1
|
Biały S, Bogunia-Kubik K. Uncovering the mysteries of human gamma delta T cells: from origins to novel therapeutics. Front Immunol 2025; 16:1543454. [PMID: 40276509 PMCID: PMC12018481 DOI: 10.3389/fimmu.2025.1543454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/24/2025] [Indexed: 04/26/2025] Open
Abstract
Gamma delta (γδ) T cells represent a unique and distinct population of lymphocytes that bridge the innate and adaptive immune responses. This functional duality positions them as one of the pivotal elements in the evolution and development of the human body's defense mechanisms. This review aims to provide a comprehensive and in-depth overview of γδ T cells, covering their origins, development, classification, and functional roles in immunology. Special attention is given to their involvement in the pathogenesis of autoimmune and cancer-related diseases-areas that remain subjects of intensive research with many unanswered questions. Additionally, this article explores the therapeutic potential of γδ T cells, which hold promise as a novel approach to treating various difficult-to-manage diseases. The review also presents an analysis of the latest clinical studies utilizing γδ T cells, emphasizing their emerging role in modern medicine. The ultimate goal of this work is to offer a holistic perspective on the current state of research on γδ T cells and their prospective applications in immunotherapy and cancer treatment, highlighting their potential to become a groundbreaking tool in future medical interventions.
Collapse
Affiliation(s)
- Sylwia Biały
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of
Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | | |
Collapse
|
2
|
Stankiewicz LN, Salim K, Flaschner EA, Wang YX, Edgar JM, Durland LJ, Lin BZB, Bingham GC, Major MC, Jones RD, Blau HM, Rideout EJ, Levings MK, Zandstra PW, Rossi FMV. Sex-biased human thymic architecture guides T cell development through spatially defined niches. Dev Cell 2025; 60:152-169.e8. [PMID: 39383865 DOI: 10.1016/j.devcel.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/11/2024] [Accepted: 09/10/2024] [Indexed: 10/11/2024]
Abstract
Within the thymus, regulation of the cellular crosstalk directing T cell development depends on spatial interactions within specialized niches. To create a spatially defined map of tissue niches guiding human postnatal T cell development, we employed the multidimensional imaging platform co-detection by indexing (CODEX) as well as cellular indexing of transcriptomes and epitopes sequencing (CITE-seq) and assay for transposase accessible chromatin sequencing (ATAC-seq). We generated age-matched 4- to 5-month-old human postnatal thymus datasets for male and female donors, identifying significant sex differences in both T cell and thymus biology. We demonstrate a possible role for JAG ligands in directing thymic-like dendritic cell development, identify important functions of a population of extracellular matrix (ECM)- fibroblasts, and characterize the medullary niches surrounding Hassall's corpuscles. Together, these data represent an age-matched spatial multiomic resource to investigate how sex-based differences in thymus regulation and T cell development arise, providing an essential resource to understand the mechanisms underlying immune function and dysfunction in males and females.
Collapse
Affiliation(s)
- Laura N Stankiewicz
- School of Biomedical Engineering, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 2B9, Canada
| | - Kevin Salim
- Department of Surgery, University of British Columbia, 2775 Laurel Street, Vancouver, BC V5Z 1M9, Canada; BC Children's Hospital Research Institute, 938 W 28th Ave, Vancouver, BC V5Z 4H4, Canada
| | - Emily A Flaschner
- School of Biomedical Engineering, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 2B9, Canada
| | - Yu Xin Wang
- Center for Genetic Disorders and Aging, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - John M Edgar
- School of Biomedical Engineering, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 2B9, Canada
| | - Lauren J Durland
- School of Biomedical Engineering, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 2B9, Canada
| | - Bruce Z B Lin
- School of Biomedical Engineering, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 2B9, Canada
| | - Grace C Bingham
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Matthew C Major
- School of Biomedical Engineering, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 2B9, Canada
| | - Ross D Jones
- School of Biomedical Engineering, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 2B9, Canada
| | - Helen M Blau
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, 269 Campus Drive, Stanford, CA 94305, USA
| | - Elizabeth J Rideout
- Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Megan K Levings
- School of Biomedical Engineering, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 2B9, Canada; Department of Surgery, University of British Columbia, 2775 Laurel Street, Vancouver, BC V5Z 1M9, Canada; BC Children's Hospital Research Institute, 938 W 28th Ave, Vancouver, BC V5Z 4H4, Canada
| | - Peter W Zandstra
- School of Biomedical Engineering, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 2B9, Canada; Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T 1Z4, Canada.
| | - Fabio M V Rossi
- School of Biomedical Engineering, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 2B9, Canada; Department of Medical Genetics, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 2A1, Canada.
| |
Collapse
|
3
|
Werlen G, Hernandez T, Jacinto E. Food for thought: Nutrient metabolism controlling early T cell development. Bioessays 2025; 47:e2400179. [PMID: 39504233 DOI: 10.1002/bies.202400179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 11/08/2024]
Abstract
T cells develop in the thymus by expressing a diverse repertoire of either αβ- or γδ-T cell receptors (TCR). While many studies have elucidated how TCR signaling and gene expression control T cell ontogeny, the role of nutrient metabolism is just emerging. Here, we discuss how metabolic reprogramming and nutrient availability impact the fate of developing thymic T cells. We focus on how the PI3K/mTOR signaling mediates various extracellular inputs and how this signaling pathway controls metabolic rewiring during highly proliferative and anabolic developmental stages. We highlight the role of the hexosamine biosynthetic pathway that generates metabolites that are utilized for N- and O-linked glycosylation of proteins and how it impacts TCR expression during T cell ontogeny. We consider the dichotomy in metabolic needs during αβ- versus γδ-T cell lineage commitment as well as how metabolism is also coupled to molecular signaling that controls cell fate.
Collapse
Affiliation(s)
- Guy Werlen
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Tatiana Hernandez
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Estela Jacinto
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| |
Collapse
|
4
|
Golzari-Sorkheh M, Yoganathan K, Chen ELY, Singh J, Zúñiga-Pflücker JC. T Cell Development: From T-Lineage Specification to Intrathymic Maturation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1471:81-137. [PMID: 40067585 DOI: 10.1007/978-3-031-77921-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2025]
Abstract
T cell development occurs in the thymus in both mice and humans. Upon entry into the thymus, bone marrow-derived blood-borne progenitors receive instructive signals, including Notch signaling, to eliminate their potential to develop into alternative immune lineages while committing to the T cell fate. Upon T-lineage commitment, developing T cells receive further instructional cues to generate different T cell sublineages, which together possess diverse immunological functions to provide host immunity. Over the years, numerous studies have contributed to a greater understanding of key thymic signals that govern T cell differentiation and subset generation. Here, we review these critical signaling factors that govern the different stages of both mouse and human T cell development, while also focusing on the transcriptional changes that mediate T cell identity and diversity.
Collapse
Affiliation(s)
- Mahdieh Golzari-Sorkheh
- Department of Immunology, University of Toronto & Sunnybrook Research Institute, Toronto, ON, Canada
| | - Kogulan Yoganathan
- Department of Immunology, University of Toronto & Sunnybrook Research Institute, Toronto, ON, Canada
| | - Edward L Y Chen
- Department of Immunology, University of Toronto & Sunnybrook Research Institute, Toronto, ON, Canada
| | - Jastaranpreet Singh
- Department of Immunology, University of Toronto & Sunnybrook Research Institute, Toronto, ON, Canada
| | | |
Collapse
|
5
|
Ravens S, Tolosa E. Expansion of human γδ T cells in periphery: Lessons learned from development, infections, and compromised thymic function. Eur J Immunol 2024; 54:e2451073. [PMID: 39194409 DOI: 10.1002/eji.202451073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024]
Abstract
γδ T cells predominantly develop in the fetal period. Post birth they respond swiftly to environmental insults, pathogens and tumors, especially when other immune effector cells are less ready to function. Most of our understanding of γδ T-cell development, peripheral adaptation, and function derives from murine studies. The recent advancement of immunological methods allows now to decipher human γδ T-cell biology in patient cohorts and tissue samples, and to manipulate them using in vitro systems. In this review, we summarize γδ T-cell development in the human thymus, their functional adaptation to the microbial environment from birth until old age, and their capacity to expand and fill up the peripheral niche under conditions of perturbations of conventional T-cell development.
Collapse
Affiliation(s)
- Sarina Ravens
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Eva Tolosa
- Institute of Immunology, UKE Hamburg, Hamburg, Germany
| |
Collapse
|
6
|
Pardini E, Barachini S, Alì G, Infirri GS, Burzi IS, Montali M, Petrini I. Single-cell sequencing has revealed a more complex array of thymic epithelial cells. Immunol Lett 2024; 269:106904. [PMID: 39117004 DOI: 10.1016/j.imlet.2024.106904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024]
Abstract
Thymic epithelial cells participate in the maturation and selection of T lymphocytes. This review explores recent insights from single-cell sequencing regarding classifying thymic epithelial cells in both normal and neoplastic thymus. Cortical thymic epithelial cells facilitate thymocyte differentiation and contribute to positive selection. Medullary epithelial cells are distinguished by their expression of AIRE. Cells progress from a pre-AIRE state, containing precursors with cortical and medullary characteristics, termed junctional cells. Mature medullary epithelial cells exhibit promiscuous gene expression and after that downregulate AIRE mRNA. Post-AIRE cells can adopt a Hassall corpuscle-like phenotype or exhibit distinctive differentiation characteristics including tuft cells, ionocytes, neuroendocrine cells, and myoid cells.
Collapse
Affiliation(s)
- Eleonora Pardini
- Department of Translational Research and New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Serena Barachini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
| | - Greta Alì
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Pisa, Italy
| | - Gisella Sardo Infirri
- Department of Translational Research and New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Irene Sofia Burzi
- Department of Translational Research and New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Marina Montali
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Iacopo Petrini
- Department of Translational Research and New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| |
Collapse
|
7
|
Hu Y, Hu Q, Li Y, Lu L, Xiang Z, Yin Z, Kabelitz D, Wu Y. γδ T cells: origin and fate, subsets, diseases and immunotherapy. Signal Transduct Target Ther 2023; 8:434. [PMID: 37989744 PMCID: PMC10663641 DOI: 10.1038/s41392-023-01653-8] [Citation(s) in RCA: 103] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 11/23/2023] Open
Abstract
The intricacy of diseases, shaped by intrinsic processes like immune system exhaustion and hyperactivation, highlights the potential of immune renormalization as a promising strategy in disease treatment. In recent years, our primary focus has centered on γδ T cell-based immunotherapy, particularly pioneering the use of allogeneic Vδ2+ γδ T cells for treating late-stage solid tumors and tuberculosis patients. However, we recognize untapped potential and optimization opportunities to fully harness γδ T cell effector functions in immunotherapy. This review aims to thoroughly examine γδ T cell immunology and its role in diseases. Initially, we elucidate functional differences between γδ T cells and their αβ T cell counterparts. We also provide an overview of major milestones in γδ T cell research since their discovery in 1984. Furthermore, we delve into the intricate biological processes governing their origin, development, fate decisions, and T cell receptor (TCR) rearrangement within the thymus. By examining the mechanisms underlying the anti-tumor functions of distinct γδ T cell subtypes based on γδTCR structure or cytokine release, we emphasize the importance of accurate subtyping in understanding γδ T cell function. We also explore the microenvironment-dependent functions of γδ T cell subsets, particularly in infectious diseases, autoimmune conditions, hematological malignancies, and solid tumors. Finally, we propose future strategies for utilizing allogeneic γδ T cells in tumor immunotherapy. Through this comprehensive review, we aim to provide readers with a holistic understanding of the molecular fundamentals and translational research frontiers of γδ T cells, ultimately contributing to further advancements in harnessing the therapeutic potential of γδ T cells.
Collapse
Affiliation(s)
- Yi Hu
- Microbiology and Immunology Department, School of Medicine, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Qinglin Hu
- Microbiology and Immunology Department, School of Medicine, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, 510632, China
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, 519000, China
| | - Yongsheng Li
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Ligong Lu
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, 519000, China
| | - Zheng Xiang
- Microbiology and Immunology Department, School of Medicine, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Zhinan Yin
- Biomedical Translational Research Institute, Jinan University, Guangzhou, Guangdong, 510632, China.
| | - Dieter Kabelitz
- Institute of Immunology, Christian-Albrechts-University Kiel, Kiel, Germany.
| | - Yangzhe Wu
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, 519000, China.
| |
Collapse
|
8
|
Tkachev V, Vanderbeck A, Perkey E, Furlan SN, McGuckin C, Atria DG, Gerdemann U, Rui X, Lane J, Hunt DJ, Zheng H, Colonna L, Hoffman M, Yu A, Outen R, Kelly S, Allman A, Koch U, Radtke F, Ludewig B, Burbach B, Shimizu Y, Panoskaltsis-Mortari A, Chen G, Carpenter SM, Harari O, Kuhnert F, Thurston G, Blazar BR, Kean LS, Maillard I. Notch signaling drives intestinal graft-versus-host disease in mice and nonhuman primates. Sci Transl Med 2023; 15:eadd1175. [PMID: 37379368 PMCID: PMC10896076 DOI: 10.1126/scitranslmed.add1175] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 05/31/2023] [Indexed: 06/30/2023]
Abstract
Notch signaling promotes T cell pathogenicity and graft-versus-host disease (GVHD) after allogeneic hematopoietic cell transplantation (allo-HCT) in mice, with a dominant role for the Delta-like Notch ligand DLL4. To assess whether Notch's effects are evolutionarily conserved and to identify the mechanisms of Notch signaling inhibition, we studied antibody-mediated DLL4 blockade in a nonhuman primate (NHP) model similar to human allo-HCT. Short-term DLL4 blockade improved posttransplant survival with durable protection from gastrointestinal GVHD in particular. Unlike prior immunosuppressive strategies tested in the NHP GVHD model, anti-DLL4 interfered with a T cell transcriptional program associated with intestinal infiltration. In cross-species investigations, Notch inhibition decreased surface abundance of the gut-homing integrin α4β7 in conventional T cells while preserving α4β7 in regulatory T cells, with findings suggesting increased β1 competition for α4 binding in conventional T cells. Secondary lymphoid organ fibroblastic reticular cells emerged as the critical cellular source of Delta-like Notch ligands for Notch-mediated up-regulation of α4β7 integrin in T cells after allo-HCT. Together, DLL4-Notch blockade decreased effector T cell infiltration into the gut, with increased regulatory to conventional T cell ratios early after allo-HCT. Our results identify a conserved, biologically unique, and targetable role of DLL4-Notch signaling in intestinal GVHD.
Collapse
Affiliation(s)
- Victor Tkachev
- Massachusetts General Hospital, Center for Transplantation Sciences, Boston, MA 02114
- Division of Hematology/Oncology, Boston Children’s Hospital and Department of Pediatric Oncology, Dana Farber Cancer Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Ashley Vanderbeck
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Immunology Graduate Group and Veterinary Medical Scientist Training Program, University of Pennsylvania, Philadelphia, PA 19104
| | - Eric Perkey
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109
| | - Scott N. Furlan
- Clinical Research Division, Fred Hutchinson Cancer Research Center, University of Washington, Seattle, WA 98109
| | - Connor McGuckin
- Division of Hematology/Oncology, Boston Children’s Hospital and Department of Pediatric Oncology, Dana Farber Cancer Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Daniela Gómez Atria
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Ulrike Gerdemann
- Division of Hematology/Oncology, Boston Children’s Hospital and Department of Pediatric Oncology, Dana Farber Cancer Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Xianliang Rui
- Division of Hematology/Oncology, Boston Children’s Hospital and Department of Pediatric Oncology, Dana Farber Cancer Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Jennifer Lane
- Division of Hematology/Oncology, Boston Children’s Hospital and Department of Pediatric Oncology, Dana Farber Cancer Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Daniel J. Hunt
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, University of Washington, Seattle, WA 98101
| | - Hengqi Zheng
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, University of Washington, Seattle, WA 98101
| | - Lucrezia Colonna
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, University of Washington, Seattle, WA 98101
| | - Michelle Hoffman
- Clinical Research Division, Fred Hutchinson Cancer Research Center, University of Washington, Seattle, WA 98109
| | - Alison Yu
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, University of Washington, Seattle, WA 98101
| | - Riley Outen
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Samantha Kelly
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Anneka Allman
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Ute Koch
- EPFL, 1015 Lausanne, Switzerland
| | | | - Burkhard Ludewig
- Medical Research Center, Kantonsspital St. Gallen, 9007 St. Gallen, Switzerland
| | - Brandon Burbach
- Department of Laboratory Medicine and Pathology, Center for Immunology, Masonic Cancer Center, University of Minnesota School of Medicine, Minneapolis, MN 55455
| | - Yoji Shimizu
- Department of Laboratory Medicine and Pathology, Center for Immunology, Masonic Cancer Center, University of Minnesota School of Medicine, Minneapolis, MN 55455
| | - Angela Panoskaltsis-Mortari
- Division of Blood & Marrow Transplant & Cellular Therapy, Department of Pediatrics, University of Minnesota School of Medicine, Minneapolis, MN 55455
| | - Guoying Chen
- Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591
| | | | | | | | | | - Bruce R. Blazar
- Division of Blood & Marrow Transplant & Cellular Therapy, Department of Pediatrics, University of Minnesota School of Medicine, Minneapolis, MN 55455
| | - Leslie S. Kean
- Division of Hematology/Oncology, Boston Children’s Hospital and Department of Pediatric Oncology, Dana Farber Cancer Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Ivan Maillard
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
9
|
Sun L, Su Y, Jiao A, Wang X, Zhang B. T cells in health and disease. Signal Transduct Target Ther 2023; 8:235. [PMID: 37332039 PMCID: PMC10277291 DOI: 10.1038/s41392-023-01471-y] [Citation(s) in RCA: 311] [Impact Index Per Article: 155.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 06/20/2023] Open
Abstract
T cells are crucial for immune functions to maintain health and prevent disease. T cell development occurs in a stepwise process in the thymus and mainly generates CD4+ and CD8+ T cell subsets. Upon antigen stimulation, naïve T cells differentiate into CD4+ helper and CD8+ cytotoxic effector and memory cells, mediating direct killing, diverse immune regulatory function, and long-term protection. In response to acute and chronic infections and tumors, T cells adopt distinct differentiation trajectories and develop into a range of heterogeneous populations with various phenotype, differentiation potential, and functionality under precise and elaborate regulations of transcriptional and epigenetic programs. Abnormal T-cell immunity can initiate and promote the pathogenesis of autoimmune diseases. In this review, we summarize the current understanding of T cell development, CD4+ and CD8+ T cell classification, and differentiation in physiological settings. We further elaborate the heterogeneity, differentiation, functionality, and regulation network of CD4+ and CD8+ T cells in infectious disease, chronic infection and tumor, and autoimmune disease, highlighting the exhausted CD8+ T cell differentiation trajectory, CD4+ T cell helper function, T cell contributions to immunotherapy and autoimmune pathogenesis. We also discuss the development and function of γδ T cells in tissue surveillance, infection, and tumor immunity. Finally, we summarized current T-cell-based immunotherapies in both cancer and autoimmune diseases, with an emphasis on their clinical applications. A better understanding of T cell immunity provides insight into developing novel prophylactic and therapeutic strategies in human diseases.
Collapse
Affiliation(s)
- Lina Sun
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Yanhong Su
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Anjun Jiao
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Xin Wang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China.
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China.
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China.
| |
Collapse
|
10
|
Stankiewicz LN, Salim K, Flaschner EA, Wang YX, Edgar JM, Lin BZB, Bingham GC, Major MC, Jones RD, Blau HM, Rideout EJ, Levings MK, Zandstra PW, Rossi FMV. Sex biased human thymic architecture guides T cell development through spatially defined niches. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.13.536804. [PMID: 37090676 PMCID: PMC10120731 DOI: 10.1101/2023.04.13.536804] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Within the thymus, regulation of the cellular cross-talk directing T cell development is dependent on spatial interactions within specialized niches. To create a holistic, spatially defined map of tissue niches guiding postnatal T cell development we employed the multidimensional imaging platform CO-detection by indEXing (CODEX), as well as CITE-seq and ATAC-seq. We generated age-matched 4-5-month-old postnatal thymus datasets for male and female donors, and identify significant sex differences in both T cell and thymus biology. We demonstrate a crucial role for JAG ligands in directing thymic-like dendritic cell development, reveal important functions of a novel population of ECM- fibroblasts, and characterize the medullary niches surrounding Hassall's corpuscles. Together, these data represent a unique age-matched spatial multiomic resource to investigate how sex-based differences in thymus regulation and T cell development arise, and provide an essential resource to understand the mechanisms underlying immune function and dysfunction in males and females.
Collapse
Affiliation(s)
| | - Kevin Salim
- Department of Surgery, University of British Columbia, Canada
- BC Children’s Hospital Research Institute, Canada
| | - Emily A Flaschner
- School of Biomedical Engineering, University of British Columbia, Canada
| | - Yu Xin Wang
- Center for Genetic Disorders and Aging, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - John M Edgar
- School of Biomedical Engineering, University of British Columbia, Canada
| | - Bruce ZB Lin
- School of Biomedical Engineering, University of British Columbia, Canada
| | - Grace C Bingham
- Department of Biomedical Engineering, University of Virginia, USA
| | - Matthew C Major
- School of Biomedical Engineering, University of British Columbia, Canada
| | - Ross D Jones
- School of Biomedical Engineering, University of British Columbia, Canada
| | - Helen M Blau
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, USA
| | | | - Megan K Levings
- School of Biomedical Engineering, University of British Columbia, Canada
- Department of Surgery, University of British Columbia, Canada
- BC Children’s Hospital Research Institute, Canada
| | - Peter W Zandstra
- School of Biomedical Engineering, University of British Columbia, Canada
- Michael Smith Laboratories, University of British Columbia, Canada
- These authors contributed equally
- Lead contact
| | - Fabio MV Rossi
- School of Biomedical Engineering, University of British Columbia, Canada
- These authors contributed equally
- Lead contact
| |
Collapse
|
11
|
Michaels YS, Durland LJ, Zandstra PW. Engineering T Cell Development for the Next Generation of Stem Cell-Derived Immunotherapies. GEN BIOTECHNOLOGY 2023; 2:106-119. [PMID: 37928777 PMCID: PMC10624212 DOI: 10.1089/genbio.2023.0008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 03/31/2023] [Indexed: 11/07/2023]
Abstract
Engineered T cells are at the leading edge of clinical cell therapy. T cell therapies have had a remarkable impact on patient care for a subset of hematological malignancies. This foundation has motivated the development of off-the-shelf engineered cell therapies for a broad range of devastating indications. Achieving this vision will require cost-effective manufacturing of precision cell products capable of addressing multiple process and clinical-design challenges. Pluripotent stem cell (PSC)-derived engineered T cells are emerging as a solution of choice. To unleash the full potential of PSC-derived T cell therapies, the field will require technologies capable of robustly orchestrating the complex series of time- and dose-dependent signaling events needed to recreate functional T cell development in the laboratory. In this article, we review the current state of allogenic T cell therapies, focusing on strategies to generate engineered lymphoid cells from PSCs. We highlight exciting recent progress in this field and outline timely opportunities for advancement with an emphasis on niche engineering and synthetic biology.
Collapse
Affiliation(s)
- Yale S. Michaels
- School of Biomedical Engineering, University of British Columbia, Vancouver, Canada; University of British Columbia, Vancouver, Canada
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada; University of British Columbia, Vancouver, Canada
- CancerCare Manitoba Research Institute, CancerCare Manitoba, Winnipeg, Canada; and University of British Columbia, Vancouver, Canada
| | - Lauren J. Durland
- School of Biomedical Engineering, University of British Columbia, Vancouver, Canada; University of British Columbia, Vancouver, Canada
| | - Peter W. Zandstra
- School of Biomedical Engineering, University of British Columbia, Vancouver, Canada; University of British Columbia, Vancouver, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
| |
Collapse
|
12
|
NOTCH Signaling in Osteosarcoma. Curr Issues Mol Biol 2023; 45:2266-2283. [PMID: 36975516 PMCID: PMC10047431 DOI: 10.3390/cimb45030146] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
The combination of neoadjuvant chemotherapy and surgery has been promoted for the treatment of osteosarcoma; however, the local recurrence and lung metastasis rates remain high. Therefore, it is crucial to explore new therapeutic targets and strategies that are more effective. The NOTCH pathway is not only involved in normal embryonic development but also plays an important role in the development of cancers. The expression level and signaling functional status of the NOTCH pathway vary in different histological types of cancer as well as in the same type of cancer from different patients, reflecting the distinct roles of the Notch pathway in tumorigenesis. Studies have reported abnormal activation of the NOTCH signaling pathway in most clinical specimens of osteosarcoma, which is closely related to a poor prognosis. Similarly, studies have reported that NOTCH signaling affected the biological behavior of osteosarcoma through various molecular mechanisms. NOTCH-targeted therapy has shown potential for the treatment of osteosarcoma in clinical research. After the introduction of the composition and biological functions of the NOTCH signaling pathway, the review paper discussed the clinical significance of dysfunction in osteosarcoma. Then the paper reviewed the recent relevant research progress made both in the cell lines and in the animal models of osteosarcoma. Finally, the paper explored the potential of the clinical application of NOTCH-targeted therapy for the treatment of osteosarcoma.
Collapse
|
13
|
Toribio ML, González-García S. Notch Partners in the Long Journey of T-ALL Pathogenesis. Int J Mol Sci 2023; 24:1383. [PMID: 36674902 PMCID: PMC9866461 DOI: 10.3390/ijms24021383] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 01/13/2023] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological disease that arises from the oncogenic transformation of developing T cells during T-lymphopoiesis. Although T-ALL prognosis has improved markedly in recent years, relapsing and refractory patients with dismal outcomes still represent a major clinical issue. Consequently, understanding the pathological mechanisms that lead to the appearance of this malignancy and developing novel and more effective targeted therapies is an urgent need. Since the discovery in 2004 that a major proportion of T-ALL patients carry activating mutations that turn NOTCH1 into an oncogene, great efforts have been made to decipher the mechanisms underlying constitutive NOTCH1 activation, with the aim of understanding how NOTCH1 dysregulation converts the physiological NOTCH1-dependent T-cell developmental program into a pathological T-cell transformation process. Several molecular players have so far been shown to cooperate with NOTCH1 in this oncogenic process, and different therapeutic strategies have been developed to specifically target NOTCH1-dependent T-ALLs. Here, we comprehensively analyze the molecular bases of the cross-talk between NOTCH1 and cooperating partners critically involved in the generation and/or maintenance and progression of T-ALL and discuss novel opportunities and therapeutic approaches that current knowledge may open for future treatment of T-ALL patients.
Collapse
Affiliation(s)
- María Luisa Toribio
- Immune System Development and Function Unit, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain
| | | |
Collapse
|
14
|
Gonzalez-Perez D, Das S, Antfolk D, Ahsan HS, Medina E, Dundes CE, Jokhai RT, Egan ED, Blacklow SC, Loh KM, Rodriguez PC, Luca VC. Affinity-matured DLL4 ligands as broad-spectrum modulators of Notch signaling. Nat Chem Biol 2023; 19:9-17. [PMID: 36050494 PMCID: PMC10132381 DOI: 10.1038/s41589-022-01113-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/14/2022] [Indexed: 12/31/2022]
Abstract
The Notch pathway regulates cell fate decisions and is an emerging target for regenerative and cancer therapies. Recombinant Notch ligands are attractive candidates for modulating Notch signaling; however, their intrinsically low receptor-binding affinity restricts their utility in biomedical applications. To overcome this limitation, we evolved variants of the ligand Delta-like 4 with enhanced affinity and cross-reactivity. A consensus variant with maximized binding affinity, DeltaMAX, binds human and murine Notch receptors with 500- to 1,000-fold increased affinity compared with wild-type human Delta-like 4. DeltaMAX also potently activates Notch in plate-bound, bead-bound and cellular formats. When administered as a soluble decoy, DeltaMAX inhibits Notch in reporter and neuronal differentiation assays, highlighting its dual utility as an agonist or antagonist. Finally, we demonstrate that DeltaMAX stimulates increased proliferation and expression of effector mediators in T cells. Taken together, our data define DeltaMAX as a versatile tool for broad-spectrum activation or inhibition of Notch signaling.
Collapse
Affiliation(s)
| | - Satyajit Das
- Department of Immunology, Moffitt Cancer Center, Tampa, FL, USA
| | - Daniel Antfolk
- Department of Drug Discovery, Moffitt Cancer Center, Tampa, FL, USA
| | - Hadia S Ahsan
- Stanford Institute for Stem Cell Biology & Regenerative Medicine, Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Elliot Medina
- Department of Drug Discovery, Moffitt Cancer Center, Tampa, FL, USA
| | - Carolyn E Dundes
- Stanford Institute for Stem Cell Biology & Regenerative Medicine, Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Rayyan T Jokhai
- Stanford Institute for Stem Cell Biology & Regenerative Medicine, Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Emily D Egan
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Stephen C Blacklow
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Kyle M Loh
- Stanford Institute for Stem Cell Biology & Regenerative Medicine, Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Vincent C Luca
- Department of Drug Discovery, Moffitt Cancer Center, Tampa, FL, USA.
| |
Collapse
|
15
|
Lambrechts N, Liang KL, Velghe I, Strubbe S, Dolens AC, Taghon T. In Vitro Model Systems to Study Human T Cell Development. Methods Mol Biol 2023; 2580:335-354. [PMID: 36374468 DOI: 10.1007/978-1-0716-2740-2_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Not only is human T cell development characterized by unique changes in surface marker expression, but it also requires specific growth factors and conditions to mimic and study T cell development in vitro. In this chapter, we provide an overview of the specific aspects that need attention when performing T cell differentiation cultures with human hematopoietic and T cell progenitors.
Collapse
Affiliation(s)
- Nina Lambrechts
- Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent University Hospital, Ghent, Belgium
| | - Kai Ling Liang
- Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent University Hospital, Ghent, Belgium
| | - Imke Velghe
- Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent University Hospital, Ghent, Belgium
| | - Steven Strubbe
- Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent University Hospital, Ghent, Belgium
| | - Anne-Catherine Dolens
- Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent University Hospital, Ghent, Belgium
| | - Tom Taghon
- Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent University Hospital, Ghent, Belgium.
| |
Collapse
|
16
|
van der Stegen SJC, Lindenbergh PL, Petrovic RM, Xie H, Diop MP, Alexeeva V, Shi Y, Mansilla-Soto J, Hamieh M, Eyquem J, Cabriolu A, Wang X, Abujarour R, Lee T, Clarke R, Valamehr B, Themeli M, Riviere I, Sadelain M. Generation of T-cell-receptor-negative CD8αβ-positive CAR T cells from T-cell-derived induced pluripotent stem cells. Nat Biomed Eng 2022; 6:1284-1297. [PMID: 35941192 PMCID: PMC9669107 DOI: 10.1038/s41551-022-00915-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 06/28/2022] [Indexed: 12/23/2022]
Abstract
The production of autologous T cells expressing a chimaeric antigen receptor (CAR) is time-consuming, costly and occasionally unsuccessful. T-cell-derived induced pluripotent stem cells (TiPS) are a promising source for the generation of 'off-the-shelf' CAR T cells, but the in vitro differentiation of TiPS often yields T cells with suboptimal features. Here we show that the premature expression of the T-cell receptor (TCR) or a constitutively expressed CAR in TiPS promotes the acquisition of an innate phenotype, which can be averted by disabling the TCR and relying on the CAR to drive differentiation. Delaying CAR expression and calibrating its signalling strength in TiPS enabled the generation of human TCR- CD8αβ+ CAR T cells that perform similarly to CD8αβ+ CAR T cells from peripheral blood, achieving effective tumour control on systemic administration in a mouse model of leukaemia and without causing graft-versus-host disease. Driving T-cell maturation in TiPS in the absence of a TCR by taking advantage of a CAR may facilitate the large-scale development of potent allogeneic CD8αβ+ T cells for a broad range of immunotherapies.
Collapse
Affiliation(s)
- Sjoukje J C van der Stegen
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Pieter L Lindenbergh
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, VU Amsterdam, Amsterdam, the Netherlands
| | - Roseanna M Petrovic
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hongyao Xie
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mame P Diop
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Vera Alexeeva
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yuzhe Shi
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jorge Mansilla-Soto
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mohamad Hamieh
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Justin Eyquem
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Gladstone-UCSF Institute of Genomic Immunology, Gladstone Institutes, San Francisco, CA, USA
| | - Annalisa Cabriolu
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Xiuyan Wang
- Cell Therapy and Cell Engineering Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Tom Lee
- Fate Therapeutics Inc, San Diego, CA, USA
| | | | | | - Maria Themeli
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, VU Amsterdam, Amsterdam, the Netherlands
| | - Isabelle Riviere
- Cell Therapy and Cell Engineering Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michel Sadelain
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
17
|
Boehme L, Roels J, Taghon T. Development of γδ T cells in the thymus - A human perspective. Semin Immunol 2022; 61-64:101662. [PMID: 36374779 DOI: 10.1016/j.smim.2022.101662] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/05/2022] [Indexed: 12/14/2022]
Abstract
γδ T cells are increasingly emerging as crucial immune regulators that can take on innate and adaptive roles in the defence against pathogens. Although they arise within the thymus from the same hematopoietic precursors as conventional αβ T cells, the development of γδ T cells is less well understood. In this review, we focus on summarising the current state of knowledge about the cellular and molecular processes involved in the generation of γδ T cells in human.
Collapse
Affiliation(s)
- Lena Boehme
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Juliette Roels
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Tom Taghon
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| |
Collapse
|
18
|
Ding C, Xu H, Yu Z, Roulis M, Qu R, Zhou J, Oh J, Crawford J, Gao Y, Jackson R, Sefik E, Li S, Wei Z, Skadow M, Yin Z, Ouyang X, Wang L, Zou Q, Su B, Hu W, Flavell RA, Li HB. RNA m 6A demethylase ALKBH5 regulates the development of γδ T cells. Proc Natl Acad Sci U S A 2022; 119:e2203318119. [PMID: 35939687 PMCID: PMC9388086 DOI: 10.1073/pnas.2203318119] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
γδ T cells are an abundant T cell population at the mucosa and are important in providing immune surveillance as well as maintaining tissue homeostasis. However, despite γδ T cells' origin in the thymus, detailed mechanisms regulating γδ T cell development remain poorly understood. N6-methyladenosine (m6A) represents one of the most common posttranscriptional modifications of messenger RNA (mRNA) in mammalian cells, but whether it plays a role in γδ T cell biology is still unclear. Here, we show that depletion of the m6A demethylase ALKBH5 in lymphocytes specifically induces an expansion of γδ T cells, which confers enhanced protection against gastrointestinal Salmonella typhimurium infection. Mechanistically, loss of ALKBH5 favors the development of γδ T cell precursors by increasing the abundance of m6A RNA modification in thymocytes, which further reduces the expression of several target genes including Notch signaling components Jagged1 and Notch2. As a result, impairment of Jagged1/Notch2 signaling contributes to enhanced proliferation and differentiation of γδ T cell precursors, leading to an expanded mature γδ T cell repertoire. Taken together, our results indicate a checkpoint role of ALKBH5 and m6A modification in the regulation of γδ T cell early development.
Collapse
Affiliation(s)
- Chenbo Ding
- aDepartment of Geriatrics, Center for Immune-Related Diseases, Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- bShanghai Jiao Tong University School of Medicine–Yale University Institute for Immune Metabolism, Shanghai 200025, China
| | - Hao Xu
- cDepartment of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Zhibin Yu
- aDepartment of Geriatrics, Center for Immune-Related Diseases, Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- bShanghai Jiao Tong University School of Medicine–Yale University Institute for Immune Metabolism, Shanghai 200025, China
| | - Manolis Roulis
- cDepartment of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Rihao Qu
- cDepartment of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
- dProgram of Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520
- eDepartment of Pathology, Yale University School of Medicine, New Haven, CT 06510
| | - Jing Zhou
- aDepartment of Geriatrics, Center for Immune-Related Diseases, Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- bShanghai Jiao Tong University School of Medicine–Yale University Institute for Immune Metabolism, Shanghai 200025, China
| | - Joonseok Oh
- fDepartment of Chemistry, Yale University, New Haven, CT 06520
- gChemical Biology Institute, Yale University, West Haven, CT 06516
| | - Jason Crawford
- fDepartment of Chemistry, Yale University, New Haven, CT 06520
- gChemical Biology Institute, Yale University, West Haven, CT 06516
- hDepartment of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06520
| | - Yimeng Gao
- iSection of Hematology, Yale Cancer Center and Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520
- jYale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06520
- kYale RNA Center, Yale University School of Medicine, New Haven, CT 06520
| | - Ruaidhrí Jackson
- cDepartment of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Esen Sefik
- cDepartment of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Simiao Li
- cDepartment of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Zheng Wei
- cDepartment of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Mathias Skadow
- cDepartment of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Zhinan Yin
- lZhuhai Precision Medical Center, Zhuhai People’s Hospital, Jinan University, Zhuhai 519000, Guangdong, China
- mBiomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou 510632, Guangdong, China
| | - Xinshou Ouyang
- nSection of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520
| | - Lei Wang
- aDepartment of Geriatrics, Center for Immune-Related Diseases, Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qiang Zou
- aDepartment of Geriatrics, Center for Immune-Related Diseases, Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Bing Su
- aDepartment of Geriatrics, Center for Immune-Related Diseases, Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- bShanghai Jiao Tong University School of Medicine–Yale University Institute for Immune Metabolism, Shanghai 200025, China
| | - Weiguo Hu
- aDepartment of Geriatrics, Center for Immune-Related Diseases, Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- 2To whom correspondence may be addressed. , , or
| | - Richard A. Flavell
- cDepartment of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
- oHHMI, Yale University School of Medicine, New Haven, CT 06520
- 2To whom correspondence may be addressed. , , or
| | - Hua-Bing Li
- aDepartment of Geriatrics, Center for Immune-Related Diseases, Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- bShanghai Jiao Tong University School of Medicine–Yale University Institute for Immune Metabolism, Shanghai 200025, China
- 2To whom correspondence may be addressed. , , or
| |
Collapse
|
19
|
刘 俊, 石 宇, 吴 敏, 徐 梦, 张 凤, 何 志, 唐 敏. [JAG1 promotes migration, invasion, and adhesion of triple-negative breast cancer cells by promoting angiogenesis]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:1100-1108. [PMID: 35869777 PMCID: PMC9308863 DOI: 10.12122/j.issn.1673-4254.2022.07.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the effect of JAG1 on the malignant phenotype of triple-negative breast cancer (TNBC) and its role in angiogenesis in breast cancer microenvironment. METHODS The expressions of Notch molecules were detected in human TNBC 231 and 231B cells using RT-qPCR. Five female nude mice were inoculated with 231 cells and another 5 with 231B cells into the mammary fat pads, and 4-6 weeks later, the tumors were collected for immunohistochemical and immunofluorescence tests. 231 cells and 231B cells were treated with recombinant JAG (rJAG) protein and DAPT, respectively, and changes in their malignant phenotypes were assessed using CCK-8 assay, Hoechst 33258 staining, wound healing assay, Transwell chamber assay and endothelial cell adhesion assay. Western blotting was used to detect the changes in the expressions of proteins related with the malignant phenotypes of 231 and 231B cells. The effects of conditioned medium (CM) derived from untreated 231 and 231 B cells, rJAG1-treated 231 cells and DAPT-treated 231B cells on proliferation and tube formation ability of cultured human umbilical vein endothelial cells (HUVECs) were evaluated using CCK-8 assay and tube-forming assay. RESULTS The expression of JAG1 was higher in 231B cells than in 231 cells (P < 0.05). Tumor 231B showed higher expression of VEGFA and CD31. Compared with 231-Blank group, the migration, invasion and adhesion of 231 cells in 231-rJAG1 were significantly enhanced (P < 0.05). Protein levels of Twist1 and Snail increased (P < 0.01), anti-apoptotic protein Bcl-2 increased (P < 0.05), while DAPT inhibited the related phenomena and indicators of 231B. The 231-rJAG1-CM increased the cell number and tubule number of HUVEC (P < 0.05). CONCLUSION JAG1 may affect the malignant phenotype of TNBC and promote angiogenesis in the tumor microenvironment.
Collapse
Affiliation(s)
- 俊平 刘
- />重庆医科大学检验医学院,临床检验诊断学教育部重点实验室,重庆 400016Key Laboratory of Clinical Laboratory and Diagnostics of Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - 宇彤 石
- />重庆医科大学检验医学院,临床检验诊断学教育部重点实验室,重庆 400016Key Laboratory of Clinical Laboratory and Diagnostics of Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - 敏敏 吴
- />重庆医科大学检验医学院,临床检验诊断学教育部重点实验室,重庆 400016Key Laboratory of Clinical Laboratory and Diagnostics of Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - 梦岐 徐
- />重庆医科大学检验医学院,临床检验诊断学教育部重点实验室,重庆 400016Key Laboratory of Clinical Laboratory and Diagnostics of Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - 凤梅 张
- />重庆医科大学检验医学院,临床检验诊断学教育部重点实验室,重庆 400016Key Laboratory of Clinical Laboratory and Diagnostics of Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - 志强 何
- />重庆医科大学检验医学院,临床检验诊断学教育部重点实验室,重庆 400016Key Laboratory of Clinical Laboratory and Diagnostics of Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - 敏 唐
- />重庆医科大学检验医学院,临床检验诊断学教育部重点实验室,重庆 400016Key Laboratory of Clinical Laboratory and Diagnostics of Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
20
|
Su CJ, Murugan A, Linton JM, Yeluri A, Bois J, Klumpe H, Langley MA, Antebi YE, Elowitz MB. Ligand-receptor promiscuity enables cellular addressing. Cell Syst 2022; 13:408-425.e12. [PMID: 35421362 PMCID: PMC10897978 DOI: 10.1016/j.cels.2022.03.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 11/08/2021] [Accepted: 03/16/2022] [Indexed: 12/24/2022]
Abstract
In multicellular organisms, secreted ligands selectively activate, or "address," specific target cell populations to control cell fate decision-making and other processes. Key cell-cell communication pathways use multiple promiscuously interacting ligands and receptors, provoking the question of how addressing specificity can emerge from molecular promiscuity. To investigate this issue, we developed a general mathematical modeling framework based on the bone morphogenetic protein (BMP) pathway architecture. We find that promiscuously interacting ligand-receptor systems allow a small number of ligands, acting in combinations, to address a larger number of individual cell types, defined by their receptor expression profiles. Promiscuous systems outperform seemingly more specific one-to-one signaling architectures in addressing capability. Combinatorial addressing extends to groups of cell types, is robust to receptor expression noise, grows more powerful with increases in the number of receptor variants, and is maximized by specific biochemical parameter relationships. Together, these results identify design principles governing cellular addressing by ligand combinations.
Collapse
Affiliation(s)
- Christina J Su
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Arvind Murugan
- Department of Physics, University of Chicago, Chicago, IL 60637, USA
| | - James M Linton
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Akshay Yeluri
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Justin Bois
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Heidi Klumpe
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Matthew A Langley
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Yaron E Antebi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Michael B Elowitz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Department of Applied Physics, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
21
|
Dent AL. The Legend of Delta: Finding a New TCR Gene. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2081-2083. [PMID: 35470263 DOI: 10.4049/jimmunol.2200107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Abstract
This Pillars of Immunology article is a commentary on “A new T-cell receptor gene located within the alpha locus and expressed early in T-cell differentiation,” a pivotal article written by Y.-H. Chien, M. Iwashima, K. B. Kaplan, J. F. Elliott, and M. M. Davis, and published in Nature, in 1987. https://www.nature.com/articles/327677a0.
Collapse
Affiliation(s)
- Alexander L Dent
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
22
|
Zhang T, Zhou H, Wang K, Wang X, Wang M, Zhao W, Xi X, Li Y, Cai M, Zhao W, Xu Y, Shao R. Role, molecular mechanism and the potential target of breast cancer stem cells in breast cancer development. Biomed Pharmacother 2022; 147:112616. [PMID: 35008001 DOI: 10.1016/j.biopha.2022.112616] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/01/2022] [Accepted: 01/02/2022] [Indexed: 02/06/2023] Open
Abstract
Breast cancer (BC) is one of the most common malignant tumors in women globally, and its occurrence has surpassed lung cancer and become the biggest threat for women. At present, breast cancer treatment includes surgical resection or postoperative chemotherapy and radiotherapy. However, tumor relapse and metastasis usually lead to current therapy failure thanks to breast cancer stem cells (BCSCs)-mediated tumorigenicity and drug resistance. Drug resistance is mainly due to the long-term quiescent G0 phase, strong DNA repairability, and high expression of ABC transporter, and the tumorigenicity is reflected in the activation of various proliferation pathways related to BCSCs. Therefore, understanding the characteristics of BCSCs and their intracellular and extracellular molecular mechanisms is crucial for the development of targeted drugs for BCSCs. To this end, we discussed the latest developments in BCSCs research, focusing on the analysis of specific markers, critical signaling pathways that maintain the stemness of BCSCs,such as NOTCH, Wnt/β-catenin, STAT3, Hedgehog, and Hippo-YAP signaling, immunomicroenviroment and summarizes targeting therapy strategies for stemness maintenance and differentiation, which provides a theoretical basis for further exploration of treating breast cancer and preventing relapse derived from BCSCs.
Collapse
Affiliation(s)
- Tianshu Zhang
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Huimin Zhou
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Kexin Wang
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiaowei Wang
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Mengyan Wang
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wenxia Zhao
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiaoming Xi
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yang Li
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Meilian Cai
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wuli Zhao
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Yanni Xu
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Rongguang Shao
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
23
|
New insights into TCR β-selection. Trends Immunol 2021; 42:735-750. [PMID: 34261578 DOI: 10.1016/j.it.2021.06.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/14/2021] [Accepted: 06/14/2021] [Indexed: 12/12/2022]
Abstract
T cell receptor (TCR) β-selection (herein referred to as β-selection) is a pivotal checkpoint in mammalian T cell development when immature CD4-CD8- T-cells (thymocytes) express pre-TCR following successful Tcrb gene rearrangement. At this stage, αβ T cell lineage commitment and allelic exclusion to restrict one β-chain per cell take place and thymocytes undergo a proliferative burst. β-selection is known to be crucially dependent upon synchronized Notch and pre-TCR signaling; however, other necessary inputs have been identified over the past decade, expanding our knowledge and understanding of the β-selection process. In this review, we discuss recent mechanistic findings that have enabled a more detailed decoding of the molecular dynamics of the β-selection checkpoint and have helped to elucidate its role in early T cell development.
Collapse
|
24
|
Kwon DH, Park JB, Lee JS, Kim SJ, Choi B, Lee KY. Human delta like 1-expressing human mesenchymal stromal cells promote human T cell development and antigen-specific response in humanized NOD/SCID/IL-2R[Formula: see text] null (NSG) mice. Sci Rep 2021; 11:10603. [PMID: 34011992 PMCID: PMC8134586 DOI: 10.1038/s41598-021-90110-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/30/2021] [Indexed: 01/01/2023] Open
Abstract
Human delta-like 1 (hDlk1) is known to be able to regulate cell fate decisions during hematopoiesis. Mesenchymal stromal cells (MSCs) are known to exhibit potent immunomodulatory roles in a variety of diseases. Herein, we investigated in vivo functions of hDlk1-hMSCs and hDlk1+hMSCs in T cell development and T cell response to viral infection in humanized NOD/SCID/IL-2Rγnull (NSG) mice. Co-injection of hDlk1-hMSC with hCD34+ cord blood (CB) cells into the liver of NSG mice markedly suppressed the development of human T cells. In contrast, co-injection of hDlk1+hMSC with hCD34+ CB cells into the liver of NSG dramatically promoted the development of human T cells. Human T cells developed in humanized NSG mice represent markedly diverse, functionally active, TCR V[Formula: see text] usages, and the restriction to human MHC molecules. Upon challenge with Epstein-Barr virus (EBV), EBV-specific hCD8+ T cells in humanized NSG mice were effectively mounted with phenotypically activated T cells presented as hCD45+hCD3+hCD8+hCD45RO+hHLA-DR+ T cells, suggesting that antigen-specific T cell response was induced in the humanized NSG mice. Taken together, our data suggest that the hDlk1-expressing MSCs can effectively promote the development of human T cells and immune response to exogenous antigen in humanized NSG mice. Thus, the humanized NSG model might have potential advantages for the development of therapeutics targeting infectious diseases in the future.
Collapse
Affiliation(s)
- Do Hee Kwon
- Department of Immunology and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, 2066 Seobu-ro, Jangan-gu, Suwon, 16419 Gyeonggi-do Korea
| | - Jae Berm Park
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Samsung Medical Center, Sungkyunkwan University, Seoul, Republic of Korea
| | - Joo Sang Lee
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon-Si, 440-746 Kyonggi-Do Korea
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, 16419 Republic of Korea
| | - Sung Joo Kim
- GenNBio, Inc., Seoul, Republic of Korea
- Department of Medicine, Sungkyunkwan University School of Medicine, Suwon-Si, Kyonggi-Do, 440-746 Korea
| | - Bongkum Choi
- GenNBio, Inc., Seoul, Republic of Korea
- Department of Medicine, Sungkyunkwan University School of Medicine, Suwon-Si, Kyonggi-Do, 440-746 Korea
| | - Ki-Young Lee
- Department of Immunology and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, 2066 Seobu-ro, Jangan-gu, Suwon, 16419 Gyeonggi-do Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Samsung Medical Center, Sungkyunkwan University, Seoul, Republic of Korea
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, 16419 Republic of Korea
| |
Collapse
|
25
|
Shen W, Huang J, Wang Y. Biological Significance of NOTCH Signaling Strength. Front Cell Dev Biol 2021; 9:652273. [PMID: 33842479 PMCID: PMC8033010 DOI: 10.3389/fcell.2021.652273] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
The evolutionarily conserved NOTCH signaling displays pleotropic functions in almost every organ system with a simple signaling axis. Different from many other signaling pathways that can be amplified via kinase cascades, NOTCH signaling does not contain any intermediate to amplify signal. Thus, NOTCH signaling can be activated at distinct signaling strength levels, disruption of which leads to various developmental disorders. Here, we reviewed mechanisms establishing different NOTCH signaling strengths, developmental processes sensitive to NOTCH signaling strength perturbation, and transcriptional regulations influenced by NOTCH signaling strength changes. We hope this could add a new layer of diversity to explain the pleotropic functions of NOTCH signaling pathway.
Collapse
Affiliation(s)
- Wei Shen
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China
| | - Jiaxin Huang
- Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China
| | - Yan Wang
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China
| |
Collapse
|
26
|
Kreins AY, Bonfanti P, Davies EG. Current and Future Therapeutic Approaches for Thymic Stromal Cell Defects. Front Immunol 2021; 12:655354. [PMID: 33815417 PMCID: PMC8012524 DOI: 10.3389/fimmu.2021.655354] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/03/2021] [Indexed: 12/14/2022] Open
Abstract
Inborn errors of thymic stromal cell development and function lead to impaired T-cell development resulting in a susceptibility to opportunistic infections and autoimmunity. In their most severe form, congenital athymia, these disorders are life-threatening if left untreated. Athymia is rare and is typically associated with complete DiGeorge syndrome, which has multiple genetic and environmental etiologies. It is also found in rare cases of T-cell lymphopenia due to Nude SCID and Otofaciocervical Syndrome type 2, or in the context of genetically undefined defects. This group of disorders cannot be corrected by hematopoietic stem cell transplantation, but upon timely recognition as thymic defects, can successfully be treated by thymus transplantation using cultured postnatal thymic tissue with the generation of naïve T-cells showing a diverse repertoire. Mortality after this treatment usually occurs before immune reconstitution and is mainly associated with infections most often acquired pre-transplantation. In this review, we will discuss the current approaches to the diagnosis and management of thymic stromal cell defects, in particular those resulting in athymia. We will discuss the impact of the expanding implementation of newborn screening for T-cell lymphopenia, in combination with next generation sequencing, as well as the role of novel diagnostic tools distinguishing between hematopoietic and thymic stromal cell defects in facilitating the early consideration for thymus transplantation of an increasing number of patients and disorders. Immune reconstitution after the current treatment is usually incomplete with relatively common inflammatory and autoimmune complications, emphasizing the importance for improving strategies for thymus replacement therapy by optimizing the current use of postnatal thymus tissue and developing new approaches using engineered thymus tissue.
Collapse
Affiliation(s)
- Alexandra Y. Kreins
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- Department of Immunology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Paola Bonfanti
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- Epithelial Stem Cell Biology & Regenerative Medicine Laboratory, The Francis Crick Institute, London, United Kingdom
- Institute of Immunity & Transplantation, University College London, London, United Kingdom
| | - E. Graham Davies
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- Department of Immunology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
27
|
Saiki W, Ma C, Okajima T, Takeuchi H. Current Views on the Roles of O-Glycosylation in Controlling Notch-Ligand Interactions. Biomolecules 2021; 11:biom11020309. [PMID: 33670724 PMCID: PMC7922208 DOI: 10.3390/biom11020309] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/12/2022] Open
Abstract
The 100th anniversary of Notch discovery in Drosophila has recently passed. The Notch is evolutionarily conserved from Drosophila to humans. The discovery of human-specific Notch genes has led to a better understanding of Notch signaling in development and diseases and will continue to stimulate further research in the future. Notch receptors are responsible for cell-to-cell signaling. They are activated by cell-surface ligands located on adjacent cells. Notch activation plays an important role in determining the fate of cells, and dysregulation of Notch signaling results in numerous human diseases. Notch receptors are primarily activated by ligand binding. Many studies in various fields including genetics, developmental biology, biochemistry, and structural biology conducted over the past two decades have revealed that the activation of the Notch receptor is regulated by unique glycan modifications. Such modifications include O-fucose, O-glucose, and O-N-acetylglucosamine (GlcNAc) on epidermal growth factor-like (EGF) repeats located consecutively in the extracellular domain of Notch receptors. Being fine-tuned by glycans is an important property of Notch receptors. In this review article, we summarize the latest findings on the regulation of Notch activation by glycosylation and discuss future challenges.
Collapse
Affiliation(s)
- Wataru Saiki
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan; (W.S.); (C.M.); (T.O.)
| | - Chenyu Ma
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan; (W.S.); (C.M.); (T.O.)
| | - Tetsuya Okajima
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan; (W.S.); (C.M.); (T.O.)
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Hideyuki Takeuchi
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan; (W.S.); (C.M.); (T.O.)
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Aichi 464-8601, Japan
- Correspondence: ; Tel.: +81-52-744-2068
| |
Collapse
|
28
|
Takam Kamga P, Bazzoni R, Dal Collo G, Cassaro A, Tanasi I, Russignan A, Tecchio C, Krampera M. The Role of Notch and Wnt Signaling in MSC Communication in Normal and Leukemic Bone Marrow Niche. Front Cell Dev Biol 2021; 8:599276. [PMID: 33490067 PMCID: PMC7820188 DOI: 10.3389/fcell.2020.599276] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 12/02/2020] [Indexed: 12/11/2022] Open
Abstract
Notch and Wnt signaling are highly conserved intercellular communication pathways involved in developmental processes, such as hematopoiesis. Even though data from literature support a role for these two pathways in both physiological hematopoiesis and leukemia, there are still many controversies concerning the nature of their contribution. Early studies, strengthened by findings from T-cell acute lymphoblastic leukemia (T-ALL), have focused their investigation on the mutations in genes encoding for components of the pathways, with limited results except for B-cell chronic lymphocytic leukemia (CLL); in because in other leukemia the two pathways could be hyper-expressed without genetic abnormalities. As normal and malignant hematopoiesis require close and complex interactions between hematopoietic cells and specialized bone marrow (BM) niche cells, recent studies have focused on the role of Notch and Wnt signaling in the context of normal crosstalk between hematopoietic/leukemia cells and stromal components. Amongst the latter, mesenchymal stromal/stem cells (MSCs) play a pivotal role as multipotent non-hematopoietic cells capable of giving rise to most of the BM niche stromal cells, including fibroblasts, adipocytes, and osteocytes. Indeed, MSCs express and secrete a broad pattern of bioactive molecules, including Notch and Wnt molecules, that support all the phases of the hematopoiesis, including self-renewal, proliferation and differentiation. Herein, we provide an overview on recent advances on the contribution of MSC-derived Notch and Wnt signaling to hematopoiesis and leukemia development.
Collapse
Affiliation(s)
- Paul Takam Kamga
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
- EA4340-BCOH, Biomarker in Cancerology and Onco-Haematology, UVSQ, Université Paris Saclay, Boulogne-Billancourt, France
| | - Riccardo Bazzoni
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | - Giada Dal Collo
- Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Adriana Cassaro
- Hematology Unit, Department of Oncology, Niguarda Hospital, Milan, Italy
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Ilaria Tanasi
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | - Anna Russignan
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | - Cristina Tecchio
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | - Mauro Krampera
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| |
Collapse
|
29
|
De Decker M, Lavaert M, Roels J, Tilleman L, Vandekerckhove B, Leclercq G, Van Nieuwerburgh F, Van Vlierberghe P, Taghon T. HES1 and HES4 have non-redundant roles downstream of Notch during early human T-cell development. Haematologica 2021; 106:130-141. [PMID: 31919081 PMCID: PMC7776241 DOI: 10.3324/haematol.2019.226126] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 01/02/2020] [Indexed: 11/09/2022] Open
Abstract
In both mouse and human, Notch1 activation is the main initial driver to induce T-cell development in hematopoietic progenitor cells. The initiation of this developmental process coincides with Notch1-dependent repression of differentiation towards other hematopoietic lineages. Although well described in mice, the role of the individual Notch1 target genes during these hematopoietic developmental choices is still unclear in human, particularly for HES4 since no orthologous gene is present in the mouse. Here, we investigated the functional capacity of the Notch1 target genes HES1 and HES4 to modulate human Notch1-dependent hematopoietic lineage decisions and their requirement during early T-cell development. We show that both genes are upregulated in a Notch-dependent manner during early T-cell development and that HES1 acts as a repressor of differentiation by maintaining a quiescent stem cell signature in CD34+ hematopoietic progenitor cells. While HES4 can also inhibit natural killer and myeloid cell development like HES1, it acts differently on the T- versus B-cell lineage choice. Surprisingly, HES4 is not capable of repressing B-cell development, the most sensitive hematopoietic lineage with respect to Notch-mediated repression. In contrast to HES1, HES4 promotes initiation of early T-cell development, but ectopic expression of HES4, or HES1 and HES4 combined, is not sufficient to induce T-lineage differentiation. Importantly, knockdown of HES1 or HES4 significantly reduces human T-cell development. Overall, we show that the Notch1 target genes HES1 and HES4 have non-redundant roles during early human T-cell development which may relate to differences in mediating Notch-dependent human hematopoietic lineage decisions.
Collapse
Affiliation(s)
| | - Marieke Lavaert
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Juliette Roels
- Department of Diagnostic Sciences and of Bimolecular Medicine, Ghent University, Ghent, Belgium
| | - Laurentijn Tilleman
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
| | - Bart Vandekerckhove
- Cancer Research Institute Ghent (CRIG),Dept of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Georges Leclercq
- Cancer Research Institute Ghent (CRIG),Dept of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | | | - Pieter Van Vlierberghe
- Cancer Research Institute Ghent (CRIG), Dept of Biomolecular Medicine, Ghent University, Belgium
| | - Tom Taghon
- Cancer Research Institute Ghent (CRIG),Dept of Diagnostic Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
30
|
Rodríguez-Caparrós A, Álvarez-Santiago J, del Valle-Pastor MJ, Suñé C, López-Ros J, Hernández-Munain C. Regulation of T-cell Receptor Gene Expression by Three-Dimensional Locus Conformation and Enhancer Function. Int J Mol Sci 2020; 21:E8478. [PMID: 33187197 PMCID: PMC7696796 DOI: 10.3390/ijms21228478] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/29/2020] [Accepted: 11/04/2020] [Indexed: 11/16/2022] Open
Abstract
The adaptive immune response in vertebrates depends on the expression of antigen-specific receptors in lymphocytes. T-cell receptor (TCR) gene expression is exquisitely regulated during thymocyte development to drive the generation of αβ and γδ T lymphocytes. The TCRα, TCRβ, TCRγ, and TCRδ genes exist in two different configurations, unrearranged and rearranged. A correctly rearranged configuration is required for expression of a functional TCR chain. TCRs can take the form of one of three possible heterodimers, pre-TCR, TCRαβ, or TCRγδ which drive thymocyte maturation into αβ or γδ T lymphocytes. To pass from an unrearranged to a rearranged configuration, global and local three dimensional (3D) chromatin changes must occur during thymocyte development to regulate gene segment accessibility for V(D)J recombination. During this process, enhancers play a critical role by modifying the chromatin conformation and triggering noncoding germline transcription that promotes the recruitment of the recombination machinery. The different signaling that thymocytes receive during their development controls enhancer activity. Here, we summarize the dynamics of long-distance interactions established through chromatin regulatory elements that drive transcription and V(D)J recombination and how different signaling pathways are orchestrated to regulate the activity of enhancers to precisely control TCR gene expression during T-cell maturation.
Collapse
Affiliation(s)
| | | | | | | | | | - Cristina Hernández-Munain
- Institute of Parasitology and Biomedicine “López-Neyra”—Spanish Scientific Research Council (IPBLN-CSIC), Parque Tecnológico de Ciencias de la Salud (PTS), 18016 Granada, Spain; (A.R.-C.); (J.Á.-S.); (M.J.d.V.-P.); (C.S.); (J.L.-R.)
| |
Collapse
|
31
|
Loontiens S, Dolens AC, Strubbe S, Van de Walle I, Moore FE, Depestel L, Vanhauwaert S, Matthijssens F, Langenau DM, Speleman F, Van Vlierberghe P, Durinck K, Taghon T. PHF6 Expression Levels Impact Human Hematopoietic Stem Cell Differentiation. Front Cell Dev Biol 2020; 8:599472. [PMID: 33251223 PMCID: PMC7672048 DOI: 10.3389/fcell.2020.599472] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/15/2020] [Indexed: 01/10/2023] Open
Abstract
Transcriptional control of hematopoiesis involves complex regulatory networks and functional perturbations in one of these components often results in malignancies. Loss-of-function mutations in PHF6, encoding a presumed epigenetic regulator, have been primarily described in T cell acute lymphoblastic leukemia (T-ALL) and the first insights into its function in normal hematopoiesis only recently emerged from mouse modeling experiments. Here, we investigated the role of PHF6 in human blood cell development by performing knockdown studies in cord blood and thymus-derived hematopoietic precursors to evaluate the impact on lineage differentiation in well-established in vitro models. Our findings reveal that PHF6 levels differentially impact the differentiation of human hematopoietic progenitor cells into various blood cell lineages, with prominent effects on lymphoid and erythroid differentiation. We show that loss of PHF6 results in accelerated human T cell development through reduced expression of NOTCH1 and its downstream target genes. This functional interaction in developing thymocytes was confirmed in vivo using a phf6-deficient zebrafish model that also displayed accelerated developmental kinetics upon reduced phf6 or notch1 activation. In summary, our work reveals that appropriate control of PHF6 expression is important for normal human hematopoiesis and provides clues towards the role of PHF6 in T-ALL development.
Collapse
Affiliation(s)
- Siebe Loontiens
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | | | - Steven Strubbe
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | | | - Finola E. Moore
- Molecular Pathology and Cancer Center, Massachusetts General Hospital, Boston, MA, United States
| | - Lisa Depestel
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Suzanne Vanhauwaert
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Filip Matthijssens
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - David M. Langenau
- Molecular Pathology and Cancer Center, Massachusetts General Hospital, Boston, MA, United States
- Harvard Stem Cell Institute, Cambridge, MA, United States
| | - Frank Speleman
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Pieter Van Vlierberghe
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Kaat Durinck
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Tom Taghon
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
32
|
Dolens A, Durinck K, Lavaert M, Van der Meulen J, Velghe I, De Medts J, Weening K, Roels J, De Mulder K, Volders P, De Preter K, Kerre T, Vandekerckhove B, Leclercq G, Vandesompele J, Mestdagh P, Van Vlierberghe P, Speleman F, Taghon T. Distinct Notch1 and BCL11B requirements mediate human γδ/αβ T cell development. EMBO Rep 2020; 21:e49006. [PMID: 32255245 PMCID: PMC7202205 DOI: 10.15252/embr.201949006] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 03/03/2020] [Accepted: 03/12/2020] [Indexed: 12/22/2022] Open
Abstract
γδ and αβ T cells have unique roles in immunity and both originate in the thymus from T-lineage committed precursors through distinct but unclear mechanisms. Here, we show that Notch1 activation is more stringently required for human γδ development compared to αβ-lineage differentiation and performed paired mRNA and miRNA profiling across 11 discrete developmental stages of human T cell development in an effort to identify the potential Notch1 downstream mechanism. Our data suggest that the miR-17-92 cluster is a Notch1 target in immature thymocytes and that miR-17 can restrict BCL11B expression in these Notch-dependent T cell precursors. We show that enforced miR-17 expression promotes human γδ T cell development and, consistently, that BCL11B is absolutely required for αβ but less for γδ T cell development. This study suggests that human γδ T cell development is mediated by a stage-specific Notch-driven negative feedback loop through which miR-17 temporally restricts BCL11B expression and provides functional insights into the developmental role of the disease-associated genes BCL11B and the miR-17-92 cluster in a human context.
Collapse
Affiliation(s)
| | - Kaat Durinck
- Department of Biomolecular MedicineGhent UniversityGhentBelgium
| | - Marieke Lavaert
- Department of Diagnostic SciencesGhent UniversityGhentBelgium
| | | | - Imke Velghe
- Department of Diagnostic SciencesGhent UniversityGhentBelgium
| | - Jelle De Medts
- Department of Diagnostic SciencesGhent UniversityGhentBelgium
| | - Karin Weening
- Department of Diagnostic SciencesGhent UniversityGhentBelgium
| | - Juliette Roels
- Department of Diagnostic SciencesGhent UniversityGhentBelgium
- Department of Biomolecular MedicineGhent UniversityGhentBelgium
| | | | | | | | - Tessa Kerre
- Department of Diagnostic SciencesGhent UniversityGhentBelgium
| | | | | | - Jo Vandesompele
- Department of Biomolecular MedicineGhent UniversityGhentBelgium
| | - Pieter Mestdagh
- Department of Biomolecular MedicineGhent UniversityGhentBelgium
| | | | - Frank Speleman
- Department of Biomolecular MedicineGhent UniversityGhentBelgium
| | - Tom Taghon
- Department of Diagnostic SciencesGhent UniversityGhentBelgium
| |
Collapse
|
33
|
Park JE, Botting RA, Domínguez Conde C, Popescu DM, Lavaert M, Kunz DJ, Goh I, Stephenson E, Ragazzini R, Tuck E, Wilbrey-Clark A, Roberts K, Kedlian VR, Ferdinand JR, He X, Webb S, Maunder D, Vandamme N, Mahbubani KT, Polanski K, Mamanova L, Bolt L, Crossland D, de Rita F, Fuller A, Filby A, Reynolds G, Dixon D, Saeb-Parsy K, Lisgo S, Henderson D, Vento-Tormo R, Bayraktar OA, Barker RA, Meyer KB, Saeys Y, Bonfanti P, Behjati S, Clatworthy MR, Taghon T, Haniffa M, Teichmann SA. A cell atlas of human thymic development defines T cell repertoire formation. Science 2020; 367:367/6480/eaay3224. [PMID: 32079746 DOI: 10.1126/science.aay3224] [Citation(s) in RCA: 427] [Impact Index Per Article: 85.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 01/16/2020] [Indexed: 11/03/2022]
Abstract
The thymus provides a nurturing environment for the differentiation and selection of T cells, a process orchestrated by their interaction with multiple thymic cell types. We used single-cell RNA sequencing to create a cell census of the human thymus across the life span and to reconstruct T cell differentiation trajectories and T cell receptor (TCR) recombination kinetics. Using this approach, we identified and located in situ CD8αα+ T cell populations, thymic fibroblast subtypes, and activated dendritic cell states. In addition, we reveal a bias in TCR recombination and selection, which is attributed to genomic position and the kinetics of lineage commitment. Taken together, our data provide a comprehensive atlas of the human thymus across the life span with new insights into human T cell development.
Collapse
Affiliation(s)
- Jong-Eun Park
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Rachel A Botting
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | | | - Dorin-Mirel Popescu
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Marieke Lavaert
- Faculty of Medicine and Health Sciences, Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Daniel J Kunz
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK.,Theory of Condensed Matter Group, Cavendish Laboratory/Department of Physics, University of Cambridge, Cambridge CB3 0HE, UK.,Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
| | - Issac Goh
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Emily Stephenson
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Roberta Ragazzini
- Epithelial Stem Cell Biology and Regenerative Medicine Laboratory, Francis Crick Institute, London NW1 1AT, UK.,Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Elizabeth Tuck
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Anna Wilbrey-Clark
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Kenny Roberts
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Veronika R Kedlian
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - John R Ferdinand
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge CB2 0QQ, UK
| | - Xiaoling He
- John van Geest Centre for Brain Repair, University of Cambridge, Cambridge CB2 0PY, UK
| | - Simone Webb
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Daniel Maunder
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Niels Vandamme
- Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium.,Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Krishnaa T Mahbubani
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge CB2 0QQ, UK
| | - Krzysztof Polanski
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Lira Mamanova
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Liam Bolt
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - David Crossland
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.,Department of Adult Congenital Heart Disease and Paediatric Cardiology/Cardiothoracic Surgery, Freeman Hospital, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne NE2 4LP, UK
| | - Fabrizio de Rita
- Department of Adult Congenital Heart Disease and Paediatric Cardiology/Cardiothoracic Surgery, Freeman Hospital, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne NE2 4LP, UK
| | - Andrew Fuller
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Andrew Filby
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Gary Reynolds
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - David Dixon
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge CB2 0QQ, UK
| | - Steven Lisgo
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Deborah Henderson
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Roser Vento-Tormo
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Omer A Bayraktar
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Roger A Barker
- John van Geest Centre for Brain Repair, University of Cambridge, Cambridge CB2 0PY, UK.,WT-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre Cambridge Biomedical Campus, Cambridge CB2 0AW, UK
| | - Kerstin B Meyer
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Yvan Saeys
- Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium.,Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Paola Bonfanti
- Epithelial Stem Cell Biology and Regenerative Medicine Laboratory, Francis Crick Institute, London NW1 1AT, UK.,Great Ormond Street Institute of Child Health, University College London, London, UK.,Institute of Immunity and Transplantation, University College London, London, UK
| | - Sam Behjati
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK.,Department of Paediatrics, University of Cambridge, Cambridge CB2 0SP, UK
| | - Menna R Clatworthy
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK.,Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge CB2 0QQ, UK.,Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Tom Taghon
- Faculty of Medicine and Health Sciences, Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium. .,Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Muzlifah Haniffa
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK. .,Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.,Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne NE2 4LP, UK
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK. .,Theory of Condensed Matter Group, Cavendish Laboratory/Department of Physics, University of Cambridge, Cambridge CB3 0HE, UK
| |
Collapse
|
34
|
Park JE, Botting RA, Domínguez Conde C, Popescu DM, Lavaert M, Kunz DJ, Goh I, Stephenson E, Ragazzini R, Tuck E, Wilbrey-Clark A, Roberts K, Kedlian VR, Ferdinand JR, He X, Webb S, Maunder D, Vandamme N, Mahbubani KT, Polanski K, Mamanova L, Bolt L, Crossland D, de Rita F, Fuller A, Filby A, Reynolds G, Dixon D, Saeb-Parsy K, Lisgo S, Henderson D, Vento-Tormo R, Bayraktar OA, Barker RA, Meyer KB, Saeys Y, Bonfanti P, Behjati S, Clatworthy MR, Taghon T, Haniffa M, Teichmann SA. A cell atlas of human thymic development defines T cell repertoire formation. Science 2020. [DOI: 10.1126/science.aay3224 32079746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Jong-Eun Park
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Rachel A. Botting
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | | | - Dorin-Mirel Popescu
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Marieke Lavaert
- Faculty of Medicine and Health Sciences, Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Daniel J. Kunz
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- Theory of Condensed Matter Group, Cavendish Laboratory/Department of Physics, University of Cambridge, Cambridge CB3 0HE, UK
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
| | - Issac Goh
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Emily Stephenson
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Roberta Ragazzini
- Epithelial Stem Cell Biology and Regenerative Medicine Laboratory, Francis Crick Institute, London NW1 1AT, UK
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Elizabeth Tuck
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Anna Wilbrey-Clark
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Kenny Roberts
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Veronika R. Kedlian
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - John R. Ferdinand
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge CB2 0QQ, UK
| | - Xiaoling He
- John van Geest Centre for Brain Repair, University of Cambridge, Cambridge CB2 0PY, UK
| | - Simone Webb
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Daniel Maunder
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Niels Vandamme
- Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Krishnaa T. Mahbubani
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge CB2 0QQ, UK
| | - Krzysztof Polanski
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Lira Mamanova
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Liam Bolt
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - David Crossland
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Department of Adult Congenital Heart Disease and Paediatric Cardiology/Cardiothoracic Surgery, Freeman Hospital, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne NE2 4LP, UK
| | - Fabrizio de Rita
- Department of Adult Congenital Heart Disease and Paediatric Cardiology/Cardiothoracic Surgery, Freeman Hospital, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne NE2 4LP, UK
| | - Andrew Fuller
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Andrew Filby
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Gary Reynolds
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - David Dixon
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge CB2 0QQ, UK
| | - Steven Lisgo
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Deborah Henderson
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Roser Vento-Tormo
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Omer A. Bayraktar
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Roger A. Barker
- John van Geest Centre for Brain Repair, University of Cambridge, Cambridge CB2 0PY, UK
- WT-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre Cambridge Biomedical Campus, Cambridge CB2 0AW, UK
| | - Kerstin B. Meyer
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Yvan Saeys
- Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Paola Bonfanti
- Epithelial Stem Cell Biology and Regenerative Medicine Laboratory, Francis Crick Institute, London NW1 1AT, UK
- Great Ormond Street Institute of Child Health, University College London, London, UK
- Institute of Immunity and Transplantation, University College London, London, UK
| | - Sam Behjati
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- Department of Paediatrics, University of Cambridge, Cambridge CB2 0SP, UK
| | - Menna R. Clatworthy
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge CB2 0QQ, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Tom Taghon
- Faculty of Medicine and Health Sciences, Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Muzlifah Haniffa
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne NE2 4LP, UK
| | - Sarah A. Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- Theory of Condensed Matter Group, Cavendish Laboratory/Department of Physics, University of Cambridge, Cambridge CB3 0HE, UK
| |
Collapse
|
35
|
Boareto M. Patterning via local cell-cell interactions in developing systems. Dev Biol 2019; 460:77-85. [PMID: 31866513 DOI: 10.1016/j.ydbio.2019.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/15/2019] [Accepted: 12/16/2019] [Indexed: 01/26/2023]
Abstract
Spatial patterning during embryonic development emerges from the differentiation of progenitor cells that share the same genetic program. One of the main challenges in systems biology is to understand the relationship between gene network and patterning, especially how the cells communicate to coordinate their differentiation. This review aims to describe the principles of pattern formation from local cell-cell interactions mediated by the Notch signalling pathway. Notch mediates signalling via direct cell-cell contact and regulates cell fate decisions in many tissues during embryonic development. Here, I will describe the patterning mechanisms via different Notch ligands and the critical role of Notch oscillations during the segmentation of the vertebrate body, brain development, and blood vessel formation.
Collapse
Affiliation(s)
- Marcelo Boareto
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zurich, Mattenstrasse 26, 4058, Basel, Switzerland; Swiss Institute of Bioinformatics, Mattenstrasse 26, 4058, Basel, Switzerland.
| |
Collapse
|
36
|
Mikulak J, Oriolo F, Bruni E, Roberto A, Colombo FS, Villa A, Bosticardo M, Bortolomai I, Lo Presti E, Meraviglia S, Dieli F, Vetrano S, Danese S, Della Bella S, Carvello MM, Sacchi M, Cugini G, Colombo G, Klinger M, Spaggiari P, Roncalli M, Prinz I, Ravens S, di Lorenzo B, Marcenaro E, Silva-Santos B, Spinelli A, Mavilio D. NKp46-expressing human gut-resident intraepithelial Vδ1 T cell subpopulation exhibits high antitumor activity against colorectal cancer. JCI Insight 2019; 4:125884. [PMID: 31689241 DOI: 10.1172/jci.insight.125884] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 10/31/2019] [Indexed: 12/25/2022] Open
Abstract
γδ T cells account for a large fraction of human intestinal intraepithelial lymphocytes (IELs) endowed with potent antitumor activities. However, little is known about their origin, phenotype, and clinical relevance in colorectal cancer (CRC). To determine γδ IEL gut specificity, homing, and functions, γδ T cells were purified from human healthy blood, lymph nodes, liver, skin, and intestine, either disease-free, affected by CRC, or generated from thymic precursors. The constitutive expression of NKp46 specifically identifies a subset of cytotoxic Vδ1 T cells representing the largest fraction of gut-resident IELs. The ontogeny and gut-tropism of NKp46+/Vδ1 IELs depends both on distinctive features of Vδ1 thymic precursors and gut-environmental factors. Either the constitutive presence of NKp46 on tissue-resident Vδ1 intestinal IELs or its induced expression on IL-2/IL-15-activated Vδ1 thymocytes are associated with antitumor functions. Higher frequencies of NKp46+/Vδ1 IELs in tumor-free specimens from CRC patients correlate with a lower risk of developing metastatic III/IV disease stages. Additionally, our in vitro settings reproducing CRC tumor microenvironment inhibited the expansion of NKp46+/Vδ1 cells from activated thymic precursors. These results parallel the very low frequencies of NKp46+/Vδ1 IELs able to infiltrate CRC, thus providing insights to either follow-up cancer progression or to develop adoptive cellular therapies.
Collapse
Affiliation(s)
- Joanna Mikulak
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy
| | - Ferdinando Oriolo
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy
| | - Elena Bruni
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy
| | | | - Federico S Colombo
- Humanitas Flow Cytometry Core, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Anna Villa
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Scientific Institute, Milan, Italy.,Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milan, Italy
| | - Marita Bosticardo
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Scientific Institute, Milan, Italy
| | - Ileana Bortolomai
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Scientific Institute, Milan, Italy
| | - Elena Lo Presti
- Central Laboratory for Advanced Diagnostic and Biomedical Research (CLADIBIOR) and.,Department of Biopathology and Medical Biotechnologies (DIBIMED), University of Palermo, Palermo, Italy
| | - Serena Meraviglia
- Central Laboratory for Advanced Diagnostic and Biomedical Research (CLADIBIOR) and.,Department of Biopathology and Medical Biotechnologies (DIBIMED), University of Palermo, Palermo, Italy
| | - Francesco Dieli
- Central Laboratory for Advanced Diagnostic and Biomedical Research (CLADIBIOR) and.,Department of Biopathology and Medical Biotechnologies (DIBIMED), University of Palermo, Palermo, Italy
| | - Stefania Vetrano
- IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Rozzano, Milan, Italy
| | - Silvio Danese
- IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Rozzano, Milan, Italy
| | - Silvia Della Bella
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy
| | | | | | | | | | - Marco Klinger
- Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy.,Plastic Surgery Unit, and
| | - Paola Spaggiari
- Department of Pathology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Massimo Roncalli
- Department of Biomedical Sciences, Humanitas University, Rozzano, Milan, Italy.,Colon and Rectal Surgery Unit.,Otorhinolaryngology Department.,Plastic Surgery Unit, and.,Department of Pathology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Immo Prinz
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Sarina Ravens
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Biagio di Lorenzo
- Instituto de Medicina Molecular, Faculdade de Medicina, and.,Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Emanuela Marcenaro
- Department of Experimental Medicine and.,Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | | | - Antonino Spinelli
- Department of Biomedical Sciences, Humanitas University, Rozzano, Milan, Italy.,Colon and Rectal Surgery Unit
| | - Domenico Mavilio
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy
| |
Collapse
|
37
|
Abstract
In this review, Rothenburg discusses the gene regulatory network and chromatin-based kinetic constraints that determine activities of transcription factors in the primary establishment of T-cell identity. T-cell development in mammals is a model for lineage choice and differentiation from multipotent stem cells. Although T-cell fate choice is promoted by signaling in the thymus through one dominant pathway, the Notch pathway, it entails a complex set of gene regulatory network and chromatin state changes even before the cells begin to express their signature feature, the clonal-specific T-cell receptors (TCRs) for antigen. This review distinguishes three developmental modules for T-cell development, which correspond to cell type specification, TCR expression and selection, and the assignment of cells to different effector types. The first is based on transcriptional regulatory network events, the second is dominated by somatic gene rearrangement and mutation and cell selection, and the third corresponds to establishing a poised state of latent regulator priming through an unknown mechanism. Interestingly, in different lineages, the third module can be deployed at variable times relative to the completion of the first two modules. This review focuses on the gene regulatory network and chromatin-based kinetic constraints that determine activities of transcription factors TCF1, GATA3, PU.1, Bcl11b, Runx1, and E proteins in the primary establishment of T-cell identity.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
38
|
Winter SJ, Krueger A. Development of Unconventional T Cells Controlled by MicroRNA. Front Immunol 2019; 10:2520. [PMID: 31708931 PMCID: PMC6820353 DOI: 10.3389/fimmu.2019.02520] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/10/2019] [Indexed: 12/21/2022] Open
Abstract
Post-transcriptional gene regulation through microRNA (miRNA) has emerged as a major control mechanism of multiple biological processes, including development and function of T cells. T cells are vital components of the immune system, with conventional T cells playing a central role in adaptive immunity and unconventional T cells having additional functions reminiscent of both innate and adaptive immunity, such as involvement in stress responses and tissue homeostasis. Unconventional T cells encompass cells expressing semi-invariant T cell receptors (TCRs), such as invariant Natural Killer T (iNKT) and Mucosal-Associated Invariant T (MAIT) cells. Additionally, some T cells with diverse TCR repertoires, including γδT cells, intraepithelial lymphocytes (IEL) and regulatory T (Treg) cells, share some functional and/or developmental features with their semi-invariant unconventional counterparts. Unconventional T cells are particularly sensitive to disruption of miRNA function, both globally and on the individual miRNA level. Here, we review the role of miRNA in the development and function of unconventional T cells from an iNKT-centric point of view. The function of single miRNAs can provide important insights into shared and individual pathways for the formation of different unconventional T cell subsets.
Collapse
Affiliation(s)
- Samantha J Winter
- Institute for Molecular Medicine, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Andreas Krueger
- Institute for Molecular Medicine, Goethe-University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
39
|
Peiffer DS, Wyatt D, Zlobin A, Piracha A, Ng J, Dingwall AK, Albain KS, Osipo C. DAXX Suppresses Tumor-Initiating Cells in Estrogen Receptor-Positive Breast Cancer Following Endocrine Therapy. Cancer Res 2019; 79:4965-4977. [PMID: 31387918 DOI: 10.1158/0008-5472.can-19-1110] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/03/2019] [Accepted: 08/01/2019] [Indexed: 12/12/2022]
Abstract
Estrogen receptor (ER)-positive breast cancer recurrence is thought to be driven by tumor-initiating cells (TIC). TICs are enriched by endocrine therapy through NOTCH signaling. Side effects have limited clinical trial testing of NOTCH-targeted therapies. Death-associated factor 6 (DAXX) is a newly identified marker whose RNA expression inversely correlates with NOTCH in human ER+ breast tumor samples. In this study, knockdown and overexpression approaches were used to investigate the role of DAXX on stem/pluripotent gene expression, TIC survival in vitro, and TIC frequency in vivo, and the mechanism by which DAXX suppresses TICs in ER+ breast cancer. 17β-Estradiol (E2)-mediated ER activation stabilized the DAXX protein, which was required for repressing stem/pluripotent genes (NOTCH4, SOX2, OCT4, NANOG, and ALDH1A1), and TICs in vitro and in vivo. Conversely, endocrine therapy promoted rapid protein depletion due to increased proteasome activity. DAXX was enriched at promoters of stem/pluripotent genes, which was lost with endocrine therapy. Ectopic expression of DAXX decreased stem/pluripotent gene transcripts to levels similar to E2 treatment. DAXX-mediated repression of stem/pluripotent genes and suppression of TICs was dependent on DNMT1. DAXX or DNMT1 was necessary to inhibit methylation of CpGs within the SOX2 promoter and moderately within the gene body of NOTCH4, NOTCH activation, and TIC survival. E2-mediated stabilization of DAXX was necessary and sufficient to repress stem/pluripotent genes by recruiting DNMT1 to methylate some promoters and suppress TICs. These findings suggest that a combination of endocrine therapy and DAXX-stabilizing agents may inhibit ER+ tumor recurrence. SIGNIFICANCE: Estradiol-mediated stabilization of DAXX is necessary and sufficient to repress genes associated with stemness, suggesting that the combination of endocrine therapy and DAXX-stabilizing agents may inhibit tumor recurrence in ER+ breast cancer.
Collapse
Affiliation(s)
- Daniel S Peiffer
- MD/PhD and Integrated Cell Biology Programs, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois
| | - Debra Wyatt
- Department of Cancer Biology, Loyola University Chicago, Maywood, Illinois
| | - Andrei Zlobin
- Department of Cancer Biology, Loyola University Chicago, Maywood, Illinois
| | - Ali Piracha
- Loyola University Chicago, Chicago, Illinois
| | - Jeffrey Ng
- Loyola University Chicago, Chicago, Illinois
| | - Andrew K Dingwall
- Department of Pathology, Loyola University Chicago, Maywood, Illinois
| | - Kathy S Albain
- Department of Medicine, Division of Hematology/Oncology, Cardinal Bernardin Cancer Center, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois
| | - Clodia Osipo
- Department of Cancer Biology, Loyola University Chicago, Maywood, Illinois. .,Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois
| |
Collapse
|
40
|
Negri VA, Logtenberg MEW, Renz LM, Oules B, Walko G, Watt FM. Delta-like 1-mediated cis-inhibition of Jagged1/2 signalling inhibits differentiation of human epidermal cells in culture. Sci Rep 2019; 9:10825. [PMID: 31346203 PMCID: PMC6658703 DOI: 10.1038/s41598-019-47232-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 07/04/2019] [Indexed: 11/20/2022] Open
Abstract
Epidermal homeostasis depends on a balance between self-renewal of stem cells and terminal differentiation of their progeny. Notch signalling is known to play a role in epidermal stem cell patterning and differentiation. However, the molecular mechanisms are incompletely understood. Here we demonstrate dynamic patterns of Notch ligand and receptor expression in cultured human epidermis. Notch2 and 3 act together to promote differentiation, while Notch1 decreases stem cell proliferation. The Notch ligand Jagged1 triggers differentiation when presented on an adhesive substrate or on polystyrene beads and over-rides the differentiation inhibitory effect of cell spreading. In contrast, Delta-like 1 (Dll1) overexpression abrogates the pro-differentiation effect of Jagged1 in a cell autonomous fashion. We conclude that Dll1 expression by stem cells not only stimulates differentiation of neighbouring cells in trans, but also inhibits differentiation cell autonomously. These results highlight the distinct roles of different Notch receptors and ligands in controlling epidermal homeostasis.
Collapse
Affiliation(s)
- Victor A Negri
- Centre for Stem Cells and Regenerative Medicine, Faculty of Life Sciences & Medicine, King's College London, 28th Floor, Tower Wing, Guy's Hospital, SE1 9RT, London, UK
| | - Meike E W Logtenberg
- Centre for Stem Cells and Regenerative Medicine, Faculty of Life Sciences & Medicine, King's College London, 28th Floor, Tower Wing, Guy's Hospital, SE1 9RT, London, UK.,Division of Immunology, The Netherlands Cancer Institute, Postbus 90203, 1006 BE, Amsterdam, The Netherlands
| | - Lisa M Renz
- Centre for Stem Cells and Regenerative Medicine, Faculty of Life Sciences & Medicine, King's College London, 28th Floor, Tower Wing, Guy's Hospital, SE1 9RT, London, UK.,Research Institute for Applied Bioanalytics and Drug Development, IMC University of Applied Sciences, A-3500, Krems an der Donau, Austria
| | - Bénédicte Oules
- Centre for Stem Cells and Regenerative Medicine, Faculty of Life Sciences & Medicine, King's College London, 28th Floor, Tower Wing, Guy's Hospital, SE1 9RT, London, UK
| | - Gernot Walko
- Centre for Stem Cells and Regenerative Medicine, Faculty of Life Sciences & Medicine, King's College London, 28th Floor, Tower Wing, Guy's Hospital, SE1 9RT, London, UK. .,Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom.
| | - Fiona M Watt
- Centre for Stem Cells and Regenerative Medicine, Faculty of Life Sciences & Medicine, King's College London, 28th Floor, Tower Wing, Guy's Hospital, SE1 9RT, London, UK.
| |
Collapse
|
41
|
Tottone L, Zhdanovskaya N, Carmona Pestaña Á, Zampieri M, Simeoni F, Lazzari S, Ruocco V, Pelullo M, Caiafa P, Felli MP, Checquolo S, Bellavia D, Talora C, Screpanti I, Palermo R. Histone Modifications Drive Aberrant Notch3 Expression/Activity and Growth in T-ALL. Front Oncol 2019; 9:198. [PMID: 31001470 PMCID: PMC6456714 DOI: 10.3389/fonc.2019.00198] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 03/08/2019] [Indexed: 01/11/2023] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive blood cancer caused by the deregulation of key T-cell developmental pathways, including Notch signaling. Aberrant Notch signaling in T-ALL occurs by NOTCH1 gain-of-function mutations and by NOTCH3 overexpression. Although NOTCH3 is assumed as a Notch1 target, machinery driving its transcription in T-ALL is undefined in leukemia subsets lacking Notch1 activation. Here, we found that the binding of the intracellular Notch3 domain, as well as of the activated Notch1 fragment, to the NOTCH3 gene locus led to the recruitment of the H3K27 modifiers JMJD3 and p300, and it was required to preserve transcriptional permissive/active H3K27 marks and to sustain NOTCH3 gene expression levels. Consistently, pharmacological inhibition of JMJD3 by GSKJ4 treatment or of p300 by A-485 decreased the levels of expression of NOTCH3, NOTCH1 and of the Notch target genes DELTEX1 and c-Myc and abrogated cell viability in both Notch1- and Notch3-dependent T-cell contexts. Notably, re-introduction of exogenous Notch1, Notch3 as well as c-Myc partially rescued cells from anti-growth effects induced by either treatment. Overall our findings indicate JMJD3 and p300 as general Notch1 and Notch3 signaling co-activators in T-ALL and suggest further investigation on the potential therapeutic anti-leukemic efficacy of their enzymatic inhibition in Notch/c-Myc axis-related cancers and diseases.
Collapse
Affiliation(s)
- Luca Tottone
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | | | | | - Michele Zampieri
- Department of Cellular Biotechnologies and Hematology, Sapienza University of Rome, Rome, Italy
| | - Fabrizio Simeoni
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Sara Lazzari
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Valeria Ruocco
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Maria Pelullo
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Paola Caiafa
- Department of Cellular Biotechnologies and Hematology, Sapienza University of Rome, Rome, Italy
| | - Maria Pia Felli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Saula Checquolo
- Department of Medico-Surgical Sciences and Biotechnology, Sapienza University of Rome, Latina, Italy
| | - Diana Bellavia
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Claudio Talora
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Isabella Screpanti
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Rocco Palermo
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
42
|
The multifaceted role of Notch signal in regulating T cell fate. Immunol Lett 2019; 206:59-64. [PMID: 30629981 DOI: 10.1016/j.imlet.2019.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/28/2018] [Accepted: 01/05/2019] [Indexed: 11/22/2022]
Abstract
Notch signaling pathway facilitates important cellular functions of the host. Notch signal is essential for the development of T cells, and the role of Notch in fine tuning of αβ versus γδ T cell lineage commitment is fundamentally different in mice and human. The Notch family of cell surface receptor likewise plays a critical role in regulating T cell activation, and influences T cell response both intrinsically and through the local environment. In this review, we take an overview of Notch signaling pathway and also emphasize the role of Notch signal in T cell lineage differentiation and activating effector function of peripheral T cells.
Collapse
|
43
|
Charnley M, Ludford-Menting M, Pham K, Russell SM. A new role for Notch in the control of polarity and asymmetric cell division of developing T cells. J Cell Sci 2019; 133:jcs.235358. [DOI: 10.1242/jcs.235358] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/20/2019] [Indexed: 12/28/2022] Open
Abstract
A fundamental question in biology is how single cells can reliably produce progeny of different cell types. Notch signalling frequently facilitates fate determination. Asymmetric cell division (ACD) often controls segregation of Notch signalling by imposing unequal inheritance of regulators of Notch. Here, we assessed the functional relationship between Notch and ACD in mouse T cell development. To attain immunological specificity, developing T cells must pass through a pivotal stage termed β-selection, which involves Notch signalling and ACD. We assessed functional interactions between Notch1 and ACD during β-selection using direct presentation of Notch ligands, DL1 and DL4, and pharmacological inhibition of Notch signalling. Contrary to prevailing models, we demonstrate that Notch controls the distribution of Notch1 itself and cell fate determinants, α-Adaptin and Numb. Further, Notch and CXCR4 signalling cooperated to drive polarity during division. Thus, Notch signalling directly orchestrates ACD, and Notch1 is differentially inherited by sibling cells.
Collapse
Affiliation(s)
- Mirren Charnley
- Centre for Micro-Photonics, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- Biointerface Engineering, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- Immune Signalling Laboratory, Peter MacCallum Cancer Centre, Parkville, Victoria 3000, Australia
| | - Mandy Ludford-Menting
- Immune Signalling Laboratory, Peter MacCallum Cancer Centre, Parkville, Victoria 3000, Australia
| | - Kim Pham
- Centre for Micro-Photonics, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- Immune Signalling Laboratory, Peter MacCallum Cancer Centre, Parkville, Victoria 3000, Australia
- Department of Pathology, The University of Melbourne, Parkville, Victoria 3010, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Sarah M. Russell
- Centre for Micro-Photonics, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- Immune Signalling Laboratory, Peter MacCallum Cancer Centre, Parkville, Victoria 3000, Australia
- Department of Pathology, The University of Melbourne, Parkville, Victoria 3010, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
44
|
Meurette O, Mehlen P. Notch Signaling in the Tumor Microenvironment. Cancer Cell 2018; 34:536-548. [PMID: 30146333 DOI: 10.1016/j.ccell.2018.07.009] [Citation(s) in RCA: 463] [Impact Index Per Article: 66.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/30/2018] [Accepted: 07/24/2018] [Indexed: 12/18/2022]
Abstract
The Notch signaling pathway regulates many aspects of cancer biology. Most attention has been given to its role in the transformed cell. However, it is now clear that cancer progression and metastasis depend on the bidirectional interactions between cancer cells and their environment, forming the tumor microenvironment (TME). These interactions are mediated and constantly evolve through paracrine and juxtacrine signaling. In this review, we discuss how Notch signaling takes an important part in regulating the crosstalk between the different compartments of the TME. We also address the consequences of the Notch-TME involvement from a therapeutic perspective.
Collapse
Affiliation(s)
- Olivier Meurette
- Apoptosis, Cancer and Development Laboratory- Equipe Labellisée 'La Ligue', LabEx DEVweCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France.
| | - Patrick Mehlen
- Apoptosis, Cancer and Development Laboratory- Equipe Labellisée 'La Ligue', LabEx DEVweCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France
| |
Collapse
|
45
|
Mangolini M, Götte F, Moore A, Ammon T, Oelsner M, Lutzny-Geier G, Klein-Hitpass L, Williamson JC, Lehner PJ, Dürig J, Möllmann M, Rásó-Barnett L, Hughes K, Santoro A, Méndez-Ferrer S, Oostendorp RAJ, Zimber-Strobl U, Peschel C, Hodson DJ, Schmidt-Supprian M, Ringshausen I. Notch2 controls non-autonomous Wnt-signalling in chronic lymphocytic leukaemia. Nat Commun 2018; 9:3839. [PMID: 30242258 PMCID: PMC6155045 DOI: 10.1038/s41467-018-06069-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 07/31/2018] [Indexed: 01/05/2023] Open
Abstract
The Wnt signalling pathway, one of the core de-regulated pathways in chronic lymphocytic leukaemia (CLL), is activated in only a subset of patients through somatic mutations. Here we describe alternative, microenvironment-dependent mechanisms of Wnt activation in malignant B cells. We show that tumour cells specifically induce Notch2 activity in mesenchymal stromal cells (MSCs) required for the transcription of the complement factor C1q. MSC-derived C1q in turn inhibits Gsk3-β mediated degradation of β-catenin in CLL cells. Additionally, stromal Notch2 activity regulates N-cadherin expression in CLL cells, which interacts with and further stabilises β-catenin. Together, these stroma Notch2-dependent mechanisms induce strong activation of canonical Wnt signalling in CLL cells. Pharmacological inhibition of the Wnt pathway impairs microenvironment-mediated survival of tumour cells. Similarly, inhibition of Notch signalling diminishes survival of stroma-protected CLL cells in vitro and disease engraftment in vivo. Notch2 activation in the microenvironment is a pre-requisite for the activation of canonical Wnt signalling in tumour cells.
Collapse
Affiliation(s)
- Maurizio Mangolini
- Wellcome Trust/ MRC Cambridge Stem Cell Institute & Department of Haematology, University of Cambridge, Cambridge, CB2 0AH, UK
| | - Frederik Götte
- Department of Hematology and Medical Oncology, Klinikum rechts der Isar der Technischen Universität München, Munich, 81675, Germany
| | - Andrew Moore
- Wellcome Trust/ MRC Cambridge Stem Cell Institute & Department of Haematology, University of Cambridge, Cambridge, CB2 0AH, UK
| | - Tim Ammon
- Department of Hematology and Medical Oncology, Klinikum rechts der Isar der Technischen Universität München, Munich, 81675, Germany
| | - Madlen Oelsner
- Department of Hematology and Medical Oncology, Klinikum rechts der Isar der Technischen Universität München, Munich, 81675, Germany
| | - Gloria Lutzny-Geier
- Department of Internal Medicine 5, Haematology and Oncology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, 91054, Germany
| | - Ludger Klein-Hitpass
- Institute of Cell Biology, Faculty of Medicine, University of Duisburg-Essen, Essen, 45122, Germany
| | - James C Williamson
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, CB2 0XY, UK
| | - Paul J Lehner
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, CB2 0XY, UK
| | - Jan Dürig
- Department of Hematology, University Hospital Essen,, University of Duisburg-Essen, Essen, 45122, Germany
| | - Michael Möllmann
- Department of Hematology, University Hospital Essen,, University of Duisburg-Essen, Essen, 45122, Germany
| | - Lívia Rásó-Barnett
- Haematopathology and Oncology Diagnostic Service (HODS), Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK
| | - Katherine Hughes
- Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, UK
| | - Antonella Santoro
- Wellcome Trust/ MRC Cambridge Stem Cell Institute & Department of Haematology, University of Cambridge, Cambridge, CB2 0AH, UK
| | - Simón Méndez-Ferrer
- Wellcome Trust/ MRC Cambridge Stem Cell Institute & Department of Haematology, University of Cambridge, Cambridge, CB2 0AH, UK
- NHS Blood and Transplant, Cambridge, CB2 0PT, UK
| | - Robert A J Oostendorp
- Department of Hematology and Medical Oncology, Klinikum rechts der Isar der Technischen Universität München, Munich, 81675, Germany
| | | | - Christian Peschel
- Department of Hematology and Medical Oncology, Klinikum rechts der Isar der Technischen Universität München, Munich, 81675, Germany
- German Cancer Consortium, DKFZ, Heidelberg, 69120, Germany
| | - Daniel J Hodson
- Wellcome Trust/ MRC Cambridge Stem Cell Institute & Department of Haematology, University of Cambridge, Cambridge, CB2 0AH, UK
| | - Marc Schmidt-Supprian
- Department of Hematology and Medical Oncology, Klinikum rechts der Isar der Technischen Universität München, Munich, 81675, Germany
- German Cancer Consortium, DKFZ, Heidelberg, 69120, Germany
| | - Ingo Ringshausen
- Wellcome Trust/ MRC Cambridge Stem Cell Institute & Department of Haematology, University of Cambridge, Cambridge, CB2 0AH, UK.
| |
Collapse
|
46
|
García-León MJ, Fuentes P, de la Pompa JL, Toribio ML. Dynamic regulation of NOTCH1 activation and Notch ligand expression in human thymus development. Development 2018; 145:dev.165597. [PMID: 30042180 DOI: 10.1242/dev.165597] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 07/06/2018] [Indexed: 01/22/2023]
Abstract
T-cell development is a complex dynamic process that relies on ordered stromal signals delivered to thymus-seeding progenitors that migrate throughout different thymus microenvironments (TMEs). Particularly, Notch signaling provided by thymic epithelial cells (TECs) is crucial for T-cell fate specification and generation of mature T cells. Four canonical Notch ligands (Dll1, Dll4, Jag1 and Jag2) are expressed in the thymus, but their spatial distribution in functional TMEs is largely unknown, especially in humans, and their impact on Notch1 activation during T-lymphopoiesis remains undefined. Based on immunohistochemistry and quantitative confocal microscopy of fetal, postnatal and adult human and mouse thymus samples, we show that spatial regulation of Notch ligand expression defines discrete Notch signaling niches and dynamic species-specific TMEs. We further show that Notch ligand expression, particularly DLL4, is tightly regulated in cortical TECs during human thymus ontogeny and involution. Also, we provide the first evidence that NOTCH1 activation is induced in vivo in CD34+ progenitors and developing thymocytes at particular cortical niches of the human fetal and postnatal thymus. Collectively, our results show that human thymopoiesis involves complex spatiotemporal regulation of Notch ligand expression, which ensures the coordinated delivery of niche-specific NOTCH1 signals required for dynamic T-cell development.
Collapse
Affiliation(s)
- María J García-León
- Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa, Consejo de Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain
| | - Patricia Fuentes
- Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa, Consejo de Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain
| | - José Luis de la Pompa
- Intercellular Signaling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain.,CIBER CV, 28029 Madrid, Spain
| | - María L Toribio
- Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa, Consejo de Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain
| |
Collapse
|
47
|
Lin Z, Chen B, Wu T, Xu X. Highly Tumorigenic Diffuse Large B Cell Lymphoma Cells Are Produced by Coculture with Stromal Cells. Acta Haematol 2018; 139:201-216. [PMID: 29791894 DOI: 10.1159/000488385] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 03/14/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND/AIMS Diffuse large B cell lymphoma (DLBCL) is heterogeneous. We aimed to explore how tumor microenvironment promotes lymphoma cell aggressiveness and heterogeneity. METHODS We created a coculture system using human DLBCL cells and mouse bone marrow stromal cells. Proliferative capacity, drug resistance, clonogenicity, and tumorigenicity were compared in lymphoma cells from the coculture system and lymphoma cells cultured alone. Expression of Notch signaling associated genes was evaluated using real-time reverse transcriptase PCR and Western blot. RESULTS Lymphoma cells in the coculture system differentiated into a suspended cell group and an adherent cell group. They acquired a stronger proliferative capacity and drug resistance than lymphoma cells cultured alone, and differences existed between the adherent cell and suspended cell groups. The suspended cell group acquired the most powerful clonogenic and tumorigenic potential. However, Notch3 was exclusively expressed in the adherent lymphoma cell group and the use of N-[N-(3, 5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester, an inhibitor of Notch pathway, could abolish the emergence of highly aggressive lymphoma cells. CONCLUSION Highly tumorigenic lymphoma cells could be generated by coculture with stromal cells, and it was dependent on Notch3 expression in the adjacent lymphoma cells through interaction with stromal cells.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Apoptosis
- Biomarkers
- Cell Line, Tumor
- Cell Proliferation
- Cell Transformation, Neoplastic
- Coculture Techniques
- Disease Models, Animal
- Disease Progression
- Drug Resistance, Neoplasm
- Humans
- Immunohistochemistry
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/pathology
- Mice
- Signal Transduction/drug effects
- Stromal Cells/metabolism
- Tumor Microenvironment
- Xenograft Model Antitumor Assays
Collapse
|
48
|
Poulsen LLC, Edelmann RJ, Krüger S, Diéguez-Hurtado R, Shah A, Stav-Noraas TE, Renzi A, Szymanska M, Wang J, Ehling M, Benedito R, Kasprzycka M, Bækkevold E, Sundnes O, Midwood KS, Scott H, Collas P, Siebel CW, Adams RH, Haraldsen G, Sundlisæter E, Hol J. Inhibition of Endothelial NOTCH1 Signaling Attenuates Inflammation by Reducing Cytokine-Mediated Histone Acetylation at Inflammatory Enhancers. Arterioscler Thromb Vasc Biol 2018; 38:854-869. [PMID: 29449332 DOI: 10.1161/atvbaha.117.310388] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 01/23/2018] [Indexed: 01/24/2023]
Abstract
OBJECTIVE Endothelial upregulation of adhesion molecules serves to recruit leukocytes to inflammatory sites and appears to be promoted by NOTCH1; however, current models based on interactions between active NOTCH1 and NF-κB components cannot explain the transcriptional selectivity exerted by NOTCH1 in this context. APPROACH AND RESULTS Observing that Cre/Lox-induced conditional mutations of endothelial Notch modulated inflammation in murine contact hypersensitivity, we found that IL (interleukin)-1β stimulation induced rapid recruitment of RELA (v-rel avian reticuloendotheliosis viral oncogene homolog A) to genomic sites occupied by NOTCH1-RBPJ (recombination signal-binding protein for immunoglobulin kappa J region) and that NOTCH1 knockdown reduced histone H3K27 acetylation at a subset of NF-κB-directed inflammatory enhancers. CONCLUSIONS Our findings reveal that NOTCH1 signaling supports the expression of a subset of inflammatory genes at the enhancer level and demonstrate how key signaling pathways converge on chromatin to coordinate the transition to an infla mmatory endothelial phenotype.
Collapse
Affiliation(s)
- Lars la Cour Poulsen
- From the Department of Pathology, Oslo University Hospital Rikshospitalet (L.l.C.P., R.J.E., S.K., T.E.S.-N., A.R., M.S., J.W., M.K., E.B., O.S., H.S., G.H., E.S., J.H.), Department of Pathology, Institute for Clinical Medical Sciences (H.S., G.H.) and Department of Molecular Medicine, Institute for Basal Medical Sciences (A.S., P.C.), University of Oslo, Norway; Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, University of Münster, Germany (R.D.-H., M.E., R.B., R.H.A.); Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, United Kingdom (K.S.M.); and Department of Discovery Oncology, Genentech, Inc, South San Francisco, CA (C.W.S.)
| | - Reidunn Jetne Edelmann
- From the Department of Pathology, Oslo University Hospital Rikshospitalet (L.l.C.P., R.J.E., S.K., T.E.S.-N., A.R., M.S., J.W., M.K., E.B., O.S., H.S., G.H., E.S., J.H.), Department of Pathology, Institute for Clinical Medical Sciences (H.S., G.H.) and Department of Molecular Medicine, Institute for Basal Medical Sciences (A.S., P.C.), University of Oslo, Norway; Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, University of Münster, Germany (R.D.-H., M.E., R.B., R.H.A.); Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, United Kingdom (K.S.M.); and Department of Discovery Oncology, Genentech, Inc, South San Francisco, CA (C.W.S.)
| | - Stig Krüger
- From the Department of Pathology, Oslo University Hospital Rikshospitalet (L.l.C.P., R.J.E., S.K., T.E.S.-N., A.R., M.S., J.W., M.K., E.B., O.S., H.S., G.H., E.S., J.H.), Department of Pathology, Institute for Clinical Medical Sciences (H.S., G.H.) and Department of Molecular Medicine, Institute for Basal Medical Sciences (A.S., P.C.), University of Oslo, Norway; Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, University of Münster, Germany (R.D.-H., M.E., R.B., R.H.A.); Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, United Kingdom (K.S.M.); and Department of Discovery Oncology, Genentech, Inc, South San Francisco, CA (C.W.S.)
| | - Rodrigo Diéguez-Hurtado
- From the Department of Pathology, Oslo University Hospital Rikshospitalet (L.l.C.P., R.J.E., S.K., T.E.S.-N., A.R., M.S., J.W., M.K., E.B., O.S., H.S., G.H., E.S., J.H.), Department of Pathology, Institute for Clinical Medical Sciences (H.S., G.H.) and Department of Molecular Medicine, Institute for Basal Medical Sciences (A.S., P.C.), University of Oslo, Norway; Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, University of Münster, Germany (R.D.-H., M.E., R.B., R.H.A.); Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, United Kingdom (K.S.M.); and Department of Discovery Oncology, Genentech, Inc, South San Francisco, CA (C.W.S.)
| | - Akshay Shah
- From the Department of Pathology, Oslo University Hospital Rikshospitalet (L.l.C.P., R.J.E., S.K., T.E.S.-N., A.R., M.S., J.W., M.K., E.B., O.S., H.S., G.H., E.S., J.H.), Department of Pathology, Institute for Clinical Medical Sciences (H.S., G.H.) and Department of Molecular Medicine, Institute for Basal Medical Sciences (A.S., P.C.), University of Oslo, Norway; Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, University of Münster, Germany (R.D.-H., M.E., R.B., R.H.A.); Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, United Kingdom (K.S.M.); and Department of Discovery Oncology, Genentech, Inc, South San Francisco, CA (C.W.S.)
| | - Tor Espen Stav-Noraas
- From the Department of Pathology, Oslo University Hospital Rikshospitalet (L.l.C.P., R.J.E., S.K., T.E.S.-N., A.R., M.S., J.W., M.K., E.B., O.S., H.S., G.H., E.S., J.H.), Department of Pathology, Institute for Clinical Medical Sciences (H.S., G.H.) and Department of Molecular Medicine, Institute for Basal Medical Sciences (A.S., P.C.), University of Oslo, Norway; Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, University of Münster, Germany (R.D.-H., M.E., R.B., R.H.A.); Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, United Kingdom (K.S.M.); and Department of Discovery Oncology, Genentech, Inc, South San Francisco, CA (C.W.S.)
| | - Anastasia Renzi
- From the Department of Pathology, Oslo University Hospital Rikshospitalet (L.l.C.P., R.J.E., S.K., T.E.S.-N., A.R., M.S., J.W., M.K., E.B., O.S., H.S., G.H., E.S., J.H.), Department of Pathology, Institute for Clinical Medical Sciences (H.S., G.H.) and Department of Molecular Medicine, Institute for Basal Medical Sciences (A.S., P.C.), University of Oslo, Norway; Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, University of Münster, Germany (R.D.-H., M.E., R.B., R.H.A.); Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, United Kingdom (K.S.M.); and Department of Discovery Oncology, Genentech, Inc, South San Francisco, CA (C.W.S.)
| | - Monika Szymanska
- From the Department of Pathology, Oslo University Hospital Rikshospitalet (L.l.C.P., R.J.E., S.K., T.E.S.-N., A.R., M.S., J.W., M.K., E.B., O.S., H.S., G.H., E.S., J.H.), Department of Pathology, Institute for Clinical Medical Sciences (H.S., G.H.) and Department of Molecular Medicine, Institute for Basal Medical Sciences (A.S., P.C.), University of Oslo, Norway; Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, University of Münster, Germany (R.D.-H., M.E., R.B., R.H.A.); Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, United Kingdom (K.S.M.); and Department of Discovery Oncology, Genentech, Inc, South San Francisco, CA (C.W.S.)
| | - Junbai Wang
- From the Department of Pathology, Oslo University Hospital Rikshospitalet (L.l.C.P., R.J.E., S.K., T.E.S.-N., A.R., M.S., J.W., M.K., E.B., O.S., H.S., G.H., E.S., J.H.), Department of Pathology, Institute for Clinical Medical Sciences (H.S., G.H.) and Department of Molecular Medicine, Institute for Basal Medical Sciences (A.S., P.C.), University of Oslo, Norway; Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, University of Münster, Germany (R.D.-H., M.E., R.B., R.H.A.); Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, United Kingdom (K.S.M.); and Department of Discovery Oncology, Genentech, Inc, South San Francisco, CA (C.W.S.)
| | - Manuel Ehling
- From the Department of Pathology, Oslo University Hospital Rikshospitalet (L.l.C.P., R.J.E., S.K., T.E.S.-N., A.R., M.S., J.W., M.K., E.B., O.S., H.S., G.H., E.S., J.H.), Department of Pathology, Institute for Clinical Medical Sciences (H.S., G.H.) and Department of Molecular Medicine, Institute for Basal Medical Sciences (A.S., P.C.), University of Oslo, Norway; Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, University of Münster, Germany (R.D.-H., M.E., R.B., R.H.A.); Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, United Kingdom (K.S.M.); and Department of Discovery Oncology, Genentech, Inc, South San Francisco, CA (C.W.S.)
| | - Rui Benedito
- From the Department of Pathology, Oslo University Hospital Rikshospitalet (L.l.C.P., R.J.E., S.K., T.E.S.-N., A.R., M.S., J.W., M.K., E.B., O.S., H.S., G.H., E.S., J.H.), Department of Pathology, Institute for Clinical Medical Sciences (H.S., G.H.) and Department of Molecular Medicine, Institute for Basal Medical Sciences (A.S., P.C.), University of Oslo, Norway; Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, University of Münster, Germany (R.D.-H., M.E., R.B., R.H.A.); Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, United Kingdom (K.S.M.); and Department of Discovery Oncology, Genentech, Inc, South San Francisco, CA (C.W.S.)
| | - Monika Kasprzycka
- From the Department of Pathology, Oslo University Hospital Rikshospitalet (L.l.C.P., R.J.E., S.K., T.E.S.-N., A.R., M.S., J.W., M.K., E.B., O.S., H.S., G.H., E.S., J.H.), Department of Pathology, Institute for Clinical Medical Sciences (H.S., G.H.) and Department of Molecular Medicine, Institute for Basal Medical Sciences (A.S., P.C.), University of Oslo, Norway; Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, University of Münster, Germany (R.D.-H., M.E., R.B., R.H.A.); Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, United Kingdom (K.S.M.); and Department of Discovery Oncology, Genentech, Inc, South San Francisco, CA (C.W.S.)
| | - Espen Bækkevold
- From the Department of Pathology, Oslo University Hospital Rikshospitalet (L.l.C.P., R.J.E., S.K., T.E.S.-N., A.R., M.S., J.W., M.K., E.B., O.S., H.S., G.H., E.S., J.H.), Department of Pathology, Institute for Clinical Medical Sciences (H.S., G.H.) and Department of Molecular Medicine, Institute for Basal Medical Sciences (A.S., P.C.), University of Oslo, Norway; Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, University of Münster, Germany (R.D.-H., M.E., R.B., R.H.A.); Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, United Kingdom (K.S.M.); and Department of Discovery Oncology, Genentech, Inc, South San Francisco, CA (C.W.S.)
| | - Olav Sundnes
- From the Department of Pathology, Oslo University Hospital Rikshospitalet (L.l.C.P., R.J.E., S.K., T.E.S.-N., A.R., M.S., J.W., M.K., E.B., O.S., H.S., G.H., E.S., J.H.), Department of Pathology, Institute for Clinical Medical Sciences (H.S., G.H.) and Department of Molecular Medicine, Institute for Basal Medical Sciences (A.S., P.C.), University of Oslo, Norway; Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, University of Münster, Germany (R.D.-H., M.E., R.B., R.H.A.); Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, United Kingdom (K.S.M.); and Department of Discovery Oncology, Genentech, Inc, South San Francisco, CA (C.W.S.)
| | - Kim S Midwood
- From the Department of Pathology, Oslo University Hospital Rikshospitalet (L.l.C.P., R.J.E., S.K., T.E.S.-N., A.R., M.S., J.W., M.K., E.B., O.S., H.S., G.H., E.S., J.H.), Department of Pathology, Institute for Clinical Medical Sciences (H.S., G.H.) and Department of Molecular Medicine, Institute for Basal Medical Sciences (A.S., P.C.), University of Oslo, Norway; Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, University of Münster, Germany (R.D.-H., M.E., R.B., R.H.A.); Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, United Kingdom (K.S.M.); and Department of Discovery Oncology, Genentech, Inc, South San Francisco, CA (C.W.S.)
| | - Helge Scott
- From the Department of Pathology, Oslo University Hospital Rikshospitalet (L.l.C.P., R.J.E., S.K., T.E.S.-N., A.R., M.S., J.W., M.K., E.B., O.S., H.S., G.H., E.S., J.H.), Department of Pathology, Institute for Clinical Medical Sciences (H.S., G.H.) and Department of Molecular Medicine, Institute for Basal Medical Sciences (A.S., P.C.), University of Oslo, Norway; Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, University of Münster, Germany (R.D.-H., M.E., R.B., R.H.A.); Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, United Kingdom (K.S.M.); and Department of Discovery Oncology, Genentech, Inc, South San Francisco, CA (C.W.S.)
| | - Philippe Collas
- From the Department of Pathology, Oslo University Hospital Rikshospitalet (L.l.C.P., R.J.E., S.K., T.E.S.-N., A.R., M.S., J.W., M.K., E.B., O.S., H.S., G.H., E.S., J.H.), Department of Pathology, Institute for Clinical Medical Sciences (H.S., G.H.) and Department of Molecular Medicine, Institute for Basal Medical Sciences (A.S., P.C.), University of Oslo, Norway; Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, University of Münster, Germany (R.D.-H., M.E., R.B., R.H.A.); Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, United Kingdom (K.S.M.); and Department of Discovery Oncology, Genentech, Inc, South San Francisco, CA (C.W.S.)
| | - Christian W Siebel
- From the Department of Pathology, Oslo University Hospital Rikshospitalet (L.l.C.P., R.J.E., S.K., T.E.S.-N., A.R., M.S., J.W., M.K., E.B., O.S., H.S., G.H., E.S., J.H.), Department of Pathology, Institute for Clinical Medical Sciences (H.S., G.H.) and Department of Molecular Medicine, Institute for Basal Medical Sciences (A.S., P.C.), University of Oslo, Norway; Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, University of Münster, Germany (R.D.-H., M.E., R.B., R.H.A.); Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, United Kingdom (K.S.M.); and Department of Discovery Oncology, Genentech, Inc, South San Francisco, CA (C.W.S.)
| | - Ralf H Adams
- From the Department of Pathology, Oslo University Hospital Rikshospitalet (L.l.C.P., R.J.E., S.K., T.E.S.-N., A.R., M.S., J.W., M.K., E.B., O.S., H.S., G.H., E.S., J.H.), Department of Pathology, Institute for Clinical Medical Sciences (H.S., G.H.) and Department of Molecular Medicine, Institute for Basal Medical Sciences (A.S., P.C.), University of Oslo, Norway; Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, University of Münster, Germany (R.D.-H., M.E., R.B., R.H.A.); Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, United Kingdom (K.S.M.); and Department of Discovery Oncology, Genentech, Inc, South San Francisco, CA (C.W.S.)
| | - Guttorm Haraldsen
- From the Department of Pathology, Oslo University Hospital Rikshospitalet (L.l.C.P., R.J.E., S.K., T.E.S.-N., A.R., M.S., J.W., M.K., E.B., O.S., H.S., G.H., E.S., J.H.), Department of Pathology, Institute for Clinical Medical Sciences (H.S., G.H.) and Department of Molecular Medicine, Institute for Basal Medical Sciences (A.S., P.C.), University of Oslo, Norway; Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, University of Münster, Germany (R.D.-H., M.E., R.B., R.H.A.); Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, United Kingdom (K.S.M.); and Department of Discovery Oncology, Genentech, Inc, South San Francisco, CA (C.W.S.).
| | - Eirik Sundlisæter
- From the Department of Pathology, Oslo University Hospital Rikshospitalet (L.l.C.P., R.J.E., S.K., T.E.S.-N., A.R., M.S., J.W., M.K., E.B., O.S., H.S., G.H., E.S., J.H.), Department of Pathology, Institute for Clinical Medical Sciences (H.S., G.H.) and Department of Molecular Medicine, Institute for Basal Medical Sciences (A.S., P.C.), University of Oslo, Norway; Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, University of Münster, Germany (R.D.-H., M.E., R.B., R.H.A.); Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, United Kingdom (K.S.M.); and Department of Discovery Oncology, Genentech, Inc, South San Francisco, CA (C.W.S.)
| | - Johanna Hol
- From the Department of Pathology, Oslo University Hospital Rikshospitalet (L.l.C.P., R.J.E., S.K., T.E.S.-N., A.R., M.S., J.W., M.K., E.B., O.S., H.S., G.H., E.S., J.H.), Department of Pathology, Institute for Clinical Medical Sciences (H.S., G.H.) and Department of Molecular Medicine, Institute for Basal Medical Sciences (A.S., P.C.), University of Oslo, Norway; Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, University of Münster, Germany (R.D.-H., M.E., R.B., R.H.A.); Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, United Kingdom (K.S.M.); and Department of Discovery Oncology, Genentech, Inc, South San Francisco, CA (C.W.S.)
| |
Collapse
|
49
|
Sanghez V, Luzzi A, Clarke D, Kee D, Beuder S, Rux D, Osawa M, Madrenas J, Chou TF, Kyba M, Iacovino M. Notch activation is required for downregulation of HoxA3-dependent endothelial cell phenotype during blood formation. PLoS One 2017; 12:e0186818. [PMID: 29073173 PMCID: PMC5658089 DOI: 10.1371/journal.pone.0186818] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 10/09/2017] [Indexed: 01/02/2023] Open
Abstract
Hemogenic endothelium (HE) undergoes endothelial-to-hematopoietic transition (EHT) to generate blood, a process that requires progressive down-regulation of endothelial genes and induction of hematopoietic ones. Previously, we have shown that the transcription factor HoxA3 prevents blood formation by inhibiting Runx1 expression, maintaining endothelial gene expression and thus blocking EHT. In the present study, we show that HoxA3 also prevents blood formation by inhibiting Notch pathway. HoxA3 induced upregulation of Jag1 ligand in endothelial cells, which led to cis-inhibition of the Notch pathway, rendering the HE nonresponsive to Notch signals. While Notch activation alone was insufficient to promote blood formation in the presence of HoxA3, activation of Notch or downregulation of Jag1 resulted in a loss of the endothelial phenotype which is a prerequisite for EHT. Taken together, these results demonstrate that Notch pathway activation is necessary to downregulate endothelial markers during EHT.
Collapse
Affiliation(s)
- Valentina Sanghez
- Division of Medical Genetics, Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA, United States of America.,Los Angeles Biomedical Research Institute, Torrance, CA, United States of America
| | - Anna Luzzi
- Division of Medical Genetics, Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA, United States of America.,Los Angeles Biomedical Research Institute, Torrance, CA, United States of America
| | - Don Clarke
- Division of Medical Genetics, Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA, United States of America.,Los Angeles Biomedical Research Institute, Torrance, CA, United States of America
| | - Dustin Kee
- Division of Medical Genetics, Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA, United States of America.,Los Angeles Biomedical Research Institute, Torrance, CA, United States of America
| | - Steven Beuder
- Division of Medical Genetics, Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA, United States of America.,Los Angeles Biomedical Research Institute, Torrance, CA, United States of America
| | - Danielle Rux
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, United States of America
| | - Mitsujiro Osawa
- CiRA
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Joaquín Madrenas
- Los Angeles Biomedical Research Institute, Torrance, CA, United States of America.,Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
| | - Tsui-Fen Chou
- Division of Medical Genetics, Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA, United States of America.,Los Angeles Biomedical Research Institute, Torrance, CA, United States of America
| | - Michael Kyba
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, United States of America
| | - Michelina Iacovino
- Division of Medical Genetics, Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA, United States of America.,Los Angeles Biomedical Research Institute, Torrance, CA, United States of America
| |
Collapse
|
50
|
Dar AA, Bhat SA, Gogoi D, Gokhale A, Chiplunkar SV. Inhibition of Notch signalling has ability to alter the proximal and distal TCR signalling events in human CD3 + αβ T-cells. Mol Immunol 2017; 92:116-124. [PMID: 29078088 DOI: 10.1016/j.molimm.2017.10.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 09/26/2017] [Accepted: 10/17/2017] [Indexed: 01/13/2023]
Abstract
The Notch signalling pathway is an important regulator of T cell function and is known to regulate the effector functions of T cells driven by T cell receptor (TCR). However, the mechanism integrating these pathways in human CD3+ αβ T cells is not well understood. The present study was carried out to investigate how Notch and TCR driven signalling are synchronized in human αβ T cells. Differential expression of Notch receptors, ligands, and target genes is observed on human αβ T cells which are upregulated on stimulation with α-CD3/CD28 mAb. Inhibition of Notch signalling by GSI-X inhibited the activation of T cells and affected proximal T cell signalling by regulating CD3-ζ chain expression. Inhibition of Notch signalling decreased the protein expression of CD3-ζ chain and induced expression of E3 ubiquitin ligase (GRAIL) in human αβ T cells. Apart from affecting proximal TCR signalling, Notch signalling also regulated the distal TCR signalling events. In the absence of Notch signalling, α-CD3/CD28 mAb induced activation and IFN-γ production by αβ T cells was down-modulated. The absence of Notch signalling in human αβ T cells inhibited proliferative responses despite strong signalling through TCR and IL-2 receptor. This study shows how Notch signalling cooperates with TCR signalling by regulating CD3-ζ chain expression to support proliferation and activation of human αβ T cells.
Collapse
Affiliation(s)
- Asif A Dar
- Chiplunkar Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra 410210, India; Homi Bhabha National Institute (HBNI), Anushaktinagar, Mumbai, Maharashtra 400094, India
| | - Sajad A Bhat
- Chiplunkar Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra 410210, India; Homi Bhabha National Institute (HBNI), Anushaktinagar, Mumbai, Maharashtra 400094, India
| | - Dimpu Gogoi
- Chiplunkar Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra 410210, India; Homi Bhabha National Institute (HBNI), Anushaktinagar, Mumbai, Maharashtra 400094, India
| | - Abhiram Gokhale
- Chiplunkar Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra 410210, India
| | - Shubhada V Chiplunkar
- Chiplunkar Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra 410210, India; Homi Bhabha National Institute (HBNI), Anushaktinagar, Mumbai, Maharashtra 400094, India.
| |
Collapse
|