1
|
Yu J, Zhang X, Cai C, Zhou T, Chen Q. Small RNA and Toll-like receptor interactions: origins and disease mechanisms. Trends Biochem Sci 2025; 50:385-401. [PMID: 39956743 PMCID: PMC12048287 DOI: 10.1016/j.tibs.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/08/2025] [Accepted: 01/17/2025] [Indexed: 02/18/2025]
Abstract
Advances in small RNA sequencing have revealed diverse small noncoding RNAs (sncRNAs) beyond microRNAs (miRNAs), derived from transfer RNAs (tRNAs), ribosomal RNAs (rRNAs), small nuclear RNAs (snRNAs), and Y RNAs, carrying distinct RNA modifications. These emerging sncRNAs can function beyond RNA interference (RNAi), adopting aptamer-like roles by interacting with Toll-like receptors 7 and 8 (TLR7 and TLR8) via specific sequences, modifications, and structures. We propose a Sequential Activation Hypothesis where initial abnormal sncRNAs - triggered by infections or stresses - activate TLR7/8, leading to autoantibody production against autoantigens like RNA-binding proteins La and Ro. These autoantibody-antigen complexes further promote secondary immunogenic sncRNA production and repetitive TLR7/8 activation, perpetuating a vicious cycle sustaining autoimmunity. TLR7/8's X chromosome location and sex-biased expression contribute to female-dominant autoimmune diseases. Understanding sncRNA-TLR interactions is essential for designing novel therapeutic strategies.
Collapse
Affiliation(s)
- Jiancheng Yu
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, USA; Molecular Medicine Program, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Xudong Zhang
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, USA; Molecular Medicine Program, University of Utah School of Medicine, Salt Lake City, UT, USA; Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Chen Cai
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, USA; Molecular Medicine Program, University of Utah School of Medicine, Salt Lake City, UT, USA; Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Tong Zhou
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA.
| | - Qi Chen
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, USA; Molecular Medicine Program, University of Utah School of Medicine, Salt Lake City, UT, USA; Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA.
| |
Collapse
|
2
|
Tomita T. Non-vesicular extracellular RNA: A potential drug target to intervene cell-cell communication. Pharmacol Ther 2025; 266:108774. [PMID: 39644926 DOI: 10.1016/j.pharmthera.2024.108774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 12/03/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
The importance of non-vesicular extracellular RNA in the mammalian system is becoming increasingly apparent. Non-vesicular extracellular RNA is defined as RNA molecules not included in a lipid bilayer such as exosomes. Because non-vesicular extracellular RNA is not protected from RNases and is therefore rapidly degraded, they were not easily captured by conventional biofluid analyses. Recent publications showed that some non-vesicular extracellular RNAs are relatively stable in biofluids or tissue culture media, and they have unique biological functions. Major RNAs (rRNA, mRNA, and tRNA) and other non-cording RNAs play important roles in transcription or translation in the cell. In contrast, non-vesicular extracellular RNA has functions related to intercellular communication rather than protein synthesis. This review discusses the basics of non-vesicular extracellular RNA, including its definition, purification, receptors, and future prospects as a drug target.
Collapse
Affiliation(s)
- Takeshi Tomita
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, School of Medicine, Japan; Department of Biochemistry and Molecular Biology, Shinshu University, School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan.
| |
Collapse
|
3
|
Nunes IV, Breitenbach L, Pawusch S, Eigenbrod T, Ananth S, Schad P, Fackler OT, Butter F, Dalpke AH, Chen LS. Bacterial RNA sensing by TLR8 requires RNase 6 processing and is inhibited by RNA 2'O-methylation. EMBO Rep 2024; 25:4674-4692. [PMID: 39363059 PMCID: PMC11549399 DOI: 10.1038/s44319-024-00281-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 10/05/2024] Open
Abstract
TLR8 senses single-stranded RNA (ssRNA) fragments, processed via cleavage by ribonuclease (RNase) T2 and RNase A family members. Processing by these RNases releases uridines and purine-terminated residues resulting in TLR8 activation. Monocytes show high expression of RNase 6, yet this RNase has not been analyzed for its physiological contribution to the recognition of bacterial RNA by TLR8. Here, we show a role for RNase 6 in TLR8 activation. BLaER1 cells, transdifferentiated into monocyte-like cells, as well as primary monocytes deficient for RNASE6 show a dampened TLR8-dependent response upon stimulation with isolated bacterial RNA (bRNA) and also upon infection with live bacteria. Pretreatment of bacterial RNA with recombinant RNase 6 generates fragments that induce TLR8 stimulation in RNase 6 knockout cells. 2'O-RNA methyl modification, when introduced at the first uridine in the UA dinucleotide, impairs processing by RNase 6 and dampens TLR8 stimulation. In summary, our data show that RNase 6 processes bacterial RNA and generates uridine-terminated breakdown products that activate TLR8.
Collapse
Affiliation(s)
- Ivanéia V Nunes
- Dept. of Infectious Diseases, Medical Microbiology and Hygiene, Medical Faculty, Heidelberg University, Heidelberg, Germany
- University Hospital Heidelberg, Heidelberg, Germany
| | - Luisa Breitenbach
- Dept. of Infectious Diseases, Medical Microbiology and Hygiene, Medical Faculty, Heidelberg University, Heidelberg, Germany
- University Hospital Heidelberg, Heidelberg, Germany
| | - Sarah Pawusch
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institute, Greifswald, Germany
| | - Tatjana Eigenbrod
- Dept. of Infectious Diseases, Medical Microbiology and Hygiene, Medical Faculty, Heidelberg University, Heidelberg, Germany
- Institute of Laboratory Medicine, SLK Clinics Heilbronn GmbH, 74078, Heilbronn, Germany
| | - Swetha Ananth
- Department of Infectious Diseases, Center for Integrative Infectious Disease Research (CIID), Integrative Virology, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany
| | - Paulina Schad
- Dept. of Infectious Diseases, Medical Microbiology and Hygiene, Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Oliver T Fackler
- Department of Infectious Diseases, Center for Integrative Infectious Disease Research (CIID), Integrative Virology, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany
- German Center for Infection Research (DZIF), Heidelberg Partner Site, Heidelberg, Germany
| | - Falk Butter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institute, Greifswald, Germany
| | - Alexander H Dalpke
- Dept. of Infectious Diseases, Medical Microbiology and Hygiene, Medical Faculty, Heidelberg University, Heidelberg, Germany.
- University Hospital Heidelberg, Heidelberg, Germany.
| | - Lan-Sun Chen
- Dept. of Infectious Diseases, Medical Microbiology and Hygiene, Medical Faculty, Heidelberg University, Heidelberg, Germany
- University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
4
|
Shi X, Zhang Y, Wang Y, Wang J, Gao Y, Wang R, Wang L, Xiong M, Cao Y, Ou N, Liu Q, Ma H, Cai J, Chen H. The tRNA Gm18 methyltransferase TARBP1 promotes hepatocellular carcinoma progression via metabolic reprogramming of glutamine. Cell Death Differ 2024; 31:1219-1234. [PMID: 38867004 PMCID: PMC11368932 DOI: 10.1038/s41418-024-01323-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/14/2024] Open
Abstract
Cancer cells rely on metabolic reprogramming to sustain the prodigious energetic requirements for rapid growth and proliferation. Glutamine metabolism is frequently dysregulated in cancers and is being exploited as a potential therapeutic target. Using CRISPR/Cas9 interference (CRISPRi) screening, we identified TARBP1 (TAR (HIV-1) RNA Binding Protein 1) as a critical regulator involved in glutamine reliance of cancer cell. Consistent with this discovery, TARBP1 amplification and overexpression are frequently observed in various cancers. Knockout of TARBP1 significantly suppresses cell proliferation, colony formation and xenograft tumor growth. Mechanistically, TARBP1 selectively methylates and stabilizes a small subset of tRNAs, which promotes efficient protein synthesis of glutamine transporter-ASCT2 (also known as SLC1A5) and glutamine import to fuel the growth of cancer cell. Moreover, we found that the gene expression of TARBP1 and ASCT2 are upregulated in combination in clinical cohorts and their upregulation is associated with unfavorable prognosis of HCC (hepatocellular carcinoma). Taken together, this study reveals the unexpected role of TARBP1 in coordinating the tRNA availability and glutamine uptake during HCC progression and provides a potential target for tumor therapy.
Collapse
Affiliation(s)
- Xiaoyan Shi
- Department of Human Cell Biology and Genetics, Joint Laboratory of Guangdong & Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine; Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yangyi Zhang
- Department of Human Cell Biology and Genetics, Joint Laboratory of Guangdong & Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine; Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yuci Wang
- Department of Human Cell Biology and Genetics, Joint Laboratory of Guangdong & Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine; Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jie Wang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Institutes of Biomedical Sciences, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Key Laboratory of Medical Epigenetics and Metabolism, Fudan University, Shanghai, 200032, China
| | - Yang Gao
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610041, China
- College of Polymer Science and Engineering, Med-X Center for Materials, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Ruiqi Wang
- Department of Human Cell Biology and Genetics, Joint Laboratory of Guangdong & Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine; Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Liyong Wang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Institutes of Biomedical Sciences, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Key Laboratory of Medical Epigenetics and Metabolism, Fudan University, Shanghai, 200032, China
| | - Minggang Xiong
- Department of Human Cell Biology and Genetics, Joint Laboratory of Guangdong & Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine; Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Southern University of Science and Technology, Shenzhen, 518055, China
- School of Biological Sciences, The University of Hong Kong, Hong Kong, SAR, China
| | - Yanlan Cao
- Department of Human Cell Biology and Genetics, Joint Laboratory of Guangdong & Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine; Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ningjing Ou
- State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Qi Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences; Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Guangzhou, 510640, China.
| | - Honghui Ma
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Institutes of Biomedical Sciences, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Key Laboratory of Medical Epigenetics and Metabolism, Fudan University, Shanghai, 200032, China.
- Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, Shenzhen, China.
| | - Jiabin Cai
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Institutes of Biomedical Sciences, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Key Laboratory of Medical Epigenetics and Metabolism, Fudan University, Shanghai, 200032, China.
| | - Hao Chen
- Department of Human Cell Biology and Genetics, Joint Laboratory of Guangdong & Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine; Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
5
|
Ward C, Beharry A, Tennakoon R, Rozik P, Wilhelm SDP, Heinemann IU, O’Donoghue P. Mechanisms and Delivery of tRNA Therapeutics. Chem Rev 2024; 124:7976-8008. [PMID: 38801719 PMCID: PMC11212642 DOI: 10.1021/acs.chemrev.4c00142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/11/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024]
Abstract
Transfer ribonucleic acid (tRNA) therapeutics will provide personalized and mutation specific medicines to treat human genetic diseases for which no cures currently exist. The tRNAs are a family of adaptor molecules that interpret the nucleic acid sequences in our genes into the amino acid sequences of proteins that dictate cell function. Humans encode more than 600 tRNA genes. Interestingly, even healthy individuals contain some mutant tRNAs that make mistakes. Missense suppressor tRNAs insert the wrong amino acid in proteins, and nonsense suppressor tRNAs read through premature stop signals to generate full length proteins. Mutations that underlie many human diseases, including neurodegenerative diseases, cancers, and diverse rare genetic disorders, result from missense or nonsense mutations. Thus, specific tRNA variants can be strategically deployed as therapeutic agents to correct genetic defects. We review the mechanisms of tRNA therapeutic activity, the nature of the therapeutic window for nonsense and missense suppression as well as wild-type tRNA supplementation. We discuss the challenges and promises of delivering tRNAs as synthetic RNAs or as gene therapies. Together, tRNA medicines will provide novel treatments for common and rare genetic diseases in humans.
Collapse
Affiliation(s)
- Cian Ward
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Aruun Beharry
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Rasangi Tennakoon
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Peter Rozik
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Sarah D. P. Wilhelm
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Ilka U. Heinemann
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Patrick O’Donoghue
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| |
Collapse
|
6
|
Pawar K, Kawamura T, Kirino Y. The tRNA Val half: A strong endogenous Toll-like receptor 7 ligand with a 5'-terminal universal sequence signature. Proc Natl Acad Sci U S A 2024; 121:e2319569121. [PMID: 38683985 PMCID: PMC11087793 DOI: 10.1073/pnas.2319569121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/24/2024] [Indexed: 05/02/2024] Open
Abstract
Toll-like receptors (TLRs) are crucial components of the innate immune system. Endosomal TLR7 recognizes single-stranded RNAs, yet its endogenous ssRNA ligands are not fully understood. We previously showed that extracellular (ex-) 5'-half molecules of tRNAHisGUG (the 5'-tRNAHisGUG half) in extracellular vesicles (EVs) of human macrophages activate TLR7 when delivered into endosomes of recipient macrophages. Here, we fully explored immunostimulatory ex-5'-tRNA half molecules and identified the 5'-tRNAValCAC/AAC half, the most abundant tRNA-derived RNA in macrophage EVs, as another 5'-tRNA half molecule with strong TLR7 activation capacity. Levels of the ex-5'-tRNAValCAC/AAC half were highly up-regulated in macrophage EVs upon exposure to lipopolysaccharide and in the plasma of patients infected with Mycobacterium tuberculosis. The 5'-tRNAValCAC/AAC half-mediated activation of TLR7 effectively eradicated bacteria infected in macrophages. Mutation analyses of the 5'-tRNAValCAC/AAC half identified the terminal GUUU sequence as a determinant for TLR7 activation. We confirmed that GUUU is the optimal ratio of guanosine and uridine for TLR7 activation; microRNAs or other RNAs with the terminal GUUU motif can indeed stimulate TLR7, establishing the motif as a universal signature for TLR7 activation. These results advance our understanding of endogenous ssRNA ligands of TLR7 and offer insights into diverse TLR7-involved pathologies and their therapeutic strategies.
Collapse
Affiliation(s)
- Kamlesh Pawar
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA19107
- Department of Life Sciences, School of Natural Science, Shiv Nadar Institution of Eminence Deemed to be University, Delhi National Capital Region, Greater Noida201314, India
| | - Takuya Kawamura
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA19107
| | - Yohei Kirino
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA19107
| |
Collapse
|
7
|
Zhou KI, Pecot CV, Holley CL. 2'- O-methylation (Nm) in RNA: progress, challenges, and future directions. RNA (NEW YORK, N.Y.) 2024; 30:570-582. [PMID: 38531653 PMCID: PMC11019748 DOI: 10.1261/rna.079970.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/09/2024] [Indexed: 03/28/2024]
Abstract
RNA 2'-O-methylation (Nm) is highly abundant in noncoding RNAs including ribosomal RNA (rRNA), transfer RNA (tRNA), and small nuclear RNA (snRNA), and occurs in the 5' cap of virtually all messenger RNAs (mRNAs) in higher eukaryotes. More recently, Nm has also been reported to occur at internal sites in mRNA. High-throughput methods have been developed for the transcriptome-wide detection of Nm. However, these methods have mostly been applied to abundant RNAs such as rRNA, and the validity of the internal mRNA Nm sites detected with these approaches remains controversial. Nonetheless, Nm in both coding and noncoding RNAs has been demonstrated to impact cellular processes, including translation and splicing. In addition, Nm modifications at the 5' cap and possibly at internal sites in mRNA serve to prevent the binding of nucleic acid sensors, thus preventing the activation of the innate immune response by self-mRNAs. Finally, Nm has been implicated in a variety of diseases including cancer, cardiovascular diseases, and neurologic syndromes. In this review, we discuss current challenges in determining the distribution, regulation, function, and disease relevance of Nm, as well as potential future directions for the field.
Collapse
Affiliation(s)
- Katherine I Zhou
- Division of Medical Oncology, Department of Medicine, Duke University, Durham, North Carolina 27710, USA
| | - Chad V Pecot
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Division of Hematology and Oncology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, USA
- University of North Carolina RNA Discovery Center, UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Christopher L Holley
- Division of Cardiology, Department of Medicine, Duke University, Durham, North Carolina 27710, USA
| |
Collapse
|
8
|
Yared MJ, Marcelot A, Barraud P. Beyond the Anticodon: tRNA Core Modifications and Their Impact on Structure, Translation and Stress Adaptation. Genes (Basel) 2024; 15:374. [PMID: 38540433 PMCID: PMC10969862 DOI: 10.3390/genes15030374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 06/14/2024] Open
Abstract
Transfer RNAs (tRNAs) are heavily decorated with post-transcriptional chemical modifications. Approximately 100 different modifications have been identified in tRNAs, and each tRNA typically contains 5-15 modifications that are incorporated at specific sites along the tRNA sequence. These modifications may be classified into two groups according to their position in the three-dimensional tRNA structure, i.e., modifications in the tRNA core and modifications in the anticodon-loop (ACL) region. Since many modified nucleotides in the tRNA core are involved in the formation of tertiary interactions implicated in tRNA folding, these modifications are key to tRNA stability and resistance to RNA decay pathways. In comparison to the extensively studied ACL modifications, tRNA core modifications have generally received less attention, although they have been shown to play important roles beyond tRNA stability. Here, we review and place in perspective selected data on tRNA core modifications. We present their impact on tRNA structure and stability and report how these changes manifest themselves at the functional level in translation, fitness and stress adaptation.
Collapse
Affiliation(s)
| | | | - Pierre Barraud
- Expression Génétique Microbienne, Université Paris Cité, CNRS, Institut de Biologie Physico-Chimique, F-75005 Paris, France; (M.-J.Y.); (A.M.)
| |
Collapse
|
9
|
Gumas J, Kawamura T, Shigematsu M, Kirino Y. Immunostimulatory short non-coding RNAs in the circulation of patients with tuberculosis infection. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102156. [PMID: 38481936 PMCID: PMC10933579 DOI: 10.1016/j.omtn.2024.102156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/14/2024] [Indexed: 03/20/2024]
Abstract
Mycobacterium tuberculosis (Mtb) infection is among the world's deadliest infectious diseases. Developing effective treatments and biomarkers for tuberculosis requires a deeper understanding of its pathobiology and host responses. Here, we report a comprehensive characterization of circulating short non-coding RNAs (sncRNAs) in plasma samples from Mtb-infected patients. We achieved this by pre-treating plasma RNAs with T4 polynucleotide kinase to convert all RNA ends to those compatible with sncRNA sequencing. We discovered a global and drastic upregulation of plasma sncRNAs in Mtb-infected patients, with tRNA-derived sncRNAs representing the most dramatically elevated class. Most of these tRNA-derived sncRNAs originated from a limited subset of tRNAs, specifically from three tRNA isoacceptors, and exhibited skewed patterns to 5'-derived fragments, such as 5' halves, 5' tRNA fragments (tRFs), and internal tRFs (i-tRFs) from the 5' regions. Further, Mtb-infected patients displayed markedly upregulated and distinct profiles of both rRNA- and mRNA-derived sncRNAs. Some of these sncRNAs, which are abundant and specific to Mtb-infected patients, robustly activated human macrophages via Toll-like receptor 7 and induced cytokine production. This drastic accumulation of circulating, immunostimulatory sncRNAs in the plasma of Mtb-infected patients offers insights into the sncRNA-driven aspects of host immune response against infectious diseases and suggests a pool of potential therapeutic targets and biomarkers.
Collapse
Affiliation(s)
- Justin Gumas
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Takuya Kawamura
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Megumi Shigematsu
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Yohei Kirino
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
10
|
Yu MK, Fogarty EC, Eren AM. Diverse plasmid systems and their ecology across human gut metagenomes revealed by PlasX and MobMess. Nat Microbiol 2024; 9:830-847. [PMID: 38443576 PMCID: PMC10914615 DOI: 10.1038/s41564-024-01610-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 01/17/2024] [Indexed: 03/07/2024]
Abstract
Plasmids alter microbial evolution and lifestyles by mobilizing genes that often confer fitness in changing environments across clades. Yet our ecological and evolutionary understanding of naturally occurring plasmids is far from complete. Here we developed a machine-learning model, PlasX, which identified 68,350 non-redundant plasmids across human gut metagenomes and organized them into 1,169 evolutionarily cohesive 'plasmid systems' using our sequence containment-aware network-partitioning algorithm, MobMess. Individual plasmids were often country specific, yet most plasmid systems spanned across geographically distinct human populations. Cargo genes in plasmid systems included well-known determinants of fitness, such as antibiotic resistance, but also many others including enzymes involved in the biosynthesis of essential nutrients and modification of transfer RNAs, revealing a wide repertoire of likely fitness determinants in complex environments. Our study introduces computational tools to recognize and organize plasmids, and uncovers the ecological and evolutionary patterns of diverse plasmids in naturally occurring habitats through plasmid systems.
Collapse
Affiliation(s)
- Michael K Yu
- Toyota Technological Institute at Chicago, Chicago, IL, USA.
| | - Emily C Fogarty
- Department of Medicine, University of Chicago, Chicago, IL, USA
- Committee On Microbiology, University of Chicago, Chicago, IL, USA
| | - A Murat Eren
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, USA.
- Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany.
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany.
- Helmholtz Institute for Functional Marine Biodiversity, Oldenburg, Germany.
- Marine 'Omics Group, Max Planck Institute for Marine Microbiology, Bremen, Germany.
| |
Collapse
|
11
|
Delaunay S, Helm M, Frye M. RNA modifications in physiology and disease: towards clinical applications. Nat Rev Genet 2024; 25:104-122. [PMID: 37714958 DOI: 10.1038/s41576-023-00645-2] [Citation(s) in RCA: 98] [Impact Index Per Article: 98.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2023] [Indexed: 09/17/2023]
Abstract
The ability of chemical modifications of single nucleotides to alter the electrostatic charge, hydrophobic surface and base pairing of RNA molecules is exploited for the clinical use of stable artificial RNAs such as mRNA vaccines and synthetic small RNA molecules - to increase or decrease the expression of therapeutic proteins. Furthermore, naturally occurring biochemical modifications of nucleotides regulate RNA metabolism and function to modulate crucial cellular processes. Studies showing the mechanisms by which RNA modifications regulate basic cell functions in higher organisms have led to greater understanding of how aberrant RNA modification profiles can cause disease in humans. Together, these basic science discoveries have unravelled the molecular and cellular functions of RNA modifications, have provided new prospects for therapeutic manipulation and have led to a range of innovative clinical approaches.
Collapse
Affiliation(s)
- Sylvain Delaunay
- Deutsches Krebsforschungszentrum (DKFZ), Division of Mechanisms Regulating Gene Expression, Heidelberg, Germany
| | - Mark Helm
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Michaela Frye
- Deutsches Krebsforschungszentrum (DKFZ), Division of Mechanisms Regulating Gene Expression, Heidelberg, Germany.
| |
Collapse
|
12
|
Kohno Y, Ito A, Okamoto A, Yamagami R, Hirata A, Hori H. Escherichia coli tRNA (Gm18) methyltransferase (TrmH) requires the correct localization of its methylation site (G18) in the D-loop for efficient methylation. J Biochem 2023; 175:43-56. [PMID: 37844264 PMCID: PMC11640301 DOI: 10.1093/jb/mvad076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/08/2023] [Accepted: 09/27/2023] [Indexed: 10/18/2023] Open
Abstract
TrmH is a eubacterial tRNA methyltransferase responsible for formation of 2'-O-methylguaosine at position 18 (Gm18) in tRNA. In Escherichia coli cells, only 14 tRNA species possess the Gm18 modification. To investigate the substrate tRNA selection mechanism of E. coli TrmH, we performed biochemical and structural studies. Escherichia coli TrmH requires a high concentration of substrate tRNA for efficient methylation. Experiments using native tRNA SerCGA purified from a trmH gene disruptant strain showed that modified nucleosides do not affect the methylation. A gel mobility-shift assay reveals that TrmH captures tRNAs without distinguishing between relatively good and very poor substrates. Methylation assays using wild-type and mutant tRNA transcripts revealed that the location of G18 in the D-loop is very important for efficient methylation by E. coli TrmH. In the case of tRNASer, tRNATyrand tRNALeu, the D-loop structure formed by interaction with the long variable region is important. For tRNAGln, the short distance between G18 and A14 is important. Thus, our biochemical study explains all Gm18 modification patterns in E. coli tRNAs. The crystal structure of E. coli TrmH has also been solved, and the tRNA binding mode of E. coli TrmH is discussed based on the structure.
Collapse
Affiliation(s)
- Yoh Kohno
- Department of Materials Science and Biotechnology, Graduate school of Science and
Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime
790-8577, Japan
| | - Asako Ito
- Department of Materials Science and Biotechnology, Graduate school of Science and
Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime
790-8577, Japan
| | - Aya Okamoto
- Department of Materials Science and Biotechnology, Graduate school of Science and
Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime
790-8577, Japan
| | - Ryota Yamagami
- Department of Materials Science and Biotechnology, Graduate school of Science and
Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime
790-8577, Japan
| | - Akira Hirata
- Department of Natural Science, Graduate School of Technology, Industrial and Social
Science, Tokushima University, 2-1 Minamijosanjimacho,
Tokushima, Tokushima 770-8506, Japan
| | - Hiroyuki Hori
- Department of Materials Science and Biotechnology, Graduate school of Science and
Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime
790-8577, Japan
| |
Collapse
|
13
|
Pham NT, Rakkiyapan R, Park J, Malik A, Manavalan B. H2Opred: a robust and efficient hybrid deep learning model for predicting 2'-O-methylation sites in human RNA. Brief Bioinform 2023; 25:bbad476. [PMID: 38180830 PMCID: PMC10768780 DOI: 10.1093/bib/bbad476] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 01/07/2024] Open
Abstract
2'-O-methylation (2OM) is the most common post-transcriptional modification of RNA. It plays a crucial role in RNA splicing, RNA stability and innate immunity. Despite advances in high-throughput detection, the chemical stability of 2OM makes it difficult to detect and map in messenger RNA. Therefore, bioinformatics tools have been developed using machine learning (ML) algorithms to identify 2OM sites. These tools have made significant progress, but their performances remain unsatisfactory and need further improvement. In this study, we introduced H2Opred, a novel hybrid deep learning (HDL) model for accurately identifying 2OM sites in human RNA. Notably, this is the first application of HDL in developing four nucleotide-specific models [adenine (A2OM), cytosine (C2OM), guanine (G2OM) and uracil (U2OM)] as well as a generic model (N2OM). H2Opred incorporated both stacked 1D convolutional neural network (1D-CNN) blocks and stacked attention-based bidirectional gated recurrent unit (Bi-GRU-Att) blocks. 1D-CNN blocks learned effective feature representations from 14 conventional descriptors, while Bi-GRU-Att blocks learned feature representations from five natural language processing-based embeddings extracted from RNA sequences. H2Opred integrated these feature representations to make the final prediction. Rigorous cross-validation analysis demonstrated that H2Opred consistently outperforms conventional ML-based single-feature models on five different datasets. Moreover, the generic model of H2Opred demonstrated a remarkable performance on both training and testing datasets, significantly outperforming the existing predictor and other four nucleotide-specific H2Opred models. To enhance accessibility and usability, we have deployed a user-friendly web server for H2Opred, accessible at https://balalab-skku.org/H2Opred/. This platform will serve as an invaluable tool for accurately predicting 2OM sites within human RNA, thereby facilitating broader applications in relevant research endeavors.
Collapse
Affiliation(s)
- Nhat Truong Pham
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Rajan Rakkiyapan
- Department of Mathematics, Bharathiar University, Coimbatore - 641046, Tamil Nadu, India
| | - Jongsun Park
- InfoBoss inc. and InfoBoss Research Center, Gangnam-gu, Seoul 06278, Republic of Korea
| | - Adeel Malik
- Institute of Intelligence Informatics Technology, Sangmyung University, Seoul, 03016, Republic of Korea
| | - Balachandran Manavalan
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| |
Collapse
|
14
|
Lu X, Gu X, Li Y, Wu Y, Wang Q, Yu W, Chen Q. Biochemical characterization of RNase R 2'-O-methylation sensitivity. Biochimie 2023; 212:106-113. [PMID: 37105299 DOI: 10.1016/j.biochi.2023.04.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 04/02/2023] [Accepted: 04/24/2023] [Indexed: 04/29/2023]
Abstract
RNase R is a member of the RNA exonuclease family that digests RNA in the 3'-5' direction. Previous studies have identified RNase R from Mycoplasma genitalium (MgR) as the only RNA exonuclease that is sensitive to 2'-O-methylation (Nm) modification. However, the mechanism underlying this characteristic is not well understood. In this study, we aimed to explore the molecular mechanism of RNase R Nm sensitivity using an improved assay that can better evaluate Nm sensitivity. By comparing the sequences of five wild-type RNase R variants from Mycoplasma, we identified the importance of loop 18 in Nm sensitivity. Furthermore, we demonstrated the critical roles of L283, T278, and T279 within loop18. Our findings deepen the understanding of the molecular mechanism of why MgR is sensitive to Nm and provide a potential direction of protein engineering for applications.
Collapse
Affiliation(s)
- Xiaolan Lu
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210093, China; Medical School of Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Xiangwen Gu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Yong Li
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Yifan Wu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Qiang Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Wenkui Yu
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210093, China
| | - Qihan Chen
- Medical School of Nanjing University, Nanjing, Jiangsu, 210093, China.
| |
Collapse
|
15
|
Xiong Q, Zhang Y. Small RNA modifications: regulatory molecules and potential applications. J Hematol Oncol 2023; 16:64. [PMID: 37349851 PMCID: PMC10286502 DOI: 10.1186/s13045-023-01466-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/14/2023] [Indexed: 06/24/2023] Open
Abstract
Small RNAs (also referred to as small noncoding RNAs, sncRNA) are defined as polymeric ribonucleic acid molecules that are less than 200 nucleotides in length and serve a variety of essential functions within cells. Small RNA species include microRNA (miRNA), PIWI-interacting RNA (piRNA), small interfering RNA (siRNA), tRNA-derived small RNA (tsRNA), etc. Current evidence suggest that small RNAs can also have diverse modifications to their nucleotide composition that affect their stability as well as their capacity for nuclear export, and these modifications are relevant to their capacity to drive molecular signaling processes relevant to biogenesis, cell proliferation and differentiation. In this review, we highlight the molecular characteristics and cellular functions of small RNA and their modifications, as well as current techniques for their reliable detection. We also discuss how small RNA modifications may be relevant to the clinical applications for the diagnosis and treatment of human health conditions such as cancer.
Collapse
Affiliation(s)
- Qunli Xiong
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics and Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
- Abdominal Oncology Ward, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yaguang Zhang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics and Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
16
|
Yang YH, Ma CY, Gao D, Liu XW, Yuan SS, Ding H. i2OM: Toward a better prediction of 2'-O-methylation in human RNA. Int J Biol Macromol 2023; 239:124247. [PMID: 37003392 DOI: 10.1016/j.ijbiomac.2023.124247] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/06/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023]
Abstract
2'-O-methylation (2OM) is an omnipresent post-transcriptional modification in RNAs. It is important for the regulation of RNA stability, mRNA splicing and translation, as well as innate immunity. With the increase in publicly available 2OM data, several computational tools have been developed for the identification of 2OM sites in human RNA. Unfortunately, these tools suffer from the low discriminative power of redundant features, unreasonable dataset construction or overfitting. To address those issues, based on four types of 2OM (2OM-adenine (A), cytosine (C), guanine (G), and uracil (U)) data, we developed a two-step feature selection model to identify 2OM. For each type, the one-way analysis of variance (ANOVA) combined with mutual information (MI) was proposed to rank sequence features for obtaining the optimal feature subset. Subsequently, four predictors based on eXtreme Gradient Boosting (XGBoost) or support vector machine (SVM) were presented to identify the four types of 2OM sites. Finally, the proposed model could produce an overall accuracy of 84.3 % on the independent set. To provide a convenience for users, an online tool called i2OM was constructed and can be freely access at i2om.lin-group.cn. The predictor may provide a reference for the study of the 2OM.
Collapse
Affiliation(s)
- Yu-He Yang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Cai-Yi Ma
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Dong Gao
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xiao-Wei Liu
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Shi-Shi Yuan
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Hui Ding
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China.
| |
Collapse
|
17
|
Yamagami R, Hori H. Application of mutational profiling: New functional analyses reveal the tRNA recognition mechanism of tRNA m 1A22 methyltransferase. J Biol Chem 2023; 299:102759. [PMID: 36462666 PMCID: PMC9801127 DOI: 10.1016/j.jbc.2022.102759] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022] Open
Abstract
Transfer RNAs undergo diverse posttranscriptional modifications to regulate a myriad of cellular events including translation, stress response, and viral replication. These posttranscriptional modifications are synthesized by site-specific modification enzymes. Recent RNA-seq techniques have revealed multiple features of tRNA such as tRNA abundance, tRNA modification, and tRNA structure. Here, we adapt a tRNA-sequencing technique and design a new functional analysis where we perform mutational profiling of tRNA modifications to gain mechanistic insights into how tRNA modification enzymes recognize substrate tRNA. Profiling of Geobacillus stearothermophilus tRNAs and protein orthology analysis predict the existence of natural modifications in 44 tRNA molecular species of G. stearothermophilus. We selected the 1-methyladenosine modification at position 22 (m1A22) and tRNA (m1A22) methyltransferase (TrmK) for further analysis. Relative quantification of m1A22 levels in 59 tRNA transcripts by mutational profiling reveals that TrmK selectively methylates a subset of tRNAs. Using 240 variants of tRNALeu transcripts, we demonstrate the conserved nucleosides including U8, A14, G15, G18, G19, U55, Purine57, and A58 are important for the methyl transfer reaction of TrmK. Additional biochemical experiments reveal that TrmK strictly recognizes U8, A14, G18, and U55 in tRNA. Furthermore, these findings from tRNALeu variants were crossvalidated using variants of three different tRNA species. Finally, a model of the TrmK-tRNA complex structure was constructed based on our findings and previous biochemical and structural studies by others. Collectively, our study expands functional analyses of tRNA modification enzyme in a high-throughput manner where our assay rapidly identifies substrates from a large pool of tRNAs.
Collapse
Affiliation(s)
- Ryota Yamagami
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime, Japan.
| | - Hiroyuki Hori
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime, Japan.
| |
Collapse
|
18
|
Hertler J, Slama K, Schober B, Özrendeci Z, Marchand V, Motorin Y, Helm M. Synthesis of point-modified mRNA. Nucleic Acids Res 2022; 50:e115. [PMID: 36062567 PMCID: PMC9723659 DOI: 10.1093/nar/gkac719] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 07/20/2022] [Accepted: 08/15/2022] [Indexed: 12/24/2022] Open
Abstract
Synthetic mRNA has recently moved into the focus of therapeutic and vaccination efforts. Incorporation of modified nucleotides during in vitro transcription can improve translation and attenuate immunogenicity, but is limited to triphosphate nucleotides which are accepted by RNA polymerases, and their incorporation is either random or complete. In contrast, site-specific modification, herein termed 'point modification' in analogy to point mutations, holds significant technical challenge. We developed fundamental techniques for isolation of long, translatable and internally point-modified mRNAs. Enabling concepts include three-way-one-pot splint ligations, and isolation of mRNA by real-time elution from agarose gels. The use of blue light permitted visualization of mRNA in pre-stained gels without the photochemical damage associated with the use of hard UV-radiation. This allowed visualization of the mRNA through its migration in the agarose gel, which in turn, was a prerequisite for its recovery by electroelution into precast troughs. Co-eluting agarose particles were quantified and found to not be detrimental to mRNA translation in vitro. Translation of EGFP-coding mRNA into functional protein was quantified by incorporation of 35S-labelled methionine and by in-gel EGFP fluorescence. This enabled the functional analysis of point modifications, specifically of ribose methylations in the middle of a 1371 nt long mRNA.
Collapse
Affiliation(s)
- Jasmin Hertler
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-Universität, Staudinger Weg 5, D-55128 Mainz, Germany
| | - Kaouthar Slama
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-Universität, Staudinger Weg 5, D-55128 Mainz, Germany
| | - Benedikt Schober
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-Universität, Staudinger Weg 5, D-55128 Mainz, Germany
| | - Zeynep Özrendeci
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-Universität, Staudinger Weg 5, D-55128 Mainz, Germany
| | - Virginie Marchand
- IMoPA UMR7365 CNRS-UL, BioPole Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Yuri Motorin
- IMoPA UMR7365 CNRS-UL, BioPole Université de Lorraine, Vandœuvre-lès-Nancy, France
- Epitranscriptomics and RNA Sequencing (EpiRNA-Seq) Core Facility, UMS2008 IBSLor (CNRS-UL)/US40 (INSERM), Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Mark Helm
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-Universität, Staudinger Weg 5, D-55128 Mainz, Germany
| |
Collapse
|
19
|
Mollica L, Cupaioli FA, Rossetti G, Chiappori F. An overview of structural approaches to study therapeutic RNAs. Front Mol Biosci 2022; 9:1044126. [PMID: 36387283 PMCID: PMC9649582 DOI: 10.3389/fmolb.2022.1044126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2023] Open
Abstract
RNAs provide considerable opportunities as therapeutic agent to expand the plethora of classical therapeutic targets, from extracellular and surface proteins to intracellular nucleic acids and its regulators, in a wide range of diseases. RNA versatility can be exploited to recognize cell types, perform cell therapy, and develop new vaccine classes. Therapeutic RNAs (aptamers, antisense nucleotides, siRNA, miRNA, mRNA and CRISPR-Cas9) can modulate or induce protein expression, inhibit molecular interactions, achieve genome editing as well as exon-skipping. A common RNA thread, which makes it very promising for therapeutic applications, is its structure, flexibility, and binding specificity. Moreover, RNA displays peculiar structural plasticity compared to proteins as well as to DNA. Here we summarize the recent advances and applications of therapeutic RNAs, and the experimental and computational methods to analyze their structure, by biophysical techniques (liquid-state NMR, scattering, reactivity, and computational simulations), with a focus on dynamic and flexibility aspects and to binding analysis. This will provide insights on the currently available RNA therapeutic applications and on the best techniques to evaluate its dynamics and reactivity.
Collapse
Affiliation(s)
- Luca Mollica
- Department of Medical Biotechnologies and Translational Medicine, L.I.T.A/University of Milan, Milan, Italy
| | | | | | - Federica Chiappori
- National Research Council—Institute for Biomedical Technologies, Milan, Italy
| |
Collapse
|
20
|
Helicobacter pylori Infection Elicits Type I Interferon Response in Human Monocytes via Toll-Like Receptor 8 Signaling. J Immunol Res 2022; 2022:3861518. [PMID: 36317079 PMCID: PMC9617731 DOI: 10.1155/2022/3861518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/12/2022] [Accepted: 10/07/2022] [Indexed: 11/22/2022] Open
Abstract
Helicobacter pylori colonization and persistence could precede gastric adenocarcinoma. Elucidating immune recognition strategies of H. pylori is therefore imperative to curb chronic persistence in the human host. Toll-like receptor 7 (TLR7) and TLR8 are widely known as viral single-stranded RNA (ssRNA) sensors yet less studied in the bacteria context. Here, we investigated the involvement of these receptors in the immunity to H. pylori. Human THP-1 monocytic cells were infected with H. pylori, and the expression levels of human Toll-like receptors (TLRs) were examined. The roles of TLR7 and TLR8 in response to H. pylori infection were further investigated using receptor antagonists. Among all TLR transcripts examined, TLR8 exhibited the most prominent upregulation, followed by TLR7 in the THP-1 cells infected with H. pylori J99 or SS1 strains. H. pylori infection-mediated IFN-α and IFN-β transactivation was significantly abrogated by the TLR7/8 (but not TLR7) antagonist. Additionally, TLR7/8 antagonist treatment reduced H. pylori infection-mediated phosphorylation of interferon regulatory factor 7 (IRF7). Our study suggests a novel role of TLR8 signaling in host immunity against H. pylori through sensing live bacteria to elicit the production of type I interferon.
Collapse
|
21
|
Nicolai M, Steinberg J, Obermann HL, Solis FV, Bartok E, Bauer S, Jung S. Identification of an Optimal TLR8 Ligand by Alternating the Position of 2′-O-Ribose Methylation. Int J Mol Sci 2022; 23:ijms231911139. [PMID: 36232437 PMCID: PMC9570189 DOI: 10.3390/ijms231911139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 12/03/2022] Open
Abstract
Recognition of RNA by receptors of the innate immune system is regulated by various posttranslational modifications. Different single 2′-O-ribose (2′-O-) methylations have been shown to convert TLR7/TLR8 ligands into specific TLR8 ligands, so we investigated whether the position of 2′-O-methylation is crucial for its function. To this end, we designed different 2′-O-methylated RNA oligoribonucleotides (ORN), investigating their immune activity in various cell systems and analyzing degradation under RNase T2 treatment. We found that the 18S rRNA-derived TLR7/8 ligand, RNA63, was differentially digested as a result of 2′-O-methylation, leading to variations in TLR8 and TLR7 inhibition. The suitability of certain 2′-O-methylated RNA63 derivatives as TLR8 agonists was further demonstrated by the fact that other RNA sequences were only weak TLR8 agonists. We were thus able to identify specific 2′-O-methylated RNA derivatives as optimal TLR8 ligands.
Collapse
Affiliation(s)
- Marina Nicolai
- Institute for Immunology, Philipps-University Marburg, 35043 Marburg, Germany
| | - Julia Steinberg
- Institute of Cardiovascular Immunology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | | | | | - Eva Bartok
- Institute of Experimental Haematology and Transfusion Medicine, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Stefan Bauer
- Institute for Immunology, Philipps-University Marburg, 35043 Marburg, Germany
| | - Stephanie Jung
- Institute of Cardiovascular Immunology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
- Correspondence:
| |
Collapse
|
22
|
Zhang W, Foo M, Eren AM, Pan T. tRNA modification dynamics from individual organisms to metaepitranscriptomics of microbiomes. Mol Cell 2022; 82:891-906. [PMID: 35032425 PMCID: PMC8897278 DOI: 10.1016/j.molcel.2021.12.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 12/17/2022]
Abstract
tRNA is the most extensively modified RNA in cells. On average, a bacterial tRNA contains 8 modifications per molecule and a eukaryotic tRNA contains 13 modifications per molecule. Recent studies reveal that tRNA modifications are highly dynamic and respond extensively to environmental conditions. Functions of tRNA modification dynamics include enhanced, on-demand decoding of specific codons in response genes and regulation of tRNA fragment biogenesis. This review summarizes recent advances in the studies of tRNA modification dynamics in biological processes, tRNA modification erasers, and human-associated bacteria. Furthermore, we use the term "metaepitranscriptomics" to describe the potential and approach of tRNA modification studies in natural biological communities such as microbiomes. tRNA is highly modified in cells, and tRNA modifications respond extensively to environmental conditions to enhance translation of specific genes and produce tRNA fragments on demand. We review recent advances in tRNA sequencing methods, tRNA modification dynamics in biological processes, and tRNA modification studies in natural communities such as the microbiomes.
Collapse
Affiliation(s)
- Wen Zhang
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Marcus Foo
- Committee on Microbiology, University of Chicago, Chicago, IL 60637, USA
| | - A. Murat Eren
- Committee on Microbiology, University of Chicago, Chicago, IL 60637, USA;,Department of Medicine, University of Chicago, Chicago, IL 60637, USA;,Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
| | - Tao Pan
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, IL 60637, USA; Committee on Microbiology, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
23
|
Obermann HL, Lederbogen II, Steele J, Dorna J, Sander LE, Engelhardt K, Bakowsky U, Kaufmann A, Bauer S. RNA-Cholesterol Nanoparticles Function as Potent Immune Activators via TLR7 and TLR8. Front Immunol 2022; 12:658895. [PMID: 35126343 PMCID: PMC8814444 DOI: 10.3389/fimmu.2021.658895] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 12/27/2021] [Indexed: 12/30/2022] Open
Abstract
The innate immune system senses viral and bacterial ribonucleic acid (RNA) via pattern recognition receptors (PRR) leading to subsequent activation of the immune system. One group of RNA sensors is formed by endosomal/lysosomal Toll-like receptors (TLR) such as TLR7 and TLR8. During viral or bacterial infection, immunostimulatory RNA is part of the pathogen reaching the endosomal/lysosomal compartment after cellular uptake. Synthetic single-stranded or double-stranded oligoribonucleotides (ORN) can mimic RNA from pathogens and are widely used as activating ligands for TLR7 and TLR8. However, one limitation in the use of synthetic ORN driven immune stimulation is the need for transfection reagents for RNA delivery into cells. Here we demonstrate that the conjugation of cholesterol to a double-stranded version of immunostimulatory RNA40 strongly enhanced RNA uptake into monocytes and plasmacytoid dendritic cells when compared to naked RNA. Cholesterol-conjugated RNA (RNA-chol) formed nanoparticles that were superior to RNA-liposomes complexes in regard to induction of type I interferon from human and murine plasmacytoid dendritic cells as well as proinflammatory cytokine production (e.g. TNF-α, IL12p70 or IL-6) in human monocytes. Furthermore, the RNA40-chol induced cytokines in human monocyte cultures supported TH1 and TFH cell differentiation underscoring a strong adjuvant function of RNA-chol nanoparticles for adaptive immune responses. In summary, cholesterol-conjugated immunostimulatory RNA forms nanoparticles and functions as a potent immune adjuvant in human and murine immune cells. It further simplifies the use of immunostimulatory RNA by avoiding the need for liposomal transfection reagents.
Collapse
Affiliation(s)
| | - Ines I Lederbogen
- Institute for Immunology, Philipps-University Marburg, Marburg, Germany
| | - Jenny Steele
- Department of Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jens Dorna
- Institute for Immunology, Philipps-University Marburg, Marburg, Germany
| | - Leif Erik Sander
- Department of Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Konrad Engelhardt
- Department of Pharmaceutics and Biopharmaceutics, Philipps-University Marburg, Marburg, Germany
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, Philipps-University Marburg, Marburg, Germany
| | - Andreas Kaufmann
- Institute for Immunology, Philipps-University Marburg, Marburg, Germany
| | - Stefan Bauer
- Institute for Immunology, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
24
|
Khosravi HM, Jantsch MF. Site-directed RNA editing: recent advances and open challenges. RNA Biol 2021; 18:41-50. [PMID: 34569891 PMCID: PMC8677011 DOI: 10.1080/15476286.2021.1983288] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/25/2021] [Accepted: 09/16/2021] [Indexed: 12/19/2022] Open
Abstract
RNA editing by cytosine and adenosine deaminases changes the identity of the edited bases. While cytosines are converted to uracils, adenines are converted to inosines. If coding regions of mRNAs are affected, the coding potential of the RNA can be changed, depending on the codon affected. The recoding potential of nucleotide deaminases has recently gained attention for their ability to correct genetic mutations by either reverting the mutation itself or by manipulating processing steps such as RNA splicing. In contrast to CRISPR-based DNA-editing approaches, RNA editing events are transient in nature, therefore reducing the risk of long-lasting inadvertent side-effects. Moreover, some RNA-based therapeutics are already FDA approved and their use in targeting multiple cells or organs to restore genetic function has already been shown. In this review, we provide an overview on the current status and technical differences of site-directed RNA-editing approaches. We also discuss advantages and challenges of individual approaches.
Collapse
Affiliation(s)
- Hamid Mansouri Khosravi
- Center of Anatomy & Cell Biology Division of Cell & Developmental Biology Medical, Unviersity of Vienna SchwarzspanierstrasseVienna, Austria
| | - Michael F. Jantsch
- Center of Anatomy & Cell Biology Division of Cell & Developmental Biology Medical, Unviersity of Vienna SchwarzspanierstrasseVienna, Austria
| |
Collapse
|
25
|
Yu AM, Tu MJ. Deliver the promise: RNAs as a new class of molecular entities for therapy and vaccination. Pharmacol Ther 2021; 230:107967. [PMID: 34403681 PMCID: PMC9477512 DOI: 10.1016/j.pharmthera.2021.107967] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/06/2021] [Accepted: 07/13/2021] [Indexed: 12/19/2022]
Abstract
The concepts of developing RNAs as new molecular entities for therapies have arisen again and again since the discoveries of antisense RNAs, direct RNA-protein interactions, functional noncoding RNAs, and RNA-directed gene editing. The feasibility was demonstrated with the development and utilization of synthetic RNA agents to selectively control target gene expression, modulate protein functions or alter the genome to manage diseases. Rather, RNAs are labile to degradation and cannot cross cell membrane barriers, making it hard to develop RNA medications. With the development of viable RNA technologies, such as chemistry and pharmaceutics, eight antisense oligonucleotides (ASOs) (fomivirsen, mipomersen, eteplirsen, nusinersen, inotersen, golodirsen, viltolarsen and casimersen), one aptamer (pegaptanib), and three small interfering RNAs (siRNAs) (patisiran, givosiran and lumasiran) have been approved by the United States Food and Drug Administration (FDA) for therapies, and two mRNA vaccines (BNT162b2 and mRNA-1273) under Emergency Use Authorization for the prevention of COVID-19. Therefore, RNAs have become a great addition to small molecules, proteins/antibodies, and cell-based modalities to improve the public health. In this article, we first summarize the general characteristics of therapeutic RNA agents, including chemistry, common delivery strategies, mechanisms of actions, and safety. By overviewing individual RNA medications and vaccines approved by the FDA and some agents under development, we illustrate the unique compositions and pharmacological actions of RNA products. A new era of RNA research and development will likely lead to commercialization of more RNA agents for medical use, expanding the range of therapeutic targets and increasing the diversity of molecular modalities.
Collapse
Affiliation(s)
- Ai-Ming Yu
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA.
| | - Mei-Juan Tu
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA
| |
Collapse
|
26
|
Antoine L, Bahena-Ceron R, Devi Bunwaree H, Gobry M, Loegler V, Romby P, Marzi S. RNA Modifications in Pathogenic Bacteria: Impact on Host Adaptation and Virulence. Genes (Basel) 2021; 12:1125. [PMID: 34440299 PMCID: PMC8394870 DOI: 10.3390/genes12081125] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 12/19/2022] Open
Abstract
RNA modifications are involved in numerous biological processes and are present in all RNA classes. These modifications can be constitutive or modulated in response to adaptive processes. RNA modifications play multiple functions since they can impact RNA base-pairings, recognition by proteins, decoding, as well as RNA structure and stability. However, their roles in stress, environmental adaptation and during infections caused by pathogenic bacteria have just started to be appreciated. With the development of modern technologies in mass spectrometry and deep sequencing, recent examples of modifications regulating host-pathogen interactions have been demonstrated. They show how RNA modifications can regulate immune responses, antibiotic resistance, expression of virulence genes, and bacterial persistence. Here, we illustrate some of these findings, and highlight the strategies used to characterize RNA modifications, and their potential for new therapeutic applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Stefano Marzi
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR 9002, F-67000 Strasbourg, France; (L.A.); (R.B.-C.); (H.D.B.); (M.G.); (V.L.); (P.R.)
| |
Collapse
|
27
|
Kausar S, Abbas MN, Cui H. A review on the DNA methyltransferase family of insects: Aspect and prospects. Int J Biol Macromol 2021; 186:289-302. [PMID: 34237376 DOI: 10.1016/j.ijbiomac.2021.06.205] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/22/2021] [Accepted: 06/30/2021] [Indexed: 12/11/2022]
Abstract
The DNA methyltransferase family contains a conserved set of DNA-modifying enzymatic proteins. They are responsible for epigenetic gene modulation, such as transcriptional silencing, transcription activation, and post-transcriptional modulation. Recent research has revealed that the canonical DNA methyltransferases (DNMTs) biological roles go beyond their traditional functions of establishing and maintaining DNA methylation patterns. Although a complete DNA methylation toolkit is absent in most insect orders, recent evidence indicates the de novo DNA methylation and maintenance function remain conserved. Studies using various molecular approaches provided evidence that DNMTs are multi-functional proteins. However, still in-depth studies on their biological role lack due to the least studied area in insects. Here, we review the DNA methylation toolkit of insects, focusing on recent research on various insect orders, which exhibit DNA methylation at different levels, and for which DNMTs functional studies have become available in recent years. We survey research on the potential roles of DNMTs in the regulation of gene transcription in insect species. DNMTs participate in different physiological processes by interacting with other epigenetic factors. Future studies on insect's DNMTs will benefit to understand developmental processes, responses to various stimuli, and adaptability of insects to different environmental conditions.
Collapse
Affiliation(s)
- Saima Kausar
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Muhammad Nadeem Abbas
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China.
| |
Collapse
|
28
|
Schauerte M, Pozhydaieva N, Höfer K. Shaping the Bacterial Epitranscriptome-5'-Terminal and Internal RNA Modifications. Adv Biol (Weinh) 2021; 5:e2100834. [PMID: 34121369 DOI: 10.1002/adbi.202100834] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/07/2021] [Indexed: 11/11/2022]
Abstract
All domains of life utilize a diverse set of modified ribonucleotides that can impact the sequence, structure, function, stability, and the fate of RNAs, as well as their interactions with other molecules. Today, more than 160 different RNA modifications are known that decorate the RNA at the 5'-terminus or internal RNA positions. The boost of next-generation sequencing technologies sets the foundation to identify and study the functional role of RNA modifications. The recent advances in the field of RNA modifications reveal a novel regulatory layer between RNA modifications and proteins, which is central to developing a novel concept called "epitranscriptomics." The majority of RNA modifications studies focus on the eukaryotic epitranscriptome. In contrast, RNA modifications in prokaryotes are poorly characterized. This review outlines the current knowledge of the prokaryotic epitranscriptome focusing on mRNA modifications. Here, it is described that several internal and 5'-terminal RNA modifications either present or likely present in prokaryotic mRNA. Thereby, the individual techniques to identify these epitranscriptomic modifications, their writers, readers and erasers, and their proposed functions are explored. Besides that, still unanswered questions in the field of prokaryotic epitranscriptomics are pointed out, and its future perspectives in the dawn of next-generation sequencing technologies are outlined.
Collapse
Affiliation(s)
- Maik Schauerte
- Max-Planck-Institute for terrestrial Microbiology, Marburg, Hessen, 35043, Germany
| | - Nadiia Pozhydaieva
- Max-Planck-Institute for terrestrial Microbiology, Marburg, Hessen, 35043, Germany
| | - Katharina Höfer
- Max-Planck-Institute for terrestrial Microbiology, Marburg, Hessen, 35043, Germany
| |
Collapse
|
29
|
Johnson MB, Chandler M, Afonin KA. Nucleic acid nanoparticles (NANPs) as molecular tools to direct desirable and avoid undesirable immunological effects. Adv Drug Deliv Rev 2021; 173:427-438. [PMID: 33857556 PMCID: PMC8178219 DOI: 10.1016/j.addr.2021.04.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/05/2021] [Accepted: 04/08/2021] [Indexed: 12/12/2022]
Abstract
Nucleic acid nanoparticles (NANPs) represent a highly versatile molecular platform for the targeted delivery of various therapeutics. However, despite their promise, further clinical translation of this innovative technology can be hindered by immunological off-target effects. All human cells are equipped with an arsenal of receptors that recognize molecular patterns specific to foreign nucleic acids and understanding the rules that guide this recognition offer the key rationale for the development of therapeutic NANPs with tunable immune stimulation. Numerous recent studies have provided increasing evidence that in addition to NANPs' physicochemical properties and therapeutic effects, their interactions with cells of the immune system can be regulated through multiple independently programmable architectural parameters. The results further suggest that defined immunomodulation by NANPs can either support their immunoquiescent delivery or be used for conditional stimulation of beneficial immunological responses.
Collapse
Affiliation(s)
- M Brittany Johnson
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Morgan Chandler
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Kirill A Afonin
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| |
Collapse
|
30
|
Zhang M, Song J, Yuan W, Zhang W, Sun Z. Roles of RNA Methylation on Tumor Immunity and Clinical Implications. Front Immunol 2021; 12:641507. [PMID: 33777035 PMCID: PMC7987906 DOI: 10.3389/fimmu.2021.641507] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/15/2021] [Indexed: 12/22/2022] Open
Abstract
RNA methylation is a kind of RNA modification that exists widely in eukaryotes and prokaryotes. RNA methylation occurs not only in mRNA but also in ncRNA. According to the different sites of methylation, RNA methylation includes m6A, m5C, m7G, and 2-O-methylation modifications. Modifications affect the splicing, nucleation, stability and immunogenicity of RNA. RNA methylation is involved in many physiological and pathological processes. In the immune system, especially for tumor immunity, RNA methylation affects the maturation and response function of immune cells. Through the influence of RNA immunogenicity and innate immune components, modifications regulate the innate immunity of the body. Some recent studies verified that RNA methylation can regulate tumor immunity, which also provides a new idea for the future of treating immunological diseases and tumor immunotherapy.
Collapse
Affiliation(s)
- Maorun Zhang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junmin Song
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Weitang Yuan
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei Zhang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenqiang Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
31
|
Schaefer MR. The Regulation of RNA Modification Systems: The Next Frontier in Epitranscriptomics? Genes (Basel) 2021; 12:345. [PMID: 33652758 PMCID: PMC7996938 DOI: 10.3390/genes12030345] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 12/12/2022] Open
Abstract
RNA modifications, long considered to be molecular curiosities embellishing just abundant and non-coding RNAs, have now moved into the focus of both academic and applied research. Dedicated research efforts (epitranscriptomics) aim at deciphering the underlying principles by determining RNA modification landscapes and investigating the molecular mechanisms that establish, interpret and modulate the information potential of RNA beyond the combination of four canonical nucleotides. This has resulted in mapping various epitranscriptomes at high resolution and in cataloguing the effects caused by aberrant RNA modification circuitry. While the scope of the obtained insights has been complex and exciting, most of current epitranscriptomics appears to be stuck in the process of producing data, with very few efforts to disentangle cause from consequence when studying a specific RNA modification system. This article discusses various knowledge gaps in this field with the aim to raise one specific question: how are the enzymes regulated that dynamically install and modify RNA modifications? Furthermore, various technologies will be highlighted whose development and use might allow identifying specific and context-dependent regulators of epitranscriptomic mechanisms. Given the complexity of individual epitranscriptomes, determining their regulatory principles will become crucially important, especially when aiming at modifying specific aspects of an epitranscriptome both for experimental and, potentially, therapeutic purposes.
Collapse
Affiliation(s)
- Matthias R Schaefer
- Centre for Anatomy & Cell Biology, Division of Cell-and Developmental Biology, Medical University of Vienna, Schwarzspanierstrasse 17, Haus C, 1st Floor, 1090 Vienna, Austria
| |
Collapse
|
32
|
Chujo T, Tomizawa K. Human transfer RNA modopathies: diseases caused by aberrations in transfer RNA modifications. FEBS J 2021; 288:7096-7122. [PMID: 33513290 PMCID: PMC9255597 DOI: 10.1111/febs.15736] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/13/2020] [Accepted: 01/27/2021] [Indexed: 12/14/2022]
Abstract
tRNA molecules are post-transcriptionally modified by tRNA modification enzymes. Although composed of different chemistries, more than 40 types of human tRNA modifications play pivotal roles in protein synthesis by regulating tRNA structure and stability as well as decoding genetic information on mRNA. Many tRNA modifications are conserved among all three kingdoms of life, and aberrations in various human tRNA modification enzymes cause life-threatening diseases. Here, we describe the class of diseases and disorders caused by aberrations in tRNA modifications as 'tRNA modopathies'. Aberrations in over 50 tRNA modification enzymes are associated with tRNA modopathies, which most frequently manifest as dysfunctions of the brain and/or kidney, mitochondrial diseases, and cancer. However, the molecular mechanisms that link aberrant tRNA modifications to human diseases are largely unknown. In this review, we provide a comprehensive compilation of human tRNA modification functions, tRNA modification enzyme genes, and tRNA modopathies, and we summarize the elucidated pathogenic mechanisms underlying several tRNA modopathies. We will also discuss important questions that need to be addressed in order to understand the molecular pathogenesis of tRNA modopathies.
Collapse
Affiliation(s)
- Takeshi Chujo
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Japan
| | - Kazuhito Tomizawa
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Japan
| |
Collapse
|
33
|
Galvanin A, Vogt LM, Grober A, Freund I, Ayadi L, Bourguignon-Igel V, Bessler L, Jacob D, Eigenbrod T, Marchand V, Dalpke A, Helm M, Motorin Y. Bacterial tRNA 2'-O-methylation is dynamically regulated under stress conditions and modulates innate immune response. Nucleic Acids Res 2020; 48:12833-12844. [PMID: 33275131 PMCID: PMC7736821 DOI: 10.1093/nar/gkaa1123] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/03/2020] [Indexed: 12/23/2022] Open
Abstract
RNA modifications are a well-recognized way of gene expression regulation at the post-transcriptional level. Despite the importance of this level of regulation, current knowledge on modulation of tRNA modification status in response to stress conditions is far from being complete. While it is widely accepted that tRNA modifications are rather dynamic, such variations are mostly assessed in terms of total tRNA, with only a few instances where changes could be traced to single isoacceptor species. Using Escherichia coli as a model system, we explored stress-induced modulation of 2'-O-methylations in tRNAs by RiboMethSeq. This analysis and orthogonal analytical measurements by LC-MS show substantial, but not uniform, increase of the Gm18 level in selected tRNAs under mild bacteriostatic antibiotic stress, while other Nm modifications remain relatively constant. The absence of Gm18 modification in tRNAs leads to moderate alterations in E. coli mRNA transcriptome, but does not affect polysomal association of mRNAs. Interestingly, the subset of motility/chemiotaxis genes is significantly overexpressed in ΔTrmH mutant, this corroborates with increased swarming motility of the mutant strain. The stress-induced increase of tRNA Gm18 level, in turn, reduced immunostimulation properties of bacterial tRNAs, which is concordant with the previous observation that Gm18 is a suppressor of Toll-like receptor 7 (TLR7)-mediated interferon release. This documents an effect of stress induced modulation of tRNA modification that acts outside protein translation.
Collapse
Affiliation(s)
- Adeline Galvanin
- Université de Lorraine, CNRS, IMoPA (UMR7365), F54000 Nancy, France
| | - Lea-Marie Vogt
- Institute of Pharmaceutical and Biomedical Science, Johannes Gutenberg-University Mainz, 55128 Mainz, Germany
| | - Antonia Grober
- Institute of Medical Microbiology and Hygiene, Technische Universität Dresden, 01307 Dresden, Germany
| | - Isabel Freund
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Ruprecht-Karls University Heidelberg, 69117 Heidelberg, Germany
| | - Lilia Ayadi
- Université de Lorraine, CNRS, IMoPA (UMR7365), F54000 Nancy, France
- Université de Lorraine, CNRS, INSERM, IBSLor (UMS2008/US40), Epitranscriptomics and RNA Sequencing Core Facility, F54000 Nancy, France
| | - Valerie Bourguignon-Igel
- Université de Lorraine, CNRS, IMoPA (UMR7365), F54000 Nancy, France
- Université de Lorraine, CNRS, INSERM, IBSLor (UMS2008/US40), Epitranscriptomics and RNA Sequencing Core Facility, F54000 Nancy, France
| | - Larissa Bessler
- Institute of Pharmaceutical and Biomedical Science, Johannes Gutenberg-University Mainz, 55128 Mainz, Germany
| | - Dominik Jacob
- Institute of Pharmaceutical and Biomedical Science, Johannes Gutenberg-University Mainz, 55128 Mainz, Germany
| | - Tatjana Eigenbrod
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Ruprecht-Karls University Heidelberg, 69117 Heidelberg, Germany
| | - Virginie Marchand
- Université de Lorraine, CNRS, INSERM, IBSLor (UMS2008/US40), Epitranscriptomics and RNA Sequencing Core Facility, F54000 Nancy, France
| | - Alexander Dalpke
- Institute of Medical Microbiology and Hygiene, Technische Universität Dresden, 01307 Dresden, Germany
| | - Mark Helm
- Institute of Pharmaceutical and Biomedical Science, Johannes Gutenberg-University Mainz, 55128 Mainz, Germany
| | - Yuri Motorin
- Université de Lorraine, CNRS, IMoPA (UMR7365), F54000 Nancy, France
- Université de Lorraine, CNRS, INSERM, IBSLor (UMS2008/US40), Epitranscriptomics and RNA Sequencing Core Facility, F54000 Nancy, France
| |
Collapse
|
34
|
Pawar K, Shigematsu M, Sharbati S, Kirino Y. Infection-induced 5'-half molecules of tRNAHisGUG activate Toll-like receptor 7. PLoS Biol 2020; 18:e3000982. [PMID: 33332353 PMCID: PMC7745994 DOI: 10.1371/journal.pbio.3000982] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/13/2020] [Indexed: 01/15/2023] Open
Abstract
Toll-like receptors (TLRs) play a crucial role in the innate immune response. Although endosomal TLR7 recognizes single-stranded RNAs, their endogenous RNA ligands have not been fully explored. Here, we report 5'-tRNA half molecules as abundant activators of TLR7. Mycobacterial infection and accompanying surface TLR activation up-regulate the expression of 5'-tRNA half molecules in human monocyte-derived macrophages (HMDMs). The abundant accumulation of 5'-tRNA halves also occur in HMDM-secreted extracellular vehicles (EVs); the abundance of EV-5'-tRNAHisGUG half molecules is >200-fold higher than that of the most abundant EV-microRNA (miRNA). Sequence identification of the 5'-tRNA halves using cP-RNA-seq revealed abundant and selective packaging of specific 5'-tRNA half species into EVs. The EV-5'-tRNAHisGUG half was experimentally demonstrated to be delivered into endosomes in recipient cells and to activate endosomal TLR7. Up-regulation of the 5'-tRNA half molecules was also observed in the plasma of patients infected with Mycobacterium tuberculosis. These results unveil a novel tRNA-engaged pathway in the innate immune response and assign the role of "immune activators" to 5'-tRNA half molecules.
Collapse
Affiliation(s)
- Kamlesh Pawar
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Megumi Shigematsu
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Soroush Sharbati
- Institute of Veterinary Biochemistry, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Yohei Kirino
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
35
|
Abstract
As one of the most abundant and conserved RNA species, transfer RNAs (tRNAs) are well known for their role in reading the codons on messenger RNAs and translating them into proteins. In this review, we discuss the noncanonical functions of tRNAs. These include tRNAs as precursors to novel small RNA molecules derived from tRNAs, also called tRNA-derived fragments, that are abundant across species and have diverse functions in different biological processes, including regulating protein translation, Argonaute-dependent gene silencing, and more. Furthermore, the role of tRNAs in biosynthesis and other regulatory pathways, including nutrient sensing, splicing, transcription, retroelement regulation, immune response, and apoptosis, is reviewed. Genome organization and sequence variation of tRNA genes are also discussed in light of their noncanonical functions. Lastly, we discuss the recent applications of tRNAs in genome editing and microbiome sequencing.
Collapse
Affiliation(s)
- Zhangli Su
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, Virginia 22901, USA; , , ,
| | - Briana Wilson
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, Virginia 22901, USA; , , ,
| | - Pankaj Kumar
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, Virginia 22901, USA; , , ,
| | - Anindya Dutta
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, Virginia 22901, USA; , , ,
| |
Collapse
|
36
|
Yu AM, Choi YH, Tu MJ. RNA Drugs and RNA Targets for Small Molecules: Principles, Progress, and Challenges. Pharmacol Rev 2020; 72:862-898. [PMID: 32929000 PMCID: PMC7495341 DOI: 10.1124/pr.120.019554] [Citation(s) in RCA: 229] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
RNA-based therapies, including RNA molecules as drugs and RNA-targeted small molecules, offer unique opportunities to expand the range of therapeutic targets. Various forms of RNAs may be used to selectively act on proteins, transcripts, and genes that cannot be targeted by conventional small molecules or proteins. Although development of RNA drugs faces unparalleled challenges, many strategies have been developed to improve RNA metabolic stability and intracellular delivery. A number of RNA drugs have been approved for medical use, including aptamers (e.g., pegaptanib) that mechanistically act on protein target and small interfering RNAs (e.g., patisiran and givosiran) and antisense oligonucleotides (e.g., inotersen and golodirsen) that directly interfere with RNA targets. Furthermore, guide RNAs are essential components of novel gene editing modalities, and mRNA therapeutics are under development for protein replacement therapy or vaccination, including those against unprecedented severe acute respiratory syndrome coronavirus pandemic. Moreover, functional RNAs or RNA motifs are highly structured to form binding pockets or clefts that are accessible by small molecules. Many natural, semisynthetic, or synthetic antibiotics (e.g., aminoglycosides, tetracyclines, macrolides, oxazolidinones, and phenicols) can directly bind to ribosomal RNAs to achieve the inhibition of bacterial infections. Therefore, there is growing interest in developing RNA-targeted small-molecule drugs amenable to oral administration, and some (e.g., risdiplam and branaplam) have entered clinical trials. Here, we review the pharmacology of novel RNA drugs and RNA-targeted small-molecule medications, with a focus on recent progresses and strategies. Challenges in the development of novel druggable RNA entities and identification of viable RNA targets and selective small-molecule binders are discussed. SIGNIFICANCE STATEMENT: With the understanding of RNA functions and critical roles in diseases, as well as the development of RNA-related technologies, there is growing interest in developing novel RNA-based therapeutics. This comprehensive review presents pharmacology of both RNA drugs and RNA-targeted small-molecule medications, focusing on novel mechanisms of action, the most recent progress, and existing challenges.
Collapse
MESH Headings
- Aptamers, Nucleotide/pharmacology
- Aptamers, Nucleotide/therapeutic use
- Betacoronavirus
- COVID-19
- Chemistry Techniques, Analytical/methods
- Chemistry Techniques, Analytical/standards
- Clustered Regularly Interspaced Short Palindromic Repeats
- Coronavirus Infections/drug therapy
- Drug Delivery Systems/methods
- Drug Development/organization & administration
- Drug Discovery
- Humans
- MicroRNAs/pharmacology
- MicroRNAs/therapeutic use
- Oligonucleotides, Antisense/pharmacology
- Oligonucleotides, Antisense/therapeutic use
- Pandemics
- Pneumonia, Viral/drug therapy
- RNA/adverse effects
- RNA/drug effects
- RNA/pharmacology
- RNA, Antisense/pharmacology
- RNA, Antisense/therapeutic use
- RNA, Messenger/drug effects
- RNA, Messenger/pharmacology
- RNA, Ribosomal/drug effects
- RNA, Ribosomal/pharmacology
- RNA, Small Interfering/pharmacology
- RNA, Small Interfering/therapeutic use
- RNA, Viral/drug effects
- Ribonucleases/metabolism
- Riboswitch/drug effects
- SARS-CoV-2
Collapse
Affiliation(s)
- Ai-Ming Yu
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, California (A.-M.Y., Y.H.C., M.-J.T.) and College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang-si, Gyonggi-do, Republic of Korea (Y.H.C.)
| | - Young Hee Choi
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, California (A.-M.Y., Y.H.C., M.-J.T.) and College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang-si, Gyonggi-do, Republic of Korea (Y.H.C.)
| | - Mei-Juan Tu
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, California (A.-M.Y., Y.H.C., M.-J.T.) and College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang-si, Gyonggi-do, Republic of Korea (Y.H.C.)
| |
Collapse
|
37
|
Constitutive immune mechanisms: mediators of host defence and immune regulation. Nat Rev Immunol 2020; 21:137-150. [PMID: 32782357 PMCID: PMC7418297 DOI: 10.1038/s41577-020-0391-5] [Citation(s) in RCA: 186] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2020] [Indexed: 02/07/2023]
Abstract
The immune system enables organisms to combat infections and to eliminate endogenous challenges. Immune responses can be evoked through diverse inducible pathways. However, various constitutive mechanisms are also required for immunocompetence. The inducible responses of pattern recognition receptors of the innate immune system and antigen-specific receptors of the adaptive immune system are highly effective, but they also have the potential to cause extensive immunopathology and tissue damage, as seen in many infectious and autoinflammatory diseases. By contrast, constitutive innate immune mechanisms, including restriction factors, basal autophagy and proteasomal degradation, tend to limit immune responses, with loss-of-function mutations in these pathways leading to inflammation. Although they function through a broad and heterogeneous set of mechanisms, the constitutive immune responses all function as early barriers to infection and aim to minimize any disruption of homeostasis. Supported by recent human and mouse data, in this Review we compare and contrast the inducible and constitutive mechanisms of immunosurveillance.
Collapse
|
38
|
Zhu C, Sun B, Nie A, Zhou Z. The tRNA-associated dysregulation in immune responses and immune diseases. Acta Physiol (Oxf) 2020; 228:e13391. [PMID: 31529760 DOI: 10.1111/apha.13391] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/31/2019] [Accepted: 09/08/2019] [Indexed: 12/12/2022]
Abstract
Transfer RNA (tRNA), often considered as a housekeeping molecule, mainly participates in protein translation by transporting amino acids to the ribosome. Nevertheless, accumulating evidence has shown that tRNAs are closely related to various physiological and pathological processes. The proper functioning of the immune system is the key to human health. The aim of this review is to investigate the relationships between tRNAs and the immune system. We detail the biogenesis and structure of tRNAs and summarize the pathogen tRNA-mediated infection and host responses. In addition, we address recent advances in different aspects of tRNA-associated dysregulation in immune responses and immune diseases, such as tRNA molecules, tRNA modifications, tRNA derivatives and tRNA aminoacylation. Therefore, tRNAs play an important role in immune regulation. Although our knowledge of tRNAs in the context of immunity remains, for the most part, unknown, this field deserves in-depth research to provide new ideas for the treatment of immune diseases.
Collapse
Affiliation(s)
- Chunsheng Zhu
- Department of Chinese Medicine The First Affiliated Hospital of Zhengzhou University Zhengzhou China
| | - Bao Sun
- Department of Clinical Pharmacology Xiangya Hospital Central South University Changsha China
- Hunan Key Laboratory of Pharmacogenetics Institute of Clinical Pharmacology Central South University Changsha China
| | - Anzheng Nie
- Department of Chinese Medicine The First Affiliated Hospital of Zhengzhou University Zhengzhou China
| | - Zheng Zhou
- Department of Chinese Medicine The First Affiliated Hospital of Zhengzhou University Zhengzhou China
| |
Collapse
|
39
|
Basu A, Yoshihama M, Uechi T, Kenmochi N. Prokaryotic ribosomal RNA stimulates zebrafish embryonic innate immune system. BMC Res Notes 2020; 13:6. [PMID: 31900206 PMCID: PMC6942260 DOI: 10.1186/s13104-019-4878-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 12/26/2019] [Indexed: 11/23/2022] Open
Abstract
Objectives Cell-culture studies reported that prokaryotic RNA molecules among the various microbe-associated molecular patterns (MAMPs) were uniquely present in live bacteria and were categorized as viability-associated MAMPs. They also reported that specific nucleotide modifications are instrumental in the discrimination between self and nonself RNAs. The aim of this study was to characterize the in vivo immune induction potential of prokaryotic and eukaryotic ribosomal RNAs (rRNAs) using zebrafish embryos as novel whole animal model system. Additionally, we aimed to test the possible role of rRNA modifications in immune recognition. Results We used three immune markers to evaluate the induction potential of prokaryotic rRNA derived from Escherichia coli and eukaryotic rRNAs from chicken (nonself) and zebrafish (self). Lipopolysaccharide (LPS) of Pseudomonas aeruginosa served as a positive control. E. coli rRNA had an induction potential equivalent to that of LPS. The zebrafish innate immune system could discriminate between self and nonself rRNAs. Between the nonself rRNAs, E. coli rRNA was more immunogenic than chicken rRNA. The in vitro transcript of zebrafish 18S rRNA gene without the nucleotide modifications was not recognized by its own immune system. Our data suggested that prokaryotic rRNA is immunostimulatory in vivo and could be useful as an adjuvant.
Collapse
Affiliation(s)
- Abhishikta Basu
- Frontier Science Research Center, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Maki Yoshihama
- Frontier Science Research Center, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Tamayo Uechi
- Frontier Science Research Center, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Naoya Kenmochi
- Frontier Science Research Center, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan.
| |
Collapse
|
40
|
Chen Z, Qi M, Shen B, Luo G, Wu Y, Li J, Lu Z, Zheng Z, Dai Q, Wang H. Transfer RNA demethylase ALKBH3 promotes cancer progression via induction of tRNA-derived small RNAs. Nucleic Acids Res 2019; 47:2533-2545. [PMID: 30541109 PMCID: PMC6411830 DOI: 10.1093/nar/gky1250] [Citation(s) in RCA: 247] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/16/2018] [Accepted: 12/03/2018] [Indexed: 12/11/2022] Open
Abstract
Transfer RNA is heavily modified and plays a central role in protein synthesis and cellular functions. Here we demonstrate that ALKBH3 is a 1-methyladenosine (m1A) and 3-methylcytidine (m3C) demethylase of tRNA. ALKBH3 can promote cancer cell proliferation, migration and invasion. In vivo study confirms the regulation effects of ALKBH3 on growth of tumor xenograft. The m1A demethylated tRNA is more sensitive to angiogenin (ANG) cleavage, followed by generating tRNA-derived small RNAs (tDRs) around the anticodon regions. tDRs are conserved among species, which strengthen the ribosome assembly and prevent apoptosis triggered by cytochrome c (Cyt c). Our discovery opens a potential and novel paradigm of tRNA demethylase, which regulates biological functions via generation of tDRs.
Collapse
Affiliation(s)
- Zhuojia Chen
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China.,Department of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Meijie Qi
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 211166, China
| | - Bin Shen
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 211166, China
| | - Guanzheng Luo
- Department of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA.,School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yingmin Wu
- Department of Microbial and Biochemical Pharmacy, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jiexin Li
- Department of Microbial and Biochemical Pharmacy, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhike Lu
- Department of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Zhong Zheng
- Department of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Qing Dai
- Department of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Hongsheng Wang
- Department of Microbial and Biochemical Pharmacy, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.,Department of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| |
Collapse
|
41
|
Salem ESB, Vonberg AD, Borra VJ, Gill RK, Nakamura T. RNAs and RNA-Binding Proteins in Immuno-Metabolic Homeostasis and Diseases. Front Cardiovasc Med 2019; 6:106. [PMID: 31482095 PMCID: PMC6710452 DOI: 10.3389/fcvm.2019.00106] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 07/17/2019] [Indexed: 12/16/2022] Open
Abstract
The increasing prevalence of worldwide obesity has emerged as a major risk factor for type 2 diabetes (T2D), hepatosteatosis, and cardiovascular disease. Accumulating evidence indicates that obesity has strong inflammatory underpinnings tightly linked to the development of metabolic diseases. However, the molecular mechanisms by which obesity induces aberrant inflammation associated with metabolic diseases are not yet clearly defined. Recently, RNAs have emerged as important regulators of stress responses and metabolism. RNAs are subject to changes in modification status, higher-order structure, and cellular localization; all of which could affect the affinity for RNA-binding proteins (RBPs) and thereby modify the RNA-RBP networks. Proper regulation and management of RNA characteristics are fundamental to cellular and organismal homeostasis, as well as paramount to health. Identification of multiple single nucleotide polymorphisms (SNPs) within loci of fat mass- and obesity-associated protein (FTO) gene, an RNA demethylase, through genome-wide association studies (GWAS) of T2D, and functional assessments of FTO in mice, support the concept that disruption in RNA modifications leads to the development of human diseases including obesity and metabolic disorder. In obesity, dynamic alterations in modification and localization of RNAs appear to modulate the RNA-RBP networks and activate proinflammatory RBPs, such as double-stranded RNA (dsRNA)-dependent protein kinase (PKR), Toll-like receptor (TLR) 3 and TLR7, and RNA silencing machinery. These changes induce aberrant inflammation and the development of metabolic diseases. This review will describe the current understanding of the underlying causes of these common and altered characteristics of RNA-RBP networks which will pave the way for developing novel approaches to tackle the pandemic issue of obesity.
Collapse
Affiliation(s)
- Esam S B Salem
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Andrew D Vonberg
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Vishnupriya J Borra
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Rupinder K Gill
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Takahisa Nakamura
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Department of Metabolic Bioregulation, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| |
Collapse
|
42
|
Antoine L, Wolff P, Westhof E, Romby P, Marzi S. Mapping post-transcriptional modifications in Staphylococcus aureus tRNAs by nanoLC/MSMS. Biochimie 2019; 164:60-69. [PMID: 31295507 DOI: 10.1016/j.biochi.2019.07.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/03/2019] [Indexed: 02/06/2023]
Abstract
RNA modifications are involved in numerous biological processes. These modifications are constitutive or modulated in response to adaptive processes and can impact RNA base-pairing formation, protein recognition, RNA structure and stability. tRNAs are the most abundantly modified RNA molecules. Analysis of the roles of their modifications in response to stress, environmental changes, and infections caused by pathogens, has fueled new research areas. Nevertheless, the detection of modified nucleotides in RNAs is still a challenging task. We present here a reliable method to identify and localize tRNA modifications, which was applied to the human pathogenic bacteria, Staphyloccocus aureus. The method is based on a separation of tRNA species on a two-dimensional polyacrylamide gel electrophoresis followed by nano liquid chromatography-mass spectrometry. We provided a list of modifications mapped on 25 out of the 40 tRNA species (one isoacceptor for each amino acid). This method can be easily used to monitor the dynamics of tRNA modifications in S. aureus in response to stress adaptation and during infection of the host, a relatively unexplored field.
Collapse
Affiliation(s)
- Laura Antoine
- Université de Strasbourg, CNRS, Architecture et Réactivité de L'ARN, UPR 9002, F-67000, Strasbourg, France
| | - Philippe Wolff
- Université de Strasbourg, CNRS, Architecture et Réactivité de L'ARN, UPR 9002, F-67000, Strasbourg, France; Plateforme Protéomique Strasbourg Esplanade, CNRS, FR1589, F-67000, Strasbourg, France
| | - Eric Westhof
- Université de Strasbourg, CNRS, Architecture et Réactivité de L'ARN, UPR 9002, F-67000, Strasbourg, France
| | - Pascale Romby
- Université de Strasbourg, CNRS, Architecture et Réactivité de L'ARN, UPR 9002, F-67000, Strasbourg, France
| | - Stefano Marzi
- Université de Strasbourg, CNRS, Architecture et Réactivité de L'ARN, UPR 9002, F-67000, Strasbourg, France.
| |
Collapse
|
43
|
Freund I, Buhl DK, Boutin S, Kotter A, Pichot F, Marchand V, Vierbuchen T, Heine H, Motorin Y, Helm M, Dalpke AH, Eigenbrod T. 2'- O-methylation within prokaryotic and eukaryotic tRNA inhibits innate immune activation by endosomal Toll-like receptors but does not affect recognition of whole organisms. RNA (NEW YORK, N.Y.) 2019; 25:869-880. [PMID: 31019095 PMCID: PMC6573781 DOI: 10.1261/rna.070243.118] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/20/2019] [Indexed: 05/10/2023]
Abstract
Bacterial RNA has emerged as an important activator of innate immune responses by stimulating Toll-like receptors TLR7 and TLR8 in humans. Guanosine 2'-O-methylation at position 18 (Gm18) in bacterial tRNA was shown to antagonize tRNA-induced TLR7/8 activation, suggesting a potential role of Gm18 as an immune escape mechanism. This modification also occurs in eukaryotic tRNA, yet a physiological immune function remained to be tested. We therefore set out to investigate the immune modulatory role of Gm18 in both prokaryotic and eukaryotic microorganisms, Escherichia coli and Saccharomyces cerevisiae, and in human cells. Using RiboMethSeq analysis we show that mutation of trmH in E. coli, trm3 in S. cereviase, and CRISPR/Cas9-induced knockout of TARBP1 in H. sapiens results in loss of Gm18 within tRNA. Lack of Gm18 across the kingdoms resulted in increased immunostimulation of peripheral blood mononuclear cells when activated by tRNA preparations. In E. coli, lack of 2'-O-methyltransferase trmH also enhanced immune stimulatory properties by whole cellular RNA. In contrast, lack of Gm18 in yeasts and human cells did not affect immunostimulation by whole RNA preparations. When using live E. coli bacteria, lack of trmH did not affect overall immune stimulation although we detected a defined TLR8/RNA-dependent gene expression signature upon E. coli infection. Together, these results demonstrate that Gm18 is a global immune inhibitory tRNA modification across the kingdoms and contributes to tRNA recognition by innate immune cells, but as an individual modification has insufficient potency to modulate recognition of the investigated microorganisms.
Collapse
Affiliation(s)
- Isabel Freund
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Daniel K Buhl
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Sébastien Boutin
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Annika Kotter
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz, 55128 Mainz, Germany
| | - Florian Pichot
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz, 55128 Mainz, Germany
- IMoPA UMR7365 CNRS-Lorraine University, BioPole Lorraine University, 54500 Vandoeuvre-les-Nancy, France
| | - Virginie Marchand
- UMS2008 IBSLor, CNRS-Lorraine University-INSERM, BioPole Lorraine University, 54500 Vandoeuvre-les-Nancy, France
| | - Tim Vierbuchen
- Division of Innate Immunity, Research Center Borstel, 23845 Borstel, Germany
| | - Holger Heine
- Division of Innate Immunity, Research Center Borstel, 23845 Borstel, Germany
| | - Yuri Motorin
- IMoPA UMR7365 CNRS-Lorraine University, BioPole Lorraine University, 54500 Vandoeuvre-les-Nancy, France
| | - Mark Helm
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz, 55128 Mainz, Germany
| | - Alexander H Dalpke
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Institute of Medical Microbiology and Hygiene, Technical University Dresden, 01307 Dresden, Germany
| | - Tatjana Eigenbrod
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, 69120 Heidelberg, Germany
| |
Collapse
|
44
|
Keller P, Freund I, Marchand V, Bec G, Huang R, Motorin Y, Eigenbrod T, Dalpke A, Helm M. Double methylation of tRNA-U54 to 2'-O-methylthymidine (Tm) synergistically decreases immune response by Toll-like receptor 7. Nucleic Acids Res 2019; 46:9764-9775. [PMID: 30102387 PMCID: PMC6182150 DOI: 10.1093/nar/gky644] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/02/2018] [Indexed: 12/25/2022] Open
Abstract
Sensing of nucleic acids for molecular discrimination between self and non-self is a challenging task for the innate immune system. RNA acts as a potent stimulus for pattern recognition receptors including in particular human Toll-like receptor 7 (TLR7). Certain RNA modifications limit potentially harmful self-recognition of endogenous RNA. Previous studies had identified the 2′-O-methylation of guanosine 18 (Gm18) within tRNAs as an antagonist of TLR7 leading to an impaired immune response. However, human tRNALys3 was non-stimulatory despite lacking Gm18. To identify the underlying molecular principle, interferon responses of human peripheral blood mononuclear cells to differentially modified tRNALys3 were determined. The investigation of synthetic modivariants allowed attributing a significant part of the immunosilencing effect to the 2′-O-methylthymidine (m5Um) modification at position 54. The effect was contingent upon the synergistic presence of both methyl groups at positions C5 and 2’O, as shown by the fact that neither Um54 nor m5U54 produced any effect alone. Testing permutations of the nucleobase at ribose-methylated position 54 suggested that the extent of silencing and antagonism of the TLR7 response was governed by hydrogen patterns and lipophilic interactions of the nucleobase. The results identify a new immune-modulatory endogenous RNA modification that limits TLR7 activation by RNA.
Collapse
Affiliation(s)
- Patrick Keller
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg-University of Mainz, Staudingerweg 5, D-55128 Mainz, Germany
| | - Isabel Freund
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Virginie Marchand
- Next Generation Sequencing Platform, UMS2008 Ingénierie Biologie Santé en Lorraine (IBSLor), BioPôle de l'Université de Lorraine Campus Biologie-Santé, 9, avenue de la Forêt de Haye, CS 50184, 54505 Vandoeuvre-les-Nancy, France
| | - Guillaume Bec
- Biophysics and Structural Biology Team, Unité Architecture et réactivité de l'ARN (UPR9002), Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, 15, rue René Descartes, F67084, Strasbourg cedex, France
| | - Raven Huang
- Department of Biochemistry, Center for Biophysics & Computational Biology, University of Illinois at Urbana-Champaign, 411 Roger Adams Lab., 600 S. Mathews Ave. Urbana, IL 61801, USA
| | - Yuri Motorin
- Laboratoire Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA) UMR7365 CNRS-UL, BioPôle de l'Université de Lorraine Campus Biologie-Santé, 9, avenue de la Forêt de Haye, CS 50184, 54505 Vandoeuvre-les-Nancy, France
| | - Tatjana Eigenbrod
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Alexander Dalpke
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Mark Helm
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg-University of Mainz, Staudingerweg 5, D-55128 Mainz, Germany
| |
Collapse
|
45
|
Abstract
Small-molecule and protein/antibody drugs mainly act on genome-derived proteins to exert pharmacological effects. RNA based therapies hold the promise to expand the range of druggable targets from proteins to RNAs and the genome, as evidenced by several RNA drugs approved for clinical practice and many others under active trials. While chemo-engineered RNA mimics have found their success in marketed drugs and continue dominating basic research and drug development, these molecules are usually conjugated with extensive and various modifications. This makes them completely different from cellular RNAs transcribed from the genome that usually consist of unmodified ribonucleotides or just contain a few posttranscriptional modifications. The use of synthetic RNA mimics for RNA research and drug development is also in contrast with the ultimate success of protein research and therapy utilizing biologic or recombinant proteins produced and folded in living cells instead of polypeptides or proteins synthesized in vitro. Indeed, efforts have been made recently to develop RNA bioengineering technologies for cost-effective and large-scale production of biologic RNA molecules that may better capture the structures, functions, and safety profiles of natural RNAs. In this article, we provide an overview on RNA therapeutics for the treatment of human diseases via RNA interference mechanisms. By illustrating the structural differences between natural RNAs and chemo-engineered RNA mimics, we focus on discussion of a novel class of bioengineered/biologic RNA agents produced through fermentation and their potential applications to RNA research and drug development.
Collapse
Affiliation(s)
- Ai-Ming Yu
- Department of Biochemistry & Molecular Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA.
| | - Chao Jian
- Department of Biochemistry & Molecular Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Allan H Yu
- Department of Biochemistry & Molecular Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Mei-Juan Tu
- Department of Biochemistry & Molecular Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA
| |
Collapse
|
46
|
Vierbuchen T, Stein K, Heine H. RNA is taking its Toll: Impact of RNA-specific Toll-like receptors on health and disease. Allergy 2019; 74:223-235. [PMID: 30475385 DOI: 10.1111/all.13680] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/08/2018] [Accepted: 11/20/2018] [Indexed: 12/13/2022]
Abstract
RNA-sensing Toll-like receptors (TLRs) are often described as antiviral receptors of the innate immune system. However, the past decade has shown that the function and relevance of these receptors are far more complex. They were found to be essential for the detection of various bacterial, archaeal, and eukaryotic microorganisms and facilitate the discrimination between dead and living microbes. The cytokine and interferon response profile that is triggered has the potential to improve the efficacy of next-generation vaccines and may prevent the development of asthma and allergy. Nevertheless, the ability to recognize foreign RNA comes with a cost as also damaged host cells can release nucleic acids that might induce an inappropriate immune response. Thus, it is not surprising that RNA-sensing TLRs play a key role in various autoimmune diseases. However, promising new inhibitors and antagonists are on the horizon to improve their treatment.
Collapse
Affiliation(s)
- Tim Vierbuchen
- Division of Innate Immunity Research Center Borstel – Leibniz Lung Center Borstel Germany
| | - Karina Stein
- Division of Innate Immunity Research Center Borstel – Leibniz Lung Center Borstel Germany
- Airway Research Center North (ARCN) German Center for Lung Research (DZL) Borstel Germany
| | - Holger Heine
- Division of Innate Immunity Research Center Borstel – Leibniz Lung Center Borstel Germany
- Airway Research Center North (ARCN) German Center for Lung Research (DZL) Borstel Germany
| |
Collapse
|
47
|
RNA Modifications Modulate Activation of Innate Toll-Like Receptors. Genes (Basel) 2019; 10:genes10020092. [PMID: 30699960 PMCID: PMC6410116 DOI: 10.3390/genes10020092] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 01/23/2019] [Accepted: 01/25/2019] [Indexed: 12/13/2022] Open
Abstract
Self/foreign discrimination by the innate immune system depends on receptors that identify molecular patterns as associated to pathogens. Among others, this group includes endosomal Toll-like receptors, among which Toll-like receptors (TLR) 3, 7, 8, and 13 recognize and discriminate mammalian from microbial, potentially pathogen-associated, RNA. One of the discriminatory principles is the recognition of endogenous RNA modifications. Previous work has identified a couple of RNA modifications that impede activation of TLR signaling when incorporated in synthetic RNA molecules. Of note, work that is more recent has now shown that RNA modifications in their naturally occurring context can have immune-modulatory functions: Gm, a naturally occurring ribose-methylation within tRNA resulted in a lack of TLR7 stimulation and within a defined sequence context acted as antagonist. Additional RNA modifications with immune-modulatory functions have now been identified and recent work also indicates that RNA modifications within the context of whole prokaryotic or eukaryotic cells are indeed used for immune-modulation. This review will discuss new findings and developments in the field of immune-modulatory RNA modifications.
Collapse
|
48
|
FTSJ3 is an RNA 2'-O-methyltransferase recruited by HIV to avoid innate immune sensing. Nature 2019; 565:500-504. [PMID: 30626973 DOI: 10.1038/s41586-018-0841-4] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 12/04/2018] [Indexed: 11/08/2022]
Abstract
In mammals, 2'-O-methylation of RNA is a molecular signature by which the cellular innate immune system distinguishes endogenous from exogenous messenger RNA1-3. However, the molecular functions of RNA 2'-O-methylation are not well understood. Here we have purified TAR RNA-binding protein (TRBP) and its interacting partners and identified a DICER-independent TRBP complex containing FTSJ3, a putative 2'-O-methyltransferase (2'O-MTase). In vitro and ex vivo experiments show that FTSJ3 is a 2'O-MTase that is recruited to HIV RNA through TRBP. Using RiboMethSeq analysis4, we identified predominantly FTSJ3-dependent 2'-O-methylations at specific residues on the viral genome. HIV-1 viruses produced in FTSJ3 knockdown cells show reduced 2'-O-methylation and trigger expression of type 1 interferons (IFNs) in human dendritic cells through the RNA sensor MDA5. This induction of IFN-α and IFN-β leads to a reduction in HIV expression. We have identified an unexpected mechanism used by HIV-1 to evade innate immune recognition: the recruitment of the TRBP-FTSJ3 complex to viral RNA and its 2'-O-methylation.
Collapse
|
49
|
Ayadi L, Galvanin A, Pichot F, Marchand V, Motorin Y. RNA ribose methylation (2'-O-methylation): Occurrence, biosynthesis and biological functions. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1862:253-269. [PMID: 30572123 DOI: 10.1016/j.bbagrm.2018.11.009] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 11/26/2018] [Accepted: 11/30/2018] [Indexed: 01/01/2023]
Abstract
Methylation of riboses at 2'-OH group is one of the most common RNA modifications found in number of cellular RNAs from almost any species which belong to all three life domains. This modification was extensively studied for decades in rRNAs and tRNAs, but recent data revealed the presence of 2'-O-methyl groups also in low abundant RNAs, like mRNAs. Ribose methylation is formed in RNA by two alternative enzymatic mechanisms: either by stand-alone protein enzymes or by complex assembly of proteins associated with snoRNA guides (sno(s)RNPs). In that case one catalytic subunit acts at various RNA sites, the specificity is provided by base pairing of the sno(s)RNA guide with the target RNA. In this review we compile available information on 2'-OH ribose methylation in different RNAs, enzymatic machineries involved in their biosynthesis and dynamics, as well as on the physiological functions of these modified residues.
Collapse
Affiliation(s)
- Lilia Ayadi
- UMR7365 IMoPA CNRS-Lorraine University, Biopôle, 9 avenue de la forêt de haye, 54505 Vandoeuvre-les-Nancy, France
| | - Adeline Galvanin
- UMR7365 IMoPA CNRS-Lorraine University, Biopôle, 9 avenue de la forêt de haye, 54505 Vandoeuvre-les-Nancy, France
| | - Florian Pichot
- UMS2008 IBSLor CNRS-INSERM-Lorraine University, Biopôle, 9 avenue de la forêt de haye, 54505 Vandoeuvre-les-Nancy, France
| | - Virginie Marchand
- UMS2008 IBSLor CNRS-INSERM-Lorraine University, Biopôle, 9 avenue de la forêt de haye, 54505 Vandoeuvre-les-Nancy, France
| | - Yuri Motorin
- UMR7365 IMoPA CNRS-Lorraine University, Biopôle, 9 avenue de la forêt de haye, 54505 Vandoeuvre-les-Nancy, France.
| |
Collapse
|
50
|
Oberbauer V, Schaefer MR. tRNA-Derived Small RNAs: Biogenesis, Modification, Function and Potential Impact on Human Disease Development. Genes (Basel) 2018; 9:genes9120607. [PMID: 30563140 PMCID: PMC6315542 DOI: 10.3390/genes9120607] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 11/27/2018] [Accepted: 11/29/2018] [Indexed: 12/11/2022] Open
Abstract
Transfer RNAs (tRNAs) are abundant small non-coding RNAs that are crucially important for decoding genetic information. Besides fulfilling canonical roles as adaptor molecules during protein synthesis, tRNAs are also the source of a heterogeneous class of small RNAs, tRNA-derived small RNAs (tsRNAs). Occurrence and the relatively high abundance of tsRNAs has been noted in many high-throughput sequencing data sets, leading to largely correlative assumptions about their potential as biologically active entities. tRNAs are also the most modified RNAs in any cell type. Mutations in tRNA biogenesis factors including tRNA modification enzymes correlate with a variety of human disease syndromes. However, whether it is the lack of tRNAs or the activity of functionally relevant tsRNAs that are causative for human disease development remains to be elucidated. Here, we review the current knowledge in regard to tsRNAs biogenesis, including the impact of RNA modifications on tRNA stability and discuss the existing experimental evidence in support for the seemingly large functional spectrum being proposed for tsRNAs. We also argue that improved methodology allowing exact quantification and specific manipulation of tsRNAs will be necessary before developing these small RNAs into diagnostic biomarkers and when aiming to harness them for therapeutic purposes.
Collapse
Affiliation(s)
- Vera Oberbauer
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University Vienna, Schwarzspanierstrasse 17, A-1090 Vienna, Austria.
| | - Matthias R Schaefer
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University Vienna, Schwarzspanierstrasse 17, A-1090 Vienna, Austria.
| |
Collapse
|