1
|
Anand V, El-Dana F, Baran N, Borgman J, Yin Z, Zhao H, Wong ST, Andreeff M, Battula VL. GD3 synthase drives resistance to p53-induced apoptosis in breast cancer by modulating mitochondrial function. Oncogene 2025:10.1038/s41388-025-03432-x. [PMID: 40382494 DOI: 10.1038/s41388-025-03432-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 04/21/2025] [Accepted: 04/29/2025] [Indexed: 05/20/2025]
Abstract
TP53 mutations are common in breast cancer (BC) and are associated with poor prognosis. GD3 synthase (GD3S/ST8SIA1), a gene associated with breast cancer stem cells, is upregulated in tumors with p53 mutations. However, the functional relationship between GD3S and p53 is unknown. Here, we show that GD3S levels are highest in breast tumors with specific p53 mutations. Functional studies revealed that wild-type (WT) p53 inhibits GD3S expression, whereas mutation in p53 enhances GD3S expression by upregulating GD3S promoter activity. Moreover, we found that GD3S inhibits wild-type p53-induced apoptosis in BC cells, while BC cells harboring gain-of-function p53 mutations are dependent on GD3S for their growth. Mechanistic insights indicate that GD3S strengthens mitochondrial function by regulating their oxygen consumption rate and membrane polarity. Our findings demonstrate that specific GOF p53 mutations rely on GD3S to exert their tumor-promoting effects and that GD3S is a novel anti-apoptotic factor in BC cells. Stabilizing WT p53 and reducing mutant p53 levels downregulates GD3S expression, thereby augmenting apoptosis. GD3S overexpression counteracts the cell death triggered by WT p53 stabilization in BC cells, as well as that triggered by p53 knockdown in cells with specific GOF p53 mutations, which suggests that GD3S helps confer apoptosis resistance.
Collapse
Affiliation(s)
- Vivek Anand
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fouad El-Dana
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Natalia Baran
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Hematology and Central Hematological Laboratory, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Jenny Borgman
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zheng Yin
- Department of Systems Medicine and Bioengineering, Houston Methodist Neal Cancer Center, Weill Cornell Medicine, Houston, TX, USA
| | - Hong Zhao
- Department of Systems Medicine and Bioengineering, Houston Methodist Neal Cancer Center, Weill Cornell Medicine, Houston, TX, USA
| | - Stephen T Wong
- Department of Systems Medicine and Bioengineering, Houston Methodist Neal Cancer Center, Weill Cornell Medicine, Houston, TX, USA
| | - Michael Andreeff
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - V Lokesh Battula
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Internal Medicine, Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
2
|
Waterhouse M, Lazarus K, Santolla MF, Pensa S, Williams E, Siu AJQ, Mohammed H, Mohorianu I, Maggiolini M, Carroll J, Itzhaki LS, Rahman T, Khaled WT. CHD8 interacts with BCL11A to induce oncogenic transcription in triple negative breast cancer. EMBO J 2025:10.1038/s44318-025-00447-8. [PMID: 40328966 DOI: 10.1038/s44318-025-00447-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/24/2025] [Accepted: 04/08/2025] [Indexed: 05/08/2025] Open
Abstract
The identification of tumour-specific protein-protein interactions remains a challenge for the development of targeted cancer therapies. In this study we describe our approach for the identification of triple negative breast cancer (TNBC)-specific protein-protein interactions focusing on the oncogene BCL11A. We used a proteomic approach to identify the BCL11A protein networks in TNBC and compared it to its network in B-cells, a cell type in which BCL11A plays crucial roles. This approach identified the chromatin remodeller CHD8 as a TNBC-specific interaction partner of BCL11A. We show that CHD8 also plays a key role in TNBC pathogenesis, with detailed multi-omics analysis revealing that BCL11A and CHD8 co-regulate several targets and synergise to drive tumour development and progression. Using a battery of biophysical assays, we confirm that the BCL11A-CHD8 interaction is direct and identify chemical fragments that disrupt this interaction and affect downstream targets, decreasing proliferation in 3D colony assays. Our study provides a proof-of-principle approach for investigating tumour-specific protein-protein interactions and identifies lead chemical compounds that could be developed into novel therapeutics for TNBC.
Collapse
Affiliation(s)
- Mark Waterhouse
- Department of Pharmacology, University of Cambridge, CB2 1PD, Cambridge, UK
- Cambridge Stem Cell Institute, University of Cambridge, CB2 0AW, Cambridge, UK
| | - Kyren Lazarus
- Department of Pharmacology, University of Cambridge, CB2 1PD, Cambridge, UK
| | - Maria Francesca Santolla
- Department of Pharmacology, University of Cambridge, CB2 1PD, Cambridge, UK
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Cosenza, Italy
- Department of Life Sciences, Health, and Healthcare Professions, Link Campus University, 00165, Rome, Italy
| | - Sara Pensa
- Department of Pharmacology, University of Cambridge, CB2 1PD, Cambridge, UK
- Cambridge Stem Cell Institute, University of Cambridge, CB2 0AW, Cambridge, UK
| | - Eleanor Williams
- Cambridge Stem Cell Institute, University of Cambridge, CB2 0AW, Cambridge, UK
| | - Abigail J Q Siu
- Department of Pharmacology, University of Cambridge, CB2 1PD, Cambridge, UK
- Cambridge Stem Cell Institute, University of Cambridge, CB2 0AW, Cambridge, UK
| | - Hisham Mohammed
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97201, USA
| | - Irina Mohorianu
- Cambridge Stem Cell Institute, University of Cambridge, CB2 0AW, Cambridge, UK
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Cosenza, Italy
| | - Jason Carroll
- CRUK, Cambridge Institute, University of Cambridge, CB2 0AN, Cambridge, UK
| | - Laura S Itzhaki
- Department of Pharmacology, University of Cambridge, CB2 1PD, Cambridge, UK
| | - Taufiq Rahman
- Department of Pharmacology, University of Cambridge, CB2 1PD, Cambridge, UK
| | - Walid T Khaled
- Department of Pharmacology, University of Cambridge, CB2 1PD, Cambridge, UK.
- Cambridge Stem Cell Institute, University of Cambridge, CB2 0AW, Cambridge, UK.
| |
Collapse
|
3
|
Abagnale G, Schwentner R, Ben Soussia-Weiss P, van Midden W, Sturtzel C, Pötschger U, Rados M, Taschner-Mandl S, Simonitsch-Klupp I, Hafemeister C, Halbritter F, Distel M, Eder SK, Hutter C. BRAFV600E induces key features of LCH in iPSCs with cell type-specific phenotypes and drug responses. Blood 2025; 145:850-865. [PMID: 39630039 PMCID: PMC11867135 DOI: 10.1182/blood.2024026066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/25/2024] [Indexed: 02/21/2025] Open
Abstract
ABSTRACT Langerhans cell histiocytosis (LCH) is a clonal hematopoietic disorder defined by tumorous lesions containing CD1a+/CD207+ cells. Two severe complications of LCH are systemic hyperinflammation and progressive neurodegeneration. The scarcity of primary samples and lack of appropriate models limit our mechanistic understanding of LCH pathogenesis and affect patient care. We generated a human in vitro model for LCH using induced pluripotent stem cells (iPSCs) harboring the BRAFV600E mutation, the most common genetic driver of LCH. We show that BRAFV600E/WT iPSCs display myelomonocytic skewing during hematopoiesis and spontaneously differentiate into CD1a+/CD207+ cells that are similar to lesional LCH cells and are derived from a CD14+ progenitor. We show that BRAFV600E modulates the expression of key transcription factors regulating monocytic differentiation and leads to an upregulation of proinflammatory molecules and LCH marker genes early during myeloid differentiation. In vitro drug testing revealed that BRAFV600E-induced transcriptomic changes are reverted upon treatment with mitogen-activated protein kinase (MAPK) pathway inhibitors (MAPKis). Importantly, MAPKis do not affect myeloid progenitors but reduce only the mature CD14+ cell population. Furthermore, iPSC-derived neurons (iNeurons) cocultured with BRAFV600E/WT iPSC-derived microglia-like cells, differentiated from iPSC-derived CD34+ progenitors, exhibit signs of neurodegeneration with neuronal damage and release of neurofilament light chain. In summary, the iPSC-based model described here provides a platform to investigate the effects of BRAFV600E in different hematopoietic cell types and provides a tool to compare and identify novel approaches for the treatment of BRAFV600E-driven diseases.
Collapse
Affiliation(s)
- Giulio Abagnale
- St. Anna Children’s Cancer Research Institute, Vienna, Austria
| | | | | | | | | | | | - Magdalena Rados
- St. Anna Children’s Cancer Research Institute, Vienna, Austria
| | | | | | | | | | - Martin Distel
- St. Anna Children’s Cancer Research Institute, Vienna, Austria
| | - Sebastian K. Eder
- St. Anna Children’s Cancer Research Institute, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine, St. Anna Children’s Hospital, Medical University of Vienna, Vienna, Austria
| | - Caroline Hutter
- St. Anna Children’s Cancer Research Institute, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine, St. Anna Children’s Hospital, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
4
|
Abay T, Stickels RR, Takizawa MT, Nalbant BN, Hsieh YH, Hwang S, Snopkowski C, Yu KKH, Abou-Mrad Z, Tabar V, Howitt BE, Ludwig LS, Chaligné R, Satpathy AT, Lareau CA. Transcript-specific enrichment enables profiling of rare cell states via single-cell RNA sequencing. Nat Genet 2025; 57:451-460. [PMID: 39779958 DOI: 10.1038/s41588-024-02036-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 11/18/2024] [Indexed: 01/11/2025]
Abstract
Single-cell genomics technologies have accelerated our understanding of cell-state heterogeneity in diverse contexts. Although single-cell RNA sequencing identifies rare populations that express specific marker transcript combinations, traditional flow sorting requires cell surface markers with high-fidelity antibodies, limiting our ability to interrogate these populations. In addition, many single-cell studies require the isolation of nuclei from tissue, eliminating the ability to enrich learned rare cell states based on extranuclear protein markers. In the present report, we addressed these limitations by developing Programmable Enrichment via RNA FlowFISH by sequencing (PERFF-seq), a scalable assay that enables scRNA-seq profiling of subpopulations defined by the abundance of specific RNA transcripts. Across immune populations (n = 184,126 cells) and fresh-frozen and formalin-fixed, paraffin-embedded brain tissue (n = 33,145 nuclei), we demonstrated that programmable sorting logic via RNA-based cytometry can isolate rare cell populations and uncover phenotypic heterogeneity via downstream, high-throughput, single-cell genomics analyses.
Collapse
Affiliation(s)
- Tsion Abay
- Department of Pathology, Stanford University, Stanford, CA, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Program in Biological and Biomedical Sciences, Harvard University, Boston, MA, USA
| | - Robert R Stickels
- Department of Pathology, Stanford University, Stanford, CA, USA.
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA.
| | - Meril T Takizawa
- Single-cell Analytics Innovation Lab, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Benan N Nalbant
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yu-Hsin Hsieh
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Charité Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, Berlin, Germany
| | - Sidney Hwang
- Department of Pathology, Stanford University, Stanford, CA, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
| | - Catherine Snopkowski
- Single-cell Analytics Innovation Lab, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kenny Kwok Hei Yu
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zaki Abou-Mrad
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Viviane Tabar
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Brooke E Howitt
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Leif S Ludwig
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, Berlin, Germany
| | - Ronan Chaligné
- Single-cell Analytics Innovation Lab, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Ansuman T Satpathy
- Department of Pathology, Stanford University, Stanford, CA, USA.
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA.
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA.
| | - Caleb A Lareau
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
5
|
Zhang H, Zeng J, Zhang F, Liu J, Liang L. Role of B-Cell Lymphoma/Leukemia 11A in Normal and Malignant Hematopoiesis. BIOLOGY 2025; 14:26. [PMID: 39857257 PMCID: PMC11759832 DOI: 10.3390/biology14010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/22/2024] [Accepted: 12/28/2024] [Indexed: 01/27/2025]
Abstract
B-cell lymphoma/leukemia 11A (BCL11A) is a crucial transcriptional regulator, widely recognized for its role in controlling fetal hemoglobin and its potential as a gene therapy target for inherited hemoglobinopathies. Beyond this, recent studies have also highlighted its key role in the maturation and function of immune cells and erythrocytes, mediated through the regulation of various molecules during hematopoietic development. The dysregulation of BCL11A disrupts downstream molecular pathways, contributing to the development of several hematological malignancies, particularly leukemias. This review provides a comprehensive overview of the role of BCL11A in normal and malignant hematopoiesis, details the hematological disorders associated with its dysregulation and explores the current therapeutic strategies targeting this transcription factor.
Collapse
Affiliation(s)
- Haihang Zhang
- Department of Hematology, the Second Xiangya Hospital, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410011, China; (H.Z.); (F.Z.)
| | - Junhao Zeng
- Xiangya School of Medicine, Central South University, Changsha 410013, China;
| | - Fangling Zhang
- Department of Hematology, the Second Xiangya Hospital, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410011, China; (H.Z.); (F.Z.)
| | - Jing Liu
- Department of Hematology, the Second Xiangya Hospital, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410011, China; (H.Z.); (F.Z.)
| | - Long Liang
- Department of Hematology, the Second Xiangya Hospital, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410011, China; (H.Z.); (F.Z.)
| |
Collapse
|
6
|
Pan J, Li J. Gastroesophageal reflux disease increases predisposition to severe COVID-19: Insights from integrated Mendelian randomization and genetic analysis. Ann Hum Genet 2025; 89:54-65. [PMID: 39530352 DOI: 10.1111/ahg.12584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/24/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVE This study aims to investigate the potential causal relationship, shared genomic loci, as well as potential molecular pathways and tissue-specific expression patterns between gastroesophageal reflux disease (GERD) and the risk of hospitalized/severe 2019 coronavirus disease (COVID-19). METHODS We employed linkage disequilibrium score regression and bidirectional Mendelian randomization (MR) analysis to explore potential genetic associations between GERD (N = 602,604) and hospitalized COVID-19 (N = 2095,324) as well as severe COVID-19 (N = 1086,211). Additionally, shared genomic loci were extracted from common pivotal regions, further confirmed through corresponding colocalization analyses. GERD-driven molecular pathway network was constructed using extensive literature data mining to understand the molecular-level impacts of GERD on COVID-19. RESULTS Our results revealed a significant positive genetic correlation between GERD and both hospitalized (rg = 0.418) and severe COVID-19 (rg = 0.314). Furthermore, the MR analysis demonstrated a unidirectional causal effect of genetic predisposition to GERD on COVID-19 outcomes, including hospitalized COVID-19 (odds ratio [OR]: 1.33, 95% confidence interval [CI]: 1.27-1.44, p = 9.17e - 12) and severe COVID-19 (OR: 1.27, 95% CI: 1.18-1.37, p = 1.20e - 05). Additionally, GERD and both COVID-19 conditions shared one genomic locus with lead-SNPs rs1011407 and rs1123573, corresponding to the transcription factor BCL11A. Colocalization analysis further demonstrated a significant positive correlation between genome-wide association study and expression quantitative trait locus (eQTL) abnormalities, including rs1011407 (eQTL_p = 2.35e - 07) and rs1123573 (eQTL_p = 2.74e - 05). Molecular pathway analysis indicated that GERD might promote the progression of COVID-19 by inducting immune-activated and inflammation-related pathways. CONCLUSION These findings confirm that genetically determined GERD may increase the susceptibility to hospitalized/severe COVID-19. The shared genetic loci and the potential molecular pathways offer valuable insights into causal connections between GERD and COVID-19.
Collapse
Affiliation(s)
- Jingjing Pan
- Department of Microbiology, Zhejiang Provincial Centers for Disease Control and Prevention, Hangzhou, China
- Zhejiang Key Laboratory of Public Health Detection and Pathogenesis Research, Hangzhou, China
| | - Jianhua Li
- Department of Microbiology, Zhejiang Provincial Centers for Disease Control and Prevention, Hangzhou, China
- Zhejiang Key Laboratory of Public Health Detection and Pathogenesis Research, Hangzhou, China
| |
Collapse
|
7
|
Matsushita J, Miwa K, Sato Y, Honda K, Aida T, Tsuchiya Y. Azacitidine and cytarabine induce sustained lymphopenia with abnormal differentiation of common lymphoid progenitors and prolonged suppression of Dnmt3a and Dnmt3b expression in mice. Toxicol Sci 2025; 203:96-104. [PMID: 39331569 DOI: 10.1093/toxsci/kfae121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2024] Open
Abstract
Myelosuppression is a major side effect of chemotherapy. Although decreased blood cells are restored with the recovery of bone marrow cells, insufficient recovery of decreased lymphocytes was observed in mice given azacitidine (AZA), a DNA methyltransferase (DNMT) inhibitor, even following the restoration of bone marrow cells. To understand the mechanisms behind this sustained lymphopenia, we examined AZA's impact on the hematopoietic progenitor cells and the expression of Dnmts and differentiation-related genes. An antimetabolite of cytidine analog, cytarabine (Ara-C), was used as a reference compound. Decreases in almost all blood parameters and common lymphoid progenitors (CLPs) and the downregulation of Dnmts and differentiation-related genes in Lineage-Sca-1+c-kit+ (LSK) cells were observed in mice administered AZA or Ara-C for 7 d. In the posttreatment observation, all parameters, except for lymphocytes and monocytes, exhibited recovery within 3 wk after the final dosing in both treated groups. However, no recovery from the decreases in lymphocytes, especially B cells, and monocytes occurred even after 5 wk. The number of CLPs was elevated after 3 wk. There was a tendency toward recovery from the decreased expression of Dnmt1 and differentiation-related genes, but the expression levels of Dnmt3a and Dnmt3b did not fully recover even 5 wk after the final dosing. Taken together, the findings revealed that the mechanism of sustained lymphopenia observed in mice treated with AZA or Ara-C is associated, at least in part, with the abnormal differentiation of CLPs into B cells accompanied by the prolonged suppression of Dnmt3a and Dnmt3b expression on LSK cells.
Collapse
Affiliation(s)
- Junya Matsushita
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd, Tokyo 134-8630, Japan
| | - Kyoko Miwa
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd, Tokyo 134-8630, Japan
| | - Yuri Sato
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd, Tokyo 134-8630, Japan
| | - Kumi Honda
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd, Tokyo 134-8630, Japan
| | - Tetsuo Aida
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd, Tokyo 134-8630, Japan
| | - Yoshimi Tsuchiya
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd, Tokyo 134-8630, Japan
| |
Collapse
|
8
|
Boschiero C, Beshah E, Zhu X, Tuo W, Liu GE. Profiling Genome-Wide Methylation Patterns in Cattle Infected with Ostertagia ostertagi. Int J Mol Sci 2024; 26:89. [PMID: 39795948 PMCID: PMC11719486 DOI: 10.3390/ijms26010089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 01/13/2025] Open
Abstract
DNA methylation (DNAm) regulates gene expression and genomic imprinting. This study aimed to investigate the effect of gastrointestinal (GI) nematode infection on host DNAm. Helminth-free Holstein steers were either infected with Ostertagia ostertagi (the brown stomach worm) or given tap water only as a control. Animals were euthanized 30 days post-infection, and tissues were collected at necropsy. We conducted epigenome-wide profiling using a mammalian methylation array to explore the impact of infection on methylation patterns in the mucosa from abomasal fundus (FUN), pylorus (PYL), draining lymph nodes (dLNs), and the duodenum (DUO). The analysis covered 31,107 cattle CpGs of 5082 genes and revealed infection-driven, tissue-specific, differential methylation patterns. A total of 389 shared and 2770 tissue-specific, differentially methylated positions (DMPs) were identified in dLN and FUN, particularly in genes associated with immune responses. The shared DMPs were found in 263 genes, many of which are involved in immune responses. Furthermore, 282, 244, 52, and 24 differentially methylated regions (DMRs) were observed in dLN, FUN, PYL, and DUO, respectively. More hypomethylated DMRs were detected in dLN and FUN, while more hypermethylated DMRs were found in PYL and DUO. Genes carrying DMPs and DMRs and enriched pathways relating to immune functions/responses were detected in infected animals, indicating a link between DNA methylation and the infection. The data may implicate a crucial role of DNAm in regulating the nature/strength of host immunity to infection and contribute to a deeper understanding of the epigenetic regulatory landscape in cattle infected by GI nematodes.
Collapse
Affiliation(s)
- Clarissa Boschiero
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA
- Department of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA
| | - Ethiopia Beshah
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA
| | - Xiaoping Zhu
- Department of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA
| | - Wenbin Tuo
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA
| | - George E. Liu
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA
| |
Collapse
|
9
|
Okuyama K, Yamashita M, Koumoundourou A, Wiegreffe C, Ohno-Oishi M, Murphy SJH, Zhao X, Yoshida H, Ebihara T, Satoh-Takayama N, Kojo S, Ohno H, Morio T, Wu Y, Puck J, Xue HH, Britsch S, Taniuchi I. A mutant BCL11B-N440K protein interferes with BCL11A function during T lymphocyte and neuronal development. Nat Immunol 2024; 25:2284-2296. [PMID: 39487351 DOI: 10.1038/s41590-024-01997-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 09/30/2024] [Indexed: 11/04/2024]
Abstract
Genetic studies in mice have shown that the zinc finger transcription factor BCL11B has an essential role in regulating early T cell development and neurogenesis. A de novo heterozygous missense BCL11B variant, BCL11BN441K, was isolated from a patient with T cell deficiency and neurological disorders. Here, we show that mice harboring the corresponding Bcl11bN440K mutation show the emergence of natural killer (NK)/group 1 innate lymphoid cell (ILC1)-like NKp46+ cells in the thymus and reduction in TBR1+ neurons in the neocortex, which are observed with loss of Bcl11a but not Bcl11b. Thus, the mutant BCL11B-N440K protein interferes with BCL11A function upon heterodimerization. Mechanistically, the Bcl11bN440K mutation dampens the interaction of BCL11B with T cell factor 1 (TCF1) in thymocytes, resulting in weakened antagonism against TCF1 activity that supports the differentiation of NK/ILC1-like cells. Collectively, our results shed new light on the function of BCL11A in suppressing non-T lymphoid developmental potential and uncover the pathogenic mechanism by which BCL11B-N440K interferes with partner BCL11 family proteins.
Collapse
Affiliation(s)
- Kazuki Okuyama
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Motoi Yamashita
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | - Michiko Ohno-Oishi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Samuel J H Murphy
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
- Medical Scientist Training Program, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Xin Zhao
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ, USA
| | - Hideyuki Yoshida
- YCI Laboratory for Immunological Transcriptomics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Takashi Ebihara
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
- Department of Medical Biology, Akita University Graduate School of Medicine, Akita, Japan
| | - Naoko Satoh-Takayama
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Satoshi Kojo
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
- Department of Immunology and Stem Cell Biology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Hiroshi Ohno
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yibo Wu
- YCI Laboratory for Next-Generation Proteomics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
- Chemical Biology Mass Spectrometry Platform, Faculty of Science, University of Geneva, Geneva, Switzerland
| | - Jennifer Puck
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Hai-Hui Xue
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ, USA
| | - Stefan Britsch
- Institute of Molecular and Cellular Anatomy, Ulm University, Ulm, Germany
| | - Ichiro Taniuchi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan.
| |
Collapse
|
10
|
Wang L, He H, Li Y, Wang X, Yu J, Huang Y, Yu K, He J, Zhao M, Xie T, Li D. BCL11A expression worsens the prognosis of DLBCL and its co-expression with C-MYC predicts poor survival. Pathol Res Pract 2024; 264:155717. [PMID: 39546996 DOI: 10.1016/j.prp.2024.155717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 10/20/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
Non-Hodgkin's lymphoma (NHL) is a significant global malignancy, with diffuse large B cell lymphoma (DLBCL) being the most prevalent subtype, accounting for 25-50 % of newly diagnosed cases in China. Despite a 60 % survival rate achieved with R-CHOP regiment for DLBCL, approximately 40 % of patients experience relapse or develop resistance to treatment. While the oncogenic transcription factor B-cell chronic lymphocytic leukaemia/lymphoma 11 A (BCL11A) has been implicated in various tumors, its specific role in DLBCL remains unclear. In this study, we conducted retrospective histomorphological and immunophenotypic analyses on paraffin sample tissues and collected fresh tissue samples for protein and mRNA analyses to investigate the relationship between BCL11A and DLBCL. Additionally, we classified DLBCL into subtypes based on cells of origin (COO) and examined the expressions of BCL11A, C-MYC, P53 and other protein expressions to better understand the factors contributing to poor clinical outcomes in DLBCL. Our findings revealed elevated BCL11A expression in DLBCL, with increased expression associated with worse prognosis and higher C-MYC expression. Patients exhibiting co-expression of C-MYC and BCL11A had significantly lower survival rates compared to those with singular expression. Furthermore, BCL11A protein expression levels demonstrated significant associations with P53 and C-MYC protein expression levels in the Germinal Center B-cell-like (GCB) subtype. These findings suggest that BCL11A may serve as a potential prognostic marker and therapeutic target for DLBCL.
Collapse
Affiliation(s)
- Lixin Wang
- Department of Pathology, Faculty of Basic Medicine, Chongqing Medical University, Chongqing, China; Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, China; Department of Pathology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hong He
- Department of Internal Medicine, the First Branch, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuanxin Li
- Department of Pathology, Faculty of Basic Medicine, Chongqing Medical University, Chongqing, China; Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, China; Department of Pathology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xingyu Wang
- Department of Pathology, Faculty of Basic Medicine, Chongqing Medical University, Chongqing, China; Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, China; Department of Pathology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jieyang Yu
- Laboratory of Neuropsycholinguistics, Chongqing Medical University, Chongqing, China
| | - Ying Huang
- Clinical Molecular Medical Detection Center, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kuai Yu
- Department of Pathology, Faculty of Basic Medicine, Chongqing Medical University, Chongqing, China; Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, China; Department of Pathology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Pathology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Juan He
- Department of Pathology, Faculty of Basic Medicine, Chongqing Medical University, Chongqing, China; Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, China; Department of Pathology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Min Zhao
- Department of Pathology, Faculty of Basic Medicine, Chongqing Medical University, Chongqing, China; Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, China; Department of Pathology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tao Xie
- Department of Pathology, Faculty of Basic Medicine, Chongqing Medical University, Chongqing, China; Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, China; Department of Pathology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Ultrasound, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Dan Li
- Department of Pathology, Faculty of Basic Medicine, Chongqing Medical University, Chongqing, China; Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, China; Department of Pathology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
11
|
Zha J, Chen Y, Cao F, Zhong J, Yu X, Wu H. Identification of novel BCL11A variant in a patient with developmental delay and behavioural differences. Int J Dev Neurosci 2024; 84:727-734. [PMID: 39187446 DOI: 10.1002/jdn.10371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024] Open
Abstract
BACKGROUND The BCL11A gene is involved in disorders including intellectual disability syndrome (IDS), encodes a zinc finger protein highly expressed in haematopoietic and brain and acts as a transcriptional repressor of foetal haemoglobin (HbF). De novo variants in BCL11A have been associated with IDS, which is characterized by developmental delays, autism spectrum disorder (ASD) and speech and language delays. The reports of BCL11A gene variants are still limited worldwide, and additional cases are needed to expand the variant and phenotype spectrums. METHODS The patient is a 5-year-old girl who was hospitalized due to developmental delays. After analysing her clinical and pathological characterizations, whole-exome sequencing (WES) was performed for pathogenic genetic variants of developmental delay and behavioural differences. Candidate variant in BCL11A gene was identified and further validated by Sanger sequencing. RESULTS A heterozygous variant, c.1442delA (p.Glu481Glyfs*25), was identified in exon 4 of the BCL11A gene through WES. This variant results in a truncated expression of the encoded protein. This de novo variant was confirmed by Sanger sequencing. The language delay and behavioural differences were prominent in our patient. CONCLUSION Our finding demonstrates that BCL11A variant may cause developmental delay and behavioural differences, expanding the genetic spectrum of the BCL11A gene.
Collapse
Affiliation(s)
- Jian Zha
- Department of Neurology, Jiangxi Provincial Children's Hospital, Nanchang, People's Republic of China
| | - Yong Chen
- Department of Neurology, Jiangxi Provincial Children's Hospital, Nanchang, People's Republic of China
| | - Fangfang Cao
- Department of Neurology, Jiangxi Provincial Children's Hospital, Nanchang, People's Republic of China
| | - Jianmin Zhong
- Department of Neurology, Jiangxi Provincial Children's Hospital, Nanchang, People's Republic of China
| | - Xiongying Yu
- Department of Neurology, Jiangxi Provincial Children's Hospital, Nanchang, People's Republic of China
| | - Huaping Wu
- Department of Neurology, Jiangxi Provincial Children's Hospital, Nanchang, People's Republic of China
| |
Collapse
|
12
|
Przybylski GK, Przybylska J, Li Y. Dual role of BCL11B in T-cell malignancies. BLOOD SCIENCE 2024; 6:e00204. [PMID: 39295773 PMCID: PMC11410336 DOI: 10.1097/bs9.0000000000000204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 08/13/2024] [Indexed: 09/21/2024] Open
Abstract
The zinc finger transcription factor B-cell CLL/lymphoma 11B gene (BCL11B, CTIP2) plays a crucial role in T-cell development, but its role in T-cell malignancies has not yet been definitively clarified. In the literature, 2 contradictory hypotheses on the function of BCL11B exist. One suggests that BCL11B functions as tumor suppressor gene, and the other suggests that BCL11B functions as oncogene. The aim of this review is to revise the current knowledge about the function of BCL11B in T-cell malignancies, confront these 2 hypotheses and present a new model of dual role of BCL11B in T-cell malignancies and potential new therapeutic approach, based on recent findings of the function of BCL11B in DNA damage repair. Decreased BCL11B expression, resulting in deficient DNA repair, may facilitate DNA mutations in rapidly proliferating T-cell progenitors that undergo gene rearrangements, thereby leading to malignant transformation. On the other hand, decreased BCL11B expression and inefficient DNA repair may result in accumulation of DNA damages in genes crucial for the cell survival and in apoptosis of malignant T cells. We hypothesize that T-cell malignancies expressing high levels of BCL11B might be dependent on it. In those cases, targeted inhibition of BCL11B expression may have a therapeutic effect. The antitumor effect of BCL11B suppression might be strengthened by generation of induced T to NK cells (ITNK). Therefore, there is an urgent need to develop a specific BCL11B inhibitor.
Collapse
Affiliation(s)
| | - Julia Przybylska
- Department of Rheumatology, Independent Public Health Care Facility, Międzychód, Poland
| | - Yangqiu Li
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
13
|
Araujo AM, Dekker JD, Garrison K, Su Z, Rhee C, Hu Z, Lee BK, Osorio D, Lee J, Iyer VR, Ehrlich LIR, Georgiou G, Ippolito G, Yi S, Tucker HO. Lymphoid origin of intrinsically activated plasmacytoid dendritic cells in mice. eLife 2024; 13:RP96394. [PMID: 39269281 PMCID: PMC11398865 DOI: 10.7554/elife.96394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024] Open
Abstract
We identified a novel mouse plasmacytoid dendritic cell (pDC) lineage derived from the common lymphoid progenitors (CLPs) that is dependent on expression of Bcl11a. These CLP-derived pDCs, which we refer to as 'B-pDCs', have a unique gene expression profile that includes hallmark B cell genes, normally not expressed in conventional pDCs. Despite expressing most classical pDC markers such as SIGLEC-H and PDCA1, B-pDCs lack IFN-α secretion, exhibiting a distinct inflammatory profile. Functionally, B-pDCs induce T cell proliferation more robustly than canonical pDCs following Toll-like receptor 9 (TLR9) engagement. B-pDCs, along with another homogeneous subpopulation of myeloid-derived pDCs, display elevated levels of the cell surface receptor tyrosine kinase AXL, mirroring human AXL+ transitional DCs in function and transcriptional profile. Murine B-pDCs therefore represent a phenotypically and functionally distinct CLP-derived DC lineage specialized in T cell activation and previously not described in mice.
Collapse
Affiliation(s)
| | - Joseph D Dekker
- Department of Chemical Engineering, The University of Texas at Austin, Austin, United States
| | - Kendra Garrison
- Department of Chemical Engineering, The University of Texas at Austin, Austin, United States
| | - Zhe Su
- Department of Biomedical Engineering, and Livestrong Cancer Institutes, The University of Texas at Austin, Austin, United States
| | - Catherine Rhee
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States
| | - Zicheng Hu
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States
| | - Bum-Kyu Lee
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States
| | - Daniel Osorio
- Department of Biomedical Engineering, and Livestrong Cancer Institutes, The University of Texas at Austin, Austin, United States
| | - Jiwon Lee
- Department of Chemical Engineering, The University of Texas at Austin, Austin, United States
| | - Vishwanath R Iyer
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States
| | - Lauren I R Ehrlich
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States
| | - George Georgiou
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States
| | - Gregory Ippolito
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States
| | - Stephen Yi
- Department of Biomedical Engineering, and Livestrong Cancer Institutes, The University of Texas at Austin, Austin, United States
| | - Haley O Tucker
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States
| |
Collapse
|
14
|
Alhaj Hussen K, Louis V, Canque B. A new model of human lymphopoiesis across development and aging. Trends Immunol 2024; 45:495-510. [PMID: 38908962 DOI: 10.1016/j.it.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/25/2024] [Accepted: 05/26/2024] [Indexed: 06/24/2024]
Abstract
Over the past decade our research has implemented a multimodal approach to human lymphopoiesis, combining clonal-scale mapping of lymphoid developmental architecture with the monitoring of dynamic changes in the pattern of lymphocyte generation across ontogeny. We propose that lymphopoiesis stems from founder populations of CD127/interleukin (IL)7R- or CD127/IL7R+ early lymphoid progenitors (ELPs) polarized respectively toward the T-natural killer (NK)/innate lymphoid cell (ILC) or B lineages, arising from newly characterized CD117lo multi-lymphoid progenitors (MLPs). Recent data on the lifelong lymphocyte dynamics of healthy donors suggest that, after birth, lymphopoiesis may become increasingly oriented toward the production of B lymphocytes. Stemming from this, we posit that there are three major developmental transitions, the first occurring during the neonatal period, the next at puberty, and the last during aging.
Collapse
Affiliation(s)
- Kutaiba Alhaj Hussen
- Service de Biochimie, Université de Paris Saclay, Hôpital Paul Brousse, AP-HP, Paris, France
| | - Valentine Louis
- INSERM 1151, Université de Paris, École Pratique des Hautes Études/PSL Research University, Institut Necker Enfants Malades (INEM), Paris, France
| | - Bruno Canque
- INSERM 1151, Université de Paris, École Pratique des Hautes Études/PSL Research University, Institut Necker Enfants Malades (INEM), Paris, France.
| |
Collapse
|
15
|
de Winter N, Ji J, Sintou A, Forte E, Lee M, Noseda M, Li A, Koenig AL, Lavine KJ, Hayat S, Rosenthal N, Emanueli C, Srivastava PK, Sattler S. Persistent transcriptional changes in cardiac adaptive immune cells following myocardial infarction: New evidence from the re-analysis of publicly available single cell and nuclei RNA-sequencing data sets. J Mol Cell Cardiol 2024; 192:48-64. [PMID: 38734060 DOI: 10.1016/j.yjmcc.2024.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 03/17/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
INTRODUCTION Chronic immunopathology contributes to the development of heart failure after a myocardial infarction. Both T and B cells of the adaptive immune system are present in the myocardium and have been suggested to be involved in post-MI immunopathology. METHODS We analyzed the B and T cell populations isolated from previously published single cell RNA-sequencing data sets (PMID: 32130914, PMID: 35948637, PMID: 32971526 and PMID: 35926050), of the mouse and human heart, using differential expression analysis, functional enrichment analysis, gene regulatory inferences, and integration with autoimmune and cardiovascular GWAS. RESULTS Already at baseline, mature effector B and T cells are present in the human and mouse heart, having increased activity in transcription factors maintaining tolerance (e.g. DEAF1, JDP2, SPI-B). Following MI, T cells upregulate pro-inflammatory transcript levels (e.g. Cd11, Gzmk, Prf1), while B cells upregulate activation markers (e.g. Il6, Il1rn, Ccl6) and collagen (e.g. Col5a2, Col4a1, Col1a2). Importantly, pro-inflammatory and fibrotic transcription factors (e.g. NFKB1, CREM, REL) remain active in T cells, while B cells maintain elevated activity in transcription factors related to immunoglobulin production (e.g. ERG, REL) in both mouse and human post-MI hearts. Notably, genes differentially expressed in post-MI T and B cells are associated with cardiovascular and autoimmune disease. CONCLUSION These findings highlight the varied and time-dependent dynamic roles of post-MI T and B cells. They appear ready-to-go and are activated immediately after MI, thus participate in the acute wound healing response. However, they subsequently remain in a state of pro-inflammatory activation contributing to persistent immunopathology.
Collapse
Affiliation(s)
- Natasha de Winter
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, United Kingdom
| | - Jiahui Ji
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, United Kingdom
| | - Amalia Sintou
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, United Kingdom
| | - Elvira Forte
- The Jackson Laboratory, Bar Harbor, United States
| | - Michael Lee
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, United Kingdom
| | - Michela Noseda
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, United Kingdom; British Heart Foundation Centre For Research Excellence, Imperial College London, United Kingdom
| | - Aoxue Li
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, United Kingdom; Department of Medicine Solna, Division of Cardiovascular Medicine, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Andrew L Koenig
- Center for Cardiovascular Research, Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, United States
| | - Kory J Lavine
- Center for Cardiovascular Research, Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, United States
| | | | - Nadia Rosenthal
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, United Kingdom; The Jackson Laboratory, Bar Harbor, United States
| | - Costanza Emanueli
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, United Kingdom; British Heart Foundation Centre For Research Excellence, Imperial College London, United Kingdom
| | - Prashant K Srivastava
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, United Kingdom
| | - Susanne Sattler
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, United Kingdom; Department of Cardiology, Medical University of Graz, Austria; Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Austria.
| |
Collapse
|
16
|
Hashemi E, McCarthy C, Rao S, Malarkannan S. Transcriptomic diversity of innate lymphoid cells in human lymph nodes compared to BM and spleen. Commun Biol 2024; 7:769. [PMID: 38918571 PMCID: PMC11199704 DOI: 10.1038/s42003-024-06450-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
Innate lymphoid cells (ILCs) are largely tissue-resident, mostly described within the mucosal tissues. However, their presence and functions in the human draining lymph nodes (LNs) are unknown. Our study unravels the tissue-specific transcriptional profiles of 47,287 CD127+ ILCs within the human abdominal and thoracic LNs. LNs contain a higher frequency of CD127+ ILCs than in BM or spleen. We define independent stages of ILC development, including EILP and pILC in the BM. These progenitors exist in LNs in addition to naïve ILCs (nILCs) that can differentiate into mature ILCs. We define three ILC1 and four ILC3 sub-clusters in the LNs. ILC1 and ILC3 subsets have clusters with high heat shock protein-encoding genes. We identify previously unrecognized regulons, including the BACH2 family for ILC1 and the ATF family for ILC3. Our study is the comprehensive characterization of ILCs in LNs, providing an in-depth understanding of ILC-mediated immunity in humans.
Collapse
Affiliation(s)
- Elaheh Hashemi
- Blood Research Institute, Versiti, Milwaukee, WI, USA
- Department of Microbiology and Immunology, Medical College of Wisconsin (MCW), Milwaukee, WI, USA
| | | | - Sridhar Rao
- Blood Research Institute, Versiti, Milwaukee, WI, USA
- Division of Hematology, Oncology, and Bone Marrow Transplantation, Department of Pediatrics, MCW, Milwaukee, WI, USA
- Department of Cell Biology, Neurobiology, and Anatomy, MCW, Milwaukee, WI, USA
| | - Subramaniam Malarkannan
- Blood Research Institute, Versiti, Milwaukee, WI, USA.
- Department of Microbiology and Immunology, Medical College of Wisconsin (MCW), Milwaukee, WI, USA.
- Division of Hematology, Oncology, and Bone Marrow Transplantation, Department of Pediatrics, MCW, Milwaukee, WI, USA.
- Division of Hematology and Oncology, Department of Medicine, MCW, Milwaukee, WI, USA.
| |
Collapse
|
17
|
Hirose Y, Sato S, Hashiya K, Ooga M, Bando T, Sugiyama H. Chb-M', an Inhibitor of the RUNX Family Binding to DNA, Induces Apoptosis in p53-Mutated Non-Small Cell Lung Cancer and Inhibits Tumor Growth and Repopulation In Vivo. J Med Chem 2024; 67:9165-9172. [PMID: 38803164 DOI: 10.1021/acs.jmedchem.4c00315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Runt-related transcription factor (RUNX) proteins are considered to play various roles in cancer. Here, we evaluated the anticancer activity of Chb-M', a compound that specifically and covalently binds to the consensus sequence for RUNX family proteins, in p53-mutated non-small cell lung cancer cells. Chb-M' killed the cancer cells by inducing apoptosis. The compound showed an anticancer effect comparable to that of the clinically used drugs alectinib and ceritinib in vivo. Notably, Chb-M' extended the cancer-free survival of mice after ending treatment more effectively than did the other two drugs. The results presented here suggest that Chb-M' is an attractive candidate as an anticancer drug applicable to the treatment of non-small cell lung cancer and various other types of cancers.
Collapse
Affiliation(s)
- Yuki Hirose
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Shinsuke Sato
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Kaori Hashiya
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Mitsuharu Ooga
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Toshikazu Bando
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
- Institute for Integrated Cell-Material Science (WPI-iCeMS), Kyoto University, Sakyo, Kyoto 606-8501, Japan
| |
Collapse
|
18
|
Jindal K, Adil MT, Yamaguchi N, Yang X, Wang HC, Kamimoto K, Rivera-Gonzalez GC, Morris SA. Single-cell lineage capture across genomic modalities with CellTag-multi reveals fate-specific gene regulatory changes. Nat Biotechnol 2024; 42:946-959. [PMID: 37749269 PMCID: PMC11180607 DOI: 10.1038/s41587-023-01931-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 07/31/2023] [Indexed: 09/27/2023]
Abstract
Complex gene regulatory mechanisms underlie differentiation and reprogramming. Contemporary single-cell lineage-tracing (scLT) methods use expressed, heritable DNA barcodes to combine cell lineage readout with single-cell transcriptomics. However, reliance on transcriptional profiling limits adaptation to other single-cell assays. With CellTag-multi, we present an approach that enables direct capture of heritable random barcodes expressed as polyadenylated transcripts, in both single-cell RNA sequencing and single-cell Assay for Transposase Accessible Chromatin using sequencing assays, allowing for independent clonal tracking of transcriptional and epigenomic cell states. We validate CellTag-multi to characterize progenitor cell lineage priming during mouse hematopoiesis. Additionally, in direct reprogramming of fibroblasts to endoderm progenitors, we identify core regulatory programs underlying on-target and off-target fates. Furthermore, we reveal the transcription factor Zfp281 as a regulator of reprogramming outcome, biasing cells toward an off-target mesenchymal fate. Our results establish CellTag-multi as a lineage-tracing method compatible with multiple single-cell modalities and demonstrate its utility in revealing fate-specifying gene regulatory changes across diverse paradigms of differentiation and reprogramming.
Collapse
Affiliation(s)
- Kunal Jindal
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Mohd Tayyab Adil
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Naoto Yamaguchi
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Xue Yang
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Helen C Wang
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kenji Kamimoto
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Guillermo C Rivera-Gonzalez
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Samantha A Morris
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA.
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
19
|
Ma F, Cao Y, Du H, Braikia FZ, Zong L, Ollikainen N, Bayer M, Qiu X, Park B, Roy R, Nandi S, Sarantopoulou D, Ziman A, Bianchi AH, Beerman I, Zhao K, Grosschedl R, Sen R. Three-dimensional chromatin reorganization regulates B cell development during ageing. Nat Cell Biol 2024; 26:991-1002. [PMID: 38866970 PMCID: PMC11178499 DOI: 10.1038/s41556-024-01424-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 04/16/2024] [Indexed: 06/14/2024]
Abstract
The contribution of three-dimensional genome organization to physiological ageing is not well known. Here we show that large-scale chromatin reorganization distinguishes young and old bone marrow progenitor (pro-) B cells. These changes result in increased interactions at the compartment level and reduced interactions within topologically associated domains (TADs). The gene encoding Ebf1, a key B cell regulator, switches from compartment A to B with age. Genetically reducing Ebf1 recapitulates some features of old pro-B cells. TADs that are most reduced with age contain genes important for B cell development, including the immunoglobulin heavy chain (Igh) locus. Weaker intra-TAD interactions at Igh correlate with altered variable (V), diversity (D) and joining (J) gene recombination. Our observations implicate three-dimensional chromatin reorganization as a major driver of pro-B cell phenotypes that impair B lymphopoiesis with age.
Collapse
Affiliation(s)
- Fei Ma
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD, USA
| | - Yaqiang Cao
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung and Blood Institute, Bethesda, MD, USA
| | - Hansen Du
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD, USA
| | - Fatima Zohra Braikia
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD, USA
| | - Le Zong
- Epigenetics and Stem Cell Init, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Noah Ollikainen
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD, USA
| | - Marc Bayer
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Xiang Qiu
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD, USA
| | - Bongsoo Park
- Epigenetics and Stem Cell Init, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Roshni Roy
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD, USA
| | - Satabdi Nandi
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD, USA
| | - Dimitra Sarantopoulou
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD, USA
| | | | - Aisha Haley Bianchi
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD, USA
| | - Isabel Beerman
- Epigenetics and Stem Cell Init, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Keji Zhao
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung and Blood Institute, Bethesda, MD, USA
| | - Rudolf Grosschedl
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Ranjan Sen
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD, USA.
| |
Collapse
|
20
|
Abay T, Stickels RR, Takizawa MT, Nalbant BN, Hsieh YH, Hwang S, Snopkowski C, Yu KKH, Abou-Mrad Z, Tabar V, Ludwig LS, Chaligné R, Satpathy AT, Lareau CA. Transcript-specific enrichment enables profiling rare cell states via scRNA-seq. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.27.587039. [PMID: 38586040 PMCID: PMC10996707 DOI: 10.1101/2024.03.27.587039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Single-cell genomics technologies have accelerated our understanding of cell-state heterogeneity in diverse contexts. Although single-cell RNA sequencing (scRNA-seq) identifies many rare populations of interest that express specific marker transcript combinations, traditional flow sorting limits our ability to enrich these populations for further profiling, including requiring cell surface markers with high-fidelity antibodies. Additionally, many single-cell studies require the isolation of nuclei from tissue, eliminating the ability to enrich learned rare cell states based on extranuclear protein markers. To address these limitations, we describe Programmable Enrichment via RNA Flow-FISH by sequencing (PERFF-seq), a scalable assay that enables scRNA-seq profiling of subpopulations from complex cellular mixtures defined by the presence or absence of specific RNA transcripts. Across immune populations (n = 141,227 cells) and fresh-frozen and formalin-fixed paraffin-embedded brain tissue (n = 29,522 nuclei), we demonstrate the sorting logic that can be used to enrich for cell populations via RNA-based cytometry followed by high-throughput scRNA-seq. Our approach provides a rational, programmable method for studying rare populations identified by one or more marker transcripts.
Collapse
Affiliation(s)
- Tsion Abay
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Pathology, Stanford University, Stanford CA, USA
- Program in Biological and Biomedical Sciences, Harvard University, Boston, MA, USA
| | - Robert R. Stickels
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Pathology, Stanford University, Stanford CA, USA
| | - Meril T. Takizawa
- Single-cell Analytics Innovation Lab, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Benan N. Nalbant
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yu-Hsin Hsieh
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Charité Universitätsmedizin Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Sidney Hwang
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Pathology, Stanford University, Stanford CA, USA
| | - Catherine Snopkowski
- Single-cell Analytics Innovation Lab, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kenny Kwok Hei Yu
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zaki Abou-Mrad
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Viviane Tabar
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Leif S. Ludwig
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Ronan Chaligné
- Single-cell Analytics Innovation Lab, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ansuman T. Satpathy
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Pathology, Stanford University, Stanford CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Caleb A. Lareau
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
21
|
Rajendiran V, Devaraju N, Haddad M, Ravi NS, Panigrahi L, Paul J, Gopalakrishnan C, Wyman S, Ariudainambi K, Mahalingam G, Periyasami Y, Prasad K, George A, Sukumaran D, Gopinathan S, Pai AA, Nakamura Y, Balasubramanian P, Ramalingam R, Thangavel S, Velayudhan SR, Corn JE, Mackay JP, Marepally S, Srivastava A, Crossley M, Mohankumar KM. Base editing of key residues in the BCL11A-XL-specific zinc finger domains derepresses fetal globin expression. Mol Ther 2024; 32:663-677. [PMID: 38273654 PMCID: PMC10928131 DOI: 10.1016/j.ymthe.2024.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 11/03/2023] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
BCL11A-XL directly binds and represses the fetal globin (HBG1/2) gene promoters, using 3 zinc-finger domains (ZnF4, ZnF5, and ZnF6), and is a potential target for β-hemoglobinopathy treatments. Disrupting BCL11A-XL results in derepression of fetal globin and high HbF, but also affects hematopoietic stem and progenitor cell (HSPC) engraftment and erythroid maturation. Intriguingly, neurodevelopmental patients with ZnF domain mutations have elevated HbF with normal hematological parameters. Inspired by this natural phenomenon, we used both CRISPR-Cas9 and base editing at specific ZnF domains and assessed the impacts on HbF production and hematopoietic differentiation. Generating indels in the various ZnF domains by CRISPR-Cas9 prevented the binding of BCL11A-XL to its site in the HBG1/2 promoters and elevated the HbF levels but affected normal hematopoiesis. Far fewer side effects were observed with base editing- for instance, erythroid maturation in vitro was near normal. However, we observed a modest reduction in HSPC engraftment and a complete loss of B cell development in vivo, presumably because current base editing is not capable of precisely recapitulating the mutations found in patients with BCL11A-XL-associated neurodevelopment disorders. Overall, our results reveal that disrupting different ZnF domains has different effects. Disrupting ZnF4 elevated HbF levels significantly while leaving many other erythroid target genes unaffected, and interestingly, disrupting ZnF6 also elevated HbF levels, which was unexpected because this region does not directly interact with the HBG1/2 promoters. This first structure/function analysis of ZnF4-6 provides important insights into the domains of BCL11A-XL that are required to repress fetal globin expression and provide framework for exploring the introduction of natural mutations that may enable the derepression of single gene while leaving other functions unaffected.
Collapse
Affiliation(s)
- Vignesh Rajendiran
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore, Tamil Nadu 632002, India; Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695 011, India
| | - Nivedhitha Devaraju
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore, Tamil Nadu 632002, India; Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Mahdi Haddad
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Nithin Sam Ravi
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore, Tamil Nadu 632002, India; Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695 011, India
| | - Lokesh Panigrahi
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore, Tamil Nadu 632002, India; Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Joshua Paul
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore, Tamil Nadu 632002, India; Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Chandrasekar Gopalakrishnan
- Department of Integrative Biology, School of Bioscience and Technology, Vellore Institute of Technology (VIT, Deemed to be University), Vellore, Tamil Nadu 632014, India
| | - Stacia Wyman
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94704, USA
| | | | - Gokulnath Mahalingam
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore, Tamil Nadu 632002, India
| | - Yogapriya Periyasami
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore, Tamil Nadu 632002, India
| | - Kirti Prasad
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore, Tamil Nadu 632002, India; Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Anila George
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore, Tamil Nadu 632002, India; Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695 011, India
| | - Dhiyaneshwaran Sukumaran
- Department of Integrative Biology, School of Bioscience and Technology, Vellore Institute of Technology (VIT, Deemed to be University), Vellore, Tamil Nadu 632014, India
| | - Sandhiya Gopinathan
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore, Tamil Nadu 632002, India
| | - Aswin Anand Pai
- Department of Haematology, Christian Medical College & Hospital, Vellore, Tamil Nadu 632 004, India
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Center, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | | | - Rajasekaran Ramalingam
- Department of Integrative Biology, School of Bioscience and Technology, Vellore Institute of Technology (VIT, Deemed to be University), Vellore, Tamil Nadu 632014, India
| | - Saravanabhavan Thangavel
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore, Tamil Nadu 632002, India
| | - Shaji R Velayudhan
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore, Tamil Nadu 632002, India; Department of Haematology, Christian Medical College & Hospital, Vellore, Tamil Nadu 632 004, India
| | - Jacon E Corn
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94704, USA; Institute of Molecular Health Sciences, Department of Biology, Zurich, Switzerland
| | - Joel P Mackay
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Srujan Marepally
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore, Tamil Nadu 632002, India
| | - Alok Srivastava
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore, Tamil Nadu 632002, India; Department of Haematology, Christian Medical College & Hospital, Vellore, Tamil Nadu 632 004, India
| | - Merlin Crossley
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Kumarasamypet M Mohankumar
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore, Tamil Nadu 632002, India.
| |
Collapse
|
22
|
Sigvardsson M. Early B-Cell Factor 1: An Archetype for a Lineage-Restricted Transcription Factor Linking Development to Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:143-156. [PMID: 39017843 DOI: 10.1007/978-3-031-62731-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
The development of highly specialized blood cells from hematopoietic stem cells (HSCs) in the bone marrow (BM) is dependent upon a stringently orchestrated network of stage- and lineage-restricted transcription factors (TFs). Thus, the same stem cell can give rise to various types of differentiated blood cells. One of the key regulators of B-lymphocyte development is early B-cell factor 1 (EBF1). This TF belongs to a small, but evolutionary conserved, family of proteins that harbor a Zn-coordinating motif and an IPT/TIG (immunoglobulin-like, plexins, transcription factors/transcription factor immunoglobulin) domain, creating a unique DNA-binding domain (DBD). EBF proteins play critical roles in diverse developmental processes, including body segmentation in the Drosophila melanogaster embryo, and retina formation in mice. While several EBF family members are expressed in neuronal cells, adipocytes, and BM stroma cells, only B-lymphoid cells express EBF1. In the absence of EBF1, hematopoietic progenitor cells (HPCs) fail to activate the B-lineage program. This has been attributed to the ability of EBF1 to act as a pioneering factor with the ability to remodel chromatin, thereby creating a B-lymphoid-specific epigenetic landscape. Conditional inactivation of the Ebf1 gene in B-lineage cells has revealed additional functions of this protein in relation to the control of proliferation and apoptosis. This may explain why EBF1 is frequently targeted by mutations in human leukemia cases. This chapter provides an overview of the biochemical and functional properties of the EBF family proteins, with a focus on the roles of EBF1 in normal and malignant B-lymphocyte development.
Collapse
Affiliation(s)
- Mikael Sigvardsson
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.
- Division of Molecular Hematology, Lund University, Lund, Sweden.
| |
Collapse
|
23
|
Yamaguchi M, Huynh MA, Chiyonobu T, Yoshida H. Knockdown of Chronophage in the nervous system mimics features of neurodevelopmental disorders caused by BCL11A/B variants. Exp Cell Res 2023; 433:113827. [PMID: 37926342 DOI: 10.1016/j.yexcr.2023.113827] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 11/07/2023]
Abstract
Neurodevelopmental disorders (NDD) are a group of disorders that include intellectual disability. Although several genes have been implicated in NDD, the molecular mechanisms underlying its pathogenesis remain unclear. Therefore, it is important to develop novel models to analyze the functions of NDD-causing genes in vivo. Recently, rare pathogenic variants of the B-cell lymphoma/leukemia11A/B (BCL11A/B) gene have been identified in several patients with NDD. Drosophila carries the Chronophage (Cph) gene, which has been predicted to be a homolog of BCL11A/B based on the conservation of the amino acid sequence. In the present study, we investigated whether nervous system-specific knockdown of Cph mimics NDD phenotypes in Drosophila. Nervous system-specific knockdown of Cph induced learning and locomotor defects in larvae and epilepsy-like behaviors in adults. The number of synaptic branches was also elevated in the larval neuromuscular junction without a corresponding increase in the number of boutons. Furthermore, the expression levels of putative target genes that are Drosophila homologs of the mammalian BCL11 target genes were decreased in Cph knockdown flies. These results suggest that Cph knockdown flies are a promising model for investigating the pathology of NDD-induced BCL11A/B dysfunction.
Collapse
Affiliation(s)
- Mizuki Yamaguchi
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan.
| | - Man Anh Huynh
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Tomohiro Chiyonobu
- Department of Molecular Diagnostics and Therapeutics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Hideki Yoshida
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan; Advanced Insect Research Promotion Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan.
| |
Collapse
|
24
|
Han W, Qiu HY, Sun S, Fu ZC, Wang GQ, Qian X, Wang L, Zhai X, Wei J, Wang Y, Guo YL, Cao GH, Ji RJ, Zhang YZ, Ma H, Wang H, Zhao M, Wu J, Bi L, Chen QB, Li Z, Yu L, Mou X, Yin H, Yang L, Chen J, Yang B, Zhang Y. Base editing of the HBG promoter induces potent fetal hemoglobin expression with no detectable off-target mutations in human HSCs. Cell Stem Cell 2023; 30:1624-1639.e8. [PMID: 37989316 DOI: 10.1016/j.stem.2023.10.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/13/2023] [Accepted: 10/24/2023] [Indexed: 11/23/2023]
Abstract
Reactivating silenced γ-globin expression through the disruption of repressive regulatory domains offers a therapeutic strategy for treating β-hemoglobinopathies. Here, we used transformer base editor (tBE), a recently developed cytosine base editor with no detectable off-target mutations, to disrupt transcription-factor-binding motifs in hematopoietic stem cells. By performing functional screening of six motifs with tBE, we found that directly disrupting the BCL11A-binding motif in HBG1/2 promoters triggered the highest γ-globin expression. Via a side-by-side comparison with other clinical and preclinical strategies using Cas9 nuclease or conventional BEs (ABE8e and hA3A-BE3), we found that tBE-mediated disruption of the BCL11A-binding motif at the HBG1/2 promoters triggered the highest fetal hemoglobin in healthy and β-thalassemia patient hematopoietic stem/progenitor cells while exhibiting no detectable DNA or RNA off-target mutations. Durable therapeutic editing by tBE persisted in repopulating hematopoietic stem cells, demonstrating that tBE-mediated editing in HBG1/2 promoters is a safe and effective strategy for treating β-hemoglobinopathies.
Collapse
Affiliation(s)
- Wenyan Han
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Hou-Yuan Qiu
- Department of Rheumatology and Immunology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Shangwu Sun
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Zhi-Can Fu
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Center for Molecular Medicine, Children's Hospital of Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Guo-Quan Wang
- Department of Rheumatology and Immunology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Xiaowen Qian
- Department of Hematology and Oncology, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Lijie Wang
- CorrectSequence Therapeutics, Shanghai 201210, China
| | - Xiaowen Zhai
- Department of Hematology and Oncology, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Jia Wei
- Center for Molecular Medicine, Children's Hospital of Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yichuan Wang
- CorrectSequence Therapeutics, Shanghai 201210, China
| | - Yi-Lin Guo
- Center for Molecular Medicine, Children's Hospital of Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Guo-Hua Cao
- Department of Rheumatology and Immunology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Rui-Jin Ji
- Department of Rheumatology and Immunology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Yi-Zhou Zhang
- Department of Rheumatology and Immunology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Hongxia Ma
- CorrectSequence Therapeutics, Shanghai 201210, China
| | - Hongsheng Wang
- Department of Hematology and Oncology, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Mingli Zhao
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jing Wu
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Lili Bi
- Department of Rheumatology and Immunology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Qiu-Bing Chen
- Department of Rheumatology and Immunology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Zifeng Li
- Department of Hematology and Oncology, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Ling Yu
- Department of Hematology and Oncology, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Xiaodun Mou
- CorrectSequence Therapeutics, Shanghai 201210, China
| | - Hao Yin
- Department of Rheumatology and Immunology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Department of Pathology and Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; TaiKang Centre for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China; State Key Laboratory of Virology, Wuhan University, Wuhan, China
| | - Li Yang
- Center for Molecular Medicine, Children's Hospital of Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.
| | - Jia Chen
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Shanghai Clinical Research and Trial Center, Shanghai 201210, China; Shanghai Frontiers Science Center for Biomacromolecules and Precision Medicine, ShanghaiTech University, Shanghai 200031, China.
| | - Bei Yang
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; Shanghai Clinical Research and Trial Center, Shanghai 201210, China; Shanghai Frontiers Science Center for Biomacromolecules and Precision Medicine, ShanghaiTech University, Shanghai 200031, China.
| | - Ying Zhang
- Department of Rheumatology and Immunology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; State Key Laboratory of Virology, Wuhan University, Wuhan, China.
| |
Collapse
|
25
|
Cao H, Baranova A, Song Y, Chen JH, Zhang F. Causal associations and genetic overlap between COVID-19 and intelligence. QJM 2023; 116:766-773. [PMID: 37286376 PMCID: PMC10559337 DOI: 10.1093/qjmed/hcad122] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/19/2023] [Accepted: 05/30/2023] [Indexed: 06/09/2023] Open
Abstract
OBJECTIVE COVID-19 might cause neuroinflammation in the brain, which could decrease neurocognitive function. We aimed to evaluate the causal associations and genetic overlap between COVID-19 and intelligence. METHODS We performed Mendelian randomization (MR) analyses to assess potential associations between three COVID-19 outcomes and intelligence (N = 269 867). The COVID phenotypes included severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection (N = 2 501 486), hospitalized COVID-19 (N = 1 965 329) and critical COVID-19 (N = 743 167). Genome-wide risk genes were compared between the genome-wide association study (GWAS) datasets on hospitalized COVID-19 and intelligence. In addition, functional pathways were constructed to explore molecular connections between COVID-19 and intelligence. RESULTS The MR analyses indicated that genetic liabilities to SARS-CoV-2 infection (odds ratio [OR]: 0.965, 95% confidence interval [CI]: 0.939-0.993) and critical COVID-19 (OR: 0.989, 95% CI: 0.979-0.999) confer causal effects on intelligence. There was suggestive evidence supporting the causal effect of hospitalized COVID-19 on intelligence (OR: 0.988, 95% CI: 0.972-1.003). Hospitalized COVID-19 and intelligence share 10 risk genes within 2 genomic loci, including MAPT and WNT3. Enrichment analysis showed that these genes are functionally connected within distinct subnetworks of 30 phenotypes linked to cognitive decline. The functional pathway revealed that COVID-19-driven pathological changes within the brain and multiple peripheral systems may lead to cognitive impairment. CONCLUSIONS Our study suggests that COVID-19 may exert a detrimental effect on intelligence. The tau protein and Wnt signaling may mediate the influence of COVID-19 on intelligence.
Collapse
Affiliation(s)
- Hongbao Cao
- School of Systems Biology, George Mason University, Manassas, VA 20110, USA
| | - Ancha Baranova
- School of Systems Biology, George Mason University, Manassas, VA 20110, USA
- Research Centre for Medical Genetics, Moscow 115478, Russia
| | - Yuqing Song
- Institute of Mental Health, Peking University Sixth Hospital
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Jian-Huan Chen
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Fuquan Zhang
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029,China
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
26
|
Beuchel C, Dittrich J, Becker S, Kirsten H, Tönjes A, Kovacs P, Stumvoll M, Loeffler M, Teren A, Thiery J, Isermann B, Ceglarek U, Scholz M. An atlas of genome-wide gene expression and metabolite associations and possible mediation effects towards body mass index. J Mol Med (Berl) 2023; 101:1305-1321. [PMID: 37672078 PMCID: PMC10560167 DOI: 10.1007/s00109-023-02362-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 08/07/2023] [Accepted: 08/15/2023] [Indexed: 09/07/2023]
Abstract
Investigating the cross talk of different omics layers is crucial to understand molecular pathomechanisms of metabolic diseases like obesity. Here, we present a large-scale association meta-analysis of genome-wide whole blood and peripheral blood mononuclear cell (PBMC) gene expressions profiled with Illumina HT12v4 microarrays and metabolite measurements from dried blood spots (DBS) characterized by targeted liquid chromatography tandem mass spectrometry (LC-MS/MS) in three large German cohort studies with up to 7706 samples. We found 37,295 associations comprising 72 amino acids (AA) and acylcarnitine (AC) metabolites (including ratios) and 8579 transcripts. We applied this catalogue of associations to investigate the impact of associating transcript-metabolite pairs on body mass index (BMI) as an example metabolic trait. This is achieved by conducting a comprehensive mediation analysis considering metabolites as mediators of gene expression effects and vice versa. We discovered large mediation networks comprising 27,023 potential mediation effects within 20,507 transcript-metabolite pairs. Resulting networks of highly connected (hub) transcripts and metabolites were leveraged to gain mechanistic insights into metabolic signaling pathways. In conclusion, here, we present the largest available multi-omics integration of genome-wide transcriptome data and metabolite data of amino acid and fatty acid metabolism and further leverage these findings to characterize potential mediation effects towards BMI proposing candidate mechanisms of obesity and related metabolic diseases. KEY MESSAGES: Thousands of associations of 72 amino acid and acylcarnitine metabolites and 8579 genes expand the knowledge of metabolome-transcriptome associations. A mediation analysis of effects on body mass index revealed large mediation networks of thousands of obesity-related gene-metabolite pairs. Highly connected, potentially mediating hub genes and metabolites enabled insight into obesity and related metabolic disease pathomechanisms.
Collapse
Affiliation(s)
- Carl Beuchel
- Institute for Medical Informatics, Statistics and Epidemiology, Leipzig University, Leipzig, Germany
| | - Julia Dittrich
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Leipzig University, Leipzig, Germany
| | - Susen Becker
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Leipzig University, Leipzig, Germany
- Department of Forensic Toxicology, Institute of Legal Medicine, University Leipzig, Leipzig, Germany
| | - Holger Kirsten
- Institute for Medical Informatics, Statistics and Epidemiology, Leipzig University, Leipzig, Germany
- LIFE - Leipzig Research Center for Civilization Diseases, Leipzig University, Leipzig, Germany
| | - Anke Tönjes
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University Hospital Leipzig, Leipzig, Germany
| | - Peter Kovacs
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University Hospital Leipzig, Leipzig, Germany
- Deutsches Zentrum für Diabetesforschung, Neuherberg, Germany
| | - Michael Stumvoll
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University Hospital Leipzig, Leipzig, Germany
| | - Markus Loeffler
- Institute for Medical Informatics, Statistics and Epidemiology, Leipzig University, Leipzig, Germany
- LIFE - Leipzig Research Center for Civilization Diseases, Leipzig University, Leipzig, Germany
| | | | - Joachim Thiery
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Leipzig University, Leipzig, Germany
- LIFE - Leipzig Research Center for Civilization Diseases, Leipzig University, Leipzig, Germany
| | - Berend Isermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Leipzig University, Leipzig, Germany
- LIFE - Leipzig Research Center for Civilization Diseases, Leipzig University, Leipzig, Germany
| | - Uta Ceglarek
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Leipzig University, Leipzig, Germany
- LIFE - Leipzig Research Center for Civilization Diseases, Leipzig University, Leipzig, Germany
| | - Markus Scholz
- Institute for Medical Informatics, Statistics and Epidemiology, Leipzig University, Leipzig, Germany.
- LIFE - Leipzig Research Center for Civilization Diseases, Leipzig University, Leipzig, Germany.
| |
Collapse
|
27
|
Feng W, Liu S, Deng Q, Fu S, Yang Y, Dai X, Wang S, Wang Y, Liu Y, Lin X, Pan X, Hao S, Yuan Y, Gu Y, Zhang X, Li H, Liu L, Liu C, Fei JF, Wei X. A scATAC-seq atlas of chromatin accessibility in axolotl brain regions. Sci Data 2023; 10:627. [PMID: 37709774 PMCID: PMC10502032 DOI: 10.1038/s41597-023-02533-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/01/2023] [Indexed: 09/16/2023] Open
Abstract
Axolotl (Ambystoma mexicanum) is an excellent model for investigating regeneration, the interaction between regenerative and developmental processes, comparative genomics, and evolution. The brain, which serves as the material basis of consciousness, learning, memory, and behavior, is the most complex and advanced organ in axolotl. The modulation of transcription factors is a crucial aspect in determining the function of diverse regions within the brain. There is, however, no comprehensive understanding of the gene regulatory network of axolotl brain regions. Here, we utilized single-cell ATAC sequencing to generate the chromatin accessibility landscapes of 81,199 cells from the olfactory bulb, telencephalon, diencephalon and mesencephalon, hypothalamus and pituitary, and the rhombencephalon. Based on these data, we identified key transcription factors specific to distinct cell types and compared cell type functions across brain regions. Our results provide a foundation for comprehensive analysis of gene regulatory programs, which are valuable for future studies of axolotl brain development, regeneration, and evolution, as well as on the mechanisms underlying cell-type diversity in vertebrate brains.
Collapse
Affiliation(s)
- Weimin Feng
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI-Hangzhou, Hangzhou, 310012, China
- BGI-Shenzhen, Shenzhen, 518103, China
| | - Shuai Liu
- BGI-Hangzhou, Hangzhou, 310012, China
- BGI-Shenzhen, Shenzhen, 518103, China
- BGI College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Qiuting Deng
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI-Shenzhen, Shenzhen, 518103, China
| | - Sulei Fu
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education; Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, China
| | - Yunzhi Yang
- BGI-Hangzhou, Hangzhou, 310012, China
- BGI-Shenzhen, Shenzhen, 518103, China
- BGI College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Xi Dai
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI-Hangzhou, Hangzhou, 310012, China
- BGI-Shenzhen, Shenzhen, 518103, China
| | - Shuai Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI-Hangzhou, Hangzhou, 310012, China
- BGI-Shenzhen, Shenzhen, 518103, China
| | - Yijin Wang
- BGI-Hangzhou, Hangzhou, 310012, China
- BGI-Shenzhen, Shenzhen, 518103, China
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yang Liu
- BGI-Hangzhou, Hangzhou, 310012, China
- BGI-Shenzhen, Shenzhen, 518103, China
| | - Xiumei Lin
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI-Hangzhou, Hangzhou, 310012, China
- BGI-Shenzhen, Shenzhen, 518103, China
| | - Xiangyu Pan
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- Guangdong Cardiovsacular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Shijie Hao
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI-Hangzhou, Hangzhou, 310012, China
- BGI-Shenzhen, Shenzhen, 518103, China
| | - Yue Yuan
- BGI-Hangzhou, Hangzhou, 310012, China
- BGI-Shenzhen, Shenzhen, 518103, China
| | - Ying Gu
- BGI-Shenzhen, Shenzhen, 518103, China
| | | | - Hanbo Li
- BGI-Shenzhen, Shenzhen, 518103, China
- BGI-Qingdao, Qingdao, 266555, China
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, Qingdao, 266555, China
| | - Longqi Liu
- BGI-Hangzhou, Hangzhou, 310012, China
- BGI-Shenzhen, Shenzhen, 518103, China
| | | | - Ji-Feng Fei
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China.
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China.
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| | - Xiaoyu Wei
- BGI-Hangzhou, Hangzhou, 310012, China.
- BGI-Shenzhen, Shenzhen, 518103, China.
| |
Collapse
|
28
|
Hirose Y, Sato S, Hashiya K, Bando T, Sugiyama H. Anticancer Activities of DNA-Alkylating Pyrrole-Imidazole Polyamide Analogs Targeting RUNX Transcription Factors against p53-Mutated Pancreatic Cancer PANC-1 Cells. J Med Chem 2023; 66:12059-12068. [PMID: 37606185 DOI: 10.1021/acs.jmedchem.3c00613] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
The runt-related transcription factor (RUNX) family is known to play important roles in the progression of cancer. Conjugate 1, which covalently binds to the RUNX-binding sequences, was reported to inhibit the binding of RUNX proteins to their target sites and suppress cancer growth. Here, we evaluated the anticancer effects of 1 and its analogs 2-4 against p53-mutated PANC-1 pancreatic cancer cells. We found that they possessed different DNA-alkylating properties in vitro. And conjugates 1-3 were shown to have anticancer effects by inducing apoptosis in PANC-1 cells. Furthermore, conjugates 2 and 3 suppressed cancer growth in PANC-1 xenograft mice, with activity equivalent to a 50-fold dose of gemcitabine. Especially, 3 showed the highest alkylation efficiency, specificity, and better anticancer effects against pancreatic cancer than 1 in vivo without significant body weight loss. Our results revealed the potential of our compounds as new candidates for cancer therapy.
Collapse
Affiliation(s)
- Yuki Hirose
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Shinsuke Sato
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Kaori Hashiya
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Toshikazu Bando
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
- Institute for Integrated Cell-Material Science (WPI-iCeMS), Kyoto University, Sakyo, Kyoto 606-8501, Japan
| |
Collapse
|
29
|
Sigvardsson M. Transcription factor networks link B-lymphocyte development and malignant transformation in leukemia. Genes Dev 2023; 37:703-723. [PMID: 37673459 PMCID: PMC10546977 DOI: 10.1101/gad.349879.122] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Rapid advances in genomics have opened unprecedented possibilities to explore the mutational landscapes in malignant diseases, such as B-cell acute lymphoblastic leukemia (B-ALL). This disease is manifested as a severe defect in the production of normal blood cells due to the uncontrolled expansion of transformed B-lymphocyte progenitors in the bone marrow. Even though classical genetics identified translocations of transcription factor-coding genes in B-ALL, the extent of the targeting of regulatory networks in malignant transformation was not evident until the emergence of large-scale genomic analyses. There is now evidence that many B-ALL cases present with mutations in genes that encode transcription factors with critical roles in normal B-lymphocyte development. These include PAX5, IKZF1, EBF1, and TCF3, all of which are targeted by translocations or, more commonly, partial inactivation in cases of B-ALL. Even though there is support for the notion that germline polymorphisms in the PAX5 and IKZF1 genes predispose for B-ALL, the majority of leukemias present with somatic mutations in transcription factor-encoding genes. These genetic aberrations are often found in combination with mutations in genes that encode components of the pre-B-cell receptor or the IL-7/TSLP signaling pathways, all of which are important for early B-cell development. This review provides an overview of our current understanding of the molecular interplay that occurs between transcription factors and signaling events during normal and malignant B-lymphocyte development.
Collapse
Affiliation(s)
- Mikael Sigvardsson
- Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden; Division of Molecular Hematology, Lund University, 22184 Lund, Sweden
| |
Collapse
|
30
|
Keita S, Diop S, Lekiashvili S, Chabaane E, Nelson E, Strullu M, Arfeuille C, Guimiot F, Domet T, Duchez S, Evrard B, Darde T, Larghero J, Verhoeyen E, Cumano A, Macintyre EA, Kasraian Z, Jouen F, Goodhardt M, Garrick D, Chalmel F, Alhaj Hussen K, Canque B. Distinct subsets of multi-lymphoid progenitors support ontogeny-related changes in human lymphopoiesis. Cell Rep 2023; 42:112618. [PMID: 37294633 DOI: 10.1016/j.celrep.2023.112618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/13/2023] [Accepted: 05/22/2023] [Indexed: 06/11/2023] Open
Abstract
Changes in lymphocyte production patterns occurring across human ontogeny remain poorly defined. In this study, we demonstrate that human lymphopoiesis is supported by three waves of embryonic, fetal, and postnatal multi-lymphoid progenitors (MLPs) differing in CD7 and CD10 expression and their output of CD127-/+ early lymphoid progenitors (ELPs). In addition, our results reveal that, like the fetal-to-adult switch in erythropoiesis, transition to postnatal life coincides with a shift from multilineage to B lineage-biased lymphopoiesis and an increase in production of CD127+ ELPs, which persists until puberty. A further developmental transition is observed in elderly individuals whereby B cell differentiation bypasses the CD127+ compartment and branches directly from CD10+ MLPs. Functional analyses indicate that these changes are determined at the level of hematopoietic stem cells. These findings provide insights for understanding identity and function of human MLPs and the establishment and maintenance of adaptative immunity.
Collapse
Affiliation(s)
- Seydou Keita
- INSERM U976, Université de Paris, École Pratique des Hautes Études/PSL Research University, Institut de Recherche Saint Louis, Paris, France
| | - Samuel Diop
- INSERM U976, Université de Paris, École Pratique des Hautes Études/PSL Research University, Institut de Recherche Saint Louis, Paris, France; Laboratoire Cognitions Humaine et Artificielle (CHArt) EA 4004 FED 4246, École Pratique des Hautes Études/PSL Research University, Paris, France
| | - Shalva Lekiashvili
- INSERM U976, Université de Paris, École Pratique des Hautes Études/PSL Research University, Institut de Recherche Saint Louis, Paris, France
| | - Emna Chabaane
- INSERM U976, Université de Paris, École Pratique des Hautes Études/PSL Research University, Institut de Recherche Saint Louis, Paris, France
| | - Elisabeth Nelson
- INSERM U976, Université de Paris, École Pratique des Hautes Études/PSL Research University, Institut de Recherche Saint Louis, Paris, France
| | - Marion Strullu
- Service d'Hémato-Immunologie Pédiatrique, Inserm U1131, Université de Paris, Hôpital Robert-Debré, AP-HP, Paris, France
| | - Chloé Arfeuille
- Service d'Hémato-Immunologie Pédiatrique, Inserm U1131, Université de Paris, Hôpital Robert-Debré, AP-HP, Paris, France
| | - Fabien Guimiot
- INSERM UMR 1141, Service de Biologie du Développement, Université de Paris, Hôpital Robert-Debré, AP-HP, Paris, France
| | - Thomas Domet
- AP-HP, Hôpital Saint-Louis, Unité de Thérapie Cellulaire, CIC de Biothérapies, Université de Paris, INSERM U976, Paris, France
| | - Sophie Duchez
- Plateforme d'Imagerie et de Tri Cellulaire, Institut de Recherche Saint Louis, Paris, France
| | - Bertrand Evrard
- INSERM, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, University Rennes, Rennes, France
| | | | - Jerome Larghero
- AP-HP, Hôpital Saint-Louis, Unité de Thérapie Cellulaire, CIC de Biothérapies, Université de Paris, INSERM U976, Paris, France
| | - Els Verhoeyen
- CIRI, International Center for Infectiology Research, Université de Lyon, INSERM U1111, Lyon, France; Centre Mediterranéen de Médecine Moléculaire (C3M), INSERM U1065, Nice, France
| | - Ana Cumano
- Unit of Lymphopoiesis, Immunology Department, Institut Pasteur, Paris, France
| | - Elizabeth A Macintyre
- Institut Necker Enfants-Malades, Team 2, INSERM Unité 1151, Hôpital Necker Enfants-Malades, Laboratoire d'Onco-Hématologie, Assistance Publique-Hôpitaux de Paris (AP-HP), Université de Paris, Paris, France
| | - Zeinab Kasraian
- Institut Necker Enfants-Malades, Team 2, INSERM Unité 1151, Hôpital Necker Enfants-Malades, Laboratoire d'Onco-Hématologie, Assistance Publique-Hôpitaux de Paris (AP-HP), Université de Paris, Paris, France
| | - François Jouen
- Laboratoire Cognitions Humaine et Artificielle (CHArt) EA 4004 FED 4246, École Pratique des Hautes Études/PSL Research University, Paris, France
| | - Michele Goodhardt
- INSERM U976, Université de Paris, École Pratique des Hautes Études/PSL Research University, Institut de Recherche Saint Louis, Paris, France
| | - David Garrick
- INSERM U976, Université de Paris, École Pratique des Hautes Études/PSL Research University, Institut de Recherche Saint Louis, Paris, France
| | - Frederic Chalmel
- INSERM, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, University Rennes, Rennes, France
| | - Kutaiba Alhaj Hussen
- INSERM U976, Université de Paris, École Pratique des Hautes Études/PSL Research University, Institut de Recherche Saint Louis, Paris, France; Service de Biochimie, Université de Paris Saclay, Hôpital Paul Brousse, AP-HP, Paris, France.
| | - Bruno Canque
- INSERM U976, Université de Paris, École Pratique des Hautes Études/PSL Research University, Institut de Recherche Saint Louis, Paris, France.
| |
Collapse
|
31
|
Chaand M, Fiore C, Johnston B, D'Ippolito A, Moon DH, Carulli JP, Shearstone JR. Erythroid lineage chromatin accessibility maps facilitate identification and validation of NFIX as a fetal hemoglobin repressor. Commun Biol 2023; 6:640. [PMID: 37316562 DOI: 10.1038/s42003-023-05025-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/07/2023] [Indexed: 06/16/2023] Open
Abstract
Human genetics has validated de-repression of fetal gamma globin (HBG) in adult erythroblasts as a powerful therapeutic paradigm in diseases involving defective adult beta globin (HBB)1. To identify factors involved in the switch from HBG to HBB expression, we performed Assay for Transposase Accessible Chromatin with high-throughput sequencing (ATAC-seq)2 on sorted erythroid lineage cells derived from bone marrow (BM) or cord blood (CB), representing adult and fetal states, respectively. BM to CB cell ATAC-seq profile comparisons revealed genome-wide enrichment of NFI DNA binding motifs and increased NFIX promoter chromatin accessibility, suggesting that NFIX may repress HBG. NFIX knockdown in BM cells increased HBG mRNA and fetal hemoglobin (HbF) protein levels, coincident with increased chromatin accessibility and decreased DNA methylation at the HBG promoter. Conversely, overexpression of NFIX in CB cells reduced HbF levels. Identification and validation of NFIX as a new target for HbF activation has implications in the development of therapeutics for hemoglobinopathies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jeffrey R Shearstone
- Syros Pharmaceuticals, Cambridge, MA, USA
- Scientific and Medical Writing Partners, Cambridge, MA, USA
| |
Collapse
|
32
|
Kątnik E, Gomułkiewicz A, Piotrowska A, Grzegrzółka J, Kmiecik A, Ratajczak-Wielgomas K, Urbaniak A, Glatzel-Plucińska N, Błasiak P, Dzięgiel P. BCL11A Expression in Non-Small Cell Lung Cancers. Int J Mol Sci 2023; 24:9848. [PMID: 37372998 DOI: 10.3390/ijms24129848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/28/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
B-cell leukemia/lymphoma 11A (BCL11A) may be one of the potential biomarkers of non-small cell lung cancer (NSCLC). However, its role in the development of this cancer has not yet been precisely established. The aim of this study was to investigate the expression of BCL11A at the mRNA and protein levels in NSCLC cases and non-malignant lung tissue (NMLT) and to determine the relationship between BCL11A expression and the clinicopathological factors and Ki-67, Slug, Snail and Twist. The localization and the level of BCL11A protein were examined using immunohistochemistry (IHC) on 259 cases of NSCLC, and 116 NMLT samples were prepared as tissue microarrays and using immunofluorescence (IF) in the following cell lines: NCI-H1703, A549 and IMR-90. The mRNA expression of BCL11A was determined using real-time PCR in 33 NSCLC cases, 10 NMLT samples and the cell lines. BCL11A protein expression was significantly higher in NSCLC cases compared to NMLT. Nuclear expression was found in lung squamous cell carcinoma (SCC) cells, while cytoplasmic expression was demonstrated in adenocarcinoma (AC) cells. Nuclear expression of BCL11A decreased with increasing malignancy grade and correlated positively with Ki-67 and Slug and Twist expression. The opposite relationships were found for the cytoplasmic expression of BCL11A. Nuclear expression of BCL11A in NSCLC cells may affect tumor cell proliferation and change their phenotype, thus promoting tumor progression.
Collapse
Affiliation(s)
- Ewa Kątnik
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Agnieszka Gomułkiewicz
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Aleksandra Piotrowska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Jędrzej Grzegrzółka
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Alicja Kmiecik
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Katarzyna Ratajczak-Wielgomas
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Anna Urbaniak
- Department of Biochemistry and Molecular Biology, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland
| | - Natalia Glatzel-Plucińska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Piotr Błasiak
- Department and Clinic of Thoracic Surgery, Wroclaw Medical University, 53-439 Wroclaw, Poland
- Lower Silesian Center of Oncology, Pulmonology and Hematology, 53-439 Wroclaw, Poland
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| |
Collapse
|
33
|
Paschoudi K, Yannaki E, Psatha N. Precision Editing as a Therapeutic Approach for β-Hemoglobinopathies. Int J Mol Sci 2023; 24:9527. [PMID: 37298481 PMCID: PMC10253463 DOI: 10.3390/ijms24119527] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/19/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Beta-hemoglobinopathies are the most common genetic disorders worldwide, caused by a wide spectrum of mutations in the β-globin locus, and associated with morbidity and early mortality in case of patient non-adherence to supportive treatment. Allogeneic transplantation of hematopoietic stem cells (allo-HSCT) used to be the only curative option, although the indispensable need for an HLA-matched donor markedly restricted its universal application. The evolution of gene therapy approaches made possible the ex vivo delivery of a therapeutic β- or γ- globin gene into patient-derived hematopoietic stem cells followed by the transplantation of corrected cells into myeloablated patients, having led to high rates of transfusion independence (thalassemia) or complete resolution of painful crises (sickle cell disease-SCD). Hereditary persistence of fetal hemoglobin (HPFH), a syndrome characterized by increased γ-globin levels, when co-inherited with β-thalassemia or SCD, converts hemoglobinopathies to a benign condition with mild clinical phenotype. The rapid development of precise genome editing tools (ZFN, TALENs, CRISPR/Cas9) over the last decade has allowed the targeted introduction of mutations, resulting in disease-modifying outcomes. In this context, genome editing tools have successfully been used for the introduction of HPFH-like mutations both in HBG1/HBG2 promoters or/and in the erythroid enhancer of BCL11A to increase HbF expression as an alternative curative approach for β-hemoglobinopathies. The current investigation of new HbF modulators, such as ZBTB7A, KLF-1, SOX6, and ZNF410, further expands the range of possible genome editing targets. Importantly, genome editing approaches have recently reached clinical translation in trials investigating HbF reactivation in both SCD and thalassemic patients. Showing promising outcomes, these approaches are yet to be confirmed in long-term follow-up studies.
Collapse
Affiliation(s)
- Kiriaki Paschoudi
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Gene and Cell Therapy Center, Hematology Clinic, George Papanikolaou Hospital, Exokhi, 57010 Thessaloniki, Greece;
| | - Evangelia Yannaki
- Gene and Cell Therapy Center, Hematology Clinic, George Papanikolaou Hospital, Exokhi, 57010 Thessaloniki, Greece;
- Department of Hematology, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Nikoletta Psatha
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
34
|
Gnanapragasam MN, Planutis A, Glassberg JA, Bieker JJ. Identification of a genomic DNA sequence that quantitatively modulates KLF1 transcription factor expression in differentiating human hematopoietic cells. Sci Rep 2023; 13:7589. [PMID: 37165057 PMCID: PMC10172341 DOI: 10.1038/s41598-023-34805-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 05/08/2023] [Indexed: 05/12/2023] Open
Abstract
The onset of erythropoiesis is under strict developmental control, with direct and indirect inputs influencing its derivation from the hematopoietic stem cell. A major regulator of this transition is KLF1/EKLF, a zinc finger transcription factor that plays a global role in all aspects of erythropoiesis. Here, we have identified a short, conserved enhancer element in KLF1 intron 1 that is important for establishing optimal levels of KLF1 in mouse and human cells. Chromatin accessibility of this site exhibits cell-type specificity and is under developmental control during the differentiation of human CD34+ cells towards the erythroid lineage. This site binds GATA1, SMAD1, TAL1, and ETV6. In vivo editing of this region in cell lines and primary cells reduces KLF1 expression quantitatively. However, we find that, similar to observations seen in pedigrees of families with KLF1 mutations, downstream effects are variable, suggesting that the global architecture of the site is buffered towards keeping the KLF1 genetic region in an active state. We propose that modification of intron 1 in both alleles is not equivalent to complete loss of function of one allele.
Collapse
Affiliation(s)
- M N Gnanapragasam
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1020, New York, NY, 10029, USA
- Department of Biological, Geological, and Environmental Sciences, Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, OH, USA
| | - A Planutis
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1020, New York, NY, 10029, USA
| | - J A Glassberg
- Department of Emergency Medicine, Hematology and Medical Oncology, Mount Sinai School of Medicine, New York, NY, USA
| | - J J Bieker
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1020, New York, NY, 10029, USA.
- Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, USA.
- Tisch Cancer Institute, Mount Sinai School of Medicine, New York, USA.
- Mindich Child Health and Development Institute, Mount Sinai School of Medicine, New York, NY, USA.
| |
Collapse
|
35
|
Yin J, Xie X, Quan Y, Wang Z, Liu S, Su Q, Che F, Wang L. RNA-seq analysis reveals candidate genes associated with proliferation, invasion, and migration in BCL11A knockdown B-NHL cell lines. Ann Hematol 2023:10.1007/s00277-023-05247-w. [PMID: 37148312 DOI: 10.1007/s00277-023-05247-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/25/2023] [Indexed: 05/08/2023]
Abstract
B-cell lymphoma/leukemia 11A (BCL11A) is highly expressed in B-cell non-Hodgkin lymphoma (B-NHL), blocks cell differentiation, and inhibits cell apoptosis. However, little is known about BCL11A in the proliferation, invasion, and migration of B-NHL cells. Here, we found increased expression of BCL11A in B-NHL patients and cell lines. Knockdown of BCL11A suppressed the proliferation, invasion, and migration of B-NHL cells in vitro and reduced tumor growth in vivo. RNA sequencing (RNA-seq) and KEGG pathway analysis demonstrated that BCL11A-targeted genes were significantly enriched in the PI3K/AKT signaling pathway, focal adhesion, and extracellular matrix (ECM)-receptor interaction (including COL4A1, COL4A2, FN1, SPP1), and SPP1 was the most significantly downregulated gene. qRT‒PCR, western blotting, and immunohistochemistry revealed that silencing BCL11A reduced the expression level of SPP1 in Raji cells. Our study suggested that high level of BCL11A may promote B-NHL proliferation, invasion, and migration, and the BCL11A-SPP1 regulatory axis may play an important role in Burkitt's lymphoma.
Collapse
Affiliation(s)
- Jiawei Yin
- Central Laboratory, Linyi People's Hospital, Shandong University, Linyi, Shandong, People's Republic of China
- Key Laboratory of Tumor Biology, Linyi, Shandong, People's Republic of China
- Key Laboratory for Translational Oncolgoy, Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China
| | - Xiaoli Xie
- Central Laboratory, Linyi People's Hospital, Shandong University, Linyi, Shandong, People's Republic of China
- Key Laboratory of Tumor Biology, Linyi, Shandong, People's Republic of China
- Key Laboratory for Translational Oncolgoy, Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China
| | - Yanchun Quan
- Central Laboratory, Linyi People's Hospital, Shandong University, Linyi, Shandong, People's Republic of China
- Key Laboratory of Tumor Biology, Linyi, Shandong, People's Republic of China
- Key Laboratory for Translational Oncolgoy, Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China
| | - Zhiqiang Wang
- Central Laboratory, Linyi People's Hospital, Shandong University, Linyi, Shandong, People's Republic of China
- Key Laboratory of Tumor Biology, Linyi, Shandong, People's Republic of China
- Key Laboratory for Translational Oncolgoy, Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China
| | - Shu Liu
- Central Laboratory, Linyi People's Hospital, Shandong University, Linyi, Shandong, People's Republic of China
- Department of Neurology, Linyi People's Hospital, Shandong University, Linyi, Shandong, People's Republic of China
- Key Laboratory of Neurophysiology, Health Commission of Shandong Province, Linyi, Shandong, People's Republic of China
- Key Laboratory of Neurophysiology, Linyi, Shandong, People's Republic of China
| | - Quanping Su
- Central Laboratory, Linyi People's Hospital, Shandong University, Linyi, Shandong, People's Republic of China
- Department of Neurology, Linyi People's Hospital, Shandong University, Linyi, Shandong, People's Republic of China
- Key Laboratory of Neurophysiology, Health Commission of Shandong Province, Linyi, Shandong, People's Republic of China
- Key Laboratory of Neurophysiology, Linyi, Shandong, People's Republic of China
| | - Fengyuan Che
- Central Laboratory, Linyi People's Hospital, Shandong University, Linyi, Shandong, People's Republic of China.
- Department of Neurology, Linyi People's Hospital, Shandong University, Linyi, Shandong, People's Republic of China.
- Key Laboratory of Neurophysiology, Health Commission of Shandong Province, Linyi, Shandong, People's Republic of China.
- Key Laboratory of Neurophysiology, Linyi, Shandong, People's Republic of China.
| | - Lijuan Wang
- Central Laboratory, Linyi People's Hospital, Shandong University, Linyi, Shandong, People's Republic of China.
- Key Laboratory of Tumor Biology, Linyi, Shandong, People's Republic of China.
- Key Laboratory for Translational Oncolgoy, Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China.
- Department of Hematology, Linyi People's Hospital, Shandong University, Linyi, Shandong, People's Republic of China.
| |
Collapse
|
36
|
Turkalj S, Jakobsen NA, Groom A, Metzner M, Riva SG, Gür ER, Usukhbayar B, Salazar MA, Hentges LD, Mickute G, Clark K, Sopp P, Davies JOJ, Hughes JR, Vyas P. GTAC enables parallel genotyping of multiple genomic loci with chromatin accessibility profiling in single cells. Cell Stem Cell 2023; 30:722-740.e11. [PMID: 37146586 DOI: 10.1016/j.stem.2023.04.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 02/23/2023] [Accepted: 04/12/2023] [Indexed: 05/07/2023]
Abstract
Understanding clonal evolution and cancer development requires experimental approaches for characterizing the consequences of somatic mutations on gene regulation. However, no methods currently exist that efficiently link high-content chromatin accessibility with high-confidence genotyping in single cells. To address this, we developed Genotyping with the Assay for Transposase-Accessible Chromatin (GTAC), enabling accurate mutation detection at multiple amplified loci, coupled with robust chromatin accessibility readout. We applied GTAC to primary acute myeloid leukemia, obtaining high-quality chromatin accessibility profiles and clonal identities for multiple mutations in 88% of cells. We traced chromatin variation throughout clonal evolution, showing the restriction of different clones to distinct differentiation stages. Furthermore, we identified switches in transcription factor motif accessibility associated with a specific combination of driver mutations, which biased transformed progenitors toward a leukemia stem cell-like chromatin state. GTAC is a powerful tool to study clonal heterogeneity across a wide spectrum of pre-malignant and neoplastic conditions.
Collapse
Affiliation(s)
- Sven Turkalj
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; Oxford Centre for Haematology, NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Niels Asger Jakobsen
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; Oxford Centre for Haematology, NIHR Oxford Biomedical Research Centre, Oxford, UK; Department of Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Angus Groom
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; Oxford Centre for Haematology, NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Marlen Metzner
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; Oxford Centre for Haematology, NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Simone G Riva
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - E Ravza Gür
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Batchimeg Usukhbayar
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; Oxford Centre for Haematology, NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Mirian Angulo Salazar
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; Oxford Centre for Haematology, NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Lance D Hentges
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Gerda Mickute
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; Oxford Centre for Haematology, NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Kevin Clark
- Flow Cytometry Facility, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Paul Sopp
- Flow Cytometry Facility, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - James O J Davies
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; Oxford Centre for Haematology, NIHR Oxford Biomedical Research Centre, Oxford, UK; Department of Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Jim R Hughes
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Paresh Vyas
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; Oxford Centre for Haematology, NIHR Oxford Biomedical Research Centre, Oxford, UK; Department of Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
| |
Collapse
|
37
|
Kątnik E, Gomułkiewicz A, Piotrowska A, Grzegrzółka J, Rusak A, Kmiecik A, Ratajczak-Wielgomas K, Dzięgiel P. BCL11A Expression in Breast Cancer. Curr Issues Mol Biol 2023; 45:2681-2698. [PMID: 37185699 PMCID: PMC10137054 DOI: 10.3390/cimb45040175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 05/17/2023] Open
Abstract
B-cell leukemia/lymphoma 11A (BCL11A) is a transcription factor that regulates the expression of genes involved in cell division or apoptosis. A link between high BCL11A expression and a worse prognosis has been demonstrated in patients with various cancers. The aim of this study was to investigate the expression pattern of BCL11A in breast cancer (BC) cases and mastopathy samples and to correlate the results with the clinicopathological data. The expression of the BCL11A protein was investigated using immunohistochemistry (IHC) on 200 cases of BC and 13 mastopathy samples. The level of BCL11A mRNA was determined using real-time PCR in 22 cases of BC and 6 mastopathy samples. The expression of BCL11A was also examined at the protein and mRNA levels in BC cell lines. A higher expression level of BCL11A in BC cases was shown compared to mastopathy samples. The expression level of BCL11A in BC cases and in the studied cell lines decreased with the increasing grade of histological malignancy (G). It was also negatively correlated with the primary tumor size. A significantly lower expression of BCL11A was found in BC that did not express estrogen or progesterone receptors and in triple-negative cases. The results of our research suggest that BCL11A may be relevant in the development of BC.
Collapse
Affiliation(s)
- Ewa Kątnik
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Agnieszka Gomułkiewicz
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Aleksandra Piotrowska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Jędrzej Grzegrzółka
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Agnieszka Rusak
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Alicja Kmiecik
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Katarzyna Ratajczak-Wielgomas
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| |
Collapse
|
38
|
Kobayashi M, Wei H, Yamanashi T, Azevedo Portilho N, Cornelius S, Valiente N, Nishida C, Cheng H, Latorre A, Zheng WJ, Kang J, Seita J, Shih DJ, Wu JQ, Yoshimoto M. HSC-independent definitive hematopoiesis persists into adult life. Cell Rep 2023; 42:112239. [PMID: 36906851 PMCID: PMC10122268 DOI: 10.1016/j.celrep.2023.112239] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/18/2023] [Accepted: 02/24/2023] [Indexed: 03/13/2023] Open
Abstract
It is widely believed that hematopoiesis after birth is established by hematopoietic stem cells (HSCs) in the bone marrow and that HSC-independent hematopoiesis is limited only to primitive erythro-myeloid cells and tissue-resident innate immune cells arising in the embryo. Here, surprisingly, we find that significant percentages of lymphocytes are not derived from HSCs, even in 1-year-old mice. Instead, multiple waves of hematopoiesis occur from embryonic day 7.5 (E7.5) to E11.5 endothelial cells, which simultaneously produce HSCs and lymphoid progenitors that constitute many layers of adaptive T and B lymphocytes in adult mice. Additionally, HSC lineage tracing reveals that the contribution of fetal liver HSCs to peritoneal B-1a cells is minimal and that the majority of B-1a cells are HSC independent. Our discovery of extensive HSC-independent lymphocytes in adult mice attests to the complex blood developmental dynamics spanning the embryo-to-adult transition and challenges the paradigm of HSCs exclusively underpinning the postnatal immune system.
Collapse
Affiliation(s)
- Michihiro Kobayashi
- Center for Stem Cell and Regenerative Medicine, Brown Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Haichao Wei
- Center for Stem Cell and Regenerative Medicine, Brown Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Takashi Yamanashi
- Advanced Data Science Project, RIKEN Information R&D and Strategy Headquarters, Tokyo 103-0027, Japan; Center for Integrative Medical Sciences, RIKEN, Yokohama, Kanagawa 230-0045, Japan
| | - Nathalia Azevedo Portilho
- Center for Stem Cell and Regenerative Medicine, Brown Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Samuel Cornelius
- Center for Stem Cell and Regenerative Medicine, Brown Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Noemi Valiente
- Center for Stem Cell and Regenerative Medicine, Brown Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Chika Nishida
- Center for Stem Cell and Regenerative Medicine, Brown Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Haizi Cheng
- Center for Stem Cell and Regenerative Medicine, Brown Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Augusto Latorre
- Center for Stem Cell and Regenerative Medicine, Brown Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - W Jim Zheng
- School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Joonsoo Kang
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Jun Seita
- Advanced Data Science Project, RIKEN Information R&D and Strategy Headquarters, Tokyo 103-0027, Japan; Center for Integrative Medical Sciences, RIKEN, Yokohama, Kanagawa 230-0045, Japan
| | - David J Shih
- School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Jia Qian Wu
- Center for Stem Cell and Regenerative Medicine, Brown Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Momoko Yoshimoto
- Center for Stem Cell and Regenerative Medicine, Brown Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|
39
|
Penter L, ten Hacken E, Southard J, Lareau CA, Ludwig LS, Li S, Neuberg DS, Livak KJ, Wu CJ. Mitochondrial DNA Mutations as Natural Barcodes for Lineage Tracing of Murine Tumor Models. Cancer Res 2023; 83:667-672. [PMID: 36469010 PMCID: PMC9988704 DOI: 10.1158/0008-5472.can-22-0275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/13/2022] [Accepted: 06/07/2022] [Indexed: 12/13/2022]
Abstract
Murine models are indispensable tools for functional genomic studies and preclinical testing of novel therapeutic approaches. Mitochondrial single-cell assay for transposase-accessible chromatin using sequencing (mtscATAC-seq) enables the dissection of cellular heterogeneity and clonal dynamics by capturing chromatin accessibility, copy-number variations (CNV), and mitochondrial DNA (mtDNA) mutations, yet its applicability to murine studies remains unexplored. By leveraging mtscATAC-seq in novel chronic lymphocytic leukemia and Richter syndrome mouse models, we report the detection of mtDNA mutations, particularly in highly proliferative murine cells, alongside CNV and chromatin state changes indicative of clonal evolution upon secondary transplant. This study thus demonstrates the feasibility and utility of multi-modal single-cell and natural barcoding approaches to characterize murine cancer models. SIGNIFICANCE mtDNA mutations can serve as natural barcodes to enable lineage tracing in murine cancer models, which can be used to provide new insights into disease biology and to identify therapeutic vulnerabilities.
Collapse
Affiliation(s)
- Livius Penter
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Hematology, Oncology, and Tumorimmunology, Campus Virchow Klinikum, Berlin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Elisa ten Hacken
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Jackson Southard
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Caleb A. Lareau
- Department of Pathology, Stanford University, Stanford, California, USA
| | - Leif S. Ludwig
- Department of Hematology, Oncology, and Tumorimmunology, Campus Virchow Klinikum, Berlin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 10115 Berlin, Germany
| | - Shuqiang Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA
| | - Donna S. Neuberg
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Kenneth J. Livak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Catherine J. Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
40
|
Tosic N, Ugrin M, Marjanovic I, Kostic T, Vukovic V, Tomic K, Otasevic V, Antic D, Mihaljevic B, Pavlovic S, Karan-Djurasevic T. Expression of BCL11A in chronic lymphocytic leukaemia. Int J Lab Hematol 2023; 45:64-71. [PMID: 36120992 DOI: 10.1111/ijlh.13969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/25/2022] [Indexed: 01/18/2023]
Abstract
INTRODUCTION The B-cell lymphoma/leukaemia 11A (BCL11A) gene encodes a Krüppel-like transcription factor involved in lymphocyte development during normal haematopoiesis. Aberrant expression of BCL11A has been observed in several haematological malignancies, including chronic lymphocytic leukaemia (CLL). However, its functions in the regulatory networks of malignant B lymphocytes are poorly understood, as are the relations to clinical course and outcome of B-cell malignancies, particularly CLL. METHODS The expression of BCL11A was analysed in peripheral blood mononuclear cells of 87 newly-diagnosed CLL patients by quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR), and association with clinical and molecular variables was assessed. RESULTS BCL11A was significantly overexpressed in CLL samples compared to control samples (p < 0.001). BCL11A expression level exhibited no association with age, sex, leukocyte, lymphocyte and platelet counts, haemoglobin level, serum β2-microglobulin, CD38 status and cytogenetic abnormalities. On the other hand, high BCL11A expression was associated with low serum lactate dehydrogenase (p = 0.031), Binet A stage (p = 0.047) and mutated IGHV (p = 0.028). In addition, a positive correlation with BCL2/BAX mRNA ratio was observed (r = 0.36; p < 0.001). Regarding the association with the time to first treatment (TTFT), a trend towards longer median TTFT in BCL11A high- versus BCL11A low-expressing cases was detected (21 vs. 6 months; p = 0.164). CONCLUSION The results of this study show that BCL11A is upregulated in CLL patients, and that high BCL11A expression at diagnosis may be associated with better prognosis. These data are consistent with the role of BCL11A expression in CLL biology, and imply its potential prognostic relevance.
Collapse
Affiliation(s)
- Natasa Tosic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Milena Ugrin
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Irena Marjanovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Tatjana Kostic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Vojin Vukovic
- Clinic for Hematology, Clinical Center of Serbia, Belgrade, Serbia
| | - Kristina Tomic
- Clinic for Hematology, Clinical Center of Serbia, Belgrade, Serbia
| | | | - Darko Antic
- Clinic for Hematology, Clinical Center of Serbia, Belgrade, Serbia.,School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Biljana Mihaljevic
- Clinic for Hematology, Clinical Center of Serbia, Belgrade, Serbia.,School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Sonja Pavlovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Teodora Karan-Djurasevic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
41
|
Shin B, Rothenberg EV. Multi-modular structure of the gene regulatory network for specification and commitment of murine T cells. Front Immunol 2023; 14:1108368. [PMID: 36817475 PMCID: PMC9928580 DOI: 10.3389/fimmu.2023.1108368] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 01/11/2023] [Indexed: 02/04/2023] Open
Abstract
T cells develop from multipotent progenitors by a gradual process dependent on intrathymic Notch signaling and coupled with extensive proliferation. The stages leading them to T-cell lineage commitment are well characterized by single-cell and bulk RNA analyses of sorted populations and by direct measurements of precursor-product relationships. This process depends not only on Notch signaling but also on multiple transcription factors, some associated with stemness and multipotency, some with alternative lineages, and others associated with T-cell fate. These factors interact in opposing or semi-independent T cell gene regulatory network (GRN) subcircuits that are increasingly well defined. A newly comprehensive picture of this network has emerged. Importantly, because key factors in the GRN can bind to markedly different genomic sites at one stage than they do at other stages, the genes they significantly regulate are also stage-specific. Global transcriptome analyses of perturbations have revealed an underlying modular structure to the T-cell commitment GRN, separating decisions to lose "stem-ness" from decisions to block alternative fates. Finally, the updated network sheds light on the intimate relationship between the T-cell program, which depends on the thymus, and the innate lymphoid cell (ILC) program, which does not.
Collapse
Affiliation(s)
- Boyoung Shin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Ellen V. Rothenberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
42
|
Mahmoud Ahmed NH, Lai MI. The Novel Role of the B-Cell Lymphoma/Leukemia 11A (BCL11A) Gene in β-Thalassaemia Treatment. Cardiovasc Hematol Disord Drug Targets 2023; 22:226-236. [PMID: 36734897 DOI: 10.2174/1871529x23666230123140926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/21/2022] [Accepted: 12/30/2022] [Indexed: 02/01/2023]
Abstract
β-thalassaemia is a genetic disorder resulting in a reduction or absence of β-globin gene expression. Due to the high prevalence of β-thalassaemia and the lack of available treatment other than blood transfusion and haematopoietic stem cell (HSC) transplantation, the disease represents a considerable burden to clinical and economic systems. Foetal haemoglobin has an appreciated ameliorating effect in β-haemoglobinopathy, as the γ-globin chain substitutes the β-globin chain reduction by pairing with the excess α-globin chain in β-thalassaemia and reduces sickling in sickle cell disease (SCD). BCL11A is a critical regulator and repressor of foetal haemoglobin. Downregulation of BCL11A in adult erythroblasts and cell lines expressing adult haemoglobin led to a significant increase in foetal haemoglobin levels. Disruption of BCL11A erythroid enhancer resulted in disruption of the BCL11A gene solely in the erythroid lineages and increased γ-globin expression in adult erythroid cells. Autologous haematopoietic stem cell gene therapy represents an attractive treatment option to overcome the immune complications and donor availability associated with allogeneic transplantation. Using genome editing technologies, the disruption of BCL11A to induce γ- globin expression in HSCs has emerged as an alternative approach to treat β-thalassaemia. Targeting the +58 BCL11A erythroid enhancer or BCL11A binding motif at the γ-gene promoter with CRISPR-Cas9 or base editors has successfully disrupted the gene and the binding motif with a subsequent increment in HbF levels. This review outlines the critical role of BCL11A in γ-globin gene silencing and discusses the different genome editing approaches to downregulate BCL11A as a means for ameliorating β-thalassaemia.
Collapse
Affiliation(s)
- Nahil Hassan Mahmoud Ahmed
- Haematology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
| | - Mei I Lai
- Haematology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia.,Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
| |
Collapse
|
43
|
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR) renaissance was catalysed by the discovery that RNA-guided prokaryotic CRISPR-associated (Cas) proteins can create targeted double-strand breaks in mammalian genomes. This finding led to the development of CRISPR systems that harness natural DNA repair mechanisms to repair deficient genes more easily and precisely than ever before. CRISPR has been used to knock out harmful mutant genes and to fix errors in coding sequences to rescue disease phenotypes in preclinical studies and in several clinical trials. However, most genetic disorders result from combinations of mutations, deletions and duplications in the coding and non-coding regions of the genome and therefore require sophisticated genome engineering strategies beyond simple gene knockout. To overcome this limitation, the toolbox of natural and engineered CRISPR-Cas systems has been dramatically expanded to include diverse tools that function in human cells for precise genome editing and epigenome engineering. The application of CRISPR technology to edit the non-coding genome, modulate gene regulation, make precise genetic changes and target infectious diseases has the potential to lead to curative therapies for many previously untreatable diseases.
Collapse
Affiliation(s)
- Michael Chavez
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Xinyi Chen
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Paul B Finn
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Lei S Qi
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
44
|
Zinc Finger Protein BCL11A Contributes to the Abortive Infection of Hirame novirhabdovirus (HIRRV) in B Lymphocytes of Flounder (Paralichthys olivaceus). J Virol 2022; 96:e0147022. [PMID: 36448803 PMCID: PMC9769382 DOI: 10.1128/jvi.01470-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Hirame novirhabdovirus (HIRRV) infection is characterized by a pronounced viremia, and the high viral load is typically detected in immune-related organs and the circulatory system. In the present study, we demonstrated that HIRRV has the capacity to invade part of flounder membrane-bound IgM (mIgM+) B lymphocyte. Eight quantitative real-time PCR (qRT-PCR) standard curves involving HIRRV genomic RNA (gRNA), cRNA, and six mRNAs were established based on the strand-specific reverse transcription performed with tagged primers. It was revealed that viral RNA synthesis, especially the replication of gRNA, was inhibited in B cells, and the intracellular HIRRV even failed to produce infectious viral particles. Moreover, a range of genes with nucleic acid binding activity or related to viral infection were screened out based on the transcriptome analysis of HIRRV-infected B cells, and five molecules were further selected because of their different expression patterns in HIRRV-infected B cells and hirame natural embryo (HINAE) cells. The overexpression of these genes followed by HIRRV infection and RNA binding protein immunoprecipitation (RIP) assay revealed that the flounder B cell lymphoma/leukemia 11A (BCL11A), a highly conserved zinc finger transcription factor, is able to inhibit the proliferation of HIRRV by binding with full-length viral RNA mainly via its zinc finger domains at the C terminus. In conclusion, these data indicated that the high transcriptional activity of BCL11A in flounder mIgM+ B lymphocytes is a crucial factor for the abortive infection of HIRRV, and our findings provide new insights into the interaction between HIRRV and teleost B cells. IMPORTANCE HIRRV is a fish rhabdovirus that is considered as an important pathogen threatening the fish farming industry represented by flounder because of its high infectivity and fatality rate. To date, research toward understanding the complex pathogenic mechanism of HIRRV is still in its infancy and faces many challenges. Exploration of the relationship between HIRRV and its target cells is interesting and necessary. Here, we revealed that flounder mIgM+ B cells are capable of suppressing viral RNA synthesis and result in an unproductive infection of HIRRV. In addition, our results demonstrated that zinc finger protein BCL11A, a transcription factor in B cells, is able to suppress the replication of HIRRV. These findings increased our understanding of the underlying characteristics of HIRRV infection and revealed a novel antiviral mechanism against HIRRV based on the host restriction factor in teleost B cells, which sheds new light on the research into HIRRV control.
Collapse
|
45
|
Wang C, Zhu Y, Chen P, Wang C, Zhou W, Zhang C, Wang J, Chen X, Ding M, Zhang C, Wang JJ, Zhang CY. Altered serum human cytomegalovirus microRNA levels are common and closely associated with the inflammatory status in patients with fever. Front Immunol 2022; 13:1079259. [PMID: 36591247 PMCID: PMC9795028 DOI: 10.3389/fimmu.2022.1079259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
Background Fever has a complicated etiology, and diagnosing its causative factor is clinically challenging. Human cytomegalovirus (HCMV) infection causes various diseases. However, the clinical relevance, prevalence, and significance of HCMV microRNAs (miRNA) in association with fever remain unclear. In the present study, we analyzed the HCMV miRNA expression pattern in the serum of patients with fever and evaluate its clinical associations with occult HCMV infection status in immune disorders. Methods We included serum samples from 138 patients with fever and 151 age-gender-matched controls in this study. First, the serum levels of 24 HCMV miRNAs were determined using a hydrolysis probe-based stem-loop quantitative reverse transcription polymerase chain reaction (RT-qPCR) assay in the training set. The markedly altered miRNAs were verified in the validation and testing sets. The serum HCMV IgG/IgM and DNA titers in the testing cohort were also assessed using enzyme-linked immunosorbent assay (ELISA) and RT-qPCR, respectively. Results The majority of HCMV miRNAs were markedly upregulated in the serum of fever patients. We selected the five most significantly altered HCMV miRNAs: hcmv-miR-US4-3p, hcmv-miR-US29-3p, hcmv-miR-US5-2-3p, hcmv-miR-UL112-3p, and hcmv-miR-US33-3p for validation. These miRNAs were also significantly elevated in the serum of fever patients in the validation and testing sets compared with the controls. Logistic regression analysis revealed that the five miRNAs were novel potential risk factors for fever. Notably, the serum levels of four of the five confirmed HCMV miRNAs were significantly associated with blood C-reaction protein concentrations. Moreover, the five HCMV miRNA levels were closely correlated with the HCMV DNA titers in the testing cohort. Conclusion HCMV infection and activation are common in fever patients and could be novel risk factors for fever. These differentially expressed HCMV miRNAs could enable HCMV activation status monitoring in immune disorders.
Collapse
Affiliation(s)
- Cheng Wang
- Department of Clinical Laboratory, Jinling Hospital, State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China,Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yunhua Zhu
- Department of Clinical Laboratory, Jinling Hospital, State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China,Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, China
| | - Penglu Chen
- Department of Clinical Laboratory, Jinling Hospital, State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China,Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, China
| | - Chen Wang
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, China
| | - Wanqing Zhou
- Department of Clinical Laboratory, Jinling Hospital, State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China,Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, China
| | - Cuiping Zhang
- Department of Clinical Laboratory, Jinling Hospital, State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| | - Jing Wang
- Department of Clinical Laboratory, Jinling Hospital, State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| | - Xi Chen
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, China
| | - Meng Ding
- Department of Clinical Laboratory, Jinling Hospital, State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China,Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, China,*Correspondence: Chen-Yu Zhang, ; Meng Ding, ; Chunni Zhang, ; Jun-Jun Wang,
| | - Chunni Zhang
- Department of Clinical Laboratory, Jinling Hospital, State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China,Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, China,*Correspondence: Chen-Yu Zhang, ; Meng Ding, ; Chunni Zhang, ; Jun-Jun Wang,
| | - Jun-Jun Wang
- Department of Clinical Laboratory, Jinling Hospital, State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China,*Correspondence: Chen-Yu Zhang, ; Meng Ding, ; Chunni Zhang, ; Jun-Jun Wang,
| | - Chen-Yu Zhang
- Department of Clinical Laboratory, Jinling Hospital, State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China,Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, China,*Correspondence: Chen-Yu Zhang, ; Meng Ding, ; Chunni Zhang, ; Jun-Jun Wang,
| |
Collapse
|
46
|
Single-cell genomics identifies distinct B1 cell developmental pathways and reveals aging-related changes in the B-cell receptor repertoire. Cell Biosci 2022; 12:57. [PMID: 35526067 PMCID: PMC9080186 DOI: 10.1186/s13578-022-00795-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 04/20/2022] [Indexed: 11/30/2022] Open
Abstract
Background B1 cells are self-renewing innate-like B lymphocytes that provide the first line of defense against pathogens. B1 cells primarily reside in the peritoneal cavity and are known to originate from various fetal tissues, yet their developmental pathways and the mechanisms underlying maintenance of B1 cells throughout adulthood remain unclear. Results We performed high-throughput single-cell analysis of the transcriptomes and B-cell receptor repertoires of peritoneal B cells of neonates, young adults, and elderly mice. Gene expression analysis of 31,718 peritoneal B cells showed that the neonate peritoneal cavity contained many B1 progenitors, and neonate B cell specific clustering revealed two trajectories of peritoneal B1 cell development, including pre-BCR dependent and pre-BCR independent pathways. We also detected profound age-related changes in B1 cell transcriptomes: clear difference in senescence genetic program was evident in differentially aged B1 cells, and we found an example that a B1 subset only present in the oldest mice was marked by expression of the fatty-acid receptor CD36. We also performed antibody gene sequencing of 15,967 peritoneal B cells from the three age groups and discovered that B1 cell aging was associated with clonal expansion and two B1 cell clones expanded in the aged mice had the same CDR-H3 sequence (AGDYDGYWYFDV) as a pathogenically linked cell type from a recent study of an atherosclerosis mouse model. Conclusions Beyond offering an unprecedent data resource to explore the cell-to-cell variation in B cells, our study has revealed that B1 precursor subsets are present in the neonate peritoneal cavity and dissected the developmental pathway of the precursor cells. Besides, this study has found the expression of CD36 on the B1 cells in the aged mice. And the single-cell B-cell receptor sequencing reveals B1 cell aging is associated with clonal expansion. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00795-6.
Collapse
|
47
|
Hu K, Liu H, Lawson ND, Zhu LJ. scATACpipe: A nextflow pipeline for comprehensive and reproducible analyses of single cell ATAC-seq data. Front Cell Dev Biol 2022; 10:981859. [PMID: 36238687 PMCID: PMC9551270 DOI: 10.3389/fcell.2022.981859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Single cell ATAC-seq (scATAC-seq) has become the most widely used method for profiling open chromatin landscape of heterogeneous cell populations at a single-cell resolution. Although numerous software tools and pipelines have been developed, an easy-to-use, scalable, reproducible, and comprehensive pipeline for scATAC-seq data analyses is still lacking. To fill this gap, we developed scATACpipe, a Nextflow pipeline, for performing comprehensive analyses of scATAC-seq data including extensive quality assessment, preprocessing, dimension reduction, clustering, peak calling, differential accessibility inference, integration with scRNA-seq data, transcription factor activity and footprinting analysis, co-accessibility inference, and cell trajectory prediction. scATACpipe enables users to perform the end-to-end analysis of scATAC-seq data with three sub-workflow options for preprocessing that leverage 10x Genomics Cell Ranger ATAC software, the ultra-fast Chromap procedures, and a set of custom scripts implementing current best practices for scATAC-seq data preprocessing. The pipeline extends the R package ArchR for downstream analysis with added support to any eukaryotic species with an annotated reference genome. Importantly, scATACpipe generates an all-in-one HTML report for the entire analysis and outputs cluster-specific BAM, BED, and BigWig files for visualization in a genome browser. scATACpipe eliminates the need for users to chain different tools together and facilitates reproducible and comprehensive analyses of scATAC-seq data from raw reads to various biological insights with minimal changes of configuration settings for different computing environments or species. By applying it to public datasets, we illustrated the utility, flexibility, versatility, and reliability of our pipeline, and demonstrated that our scATACpipe outperforms other workflows.
Collapse
Affiliation(s)
- Kai Hu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Haibo Liu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Nathan D. Lawson
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Lihua Julie Zhu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, United States
- Program in Molecular Medicine, Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| |
Collapse
|
48
|
Koizumi M, Kama Y, Hirano KI, Endo Y, Tanaka T, Hozumi K, Hosokawa H. Transcription factor Zbtb1 interacts with bridging factor Lmo2 and maintains the T-lineage differentiation capacity of lymphoid progenitor cells. J Biol Chem 2022; 298:102506. [PMID: 36126774 PMCID: PMC9582733 DOI: 10.1016/j.jbc.2022.102506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/19/2022] Open
Abstract
Hematopoietic stem and progenitor cells can differentiate into all types of blood cells. Regulatory mechanisms underlying pluripotency in progenitors, such as the ability of lymphoid progenitor cells to differentiate into T-lineage, remain unclear. We have previously reported that LIM domain only 2 (Lmo2), a bridging factor in large transcriptional complexes, is essential to retain the ability of lymphoid progenitors to differentiate into T-lineage. However, biochemical characterization of Lmo2 protein complexes in physiological hematopoietic progenitors remains obscure. Here, we identified approximately 600 Lmo2-interacting molecules in a lymphoid progenitor cell line by two-step affinity purification with LC-MS/MS analysis. Zinc finger and BTB domain containing 1 (Zbtb1) and CBFA2/RUNX1 partner transcriptional corepressor 3 (Cbfa2t3) were found to be the functionally important binding partners of Lmo2. We determined CRISPR/Cas9-mediated acute disruption of Zbtb1 or Cbfa2t3 in the lymphoid progenitor or bone marrow–derived primary hematopoietic progenitor cells causes significant defects in the initiation of T-cell development when Notch signaling is activated. Our transcriptome analysis of Zbtb1- or Cbfa2t3-deficient lymphoid progenitors revealed that Tcf7 was a common target for both factors. Additionally, ChIP-seq analysis showed that Lmo2, Zbtb1, and Cbfa2t3 cobind to the Tcf7 upstream enhancer region, which is occupied by the Notch intracellular domain/RBPJ transcriptional complex after Notch stimulation, in lymphoid progenitors. Moreover, transduction with Tcf7 restored the defect in the T-lineage potential of Zbtb1-deficient lymphoid progenitors. Thus, in lymphoid progenitors, the Lmo2/Zbtb1/Cbfa2t3 complex directly binds to the Tcf7 locus and maintains responsiveness to the Notch-mediated inductive signaling to facilitate T-lineage differentiation.
Collapse
Affiliation(s)
- Maria Koizumi
- Department of Immunology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Yuichi Kama
- Department of Immunology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Ken-Ichi Hirano
- Department of Immunology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Yusuke Endo
- Laboratory of Medical Omics Research, Kazusa DNA Research Institute, Chiba, Japan; Department of Omics Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tomoaki Tanaka
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Katsuto Hozumi
- Department of Immunology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Hiroyuki Hosokawa
- Department of Immunology, Tokai University School of Medicine, Isehara, Kanagawa, Japan; Institute of Medical Sciences, Tokai University, Isehara, Kanagawa, Japan.
| |
Collapse
|
49
|
Liu C, Omilusik K, Toma C, Kurd NS, Chang JT, Goldrath AW, Wang W. Systems-level identification of key transcription factors in immune cell specification. PLoS Comput Biol 2022; 18:e1010116. [PMID: 36156073 PMCID: PMC9536753 DOI: 10.1371/journal.pcbi.1010116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 10/06/2022] [Accepted: 08/10/2022] [Indexed: 01/30/2023] Open
Abstract
Transcription factors (TFs) are crucial for regulating cell differentiation during the development of the immune system. However, the key TFs for orchestrating the specification of distinct immune cells are not fully understood. Here, we integrated the transcriptomic and epigenomic measurements in 73 mouse and 61 human primary cell types, respectively, that span the immune cell differentiation pathways. We constructed the cell-type-specific transcriptional regulatory network and assessed the global importance of TFs based on the Taiji framework, which is a method we have previously developed that can infer the global impact of TFs using integrated transcriptomic and epigenetic data. Integrative analysis across cell types revealed putative driver TFs in cell lineage-specific differentiation in both mouse and human systems. We have also identified TF combinations that play important roles in specific developmental stages. Furthermore, we validated the functions of predicted novel TFs in murine CD8+ T cell differentiation and showed the importance of Elf1 and Prdm9 in the effector versus memory T cell fate specification and Kdm2b and Tet3 in promoting differentiation of CD8+ tissue resident memory (Trm) cells, validating the approach. Thus, we have developed a bioinformatic approach that provides a global picture of the regulatory mechanisms that govern cellular differentiation in the immune system and aids the discovery of novel mechanisms in cell fate decisions.
Collapse
Affiliation(s)
- Cong Liu
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Kyla Omilusik
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Clara Toma
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Nadia S. Kurd
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - John T. Chang
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Ananda W. Goldrath
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Wei Wang
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
50
|
Du H, Wang Z, Guo R, Yang L, Liu G, Zhang Z, Xu Z, Tian Y, Yang Z, Li X, Chen B. Transcription factors Bcl11a and Bcl11b are required for the production and differentiation of cortical projection neurons. Cereb Cortex 2022; 32:3611-3632. [PMID: 34963132 PMCID: PMC9433425 DOI: 10.1093/cercor/bhab437] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/02/2021] [Indexed: 12/31/2022] Open
Abstract
The generation and differentiation of cortical projection neurons are extensively regulated by interactive programs of transcriptional factors. Here, we report the cooperative functions of transcription factors Bcl11a and Bcl11b in regulating the development of cortical projection neurons. Among the cells derived from the cortical neural stem cells, Bcl11a is expressed in the progenitors and the projection neurons, while Bcl11b expression is restricted to the projection neurons. Using conditional knockout mice, we show that deficiency of Bcl11a leads to reduced proliferation and precocious differentiation of cortical progenitor cells, which is exacerbated when Bcl11b is simultaneously deleted. Besides defective neuronal production, the differentiation of cortical projection neurons is blocked in the absence of both Bcl11a and Bcl11b: Expression of both pan-cortical and subtype-specific genes is reduced or absent; axonal projections to the thalamus, hindbrain, spinal cord, and contralateral cortical hemisphere are reduced or absent. Furthermore, neurogenesis-to-gliogenesis switch is accelerated in the Bcl11a-CKO and Bcl11a/b-DCKO mice. Bcl11a likely regulates neurogenesis through repressing the Nr2f1 expression. These results demonstrate that Bcl11a and Bcl11b jointly play critical roles in the generation and differentiation of cortical projection neurons and in controlling the timing of neurogenesis-to-gliogenesis switch.
Collapse
Affiliation(s)
- Heng Du
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Pediatrics, Children’s Hospital of Fudan University, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Ziwu Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Pediatrics, Children’s Hospital of Fudan University, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Rongliang Guo
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Pediatrics, Children’s Hospital of Fudan University, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Lin Yang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Pediatrics, Children’s Hospital of Fudan University, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Guoping Liu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Pediatrics, Children’s Hospital of Fudan University, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Zhuangzhi Zhang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Pediatrics, Children’s Hospital of Fudan University, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Zhejun Xu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Pediatrics, Children’s Hospital of Fudan University, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Yu Tian
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Pediatrics, Children’s Hospital of Fudan University, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Zhengang Yang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Pediatrics, Children’s Hospital of Fudan University, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Xiaosu Li
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Pediatrics, Children’s Hospital of Fudan University, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Bin Chen
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| |
Collapse
|