1
|
Ballerini C, Amoriello R, Maghrebi O, Bellucci G, Addazio I, Betti M, Aprea MG, Masciulli C, Caporali A, Penati V, Ballerini C, De Meo E, Portaccio E, Salvetti M, Amato MP. Exploring the role of EBV in multiple sclerosis pathogenesis through EBV interactome. Front Immunol 2025; 16:1557483. [PMID: 40242760 PMCID: PMC11999961 DOI: 10.3389/fimmu.2025.1557483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 03/18/2025] [Indexed: 04/18/2025] Open
Abstract
Background Epstein-Barr virus (EBV) is a known risk factor for multiple sclerosis (MS), even though the underlying molecular mechanisms are unclear and engage multiple immune pathways. Furthermore, the ultimate role of EBV in MS pathogenesis is still elusive. In contrast, Cytomegalovirus (CMV) has been identified as a protective factor for MS. Objectives This study aims to identify MS-associated genes that overlap with EBV interactome and to examine their expression in immune and glial cell subtypes. Methods We used P-HIPSTer, GWAS, and the Human Protein Atlas (HPA) to derive data on the EBV interactome, MS-associated genes and single-cell gene expression in immune and glial cells. The geneOverlap and dplyr R packages identified overlapping genes. A similar analysis was done for CMV and Adenovirus as negative control. Metascape and GTEx analyzed biological pathways and brain-level gene expression; transcriptomic analysis was performed on glial cells and peripheral blood in MS and controls. All the analyses performed in this study were generated using publicly available data sets. Results We identified a "core" group of 21 genes shared across EBV interactome, MS genes, and immune and glial cells (p<0.001). Pathway analysis revealed expected associations, such as immune system activation, and unforeseen results, like the prolactin signaling pathway. BCL2 in astrocytes, MINK1 in microglia were significantly upregulated while AHI1 was downregulated in MS compared to controls. Conclusions Our findings offer novel insights into EBV and CMV interaction with immune and glial cells in MS, that may shed light on mechanisms involved in disease pathophysiology.
Collapse
Affiliation(s)
- Chiara Ballerini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Roberta Amoriello
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Olfa Maghrebi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Gianmarco Bellucci
- Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Ilaria Addazio
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Matteo Betti
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Maria Grazia Aprea
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Camilla Masciulli
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Arianna Caporali
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Valeria Penati
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Clara Ballerini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Ermelinda De Meo
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Emilio Portaccio
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Marco Salvetti
- Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
- Neuromed, IRCCS Istituto Neurologico Mediterraneo (INM), Pozzilli, Italy
| | - Maria Pia Amato
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
- Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Don Carlo Gnocchi, University of Florence, Florence, Italy
| |
Collapse
|
2
|
Joachim J, Maselli D, Petsolari E, Aman J, Swiatlowska P, Killock D, Chaudhry H, Zarban AA, Sarker M, Fraser P, Cleary SJ, Amison R, Cuthbert I, Yang Y, Meier M, Fraternali F, Brain SD, Shah AM, Ivetic A. TNIK: A redox sensor in endothelial cell permeability. SCIENCE ADVANCES 2024; 10:eadk6583. [PMID: 39705357 DOI: 10.1126/sciadv.adk6583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/18/2024] [Indexed: 12/22/2024]
Abstract
Dysregulation of endothelial barrier integrity can lead to vascular leak and potentially fatal oedema. TNF-α controls endothelial permeability during inflammation and requires the actin organizing Ezrin-Radixin-Moesin (ERM) proteins. We identified TRAF2 and NCK-interacting kinase (TNIK) as a kinase directly phosphorylating and activating ERM, specifically at the plasma membrane of primary human endothelial cells. TNIK mediates TNF-α-dependent cellular stiffness and paracellular gap formation in vitro and is essential in driving inflammatory oedema formation in vivo. Unlike its homologs, TNIK activity is negatively and reversibly regulated by H2O2-mediated oxidation of C202 within the kinase domain. TNIK oxidation results in intermolecular disulfide bond formation and loss of kinase activity. Pharmacologic inhibition of endogenous reactive oxygen species production in endothelial cells elevated TNIK-dependent ERM phosphorylation, endothelial cell contraction, and cell rounding. Together, we highlight an interplay between TNIK, ERM phosphorylation, and redox signalling in regulating TNF-induced endothelial cell permeability.
Collapse
Affiliation(s)
- Justin Joachim
- School of Cardiovascular and Metabolic Medicine and Sciences, James Black Centre, BHF Centre of Research Excellence, 125 Coldharbour Lane, King's College London, London SE5 9NU, UK
| | - Davide Maselli
- School of Cardiovascular and Metabolic Medicine and Sciences, James Black Centre, BHF Centre of Research Excellence, 125 Coldharbour Lane, King's College London, London SE5 9NU, UK
| | - Emmanouela Petsolari
- Randall Centre for Cell and Molecular Biology, King's College London, London SE1 1UL, UK
| | - Jurjan Aman
- Department of Pulmonary Medicine, Amsterdam University Medical Center, location VUMC, Amsterdam, The Netherlands
| | - Pamela Swiatlowska
- Myocardial Function, National Heart and Lung Institute, Imperial College London, ICTEM, Hammersmith Hospital, London, UK
| | - David Killock
- School of Cardiovascular and Metabolic Medicine and Sciences, James Black Centre, BHF Centre of Research Excellence, 125 Coldharbour Lane, King's College London, London SE5 9NU, UK
| | - Hiba Chaudhry
- School of Cardiovascular and Metabolic Medicine and Sciences, James Black Centre, BHF Centre of Research Excellence, 125 Coldharbour Lane, King's College London, London SE5 9NU, UK
| | - Ali A Zarban
- School of Cardiovascular and Metabolic Medicine and Sciences, James Black Centre, BHF Centre of Research Excellence, 125 Coldharbour Lane, King's College London, London SE5 9NU, UK
- Department of Pharmacological Sciences, Faculty of Pharmacy, Jazan University, Saudi Arabia
| | - Mosharraf Sarker
- Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Liverpool, UK
| | - Paul Fraser
- School of Cardiovascular and Metabolic Medicine and Sciences, James Black Centre, BHF Centre of Research Excellence, 125 Coldharbour Lane, King's College London, London SE5 9NU, UK
| | - Simon J Cleary
- Institute of Pharmaceutical Science, King's College London, Floor 5, Southwark Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | - Richard Amison
- School of Cancer and Pharmaceutical Sciences, Pulmonary Pharmacology Unit, King's College London, London, UK
| | - Isabelle Cuthbert
- School of Cardiovascular and Metabolic Medicine and Sciences, James Black Centre, BHF Centre of Research Excellence, 125 Coldharbour Lane, King's College London, London SE5 9NU, UK
| | - Yue Yang
- School of Cardiovascular and Metabolic Medicine and Sciences, James Black Centre, BHF Centre of Research Excellence, 125 Coldharbour Lane, King's College London, London SE5 9NU, UK
| | - Magda Meier
- School of Genetics and Genomic Medicine, University College London Institute of Child Health, London, UK
| | - Franca Fraternali
- Randall Centre for Cell and Molecular Biology, King's College London, London SE1 1UL, UK
- Division of Biosciences, Structural and Molecular Biology Department, University College London, Darwin (SMB) Building, Gower Street, London WC1E 6BT, UK
- Department of Structural and Molecular Biology, Division of Biosciences and Institute of Structural and Molecular Biology, University College London, London WC1E 6BT, UK Department of Biological Sciences, Birkbeck, University of London, London WC1E 7HX, United Kingdom
| | - Susan D Brain
- School of Cardiovascular and Metabolic Medicine and Sciences, James Black Centre, BHF Centre of Research Excellence, 125 Coldharbour Lane, King's College London, London SE5 9NU, UK
| | - Ajay M Shah
- School of Cardiovascular and Metabolic Medicine and Sciences, James Black Centre, BHF Centre of Research Excellence, 125 Coldharbour Lane, King's College London, London SE5 9NU, UK
| | - Aleksandar Ivetic
- School of Cardiovascular and Metabolic Medicine and Sciences, James Black Centre, BHF Centre of Research Excellence, 125 Coldharbour Lane, King's College London, London SE5 9NU, UK
| |
Collapse
|
3
|
Kot A, Koszewska D, Ochman B, Świętochowska E. Clinical Potential of Misshapen/NIKs-Related Kinase (MINK) 1-A Many-Sided Element of Cell Physiology and Pathology. Curr Issues Mol Biol 2024; 46:13811-13845. [PMID: 39727954 PMCID: PMC11727420 DOI: 10.3390/cimb46120826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024] Open
Abstract
Misshapen/NIKs-related kinase (MINK) 1 belongs to the mammalian germinal center kinase (GCK) family. It contains the N-terminal, conserved kinase domain, a coiled-coil region, a proline-rich region, and a GCK, C-terminal domain with the Citron-NIK-Homology (CNH) domain. The kinase is an essential component of cellular signaling pathways, which include Wnt signaling, JNK signaling, pathways engaging Ras proteins, the Hippo pathway, and STRIPAK complexes. It thus contributes to regulating the cell cycle, apoptosis, cytoskeleton organization, cell migration, embryogenesis, or tissue homeostasis. MINK1 plays an important role in immunological responses, inhibiting Th17 and Th1 cell differentiation and regulating NLRP3 inflammasome function. It may be considered a link between ROS and the immunological system, and a potential antiviral target for human enteroviruses. The kinase has been implicated in the pathogenesis of sepsis, rheumatoid arthritis, asthma, SLE, and more. It is also involved in tumorigenesis and drug resistance in cancer. Silencing MINK1 reduces cancer cell migration, suggesting potential for new therapeutic approaches. Targeting MINK1 could be a promising treatment strategy for patients insensitive to current chemotherapies, and could improve their prognosis. Moreover, MINK1 plays an important role in the nervous system and the cardiovascular system development and function. The modulation of MINK1 activity could influence the course of neurodegenerative diseases, including Alzheimer's disease. Further exploration of the activity of the kinase could also help in gaining more insight into factors involved in thrombosis or congenital heart disease. This review aims to summarize the current knowledge on MINK1, highlight its therapeutic and prognostic potential, and encourage more studies in this area.
Collapse
Affiliation(s)
| | | | | | - Elżbieta Świętochowska
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-800 Zabrze, Poland; (A.K.); (D.K.); (B.O.)
| |
Collapse
|
4
|
Wang J, Zhang Y, Tang Q, Zhang Y, Yin Y, Chen L. Application of Antioxidant Compounds in Bone Defect Repair. Antioxidants (Basel) 2024; 13:789. [PMID: 39061858 PMCID: PMC11273992 DOI: 10.3390/antiox13070789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Bone defects caused by trauma, tumor resection, and infections are significant clinical challenges. Excessive reactive oxygen species (ROS) usually accumulate in the defect area, which may impair the function of cells involved in bone formation, posing a serious challenge for bone repair. Due to the potent ROS scavenging ability, as well as potential anti-inflammatory and immunomodulatory activities, antioxidants play an indispensable role in the maintenance and protection of bone health and have gained increasing attention in recent years. This narrative review aims to give an overview of the main research directions on the application of antioxidant compounds in bone defect repair over the past decade. In addition, the positive effects of various antioxidants and their biomaterial delivery systems in bone repair are summarized to provide new insights for exploring antioxidant-based strategies for bone defect repair.
Collapse
Affiliation(s)
- Jiajia Wang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Yubing Zhang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Qingming Tang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Yinan Zhang
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ying Yin
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| |
Collapse
|
5
|
Wu MY, Luo HL, Chang YC, Yu CY, Sung WW. Exercise may improve lung immunity after surgical stress: Evidence from a nephrectomy model via a bioinformatic analysis. PLoS One 2024; 19:e0303334. [PMID: 38848417 PMCID: PMC11161109 DOI: 10.1371/journal.pone.0303334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 04/23/2024] [Indexed: 06/09/2024] Open
Abstract
Exercise offers numerous benefits to cancer patients and plays an essential role in postsurgical cancer rehabilitation. However, there is a lack of research examining the effects of exercise after the surgical stress of nephrectomy. To address this gap, we created an animal model that simulated patients who had undergone nephrectomy with or without an exercise intervention. Next, we performed a bioinformatic analysis based on the data generated by the RNA sequencing of the lung tissue sample. An overrepresentation analysis was conducted using two genome databases (Gene Ontology and Kyoto Encyclopedia of Genes and Genomes [KEGG]). A KEGG analysis of the exercise-treated nephrectomy mice revealed enrichment in immune-related pathways, particularly in the NF-κB and B cell-related pathways. The expression of CD79A and IGHD, which are responsible for B cell differentiation and proliferation, was upregulated in the nephrectomy mice. Differential gene expression was categorized as significantly upregulated or downregulated according to nephrectomy and exercise groups. Notably, we identified several gene expression reversals in the nephrectomy groups with exercise that were not found in the nephrectomy without exercise or control groups. Our preliminary results potentially reveal a genetic landscape for the underlying mechanisms of the effects of exercise on our nephrectomy model.
Collapse
Affiliation(s)
- Min-You Wu
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Urology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Hao-Lun Luo
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ya-Chuan Chang
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Urology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chia-Ying Yu
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Urology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Wen-Wei Sung
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Urology, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
6
|
Abimannan T, Parthibane V, Le SH, Vijaykrishna N, Fox SD, Karim B, Kunduri G, Blankenberg D, Andresson T, Bamba T, Acharya U, Acharya JK. Sphingolipid biosynthesis is essential for metabolic rewiring during T H17 cell differentiation. SCIENCE ADVANCES 2024; 10:eadk1045. [PMID: 38657065 PMCID: PMC11042737 DOI: 10.1126/sciadv.adk1045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 03/22/2024] [Indexed: 04/26/2024]
Abstract
T helper 17 (TH17) cells are implicated in autoimmune diseases, and several metabolic processes are shown to be important for their development and function. In this study, we report an essential role for sphingolipids synthesized through the de novo pathway in TH17 cell development. Deficiency of SPTLC1, a major subunit of serine palmitoyl transferase enzyme complex that catalyzes the first and rate-limiting step of de novo sphingolipid synthesis, impaired glycolysis in differentiating TH17 cells by increasing intracellular reactive oxygen species (ROS) through enhancement of nicotinamide adenine dinucleotide phosphate oxidase 2 activity. Increased ROS leads to impaired activation of mammalian target of rapamycin C1 and reduced expression of hypoxia-inducible factor 1-alpha and c-Myc-induced glycolytic genes. SPTLCI deficiency protected mice from developing experimental autoimmune encephalomyelitis and experimental T cell transfer colitis. Our results thus show a critical role for de novo sphingolipid biosynthetic pathway in shaping adaptive immune responses with implications in autoimmune diseases.
Collapse
Affiliation(s)
| | - Velayoudame Parthibane
- Cancer and Developmental Biology Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Si-Hung Le
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Nagampalli Vijaykrishna
- Genomic Medicine Institute and Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Stephen D. Fox
- Mass Spectrometry Group, National Cancer Institute, Frederick, MD, USA
| | - Baktiar Karim
- Molecular Histopathology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Govind Kunduri
- Cancer and Developmental Biology Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Daniel Blankenberg
- Genomic Medicine Institute and Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | - Takeshi Bamba
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Usha Acharya
- Cancer and Developmental Biology Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Jairaj K. Acharya
- Cancer and Developmental Biology Laboratory, National Cancer Institute, Frederick, MD, USA
| |
Collapse
|
7
|
沈 梦, 赵 娜, 邓 晓, 邓 敏. [High expression of COX6B2 in gastric cancer is associated with poor long-term prognosis and promotes cell proliferation and cell cycle progression by inhibiting p53 signaling]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:289-297. [PMID: 38501414 PMCID: PMC10954525 DOI: 10.12122/j.issn.1673-4254.2024.02.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Indexed: 03/20/2024]
Abstract
OBJECTIVE To investigate the effect of COX6B2 expression in gastric cancer tissues on the patients' long-term prognosis and its underlying mechanism. METHODS Based on the public databases and the medical records of patients, we analyzed the expression level of COX6B2 in gastric cancer and adjacent tissues and its influence on long-term prognosis of the patients. Enrichment analysis were used to predict the possible role of COX6B2 in gastric cancer. The effects of lentivirusmediated COX6B2 knockdown on biological behaviors of gastric cancer cells were examined using CCK-8 assay, flow cytometry, and Western blotting. RESULTS TCGA database and the results of immunohistochemistry, Western blotting and realtime PCR all demonstrated a significantly higher expression of COX6B2 in gastric cancer tissues (P < 0.05). Kaplan-Meier plotter database and Kaplan-Meier curves showed that the patients with high COX6B2 expression had significantly shorter postoperative survival (P < 0.05). A high expression of COX6B2 in gastric cancer tissues was closely correlated with clinicopathologic stage, CEA and CA19-9 (P < 0.05). A high expression of COX6B2, CEA level≥5 μg/L and CA19-9 level≥37 kU/L were independent risk factors affecting postoperative 5-year survival rate of gastric cancer patients (P < 0.05), and COX6B2 expression level had a predictive value for long-term prognosis of the patients (P < 0.05). GO and KEGG enrichment analyses showed that COX6B2 was mainly involved in the regulation of cell cycle. In the in vitro cell experiment, COX6B2 overexpression significantly promoted gastric cancer cell proliferation, increased the percentage of G1/S phase cells and inhibited the cellular expressions of p53 and p21 (P < 0.05). CONCLUSION s COX6B2 is highly expressed in gastric cancer and is closely correlated with a poor long-term prognosis of the patients possibly by promoting gastric cancer cell proliferation and regulating cell cycle.
Collapse
Affiliation(s)
- 梦迪 沈
- 蚌埠医学院第一附属医院消化内科,安徽 蚌埠 233004Department of Gastroenterology, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
- 蚌埠医学院,安徽省生化药物研究工程中心,安徽 蚌埠 233030Anhui Provincial Biochemical Drug Research Engineering Center, Bengbu Medical College, Bengbu 233030, China
| | - 娜 赵
- 蚌埠医学院第一附属医院消化内科,安徽 蚌埠 233004Department of Gastroenterology, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
- 蚌埠医学院,安徽省生化药物研究工程中心,安徽 蚌埠 233030Anhui Provincial Biochemical Drug Research Engineering Center, Bengbu Medical College, Bengbu 233030, China
| | - 晓晶 邓
- 蚌埠医学院第一附属医院消化内科,安徽 蚌埠 233004Department of Gastroenterology, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - 敏 邓
- 蚌埠医学院第一附属医院消化内科,安徽 蚌埠 233004Department of Gastroenterology, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| |
Collapse
|
8
|
Shah R, Ibis B, Kashyap M, Boussiotis VA. The role of ROS in tumor infiltrating immune cells and cancer immunotherapy. Metabolism 2024; 151:155747. [PMID: 38042522 PMCID: PMC10872310 DOI: 10.1016/j.metabol.2023.155747] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/16/2023] [Accepted: 11/29/2023] [Indexed: 12/04/2023]
Abstract
Reactive oxygen species (ROS) are a group of short-lived highly reactive molecules formed intracellularly from molecular oxygen. ROS can alter biochemical, transcriptional, and epigenetic programs and have an indispensable role in cellular function. In immune cells, ROS are mediators of specialized functions such as phagocytosis, antigen presentation, activation, cytolysis, and differentiation. ROS have a fundamental role in the tumor microenvironment (TME) where they are produced by immune cell-intrinsic and -extrinsic mechanisms. ROS can act as a double-edged sword with short exposures leading to activation in various innate and adaptative immune cells, and prolonged exposures, unopposed by redox balancing antioxidants leading to exhaustion, immunosuppression, and unresponsiveness to cancer immunotherapy. Due to its plasticity and impact on the anti-tumor function of immune cells, attempts are currently in process to harness ROS biology with the purpose to improve contemporary strategies of cancer immunotherapy. Here, we provide a short overview how ROS and various antioxidant systems impact on the function of innate and adaptive immune system cells with emphasis on the TME and immune-based therapies for cancer.
Collapse
Affiliation(s)
- Rushil Shah
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States of America; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States of America
| | - Betul Ibis
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States of America; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States of America
| | - Monisha Kashyap
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States of America; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States of America
| | - Vassiliki A Boussiotis
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States of America; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States of America; Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States of America.
| |
Collapse
|
9
|
Wang PF, Jiang F, Zeng QM, Yin WF, Hu YZ, Li Q, Hu ZL. Mitochondrial and metabolic dysfunction of peripheral immune cells in multiple sclerosis. J Neuroinflammation 2024; 21:28. [PMID: 38243312 PMCID: PMC10799425 DOI: 10.1186/s12974-024-03016-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/08/2024] [Indexed: 01/21/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disorder characterized by the infiltration of inflammatory cells and demyelination of nerves. Mitochondrial dysfunction has been implicated in the pathogenesis of MS, as studies have shown abnormalities in mitochondrial activities, metabolism, mitochondrial DNA (mtDNA) levels, and mitochondrial morphology in immune cells of individuals with MS. The presence of mitochondrial dysfunctions in immune cells contributes to immunological dysregulation and neurodegeneration in MS. This review provided a comprehensive overview of mitochondrial dysfunction in immune cells associated with MS, focusing on the potential consequences of mitochondrial metabolic reprogramming on immune function. Current challenges and future directions in the field of immune-metabolic MS and its potential as a therapeutic target were also discussed.
Collapse
Affiliation(s)
- Peng-Fei Wang
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, 139 Ren-Min Central Road, Changsha City, 410011, Hunan, China
| | - Fei Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha City, 410011, Hunan, China
| | - Qiu-Ming Zeng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha City, 410011, Hunan, China
| | - Wei-Fan Yin
- Department of Neurology, The Second Xiangya Hospital, Central South University, 139 Ren-Min Central Road, Changsha City, 410011, Hunan, China
| | - Yue-Zi Hu
- Clinical Laboratory, The Second Hospital of Hunan University of Chinese Medicine, 233 Cai' e North Road, Changsha City, 410005, Hunan, China
| | - Qiao Li
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, 139 Ren-Min Central Road, Changsha City, 410011, Hunan, China
| | - Zhao-Lan Hu
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, 139 Ren-Min Central Road, Changsha City, 410011, Hunan, China.
| |
Collapse
|
10
|
Shu P, Liang H, Zhang J, Lin Y, Chen W, Zhang D. Reactive oxygen species formation and its effect on CD4 + T cell-mediated inflammation. Front Immunol 2023; 14:1199233. [PMID: 37304262 PMCID: PMC10249013 DOI: 10.3389/fimmu.2023.1199233] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/16/2023] [Indexed: 06/13/2023] Open
Abstract
Reactive oxygen species (ROS) are produced both enzymatically and non-enzymatically in vivo. Physiological concentrations of ROS act as signaling molecules that participate in various physiological and pathophysiological activities and play an important role in basic metabolic functions. Diseases related to metabolic disorders may be affected by changes in redox balance. This review details the common generation pathways of intracellular ROS and discusses the damage to physiological functions when the ROS concentration is too high to reach an oxidative stress state. We also summarize the main features and energy metabolism of CD4+ T-cell activation and differentiation and the effects of ROS produced during the oxidative metabolism of CD4+ T cells. Because the current treatment for autoimmune diseases damages other immune responses and functional cells in the body, inhibiting the activation and differentiation of autoreactive T cells by targeting oxidative metabolism or ROS production without damaging systemic immune function is a promising treatment option. Therefore, exploring the relationship between T-cell energy metabolism and ROS and the T-cell differentiation process provides theoretical support for discovering effective treatments for T cell-mediated autoimmune diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Dunfang Zhang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
11
|
Zhao Z, Wang Y, Gao Y, Ju Y, Zhao Y, Wu Z, Gao S, Zhang B, Pang X, Zhang Y, Wang W. The PRAK-NRF2 axis promotes the differentiation of Th17 cells by mediating the redox homeostasis and glycolysis. Proc Natl Acad Sci U S A 2023; 120:e2212613120. [PMID: 37126714 PMCID: PMC10175746 DOI: 10.1073/pnas.2212613120] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 02/14/2023] [Indexed: 05/03/2023] Open
Abstract
Oxidative stress is a key feature in both chronic inflammation and cancer. P38 regulated/activated protein kinase (PRAK) deficiency can cause functional disorders in neutrophils and macrophages under high oxidative stress, but the precise mechanisms by which PRAK regulates reactive oxygen species (ROS) elimination and its potential impact on CD4+ T helper subset function are unclear. The present study reveals that the PRAK-NF-E2-related factor 2(NRF2) axis is essential for maintaining the intracellular redox homeostasis of T helper 17(Th17) cells, thereby promoting Th17 cell differentiation and antitumor effects. Through mechanistic analysis, we identify NRF2 as a novel protein substrate of PRAK and find that PRAK enhances the stability of the NRF2 protein through phosphorylation NRF2 Serine(S) 558 independent of protein ubiquitination. High accumulation of cellular ROS caused by loss of PRAK disrupts both glycolysis and PKM2-dependent phosphorylation of STAT3, which subsequently impairs the differentiation of Th17 cells. As a result, Prak knockout (KO) mice display significant resistance to experimental autoimmune encephalomyelitis (EAE) but impaired antitumor immunity in a MC38 tumor model. This work reveals that the PRAK-NRF2-mediated antioxidant pathway is a metabolic checkpoint that controls Th17-cell glycolysis and differentiation. Targeting PRAK is a promising strategy for maintaining an active ROS scavenging system and may lead to potent Th17 cell antitumor immunity.
Collapse
Affiliation(s)
- Ziheng Zhao
- Department of Immunology, School of Basic Medical Sciences, National Health Commission Key Laboratory of Medical Immunology, Peking University, Beijing100191, China
| | - Yan Wang
- First Clinical Medical College, Shanxi Medical University, Taiyuan030001, Shanxi, China
| | - Yuhan Gao
- Department of Immunology, School of Basic Medical Sciences, National Health Commission Key Laboratory of Medical Immunology, Peking University, Beijing100191, China
- Department of Blood Transfusion, Peking University of People’s Hospital, Beijing100044, China
| | - Yurong Ju
- Department of Immunology, School of Basic Medical Sciences, National Health Commission Key Laboratory of Medical Immunology, Peking University, Beijing100191, China
| | - Ye Zhao
- Department of Immunology, School of Basic Medical Sciences, National Health Commission Key Laboratory of Medical Immunology, Peking University, Beijing100191, China
| | - Zhaofei Wu
- Department of Immunology, School of Basic Medical Sciences, National Health Commission Key Laboratory of Medical Immunology, Peking University, Beijing100191, China
| | - Shuaixin Gao
- Center for Precision Medicine Multi-Omics Research, Peking University Health Science Center, Beijing102206, China
| | - Boyang Zhang
- Department of Immunology, School of Basic Medical Sciences, National Health Commission Key Laboratory of Medical Immunology, Peking University, Beijing100191, China
| | - Xuewen Pang
- Department of Immunology, School of Basic Medical Sciences, National Health Commission Key Laboratory of Medical Immunology, Peking University, Beijing100191, China
| | - Yu Zhang
- Department of Immunology, School of Basic Medical Sciences, National Health Commission Key Laboratory of Medical Immunology, Peking University, Beijing100191, China
- Institute of Biological Sciences, Jinzhou Medical University, Liaoning121001, China
| | - Wei Wang
- Department of Immunology, School of Basic Medical Sciences, National Health Commission Key Laboratory of Medical Immunology, Peking University, Beijing100191, China
| |
Collapse
|
12
|
Arteaga-Henríquez G, Gisbert L, Ramos-Quiroga JA. Immunoregulatory and/or Anti-inflammatory Agents for the Management of Core and Associated Symptoms in Individuals with Autism Spectrum Disorder: A Narrative Review of Randomized, Placebo-Controlled Trials. CNS Drugs 2023; 37:215-229. [PMID: 36913130 PMCID: PMC10024667 DOI: 10.1007/s40263-023-00993-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/13/2023] [Indexed: 03/14/2023]
Abstract
Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental condition with a so far poorly understood underlying pathogenesis, and few effective therapies for core symptoms. Accumulating evidence supports an association between ASD and immune/inflammatory processes, arising as a possible pathway for new drug intervention. However, current literature on the efficacy of immunoregulatory/anti-inflammatory interventions on ASD symptoms is still limited. The aim of this narrative review was to summarize and discuss the latest evidence on the use of immunoregulatory and/or anti-inflammatory agents for the management of this condition. During the last 10 years, several randomized, placebo-controlled trials on the effectiveness of (add-on) treatment with prednisolone, pregnenolone, celecoxib, minocycline, N-acetylcysteine (NAC), sulforaphane (SFN), and/or omega-3 fatty acids have been performed. Overall, a beneficial effect of prednisolone, pregnenolone, celecoxib, and/or omega-3 fatty acids on several core symptoms, such as stereotyped behavior, was found. (Add-on) treatment with prednisolone, pregnenolone, celecoxib, minocycline, NAC, SFN, and/or omega-3 fatty acids was also associated with a significantly higher improvement in other symptoms, such as irritability, hyperactivity, and/or lethargy when compared with placebo. The mechanisms by which these agents exert their action and improve symptoms of ASD are not fully understood. Interestingly, studies have suggested that all these agents may suppress microglial/monocyte proinflammatory activation and also restore several immune cell imbalances (e.g., T regulatory/T helper-17 cell imbalances), decreasing the levels of proinflammatory cytokines, such as interleukin (IL)-6 and/or IL-17A, both in the blood and in the brain of individuals with ASD. Although encouraging, the performance of larger randomized placebo-controlled trials, including more homogeneous populations, dosages, and longer periods of follow-up, are urgently needed in order to confirm the findings and to provide stronger evidence.
Collapse
Affiliation(s)
- Gara Arteaga-Henríquez
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Passeig de la Vall d'Hebron, 119-129, 08035, Barcelona, Catalonia, Spain
- Group of Psychiatry, Mental Health and Addictions, Vall d'Hebron Research Institute (VHIR), Barcelona, Catalonia, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Barcelona, Catalonia, Spain
- NCRR-The National Center for Register-Based Research, Aahrus University, Aahrus, Denmark
| | - Laura Gisbert
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Passeig de la Vall d'Hebron, 119-129, 08035, Barcelona, Catalonia, Spain
- Group of Psychiatry, Mental Health and Addictions, Vall d'Hebron Research Institute (VHIR), Barcelona, Catalonia, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Barcelona, Catalonia, Spain
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
| | - Josep Antoni Ramos-Quiroga
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Passeig de la Vall d'Hebron, 119-129, 08035, Barcelona, Catalonia, Spain.
- Group of Psychiatry, Mental Health and Addictions, Vall d'Hebron Research Institute (VHIR), Barcelona, Catalonia, Spain.
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Barcelona, Catalonia, Spain.
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain.
| |
Collapse
|
13
|
Nechanitzky R, Nechanitzky D, Ramachandran P, Duncan GS, Zheng C, Göbl C, Gill KT, Haight J, Wakeham AC, Snow BE, Bradaschia-Correa V, Ganguly M, Lu Z, Saunders ME, Flavell RA, Mak TW. Cholinergic control of Th17 cell pathogenicity in experimental autoimmune encephalomyelitis. Cell Death Differ 2023; 30:407-416. [PMID: 36528755 PMCID: PMC9950465 DOI: 10.1038/s41418-022-01092-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 11/03/2022] [Accepted: 11/11/2022] [Indexed: 12/23/2022] Open
Abstract
Experimental autoimmune encephalomyelitis (EAE) is a mouse model of multiple sclerosis (MS) in which Th17 cells have a crucial but unclear function. Here we show that choline acetyltransferase (ChAT), which synthesizes acetylcholine (ACh), is a critical driver of pathogenicity in EAE. Mice with ChAT-deficient Th17 cells resist disease progression and show reduced brain-infiltrating immune cells. ChAT expression in Th17 cells is linked to strong TCR signaling, expression of the transcription factor Bhlhe40, and increased Il2, Il17, Il22, and Il23r mRNA levels. ChAT expression in Th17 cells is independent of IL21r signaling but dampened by TGFβ, implicating ChAT in controlling the dichotomous nature of Th17 cells. Our study establishes a cholinergic program in which ACh signaling primes chronic activation of Th17 cells, and thereby constitutes a pathogenic determinant of EAE. Our work may point to novel targets for therapeutic immunomodulation in MS.
Collapse
Affiliation(s)
- Robert Nechanitzky
- Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, Toronto, ON, Canada
| | - Duygu Nechanitzky
- Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, Toronto, ON, Canada
| | - Parameswaran Ramachandran
- Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, Toronto, ON, Canada
| | - Gordon S Duncan
- Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, Toronto, ON, Canada
| | - Chunxing Zheng
- Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, Toronto, ON, Canada
| | - Christoph Göbl
- Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - Kyle T Gill
- Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, Toronto, ON, Canada
| | - Jillian Haight
- Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, Toronto, ON, Canada
| | - Andrew C Wakeham
- Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, Toronto, ON, Canada
| | - Bryan E Snow
- Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, Toronto, ON, Canada
| | | | - Milan Ganguly
- Histology Core, The Centre for Phenogenomics, Toronto, ON, Canada
| | - Zhibin Lu
- UHN Bioinformatics and HPC Core, Toronto, ON, Canada
| | - Mary E Saunders
- Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, Toronto, ON, Canada
| | - Richard A Flavell
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, 06520, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Tak W Mak
- Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, Toronto, ON, Canada.
- Departments of Immunology and Medical Biophysics, University of Toronto, Toronto, ON, Canada.
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China.
| |
Collapse
|
14
|
Jhun J, Moon J, Kim SY, Cho KH, Na HS, Choi J, Jung YJ, Song KY, Min JK, Cho ML. Rebamipide treatment ameliorates obesity phenotype by regulation of immune cells and adipocytes. PLoS One 2022; 17:e0277692. [PMID: 36574392 PMCID: PMC9794058 DOI: 10.1371/journal.pone.0277692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 11/01/2022] [Indexed: 12/28/2022] Open
Abstract
Obesity is a medical term used to describe an over-accumulation of adipose tissue. It causes abnormal physiological and pathological processes in the body. Obesity is associated with systemic inflammation and abnormalities in immune cell function. Rebamipide, an amino acid derivative of 2-(1H)-quinolinone, has been used as a therapeutic for the protection from mucosal damage. Our previous studies have demonstrated that rebamipide treatment regulates lipid metabolism and inflammation, leading to prevention of weight gain in high-fat diet mice. In this study, mice were put on a high calorie diet for 11 weeks while receiving injections of rebamipide. Rebamipide treatment reduced the body weight, liver weight and blood glucose levels compared to control mice and reduced both glucose and insulin resistance. Fat accumulation has been shown to cause pro-inflammatory activity in mice. Treatment with rebamipide decreased the prevalence of inflammatory cells such as Th2, Th17 and M1 macrophages and increased anti-inflammatory Treg and M2 macrophages in epididymal fat tissue. Additionally, rebamipide addition inhibited adipocyte differentiation in 3T3-L1 cell lines. Taken together, our study demonstrates that rebamipide treatment is a novel and effective method to prevent diet-induced obesity.
Collapse
Affiliation(s)
- JooYeon Jhun
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jeonghyeon Moon
- Departments of Immunobiology and Neurology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Se-Young Kim
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Keun-Hyung Cho
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hyun Sik Na
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - JeongWon Choi
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yoon Ju Jung
- Division of Gastrointestinal Surgery, Department of Surgery, Yeouido St. Mary’s Hospital, Seoul, Korea
| | - Kyo Young Song
- Division of Gastrointestinal Surgery, Department of General Surgery, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
| | - Jun-Ki Min
- Department of Internal Medicine, and the Clinical Medicine Research Institute of Bucheon St. Mary’s Hospital, Bucheon si, Gyeonggi-do, Republic of Korea
- * E-mail: (JKM); (MLC)
| | - Mi-La Cho
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- * E-mail: (JKM); (MLC)
| |
Collapse
|
15
|
Zhao Q, Bai J, Chen Y, Liu X, Zhao S, Ling G, Jia S, Zhai F, Xiang R. An optimized herbal combination for the treatment of liver fibrosis: Hub genes, bioactive ingredients, and molecular mechanisms. JOURNAL OF ETHNOPHARMACOLOGY 2022; 297:115567. [PMID: 35870684 DOI: 10.1016/j.jep.2022.115567] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/30/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Liver fibrosis is a chronic liver disease that can lead to cirrhosis, liver failure, and hepatocellular carcinoma, and it is associated with long-term adverse outcomes and mortality. As a primary resource for complementary and alternative medicine, traditional Chinese medicine (TCM) has accumulated a large number of effective formulas for the treatment of liver fibrosis in clinical practice. However, studies on how to systematically optimize TCM formulas are still lacking. AIM OF THE REVIEW To provide a methodological reference for the systematic optimization of TCM formulae against liver fibrosis and explored the underlying molecular mechanisms; To provide an efficient method for searching for lead compounds from natural sources and developing from herbal medicines; To enable clinicians and patients to make more reasonable choices and promote the effective treatment toward those patients with liver fibrosis. MATERIALS AND METHODS TCM formulas related to treating liver fibrosis were collected from the Web of Science, PubMed, the China National Knowledge Infrastructure (CNKI), Wan Fang, and the Chinese Scientific Journals Database (VIP). Furthermore, the TCM compatibility patterns were mined using association analysis. The core TCM combinations were found by designing an optimized formulas algorithm. Finally, the hub target proteins, potential molecular mechanisms, and active compounds were explored through integrative pharmacology and docking-based inverse virtual screening (IVS) approaches. RESULTS We found that the herbs for reinforcing deficiency, activating blood, removing blood stasis, and clearing heat were the basis of TCM formulae patterns. Furthermore, the combination of Salviae Miltiorrhizae (Salvia miltiorrhiza Bunge; Chinese salvia/Danshen), Astragali Radix (Astragalus membranaceus (Fisch.) Bunge; Astragalus/Huangqi), and Radix Bupleuri (Bupleurum chinense DC.; Bupleurum/Chaihu) was identified as core groups. A total of six targets (TNF, STAT3, EGFR, IL2, ICAM1, PTGS2) play a pivotal role in TCM-mediated liver fibrosis inhibition. (-)-Cryptotanshinone, Tanshinaldehyde, Ononin, Thymol, Daidzein, and Formononetin were identified as active compounds in TCM. And mechanistically, TCM could affect the development of liver fibrosis by regulating inflammation, immunity, angiogenesis, antioxidants, and involvement in TNF, MicroRNAs, Jak-STAT, NF-kappa B, and C-type lectin receptors (CLRs) signaling pathways. Molecular docking results showed that key components had good potential to bind to the target genes. CONCLUSION In summary, this study provides a methodological reference for the systematic optimization of TCM formulae and exploration of underlying molecular mechanisms.
Collapse
Affiliation(s)
- Qianqian Zhao
- Faculty of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Jinwei Bai
- School of Medical Equipment, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Yiwei Chen
- Faculty of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Xin Liu
- Faculty of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Shangfeng Zhao
- Faculty of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Guixia Ling
- School of Medical Equipment, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Shubing Jia
- Faculty of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Fei Zhai
- School of Medical Equipment, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Rongwu Xiang
- School of Medical Equipment, Shenyang Pharmaceutical University, Shenyang, 110016, China; Liaoning Professional Technology Innovation Center on Medical Big Data and Artificial Intelligence, Shenyang, 110016, China.
| |
Collapse
|
16
|
Chen Z, Shang Y, Yuan Y, He Y, Wasti B, Duan W, Ouyang R, Jia J, Xiao B, Zhang D, Zhang X, Li J, Chen B, Liu Y, Zeng Q, Ji X, Ma L, Liu S, Xiang X. MBD2 mediates Th17 cell differentiation by regulating MINK1 in Th17-dominant asthma. Front Genet 2022; 13:959059. [PMID: 36303542 PMCID: PMC9592806 DOI: 10.3389/fgene.2022.959059] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives: .Asthma is a highly heterogeneous disease, and T-helper cell type 17 (Th17) cells play a pathogenic role in the development of non-T2 severe asthma. Misshapen like kinase 1 (MINK1) is involved in the regulation of Th17 cell differentiation, but its effect on severe asthma remains unclear. Our previous studies showed that methyl-CpG binding domain protein 2 (MBD2) expression was significantly increased in patients with Th17 severe asthma and could regulate Th17 cell differentiation. The aim of this study was to investigate how MBD2 interacts with MINK1 to regulate Th17 cell differentiation in Th17-dominant asthma.Materials and methods: Female C57BL/6 mice and bronchial epithelial cells (BECs) were used to establish mouse and cell models of Th17-dominant asthma, respectively. Flow cytometry was used to detect Th17 cell differentiation, and the level of IL-17 was detected by enzyme-linked immunosorbent assay (ELISA). Western blot and quantitative real-time PCR (qRT-PCR) were used to detect MBD2 and MINK1 expression. To investigate the role of MBD2 and MINK1 in Th17 cell differentiation in Th17-dominant asthma, the MBD2 and MINK1 genes were silenced or overexpressed by small interfering RNA and plasmid transfection.Results: Mouse and BEC models of Th17-dominant asthma were established successfully. The main manifestations were increased neutrophils in BALF, airway hyperresponsiveness (AHR), activated Th17 cell differentiation, and high IL-17 levels. The expression of MBD2 in lung tissues and BECs from the Th17-dominant asthma group was significantly increased, while the corresponding expression of MINK1 was significantly impaired. Through overexpression or silencing of MBD2 and MINK1 genes, we have concluded that MBD2 and MINK1 regulate Th17 cell differentiation and IL-17 release. Interestingly, MBD2 was also found to negatively regulate the expression of MINK1.Conclusion: Our findings have revealed new roles for MBD2 and MINK1, and provide new insights into epigenetic regulation of Th17-dominant asthma, which is dominated by neutrophils and Th17 cells. This study could lead to new therapeutic targets for patients with Th17-dominant asthma.
Collapse
Affiliation(s)
- Zhifeng Chen
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yulin Shang
- Ophthalmology and Otorhinolaryngology, Zigui County Traditional Chinese Medicine Hospital, Zigui, Hubei, China
| | - Yu Yuan
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yi He
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Binaya Wasti
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wentao Duan
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ruoyun Ouyang
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jingsi Jia
- Department of Emergency, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bing Xiao
- Department of Emergency, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Dongshan Zhang
- Department of Emergency, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiufeng Zhang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Jianmin Li
- Department of Respiratory and Critical Care Medicine, Hunan Provincial People’s Hospital, Changsha, Hunan, China
| | - Bolin Chen
- Department of Respiratory and Critical Care Medicine, Hunan Provincial People’s Hospital, Changsha, Hunan, China
| | - Yi Liu
- Department of Respiratory Medicine, Zhuzhou City Central Hospital, Zhuzhou, Hunan, China
| | - Qingping Zeng
- Department of Respiratory and Critical Care Medicine, Longshan County People’s Hospital, Longshan, Hunan, China
| | - Xiaoying Ji
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Libing Ma
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
- *Correspondence: Libing Ma, ; Shaokun Liu, ; Xudong Xiang,
| | - Shaokun Liu
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- *Correspondence: Libing Ma, ; Shaokun Liu, ; Xudong Xiang,
| | - Xudong Xiang
- Department of Emergency, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- *Correspondence: Libing Ma, ; Shaokun Liu, ; Xudong Xiang,
| |
Collapse
|
17
|
Katagiri W, Yokomizo S, Ishizuka T, Yamashita K, Kopp T, Roessing M, Sato A, Iwasaki T, Sato H, Fukuda T, Monaco H, Manganiello S, Nomura S, Ng MR, Feil S, Ogawa E, Fukumura D, Atochin DN, Choi HS, Kashiwagi S. Dual near-infrared II laser modulates the cellular redox state of T cells and augments the efficacy of cancer immunotherapy. FASEB J 2022; 36:e22521. [PMID: 36052742 PMCID: PMC9574655 DOI: 10.1096/fj.202200033r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 07/27/2022] [Accepted: 08/15/2022] [Indexed: 11/11/2022]
Abstract
Immunotherapy, including immune checkpoint inhibitors, has revolutionized cancer treatment, but only a minor fraction of patients shows durable responses. A new approach to overcome this limitation is yet to be identified. Recently, we have shown that photobiomodulation (PBM) with near-infrared (NIR) light in the NIR-II window reduces oxidative stress and supports the proliferation of CD8+ T cells, suggesting that PBM with NIR-II light could augment anti-cancer immunity. Here, we report a novel approach to support tumor-infiltrating CD8+ T cells upon PBM with NIR-II laser with high tissue penetration depth. Brief treatments of a murine model of breast cancer with dual 1064 and 1270 nm lasers reduced the expression of the programmed cell death protein 1 (PD-1) in CD8+ T cells in a syngeneic mouse model of breast cancer. The direct effect of the NIR-II laser treatment on T cells was confirmed by the enhanced tumor growth delay by the adoptive transfer of laser-treated CD8+ T cells ex vivo against a model tumor antigen. We further demonstrated that specific NIR-II laser parameters augmented the effect of the immune checkpoint inhibitor on tumor growth. PBM with NIR-II light augments the efficacy of cancer immunotherapy by supporting CD8+ T cells. Unlike the current immunotherapy with risks of undesirable drug-drug interactions and severe adverse events, the laser is safe and low-cost. It can be broadly combined with other therapy without modification to achieve clinical significance. In addition, our study established a path to develop a novel laser-based therapy to treat cancer effectively.
Collapse
Affiliation(s)
- Wataru Katagiri
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, 149 13 Street, Charlestown, MA 02129, USA
- Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Yokohama, Kanagawa 223-8522, Japan
| | - Shinya Yokomizo
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, 149 13 Street, Charlestown, MA 02129, USA
- Department of Radiological Science, Tokyo Metropolitan University, 7-2-10 Higashi-Ogu, Arakawa, Tokyo 116-8551, Japan
| | - Takanobu Ishizuka
- Bioresearch Center, Corporate R&D Center, Terumo Corporation, 1500 Inokuchi, Nakai-machi, Ashigarakami-gun, Kanagawa 259-0151, Japan
- Corporate R&D Center, Terumo Corporation, 1500 Inokuchi, Nakai-machi, Ashigarakami-gun, Kanagawa 259-0151, Japan
| | - Keiko Yamashita
- Corporate R&D Center, Terumo Corporation, 1500 Inokuchi, Nakai-machi, Ashigarakami-gun, Kanagawa 259-0151, Japan
| | - Timo Kopp
- Interfaculty Institute of Biochemistry (IFIB), University of Tübingen, Auf der Morgenstelle 34, Tübingen 72076, Germany
| | - Malte Roessing
- Interfaculty Institute of Biochemistry (IFIB), University of Tübingen, Auf der Morgenstelle 34, Tübingen 72076, Germany
| | - Akiko Sato
- Bioresearch Center, Corporate R&D Center, Terumo Corporation, 1500 Inokuchi, Nakai-machi, Ashigarakami-gun, Kanagawa 259-0151, Japan
| | - Taizo Iwasaki
- Bioresearch Center, Corporate R&D Center, Terumo Corporation, 1500 Inokuchi, Nakai-machi, Ashigarakami-gun, Kanagawa 259-0151, Japan
| | - Hideki Sato
- Bioresearch Center, Corporate R&D Center, Terumo Corporation, 1500 Inokuchi, Nakai-machi, Ashigarakami-gun, Kanagawa 259-0151, Japan
| | - Takeshi Fukuda
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, 149 13 Street, Charlestown, MA 02129, USA
| | - Hailey Monaco
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, 149 13 Street, Charlestown, MA 02129, USA
| | - Sophia Manganiello
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, 149 13 Street, Charlestown, MA 02129, USA
| | - Shinsuke Nomura
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, 149 13 Street, Charlestown, MA 02129, USA
- Department of Surgery, Faculty of Medicine, University of Miyazaki Hospital, 5200 Kihara, Kiyotake, Miyazaki, Miyazaki 889-1692, Japan
| | - Mei Rosa Ng
- Edwin L. Steele Laboratory for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital, 149 13 Street, Charlestown, MA 02129, USA
| | - Susanne Feil
- Interfaculty Institute of Biochemistry (IFIB), University of Tübingen, Auf der Morgenstelle 34, Tübingen 72076, Germany
| | - Emiyu Ogawa
- School of Allied Health Science, Kitasato University, 1-15-1 Kitasato Minami-ku Sagamihara, Kanagawa, Japan
| | - Dai Fukumura
- Edwin L. Steele Laboratory for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital, 149 13 Street, Charlestown, MA 02129, USA
| | - Dmitriy N. Atochin
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, 149 13 Street, Charlestown, MA, 02129, United States of America
| | - Hak Soo Choi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, 149 13 Street, Charlestown, MA 02129, USA
| | - Satoshi Kashiwagi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, 149 13 Street, Charlestown, MA 02129, USA
| |
Collapse
|
18
|
Zhang C, Wang H, Yang X, Fu Z, Ji X, Shi Y, Zhong J, Hu W, Ye Y, Wang Z, Ni D. Oral zero-valent-molybdenum nanodots for inflammatory bowel disease therapy. SCIENCE ADVANCES 2022; 8:eabp9882. [PMID: 36112678 PMCID: PMC9481133 DOI: 10.1126/sciadv.abp9882] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Inflammatory bowel disease (IBD) affects millions of people each year. The overproduction of reactive oxygen species (ROS) plays a critical role in the progress of IBD and will be a potential therapeutic target. Here, we synthesize a kind of oral zero-valent-molybdenum nanodots (ZVMNs) for the treatment of IBD by scavenging ROS. These ultrasmall ZVMNs can successfully pass through the gastric acid and then be absorbed by the intestine. It has been verified that ZVMNs can down-regulate the quantity of ROS and reduce colitis in a mouse IBD model without distinct side effects. In addition, RNA sequencing reveals a further mechanism that the ZVMNs can protect colon tissues from oxidative stress by inhibiting the nuclear factor κB signaling pathway and reducing the production of excessive pro-inflammatory factors. Together, the ZVMNs will offer a promising alternative treatment option for patients suffering from IBD.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Han Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Xinhui Yang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Zi Fu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Xiuru Ji
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Yifan Shi
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Jie Zhong
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Weiguo Hu
- Department of Surgery, Medical Center on Aging of Ruijin Hospital, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Youqiong Ye
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Zhengting Wang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Dalong Ni
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| |
Collapse
|
19
|
Daulat AM, Wagner MS, Audebert S, Kowalczewska M, Ariey-Bonnet J, Finetti P, Bertucci F, Camoin L, Borg JP. The serine/threonine kinase MINK1 directly regulates the function of promigratory proteins. J Cell Sci 2022; 135:276338. [PMID: 35971817 DOI: 10.1242/jcs.259347] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 08/08/2022] [Indexed: 11/20/2022] Open
Abstract
Upregulation of the developmental Wnt/planar cell polarity pathway is observed in many cancers and is associated with cancer development. We recently showed that PRICKLE1, a core Wnt/PCP component, is a poor-prognosis marker in triple negative breast cancer (TNBC). PRICKLE1 is phosphorylated by the serine/threonine kinase MINK1 and contributes to TNBC cell motility and invasiveness. However, the identity of MINK1 substrates and the role of MINK1 enzymatic activity in this process remain to be addressed. We performed a phosphoproteomic strategy and identified MINK1 substrates including LL5β. LL5β anchors microtubules at the cell cortex through its association with CLASPs to trigger focal adhesion disassembly. LL5β is phosphorylated by MINK1 promoting its interaction with CLASPs. Using a kinase inhibitor, we demonstrate that the enzymatic activity of MINK1 is involved in the protein complex assembly and localization, and cell migration. Analysis of gene expression data show that the concomitant up-regulation of PRICKLE1 and LL5β mRNA levels encoding MINK1 substrates is associated with a poor metastasis-free survival in TNBC patients. Altogether, our results suggest that MINK1 may represent a potential target in TNBC.
Collapse
Affiliation(s)
- Avais M Daulat
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe labellisée Ligue 'Cell polarity, Cell signaling and Cancer', Marseille, France
| | - Mônica S Wagner
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe labellisée Ligue 'Cell polarity, Cell signaling and Cancer', Marseille, France
| | - Stéphane Audebert
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Marseille, France
| | - Malgorzata Kowalczewska
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe labellisée Ligue 'Cell polarity, Cell signaling and Cancer', Marseille, France
| | - Jeremy Ariey-Bonnet
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe Biologie Structurale et Chimie-Biologie Intégrée, Marseille, France
| | - Pascal Finetti
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe labellisée Ligue 'Predictive Oncology', Marseille, France
| | - François Bertucci
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe labellisée Ligue 'Predictive Oncology', Marseille, France
| | - Luc Camoin
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Marseille, France
| | - Jean-Paul Borg
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe labellisée Ligue 'Cell polarity, Cell signaling and Cancer', Marseille, France.,Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Marseille, France.,Institut universitaire de France, France
| |
Collapse
|
20
|
Fidler G, Szilágyi-Rácz AA, Dávid P, Tolnai E, Rejtő L, Szász R, Póliska S, Biró S, Paholcsek M. Circulating microRNA sequencing revealed miRNome patterns in hematology and oncology patients aiding the prognosis of invasive aspergillosis. Sci Rep 2022; 12:7144. [PMID: 35504997 PMCID: PMC9065123 DOI: 10.1038/s41598-022-11239-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 04/18/2022] [Indexed: 11/20/2022] Open
Abstract
Invasive aspergillosis (IA) may occur as a serious complication of hematological malignancy. Delays in antifungal therapy can lead to an invasive disease resulting in high mortality. Currently, there are no well-established blood circulating microRNA biomarkers or laboratory tests which can be used to diagnose IA. Therefore, we aimed to define dysregulated miRNAs in hematology and oncology (HO) patients to identify biomarkers predisposing disease. We performed an in-depth analysis of high-throughput small transcriptome sequencing data obtained from the whole blood samples of our study cohort of 50 participants including 26 high-risk HO patients and 24 controls. By integrating in silico bioinformatic analyses of small noncoding RNA data, 57 miRNAs exhibiting significant expression differences (P < 0.05) were identified between IA-infected patients and non-IA HO patients. Among these, we found 36 differentially expressed miRNAs (DEMs) irrespective of HO malignancy. Of the top ranked DEMs, we found 14 significantly deregulated miRNAs, whose expression levels were successfully quantified by qRT-PCR. MiRNA target prediction revealed the involvement of IA related miRNAs in the biological pathways of tumorigenesis, the cell cycle, the immune response, cell differentiation and apoptosis.
Collapse
Affiliation(s)
- Gábor Fidler
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Egyetem tér 1., 4032, Debrecen, Hungary
| | - Anna Anita Szilágyi-Rácz
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Egyetem tér 1., 4032, Debrecen, Hungary
| | - Péter Dávid
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Egyetem tér 1., 4032, Debrecen, Hungary
| | - Emese Tolnai
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Egyetem tér 1., 4032, Debrecen, Hungary
| | - László Rejtő
- Department of Hematology, Jósa András Teaching Hospital, Nyíregyháza, Hungary
| | - Róbert Szász
- Division of Hematology, Institute of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Szilárd Póliska
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Sándor Biró
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Egyetem tér 1., 4032, Debrecen, Hungary
| | - Melinda Paholcsek
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Egyetem tér 1., 4032, Debrecen, Hungary.
| |
Collapse
|
21
|
Honda M, Segawa T, Ishikawa K, Maeda M, Saito Y, Kon S. Nephronectin influences EAE development by regulating the Th17/Treg balance via reactive oxygen species. Am J Physiol Cell Physiol 2022; 322:C699-C711. [PMID: 35235429 DOI: 10.1152/ajpcell.00376.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 02/08/2023]
Abstract
Blood levels of the extracellular matrix protein nephronectin (Npnt), a protein critical for kidney development, are elevated in autoimmune experimental autoimmune encephalitis (EAE) mice, which are a model for multiple sclerosis. We found here that treatment with anti-Npnt antibody directed against the α8β1 integrin-binding site (Npnt-blocking antibody) inhibits EAE development. The selenium transporter selenoprotein P (SeP) was identified as a novel Npnt-binding partner. In EAE, Npnt induced SeP and glutathione peroxidase 1 (GPx1) expression, followed by reactive oxygen species (ROS) inhibition in CD4+ T cells; these changes were disturbed by Npnt-blocking antibody treatment, which also caused suppressed differentiation of interleukin (IL)-17-producing CD4+ T-helper cells (Th17s) and elevated differentiation of regulatory T cells (Tregs). Treatment of EAE mice with the ROS scavenger N-acetyl cysteine (NAC) blocked the Npnt-blocking antibody-induced decrease in Th17 differentiation and increase in Treg differentiation. In conclusion, the interaction between Npnt and SeP contributes to EAE development by regulating the Th17/Treg balance via the ROS level.
Collapse
Affiliation(s)
- Machiko Honda
- Department of Molecular Immunology, Faculty of Pharmaceutical Sciences, Fukuyama University, Fukuyama, Japan
| | | | | | | | - Yoshiro Saito
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Shigeyuki Kon
- Department of Molecular Immunology, Faculty of Pharmaceutical Sciences, Fukuyama University, Fukuyama, Japan
| |
Collapse
|
22
|
Zhang J, Lei H, Li X. LncRNA SNHG14 contributes to proinflammatory cytokine production in rheumatoid arthritis via the regulation of the miR-17-5p/MINK1-JNK pathway. ENVIRONMENTAL TOXICOLOGY 2021; 36:2484-2492. [PMID: 34529319 DOI: 10.1002/tox.23361] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Rheumatoid arthritis (RA) is a widespread autoimmune disorder of the joints. Long noncoding RNAs (lncRNAs) have been reported to participate in the pathogenesis of RA by serving as competitive endogenous RNAs. LncRNA small nucleolar RNA host gene 14 (SNHG14) is involved in the development of various diseases. Here, we found that high expression of SNHG14 in RA was closely related to the disease activity. Functional assays indicated that SNHG14 knockdown obviously hampered phorbol myristate acetate-activated THP-1 (pTHP-1) cell proliferation and proinflammatory cytokines production. In mechanism, SNHG14 served as a sponge of microRNA-17-5p (miR-17-5p), and misshapen like kinase 1 (MINK1) was a target of miR-17-5p. SNHG14 depletion-induced inhibitory effects on cell proliferation and inflammatory response were reversed by MINK1 overexpression in macrophages. Moreover, SNHG14 promoted the jun N-terminal kinase (JNK) signaling via the miR-17-5p/MINK1 axis. Overall, SNHG14 boosted the process of RA by MINK1 activating the JNK pathway.
Collapse
Affiliation(s)
- Jihui Zhang
- Department of Rheumatism and Immunology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongwei Lei
- Department of Rheumatism and Immunology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiu Li
- Department of Rheumatism and Immunology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
23
|
Zhu K, Jin X, Chi Z, Chen S, Wu S, Sloan RD, Lin X, Neculai D, Wang D, Hu H, Lu L. Priming of NLRP3 inflammasome activation by Msn kinase MINK1 in macrophages. Cell Mol Immunol 2021; 18:2372-2382. [PMID: 34480147 PMCID: PMC8414466 DOI: 10.1038/s41423-021-00761-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 08/08/2021] [Indexed: 02/07/2023] Open
Abstract
The nucleotide-binding domain, leucine-rich-repeat containing family, pyrin domain-containing 3 (NLRP3) inflammasome is essential in inflammation and inflammatory disorders. Phosphorylation at various sites on NLRP3 differentially regulates inflammasome activation. The Ser725 phosphorylation site on NLRP3 is depicted in multiple inflammasome activation scenarios, but the importance and regulation of this site has not been clarified. The present study revealed that the phosphorylation of Ser725 was an essential step for the priming of the NLRP3 inflammasome in macrophages. We also showed that Ser725 was directly phosphorylated by misshapen (Msn)/NIK-related kinase 1 (MINK1), depending on the direct interaction between MINK1 and the NLRP3 LRR domain. MINK1 deficiency reduced NLRP3 activation and suppressed inflammatory responses in mouse models of acute sepsis and peritonitis. Reactive oxygen species (ROS) upregulated the kinase activity of MINK1 and subsequently promoted inflammasome priming via NLRP3 Ser725 phosphorylation. Eliminating ROS suppressed NLRP3 activation and reduced sepsis and peritonitis symptoms in a MINK1-dependent manner. Altogether, our study reveals a direct regulation of the NLRP3 inflammasome by Msn family kinase MINK1 and suggests that modulation of MINK1 activity is a potential intervention strategy for inflammasome-related diseases.
Collapse
Affiliation(s)
- Kaixiang Zhu
- grid.13402.340000 0004 1759 700XInstitute of Immunology and Department of Rheumatology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058 P. R. China ,grid.13402.340000 0004 1759 700XZhejiang University–University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, 314400 P. R. China ,grid.13402.340000 0004 1759 700XDepartment of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, 310058 P. R. China
| | - Xuexiao Jin
- grid.13402.340000 0004 1759 700XInstitute of Immunology and Department of Rheumatology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058 P. R. China
| | - Zhexu Chi
- grid.13402.340000 0004 1759 700XDepartment of Immunology, Zhejiang University School of Medicine, Hangzhou, 310058 P. R. China
| | - Sheng Chen
- grid.13402.340000 0004 1759 700XDepartment of Immunology, Zhejiang University School of Medicine, Hangzhou, 310058 P. R. China ,grid.412465.0Department of Colorectal Surgery, The Second Affiliated Hospital, Hangzhou, 310058 P. R. China
| | - Songquan Wu
- grid.440824.e0000 0004 1757 6428Medical College, Lishui University, Lishui, 323000 P. R. China
| | - Richard D. Sloan
- grid.13402.340000 0004 1759 700XZhejiang University–University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, 314400 P. R. China ,grid.4305.20000 0004 1936 7988Infection Medicine, School of Biomedical Sciences, The University of Edinburgh, Edinburgh, EH16 4SB Scotland, UK
| | - Xuai Lin
- grid.13402.340000 0004 1759 700XDepartment of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, 310058 P. R. China
| | - Dante Neculai
- grid.13402.340000 0004 1759 700XDepartment of Cell Biology, Zhejiang University School of Medicine, Hangzhou, 310058 P. R. China
| | - Di Wang
- grid.13402.340000 0004 1759 700XDepartment of Immunology, Zhejiang University School of Medicine, Hangzhou, 310058 P. R. China
| | - Hu Hu
- grid.13402.340000 0004 1759 700XDepartment of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, 310058 P. R. China
| | - Linrong Lu
- grid.13402.340000 0004 1759 700XInstitute of Immunology and Department of Rheumatology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058 P. R. China ,grid.13402.340000 0004 1759 700XZhejiang University–University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, 314400 P. R. China ,grid.13402.340000 0004 1759 700XDr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058 P. R. China
| |
Collapse
|
24
|
Chávez MD, Tse HM. Targeting Mitochondrial-Derived Reactive Oxygen Species in T Cell-Mediated Autoimmune Diseases. Front Immunol 2021; 12:703972. [PMID: 34276700 PMCID: PMC8281042 DOI: 10.3389/fimmu.2021.703972] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 06/18/2021] [Indexed: 12/15/2022] Open
Abstract
Mitochondrial dysfunction resulting in oxidative stress could be associated with tissue and cell damage common in many T cell-mediated autoimmune diseases. Autoreactive CD4 T cell effector subsets (Th1,Th17) driving these diseases require increased glycolytic metabolism to upregulate key transcription factors (TF) like T-bet and RORγt that drive differentiation and proinflammatory responses. However, research in immunometabolism has demonstrated that mitochondrial-derived reactive oxygen species (ROS) act as signaling molecules contributing to T cell fate and function. Eliminating autoreactive T cells by targeting glycolysis or ROS production is a potential strategy to inhibit autoreactive T cell activation without compromising systemic immune function. Additionally, increasing self-tolerance by promoting functional immunosuppressive CD4 T regulatory (Treg) cells is another alternative therapeutic for autoimmune disease. Tregs require increased ROS and oxidative phosphorylation (OxPhos) for Foxp3 TF expression, differentiation, and anti-inflammatory IL-10 cytokine synthesis. Decreasing glycolytic activity or increasing glutathione and superoxide dismutase antioxidant activity can also be beneficial in inhibiting cytotoxic CD8 T cell effector responses. Current treatment options for T cell-mediated autoimmune diseases such as Type 1 diabetes (T1D), multiple sclerosis (MS), rheumatoid arthritis (RA), and systemic lupus erythematosus (SLE) include global immunosuppression, antibodies to deplete immune cells, and anti-cytokine therapy. While effective in diminishing autoreactive T cells, they can also compromise other immune responses resulting in increased susceptibility to other diseases and complications. The impact of mitochondrial-derived ROS and immunometabolism reprogramming in autoreactive T cell differentiation could be a potential target for T cell-mediated autoimmune diseases. Exploiting these pathways may delay autoimmune responses in T1D.
Collapse
Affiliation(s)
| | - Hubert M. Tse
- Department of Microbiology, Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
25
|
Pei S, Huang M, Huang J, Zhu X, Wang H, Romano S, Deng X, Wang Y, Luo Y, Hao S, Xu J, Yu T, Zhu Q, Yuan J, Shen K, Liu Z, Hu G, Peng C, Luo Q, Wen Z, Dai D, Xiao Y. BFAR coordinates TGFβ signaling to modulate Th9-mediated cancer immunotherapy. J Exp Med 2021; 218:212036. [PMID: 33914044 PMCID: PMC8091105 DOI: 10.1084/jem.20202144] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/25/2021] [Accepted: 03/04/2021] [Indexed: 01/05/2023] Open
Abstract
TGFβ is essential for the generation of anti-tumor Th9 cells; on the other hand, it causes resistance against anti-tumor immunity. Despite recent progress, the underlying mechanism reconciling the double-edged effect of TGFβ signaling in Th9-mediated cancer immunotherapy remains elusive. Here, we find that TGFβ-induced down-regulation of bifunctional apoptosis regulator (BFAR) represents the key mechanism preventing the sustained activation of TGFβ signaling and thus impairing Th9 inducibility. Mechanistically, BFAR mediates K63-linked ubiquitination of TGFβR1 at K268, which is critical to activate TGFβ signaling. Thus, BFAR deficiency or K268R knock-in mutation suppresses TGFβR1 ubiquitination and Th9 differentiation, thereby inhibiting Th9-mediated cancer immunotherapy. More interestingly, BFAR-overexpressed Th9 cells exhibit promising therapeutic efficacy to curtail tumor growth and metastasis and promote the sensitivity of anti–PD-1–mediated checkpoint immunotherapy. Thus, our findings establish BFAR as a key TGFβ-regulated gene to fine-tune TGFβ signaling that causes Th9 induction insensitivity, and they highlight the translational potential of BFAR in promoting Th9-mediated cancer immunotherapy.
Collapse
Affiliation(s)
- Siyu Pei
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Mingzhu Huang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Jia Huang
- Department of Thoracic Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaodong Zhu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Hui Wang
- Department of Thoracic Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Simona Romano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples, Federico II, Naples, Italy
| | - Xiuyu Deng
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yan Wang
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yixiao Luo
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Shumeng Hao
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jing Xu
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Tao Yu
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qingchen Zhu
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jia Yuan
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Kunwei Shen
- Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhiqiang Liu
- Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Guohong Hu
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chao Peng
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai, China
| | - Qingquan Luo
- Department of Thoracic Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenzhen Wen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Dongfang Dai
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Yichuan Xiao
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
26
|
Lin X, Tawch S, Wong HT, Roy S, Gaudino S, Castillo P, Elsegeiny W, Wakabayashi N, Oury TD, Pociask D, Chen K, McLinskey N, Melville P, Syritsyna O, Coyle P, Good M, Awasthi A, Kolls JK, Kumar P. Nrf2 through Aryl Hydrocarbon Receptor Regulates IL-22 Response in CD4 + T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 206:1540-1548. [PMID: 33648937 PMCID: PMC7987760 DOI: 10.4049/jimmunol.1900656] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 01/23/2021] [Indexed: 12/14/2022]
Abstract
IL-17A and IL-22 derived from Th17 cells play a significant role in mucosal immunity and inflammation. TGF-β and IL-6 promote Th17 differentiation; however, these cytokines have multiple targets. The identification and screening of additional molecules that regulate IL-17A and IL-22 responses in certain inflammatory conditions is of great clinical significance. In this study, we show that CDDO-Im, a specific Nrf2 activator, promotes IL-17A and IL-22 responses in murine Th17 cells. In contrast, CDDO-Im inhibits IL-17A response in multiple sclerosis patient-derived PBMCs. However, Nrf2 specifically regulates IL-22 response in vivo. Nrf2 acts through the regulation of antioxidant response element (ARE) binding motifs in target genes to induce or repress transcription. Promoter analysis revealed that Il17a, Rorc, and Ahr genes have several ARE motifs. We showed that Nrf2 bound to ARE repressor (ARE-R2) of Rorc and inhibited Rorc-dependent IL-17A transactivation. The luciferase reporter assay data showed that CDDO-Im regulated Ahr promoter activity. Chromatin immunoprecipitation quantitative PCR data showed that Nrf2 bound to ARE of AhR. Finally, we confirmed that the CDDO-Im-mediated induction of IL-22 production in CD4+ T cells was abrogated in CD4-specific Ahr knockout mice (AhrCD4 ). CH-223191, a specific AhR antagonist, inhibits CDDO-Im-induced IL-22 production in CD4+ T cells, which further confirmed the AhR-dependent regulation. Collectively, our data showed that Nrf2 via AhR pathways regulated IL-22 response in CD4+ T cells.
Collapse
Affiliation(s)
- Xun Lin
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794
| | - Suzanne Tawch
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794
| | - Hoi Tong Wong
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794
| | - Suyasha Roy
- Translational Health Science and Technology Institute, Faridabad, Haryana 12100, India
| | - Stephen Gaudino
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794
| | - Patricia Castillo
- Richard King Mellon Foundation Institute for Pediatric Research, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA 15224
| | - Waleed Elsegeiny
- Richard King Mellon Foundation Institute for Pediatric Research, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA 15224
| | - Nobunao Wakabayashi
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Tim D Oury
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Derek Pociask
- Richard King Mellon Foundation Institute for Pediatric Research, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA 15224
| | - Kong Chen
- Richard King Mellon Foundation Institute for Pediatric Research, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA 15224
| | - Nancy McLinskey
- Department of Neurology, Stony Brook University, Stony Brook, NY 11794
| | - Patricia Melville
- Department of Neurology, Stony Brook University, Stony Brook, NY 11794
| | - Olga Syritsyna
- Department of Neurology, Stony Brook University, Stony Brook, NY 11794
| | - Patricia Coyle
- Department of Neurology, Stony Brook University, Stony Brook, NY 11794
| | - Misty Good
- Division of Newborn Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110; and
| | - Amit Awasthi
- Translational Health Science and Technology Institute, Faridabad, Haryana 12100, India
| | - Jay K Kolls
- Richard King Mellon Foundation Institute for Pediatric Research, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA 15224
- Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA 70112
| | - Pawan Kumar
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794;
- Richard King Mellon Foundation Institute for Pediatric Research, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA 15224
| |
Collapse
|
27
|
Peng HY, Lucavs J, Ballard D, Das JK, Kumar A, Wang L, Ren Y, Xiong X, Song J. Metabolic Reprogramming and Reactive Oxygen Species in T Cell Immunity. Front Immunol 2021; 12:652687. [PMID: 33868291 PMCID: PMC8044852 DOI: 10.3389/fimmu.2021.652687] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/08/2021] [Indexed: 12/17/2022] Open
Abstract
T cells undergo metabolic reprogramming and multiple biological processes to satisfy their energetic and biosynthetic demands throughout their lifespan. Several of these metabolic pathways result in the generation of reactive oxygen species (ROS). The imbalance between ROS generation and scavenging could result in severe damage to the cells and potential cell death, ultimately leading to T cell-related diseases. Interestingly, ROS play an essential role in T cell immunity. Here, we introduce the important connectivity between T cell lifespan and the metabolic reprogramming among distinct T cell subsets. We also discuss the generation and sources of ROS production within T cell immunity as well as highlight recent research concerning the effects of ROS on T cell activities.
Collapse
Affiliation(s)
- Hao-Yun Peng
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, United States
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| | - Jason Lucavs
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, United States
| | - Darby Ballard
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, United States
| | - Jugal Kishore Das
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, United States
| | - Anil Kumar
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, United States
| | - Liqing Wang
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, United States
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| | - Yijie Ren
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, United States
| | - Xiaofang Xiong
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, United States
| | - Jianxun Song
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, United States
| |
Collapse
|
28
|
Miao Y, Zheng Y, Geng Y, Yang L, Cao N, Dai Y, Wei Z. The role of GLS1-mediated glutaminolysis/2-HG/H3K4me3 and GSH/ROS signals in Th17 responses counteracted by PPARγ agonists. Theranostics 2021; 11:4531-4548. [PMID: 33754076 PMCID: PMC7977454 DOI: 10.7150/thno.54803] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/19/2021] [Indexed: 02/06/2023] Open
Abstract
Background: Peroxisome proliferator-activated receptor gamma (PPARγ) has the ability to counter Th17 responses, but the full mechanisms remain elusive. Herein, we aimed to elucidate this process in view of cellular metabolism, especially glutaminolysis. Methods: MTT, CCK-8, Annexin V-FITC/PI staining or trypan blue exclusion assays were used to analyze cytotoxicity. Flow cytometry and Q-PCR assays were applied to determine Th17 responses. The detection of metabolite levels using commercial kits and rate-limiting enzyme expression using western blotting assays was performed to illustrate the metabolic activity. ChIP assays were used to examine H3K4me3 modifications. Mouse models of dextran sulfate sodium (DSS)-induced colitis and house dust mite (HDM)/lipopolysaccharide (LPS)-induced asthma were established to confirm the mechanisms studied in vitro. Results: The PPARγ agonists rosiglitazone and pioglitazone blocked glutaminolysis but not glycolysis under Th17-skewing conditions, as indicated by the detection of intracellular lactate and α-KG and the fluorescence ratios of BCECF-AM. The PPARγ agonists prevented the utilization of glutamine and thus directly limited Th17 responses even when Foxp3 was deficient. The mechanisms were ascribed to restricted conversion of glutamine to glutamate by reducing the expression of the rate-limiting enzyme GLS1, which was confirmed by GLS1 overexpression. Replenishment of α-KG and 2-HG but not succinate weakened the effects of PPARγ agonists, and α-KG-promoted Th17 responses were dampened by siIDH1/2. Inhibition of KDM5 but not KDM4/6 restrained the inhibitory effect of PPARγ agonists on IL-17A expression, and the H3K4me3 level in the promoter and CNS2 region of the il-17 gene locus down-regulated by PPARγ agonists was rescued by 2-HG and GLS1 overexpression. However, the limitation of PPARγ agonists on the mRNA expression of RORγt was unable to be stopped by 2-HG but was attributed to GSH/ROS signals subsequent to GLS1. The exact role of PPARγ was proved by GW9662 or PPARγ knockout, and the mechanisms for PPARγ-inhibited Th17 responses were further confirmed by GLS1 overexpression in vivo. Conclusion: PPARγ agonists repressed Th17 responses by counteracting GLS1-mediated glutaminolysis/2-HG/H3K4me3 and GSH/ROS signals, which is beneficial for Th17 cell-related immune dysregulation.
Collapse
|
29
|
Lin W, Shen P, Song Y, Huang Y, Tu S. Reactive Oxygen Species in Autoimmune Cells: Function, Differentiation, and Metabolism. Front Immunol 2021; 12:635021. [PMID: 33717180 PMCID: PMC7946999 DOI: 10.3389/fimmu.2021.635021] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 02/08/2021] [Indexed: 12/19/2022] Open
Abstract
Accumulated reactive oxygen species (ROS) directly contribute to biomacromolecule damage and influence various inflammatory responses. Reactive oxygen species act as mediator between innate and adaptive immune cells, thereby influencing the antigen-presenting process that results in T cell activation. Evidence from patients with chronic granulomatous disease and mouse models support the function of ROS in preventing abnormal autoimmunity; for example, by supporting maintenance of macrophage efferocytosis and T helper 1/T helper 2 and T helper 17/ regulatory T cell balance. The failure of many anti-oxidation treatments indicates that ROS cannot be considered entirely harmful. Indeed, enhancement of ROS may sometimes be required. In a mouse model of rheumatoid arthritis (RA), absence of NOX2-derived ROS led to higher prevalence and more severe symptoms. In patients with RA, naïve CD4+ T cells exhibit inhibited glycolysis and enhanced pentose phosphate pathway (PPP) activity, leading to ROS exhaustion. In this "reductive" state, CD4+ T cell immune homeostasis is disrupted, triggering joint destruction, together with oxidative stress in the synovium.
Collapse
Affiliation(s)
- Weiji Lin
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pan Shen
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaqin Song
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Huang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shenghao Tu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
30
|
El Sayed R, Haibe Y, Amhaz G, Bouferraa Y, Shamseddine A. Metabolic Factors Affecting Tumor Immunogenicity: What Is Happening at the Cellular Level? Int J Mol Sci 2021; 22:2142. [PMID: 33670011 PMCID: PMC7927105 DOI: 10.3390/ijms22042142] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/07/2021] [Accepted: 02/11/2021] [Indexed: 12/11/2022] Open
Abstract
Immunotherapy has changed the treatment paradigm in multiple solid and hematologic malignancies. However, response remains limited in a significant number of cases, with tumors developing innate or acquired resistance to checkpoint inhibition. Certain "hot" or "immune-sensitive" tumors become "cold" or "immune-resistant", with resultant tumor growth and disease progression. Multiple factors are at play both at the cellular and host levels. The tumor microenvironment (TME) contributes the most to immune-resistance, with nutrient deficiency, hypoxia, acidity and different secreted inflammatory markers, all contributing to modulation of immune-metabolism and reprogramming of immune cells towards pro- or anti-inflammatory phenotypes. Both the tumor and surrounding immune cells require high amounts of glucose, amino acids and fatty acids to fulfill their energy demands. Thus, both compete over one pool of nutrients that falls short on needs, obliging cells to resort to alternative adaptive metabolic mechanisms that take part in shaping their inflammatory phenotypes. Aerobic or anaerobic glycolysis, oxidative phosphorylation, tryptophan catabolism, glutaminolysis, fatty acid synthesis or fatty acid oxidation, etc. are all mechanisms that contribute to immune modulation. Different pathways are triggered leading to genetic and epigenetic modulation with consequent reprogramming of immune cells such as T-cells (effector, memory or regulatory), tumor-associated macrophages (TAMs) (M1 or M2), natural killers (NK) cells (active or senescent), and dendritic cells (DC) (effector or tolerogenic), etc. Even host factors such as inflammatory conditions, obesity, caloric deficit, gender, infections, microbiota and smoking status, may be as well contributory to immune modulation, anti-tumor immunity and response to immune checkpoint inhibition. Given the complex and delicate metabolic networks within the tumor microenvironment controlling immune response, targeting key metabolic modulators may represent a valid therapeutic option to be combined with checkpoint inhibitors in an attempt to regain immune function.
Collapse
Affiliation(s)
- Rola El Sayed
- Global Health Institute, American University of Beirut, Beirut 11-0236, Lebanon;
| | - Yolla Haibe
- Division of Hematology/Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut 11-0236, Lebanon; (Y.H.); (G.A.); (Y.B.)
| | - Ghid Amhaz
- Division of Hematology/Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut 11-0236, Lebanon; (Y.H.); (G.A.); (Y.B.)
| | - Youssef Bouferraa
- Division of Hematology/Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut 11-0236, Lebanon; (Y.H.); (G.A.); (Y.B.)
| | - Ali Shamseddine
- Division of Hematology/Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut 11-0236, Lebanon; (Y.H.); (G.A.); (Y.B.)
| |
Collapse
|
31
|
Tian Y, Han C, Wei Z, Dong H, Shen X, Cui Y, Fu X, Tian Z, Wang S, Zhou J, Yang D, Sun Y, Yuan J, Ni B, Wu Y. SOX-5 activates a novel RORγt enhancer to facilitate experimental autoimmune encephalomyelitis by promoting Th17 cell differentiation. Nat Commun 2021; 12:481. [PMID: 33473108 PMCID: PMC7817841 DOI: 10.1038/s41467-020-20786-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 12/17/2020] [Indexed: 01/05/2023] Open
Abstract
T helper type 17 (Th17) cells have important functions in the pathogenesis of inflammatory and autoimmune diseases. Retinoid-related orphan receptor-γt (RORγt) is necessary for Th17 cell differentiation and functions. However, the transcriptional regulation of RORγt expression, especially at the enhancer level, is still poorly understood. Here we identify a novel enhancer of RORγt gene in Th17 cells, RORCE2. RORCE2 deficiency suppresses RORγt expression and Th17 differentiation, leading to reduced severity of experimental autoimmune encephalomyelitis. Mechanistically, RORCE2 is looped to RORγt promoter through SRY-box transcription factor 5 (SOX-5) in Th17 cells, and the loss of SOX-5 binding site in RORCE abolishes RORCE2 function and affects the binding of signal transducer and activator of transcription 3 (STAT3) to the RORγt locus. Taken together, our data highlight a molecular mechanism for the regulation of Th17 differentiation and functions, which may represent a new intervening clue for Th17-related diseases.
Collapse
Affiliation(s)
- Yi Tian
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), 400038, Chongqing, People's Republic of China
| | - Chao Han
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), 400038, Chongqing, People's Republic of China
| | - Zhiyuan Wei
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), 400038, Chongqing, People's Republic of China.,The First Affiliated Hospital of Third Military Medical University (Army Medical University), 400038, Chongqing, People's Republic of China
| | - Hui Dong
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), 400038, Chongqing, People's Republic of China
| | - Xiaohe Shen
- Department of Microbiology and Immunology, Shanxi Medical University, 030001, Taiyuan, People's Republic of China
| | - Yiqiang Cui
- Department of Histology and Embryology, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Xiaolan Fu
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), 400038, Chongqing, People's Republic of China
| | - Zhiqiang Tian
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), 400038, Chongqing, People's Republic of China
| | - Shufeng Wang
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), 400038, Chongqing, People's Republic of China
| | - Jian Zhou
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), 400038, Chongqing, People's Republic of China
| | - Di Yang
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), 400038, Chongqing, People's Republic of China
| | - Yi Sun
- The First Affiliated Hospital of Third Military Medical University (Army Medical University), 400038, Chongqing, People's Republic of China
| | - Jizhao Yuan
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), 400038, Chongqing, People's Republic of China
| | - Bing Ni
- Department of Pathophysiology, Third Military Medical University (Army Medical University), 400038, Chongqing, People's Republic of China. .,Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, 400038, Chongqing, People's Republic of China. .,Key Laboratory of High Altitude Medicine, PLA, 400038, Chongqing, People's Republic of China.
| | - Yuzhang Wu
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), 400038, Chongqing, People's Republic of China.
| |
Collapse
|
32
|
Helmke A, Hüsing AM, Gaedcke S, Brauns N, Balzer MS, Reinhardt M, Hiss M, Shushakova N, de Luca D, Prinz I, Haller H, von Vietinghoff S. Peritoneal dialysate-range hypertonic glucose promotes T-cell IL-17 production that induces mesothelial inflammation. Eur J Immunol 2020; 51:354-367. [PMID: 32926407 DOI: 10.1002/eji.202048733] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/04/2020] [Accepted: 09/11/2020] [Indexed: 12/25/2022]
Abstract
Peritoneal dialysis (PD) employs hypertonic glucose to remove excess water and uremic waste. Peritoneal membrane failure limits its long-term use. T-cell cytokines promote this decline. T-cell differentiation is critically determined by the microenvironment. We here study how PD-range hypertonic glucose regulates T-cell polarization and IL-17 production. In the human peritoneal cavity, CD3+ cell numbers increased in PD. Single cell RNA sequencing detected expression of T helper (Th) 17 signature genes RORC and IL23R. In vitro, PD-range glucose stimulated spontaneous and amplified cytokine-induced Th17 polarization. Osmotic controls l-glucose and d-mannose demonstrate that induction of IL-17A is a substance-independent, tonicity dose-dependent process. PD-range glucose upregulated glycolysis and increased the proportion of dysfunctional mitochondria. Blockade of reactive-oxygen species (ROS) prevented IL-17A induction in response to PD-range glucose. Peritoneal mesothelium cultured with IL-17A or IL17F produced pro-inflammatory cytokines IL-6, CCL2, and CX3CL1. In PD patients, peritoneal IL-17A positively correlated with CX3CL1 concentrations. PD-range glucose-stimulated, but neither identically treated Il17a-/- Il17f-/- nor T cells cultured with the ROS scavenger N-acetylcysteine enhanced mesothelial CX3CL1 expression. Our data delineate PD-range hypertonic glucose as a novel inducer of Th17 polarization in a mitochondrial-ROS-dependent manner. Modulation of tonicity-mediated effects of PD solutions may improve membrane survival.
Collapse
Affiliation(s)
- Alexandra Helmke
- Division of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Anne M Hüsing
- Division of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Svenja Gaedcke
- German Center for Lung Research, Hannover Medical School, Hannover, Germany
| | - Nicolas Brauns
- Division of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Michael S Balzer
- Division of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Martin Reinhardt
- Division of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Marcus Hiss
- Division of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Nelli Shushakova
- Division of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - David de Luca
- German Center for Lung Research, Hannover Medical School, Hannover, Germany
| | - Immo Prinz
- Hannover Medical School, Institute for Immunology, Hannover, Germany
| | - Hermann Haller
- Division of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | | |
Collapse
|
33
|
Ethyl Pyruvate Promotes Proliferation of Regulatory T Cells by Increasing Glycolysis. Molecules 2020; 25:molecules25184112. [PMID: 32916780 PMCID: PMC7571066 DOI: 10.3390/molecules25184112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/21/2020] [Accepted: 08/27/2020] [Indexed: 12/02/2022] Open
Abstract
Ethyl pyruvate (EP), a stable form of pyruvate, has shown beneficial effects in animal models of shock, ischemia/reperfusion injury, and sepsis due to its potent anti-oxidant and anti-inflammatory properties. Our recent study demonstrated that EP application prevented the clinical manifestation of type 1 diabetes in mice by augmenting regulatory T cell (Treg) number and function. Our present study shows that EP increases Treg proliferation and suppressive function (perforin and IL-10 expression) during in vitro differentiation from conventional CD4+CD25− T cells. Enhanced expansion of Treg after EP treatment correlated with increased ATP levels and relied on increased glycolysis. Inhibition of oxidative phosphorylation did not attenuate EP stimulatory effects, suggesting that this metabolic pathway was not mandatory for EP-driven Treg proliferation. Moreover, EP lowered the expression of carnitine palmitoyltransferase I, an enzyme involved in fatty acid oxidation. Further, the stimulatory effect of EP on Treg proliferation was not mediated through inhibition of the mTOR signaling pathway. When given in vivo either intraperitoneally or orally to healthy C57BL/6 mice, EP increased the number of Treg within the peritoneal cavity or gut-associated lymphoid tissue, respectively. In conclusion, EP promotes in vitro Treg proliferation through increased glycolysis and enhances Treg proliferation when administered in vivo.
Collapse
|
34
|
Su C, Johnson ME, Torres A, Thomas RM, Manduchi E, Sharma P, Mehra P, Le Coz C, Leonard ME, Lu S, Hodge KM, Chesi A, Pippin J, Romberg N, Grant SFA, Wells AD. Mapping effector genes at lupus GWAS loci using promoter Capture-C in follicular helper T cells. Nat Commun 2020; 11:3294. [PMID: 32620744 PMCID: PMC7335045 DOI: 10.1038/s41467-020-17089-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 06/02/2020] [Indexed: 01/14/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is mediated by autoreactive antibodies that damage multiple tissues. Genome-wide association studies (GWAS) link >60 loci with SLE risk, but the causal variants and effector genes are largely unknown. We generated high-resolution spatial maps of SLE variant accessibility and gene connectivity in human follicular helper T cells (TFH), a cell type required for anti-nuclear antibodies characteristic of SLE. Of the ~400 potential regulatory variants identified, 90% exhibit spatial proximity to genes distant in the 1D genome sequence, including variants that loop to regulate the canonical TFH genes BCL6 and CXCR5 as confirmed by genome editing. SLE 'variant-to-gene' maps also implicate genes with no known role in TFH/SLE disease biology, including the kinases HIPK1 and MINK1. Targeting these kinases in TFH inhibits production of IL-21, a cytokine crucial for class-switched B cell antibodies. These studies offer mechanistic insight into the SLE-associated regulatory architecture of the human genome.
Collapse
Affiliation(s)
- Chun Su
- Division of Human Genetics, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, USA
| | - Matthew E Johnson
- Division of Human Genetics, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, USA
| | - Annabel Torres
- Department of Pathology, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, USA
| | - Rajan M Thomas
- Department of Pathology, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, USA
| | - Elisabetta Manduchi
- Division of Human Genetics, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, USA
- Institute for Biomedical Informatics, University of Pennsylvania, 3700 Hamilton Walk, Philadelphia, PA, USA
| | - Prabhat Sharma
- Department of Pathology, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, USA
| | - Parul Mehra
- Department of Pathology, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, USA
| | - Carole Le Coz
- Division of Allergy and Immunology, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, USA
| | - Michelle E Leonard
- Division of Human Genetics, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, USA
| | - Sumei Lu
- Division of Human Genetics, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, USA
| | - Kenyaita M Hodge
- Division of Human Genetics, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, USA
| | - Alessandra Chesi
- Division of Human Genetics, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, USA
| | - James Pippin
- Division of Human Genetics, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, USA
| | - Neil Romberg
- Division of Allergy and Immunology, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, 3615 Civic Center Boulevard, Philadelphia, PA, USA
| | - Struan F A Grant
- Division of Human Genetics, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, 3615 Civic Center Boulevard, Philadelphia, PA, USA
- Division of Diabetes and Endocrinology, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, 3615 Civic Center Boulevard, Philadelphia, PA, USA
| | - Andrew D Wells
- Department of Pathology, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, USA.
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, 3615 Civic Center Boulevard, Philadelphia, PA, USA.
| |
Collapse
|
35
|
Liang J, Ziegler JD, Jahraus B, Orlik C, Blatnik R, Blank N, Niesler B, Wabnitz G, Ruppert T, Hübner K, Balta E, Samstag Y. Piperlongumine Acts as an Immunosuppressant by Exerting Prooxidative Effects in Human T Cells Resulting in Diminished T H17 but Enhanced T reg Differentiation. Front Immunol 2020; 11:1172. [PMID: 32595640 PMCID: PMC7303365 DOI: 10.3389/fimmu.2020.01172] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 05/12/2020] [Indexed: 12/29/2022] Open
Abstract
Piperlongumine (PL), a natural small molecule derived from the Piper longum Linn plant, has received growing interest as a prooxidative drug with promising anticancer properties. Yet, the influence of PL on primary human T cells remained elusive. Knowledge of this is of crucial importance, however, since T cells in particular play a critical role in tumor control. Therefore, we investigated the effects of PL on the survival and function of primary human peripheral blood T cells (PBTs). While PL was not cytotoxic to PBTs, it interfered with several stages of T cell activation as it inhibited T cell/APC immune synapse formation, co-stimulation-induced upregulation of CD69 and CD25, T cell proliferation and the secretion of proinflammatory cytokines. PL-induced immune suppression was prevented in the presence of thiol-containing antioxidants. In line with this finding, PL increased the levels of intracellular reactive oxygen species and decreased glutathione in PBTs. Diminished intracellular glutathione was accompanied by a decrease in S-glutathionylation on actin suggesting a global alteration of the antioxidant response. Gene expression analysis demonstrated that TH17-related genes were predominantly inhibited by PL. Consistently, the polarization of primary human naïve CD4+ T cells into TH17 subsets was significantly diminished while differentiation into Treg cells was substantially increased upon PL treatment. This opposed consequence for TH17 and Treg cells was again abolished by thiol-containing antioxidants. Taken together, PL may act as a promising agent for therapeutic immunosuppression by exerting prooxidative effects in human T cells resulting in a diminished TH17 but enhanced Treg cell differentiation.
Collapse
Affiliation(s)
- Jie Liang
- Section Molecular Immunology, Institute of Immunology, Heidelberg University, Heidelberg, Germany
| | - Jacqueline D. Ziegler
- Section Molecular Immunology, Institute of Immunology, Heidelberg University, Heidelberg, Germany
| | - Beate Jahraus
- Section Molecular Immunology, Institute of Immunology, Heidelberg University, Heidelberg, Germany
| | - Christian Orlik
- Section Molecular Immunology, Institute of Immunology, Heidelberg University, Heidelberg, Germany
| | - Renata Blatnik
- Mass Spectrometry Core Facility, Center for Molecular Biology (ZMBH), Heidelberg University, Heidelberg, Germany
| | - Norbert Blank
- Division of Rheumatology, Department of Internal Medicine V, Heidelberg University, Heidelberg, Germany
| | - Beate Niesler
- Department of Human Molecular Genetics, Heidelberg University, Heidelberg, Germany
- nCounter Core Facility, Department of Human Molecular Genetics, Heidelberg University, Heidelberg, Germany
| | - Guido Wabnitz
- Section Molecular Immunology, Institute of Immunology, Heidelberg University, Heidelberg, Germany
| | - Thomas Ruppert
- Mass Spectrometry Core Facility, Center for Molecular Biology (ZMBH), Heidelberg University, Heidelberg, Germany
| | - Katrin Hübner
- Section Molecular Immunology, Institute of Immunology, Heidelberg University, Heidelberg, Germany
| | - Emre Balta
- Section Molecular Immunology, Institute of Immunology, Heidelberg University, Heidelberg, Germany
| | - Yvonne Samstag
- Section Molecular Immunology, Institute of Immunology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
36
|
Abstract
Immune checkpoint therapies aiming to enhance T cell responses have revolutionized cancer immunotherapy. However, although a small fraction of patients develops durable anti-tumor responses, the majority of patients display only transient responses, underlying the need for finding auxiliary approaches. Tumor microenvironment poses a major metabolic barrier to efficient anti-tumor T cell activity. As it is now well accepted that metabolism regulates T cell fate and function, harnessing metabolism may be a new strategy to potentiate T cell-based immunotherapies.
Collapse
|
37
|
Naito S, Fukushima T, Endo A, Denda K, Komada M. Nik-related kinase is targeted for proteasomal degradation by the chaperone-dependent ubiquitin ligase CHIP. FEBS Lett 2020; 594:1778-1786. [PMID: 32162334 DOI: 10.1002/1873-3468.13769] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 12/15/2022]
Abstract
Nik-related kinase (Nrk) is a member of the germinal center kinase IV family and suppresses Akt signaling. In vivo, Nrk prevents placental hyperplasia and breast cancer formation. Here, we show that Nrk is regulated by the chaperone-dependent ubiquitin ligase carboxyl terminus of heat-shock protein (Hsp)70-interacting protein (CHIP). Immunoprecipitation and liquid chromatography-tandem mass spectrometry analysis reveal that Nrk preferentially interacts with CHIP and Hsp70/90 family proteins. Nrk protein levels are decreased by CHIP overexpression and increased by siRNA-mediated CHIP knockdown. Our results indicate that Nrk is ubiquitinated by CHIP in a chaperone-dependent manner, resulting in its proteasomal degradation. CHIP targets a fraction of Nrk molecules that have lost the ability to regulate Akt signaling. We conclude that CHIP plays an important role in regulating Nrk protein levels.
Collapse
Affiliation(s)
- Satomi Naito
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Toshiaki Fukushima
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan.,Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Akinori Endo
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Kimitoshi Denda
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Masayuki Komada
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan.,Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
38
|
Zhang Y, Okamoto CT. Nucleotide binding domain and leucine-rich repeat pyrin domain-containing protein 12: characterization of its binding to hematopoietic cell kinase. Int J Biol Sci 2020; 16:1507-1525. [PMID: 32226298 PMCID: PMC7097926 DOI: 10.7150/ijbs.41798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/13/2020] [Indexed: 12/14/2022] Open
Abstract
Protein-protein interactions are key to define the function of nucleotide binding domain (NBD) and leucine-rich repeat (LRR) family, pyrin domain (PYD)-containing protein 12 (NLRP12). cDNA encoding the human PYD + NBD of NLRP12 was used as bait in a yeast two-hybrid screen with a human leukocyte cDNA library as prey. Hematopoiesis cell kinase (HCK), a member of the c-SRC family of non-receptor tyrosine kinases, was among the top hits. The C-terminal 40 amino acids of HCK selectively bound to NLRP12's PYD + NBD, but not to that of NLRP3 and NLRP8. Amino acids F503, I506, Q507, L510, and D511 of HCK are critical for the binding of HCK's C-terminal 40 amino acids to NLRP12's PYD + NBD. Additionally, the C-terminal 30 amino acids of HCK are sufficient to bind to NLRP12's PYD + NBD, but not to its PYD alone nor to its NBD alone. In cell lines that express HCK endogenously, it was co- immunoprecipitated with stably expressed exogenous NLRP12. Also, NLRP12 co-immunoprecipitated and co-localized with HCK when both were overexpressed in 293T cells. In addition, in this overexpression system, steady-state NLRP12 protein expression levels significantly decreased when HCK was co-expressed. Bioinformatic analysis showed that HCK mRNA co-occurred with NLRP12 mRNA, but not with other NLRP mRNAs, in blood and marrow samples from acute myeloid leukemia (AML) patients. The mRNA of NLRP12 is also co-expressed with HCK in AML patient samples, and the levels of mRNA expression of each are correlated. Together these data suggest that NLRP12, through its binding to HCK, may have an effect on the pathogenesis of AML.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, USA 90089-9121
| | - Curtis T Okamoto
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, USA 90089-9121
| |
Collapse
|
39
|
Nadeem A, Ahmad SF, Al-Harbi NO, Alasmari AF, Al-Ayadhi LY, Alasmari F, Ibrahim KE, Attia SM, Bakheet SA. Upregulation of enzymatic antioxidants in CD4 + T cells of autistic children. Biochimie 2020; 171-172:205-212. [PMID: 32173487 DOI: 10.1016/j.biochi.2020.03.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 03/10/2020] [Indexed: 01/06/2023]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder which begins in early childhood and presents itself with characteristic symptoms such as repetitive behavioral patterns and problems in speech/social interactions. Adaptive immune system is thought to be involved in the etiology of ASD. T cells orchestrate amplification of inflammation through release of inflammatory mediators; however, antioxidant defenses have not been evaluated in CD4+ T cells of ASD subjects. In this study we evaluated intracellular enzymatic antioxidant potential through measurement of major antioxidant enzymes (SOD, GPx, and GR) in ASD subjects and typically developing control (TDC) children and further assessed its role in modulation of inflammation. Our data reveal that there is an increase in antioxidant potential (SOD, GPx, GR) in CD4+ T cells of ASD subjects as compared to TDC children at both protein and activity level. Further, this antioxidant increase was associated with upregulated IL-17A levels in CD4+ T cells. This was corroborated by oxidant treatment in vitro. Pretreatment with oxidant, H2O2 led to attenuation of IL-17A levels along with increased oxidative stress in stimulated CD4+ T cells from ASD subjects. These data reveal that antioxidant play an essential role in modulation of inflammatory potential in CD4+ T cells of ASD subjects.
Collapse
Affiliation(s)
- Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Naif O Al-Harbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah F Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Laila Y Al-Ayadhi
- Autism Research and Treatment Center, AL-Amodi Autism Research Chair, Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Khalid E Ibrahim
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
40
|
Katagiri W, Lee G, Tanushi A, Tsukada K, Choi HS, Kashiwagi S. High-throughput single-cell live imaging of photobiomodulation with multispectral near-infrared lasers in cultured T cells. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:1-18. [PMID: 32193907 PMCID: PMC7081057 DOI: 10.1117/1.jbo.25.3.036003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/18/2020] [Indexed: 05/11/2023]
Abstract
SIGNIFICANCE Photobiomodulation is a well-established therapeutic modality. However, the mechanism of action is poorly understood, due to lack of research in the causal relationship between the near-infrared (NIR) light irradiation and its specific biological effects, hindering broader applications of this technology. AIM Since biological chromophores typically show several absorption peaks, we determined whether specific effects of photobiomodulation are induced with a combination of two wavelengths at a certain range of irradiance only, rather than a single wavelength of NIR light. APPROACH In order to analyze a wide array of combinations of multispectral NIR light at various irradiances efficiently, we developed a new optical platform equipped with two distinct wavelengths of NIR lasers by high-throughput multiple dosing for single-cell live imaging. Two wavelengths of 1064 and 1270 nm were selected based on their photobiomodulatory effects reported in the literature. RESULTS A specific combination of wavelengths at low irradiances (250 to 400 mW / cm2 for 1064 nm and 55 to 65 mW / cm2 for 1270 nm) modulates mitochondrial retrograde signaling, including intracellular calcium and reactive oxygen species in T cells. The time-dependent density functional theory computation of binding of nitric oxide (NO) to cytochrome c oxidase indicates that the illumination with NIR light could result in the NO release, which might be involved in these changes. CONCLUSIONS This optical platform is a powerful tool to study causal relationship between a specific parameter of NIR light and its biological effects. Such a platform is useful for a further mechanistic study on not only photobiomodulation but also other modalities in photomedicine.
Collapse
Affiliation(s)
- Wataru Katagiri
- Massachusetts General Hospital, Gordon Center for Medical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
- Keio University, Graduate School of Science and Technology, Yokohama, Kanagawa, Japan
| | - GeonHui Lee
- Korea University, KU-KIST Graduate School of Converging Science and Technology, Seoul, Republic of Korea
| | - Akira Tanushi
- Massachusetts Institute of Technology, Department of Chemistry, Cambridge, Massachusetts, United States
| | - Kosuke Tsukada
- Keio University, Graduate School of Science and Technology, Yokohama, Kanagawa, Japan
| | - Hak Soo Choi
- Massachusetts General Hospital, Gordon Center for Medical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
- Address all correspondence to Satoshi Kashiwagi, E-mail: ; Hak Soo Choi, E-mail:
| | - Satoshi Kashiwagi
- Massachusetts General Hospital, Gordon Center for Medical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
- Address all correspondence to Satoshi Kashiwagi, E-mail: ; Hak Soo Choi, E-mail:
| |
Collapse
|
41
|
Roles of mTORC1 and mTORC2 in controlling γδ T1 and γδ T17 differentiation and function. Cell Death Differ 2020; 27:2248-2262. [PMID: 32001780 DOI: 10.1038/s41418-020-0500-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 12/26/2022] Open
Abstract
The metabolism-controlled differentiation of αβ T cells has been well documented; however, the role of a metabolism program in γδ T cell differentiation and function has not been clarified. Here, using CD2-cre; mTORC1 Raptor-f/f, and mTORC2 Rictor-f/f mice (KO mice), we found that mTORC1, but not mTORC2, was required for the proliferation and survival of peripheral γδ T cells, especially Vγ4 γδ T cells. Moreover, mTORC1 was essential for both γδ T1 and γδ Τ17 differentiation, whereas mTORC2 was required for γδ T17, but not for γδ Τ1, differentiation. We further studied the underlying molecular mechanisms and found that depletion of mTORC1 resulted in the increased expression of SOCS1, which in turn suppressed the key transcription factor Eomes, consequentially reducing IFN-γ production. Whereas the reduced glycolysis resulted in impaired γδ Τ17 differentiation in Raptor KO γδ T cells. In contrast, mTORC2 potentiated γδ Τ17 induction by suppressing mitochondrial ROS (mitoROS) production. Consistent with their cytokine production profiles, the Raptor KO γδ T cells lost their anti-tumor function both in vitro and in vivo, whereas both Raptor and Rictor KO mice were resistant to imiquimod (IMQ)-induced psoriasis-like skin pathogenesis. In summary, we identified previously unknown functions of mTORC1 and mTORC2 in γδ T cell differentiation and clarified their divergent roles in mediating the activity of γδ T cells in tumors and autoimmunity.
Collapse
|
42
|
Yu D, Hu J, Sheng Z, Fu G, Wang Y, Chen Y, Pan Z, Zhang X, Wu Y, Sun H, Dai J, Lu L, Ouyang H. Dual roles of misshapen/NIK-related kinase (MINK1) in osteoarthritis subtypes through the activation of TGFβ signaling. Osteoarthritis Cartilage 2020; 28:112-121. [PMID: 31647983 DOI: 10.1016/j.joca.2019.09.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 08/27/2019] [Accepted: 09/12/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To identify the role of misshapen/NIK-related kinase (MINK1) in age-related Osteoarthritis (OA) and injury-induced OA, and the effects of enhanced TGFβ signaling in these progresses. DESIGN The effect of MINK1 was analyzed with MINK1 knock out (Mink1-/-) mice and C57BL/6J mice. OA progress was studied in age-related OA and instability-associated OA (destabilization of the medial meniscus, DMM) models. The murine knee joint was evaluated through histological staining, Osteoarthritis Research Society International (OARSI) scores, immunohistochemistry, and μCT analysis. Primary chondrocytes were isolated from wild type and Mink1-/- mice and subjected to osteogenic induction and Western blot analysis. RESULTS MINK1 is highly expressed during cartilage development and in normal cartilage. Mink1-/- mice displayed markedly lower OARSI scores, aggrecan degradation neoepitope positive cells and increased Safranin O and pSMAD2 staining in aging-related OA model. However, in injury-induced OA, loss of MINK1 accelerates extracellular matrix (ECM) destruction, osteophyte formation, and subchondral bone sclerosis. Accelerated subchondral bone remodeling in Mink1-/- mice was accompanied with increased numbers of nestin-positive mesenchymal stem cells (MSCs) and osterix-positive osteoprogenitors. pSMAD2 staining was increased in the subchondral bone marrow of Mink1-/- mice and overexpression of MINK1 inhibited SMAD2 phosphorylation in vitro. CONCLUSIONS This study shows for the first time that activation of TGFβ/SMAD2 by MINK1 deficiency plays opposite roles in aging-related and injury-induced OA. MINK1 deficiency protects cartilage from degeneration in aging joints through increased SMAD2 activation in chondrocytes, while accelerating OA progress in injury-induced model through enhanced osteogenesis of MSCs in the subchondral bone. These findings provide insights for developing precision OA therapeutics targeting TGFβ/SMAD2 signaling.
Collapse
Affiliation(s)
- D Yu
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University school of medicine, Zhejiang University, Hangzhou 310058, China; Department of Orthopedics, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - J Hu
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University school of medicine, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Z Sheng
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University school of medicine, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - G Fu
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Y Wang
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University school of medicine, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Y Chen
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University school of medicine, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Z Pan
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University school of medicine, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - X Zhang
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University school of medicine, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Y Wu
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University school of medicine, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - H Sun
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University school of medicine, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - J Dai
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University school of medicine, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - L Lu
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University school of medicine, Zhejiang University, Hangzhou 310058, China; Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China.
| | - H Ouyang
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University school of medicine, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Zhejiang University - University of Edinburgh Institute, Zhejiang University School of Medicine, Hangzhou, 310058, China; Department of Sports Medicine, School of Medicine, Zhejiang University, Hangzhou, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China.
| |
Collapse
|
43
|
Li Q, Nirala NK, Chen HJ, Nie Y, Wang W, Zhang B, Czech MP, Wang Q, Xu L, Mao J, Tony Ip Y. The Misshapen subfamily of Ste20 kinases regulate proliferation in the aging mammalian intestinal epithelium. J Cell Physiol 2019; 234:21925-21936. [PMID: 31042012 PMCID: PMC6711781 DOI: 10.1002/jcp.28756] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/01/2019] [Accepted: 04/05/2019] [Indexed: 12/17/2022]
Abstract
The intestinal epithelium has a high rate of cell turn over and is an excellent system to study stem cell-mediated tissue homeostasis. The Misshapen subfamily of the Ste20 kinases in mammals consists of misshapen like kinase 1 (MINK1), mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4), and TRAF2 and NCK interacting kinase (TNIK). Recent reports suggest that this subfamily has a novel function equal to the Hippo/MST subfamily as upstream kinases for Warts/Large tumor suppressor kinase (LATS) to suppress tissue growth. To study the in vivo functions of Mink1, Map4k4, and Tnik, we generated a compound knockout of these three genes in the mouse intestinal epithelium. The intestinal epithelia of the mutant animals were phenotypically normal up to approximately 12 months. The older animals then exhibited mildly increased proliferation throughout the lower GI tract. We also observed that the normally spatially organized Paneth cells in the crypt base became dispersed. The expression of one of the YAP pathway target genes Sox9 was increased while other target genes including CTGF did not show a significant change. Therefore, the Misshapen and Hippo subfamilies may have highly redundant functions to regulate growth in the intestinal epithelium, as illustrated in recent tissue culture models.
Collapse
Affiliation(s)
- Qi Li
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Niraj K. Nirala
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Hsi-Ju Chen
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Yingchao Nie
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Wei Wang
- Guangzhou RiboBio Co., Ltd., Guangzhou 510663, China
| | - Biliang Zhang
- Guangzhou RiboBio Co., Ltd., Guangzhou 510663, China
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Michael P. Czech
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Qi Wang
- Neuroscience Research Unit, Pfizer, Cambridge, MA 02139, USA
| | - Lan Xu
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Junhao Mao
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Y. Tony Ip
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
44
|
Carlström KE, Ewing E, Granqvist M, Gyllenberg A, Aeinehband S, Enoksson SL, Checa A, Badam TVS, Huang J, Gomez-Cabrero D, Gustafsson M, Al Nimer F, Wheelock CE, Kockum I, Olsson T, Jagodic M, Piehl F. Therapeutic efficacy of dimethyl fumarate in relapsing-remitting multiple sclerosis associates with ROS pathway in monocytes. Nat Commun 2019; 10:3081. [PMID: 31300673 PMCID: PMC6626021 DOI: 10.1038/s41467-019-11139-3] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 06/25/2019] [Indexed: 12/15/2022] Open
Abstract
Dimethyl fumarate (DMF) is a first-line-treatment for relapsing-remitting multiple sclerosis (RRMS). The redox master regulator Nrf2, essential for redox balance, is a target of DMF, but its precise therapeutic mechanisms of action remain elusive. Here we show impact of DMF on circulating monocytes and T cells in a prospective longitudinal RRMS patient cohort. DMF increases the level of oxidized isoprostanes in peripheral blood. Other observed changes, including methylome and transcriptome profiles, occur in monocytes prior to T cells. Importantly, monocyte counts and monocytic ROS increase following DMF and distinguish patients with beneficial treatment-response from non-responders. A single nucleotide polymorphism in the ROS-generating NOX3 gene is associated with beneficial DMF treatment-response. Our data implicate monocyte-derived oxidative processes in autoimmune diseases and their treatment, and identify NOX3 genetic variant, monocyte counts and redox state as parameters potentially useful to inform clinical decisions on DMF therapy of RRMS.
Collapse
Affiliation(s)
- Karl E Carlström
- Department of Clinical Neurosciences, Section of Neurology, Karolinska Institutet, Stockholm, Sweden.
| | - Ewoud Ewing
- Department of Clinical Neurosciences, Section of Neurology, Karolinska Institutet, Stockholm, Sweden
| | - Mathias Granqvist
- Department of Clinical Neurosciences, Section of Neurology, Karolinska Institutet, Stockholm, Sweden
| | - Alexandra Gyllenberg
- Department of Clinical Neurosciences, Section of Neurology, Karolinska Institutet, Stockholm, Sweden
| | - Shahin Aeinehband
- Department of Clinical Neurosciences, Section of Neurology, Karolinska Institutet, Stockholm, Sweden
| | - Sara Lind Enoksson
- Department of Clinical Immunology Karolinska University Hospital, Stockholm, Sweden
| | - Antonio Checa
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Tejaswi V S Badam
- Department of Bioinformatics, School of Bioscience, University of Skövde, Skövde, Sweden.,Department of Physics, Chemistry & Biology (IFM), Bioinformatics, Linköping University, Linköping, Sweden
| | - Jesse Huang
- Department of Clinical Neurosciences, Section of Neurology, Karolinska Institutet, Stockholm, Sweden
| | - David Gomez-Cabrero
- Translational Bioinformatics Unit, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Publica de Nevarra (UPNA), IdiSNA, Pamplona, Spain
| | - Mika Gustafsson
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Faiez Al Nimer
- Department of Clinical Neurosciences, Section of Neurology, Karolinska Institutet, Stockholm, Sweden
| | - Craig E Wheelock
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ingrid Kockum
- Department of Clinical Neurosciences, Section of Neurology, Karolinska Institutet, Stockholm, Sweden
| | - Tomas Olsson
- Department of Clinical Neurosciences, Section of Neurology, Karolinska Institutet, Stockholm, Sweden
| | - Maja Jagodic
- Department of Clinical Neurosciences, Section of Neurology, Karolinska Institutet, Stockholm, Sweden
| | - Fredrik Piehl
- Department of Clinical Neurosciences, Section of Neurology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
45
|
Abstract
Phosphatase PP2A expression levels are positively correlated to the clinical severity of systemic lupus erythematosus (SLE) and IL17A cytokine overproduction, indicating a potential role of PP2A in controlling TH17 differentiation and inflammation. By generating a mouse strain with ablation of the catalytic subunit α of PP2A in peripheral mature T cells (PP2A cKO), we demonstrate that the PP2A complex is essential for TH17 differentiation. These PP2A cKO mice had reduced TH17 cell numbers and less severe disease in an experimental autoimmune encephalomyelitis (EAE) model. PP2A deficiency also ablated C-terminal phosphorylation of SMAD2 but increased C-terminal phosphorylation of SMAD3. By regulating the activity of RORγt via binding, the changes in the phosphorylation status of these R-SMADs reduced Il17a gene transcription. Finally, PP2A inhibitors showed similar effects on TH17 cells as were observed in PP2A cKO mice, i.e., decreased TH17 differentiation and relative protection of mice from EAE. Taken together, these data demonstrate that phosphatase PP2A is essential for TH17 differentiation and that inhibition of PP2A could be a possible therapeutic approach to controlling TH17-driven autoimmune diseases.
Collapse
|
46
|
Skon-Hegg C, Zhang J, Wu X, Sagolla M, Ota N, Wuster A, Tom J, Doran E, Ramamoorthi N, Caplazi P, Monroe J, Lee WP, Behrens TW. LACC1 Regulates TNF and IL-17 in Mouse Models of Arthritis and Inflammation. THE JOURNAL OF IMMUNOLOGY 2018; 202:183-193. [PMID: 30510070 DOI: 10.4049/jimmunol.1800636] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 10/16/2018] [Indexed: 12/29/2022]
Abstract
Both common and rare genetic variants of laccase domain-containing 1 (LACC1, previously C13orf31) are associated with inflammatory bowel disease, leprosy, Behcet disease, and systemic juvenile idiopathic arthritis. However, the functional relevance of these variants is unclear. In this study, we use LACC1-deficient mice to gain insight into the role of LACC1 in regulating inflammation. Following oral administration of Citrobacter rodentium, LACC1 knockout (KO) mice had more severe colon lesions compared with wildtype (WT) controls. Immunization with collagen II, a collagen-induced arthritis (CIA) model, resulted in an accelerated onset of arthritis and significantly worse arthritis and inflammation in LACC1 KO mice. Similar results were obtained in a mannan-induced arthritis model. Serum and local TNF in CIA paws and C. rodentium colons were significantly increased in LACC1 KO mice compared with WT controls. The percentage of IL-17A-producing CD4+ T cells was elevated in LACC1 KO mice undergoing CIA as well as aged mice compared with WT controls. Neutralization of IL-17, but not TNF, prevented enhanced mannan-induced arthritis in LACC1 KO mice. These data provide new mechanistic insight into the function of LACC1 in regulating TNF and IL-17 during inflammatory responses. We hypothesize that these effects contribute to immune-driven pathologies observed in individuals carrying LACC1 variants.
Collapse
Affiliation(s)
- Cara Skon-Hegg
- Department of Human Genetics, Genentech, Inc., South San Francisco, CA 94080; .,Department of Immunology, Genentech, Inc., South San Francisco, CA 94080
| | - Juan Zhang
- Department of Translational Immunology, Genentech, Inc., South San Francisco, CA 94080
| | - Xiumin Wu
- Department of Translational Immunology, Genentech, Inc., South San Francisco, CA 94080
| | - Meredith Sagolla
- Department of Pathology, Genentech, Inc., South San Francisco, CA 94080
| | - Naruhisa Ota
- Department of Immunology, Genentech, Inc., South San Francisco, CA 94080
| | - Arthur Wuster
- Department of Human Genetics, Genentech, Inc., South San Francisco, CA 94080.,Department of Bioinformatics and Computational Biology, Genentech, Inc., South San Francisco, CA 94080; and
| | - Jennifer Tom
- Department of Pathology, Genentech, Inc., South San Francisco, CA 94080
| | - Emma Doran
- Department of Immunology, Genentech, Inc., South San Francisco, CA 94080
| | - Nandhini Ramamoorthi
- Department of Biomarker Discovery, Genentech, Inc., South San Francisco, CA 94080
| | - Patrick Caplazi
- Department of Pathology, Genentech, Inc., South San Francisco, CA 94080
| | - John Monroe
- Department of Immunology, Genentech, Inc., South San Francisco, CA 94080
| | - Wyne P Lee
- Department of Translational Immunology, Genentech, Inc., South San Francisco, CA 94080
| | - Timothy W Behrens
- Department of Human Genetics, Genentech, Inc., South San Francisco, CA 94080
| |
Collapse
|
47
|
Sulforaphane as anticancer agent: A double-edged sword? Tricky balance between effects on tumor cells and immune cells. Adv Biol Regul 2018; 71:79-87. [PMID: 30528536 DOI: 10.1016/j.jbior.2018.11.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 11/20/2018] [Accepted: 11/20/2018] [Indexed: 12/19/2022]
Abstract
Sulforaphane (SFN) is a naturally occurring isothiocyanate derived from cruciferous vegetables such as broccoli. It has been reported to inhibit the growth of a variety of cancers, such as breast, prostate, colon, skin, lung, gastric or bladder cancer. SFN is supposed to act primarily as an antioxidant due to the activation of the Nrf2-Keap1 signaling pathway. This enhances the activity of phase II detoxifying enzymes and the trapping of free radicals. Finally, SFN induces cell cycle arrest or apoptosis of tumor cells. Here, we discuss effects of SFN on the immune defense system. In contrast to the situation in tumor cells, SFN acts pro-oxidatively in primary human T cells. It increases intracellular ROS levels and decreases GSH, resulting in inhibition of T cell activation and T cell effector functions. Regarding the use of SFN as an "anticancer agent" we conclude that SFN could act as a double-edged sword. On the one hand it reduces carcinogenesis, on the other hand it blocks the T cell-mediated immune response, the latter being important for immune surveillance of tumors. Thus, SFN could also interfere with the successful application of immunotherapy by immune checkpoint inhibitors (e.g. CTLA-4 antibodies and PD-1/PD-L1 antibodies) or CAR T cells. Therefore, a combination of SFN with T cell-mediated cancer immunotherapies does not seem advisable.
Collapse
|
48
|
Liang J, Jahraus B, Balta E, Ziegler JD, Hübner K, Blank N, Niesler B, Wabnitz GH, Samstag Y. Sulforaphane Inhibits Inflammatory Responses of Primary Human T-Cells by Increasing ROS and Depleting Glutathione. Front Immunol 2018; 9:2584. [PMID: 30487791 PMCID: PMC6246742 DOI: 10.3389/fimmu.2018.02584] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/19/2018] [Indexed: 11/20/2022] Open
Abstract
The activity and function of T-cells are influenced by the intra- and extracellular redox milieu. Oxidative stress induces hypo responsiveness of untransformed T-cells. Vice versa increased glutathione (GSH) levels or decreased levels of reactive oxygen species (ROS) prime T-cell metabolism for inflammation, e.g., in rheumatoid arthritis. Therefore, balancing the T-cell redox milieu may represent a promising new option for therapeutic immune modulation. Here we show that sulforaphane (SFN), a compound derived from plants of the Brassicaceae family, e.g., broccoli, induces a pro-oxidative state in untransformed human T-cells of healthy donors or RA patients. This manifested as an increase of intracellular ROS and a marked decrease of GSH. Consistently, increased global cysteine sulfenylation was detected. Importantly, a major target for SFN-mediated protein oxidation was STAT3, a transcription factor involved in the regulation of TH17-related genes. Accordingly, SFN significantly inhibited the activation of untransformed human T-cells derived from healthy donors or RA patients, and downregulated the expression of the transcription factor RORγt, and the TH17-related cytokines IL-17A, IL-17F, and IL-22, which play a major role within the pathophysiology of many chronic inflammatory/autoimmune diseases. The inhibitory effects of SFN could be abolished by exogenously supplied GSH and by the GSH replenishing antioxidant N-acetylcysteine (NAC). Together, our study provides mechanistic insights into the mode of action of the natural substance SFN. It specifically exerts TH17 prone immunosuppressive effects on untransformed human T-cells by decreasing GSH and accumulation of ROS. Thus, SFN may offer novel clinical options for the treatment of TH17 related chronic inflammatory/autoimmune diseases such as rheumatoid arthritis.
Collapse
Affiliation(s)
- Jie Liang
- Section Molecular Immunology, Institute of Immunology, Heidelberg University, Heidelberg, Germany
| | - Beate Jahraus
- Section Molecular Immunology, Institute of Immunology, Heidelberg University, Heidelberg, Germany
| | - Emre Balta
- Section Molecular Immunology, Institute of Immunology, Heidelberg University, Heidelberg, Germany
| | - Jacqueline D. Ziegler
- Section Molecular Immunology, Institute of Immunology, Heidelberg University, Heidelberg, Germany
| | - Katrin Hübner
- Section Molecular Immunology, Institute of Immunology, Heidelberg University, Heidelberg, Germany
| | - Norbert Blank
- Division of Rheumatology, Department of Internal Medicine V, Heidelberg University, Heidelberg, Germany
| | - Beate Niesler
- Department of Human Molecular Genetics, Heidelberg University, Heidelberg, Germany
- nCounter Core Facility, Department of Human Molecular Genetics, Heidelberg University, Heidelberg, Germany
| | - Guido H. Wabnitz
- Section Molecular Immunology, Institute of Immunology, Heidelberg University, Heidelberg, Germany
| | - Yvonne Samstag
- Section Molecular Immunology, Institute of Immunology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
49
|
Yarosz EL, Chang CH. The Role of Reactive Oxygen Species in Regulating T Cell-mediated Immunity and Disease. Immune Netw 2018; 18:e14. [PMID: 29503744 PMCID: PMC5833121 DOI: 10.4110/in.2018.18.e14] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 02/15/2018] [Accepted: 02/19/2018] [Indexed: 12/28/2022] Open
Abstract
T lymphocytes rely on several metabolic processes to produce the high amounts of energy and metabolites needed to drive clonal expansion and the development of effector functions. However, many of these pathways result in the production of reactive oxygen species (ROS), which have canonically been thought of as cytotoxic agents due to their ability to damage DNA and other subcellular structures. Interestingly, ROS has recently emerged as a critical second messenger for T cell receptor signaling and T cell activation, but the sensitivity of different T cell subsets to ROS varies. Therefore, the tight regulation of ROS production by cellular antioxidant pathways is critical to maintaining proper signal transduction without compromising the integrity of the cell. This review intends to detail the common metabolic sources of intracellular ROS and the mechanisms by which ROS contributes to the development of T cell-mediated immunity. The regulation of ROS levels by the glutathione pathway and the Nrf2-Keap1-Cul3 trimeric complex will be discussed. Finally, T cell-mediated autoimmune diseases exacerbated by defects in ROS regulation will be further examined in order to identify potential therapeutic interventions for these disorders.
Collapse
Affiliation(s)
- Emily L Yarosz
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Cheong-Hee Chang
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
50
|
Molecular mechanisms underpinning T helper 17 cell heterogeneity and functions in rheumatoid arthritis. J Autoimmun 2018; 87:69-81. [DOI: 10.1016/j.jaut.2017.12.006] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 12/05/2017] [Indexed: 12/24/2022]
|