB4 reversed the 1α,25(OH)2D3-mediated shift in metabolism, DC profile and function, as determined by expression of inhibitory surface markers and secretion of regulatory cytokines and factors. Moreover, PFKFB4 inhibition in 1α,25(OH)2D3-treated DCs blocked their hallmark capacity to induce suppressive Tregs. This work demonstrates that alterations in the bioenergetic metabolism of immune cells are central to the immunomodulatory effects induced by 1α,25(OH)2D3.
Collapse
Affiliation(s)
| | - Guy Eelen
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium
| | | | - Bart Ghesquière
- Metabolomics Core Facility, Center for Cancer Biology, VIB, Leuven,Belgium; Metabolomics Core Facility, Department of Oncology, KU Leuven, Leuven, Belgium
| | | | - Tanja Nikolic
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - Bart Roep
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands; Department of Diabetes Immunology, Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Sucheta Telang
- Division of Hematology/Oncology, Department of Medicine, J. Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Chantal Mathieu
- Clinical and Experimental Endocrinology, KU, Leuven, Belgium
| | - Conny Gysemans
- Clinical and Experimental Endocrinology, KU, Leuven, Belgium.
| |
Collapse
|
43
|
Gupta PK, McIntosh CM, Chong AS, Alegre ML. The pursuit of transplantation tolerance: new mechanistic insights. Cell Mol Immunol 2019; 16:324-333. [PMID: 30760917 DOI: 10.1038/s41423-019-0203-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 01/17/2019] [Indexed: 12/11/2022] Open
Abstract
Donor-specific transplantation tolerance that enables weaning from immunosuppressive drugs but retains immune competence to non-graft antigens has been a lasting pursuit since the discovery of neonatal tolerance. More recently, efforts have been devoted not only to understanding how transplantation tolerance can be induced but also the mechanisms necessary to maintain it as well as how inflammatory exposure challenges its durability. This review focuses on recent advances regarding key peripheral mechanisms of T cell tolerance, with the underlying hypothesis that a combination of several of these mechanisms may afford a more robust and durable tolerance and that a better understanding of these individual pathways may permit longitudinal tracking of tolerance following clinical transplantation to serve as biomarkers. This review may enable a personalized assessment of the degree of tolerance in individual patients and the opportunity to strengthen the robustness of peripheral tolerance.
Collapse
Affiliation(s)
- Pawan K Gupta
- Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA
| | | | - Anita S Chong
- Department of Surgery, The University of Chicago, Chicago, IL, 60637, USA
| | - Maria-Luisa Alegre
- Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
44
|
Cohen IR, Efroni S. The Immune System Computes the State of the Body: Crowd Wisdom, Machine Learning, and Immune Cell Reference Repertoires Help Manage Inflammation. Front Immunol 2019; 10:10. [PMID: 30723470 PMCID: PMC6349705 DOI: 10.3389/fimmu.2019.00010] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 01/04/2019] [Indexed: 11/29/2022] Open
Abstract
Here, we outline an overview of the mammalian immune system that updates and extends the classical clonal selection paradigm. Rather than focusing on strict self-not-self discrimination, we propose that the system orchestrates variable inflammatory responses that maintain the body and its symbiosis with the microbiome while eliminating the threat from pathogenic infectious agents and from tumors. The paper makes four points:
The immune system classifies healthy and pathologic states of the body—including both self and foreign elements—by deploying individual lymphocytes as cellular computing machines; immune cells transform input signals from the body into an output of specific immune reactions. Rather than independent clonal responses, groups of individually activated immune-system cells co-react in lymphoid organs to make collective decisions through a type of self-organizing swarm intelligence or crowd wisdom. Collective choices by swarms of immune cells, like those of schools of fish, are modified by relatively small numbers of individual regulators responding to shifting conditions—such collective inflammatory responses are dynamically responsive. Self-reactive autoantibody and T-cell receptor (TCR) repertoires shared by healthy individuals function in a biological version of experience-based supervised machine learning. Immune system decisions are primed by formative experience with training sets of self-antigens encountered during lymphocyte development; these initially trained T cell and B cell repertoires form a Wellness Profile that then guides immune responses to test sets of antigens encountered later. This experience-based machine learning strategy is analogous to that deployed by supervised machine-learning algorithms.
We propose experiments to test these ideas. This overview of the immune system bears clinical implications for monitoring wellness and for treating autoimmune disease, cancer, and allograft reactions.
Collapse
Affiliation(s)
- Irun R Cohen
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Sol Efroni
- Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
45
|
Abstract
In this chapter, we describe the history of transplantation, the multiple cell types, and mechanisms that are involved in rejection and tolerance of a transplanted organ, as well as summarize the common and promising new therapeutics used in transplant patients.
Collapse
Affiliation(s)
- Jessica Stolp
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Masaaki Zaitsu
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Kathryn J Wood
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, UK.
| |
Collapse
|
46
|
Savage TM, Shonts BA, Obradovic A, Dewolf S, Lau S, Zuber J, Simpson MT, Berglund E, Fu J, Yang S, Ho SH, Tang Q, Turka LA, Shen Y, Sykes M. Early expansion of donor-specific Tregs in tolerant kidney transplant recipients. JCI Insight 2018; 3:124086. [PMID: 30429370 DOI: 10.1172/jci.insight.124086] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 10/10/2018] [Indexed: 12/23/2022] Open
Abstract
Allograft tolerance, in which a graft is accepted without long-term immunosuppression, could overcome numerous obstacles in transplantation. Human allograft tolerance has been intentionally induced across HLA barriers via combined kidney and bone marrow transplantation (CKBMT) with a regimen that induces only transient chimerism. Tregs are enriched early after CKBMT. While deletional tolerance contributes to long-term tolerance, the role of Tregs remains unclear. We have optimized a method for identifying the donor-specific Treg repertoire and used it to interrogate the fate of donor-specific Tregs after CKBMT. We expanded Tregs with several different protocols. Using functional analyses and T cell receptor sequencing, we found that expanding sorted Tregs with activated donor B cells identified the broadest Treg repertoire with the greatest potency and donor specificity of suppression. This method outperformed both alloantigen stimulation with CTLA4Ig and sequencing of CFSElo cells from the primary mixed lymphocyte reaction. In 3 tolerant and 1 nontolerant CKBMT recipients, we sequenced donor-specific Tregs before transplant and tracked them after transplant. Preexisting donor-specific Tregs were expanded at 6 months after CKBMT in tolerant patients and were reduced in the nontolerant patient. These results suggest that early expansion of donor-specific Tregs is involved in tolerance induction following CKBMT.
Collapse
Affiliation(s)
- Thomas M Savage
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, New York, USA
| | - Brittany A Shonts
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, New York, USA
| | - Aleksandar Obradovic
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, New York, USA
| | - Susan Dewolf
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, New York, USA
| | - Saiping Lau
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, New York, USA
| | - Julien Zuber
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, New York, USA
| | - Michael T Simpson
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, New York, USA
| | - Erik Berglund
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, New York, USA
| | - Jianing Fu
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, New York, USA
| | - Suxiao Yang
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, New York, USA
| | - Siu-Hong Ho
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, New York, USA
| | - Qizhi Tang
- Department of Surgery, University of California San Francisco, San Francisco, California, USA
| | - Laurence A Turka
- Center for Translational Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA.,Immune Tolerance Network, Bethesda, Maryland, USA
| | - Yufeng Shen
- Center for Computational Biology and Bioinformatics, Department of Systems Biology, Columbia University, New York, New York, USA
| | - Megan Sykes
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, New York, USA.,Department of Microbiology & Immunology, Columbia University Medical Center, Columbia University, New York, New York, USA.,Department of Surgery, Columbia University Medical Center, Columbia University, New York, New York, USA
| |
Collapse
|
47
|
Ma P, Yang X, Dong R, Ming L, Tang H, Liu X, Zhang S, Zheng P. The immune response is a prerequisite for the development of CD4 +Foxp3 + regulatory T cells in transplantation. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:5309-5317. [PMID: 31949611 PMCID: PMC6963037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 09/25/2018] [Indexed: 06/10/2023]
Abstract
CD4+Foxp3+ regulatory T cells (Tregs) are critical in maintaining the peripheral tolerance and homeostasis of the immune system, yet their development and role in transplantation are poorly understood. Here we show that the levels of Tregs in neonatal transplant tolerant mice are similar to the levels in naive mice when they are kept in a state of homeostasis devoid of an immune response. An increased frequency of Tregs was observed only in recipients with allograft rejection, in naive mice that received alloantigens, or in tolerant mice adoptively transferred with alloreactive T cells. Even though an antigen-specific immune response is a prerequisite for the development of Tregs, both antigen-specific and nonspecific Tregs are generated in this process. We conclude that Tregs are induced and function in an inflammatory environment and in a negative feedback loop.
Collapse
Affiliation(s)
- Panhong Ma
- Clinical Laboratory, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou, PR China
- Key Clinical Laboratory of Henan ProvinceZhengzhou, PR China
| | - Xiao Yang
- Clinical Laboratory, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou, PR China
- Key Clinical Laboratory of Henan ProvinceZhengzhou, PR China
| | - Rui Dong
- Clinical Laboratory, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou, PR China
- Key Clinical Laboratory of Henan ProvinceZhengzhou, PR China
| | - Liang Ming
- Clinical Laboratory, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou, PR China
- Key Clinical Laboratory of Henan ProvinceZhengzhou, PR China
| | - Hongwei Tang
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou, PR China
| | - Xinjing Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou, PR China
| | - Shuijun Zhang
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou, PR China
| | - Peiguo Zheng
- Clinical Laboratory, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou, PR China
- Key Clinical Laboratory of Henan ProvinceZhengzhou, PR China
| |
Collapse
|
48
|
Izadi Z, Hajizadeh-Saffar E, Hadjati J, Habibi-Anbouhi M, Ghanian MH, Sadeghi-Abandansari H, Ashtiani MK, Samsonchi Z, Raoufi M, Moazenchi M, Izadi M, Nejad ASSH, Namdari H, Tahamtani Y, Ostad SN, Akbari-Javar H, Baharvand H. Tolerance induction by surface immobilization of Jagged-1 for immunoprotection of pancreatic islets. Biomaterials 2018; 182:191-201. [DOI: 10.1016/j.biomaterials.2018.08.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/25/2018] [Accepted: 08/06/2018] [Indexed: 12/12/2022]
|
49
|
Bahmani B, Uehara M, Jiang L, Ordikhani F, Banouni N, Ichimura T, Solhjou Z, Furtmüller GJ, Brandacher G, Alvarez D, von Andrian UH, Uchimura K, Xu Q, Vohra I, Yilmam OA, Haik Y, Azzi J, Kasinath V, Bromberg JS, McGrath MM, Abdi R. Targeted delivery of immune therapeutics to lymph nodes prolongs cardiac allograft survival. J Clin Invest 2018; 128:4770-4786. [PMID: 30277476 PMCID: PMC6205374 DOI: 10.1172/jci120923] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 08/21/2018] [Indexed: 12/12/2022] Open
Abstract
The targeted delivery of therapeutic drugs to lymph nodes (LNs) provides an unprecedented opportunity to improve the outcomes of transplantation and immune-mediated diseases. The high endothelial venule is a specialized segment of LN vasculature that uniquely expresses peripheral node addressin (PNAd) molecules. PNAd is recognized by MECA79 mAb. We previously generated a MECA79 mAb-coated microparticle (MP) that carries tacrolimus. Although this MP trafficked to LNs, it demonstrated limited therapeutic efficacy in our transplant model. Here, we have synthesized a nanoparticle (NP) as a carrier of anti-CD3, and optimized the conjugation strategy to coat the NP surface with MECA79 mAb (MECA79-anti-CD3-NP) to enhance LN accumulation. As compared with nonconjugated NPs, a significantly higher quantity of MECA79-NPs accumulated in the draining lymph node (DLN). Many MECA79-NPs underwent internalization by T cells and dendritic cells within the LNs. Short-term treatment of murine cardiac allograft recipients with MECA79-anti-CD3-NP resulted in significantly prolonged allograft survival in comparison with the control groups. Prolonged graft survival following treatment with MECA79-anti-CD3-NP was characterized by a significant increase in intragraft and DLN Treg populations. Treg depletion abrogated the prolongation of heart allograft survival. We believe this targeted approach of drug delivery could redefine the methods of administering immune therapeutics in transplantation.
Collapse
Affiliation(s)
- Baharak Bahmani
- Transplantation Research Center and.,Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Mayuko Uehara
- Transplantation Research Center and.,Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Liwei Jiang
- Transplantation Research Center and.,Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Farideh Ordikhani
- Transplantation Research Center and.,Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Naima Banouni
- Transplantation Research Center and.,Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Takaharu Ichimura
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Zhabiz Solhjou
- Transplantation Research Center and.,Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Georg J Furtmüller
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation Laboratory, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Gerald Brandacher
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation Laboratory, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - David Alvarez
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Ulrich H von Andrian
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Kenji Uchimura
- Unite de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS, Universite de Lille 1, Villeneuve d'Ascq, France
| | - Qiaobing Xu
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| | - Ishaan Vohra
- Transplantation Research Center and.,Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Osman A Yilmam
- Transplantation Research Center and.,Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Yousef Haik
- College of Science and Engineering, Hamad bin Khalifa University, Doha, Qatar
| | - Jamil Azzi
- Transplantation Research Center and.,Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Vivek Kasinath
- Transplantation Research Center and.,Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jonathan S Bromberg
- Department of Surgery and Microbiology and Immunobiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Martina M McGrath
- Transplantation Research Center and.,Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Reza Abdi
- Transplantation Research Center and.,Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
50
|
Leung CS, Yang KY, Li X, Chan VW, Ku M, Waldmann H, Hori S, Tsang JCH, Lo YMD, Lui KO. Single-cell transcriptomics reveal that PD-1 mediates immune tolerance by regulating proliferation of regulatory T cells. Genome Med 2018; 10:71. [PMID: 30236153 PMCID: PMC6148788 DOI: 10.1186/s13073-018-0581-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 09/07/2018] [Indexed: 12/31/2022] Open
Abstract
Background We have previously reported an antigen-specific protocol to induce transplant tolerance and linked suppression to human embryonic stem cell (hESC)-derived tissues in immunocompetent mice through coreceptor and costimulation blockade. However, the exact mechanisms of acquired immune tolerance in this model have remained unclear. Methods We utilize the NOD.Foxp3hCD2 reporter mouse line and an ablative anti-hCD2 antibody to ask if CD4+FOXP3+ regulatory T cells (Treg) are required for coreceptor and costimulation blockade-induced immune tolerance. We also perform genome-wide single-cell RNA-sequencing to interrogate Treg during immune rejection and tolerance and to indicate possible mechanisms involved in sustaining Treg function. Results We show that Treg are indispensable for tolerance induced by coreceptor and costimulation blockade as depletion of which with an anti-hCD2 antibody resulted in rejection of hESC-derived pancreatic islets in NOD.Foxp3hCD2 mice. Single-cell transcriptomic profiling of 12,964 intragraft CD4+ T cells derived from rejecting and tolerated grafts reveals that Treg are heterogeneous and functionally distinct in the two outcomes of transplant rejection and tolerance. Treg appear to mainly promote chemotactic and ubiquitin-dependent protein catabolism during transplant rejection while seeming to harness proliferative and immunosuppressive function during tolerance. We also demonstrate that this form of acquired transplant tolerance is associated with increased proliferation and PD-1 expression by Treg. Blocking PD-1 signaling with a neutralizing anti-PD-1 antibody leads to reduced Treg proliferation and graft rejection. Conclusions Our results suggest that short-term coreceptor and costimulation blockade mediates immune tolerance to hESC-derived pancreatic islets by promoting Treg proliferation through engagement of PD-1. Our findings could give new insights into clinical development of hESC-derived pancreatic tissues, combined with immunotherapies that expand intragraft Treg, as a potentially sustainable alternative treatment for T1D. Electronic supplementary material The online version of this article (10.1186/s13073-018-0581-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cherry S Leung
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Kevin Y Yang
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Xisheng Li
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Vicken W Chan
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Manching Ku
- Department of Paediatrics and Adolescent Medicine, Division of Paediatric Hematology and Oncology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
| | - Herman Waldmann
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Shohei Hori
- Laboratory of Immunology and Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Jason C H Tsang
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.,Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Yuk Ming Dennis Lo
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.,Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Kathy O Lui
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China. .,Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|