1
|
Hayes MN, Cohen-Gogo S, Kee L, Xiong X, Weiss A, Layeghifard M, Ladumor Y, Valencia-Sama I, Rajaselvam A, Kaplan DR, Villani A, Shlien A, Morgenstern DA, Irwin MS. DNA damage response deficiency enhances neuroblastoma progression and sensitivity to combination PARP and ATR inhibition. Cell Rep 2025; 44:115537. [PMID: 40220294 DOI: 10.1016/j.celrep.2025.115537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 02/03/2025] [Accepted: 03/17/2025] [Indexed: 04/14/2025] Open
Abstract
Sequencing of neuroblastoma (NB) tumors has revealed genetic alterations in genes involved in DNA damage response (DDR) pathways. However, roles for specific alterations of DDR genes in pediatric solid tumors remain poorly understood. To address this, mutations in the DDR pathway including Brca2, Atm, and Palb2 were incorporated into an established zebrafish MYCN transgenic model (Tg(dbh:EGFP-MYCN)). These mutations enhance NB formation and metastasis and result in upregulation of cell-cycle checkpoint and DNA damage repair signatures, revealing molecular vulnerabilities in DDR-deficient NB. DDR gene knockdown in zebrafish and human NB cells increases sensitivity to the poly(ADP-ribose) polymerase (PARP) inhibitor olaparib, and this effect is enhanced by inhibition of the ataxia telangiectasia and rad3-related (ATR) kinase. This work provides in vivo evidence demonstrating that alterations in certain DDR-pathway genes promote aggressive NB and supports combination PARP + ATR inhibitor therapy for NB patients with tumors harboring specific genetic alterations in DDR.
Collapse
Affiliation(s)
- Madeline N Hayes
- Developmental, Stem Cell and Cancer Biology Program, The Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| | - Sarah Cohen-Gogo
- Division of Hematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada; Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Lynn Kee
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Xueting Xiong
- Developmental, Stem Cell and Cancer Biology Program, The Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Alex Weiss
- Developmental, Stem Cell and Cancer Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Mehdi Layeghifard
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Yagnesh Ladumor
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | | | - Anisha Rajaselvam
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - David R Kaplan
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Neurosciences and Mental Health Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Anita Villani
- Division of Hematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| | - Adam Shlien
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Daniel A Morgenstern
- Division of Hematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| | - Meredith S Irwin
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Department of Pediatrics, University of Toronto, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada.
| |
Collapse
|
2
|
Lopes-Bastos B, Nabais J, Ferreira T, Allavena G, El Maï M, Bird M, Targen S, Tattini L, Kang D, Yue JX, Liti G, Carvalho TG, Godinho Ferreira M. The absence of telomerase leads to immune response and tumor regression in zebrafish melanoma. Cell Rep 2024; 43:115035. [PMID: 39643971 DOI: 10.1016/j.celrep.2024.115035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 10/29/2024] [Accepted: 11/14/2024] [Indexed: 12/09/2024] Open
Abstract
Most cancers re-activate telomerase to maintain telomere length and thus acquire immortality. Activating telomerase promoter mutations are found in many cancers, including melanoma. However, it is unclear when and if telomerase is strictly required during tumorigenesis. We combined the telomerase mutant (tert-/-) with two established zebrafish melanoma models. We show that tert-/- melanomas initially develop with similar incidence and invasiveness to tert+/+ tumors. However, they eventually decline in growth and regress. Late tert-/- tumors exhibit reduced cell proliferation, increased apoptosis, and melanocyte differentiation. Notably, these tumors show enhanced immune cell infiltration and can resume growth when transplanted into immunocompromised hosts. We propose that telomerase is required for melanoma in zebrafish, albeit at later stages of progression, to sustain tumor growth while avoiding immune rejection and regression. Thus, the absence of telomerase restricts melanoma through tumor-autonomous mechanisms (cell-cycle arrest, apoptosis, and melanocyte differentiation) and a non-tumor-autonomous mechanism (immune rejection).
Collapse
Affiliation(s)
- Bruno Lopes-Bastos
- Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR7284, INSERM U1081, Université Côte d'Azur, 06107 Nice, France; Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Joana Nabais
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Tânia Ferreira
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Giulia Allavena
- Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR7284, INSERM U1081, Université Côte d'Azur, 06107 Nice, France
| | - Mounir El Maï
- Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR7284, INSERM U1081, Université Côte d'Azur, 06107 Nice, France; Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Malia Bird
- Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR7284, INSERM U1081, Université Côte d'Azur, 06107 Nice, France
| | - Seniye Targen
- Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR7284, INSERM U1081, Université Côte d'Azur, 06107 Nice, France
| | - Lorenzo Tattini
- Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR7284, INSERM U1081, Université Côte d'Azur, 06107 Nice, France
| | - Da Kang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jia-Xing Yue
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Gianni Liti
- Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR7284, INSERM U1081, Université Côte d'Azur, 06107 Nice, France
| | | | - Miguel Godinho Ferreira
- Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR7284, INSERM U1081, Université Côte d'Azur, 06107 Nice, France; Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal.
| |
Collapse
|
3
|
Pascarella G, Conner KN, Goff NJ, Carninci P, Olive AJ, Meek K. Compared to other NHEJ factors, DNA-PK protein and RNA levels are markedly increased in all higher primates, but not in prosimians or other mammals. DNA Repair (Amst) 2024; 142:103737. [PMID: 39128395 PMCID: PMC11515020 DOI: 10.1016/j.dnarep.2024.103737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/13/2024]
Abstract
The DNA dependent protein kinase (DNA-PK) initiates non-homologous recombination (NHEJ), the predominate DNA double-strand break (DSBR) pathway in higher vertebrates. It has been known for decades that the enzymatic activity of DNA-PK [that requires its three component polypeptides, Ku70, Ku80 (that comprise the DNA-end binding Ku heterodimer), and the catalytic subunit (DNA-PKcs)] is present in humans at 10-50 times the level observed in other mammals. Here, we show that the high level of DNA-PKcs protein expression appears evolutionarily in mammals between prosimians and higher primates. Moreover, the RNAs encoding the three component polypeptides of DNA-PK are present at similarly high levels in hominids, new-, and old-world monkeys, but expression of these RNAs in prosimians is ∼5-50 fold less, analogous to the levels observed in other non-primate species. This is reminiscent of the appearance of Alu repeats in primate genomes -- abundant in higher primates, but present at much lower density in prosimians. Alu repeats are well-known for their capacity to promote non-allelic homologous recombination (NAHR) a process known to be inhibited by DNA-PK. Nanopore sequence analyses of cultured cells proficient or deficient in DNA-PK revealed an increase of inter-chromosomal translocations caused by NAHR. Although the high levels of DNA-PK in primates may have many functions, we posit that high levels of DNA-PK may function to restrain deleterious NAHR events between Alu elements.
Collapse
Affiliation(s)
| | - Kayla N Conner
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, MI 48824, USA
| | - Noah J Goff
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, MI 48824, USA; Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, MI 48824, USA
| | - Piero Carninci
- RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan; Human Technopole, Milan, Italy
| | - Andrew J Olive
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, MI 48824, USA
| | - Katheryn Meek
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, MI 48824, USA; Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
4
|
Ludin A, Stirtz GL, Tal A, Nirmal AJ, Besson N, Jones SM, Pfaff KL, Manos M, Liu S, Barrera I, Gong Q, Rodrigues CP, Sahu A, Jerison E, Alessi JV, Ricciuti B, Richardson DS, Weiss JD, Moreau HM, Stanhope ME, Afeyan AB, Sefton J, McCall WD, Formato E, Yang S, Zhou Y, van Konijnenburg DPH, Cole HL, Cordova M, Deng L, Rajadhyaksha M, Quake SR, Awad MM, Chen F, Sorger PK, Hodi FS, Rodig SJ, Murphy GF, Zon LI. Craters on the melanoma surface facilitate tumor-immune interactions and demonstrate pathologic response to checkpoint blockade in humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.18.613595. [PMID: 39345527 PMCID: PMC11429731 DOI: 10.1101/2024.09.18.613595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Immunotherapy leads to cancer eradication despite the tumor's immunosuppressive environment. Here, we used extended long-term in-vivo imaging and high-resolution spatial transcriptomics of endogenous melanoma in zebrafish, and multiplex imaging of human melanoma, to identify domains that facilitate immune response during immunotherapy. We identified crater-shaped pockets at the margins of zebrafish and human melanoma, rich with beta-2 microglobulin (B2M) and antigen recognition molecules. The craters harbor the highest density of CD8+ T cells in the tumor. In zebrafish, CD8+ T cells formed prolonged interactions with melanoma cells within craters, characteristic of antigen recognition. Following immunostimulatory treatment, the craters enlarged and became the major site of activated CD8+ T cell accumulation and tumor killing that was B2M dependent. In humans, craters predicted immune response to ICB therapy, showing response better than high T cell infiltration. This marks craters as potential new diagnostic tool for immunotherapy success and targets to enhance ICB response.
Collapse
Affiliation(s)
- Aya Ludin
- Harvard Stem Cell and Regenerative Biology Department, Harvard University; Boston, MA, USA
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital and Dana-Farber Cancer Institute; Boston, MA, USA
- These authors contributed equally
| | - Georgia L. Stirtz
- Harvard Stem Cell and Regenerative Biology Department, Harvard University; Boston, MA, USA
- These authors contributed equally
| | - Asaf Tal
- Harvard Stem Cell and Regenerative Biology Department, Harvard University; Boston, MA, USA
| | - Ajit J. Nirmal
- Department of Dermatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Ludwig Center at Harvard; Boston, MA, USA
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
- Department of Systems Biology, Harvard Medical School; Boston, MA, USA
| | - Naomi Besson
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Stephanie M. Jones
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kathleen L. Pfaff
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Michael Manos
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sophia Liu
- Biophysics Program, Harvard University, Boston, MA 02115, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Irving Barrera
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Qiyu Gong
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Cecilia Pessoa Rodrigues
- Harvard Stem Cell and Regenerative Biology Department, Harvard University; Boston, MA, USA
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital and Dana-Farber Cancer Institute; Boston, MA, USA
| | - Aditi Sahu
- Dermatology Service, Memorial Sloan Kettering Cancer Center; New York, NY, USA.|
| | - Elizabeth Jerison
- Department of Physics, University of Chicago, Chicago, IL 60637, USA, Institute for Biophysical Dynamics, and James Franck Institute
| | - Joao V. Alessi
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Biagio Ricciuti
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Douglas S. Richardson
- Harvard Center for Biological Imaging, Department of Molecular and Cellular Biology, Harvard University; Cambridge, MA, USA
| | - Jodi D. Weiss
- Harvard Stem Cell and Regenerative Biology Department, Harvard University; Boston, MA, USA
| | - Hadley M. Moreau
- Harvard Stem Cell and Regenerative Biology Department, Harvard University; Boston, MA, USA
| | - Meredith E. Stanhope
- Harvard Stem Cell and Regenerative Biology Department, Harvard University; Boston, MA, USA
| | - Alexander B. Afeyan
- Harvard Stem Cell and Regenerative Biology Department, Harvard University; Boston, MA, USA
| | - James Sefton
- Harvard Stem Cell and Regenerative Biology Department, Harvard University; Boston, MA, USA
| | - Wyatt D. McCall
- Harvard Stem Cell and Regenerative Biology Department, Harvard University; Boston, MA, USA
| | - Emily Formato
- Harvard Stem Cell and Regenerative Biology Department, Harvard University; Boston, MA, USA
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital and Dana-Farber Cancer Institute; Boston, MA, USA
| | - Song Yang
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital and Dana-Farber Cancer Institute; Boston, MA, USA
| | - Yi Zhou
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital and Dana-Farber Cancer Institute; Boston, MA, USA
| | | | - Hannah L. Cole
- Harvard Stem Cell and Regenerative Biology Department, Harvard University; Boston, MA, USA
| | - Miguel Cordova
- Dermatology Service, Memorial Sloan Kettering Cancer Center; New York, NY, USA.|
| | - Liang Deng
- Dermatology Service, Memorial Sloan Kettering Cancer Center; New York, NY, USA.|
| | - Milind Rajadhyaksha
- Dermatology Service, Memorial Sloan Kettering Cancer Center; New York, NY, USA.|
| | - Stephen R. Quake
- Department of Bioengineering and Applied sciences, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Mark M. Awad
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Fei Chen
- Harvard Stem Cell and Regenerative Biology Department, Harvard University; Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Peter K. Sorger
- Ludwig Center at Harvard; Boston, MA, USA
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
- Department of Systems Biology, Harvard Medical School; Boston, MA, USA
| | - F. Stephen Hodi
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215
- Parker Institute for Cancer Immunotherapy
| | - Scott J. Rodig
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - George F. Murphy
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Leonard I. Zon
- Harvard Stem Cell and Regenerative Biology Department, Harvard University; Boston, MA, USA
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital and Dana-Farber Cancer Institute; Boston, MA, USA
- Howard Hughes Medical Institute, Harvard medical school; Boston MA, USA
| |
Collapse
|
5
|
Gordon PB, So WY, Azubuike UF, Johnson B, Cicala J, Sturgess V, Wong C, Bishop K, Bresciani E, Sood R, Ganesan S, Tanner K. Organ specific microenvironmental MR1 expression in cutaneous melanoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.28.573554. [PMID: 38313277 PMCID: PMC10836068 DOI: 10.1101/2023.12.28.573554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
The microenvironment is an important regulator of intertumoral trafficking and activity of immune cells. Understanding how the immune system can be tailored to maintain anti-tumor killing responses in metastatic disease remains an important goal. Thus, immune mediated eradication of metastasis requires the consideration of organ specific microenvironmental cues. Using a xenograft model of melanoma metastasis in adult zebrafish, we perturbed the dynamic balance between the infiltrating immune cells in the metastatic setting using a suite of different transgenic zebrafish. We employed intravital imaging coupled with metabolism imaging (FLIM) to visualize and map the organ specific metabolism with near simultaneity in multiple metastatic lesions. Of all the MHC complexes examined for brain and skeletal metastases, we determined that there is an organ specific expression of mhc1uba (human ortholog, MR1) for both the melanoma cells and the resident and infiltrating immune cells. Specifically, immune clusters did not express mhc1uba in brain metastatic lesions in immune competent fish. Finally, the differential immune response drove organ specific metabolism where tumor glycolysis was increased in brain metastases compared to skeletal and parental lines as measured using fluorescence lifetime imaging microscopy (FLIM). As MR1 belongs to the MHC class I molecules and is a target of immunotherapeutic drugs, we believe that our data presents an opportunity to understand the relationship between organ specific tumor metabolism and drug efficacy in the metastatic setting.
Collapse
Affiliation(s)
- Patricia B. Gordon
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Woong Young So
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Udochi F Azubuike
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Bailey Johnson
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - James Cicala
- Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, MD
| | - Victoria Sturgess
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Claudia Wong
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kevin Bishop
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Erica Bresciani
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Raman Sood
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Sundar Ganesan
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Kandice Tanner
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
6
|
Tavakoli S, Garcia V, Gähwiler E, Adatto I, Rangan A, Messemer KA, Kakhki SA, Yang S, Chan VS, Manning ME, Fotowat H, Zhou Y, Wagers AJ, Zon LI. Transplantation-based screen identifies inducers of muscle progenitor cell engraftment across vertebrate species. Cell Rep 2023; 42:112365. [PMID: 37018075 PMCID: PMC10548355 DOI: 10.1016/j.celrep.2023.112365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/06/2023] [Accepted: 03/22/2023] [Indexed: 04/06/2023] Open
Abstract
Stem cell transplantation presents a potentially curative strategy for genetic disorders of skeletal muscle, but this approach is limited by the deleterious effects of cell expansion in vitro and consequent poor engraftment efficiency. In an effort to overcome this limitation, we sought to identify molecular signals that enhance the myogenic activity of cultured muscle progenitors. Here, we report the development and application of a cross-species small-molecule screening platform employing zebrafish and mice, which enables rapid, direct evaluation of the effects of chemical compounds on the engraftment of transplanted muscle precursor cells. Using this system, we screened a library of bioactive lipids to discriminate those that could increase myogenic engraftment in vivo in zebrafish and mice. This effort identified two lipids, lysophosphatidic acid and niflumic acid, both linked to the activation of intracellular calcium-ion flux, which showed conserved, dose-dependent, and synergistic effects in promoting muscle engraftment across these vertebrate species.
Collapse
Affiliation(s)
- Sahar Tavakoli
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Vivian Garcia
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Eric Gähwiler
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Institute for Regenerative Medicine, University of Zurich, ETH Zurich, Zurich, Switzerland
| | - Isaac Adatto
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Apoorva Rangan
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA; Stanford Medicine, Stanford University, Stanford, CA 94305, USA
| | - Kathleen A Messemer
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Sara Ashrafi Kakhki
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Song Yang
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Victoria S Chan
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Margot E Manning
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Haleh Fotowat
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Yi Zhou
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Amy J Wagers
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA 02115, USA; Joslin Diabetes Center, Boston, MA 02215, USA.
| | - Leonard I Zon
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA; Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
7
|
Basheer F, Sertori R, Liongue C, Ward AC. Zebrafish: A Relevant Genetic Model for Human Primary Immunodeficiency (PID) Disorders? Int J Mol Sci 2023; 24:ijms24076468. [PMID: 37047441 PMCID: PMC10095346 DOI: 10.3390/ijms24076468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
Primary immunodeficiency (PID) disorders, also commonly referred to as inborn errors of immunity, are a heterogenous group of human genetic diseases characterized by defects in immune cell development and/or function. Since these disorders are generally uncommon and occur on a variable background profile of potential genetic and environmental modifiers, animal models are critical to provide mechanistic insights as well as to create platforms to underpin therapeutic development. This review aims to review the relevance of zebrafish as an alternative genetic model for PIDs. It provides an overview of the conservation of the zebrafish immune system and details specific examples of zebrafish models for a multitude of specific human PIDs across a range of distinct categories, including severe combined immunodeficiency (SCID), combined immunodeficiency (CID), multi-system immunodeficiency, autoinflammatory disorders, neutropenia and defects in leucocyte mobility and respiratory burst. It also describes some of the diverse applications of these models, particularly in the fields of microbiology, immunology, regenerative biology and oncology.
Collapse
Affiliation(s)
- Faiza Basheer
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC 3216, Australia
| | - Robert Sertori
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia
| | - Clifford Liongue
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC 3216, Australia
| | - Alister C Ward
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC 3216, Australia
| |
Collapse
|
8
|
Liu Q, Li R, Wu H, Liang Z. A novel cuproptosis-related gene model predicts outcomes and treatment responses in pancreatic adenocarcinoma. BMC Cancer 2023; 23:226. [PMID: 36894917 PMCID: PMC9999523 DOI: 10.1186/s12885-023-10678-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 02/24/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND Cuproptosis is recently emerging as a hot spot in cancer research. However, its role in pancreatic adenocarcinoma (PAAD) has not yet been clarified. This study aimed to explore the prognostic and therapeutic implications of cuproptosis-related genes in PAAD. METHODS Two hundred thirteen PAAD samples from the International Cancer Genome Consortium (ICGC) were split into training and validation sets in the ratio of 7:3. The Cox regression analyses generated a prognostic model using the ICGC cohort for training (n = 152) and validation (n = 61). The model was externally tested on the Gene Expression Omnibus (GEO) (n = 80) and The Cancer Genome Atlas (TCGA) datasets (n = 176). The clinical characteristics, molecular mechanisms, immune landscape, and treatment responses in model-defined subgroups were explored. The expression of an independent prognostic gene TSC22D2 was confirmed by public databases, real-time quantitative PCR (RT-qPCR), western blot (WB), and immunohistochemistry (IHC). RESULTS A prognostic model was established based on three cuproptosis-related genes (TSC22D2, C6orf136, PRKDC). Patients were stratified into high- and low-risk groups using the risk score based on this model. PAAD patients in the high-risk group had a worse prognosis. The risk score was statistically significantly correlated with most clinicopathological characteristics. The risk score based on this model was an independent predictor of overall survival (OS) (HR = 10.7, p < 0.001), and was utilized to create a scoring nomogram with excellent prognostic value. High-risk patients had a higher TP53 mutation rate and a superior response to multiple targeted therapies and chemotherapeutic drugs, but might obtain fewer benefits from immunotherapy. Moreover, elevated TSC22D2 expression was discovered to be an independent prognostic predictor for OS (p < 0.001). Data from public databases and our own experiments showed that TSC22D2 expression was significantly higher in pancreatic cancer tissues/cells compared to normal tissues/cells. CONCLUSION This novel model based on cuproptosis-related genes provided a robust biomarker for predicting the prognosis and treatment responses of PAAD. The potential roles and underlying mechanisms of TSC22D2 in PAAD need further explored.
Collapse
Affiliation(s)
- Qixian Liu
- Molecular Pathology Research Center, Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Ruiyu Li
- Molecular Pathology Research Center, Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Huanwen Wu
- Molecular Pathology Research Center, Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China.
| | - Zhiyong Liang
- Molecular Pathology Research Center, Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China.
| |
Collapse
|
9
|
Nascentes Melo LM, Kumar S, Riess V, Szylo KJ, Eisenburger R, Schadendorf D, Ubellacker JM, Tasdogan A. Advancements in melanoma cancer metastasis models. Pigment Cell Melanoma Res 2023; 36:206-223. [PMID: 36478190 DOI: 10.1111/pcmr.13078] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/15/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Metastatic melanoma is a complex and deadly disease. Due to its complexity, the development of novel therapeutic strategies to inhibit metastatic melanoma remains an outstanding challenge. Our ability to study metastasis is advanced with the development of in vitro and in vivo models that better mimic the different steps of the metastatic cascade beginning from primary tumor initiation to final metastatic seeding. In this review, we provide a comprehensive summary of in vitro models, in vivo models, and in silico platforms to study the individual steps of melanoma metastasis. Furthermore, we highlight the advantages and limitations of each model and discuss the challenges of how to improve current models to enhance translation for melanoma cancer patients and future therapies.
Collapse
Affiliation(s)
| | - Suresh Kumar
- Department of Dermatology, University Hospital Essen and German Cancer Consortium, Essen, Germany
| | - Valeria Riess
- Department of Dermatology, University Hospital Essen and German Cancer Consortium, Essen, Germany
| | - Krystina J Szylo
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Robin Eisenburger
- Department of Dermatology, University Hospital Essen and German Cancer Consortium, Essen, Germany
| | - Dirk Schadendorf
- Department of Dermatology, University Hospital Essen and German Cancer Consortium, Essen, Germany
| | - Jessalyn M Ubellacker
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Alpaslan Tasdogan
- Department of Dermatology, University Hospital Essen and German Cancer Consortium, Essen, Germany
| |
Collapse
|
10
|
Al-Hamaly MA, Turner LT, Rivera-Martinez A, Rodriguez A, Blackburn JS. Zebrafish Cancer Avatars: A Translational Platform for Analyzing Tumor Heterogeneity and Predicting Patient Outcomes. Int J Mol Sci 2023; 24:2288. [PMID: 36768609 PMCID: PMC9916713 DOI: 10.3390/ijms24032288] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
The increasing number of available anti-cancer drugs presents a challenge for oncologists, who must choose the most effective treatment for the patient. Precision cancer medicine relies on matching a drug with a tumor's molecular profile to optimize the therapeutic benefit. However, current precision medicine approaches do not fully account for intra-tumoral heterogeneity. Different mutation profiles and cell behaviors within a single heterogeneous tumor can significantly impact therapy response and patient outcomes. Patient-derived avatar models recapitulate a patient's tumor in an animal or dish and provide the means to functionally assess heterogeneity's impact on drug response. Mouse xenograft and organoid avatars are well-established, but the time required to generate these models is not practical for clinical decision-making. Zebrafish are emerging as a time-efficient and cost-effective cancer avatar model. In this review, we highlight recent developments in zebrafish cancer avatar models and discuss the unique features of zebrafish that make them ideal for the interrogation of cancer heterogeneity and as part of precision cancer medicine pipelines.
Collapse
Affiliation(s)
- Majd A. Al-Hamaly
- Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40356, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Logan T. Turner
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
- Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40356, USA
| | | | - Analiz Rodriguez
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Jessica S. Blackburn
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
- Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40356, USA
| |
Collapse
|
11
|
Li X, Li M. The application of zebrafish patient-derived xenograft tumor models in the development of antitumor agents. Med Res Rev 2023; 43:212-236. [PMID: 36029178 DOI: 10.1002/med.21924] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/09/2022] [Accepted: 07/28/2022] [Indexed: 02/04/2023]
Abstract
The cost of antitumor drug development is enormous, yet the clinical outcomes are less than satisfactory. Therefore, it is of great importance to develop effective drug screening methods that enable accurate, rapid, and high-throughput discovery of lead compounds in the process of preclinical antitumor drug research. An effective solution is to use the patient-derived xenograft (PDX) tumor animal models, which are applicable for the elucidation of tumor pathogenesis and the preclinical testing of novel antitumor compounds. As a promising screening model organism, zebrafish has been widely applied in the construction of the PDX tumor model and the discovery of antineoplastic agents. Herein, we systematically survey the recent cutting-edge advances in zebrafish PDX models (zPDX) for studies of pathogenesis mechanisms and drug screening. In addition, the techniques used in the construction of zPDX are summarized. The advantages and limitations of the zPDX are also discussed in detail. Finally, the prospects of zPDX in drug discovery, translational medicine, and clinical precision medicine treatment are well presented.
Collapse
Affiliation(s)
- Xiang Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Minyong Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
12
|
Fraint E, Lv P, Liu F, Bowman TV, Tamplin OJ. Hematopoietic Stem and Progenitor Cell Identification and Transplantation in Zebrafish. Methods Mol Biol 2023; 2567:233-249. [PMID: 36255705 PMCID: PMC11984326 DOI: 10.1007/978-1-0716-2679-5_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The zebrafish as a model organism is well known for its versatile genetics, rapid development, and straightforward live imaging. It is an excellent model to study hematopoiesis because of its highly conserved ontogeny and gene regulatory networks. Recently developed highly specific transgenic reporter lines have allowed direct imaging and tracking of hematopoietic stem and progenitor cells (HSPCs) in live zebrafish. These reporter lines can also be used for fluorescence-activated cell sorting (FACS) of HSPCs. Similar to mammalian models, HSPCs can be transplanted to reconstitute the entire hematopoietic system of zebrafish recipients. However, the zebrafish provides unique advantages to study HSPC biology, such as transplants into embryos and high-throughput chemical screening. This chapter will outline the methods needed to identify, isolate, and transplant HSPCs in zebrafish.
Collapse
Affiliation(s)
- Ellen Fraint
- Department of Pediatrics (Pediatric Hematology/Oncology and Cellular Therapy) and Department of Developmental and Molecular Biology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
| | - Peng Lv
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Science, Beijing, China
| | - Feng Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Science, Beijing, China
| | - Teresa V Bowman
- Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Department of Developmental and Molecular Biology, and Department of Medicine (Oncology), Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
| | - Owen J Tamplin
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
13
|
Zebrafish Model of Severe Combined Immunodeficiency (SCID) Due to JAK3 Mutation. Biomolecules 2022; 12:biom12101521. [PMID: 36291730 PMCID: PMC9599616 DOI: 10.3390/biom12101521] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 11/18/2022] Open
Abstract
JAK3 is principally activated by members of the interleukin-2 receptor family and plays an essential role in lymphoid development, with inactivating JAK3 mutations causing autosomal-recessive severe combined immunodeficiency (SCID). This study aimed to generate an equivalent zebrafish model of SCID and to characterize the model across the life-course. Genome editing of zebrafish jak3 created mutants similar to those observed in human SCID. Homozygous jak3 mutants showed reduced embryonic T lymphopoiesis that continued through the larval stage and into adulthood, with B cell maturation and adult NK cells also reduced and neutrophils impacted. Mutant fish were susceptible to lymphoid leukemia. This model has many of the hallmarks of human SCID resulting from inactivating JAK3 mutations and will be useful for a variety of pre-clinical applications.
Collapse
|
14
|
Dudziak K, Nowak M, Sozoniuk M. One Host-Multiple Applications: Zebrafish ( Danio rerio) as Promising Model for Studying Human Cancers and Pathogenic Diseases. Int J Mol Sci 2022; 23:10255. [PMID: 36142160 PMCID: PMC9499349 DOI: 10.3390/ijms231810255] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/03/2022] [Accepted: 09/03/2022] [Indexed: 11/17/2022] Open
Abstract
In recent years, zebrafish (ZF) has been increasingly applied as a model in human disease studies, with a particular focus on cancer. A number of advantages make it an attractive alternative for mice widely used so far. Due to the many advantages of zebrafish, modifications can be based on different mechanisms and the induction of human disease can take different forms depending on the research goal. Genetic manipulation, tumor transplantation, or injection of the pathogen are only a few examples of using ZF as a model. Most of the studies are conducted in order to understand the disease mechanism, monitor disease progression, test new or alternative therapies, and select the best treatment. The transplantation of cancer cells derived from patients enables the development of personalized medicine. To better mimic a patient's body environment, immune-deficient models (SCID) have been developed. A lower immune response is mostly generated by genetic manipulation but also by irradiation or dexamethasone treatment. For many studies, using SCID provides a better chance to avoid cancer cell rejection. In this review, we describe the main directions of using ZF in research, explain why and how zebrafish can be used as a model, what kind of limitations will be met and how to overcome them. We collected recent achievements in this field, indicating promising perspectives for the future.
Collapse
Affiliation(s)
- Karolina Dudziak
- Chair and Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-059 Lublin, Poland
| | - Michał Nowak
- Institute of Plant Genetics, Breeding and Biotechnology, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | - Magdalena Sozoniuk
- Institute of Plant Genetics, Breeding and Biotechnology, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| |
Collapse
|
15
|
Napoli GC, Figg WD, Chau CH. Functional Drug Screening in the Era of Precision Medicine. Front Med (Lausanne) 2022; 9:912641. [PMID: 35879922 PMCID: PMC9307928 DOI: 10.3389/fmed.2022.912641] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
The focus of precision medicine is providing the right treatment to each unique patient. This scientific movement has incited monumental advances in oncology including the approval of effective, targeted agnostic therapies. Yet, precision oncology has focused largely on genomics in the treatment decision making process, and several recent clinical trials demonstrate that genomics is not the only variable to be considered. Drug screening in three dimensional (3D) models, including patient derived organoids, organs on a chip, xenografts, and 3D-bioprinted models provide a functional medicine perspective and necessary complement to genomic testing. In this review, we discuss the practicality of various 3D drug screening models and each model's ability to capture the patient's tumor microenvironment. We highlight the potential for enhancing precision medicine that personalized functional drug testing holds in combination with genomic testing and emerging mathematical models.
Collapse
Affiliation(s)
| | | | - Cindy H. Chau
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
16
|
Russo I, Sartor E, Fagotto L, Colombo A, Tiso N, Alaibac M. The Zebrafish model in dermatology: an update for clinicians. Discov Oncol 2022; 13:48. [PMID: 35713744 PMCID: PMC9206045 DOI: 10.1007/s12672-022-00511-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/08/2022] [Indexed: 11/04/2022] Open
Abstract
Recently, the zebrafish has been established as one of the most important model organisms for medical research. Several studies have proved that there is a high level of similarity between human and zebrafish genomes, which encourages the use of zebrafish as a model for understanding human genetic disorders, including cancer. Interestingly, zebrafish skin shows several similarities to human skin, suggesting that this model organism is particularly suitable for the study of neoplastic and inflammatory skin disorders. This paper appraises the specific characteristics of zebrafish skin and describes the major applications of the zebrafish model in dermatological research.
Collapse
Affiliation(s)
- Irene Russo
- Unit of Dermatology, University of Padua, Via Gallucci 4, 35128, Padua, Italy
| | - Emma Sartor
- Unit of Dermatology, University of Padua, Via Gallucci 4, 35128, Padua, Italy
| | - Laura Fagotto
- Unit of Dermatology, University of Padua, Via Gallucci 4, 35128, Padua, Italy
| | - Anna Colombo
- Unit of Dermatology, University of Padua, Via Gallucci 4, 35128, Padua, Italy
| | - Natascia Tiso
- Department of Biology, University of Padua, Via U. Bassi 58/B, 35131, Padua, Italy
| | - Mauro Alaibac
- Unit of Dermatology, University of Padua, Via Gallucci 4, 35128, Padua, Italy.
| |
Collapse
|
17
|
Souto EP, Dobrolecki LE, Villanueva H, Sikora AG, Lewis MT. In Vivo Modeling of Human Breast Cancer Using Cell Line and Patient-Derived Xenografts. J Mammary Gland Biol Neoplasia 2022; 27:211-230. [PMID: 35697909 PMCID: PMC9433358 DOI: 10.1007/s10911-022-09520-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 05/19/2022] [Indexed: 11/24/2022] Open
Abstract
Historically, human breast cancer has been modeled largely in vitro using long-established cell lines primarily in two-dimensional culture, but also in three-dimensional cultures of varying cellular and molecular complexities. A subset of cell line models has also been used in vivo as cell line-derived xenografts (CDX). While outstanding for conducting detailed molecular analysis of regulatory mechanisms that may function in vivo, results of drug response studies using long-established cell lines have largely failed to translate clinically. In an attempt to address this shortcoming, many laboratories have succeeded in developing clinically annotated patient-derived xenograft (PDX) models of human cancers, including breast, in a variety of host systems. While immunocompromised mice are the predominant host, the immunocompromised rat and pig, zebrafish, as well as the chicken egg chorioallantoic membrane (CAM) have also emerged as potential host platforms to help address perceived shortcomings of immunocompromised mice. With any modeling platform, the two main issues to be resolved are criteria for "credentialing" the models as valid models to represent human cancer, and utility with respect to the ability to generate clinically relevant translational research data. Such data are beginning to emerge, particularly with the activities of PDX consortia such as the NCI PDXNet Program, EuroPDX, and the International Breast Cancer Consortium, as well as a host of pharmaceutical companies and contract research organizations (CRO). This review focuses primarily on these important aspects of PDX-related research, with a focus on breast cancer.
Collapse
Affiliation(s)
- Eric P Souto
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Lacey E Dobrolecki
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Hugo Villanueva
- Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Andrew G Sikora
- Department of Head and Neck Surgery, Division of Surgery, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Michael T Lewis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA.
- Departments of Molecular and Cellular Biology and Radiology, Baylor College of Medicine, Houston, TX, 77030, USA.
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.
- Baylor College of Medicine, One Baylor Plaza, BCM-600; Room N1210, Houston, TX, 77030, USA.
| |
Collapse
|
18
|
Zeng M, Pi C, Li K, Sheng L, Zuo Y, Yuan J, Zou Y, Zhang X, Zhao W, Lee RJ, Wei Y, Zhao L. Patient-Derived Xenograft: A More Standard "Avatar" Model in Preclinical Studies of Gastric Cancer. Front Oncol 2022; 12:898563. [PMID: 35664756 PMCID: PMC9161630 DOI: 10.3389/fonc.2022.898563] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/21/2022] [Indexed: 11/23/2022] Open
Abstract
Despite advances in diagnosis and treatment, gastric cancer remains the third most common cause of cancer-related death in humans. The establishment of relevant animal models of gastric cancer is critical for further research. Due to the complexity of the tumor microenvironment and the genetic heterogeneity of gastric cancer, the commonly used preclinical animal models fail to adequately represent clinically relevant models of gastric cancer. However, patient-derived models are able to replicate as much of the original inter-tumoral and intra-tumoral heterogeneity of gastric cancer as possible, reflecting the cellular interactions of the tumor microenvironment. In addition to implanting patient tissues or primary cells into immunodeficient mouse hosts for culture, the advent of alternative hosts such as humanized mouse hosts, zebrafish hosts, and in vitro culture modalities has also facilitated the advancement of gastric cancer research. This review highlights the current status, characteristics, interfering factors, and applications of patient-derived models that have emerged as more valuable preclinical tools for studying the progression and metastasis of gastric cancer.
Collapse
Affiliation(s)
- Mingtang Zeng
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, China
| | - Chao Pi
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, China
| | - Ke Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, China
| | - Lin Sheng
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, China
| | - Ying Zuo
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Department of Comprehensive Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Jiyuan Yuan
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Clinical Trial Center, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Yonggen Zou
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Department of Spinal Surgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Xiaomei Zhang
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, Institute of Medicinal Chemistry of Chinese Medicine, Chongqing Academy of Chinese MateriaMedica, Chongqing, China
| | - Wenmei Zhao
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, China
| | - Robert J. Lee
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - Yumeng Wei
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, China
| | - Ling Zhao
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, China
| |
Collapse
|
19
|
Solman M, Blokzijl-Franke S, Piques F, Yan C, Yang Q, Strullu M, Kamel SM, Ak P, Bakkers J, Langenau DM, Cavé H, den Hertog J. Inflammatory response in hematopoietic stem and progenitor cells triggered by activating SHP2 mutations evokes blood defects. eLife 2022; 11:e73040. [PMID: 35535491 PMCID: PMC9119675 DOI: 10.7554/elife.73040] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 04/20/2022] [Indexed: 11/20/2022] Open
Abstract
Gain-of-function mutations in the protein-tyrosine phosphatase SHP2 are the most frequently occurring mutations in sporadic juvenile myelomonocytic leukemia (JMML) and JMML-like myeloproliferative neoplasm (MPN) associated with Noonan syndrome (NS). Hematopoietic stem and progenitor cells (HSPCs) are the disease propagating cells of JMML. Here, we explored transcriptomes of HSPCs with SHP2 mutations derived from JMML patients and a novel NS zebrafish model. In addition to major NS traits, CRISPR/Cas9 knock-in Shp2D61G mutant zebrafish recapitulated a JMML-like MPN phenotype, including myeloid lineage hyperproliferation, ex vivo growth of myeloid colonies, and in vivo transplantability of HSPCs. Single-cell mRNA sequencing of HSPCs from Shp2D61G zebrafish embryos and bulk sequencing of HSPCs from JMML patients revealed an overlapping inflammatory gene expression pattern. Strikingly, an anti-inflammatory agent rescued JMML-like MPN in Shp2D61G zebrafish embryos. Our results indicate that a common inflammatory response was triggered in the HSPCs from sporadic JMML patients and syndromic NS zebrafish, which potentiated MPN and may represent a future target for JMML therapies.
Collapse
Affiliation(s)
- Maja Solman
- Hubrecht Institute-KNAW and UMC UtrechtUtrechtNetherlands
| | | | - Florian Piques
- INSERM UMR_S1131, Institut de Recherche Saint-Louis, Université de ParisParisFrance
- Assistance Publique des Hôpitaux de Paris AP-HP, Hôpital Robert Debré, Département de GénétiqueParisFrance
| | - Chuan Yan
- Molecular Pathology Unit, Massachusetts General Hospital Research InstituteCharlestownUnited States
- Massachusetts General Hospital Cancer CenterCharlestownUnited States
- Center for Regenerative Medicine, Massachusetts General HospitalBostonUnited States
- Harvard Stem Cell InstituteCambridgeUnited States
| | - Qiqi Yang
- Molecular Pathology Unit, Massachusetts General Hospital Research InstituteCharlestownUnited States
- Massachusetts General Hospital Cancer CenterCharlestownUnited States
- Center for Regenerative Medicine, Massachusetts General HospitalBostonUnited States
- Harvard Stem Cell InstituteCambridgeUnited States
| | - Marion Strullu
- INSERM UMR_S1131, Institut de Recherche Saint-Louis, Université de ParisParisFrance
- Assistance Publique des Hôpitaux de Paris AP-HP, Hôpital Robert Debré, Service d’Onco-Hématologie PédiatriqueParisFrance
| | - Sarah M Kamel
- Hubrecht Institute-KNAW and UMC UtrechtUtrechtNetherlands
| | - Pakize Ak
- Hubrecht Institute-KNAW and UMC UtrechtUtrechtNetherlands
| | - Jeroen Bakkers
- Hubrecht Institute-KNAW and UMC UtrechtUtrechtNetherlands
- Department of Medical Physiology, Division of Heart and Lungs, UMC UtrechtUtrechtNetherlands
| | - David M Langenau
- Molecular Pathology Unit, Massachusetts General Hospital Research InstituteCharlestownUnited States
- Massachusetts General Hospital Cancer CenterCharlestownUnited States
- Center for Regenerative Medicine, Massachusetts General HospitalBostonUnited States
- Harvard Stem Cell InstituteCambridgeUnited States
| | - Hélène Cavé
- INSERM UMR_S1131, Institut de Recherche Saint-Louis, Université de ParisParisFrance
- Assistance Publique des Hôpitaux de Paris AP-HP, Hôpital Robert Debré, Département de GénétiqueParisFrance
| | - Jeroen den Hertog
- Hubrecht Institute-KNAW and UMC UtrechtUtrechtNetherlands
- Institute of Biology Leiden, Leiden UniversityLeidenNetherlands
| |
Collapse
|
20
|
Hason M, Jovicic J, Vonkova I, Bojic M, Simon-Vermot T, White RM, Bartunek P. Bioluminescent Zebrafish Transplantation Model for Drug Discovery. Front Pharmacol 2022; 13:893655. [PMID: 35559262 PMCID: PMC9086674 DOI: 10.3389/fphar.2022.893655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/11/2022] [Indexed: 11/17/2022] Open
Abstract
In the last decade, zebrafish have accompanied the mouse as a robust animal model for cancer research. The possibility of screening small-molecule inhibitors in a large number of zebrafish embryos makes this model particularly valuable. However, the dynamic visualization of fluorescently labeled tumor cells needs to be complemented by a more sensitive, easy, and rapid mode for evaluating tumor growth in vivo to enable high-throughput screening of clinically relevant drugs. In this study we proposed and validated a pre-clinical screening model for drug discovery by utilizing bioluminescence as our readout for the determination of transplanted cancer cell growth and inhibition in zebrafish embryos. For this purpose, we used NanoLuc luciferase, which ensured rapid cancer cell growth quantification in vivo with high sensitivity and low background when compared to conventional fluorescence measurements. This allowed us large-scale evaluation of in vivo drug responses of 180 kinase inhibitors in zebrafish. Our bioluminescent screening platform could facilitate identification of new small-molecules for targeted cancer therapy as well as for drug repurposing.
Collapse
Affiliation(s)
- Martina Hason
- Laboratory of Cell Differentiation, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Jovana Jovicic
- Laboratory of Cell Differentiation, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Ivana Vonkova
- CZ-OPENSCREEN, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Milan Bojic
- CZ-OPENSCREEN, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Theresa Simon-Vermot
- Department of Cancer Biology & Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Richard M. White
- Department of Cancer Biology & Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Petr Bartunek
- Laboratory of Cell Differentiation, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
- CZ-OPENSCREEN, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
21
|
Sarmiento BE, Callegari S, Ghotme KA, Akle V. Patient-Derived Xenotransplant of CNS Neoplasms in Zebrafish: A Systematic Review. Cells 2022; 11:cells11071204. [PMID: 35406768 PMCID: PMC8998145 DOI: 10.3390/cells11071204] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/11/2022] [Accepted: 03/28/2022] [Indexed: 02/01/2023] Open
Abstract
Glioblastoma and neuroblastoma are the most common central nervous system malignant tumors in adult and pediatric populations. Both are associated with poor survival. These tumors are highly heterogeneous, having complex interactions among different cells within the tumor and with the tumor microenvironment. One of the main challenges in the neuro-oncology field is achieving optimal conditions to evaluate a tumor’s molecular genotype and phenotype. In this respect, the zebrafish biological model is becoming an excellent alternative for studying carcinogenic processes and discovering new treatments. This review aimed to describe the results of xenotransplantation of patient-derived CNS tumors in zebrafish models. The reviewed studies show that it is possible to maintain glioblastoma and neuroblastoma primary cell cultures and transplant the cells into zebrafish embryos. The zebrafish is a suitable biological model for understanding tumor progression and the effects of different treatments. This model offers new perspectives in providing personalized care and improving outcomes for patients living with central nervous system tumors.
Collapse
Affiliation(s)
- Beatriz E. Sarmiento
- School of Medicine, Universidad de Los Andes, Bogotá 11711, Colombia; (B.E.S.); (S.C.)
| | - Santiago Callegari
- School of Medicine, Universidad de Los Andes, Bogotá 11711, Colombia; (B.E.S.); (S.C.)
| | - Kemel A. Ghotme
- Department of Neurosurgery, Fundación Santa Fe de Bogotá, Bogotá 111071, Colombia;
- Translational Neuroscience Research Lab, Faculty of Medicine, Universidad de La Sabana, Chía 250001, Colombia
| | - Veronica Akle
- School of Medicine, Universidad de Los Andes, Bogotá 11711, Colombia; (B.E.S.); (S.C.)
- Correspondence:
| |
Collapse
|
22
|
Somasagara RR, Leung T. Zebrafish Xenograft Model to Study Human Cancer. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2413:45-53. [PMID: 35044653 DOI: 10.1007/978-1-0716-1896-7_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The zebrafish, Danio rerio, has been an important animal model for cancer research over the last decade. The capability of a high-throughput screen in zebrafish and a wide range of pharmacologically active compounds elicit physiological responses in zebrafish embryos comparable to those in mammalian systems, making zebrafish ideal for identifying clinically relevant drug targets and compounds that regulate tumor progression. The zebrafish model is suitable for patient-derived xenograft (pdx) and large-scale screening of lead compounds against specific malignancies. This established vertebrate model has many advantages, including fast response time, cost efficiency for drug testing, efficient manipulation of the host microenvironment by genetic tools, suitable for small molecule drug screening in high-throughput setting, easy maintenance, transparency for easy observation, high fecundity, and rapid generation time. The zebrafish model is a good alternative in vivo model to mammals for robust testing of drug candidates for cancer therapy.
Collapse
Affiliation(s)
- Ranganatha R Somasagara
- The Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, North Carolina Research Campus, Kannapolis, NC, USA
| | - TinChung Leung
- The Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, North Carolina Research Campus, Kannapolis, NC, USA. .,Department of Biological and Biomedical Sciences, North Carolina Central University, Durham, NC, USA.
| |
Collapse
|
23
|
Patton EE, Zon LI, Langenau DM. Zebrafish disease models in drug discovery: from preclinical modelling to clinical trials. Nat Rev Drug Discov 2021; 20:611-628. [PMID: 34117457 PMCID: PMC9210578 DOI: 10.1038/s41573-021-00210-8] [Citation(s) in RCA: 281] [Impact Index Per Article: 70.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2021] [Indexed: 02/03/2023]
Abstract
Numerous drug treatments that have recently entered the clinic or clinical trials have their genesis in zebrafish. Zebrafish are well established for their contribution to developmental biology and have now emerged as a powerful preclinical model for human disease, as their disease characteristics, aetiology and progression, and molecular mechanisms are clinically relevant and highly conserved. Zebrafish respond to small molecules and drug treatments at physiologically relevant dose ranges and, when combined with cell-specific or tissue-specific reporters and gene editing technologies, drug activity can be studied at single-cell resolution within the complexity of a whole animal, across tissues and over an extended timescale. These features enable high-throughput and high-content phenotypic drug screening, repurposing of available drugs for personalized and compassionate use, and even the development of new drug classes. Often, drugs and drug leads explored in zebrafish have an inter-organ mechanism of action and would otherwise not be identified through targeted screening approaches. Here, we discuss how zebrafish is an important model for drug discovery, the process of how these discoveries emerge and future opportunities for maximizing zebrafish potential in medical discoveries.
Collapse
Affiliation(s)
- E Elizabeth Patton
- MRC Human Genetics Unit and Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Cancer, Western General Hospital Campus, University of Edinburgh, Edinburgh, UK.
| | - Leonard I Zon
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School; Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA.
| | - David M Langenau
- Department of Pathology, Massachusetts General Research Institute, Boston, MA, USA.
- Center of Cancer Research, Massachusetts General Hospital, Charlestown, MA, USA.
- Harvard Stem Cell Institute, Harvard University, Boston, MA, USA.
- Center of Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
24
|
Matsumoto Y, Asa ADDC, Modak C, Shimada M. DNA-Dependent Protein Kinase Catalytic Subunit: The Sensor for DNA Double-Strand Breaks Structurally and Functionally Related to Ataxia Telangiectasia Mutated. Genes (Basel) 2021; 12:genes12081143. [PMID: 34440313 PMCID: PMC8394720 DOI: 10.3390/genes12081143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 11/16/2022] Open
Abstract
The DNA-dependent protein kinase (DNA-PK) is composed of a DNA-dependent protein kinase catalytic subunit (DNA-PKcs) and Ku70/Ku80 heterodimer. DNA-PK is thought to act as the “sensor” for DNA double-stranded breaks (DSB), which are considered the most deleterious type of DNA damage. In particular, DNA-PKcs and Ku are shown to be essential for DSB repair through nonhomologous end joining (NHEJ). The phenotypes of animals and human individuals with defective DNA-PKcs or Ku functions indicate their essential roles in these developments, especially in neuronal and immune systems. DNA-PKcs are structurally related to Ataxia–telangiectasia mutated (ATM), which is also implicated in the cellular responses to DSBs. DNA-PKcs and ATM constitute the phosphatidylinositol 3-kinase-like kinases (PIKKs) family with several other molecules. Here, we review the accumulated knowledge on the functions of DNA-PKcs, mainly based on the phenotypes of DNA-PKcs-deficient cells in animals and human individuals, and also discuss its relationship with ATM in the maintenance of genomic stability.
Collapse
|
25
|
Pensado-López A, Fernández-Rey J, Reimunde P, Crecente-Campo J, Sánchez L, Torres Andón F. Zebrafish Models for the Safety and Therapeutic Testing of Nanoparticles with a Focus on Macrophages. NANOMATERIALS 2021; 11:nano11071784. [PMID: 34361170 PMCID: PMC8308170 DOI: 10.3390/nano11071784] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/11/2022]
Abstract
New nanoparticles and biomaterials are increasingly being used in biomedical research for drug delivery, diagnostic applications, or vaccines, and they are also present in numerous commercial products, in the environment and workplaces. Thus, the evaluation of the safety and possible therapeutic application of these nanomaterials has become of foremost importance for the proper progress of nanotechnology. Due to economical and ethical issues, in vitro and in vivo methods are encouraged for the testing of new compounds and/or nanoparticles, however in vivo models are still needed. In this scenario, zebrafish (Danio rerio) has demonstrated potential for toxicological and pharmacological screenings. Zebrafish presents an innate immune system, from early developmental stages, with conserved macrophage phenotypes and functions with respect to humans. This fact, combined with the transparency of zebrafish, the availability of models with fluorescently labelled macrophages, as well as a broad variety of disease models offers great possibilities for the testing of new nanoparticles. Thus, with a particular focus on macrophage-nanoparticle interaction in vivo, here, we review the studies using zebrafish for toxicological and biodistribution testing of nanoparticles, and also the possibilities for their preclinical evaluation in various diseases, including cancer and autoimmune, neuroinflammatory, and infectious diseases.
Collapse
Affiliation(s)
- Alba Pensado-López
- Department of Zoology, Genetics and Physical Anthropology, Campus de Lugo, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (A.P.-L.); (J.F.-R.)
- Center for Research in Molecular Medicine & Chronic Diseases (CIMUS), Campus Vida, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain;
| | - Juan Fernández-Rey
- Department of Zoology, Genetics and Physical Anthropology, Campus de Lugo, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (A.P.-L.); (J.F.-R.)
- Center for Research in Molecular Medicine & Chronic Diseases (CIMUS), Campus Vida, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain;
| | - Pedro Reimunde
- Department of Physiotherapy, Medicine and Biomedical Sciences, Universidade da Coruña, Campus de Oza, 15006 A Coruña, Spain;
- Department of Neurosurgery, Hospital Universitario Lucus Augusti, 27003 Lugo, Spain
| | - José Crecente-Campo
- Center for Research in Molecular Medicine & Chronic Diseases (CIMUS), Campus Vida, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain;
| | - Laura Sánchez
- Department of Zoology, Genetics and Physical Anthropology, Campus de Lugo, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (A.P.-L.); (J.F.-R.)
- Correspondence: (L.S.); (F.T.A.)
| | - Fernando Torres Andón
- Center for Research in Molecular Medicine & Chronic Diseases (CIMUS), Campus Vida, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain;
- Correspondence: (L.S.); (F.T.A.)
| |
Collapse
|
26
|
A novel conditioning-free hematopoietic stem cell transplantation model in zebrafish. Blood Adv 2021; 4:6189-6198. [PMID: 33351115 DOI: 10.1182/bloodadvances.2020002424] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 11/09/2020] [Indexed: 12/20/2022] Open
Abstract
Transplantation is the most common assay for measuring the in vivo functionality of hematopoietic stem cells (HSCs). Although various HSC transplantation strategies have been developed in zebrafish, they are underutilized because of challenges related to immune matching and preconditioning toxicity. To circumvent these limitations, we developed a simple and robust transplantation model using HSC-deficient hosts. Homozygous runx1W84X mutants are devoid of definitive hematopoietic cells, including HSCs and adaptive immune cells; thus, they require no preconditioning regimen for transplantation. Marrow cell transplantation into runx1-mutant zebrafish 2 days after fertilization significantly improved their survival to adulthood and resulted in robust, multilineage, long-lasting, serially repopulating engraftment. Furthermore, we demonstrated that engraftment into runx1 homozygous mutants was significantly higher than into runx1 heterozygotes, demonstrating that the improved transplantation success is attributable to the empty HSC niche in mutants and not just the embryonic environment. Competitive transplantation of marrow cells into runx1 mutants revealed a stem cell frequency similar to that of murine marrow cells, which demonstrates the utility of this model for quantifying HSC function. The streamlined approach and robustness of this assay will help broaden its feasibility for future high-throughput transplantation experiments in zebrafish and will enable further novel discoveries in the biology of HSCs.
Collapse
|
27
|
Gamble JT, Elson DJ, Greenwood JA, Tanguay RL, Kolluri SK. The Zebrafish Xenograft Models for Investigating Cancer and Cancer Therapeutics. BIOLOGY 2021; 10:biology10040252. [PMID: 33804830 PMCID: PMC8063817 DOI: 10.3390/biology10040252] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 03/17/2021] [Indexed: 02/06/2023]
Abstract
Simple Summary The identification and development of new anti-cancer drugs requires extensive testing in animal models to establish safety and efficacy of drug candidates. The transplantation of human tumor tissue into mouse (tumor xenografts) is commonly used to study cancer progression and to test potential drugs for their anti-cancer activity. Mouse models do not afford the ability to test a large number of drug candidates quickly as it takes several weeks to conduct these experiments. In contrast, tumor xenograft studies in zebrafish provide an efficient platform for rapid testing of safety and efficacy in less than two weeks. Abstract In order to develop new cancer therapeutics, rapid, reliable, and relevant biological models are required to screen and validate drug candidates for both efficacy and safety. In recent years, the zebrafish (Danio rerio) has emerged as an excellent model organism suited for these goals. Larval fish or immunocompromised adult fish are used to engraft human cancer cells and serve as a platform for screening potential drug candidates. With zebrafish sharing ~80% of disease-related orthologous genes with humans, they provide a low cost, high-throughput alternative to mouse xenografts that is relevant to human biology. In this review, we provide background on the methods and utility of zebrafish xenograft models in cancer research.
Collapse
Affiliation(s)
- John T. Gamble
- Department of Biochemistry & Biophysics, Oregon State University, Corvallis, OR 97331, USA;
| | - Daniel J. Elson
- Cancer Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA;
| | - Juliet A. Greenwood
- School of Mathematics and Natural Sciences, Arizona State University, Scotsdale, AZ 85257, USA;
| | - Robyn L. Tanguay
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA;
| | - Siva K. Kolluri
- Cancer Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA;
- Correspondence:
| |
Collapse
|
28
|
Somasagara RR, Huang X, Xu C, Haider J, Serody JS, Armistead PM, Leung T. Targeted therapy of human leukemia xenografts in immunodeficient zebrafish. Sci Rep 2021; 11:5715. [PMID: 33707624 PMCID: PMC7952715 DOI: 10.1038/s41598-021-85141-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 02/25/2021] [Indexed: 01/05/2023] Open
Abstract
Personalized medicine holds tremendous promise for improving safety and efficacy of drug therapies by optimizing treatment regimens. Rapidly developed patient-derived xenografts (pdx) could be a helpful tool for analyzing the effect of drugs against an individual's tumor by growing the tumor in an immunodeficient animal. Severe combined immunodeficiency (SCID) mice enable efficient in vivo expansion of vital tumor cells and generation of personalized xenografts. However, they are not amenable to large-scale rapid screening, which is critical in identifying new compounds from large compound libraries. The development of a zebrafish model suitable for pdx could facilitate large-scale screening of drugs targeted against specific malignancies. Here, we describe a novel strategy for establishing a zebrafish model for drug testing in leukemia xenografts. We used chronic myelogenous leukemia and acute myeloid leukemia for xenotransplantation into SCID zebrafish to evaluate drug screening protocols. We showed the in vivo efficacy of the ABL inhibitor imatinib, MEK inhibitor U0126, cytarabine, azacitidine and arsenic trioxide. We performed corresponding in vitro studies, demonstrating that combination of MEK- and FLT3-inhibitors exhibit an enhanced effect in vitro. We further evaluated the feasibility of zebrafish for transplantation of primary human hematopoietic cells that can survive at 15 day-post-fertilization. Our results provide critical insights to guide development of high-throughput platforms for evaluating leukemia.
Collapse
Affiliation(s)
- Ranganatha R Somasagara
- The Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, North Carolina Research Campus, Kannapolis, NC, 28081, USA
| | - Xiaoyan Huang
- The Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, North Carolina Research Campus, Kannapolis, NC, 28081, USA
| | - Chunyu Xu
- The Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, North Carolina Research Campus, Kannapolis, NC, 28081, USA
| | - Jamil Haider
- The Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, North Carolina Research Campus, Kannapolis, NC, 28081, USA
| | - Jonathan S Serody
- Division of Hematology/Oncology, Department of Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Paul M Armistead
- Division of Hematology/Oncology, Department of Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - TinChung Leung
- The Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, North Carolina Research Campus, Kannapolis, NC, 28081, USA. .,Department of Biological & Biomedical Sciences, North Carolina Central University, Durham, NC, 27707, USA.
| |
Collapse
|
29
|
Bergo V, Trompouki E. New tools for 'ZEBRA-FISHING'. Brief Funct Genomics 2021:elab001. [PMID: 33605988 DOI: 10.1093/bfgp/elab001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/14/2020] [Accepted: 01/04/2021] [Indexed: 11/14/2022] Open
Abstract
Zebrafish has been established as a classical model for developmental studies, yet in the past years, with the explosion of novel technological methods, the use of zebrafish as a model has expanded. One of the prominent fields that took advantage of zebrafish as a model organism early on is hematopoiesis, the process of blood cell generation from hematopoietic stem and progenitor cells (HSPCs). In zebrafish, HSPCs are born early during development in the aorta-gonad-mesonephros region and then translocate to the caudal hematopoietic tissue, where they expand and finally take residence in the kidney marrow. This journey is tightly regulated at multiple levels from extracellular signals to chromatin. In order to delineate the mechanistic underpinnings of this process, next-generation sequencing techniques could be an important ally. Here, we describe genome-wide approaches that have been undertaken to delineate zebrafish hematopoiesis.
Collapse
|
30
|
Chen X, Li Y, Yao T, Jia R. Benefits of Zebrafish Xenograft Models in Cancer Research. Front Cell Dev Biol 2021; 9:616551. [PMID: 33644052 PMCID: PMC7905065 DOI: 10.3389/fcell.2021.616551] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/11/2021] [Indexed: 12/14/2022] Open
Abstract
As a promising in vivo tool for cancer research, zebrafish have been widely applied in various tumor studies. The zebrafish xenograft model is a low-cost, high-throughput tool for cancer research that can be established quickly and requires only a small sample size, which makes it favorite among researchers. Zebrafish patient-derived xenograft (zPDX) models provide promising evidence for short-term clinical treatment. In this review, we discuss the characteristics and advantages of zebrafish, such as their transparent and translucent features, the use of vascular fluorescence imaging, the establishment of metastatic and intracranial orthotopic models, individual pharmacokinetics measurements, and tumor microenvironment. Furthermore, we introduce how these characteristics and advantages are applied other in tumor studies. Finally, we discuss the future direction of the use of zebrafish in tumor studies and provide new ideas for the application of it.
Collapse
Affiliation(s)
- Xingyu Chen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yongyun Li
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Tengteng Yao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| |
Collapse
|
31
|
Studying the Tumor Microenvironment in Zebrafish. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1329:69-92. [PMID: 34664234 DOI: 10.1007/978-3-030-73119-9_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The tumor microenvironment significantly contributes to tumor initiation, progression, neo-angiogenesis, and metastasis, and a better understanding of the role of the different cellular players would facilitate the development of novel therapeutic strategies for cancer treatment. Towards this goal, intravital imaging is a powerful method to unravel interaction partners of tumor cells. Among vertebrate model organisms, zebrafish is uniquely suited for in vivo imaging studies. In recent years zebrafish has also become a valuable model in cancer research. In this chapter, we will summarize, how zebrafish has been used to characterize cells of the tumor microenvironment. We will cover both genetically engineered cancer models and xenograft models in zebrafish. The majority of work has been done on the role of innate immune cells and their role during tumor initiation and metastasis, but we will also cover studies focusing on adipocytes, fibroblasts, and endothelial cells. Taken together, we will highlight the versatile use of the zebrafish model for in vivo tumor microenvironment studies.
Collapse
|
32
|
Yan C, Do D, Yang Q, Brunson DC, JF R, Langenau DM. Single-cell imaging of human cancer xenografts using adult immunodeficient zebrafish. Nat Protoc 2020; 15:3105-3128. [PMID: 32826993 PMCID: PMC8097243 DOI: 10.1038/s41596-020-0372-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 06/03/2020] [Indexed: 11/10/2022]
Abstract
Zebrafish are an ideal cell transplantation model. They are highly fecund, optically clear and an excellent platform for preclinical drug discovery studies. Traditionally, xenotransplantation has been carried out using larval zebrafish that have not yet developed adaptive immunity. Larval engraftment is a powerful short-term transplant platform amenable to high-throughput drug screening studies, yet animals eventually reject tumors and cannot be raised at 37 °C. To address these limitations, we have recently developed adult casper-strain prkdc-/-, il2rgα-/- immunocompromised zebrafish that robustly engraft human cancer cells for in excess of 28 d. Because the adult zebrafish can be administered drugs by oral gavage or i.p. injection, our model is suitable for achieving accurate, preclinical drug dosing. Our platform also allows facile visualization of drug effects in vivo at single-cell resolution over days. Here, we describe the procedures for xenograft cell transplantation into the prkdc-/-, il2rgα-/- model, including refined husbandry protocols for optimal growth and rearing of immunosuppressed zebrafish at 37 °C; optimized intraperitoneal and periocular muscle cell transplantation; and epifluorescence and confocal imaging approaches to visualize the effects of administering clinically relevant drug dosing at single-cell resolution in vivo. After identification of adult homozygous animals, this procedure takes 35 d to complete. 7 days are required to acclimate adult fish to 37 °C, and 28 d are required for engraftment studies. Our protocol provides a comprehensive guide for using immunocompromised zebrafish for xenograft cell transplantation and credentials the model as a new preclinical drug discovery platform.
Collapse
Affiliation(s)
- Chuan Yan
- Molecular Pathology Unit, Mass General Research Institute, Charlestown, MA 02129,Mass General Cancer Center, Harvard Medical School, Charlestown, MA 02129,Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114,Harvard Stem Cell Institute, Cambridge, MA 02139
| | - Daniel Do
- Molecular Pathology Unit, Mass General Research Institute, Charlestown, MA 02129,Mass General Cancer Center, Harvard Medical School, Charlestown, MA 02129,Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114,Harvard Stem Cell Institute, Cambridge, MA 02139
| | - Qiqi Yang
- Molecular Pathology Unit, Mass General Research Institute, Charlestown, MA 02129,Mass General Cancer Center, Harvard Medical School, Charlestown, MA 02129,Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114,Harvard Stem Cell Institute, Cambridge, MA 02139
| | - Dalton C. Brunson
- Molecular Pathology Unit, Mass General Research Institute, Charlestown, MA 02129,Mass General Cancer Center, Harvard Medical School, Charlestown, MA 02129,Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114,Harvard Stem Cell Institute, Cambridge, MA 02139
| | - Rawls JF
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - David M. Langenau
- Molecular Pathology Unit, Mass General Research Institute, Charlestown, MA 02129,Mass General Cancer Center, Harvard Medical School, Charlestown, MA 02129,Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114,Harvard Stem Cell Institute, Cambridge, MA 02139,Lead contact
| |
Collapse
|
33
|
Lv P, Ma D, Gao S, Zhang Y, Bae YK, Liang G, Gao S, Choi JH, Kim CH, Wang L, Liu F. Generation of foxn1/Casper Mutant Zebrafish for Allograft and Xenograft of Normal and Malignant Cells. Stem Cell Reports 2020; 15:749-760. [PMID: 32822590 PMCID: PMC7486299 DOI: 10.1016/j.stemcr.2020.07.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 07/27/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022] Open
Abstract
Cell transplantation into immunodeficient recipients is a widely used approach to study stem cell and cancer biology; however, studying cell states post transplantation in vivo is inconvenient in mammals. Here, we generated a foxn1/Casper mutant zebrafish that is transparent and exhibits T cell deficiency. By employing the line for hematopoietic stem cell (HSC) transplantation (HSCT), we could achieve nonconditioned transplantation. Meanwhile, we found that fetal HSCs from 3 days post fertilization zebrafish embryos produce a better transplant outcome in foxn1/Casper mutants, compared with adult HSCs. In addition to HSCT, the foxn1/Casper mutant is feasible for allografts of myelodysplastic syndrome-like and muscle cells, as well as xenografts of medaka muscle cells. In summary, foxn1/Casper mutants permit the nonconditioned engraftment of multiple cell types and visualized characterization of transplanted cells in vivo. foxn1/Casper mutant zebrafish permit unconditioned and visualized cell transplantation Zebrafish fetal HSCs possess more robust engraftment ability than adult HSCs foxn1/Casper mutant zebrafish permit allogeneic MDS-like cell transplantation Allograft and xenograft of muscle cells can be monitored in foxn1/Casper mutant zebrafish
Collapse
Affiliation(s)
- Peng Lv
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Dongyuan Ma
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Shuai Gao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Yifan Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Young-Ki Bae
- Comparative Biomedical Research Branch, Research Institute, National Cancer Center, Goyang 10408, Republic of Korea
| | - Guixian Liang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Suwei Gao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Jung-Hwa Choi
- Department of Biology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Lu Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China.
| | - Feng Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Science, Beijing 100049, China.
| |
Collapse
|
34
|
Sanz-Morejón A, García-Redondo AB, Reuter H, Marques IJ, Bates T, Galardi-Castilla M, Große A, Manig S, Langa X, Ernst A, Piragyte I, Botos MA, González-Rosa JM, Ruiz-Ortega M, Briones AM, Salaices M, Englert C, Mercader N. Wilms Tumor 1b Expression Defines a Pro-regenerative Macrophage Subtype and Is Required for Organ Regeneration in the Zebrafish. Cell Rep 2020; 28:1296-1306.e6. [PMID: 31365871 PMCID: PMC6685527 DOI: 10.1016/j.celrep.2019.06.091] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/25/2019] [Accepted: 06/25/2019] [Indexed: 12/16/2022] Open
Abstract
Organ regeneration is preceded by the recruitment of innate immune cells, which play an active role during repair and regrowth. Here, we studied macrophage subtypes during organ regeneration in the zebrafish, an animal model with a high regenerative capacity. We identified a macrophage subpopulation expressing Wilms tumor 1b (wt1b), which accumulates within regenerating tissues. This wt1b+ macrophage population exhibited an overall pro-regenerative gene expression profile and different migratory behavior compared to the remainder of the macrophages. Functional studies showed that wt1b regulates macrophage migration and retention at the injury area. Furthermore, wt1b-null mutant zebrafish presented signs of impaired macrophage differentiation, delayed fin growth upon caudal fin amputation, and reduced cardiomyocyte proliferation following cardiac injury that correlated with altered macrophage recruitment to the regenerating areas. We describe a pro-regenerative macrophage subtype in the zebrafish and a role for wt1b in organ regeneration. Wt1b+ macrophages reveal a pro-regenerative gene expression prolife Wt1b controls migration behavior of macrophages during fin and heart regeneration Wt1b regulates differentiation of macrophages in the kidney marrow wt1b mutants reveal impaired fin and heart regeneration
Collapse
Affiliation(s)
- Andrés Sanz-Morejón
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland; Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Ana B García-Redondo
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; Department of Pharmacology, Universidad Autónoma de Madrid, IIS-Hospital La Paz, Ciber de Enfermedades Cardiovasculares, 28029 Madrid, Spain
| | - Hanna Reuter
- Leibniz Institute on Aging-Fritz Lipmann Institute, 07745 Jena, Germany
| | - Inês J Marques
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland
| | - Thomas Bates
- Leibniz Institute on Aging-Fritz Lipmann Institute, 07745 Jena, Germany
| | | | - Andreas Große
- Leibniz Institute on Aging-Fritz Lipmann Institute, 07745 Jena, Germany
| | - Steffi Manig
- Leibniz Institute on Aging-Fritz Lipmann Institute, 07745 Jena, Germany
| | - Xavier Langa
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland
| | - Alexander Ernst
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland
| | - Indre Piragyte
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland
| | | | | | - Marta Ruiz-Ortega
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma, 28040 Madrid, Spain
| | - Ana M Briones
- Department of Pharmacology, Universidad Autónoma de Madrid, IIS-Hospital La Paz, Ciber de Enfermedades Cardiovasculares, 28029 Madrid, Spain
| | - Mercedes Salaices
- Department of Pharmacology, Universidad Autónoma de Madrid, IIS-Hospital La Paz, Ciber de Enfermedades Cardiovasculares, 28029 Madrid, Spain
| | - Christoph Englert
- Leibniz Institute on Aging-Fritz Lipmann Institute, 07745 Jena, Germany; Institute of Biochemistry and Biophysics, Friedrich-Schiller-Universität, 07743 Jena, Germany
| | - Nadia Mercader
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland; Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain.
| |
Collapse
|
35
|
Iwanami N, Takeshita K, Lawir DF, Suetake I, Tajima S, Sikora K, Trancoso I, ÓMeara C, Siamishi I, Takahama Y, Furutani-Seiki M, Kondoh H, Yonezawa Y, Schorpp M, Boehm T. Epigenetic Protection of Vertebrate Lymphoid Progenitor Cells by Dnmt1. iScience 2020; 23:101260. [PMID: 32585597 PMCID: PMC7322073 DOI: 10.1016/j.isci.2020.101260] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/28/2020] [Accepted: 06/08/2020] [Indexed: 11/27/2022] Open
Abstract
DNA methylation is a universal epigenetic mechanism involved in regulation of gene expression and genome stability. The DNA maintenance methylase DNMT1 ensures that DNA methylation patterns are faithfully transmitted to daughter cells during cell division. Because loss of DNMT1 is lethal, a pan-organismic analysis of DNMT1 function is lacking. We identified new recessive dnmt1 alleles in medaka and zebrafish and, guided by the structures of mutant proteins, generated a recessive variant of mouse Dnmt1. Each of the three missense mutations studied here distorts the catalytic pocket and reduces enzymatic activity. Because all three DNMT1 mutant animals are viable, it was possible to examine their phenotypes throughout life. The consequences of genome-wide hypomethylation of DNA of somatic tissues in the Dnmt1 mutants are surprisingly mild but consistently affect the development of the lymphoid lineage. Our findings indicate that developing lymphocytes in vertebrates are sensitive to perturbations of DNA maintenance methylation. Genetic screens identified recessive viable missense alleles of dnmt1 in teleosts A viable mouse Dnmt1 mutant generated by structure-guided precision mutagenesis Missense mutations distort the catalytic pocket and reduce enzymatic activity DNA hypomethylation consistently affects development of the lymphoid lineage
Collapse
Affiliation(s)
- Norimasa Iwanami
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Stuebeweg 51, 79108 Freiburg, Germany.
| | | | - Divine-Fondzenyuy Lawir
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Stuebeweg 51, 79108 Freiburg, Germany
| | - Isao Suetake
- Laboratory of Epigenetics, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Shoji Tajima
- Laboratory of Epigenetics, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Katarzyna Sikora
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Stuebeweg 51, 79108 Freiburg, Germany
| | - Inês Trancoso
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Stuebeweg 51, 79108 Freiburg, Germany
| | - Connor ÓMeara
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Stuebeweg 51, 79108 Freiburg, Germany
| | - Iliana Siamishi
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Stuebeweg 51, 79108 Freiburg, Germany
| | - Yousuke Takahama
- Thymus Biology Section, Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Division of Experimental Immunology, Institute of Advanced Medical Sciences, University of Tokushima, 3-18-15 Kuramoto, Tokushima 770-8503, Japan
| | - Makoto Furutani-Seiki
- Systems Biochemistry in Pathology and Regeneration, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755-8505, Japan
| | - Hisato Kondoh
- Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto 603-8555, Japan
| | - Yasushige Yonezawa
- High Pressure Protein Research Center, Institute of Advanced Technology, Kindai University, 930 Nishimitani, Kinokawa, Wakayama 649-6493, Japan
| | - Michael Schorpp
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Stuebeweg 51, 79108 Freiburg, Germany
| | - Thomas Boehm
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Stuebeweg 51, 79108 Freiburg, Germany.
| |
Collapse
|
36
|
Frantz WT, Ceol CJ. From Tank to Treatment: Modeling Melanoma in Zebrafish. Cells 2020; 9:cells9051289. [PMID: 32455885 PMCID: PMC7290816 DOI: 10.3390/cells9051289] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/16/2020] [Accepted: 05/18/2020] [Indexed: 12/24/2022] Open
Abstract
Melanoma is the deadliest form of skin cancer and one of few cancers with a growing incidence. A thorough understanding of its pathogenesis is fundamental to developing new strategies to combat mortality and morbidity. Zebrafish—due in large part to their tractable genetics, conserved pathways, and optical properties—have emerged as an excellent system to model melanoma. Zebrafish have been used to study melanoma from a single tumor initiating cell, through metastasis, remission, and finally into relapse. In this review, we examine seminal zebrafish studies that have advanced our understanding of melanoma.
Collapse
Affiliation(s)
- William Tyler Frantz
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA;
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Craig J Ceol
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA;
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Correspondence:
| |
Collapse
|
37
|
Fazio M, Ablain J, Chuan Y, Langenau DM, Zon LI. Zebrafish patient avatars in cancer biology and precision cancer therapy. Nat Rev Cancer 2020; 20:263-273. [PMID: 32251397 PMCID: PMC8011456 DOI: 10.1038/s41568-020-0252-3] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/05/2020] [Indexed: 01/05/2023]
Abstract
In precision oncology, two major strategies are being pursued for predicting clinically relevant tumour behaviours, such as treatment response and emergence of drug resistance: inference based on genomic, transcriptomic, epigenomic and/or proteomic analysis of patient samples, and phenotypic assays in personalized cancer avatars. The latter approach has historically relied on in vivo mouse xenografts and in vitro organoids or 2D cell cultures. Recent progress in rapid combinatorial genetic modelling, the development of a genetically immunocompromised strain for xenotransplantation of human patient samples in adult zebrafish and the first clinical trial using xenotransplantation in zebrafish larvae for phenotypic testing of drug response bring this tiny vertebrate to the forefront of the precision medicine arena. In this Review, we discuss advances in transgenic and transplantation-based zebrafish cancer avatars, and how these models compare with and complement mouse xenografts and human organoids. We also outline the unique opportunities that these different models present for prediction studies and current challenges they face for future clinical deployment.
Collapse
Affiliation(s)
- Maurizio Fazio
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Julien Ablain
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Yan Chuan
- Molecular Pathology Unit, Cancer Center, Massachusetts General Hospital Research Institute, Charlestown, MA, USA
| | - David M Langenau
- Molecular Pathology Unit, Cancer Center, Massachusetts General Hospital Research Institute, Charlestown, MA, USA
| | - Leonard I Zon
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA.
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Cambridge, MA, USA.
| |
Collapse
|
38
|
Xiao J, Glasgow E, Agarwal S. Zebrafish Xenografts for Drug Discovery and Personalized Medicine. Trends Cancer 2020; 6:569-579. [PMID: 32312681 DOI: 10.1016/j.trecan.2020.03.012] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/18/2020] [Accepted: 03/24/2020] [Indexed: 02/06/2023]
Abstract
Cancer is the second leading cause of death in the world. Given that cancer is a highly individualized disease, predicting the best chemotherapeutic treatment for individual patients can be difficult. Ex vivo models such as mouse patient-derived xenografts (PDX) and organoids are being developed to predict patient-specific chemosensitivity profiles before treatment in the clinic. Although promising, these models have significant disadvantages including long growth times that introduce genetic and epigenetic changes to the tumor. The zebrafish xenograft assay is ideal for personalized medicine. Imaging of the small, transparent fry is unparalleled among vertebrate organisms. In addition, the speed (5-7 days) and small patient tissue requirements (100-200 cells per animal) are unique features of the zebrafish xenograft model that enable patient-specific chemosensitivity analyses.
Collapse
Affiliation(s)
- Jerry Xiao
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Eric Glasgow
- Department of Oncology, Georgetown University Medical Center, Washington, DC 20057, USA.
| | - Seema Agarwal
- Department of Pathology, Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC 20007, USA.
| |
Collapse
|
39
|
La transplantation de cellules tumorales chez le poisson zèbre : de la recherche translationnelle à la médecine personnalisée. Bull Cancer 2020; 107:30-40. [DOI: 10.1016/j.bulcan.2019.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 12/24/2022]
|
40
|
Yao Y, Wang L, Wang X. Modeling of Solid-Tumor Microenvironment in Zebrafish (Danio Rerio) Larvae. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1219:413-428. [PMID: 32130712 DOI: 10.1007/978-3-030-34025-4_22] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The zebrafish larvae have emerged as a powerful model for studying tumorigenesis in vivo, with remarkable conservation with mammals in genetics, molecular and cell biology. Zebrafish tumor models bear the significant advantages of optical clarity in comparison to that in the mammalian models, allowing noninvasive investigation of the tumor cell and its microenvironment at single-cell resolution. Here we review recent progressions in the field of zebrafish models of solid tumor diseases in two main categories: the genetically engineered tumor models in which all cells in the tumor microenvironment are zebrafish cells, and xenograft tumor models in which the tumor microenvironment is composed of zebrafish cells and cells from other species. Notably, the zebrafish patient-derived xenograft (zPDX) models can be used for personalized drug assessment on primary tumor biopsies, including the pancreatic cancer. For the future studies, a series of high throughput drug screenings on the library of transgenic zebrafish models of solid tumor are expected to provide systematic database of oncogenic mutation, cell-of-origin, and leading compounds; and the humanization of zebrafish in genetics and cellular composition will make it more practical hosts for zPDX modeling. Together, zebrafish tumor model systems are unique and convenient in vivo platforms, with great potential to serve as valuable tools for cancer researches.
Collapse
Affiliation(s)
- Yuxiao Yao
- Cancer Metabolism Laboratory, Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Lei Wang
- Cancer Metabolism Laboratory, Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xu Wang
- Cancer Metabolism Laboratory, Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China.
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
41
|
Hason M, Bartůněk P. Zebrafish Models of Cancer-New Insights on Modeling Human Cancer in a Non-Mammalian Vertebrate. Genes (Basel) 2019; 10:genes10110935. [PMID: 31731811 PMCID: PMC6896156 DOI: 10.3390/genes10110935] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/11/2019] [Accepted: 11/11/2019] [Indexed: 12/26/2022] Open
Abstract
Zebrafish (Danio rerio) is a valuable non-mammalian vertebrate model widely used to study development and disease, including more recently cancer. The evolutionary conservation of cancer-related programs between human and zebrafish is striking and allows extrapolation of research outcomes obtained in fish back to humans. Zebrafish has gained attention as a robust model for cancer research mainly because of its high fecundity, cost-effective maintenance, dynamic visualization of tumor growth in vivo, and the possibility of chemical screening in large numbers of animals at reasonable costs. Novel approaches in modeling tumor growth, such as using transgene electroporation in adult zebrafish, could improve our knowledge about the spatial and temporal control of cancer formation and progression in vivo. Looking at genetic as well as epigenetic alterations could be important to explain the pathogenesis of a disease as complex as cancer. In this review, we highlight classic genetic and transplantation models of cancer in zebrafish as well as provide new insights on advances in cancer modeling. Recent progress in zebrafish xenotransplantation studies and drug screening has shown that zebrafish is a reliable model to study human cancer and could be suitable for evaluating patient-derived xenograft cell invasiveness. Rapid, large-scale evaluation of in vivo drug responses and kinetics in zebrafish could undoubtedly lead to new applications in personalized medicine and combination therapy. For all of the above-mentioned reasons, zebrafish is approaching a future of being a pre-clinical cancer model, alongside the mouse. However, the mouse will continue to be valuable in the last steps of pre-clinical drug screening, mostly because of the highly conserved mammalian genome and biological processes.
Collapse
|
42
|
Yan C, Yang Q, Do D, Brunson DC, Langenau DM. Adult immune compromised zebrafish for xenograft cell transplantation studies. EBioMedicine 2019; 47:24-26. [PMID: 31416720 PMCID: PMC6796557 DOI: 10.1016/j.ebiom.2019.08.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 08/06/2019] [Indexed: 01/10/2023] Open
Affiliation(s)
- Chuan Yan
- Molecular Pathology Unit, Massachusetts General Hospital Research Institute, Charlestown, MA 02129, United States of America; Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, United States of America; Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, United States of America; Harvard Stem Cell Institute, Cambridge, MA 02139, United States of America
| | - Qiqi Yang
- Molecular Pathology Unit, Massachusetts General Hospital Research Institute, Charlestown, MA 02129, United States of America; Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, United States of America; Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, United States of America; Harvard Stem Cell Institute, Cambridge, MA 02139, United States of America
| | - Daniel Do
- Molecular Pathology Unit, Massachusetts General Hospital Research Institute, Charlestown, MA 02129, United States of America; Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, United States of America; Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, United States of America; Harvard Stem Cell Institute, Cambridge, MA 02139, United States of America
| | - Dalton C Brunson
- Molecular Pathology Unit, Massachusetts General Hospital Research Institute, Charlestown, MA 02129, United States of America; Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, United States of America; Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, United States of America; Harvard Stem Cell Institute, Cambridge, MA 02139, United States of America
| | - David M Langenau
- Molecular Pathology Unit, Massachusetts General Hospital Research Institute, Charlestown, MA 02129, United States of America; Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, United States of America; Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, United States of America; Harvard Stem Cell Institute, Cambridge, MA 02139, United States of America.
| |
Collapse
|
43
|
Yan C, Brunson DC, Tang Q, Do D, Iftimia NA, Moore JC, Hayes MN, Welker AM, Garcia EG, Dubash TD, Hong X, Drapkin BJ, Myers DT, Phat S, Volorio A, Marvin DL, Ligorio M, Dershowitz L, McCarthy KM, Karabacak MN, Fletcher JA, Sgroi DC, Iafrate JA, Maheswaran S, Dyson NJ, Haber DA, Rawls JF, Langenau DM. Visualizing Engrafted Human Cancer and Therapy Responses in Immunodeficient Zebrafish. Cell 2019; 177:1903-1914.e14. [PMID: 31031007 PMCID: PMC6570580 DOI: 10.1016/j.cell.2019.04.004] [Citation(s) in RCA: 189] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 02/19/2019] [Accepted: 03/31/2019] [Indexed: 01/06/2023]
Abstract
Xenograft cell transplantation into immunodeficient mice has become the gold standard for assessing pre-clinical efficacy of cancer drugs, yet direct visualization of single-cell phenotypes is difficult. Here, we report an optically-clear prkdc-/-, il2rga-/- zebrafish that lacks adaptive and natural killer immune cells, can engraft a wide array of human cancers at 37°C, and permits the dynamic visualization of single engrafted cells. For example, photoconversion cell-lineage tracing identified migratory and proliferative cell states in human rhabdomyosarcoma, a pediatric cancer of muscle. Additional experiments identified the preclinical efficacy of combination olaparib PARP inhibitor and temozolomide DNA-damaging agent as an effective therapy for rhabdomyosarcoma and visualized therapeutic responses using a four-color FUCCI cell-cycle fluorescent reporter. These experiments identified that combination treatment arrested rhabdomyosarcoma cells in the G2 cell cycle prior to induction of apoptosis. Finally, patient-derived xenografts could be engrafted into our model, opening new avenues for developing personalized therapeutic approaches in the future.
Collapse
Affiliation(s)
- Chuan Yan
- Molecular Pathology Unit, Massachusetts General Hospital Research Institute, Charlestown, MA 02129, USA; Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA; Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Stem Cell Institute, Cambridge, MA 02139, USA
| | - Dalton C Brunson
- Molecular Pathology Unit, Massachusetts General Hospital Research Institute, Charlestown, MA 02129, USA; Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA; Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Stem Cell Institute, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Bethesda, MD 20815, USA
| | - Qin Tang
- Molecular Pathology Unit, Massachusetts General Hospital Research Institute, Charlestown, MA 02129, USA; Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA; Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Stem Cell Institute, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Bethesda, MD 20815, USA
| | - Daniel Do
- Molecular Pathology Unit, Massachusetts General Hospital Research Institute, Charlestown, MA 02129, USA; Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA; Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Stem Cell Institute, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Bethesda, MD 20815, USA
| | - Nicolae A Iftimia
- Molecular Pathology Unit, Massachusetts General Hospital Research Institute, Charlestown, MA 02129, USA; Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA; Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Stem Cell Institute, Cambridge, MA 02139, USA
| | - John C Moore
- Molecular Pathology Unit, Massachusetts General Hospital Research Institute, Charlestown, MA 02129, USA; Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA; Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Stem Cell Institute, Cambridge, MA 02139, USA
| | - Madeline N Hayes
- Molecular Pathology Unit, Massachusetts General Hospital Research Institute, Charlestown, MA 02129, USA; Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA; Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Stem Cell Institute, Cambridge, MA 02139, USA
| | - Alessandra M Welker
- Molecular Pathology Unit, Massachusetts General Hospital Research Institute, Charlestown, MA 02129, USA; Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA; Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Stem Cell Institute, Cambridge, MA 02139, USA
| | - Elaine G Garcia
- Molecular Pathology Unit, Massachusetts General Hospital Research Institute, Charlestown, MA 02129, USA; Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA; Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Stem Cell Institute, Cambridge, MA 02139, USA
| | - Taronish D Dubash
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Xin Hong
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Benjamin J Drapkin
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - David T Myers
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Sarah Phat
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Angela Volorio
- Molecular Pathology Unit, Massachusetts General Hospital Research Institute, Charlestown, MA 02129, USA; Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Dieuwke L Marvin
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Matteo Ligorio
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Lyle Dershowitz
- Molecular Pathology Unit, Massachusetts General Hospital Research Institute, Charlestown, MA 02129, USA; Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA; Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Stem Cell Institute, Cambridge, MA 02139, USA
| | - Karin M McCarthy
- Molecular Pathology Unit, Massachusetts General Hospital Research Institute, Charlestown, MA 02129, USA; Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA; Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Stem Cell Institute, Cambridge, MA 02139, USA
| | - Murat N Karabacak
- Shriners Hospitals for Children-Boston, MA 02114, USA; Center for Engineering in Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02114, USA
| | - Jonathan A Fletcher
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Dennis C Sgroi
- Molecular Pathology Unit, Massachusetts General Hospital Research Institute, Charlestown, MA 02129, USA; Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - John A Iafrate
- Molecular Pathology Unit, Massachusetts General Hospital Research Institute, Charlestown, MA 02129, USA; Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Shyamala Maheswaran
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Nick J Dyson
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Daniel A Haber
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA; Howard Hughes Medical Institute, Bethesda, MD 20815, USA
| | - John F Rawls
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - David M Langenau
- Molecular Pathology Unit, Massachusetts General Hospital Research Institute, Charlestown, MA 02129, USA; Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA; Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Stem Cell Institute, Cambridge, MA 02139, USA.
| |
Collapse
|
44
|
Cagan RL, Zon LI, White RM. Modeling Cancer with Flies and Fish. Dev Cell 2019; 49:317-324. [PMID: 31063751 PMCID: PMC6506185 DOI: 10.1016/j.devcel.2019.04.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/07/2019] [Accepted: 04/08/2019] [Indexed: 12/11/2022]
Abstract
Cancer has joined heart disease as the leading source of mortality in the US. In an era of organoids, patient-derived xenografts, and organs on a chip, model organisms continue to thrive with a combination of powerful genetic tools, rapid pace of discovery, and affordability. Model organisms enable the analysis of both the tumor and its associated microenvironment, aspects that are particularly relevant to our understanding of metastasis and drug resistance. In this Perspective, we explore some of the strengths of fruit flies and zebrafish for addressing fundamental cancer questions and how these two organisms can contribute to identifying promising therapeutic candidates.
Collapse
Affiliation(s)
- Ross L Cagan
- Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Leonard I Zon
- Children's Hospital Boston, Harvard Medical School, Howard Hughes Medical Institute, Boston, MA, USA.
| | - Richard M White
- Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
45
|
Konantz M, Müller JS, Lengerke C. Zebrafish Xenografts for the In Vivo Analysis of Healthy and Malignant Human Hematopoietic Cells. Methods Mol Biol 2019; 2017:205-217. [PMID: 31197779 DOI: 10.1007/978-1-4939-9574-5_16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The zebrafish is a powerful vertebrate model for genetic studies on embryonic development and organogenesis. In the last decades, zebrafish were furthermore increasingly used for disease modeling and investigation of cancer biology. Zebrafish are particularly used for mutagenesis and small molecule screens, as well as for live imaging assays that provide unique opportunities to monitor cell behavior, both on a single cell and whole organism level in real time. Zebrafish have been also used for in vivo investigations of human cells transplanted into embryos or adult animals; this zebrafish xenograft model can be considered as an intermediate assay between in vitro techniques and more time-consuming and expensive mammalian models.Here, we present a protocol for transplantation of healthy and malignant human hematopoietic cells into larval zebrafish; transplantation into adult zebrafish and possible advantages and limitations of the zebrafish compared to murine xenograft models are discussed.
Collapse
Affiliation(s)
- Martina Konantz
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Joëlle S Müller
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Claudia Lengerke
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland.
| |
Collapse
|
46
|
Neal JA, Meek K. Deciphering phenotypic variance in different models of DNA-PKcs deficiency. DNA Repair (Amst) 2018; 73:7-16. [PMID: 30409670 DOI: 10.1016/j.dnarep.2018.10.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/09/2018] [Accepted: 10/14/2018] [Indexed: 02/02/2023]
Abstract
DNA-PKcs deficiency has been studied in numerous animal models and cell culture systems. In previous studies of kinase inactivating mutations in cell culture systems, ablation of DNA-PK's catalytic activity results in a cell phenotype that is virtually indistinguishable from that ascribed to complete loss of the enzyme. However, a recent compelling study demonstrates a remarkably more severe phenotype in mice harboring a targeted disruption of DNA-PK's ATP binding site as compared to DNA-PKcs deficient mice. Here we investigate the mechanism for these divergent results. We find that kinase inactivating DNA-PKcs mutants markedly radiosensitize immortalized DNA-PKcs deficient cells, but have no substantial effects on transformed DNA-PKcs deficient cells. Since the non-homologous end joining mechanism likely functions similarly in all of these cell strains, it seems unlikely that kinase inactive DNA-PK could impair the end joining mechanism in some cell types, but not in others. In fact, we observed no significant differences in either episomal or chromosomal end joining assays in cells expressing kinase inactivated DNA-PKcs versus no DNA-PKcs. Several potential explanations could explain these data including a non-catalytic role for DNA-PKcs in promoting cell death, or alteration of gene expression by loss of DNA-PKcs as opposed to inhibition of its catalytic activity. Finally, controversy exists as to whether DNA-PKcs autophosphorylates or is the target of other PIKKs; we present data demonstrating that DNA-PK primarily autophosphorylates.
Collapse
Affiliation(s)
- Jessica A Neal
- College of Veterinary Medicine, Department of Microbiology & Molecular Genetics, and Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, MI 48824, USA
| | - Katheryn Meek
- College of Veterinary Medicine, Department of Microbiology & Molecular Genetics, and Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
47
|
de Pater E, Trompouki E. Bloody Zebrafish: Novel Methods in Normal and Malignant Hematopoiesis. Front Cell Dev Biol 2018; 6:124. [PMID: 30374440 PMCID: PMC6196227 DOI: 10.3389/fcell.2018.00124] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 09/10/2018] [Indexed: 12/19/2022] Open
Abstract
Hematopoiesis is an optimal system for studying stem cell maintenance and lineage differentiation under physiological and pathological conditions. In vertebrate organisms, billions of differentiated hematopoietic cells need to be continuously produced to replenish the blood cell pool. Disruptions in this process have immediate consequences for oxygen transport, responses against pathogens, maintenance of hemostasis and vascular integrity. Zebrafish is a widely used and well-established model for studying the hematopoietic system. Several new hematopoietic regulators were identified in genetic and chemical screens using the zebrafish model. Moreover, zebrafish enables in vivo imaging of hematopoietic stem cell generation and differentiation during embryogenesis, and adulthood. Finally, zebrafish has been used to model hematopoietic diseases. Recent technological advances in single-cell transcriptome analysis, epigenetic regulation, proteomics, metabolomics, and processing of large data sets promise to transform the current understanding of normal, abnormal, and malignant hematopoiesis. In this perspective, we discuss how the zebrafish model has proven beneficial for studying physiological and pathological hematopoiesis and how these novel technologies are transforming the field.
Collapse
Affiliation(s)
- Emma de Pater
- Department of Hematology, Erasmus MC, Rotterdam, Netherlands
| | - Eirini Trompouki
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| |
Collapse
|
48
|
Stuelten CH, Parent CA, Montell DJ. Cell motility in cancer invasion and metastasis: insights from simple model organisms. Nat Rev Cancer 2018; 18:296-312. [PMID: 29546880 PMCID: PMC6790333 DOI: 10.1038/nrc.2018.15] [Citation(s) in RCA: 352] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metastasis remains the greatest challenge in the clinical management of cancer. Cell motility is a fundamental and ancient cellular behaviour that contributes to metastasis and is conserved in simple organisms. In this Review, we evaluate insights relevant to human cancer that are derived from the study of cell motility in non-mammalian model organisms. Dictyostelium discoideum, Caenorhabditis elegans, Drosophila melanogaster and Danio rerio permit direct observation of cells moving in complex native environments and lend themselves to large-scale genetic and pharmacological screening. We highlight insights derived from each of these organisms, including the detailed signalling network that governs chemotaxis towards chemokines; a novel mechanism of basement membrane invasion; the positive role of E-cadherin in collective direction-sensing; the identification and optimization of kinase inhibitors for metastatic thyroid cancer on the basis of work in flies; and the value of zebrafish for live imaging, especially of vascular remodelling and interactions between tumour cells and host tissues. While the motility of tumour cells and certain host cells promotes metastatic spread, the motility of tumour-reactive T cells likely increases their antitumour effects. Therefore, it is important to elucidate the mechanisms underlying all types of cell motility, with the ultimate goal of identifying combination therapies that will increase the motility of beneficial cells and block the spread of harmful cells.
Collapse
Affiliation(s)
- Christina H. Stuelten
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Carole A. Parent
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
- Department of Pharmacology, Michigan Medicine, Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- ;
| | - Denise J. Montell
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA, USA
- ;
| |
Collapse
|
49
|
Mizgirev IV, Safina DR, Demidyuk IV, Kostrov SV. Organism-Level Tumor Models in Zebrafish Danio rerio. Acta Naturae 2018; 10:24-29. [PMID: 30116612 PMCID: PMC6087818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Indexed: 11/18/2022] Open
Abstract
Development and implementation of adequate organism-level models is one of the key elements in biomedical research that focuses on experimental oncology. Over the last decade, studies using Zebrafish (Danio rerio) have gained in popularity in this area of research. This review describes the various approaches that have been used in developing highly effective models for oncological (clinical term, better cancer or tumor) studies based on D. rerio. Priority is given to transplantation models of cancer and their application to optically transparent D. rerio lines, including clonal ones, and utilization tumors of various origins bearing fluorescent labels. The combination of tumor transplantation at organism-level models in transparent clonal D. rerio lines with fluorescent microscopy, FACS-fractionation of tumor cell subsets, and transcription analysis can result in one of the most promising research approaches in providing new information on tumor formation and growth.
Collapse
Affiliation(s)
- I. V. Mizgirev
- N.N. Petrov National Medical Research Center of Oncology, Ministry of Health of Russia, Leningradskaya Str., 68, Pesochnyy Settlement, St. Petersburg, 197758, Russia
| | - D. R. Safina
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov Sq., 2, Moscow, 123182 , Russia
| | - I. V. Demidyuk
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov Sq., 2, Moscow, 123182 , Russia
| | - S. V. Kostrov
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov Sq., 2, Moscow, 123182 , Russia
| |
Collapse
|
50
|
Kasheta M, Painter CA, Moore FE, Lobbardi R, Bryll A, Freiman E, Stachura D, Rogers AB, Houvras Y, Langenau DM, Ceol CJ. Identification and characterization of T reg-like cells in zebrafish. J Exp Med 2017; 214:3519-3530. [PMID: 29066577 PMCID: PMC5716030 DOI: 10.1084/jem.20162084] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 08/04/2017] [Accepted: 09/13/2017] [Indexed: 01/07/2023] Open
Abstract
Kasheta et al. report the identification of T reg–like cells in zebrafish, a means to track and live-image these cells, and foxp3a-deficient mutants that display lymphoproliferation, severe inflammation, and other hallmarks of T reg deficiency syndromes. Regulatory T (T reg) cells are a specialized sublineage of T lymphocytes that suppress autoreactive T cells. Functional studies of T reg cells in vitro have defined multiple suppression mechanisms, and studies of T reg–deficient humans and mice have made clear the important role that these cells play in preventing autoimmunity. However, many questions remain about how T reg cells act in vivo. Specifically, it is not clear which suppression mechanisms are most important, where T reg cells act, and how they get there. To begin to address these issues, we sought to identify T reg cells in zebrafish, a model system that provides unparalleled advantages in live-cell imaging and high-throughput genetic analyses. Using a FOXP3 orthologue as a marker, we identified CD4-enriched, mature T lymphocytes with properties of T reg cells. Zebrafish mutant for foxp3a displayed excess T lymphocytes, splenomegaly, and a profound inflammatory phenotype that was suppressed by genetic ablation of lymphocytes. This study identifies T reg–like cells in zebrafish, providing both a model to study the normal functions of these cells in vivo and mutants to explore the consequences of their loss.
Collapse
Affiliation(s)
- Melissa Kasheta
- Program in Molecular Medicine and Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA
| | - Corrie A Painter
- Program in Molecular Medicine and Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA
| | - Finola E Moore
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, MA.,Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA.,Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA.,Harvard Stem Cell Institute, Cambridge, MA
| | - Riadh Lobbardi
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, MA.,Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA.,Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA.,Harvard Stem Cell Institute, Cambridge, MA
| | - Alysia Bryll
- Program in Molecular Medicine and Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA
| | - Eli Freiman
- Program in Molecular Medicine and Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA
| | - David Stachura
- Department of Biological Sciences, California State University, Chico, CA
| | - Arlin B Rogers
- Department of Biomedical Sciences, Cummings School of Veterinary Medicine at Tufts University, North Grafton, MA
| | - Yariv Houvras
- Departments of Surgery and Medicine, Weill Cornell Medical College, New York, NY
| | - David M Langenau
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, MA.,Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA.,Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA.,Harvard Stem Cell Institute, Cambridge, MA
| | - Craig J Ceol
- Program in Molecular Medicine and Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA
| |
Collapse
|