1
|
Kato A, Kita H. The immunology of asthma and chronic rhinosinusitis. Nat Rev Immunol 2025:10.1038/s41577-025-01159-0. [PMID: 40240657 DOI: 10.1038/s41577-025-01159-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2025] [Indexed: 04/18/2025]
Abstract
Asthma and chronic rhinosinusitis (CRS) are common chronic inflammatory diseases of the respiratory tract that have increased in prevalence over the past five decades. The clinical relationship between asthma and CRS has been well recognized, suggesting a common pathogenesis between these diseases. Both diseases are driven by complex airway epithelial cell and immune cell interactions that occur in response to environmental triggers such as allergens, microorganisms and irritants. Advances, including a growing understanding of the biology of the cells involved in the disease, the application of multiomics technologies and the performance of large-scale clinical studies, have led to a better understanding of the pathophysiology and heterogeneity of asthma and CRS. This research has promoted the concept that these diseases consist of several endotypes, in which airway epithelial cells, innate lymphoid cells, T cells, B cells, granulocytes and their mediators are distinctly involved in the immunopathology. Identification of the disease heterogeneity and immunological markers has also greatly improved the protocols for biologic therapies and the clinical outcomes in certain subsets of patients. However, many clinical and research questions remain. In this Review, we discuss recent advances in characterizing the immunological mechanisms of asthma and CRS, with a focus on the main cell types and molecules involved in these diseases.
Collapse
Affiliation(s)
- Atsushi Kato
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Hirohito Kita
- Division of Allergy, Asthma, and Clinical Immunology, Mayo Clinic Arizona, Scottsdale, AZ, USA.
- Department of Immunology, Mayo Clinic Arizona, Scottsdale, AZ, USA.
| |
Collapse
|
2
|
Llibre A, Kucuk S, Gope A, Certo M, Mauro C. Lactate: A key regulator of the immune response. Immunity 2025; 58:535-554. [PMID: 40073846 DOI: 10.1016/j.immuni.2025.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/22/2025] [Accepted: 02/06/2025] [Indexed: 03/14/2025]
Abstract
Lactate, the end product of both anaerobic and aerobic glycolysis in proliferating and growing cells-with the latter process known as the Warburg effect-is historically considered a mere waste product of cell and tissue metabolism. However, research over the past ten years has unveiled multifaceted functions of lactate that critically shape and impact cellular biology. Beyond serving as a fuel source, lactate is now known to influence gene expression through histone modification and to function as a signaling molecule that impacts a wide range of cellular activities. These properties have been particularly studied in the context of both adaptive and innate immune responses. Here, we review the diverse roles of lactate in the regulation of the immune system during homeostasis and disease pathogenesis (including cancer, infection, cardiovascular diseases, and autoimmunity). Furthermore, we describe recently proposed therapeutic interventions for manipulating lactate metabolism in human diseases.
Collapse
Affiliation(s)
- Alba Llibre
- College of Medicine and Health, University of Birmingham, Birmingham, UK
| | - Salih Kucuk
- College of Medicine and Health, University of Birmingham, Birmingham, UK
| | - Atrayee Gope
- College of Medicine and Health, University of Birmingham, Birmingham, UK
| | - Michelangelo Certo
- College of Medicine and Health, University of Birmingham, Birmingham, UK
| | - Claudio Mauro
- College of Medicine and Health, University of Birmingham, Birmingham, UK.
| |
Collapse
|
3
|
Meloun A, León B. Beyond CCR7: dendritic cell migration in type 2 inflammation. Front Immunol 2025; 16:1558228. [PMID: 40093008 PMCID: PMC11906670 DOI: 10.3389/fimmu.2025.1558228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 02/13/2025] [Indexed: 03/19/2025] Open
Abstract
Conventional dendritic cells (cDCs) are crucial antigen-presenting cells that initiate and regulate T cell responses, thereby shaping immunity against pathogens, innocuous antigens, tumors, and self-antigens. The migration of cDCs from peripheral tissues to draining lymph nodes (dLNs) is essential for their function in immune surveillance. This migration allows cDCs to convey the conditions of peripheral tissues to antigen-specific T cells in the dLNs, facilitating effective immune responses. Migration is primarily mediated by chemokine receptor CCR7, which is upregulated in response to homeostatic and inflammatory cues, guiding cDCs to dLNs. However, during type 2 immune responses, such as those triggered by parasites or allergens, a paradox arises-cDCs exhibit robust migration to dLNs despite low CCR7 expression. This review discusses how type 2 inflammation relies on additional signaling pathways, including those induced by membrane-derived bioactive lipid mediators like eicosanoids, sphingolipids, and oxysterols, which cooperate with CCR7 to enhance cDC migration and T helper 2 (Th2) differentiation. We explore the potential regulatory mechanisms of cDC migration in type 2 immunity, offering insights into the differential control of cDC trafficking in diverse immune contexts and its impact on immune responses.
Collapse
Affiliation(s)
- Audrey Meloun
- Innate Cells and Th2 Immunity Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Beatriz León
- Innate Cells and Th2 Immunity Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
4
|
Ham J, Yang W, Kim HY. Tissue-Specific Metabolic Reprogramming in Innate Lymphoid Cells and Its Impact on Disease. Immune Netw 2025; 25:e3. [PMID: 40078781 PMCID: PMC11896661 DOI: 10.4110/in.2025.25.e3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/31/2024] [Accepted: 01/08/2025] [Indexed: 03/14/2025] Open
Abstract
Recent advances have highlighted the crucial role of metabolic reprogramming in shaping the functions of innate lymphoid cells (ILCs), which are vital for tissue immunity and homeostasis. As tissue-resident cells, ILCs dynamically respond to local environmental cues, with tissue-derived metabolites such as short-chain fatty acids and amino acids directly modulating their effector functions. The metabolic states of ILC subsets-ILC1, ILC2, and ILC3-are closely linked to their ability to produce cytokines, sustain survival, and drive proliferation. This review provides a comprehensive analysis of how key metabolic pathways, including glycolysis, oxidative phosphorylation, and fatty acid oxidation, influence ILC activation and function. Furthermore, we explore the complex interactions between these metabolic pathways and tissue-specific metabolites, which can shape ILC-mediated immune responses in health and disease. Understanding these interactions reveals new insights into the pathogenesis of conditions such as asthma, inflammatory bowel disease, and cancer. A deeper understanding of these mechanisms may not only advance our knowledge of disease pathogenesis but also lead to the development of novel therapeutic strategies targeting metabolic pathways in ILCs to treat tissue-specific immune disorders.
Collapse
Affiliation(s)
- Jongho Ham
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
- BK21 Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul 03080, Korea
- Department of Life Science, SRC Center for Multitasking Macrophage Research Center, Ewha Womans University, Seoul 03760, Korea
| | - Wooseok Yang
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
- BK21 Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Hye Young Kim
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
- BK21 Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul 03080, Korea
- Department of Life Science, SRC Center for Multitasking Macrophage Research Center, Ewha Womans University, Seoul 03760, Korea
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul 03080, Korea
| |
Collapse
|
5
|
Wu J, Li L, Zhang T, Lu J, Tai Z, Zhu Q, Chen Z. The epidermal lipid-microbiome loop and immunity: Important players in atopic dermatitis. J Adv Res 2025; 68:359-374. [PMID: 38460775 PMCID: PMC11785582 DOI: 10.1016/j.jare.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 02/10/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024] Open
Abstract
BACKGROUND The promotion of epidermal barrier dysfunction is attributed to abnormalities in the lipid-microbiome positive feedback loop which significantly influences the imbalance of the epithelial immune microenvironment (EIME) in atopic dermatitis (AD). This imbalance encompasses impaired lamellar membrane integrity, heightened exposure to epidermal pathogens, and the regulation of innate and adaptive immunity. The lipid-microbiome loop is substantially influenced by intense adaptive immunity which is triggered by abnormal loop activity and affects the loop's integrity through the induction of atypical lipid composition and responses to dysregulated epidermal microbes. Immune responses participate in lipid abnormalities within the EIME by downregulating barrier gene expression and are further cascade-amplified by microbial dysregulation which is instigated by barrier impairment. AIM OF REVIEW This review examines the relationship between abnormal lipid composition, microbiome disturbances, and immune responses in AD while progressively substantiating the crosstalk mechanism among these factors. Based on this analysis, the "lipid-microbiome" positive feedback loop, regulated by immune responses, is proposed. KEY SCIENTIFIC CONCEPTS OF REVIEW The review delves into the impact of adaptive immune responses that regulate the EIME, driving AD, and investigates potential mechanisms by which lipid supplementation and probiotics may alleviate AD through the up-regulation of the epidermal barrier and modulation of immune signaling. This exploration offers support for targeting the EIME to attenuate AD.
Collapse
Affiliation(s)
- Junchao Wu
- School of Medicine, Shanghai University, Shanghai 200444, China; Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Lisha Li
- School of Medicine, Shanghai University, Shanghai 200444, China; Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Tingrui Zhang
- School of Medicine, Shanghai University, Shanghai 200444, China; Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Jiaye Lu
- School of Medicine, Shanghai University, Shanghai 200444, China; Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Zongguang Tai
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai, 200443, China.
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai, 200443, China.
| | - Zhongjian Chen
- School of Medicine, Shanghai University, Shanghai 200444, China; Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai, 200443, China.
| |
Collapse
|
6
|
Lee M, Boyce JA, Barrett NA. Cysteinyl Leukotrienes in Allergic Inflammation. ANNUAL REVIEW OF PATHOLOGY 2025; 20:115-141. [PMID: 39374430 PMCID: PMC11759657 DOI: 10.1146/annurev-pathmechdis-111523-023509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
The cysteinyl leukotrienes (CysLTs), LTC4, LTD4, and LTE4, are potent lipid mediators derived from arachidonic acid through the 5-lipoxygenase pathway. These mediators produce both inflammation and bronchoconstriction through three distinct G protein-coupled receptors (GPCRs)-CysLT1, CysLT2, and OXGR1 (also known as CysLT3 or GPR99). While CysLT-mediated functions in the effector phase of allergic inflammation and asthma have been established for some time, recent work has demonstrated novel roles for these mediators and their receptors in the induction and amplification of type 2 inflammation. Additionally, in vitro studies and murine models have uncovered diverse regulatory mechanisms that restrain or amplify CysLT receptor activation and CysLT receptor function. This review provides an overview of CysLT biosynthesis and its regulation, the molecular and functional pharmacology of CysLT receptors, and an overview of the established and emerging roles of CysLTs in asthma, aspirin-exacerbated respiratory disease, and type 2 inflammation.
Collapse
Affiliation(s)
- Minkyu Lee
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Massachusetts, USA; , ,
| | - Joshua A Boyce
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Massachusetts, USA; , ,
| | - Nora A Barrett
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Massachusetts, USA; , ,
| |
Collapse
|
7
|
Feng X, Flüchter P, De Tenorio JC, Schneider C. Tuft cells in the intestine, immunity and beyond. Nat Rev Gastroenterol Hepatol 2024; 21:852-868. [PMID: 39327439 DOI: 10.1038/s41575-024-00978-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/02/2024] [Indexed: 09/28/2024]
Abstract
Tuft cells have gained substantial attention over the past 10 years due to numerous reports linking them with type 2 immunity and microorganism-sensing capacity in many mucosal tissues. This heightened interest is fuelled by their unique ability to produce an array of biological effector molecules, including IL-25, allergy-related eicosanoids, and the neurotransmitter acetylcholine, enabling downstream responses in diverse cell types. Operating through G protein-coupled receptor-mediated signalling pathways reminiscent of type II taste cells in oral taste buds, tuft cells emerge as chemosensory sentinels that integrate luminal conditions, eliciting appropriate responses in immune, epithelial and neuronal populations. How tuft cells promote tissue alterations and adaptation to the variety of stimuli at mucosal surfaces has been explored in multiple studies in the past few years. Since the initial recognition of the role of tuft cells, the discovery of diverse tuft cell effector functions and associated feedback loops have also revealed the complexity of tuft cell biology. Although earlier work largely focused on extraintestinal tissues, novel genetic tools and recent mechanistic studies on intestinal tuft cells established fundamental concepts of tuft cell activation and functions. This Review is an overview of intestinal tuft cells, providing insights into their development, signalling and interaction modules in immunity and other states.
Collapse
Affiliation(s)
- Xiaogang Feng
- Department of Physiology, University of Zurich, Zurich, Switzerland
| | - Pascal Flüchter
- Department of Physiology, University of Zurich, Zurich, Switzerland
| | | | | |
Collapse
|
8
|
Wang S, Liu X, Lin X, Lv X, Zhang H. Group 2 Innate Lymphoid Cells in Allergic Rhinitis. J Inflamm Res 2024; 17:8599-8610. [PMID: 39539728 PMCID: PMC11559184 DOI: 10.2147/jir.s485128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Allergic rhinitis (AR), which presents symptoms like sneezing and a runny nose, is categorized as an upper respiratory condition of type 2. Recent progress in comprehending AR has revealed the significant role played by type 2 cytokines, specifically interleukin (IL)-13, IL-4, and IL-5. These cytokines are released by helper T cells 2 (Th2) and innate lymphoid cells (ILC2s). ILC2s have the ability to interact with various immune cells and are essential in promoting both type 2 immune response and tissue repair, contributing to normal homeostatic functions within the body. This article presents a summary of the latest advancements in comprehending the activity of ILC2s, with particular emphasis on their potential role involvement in AR. It explores how they collaborate with Th2 cells to exacerbate nasal inflammation and interact with regulatory T cells (Tregs) to counteract the suppressive role mediated by Tregs during allergic inflammation. The significance of ILC2s in allergen-specific therapy is highlighted. A comprehensive understanding of ILC2s biology establishes a robust foundation for unraveling the pathogenesis of AR and devising innovative therapeutic approaches for its management.
Collapse
Affiliation(s)
- Shuang Wang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, People’s Republic of China
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
| | - Xuexia Liu
- Shandong Stem Cell Engineering Technology Research Center, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, People’s Republic of China
| | - Xinhua Lin
- School of Clinical Medicine, Shandong Second Medical University, Weifang, People’s Republic of China
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
| | - Xiaojing Lv
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
| | - Hua Zhang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
| |
Collapse
|
9
|
Kou Y, Zhang S, Chen J, Shen Y, Zhang Z, Huang H, Ma Y, Xiang Y, Liao L, Zhou J, Cheng W, Zhou Y, Yang H, Liu Z, Wei Y, Wang H, Wang Y. A mouse protozoan boosts antigen-specific mucosal IgA responses in a specific lipid metabolism- and signaling-dependent manner. Nat Commun 2024; 15:7914. [PMID: 39256385 PMCID: PMC11387640 DOI: 10.1038/s41467-024-52336-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/03/2024] [Indexed: 09/12/2024] Open
Abstract
IgA antibodies play an important role in mucosal immunity. However, there is still no effective way to consistently boost mucosal IgA responses, and the factors influencing these responses are not fully understood. We observed that colonization with the murine intestinal symbiotic protozoan Tritrichomonas musculis (T.mu) boosted antigen-specific mucosal IgA responses in wild-type C57BL/6 mice. This enhancement was attributed to the accumulation of free arachidonic acid (ARA) in the intestinal lumen, which served as a signal to stimulate the production of antigen-specific mucosal IgA. When ARA was prevented from undergoing its downstream metabolic transformation using the 5-lipoxygenase inhibitor zileuton or by blocking its downstream biological signaling through genetic deletion of the Leukotriene B4 receptor 1 (Blt1), the T.mu-mediated enhancement of antigen-specific mucosal IgA production was suppressed. Moreover, both T.mu transfer and dietary supplementation of ARA augmented the efficacy of an oral vaccine against Salmonella infection, with this effect being dependent on Blt1. Our findings elucidate a tripartite circuit linking nutrients from the diet or intestinal microbiota, host lipid metabolism, and the mucosal humoral immune response.
Collapse
Affiliation(s)
- Yanbo Kou
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
- Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Shenghan Zhang
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
- Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, China
- Department of Central Laboratory, Xuzhou Central Hospital, Xuzhou, China
| | - Junru Chen
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
- Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Yusi Shen
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
- Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Zhiwei Zhang
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
- Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Haohan Huang
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
- Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Yulu Ma
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
- Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Yaoyao Xiang
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
- Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Longxiang Liao
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
- Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Junyang Zhou
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
- Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Wanpeng Cheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
- Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Yuan Zhou
- Xuzhou Key Laboratory of Laboratory Diagnostics, Medical Technology School, Xuzhou Medical University, Xuzhou, China
| | - Huan Yang
- Xuzhou Key Laboratory of Laboratory Diagnostics, Medical Technology School, Xuzhou Medical University, Xuzhou, China
| | - Zhuanzhuan Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
- Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Yanxia Wei
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
- Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Hui Wang
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
- Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Yugang Wang
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China.
- Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
10
|
Szeto AC, Clark PA, Ferreira AC, Heycock M, Griffiths EL, Jou E, Mannion J, Luan SL, Storrar S, Knolle MD, Kozik P, Jolin HE, Fallon PG, McKenzie AN. Mef2d potentiates type-2 immune responses and allergic lung inflammation. Science 2024; 384:eadl0370. [PMID: 38935708 PMCID: PMC7616247 DOI: 10.1126/science.adl0370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 05/02/2024] [Indexed: 06/29/2024]
Abstract
Innate lymphoid cells (ILCs) and adaptive T lymphocytes promote tissue homeostasis and protective immune responses. Their production depends on the transcription factor GATA3, which is further elevated specifically in ILC2s and T helper 2 cells to drive type-2 immunity during tissue repair, allergic disorders, and anti-helminth immunity. The control of this crucial up-regulation is poorly understood. Using CRISPR screens in ILCs we identified previously unappreciated myocyte-specific enhancer factor 2d (Mef2d)-mediated regulation of GATA3-dependent type-2 lymphocyte differentiation. Mef2d-deletion from ILC2s and/or T cells specifically protected against an allergen lung challenge. Mef2d repressed Regnase-1 endonuclease expression to enhance IL-33 receptor production and IL-33 signaling and acted downstream of calcium-mediated signaling to translocate NFAT1 to the nucleus to promote type-2 cytokine-mediated immunity.
Collapse
Affiliation(s)
- Aydan C.H. Szeto
- MRC Laboratory
of Molecular Biology,
Cambridge, CB2 0QH, United Kingdom
| | - Paula A. Clark
- MRC Laboratory
of Molecular Biology,
Cambridge, CB2 0QH, United Kingdom
| | - Ana C.F. Ferreira
- MRC Laboratory
of Molecular Biology,
Cambridge, CB2 0QH, United Kingdom
| | - Morgan Heycock
- MRC Laboratory
of Molecular Biology,
Cambridge, CB2 0QH, United Kingdom
| | - Emma L. Griffiths
- MRC Laboratory
of Molecular Biology,
Cambridge, CB2 0QH, United Kingdom
| | - Eric Jou
- MRC Laboratory
of Molecular Biology,
Cambridge, CB2 0QH, United Kingdom
| | - Jonathan Mannion
- MRC Laboratory
of Molecular Biology,
Cambridge, CB2 0QH, United Kingdom
- Cambridge
University Hospitals,
Cambridge, CB2 0QQ, United Kingdom
| | - Shi-Lu Luan
- MRC Laboratory
of Molecular Biology,
Cambridge, CB2 0QH, United Kingdom
| | - Sophie Storrar
- MRC Laboratory
of Molecular Biology,
Cambridge, CB2 0QH, United Kingdom
| | - Martin D. Knolle
- MRC Laboratory
of Molecular Biology,
Cambridge, CB2 0QH, United Kingdom
- Cambridge
University Hospitals,
Cambridge, CB2 0QQ, United Kingdom
| | - Patrycja Kozik
- MRC Laboratory
of Molecular Biology,
Cambridge, CB2 0QH, United Kingdom
| | - Helen E. Jolin
- MRC Laboratory
of Molecular Biology,
Cambridge, CB2 0QH, United Kingdom
| | | | | |
Collapse
|
11
|
Alhallak K, Nagai J, Zaleski K, Marshall S, Salloum T, Derakhshan T, Hayashi H, Feng C, Kratchmarov R, Lai J, Kuchibhotla V, Nishida A, Balestrieri B, Laidlaw T, Dwyer DF, Boyce JA. Mast cells control lung type 2 inflammation via prostaglandin E 2-driven soluble ST2. Immunity 2024; 57:1274-1288.e6. [PMID: 38821053 PMCID: PMC11168874 DOI: 10.1016/j.immuni.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 01/26/2024] [Accepted: 05/06/2024] [Indexed: 06/02/2024]
Abstract
Severe asthma and sinus disease are consequences of type 2 inflammation (T2I), mediated by interleukin (IL)-33 signaling through its membrane-bound receptor, ST2. Soluble (s)ST2 reduces available IL-33 and limits T2I, but little is known about its regulation. We demonstrate that prostaglandin E2 (PGE2) drives production of sST2 to limit features of lung T2I. PGE2-deficient mice display diminished sST2. In humans with severe respiratory T2I, urinary PGE2 metabolites correlate with serum sST2. In mice, PGE2 enhanced sST2 secretion by mast cells (MCs). Mice lacking MCs, ST2 expression by MCs, or E prostanoid (EP)2 receptors by MCs showed reduced sST2 lung concentrations and strong T2I. Recombinant sST2 reduced T2I in mice lacking PGE2 or ST2 expression by MCs back to control levels. PGE2 deficiency also reversed the hyperinflammatory phenotype in mice lacking ST2 expression by MCs. PGE2 thus suppresses T2I through MC-derived sST2, explaining the severe T2I observed in low PGE2 states.
Collapse
Affiliation(s)
- Kinan Alhallak
- Departments of Medicine and Pediatrics, Harvard Medical School, Boston, MA, USA; Jeff and Penny Vinik Center for Allergic Disease Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, MA, USA
| | - Jun Nagai
- Departments of Medicine and Pediatrics, Harvard Medical School, Boston, MA, USA; Jeff and Penny Vinik Center for Allergic Disease Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, MA, USA
| | - Kendall Zaleski
- Jeff and Penny Vinik Center for Allergic Disease Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, MA, USA
| | - Sofia Marshall
- Jeff and Penny Vinik Center for Allergic Disease Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, MA, USA
| | - Tamara Salloum
- Departments of Medicine and Pediatrics, Harvard Medical School, Boston, MA, USA; Jeff and Penny Vinik Center for Allergic Disease Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, MA, USA
| | - Tahereh Derakhshan
- Departments of Medicine and Pediatrics, Harvard Medical School, Boston, MA, USA; Jeff and Penny Vinik Center for Allergic Disease Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, MA, USA
| | - Hiroaki Hayashi
- Departments of Medicine and Pediatrics, Harvard Medical School, Boston, MA, USA; Jeff and Penny Vinik Center for Allergic Disease Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, MA, USA
| | - Chunli Feng
- Jeff and Penny Vinik Center for Allergic Disease Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, MA, USA
| | - Radomir Kratchmarov
- Departments of Medicine and Pediatrics, Harvard Medical School, Boston, MA, USA; Jeff and Penny Vinik Center for Allergic Disease Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, MA, USA
| | - Juying Lai
- Jeff and Penny Vinik Center for Allergic Disease Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, MA, USA
| | - Virinchi Kuchibhotla
- Departments of Medicine and Pediatrics, Harvard Medical School, Boston, MA, USA; Jeff and Penny Vinik Center for Allergic Disease Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, MA, USA
| | - Airi Nishida
- Jeff and Penny Vinik Center for Allergic Disease Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, MA, USA
| | - Barbara Balestrieri
- Departments of Medicine and Pediatrics, Harvard Medical School, Boston, MA, USA; Jeff and Penny Vinik Center for Allergic Disease Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, MA, USA
| | - Tanya Laidlaw
- Departments of Medicine and Pediatrics, Harvard Medical School, Boston, MA, USA; Jeff and Penny Vinik Center for Allergic Disease Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, MA, USA
| | - Daniel F Dwyer
- Departments of Medicine and Pediatrics, Harvard Medical School, Boston, MA, USA; Jeff and Penny Vinik Center for Allergic Disease Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, MA, USA
| | - Joshua A Boyce
- Departments of Medicine and Pediatrics, Harvard Medical School, Boston, MA, USA; Jeff and Penny Vinik Center for Allergic Disease Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
12
|
Lu HF, Zhou YC, Luo DD, Yang DH, Wang XJ, Cheng BH, Zeng XH. ILC2s: Unraveling the innate immune orchestrators in allergic inflammation. Int Immunopharmacol 2024; 131:111899. [PMID: 38513576 DOI: 10.1016/j.intimp.2024.111899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/05/2024] [Accepted: 03/17/2024] [Indexed: 03/23/2024]
Abstract
The prevalence rate of allergic diseases including asthma, atopic rhinitis (AR) and atopic dermatitis (AD) has been significantly increasing in recent decades due to environmental changes and social developments. With the study of innate lymphoid cells, the crucial role played by type 2 innate lymphoid cells (ILC2s) have been progressively unveiled in allergic diseases. ILC2s, which are a subset of innate lymphocytes initiate allergic responses. They respond swiftly during the onset of allergic reactions and produce type 2 cytokines, working in conjunction with T helper type 2 (Th2) cells to induce and sustain type 2 immune responses. The role of ILC2s represents an intriguing frontier in immunology; however, the intricate immune mechanisms of ILC2s in allergic responses remain relatively poorly understood. To gain a comphrehensive understanding of the research progress of ILC2, we summarize recent advances in ILC2s biology in pathologic allergic inflammation to inspire novel approaches for managing allergic diseases.
Collapse
Affiliation(s)
- Hui-Fei Lu
- Department of Graduate and Scientific Research, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, China; Department of Otolaryngology, Shenzhen Key Laboratory of Otolaryngology, Shenzhen Institute of Otolaryngology, Shenzhen Longgang Otolaryngology Hospital, Shenzhen, 518172, China
| | - Yi-Chi Zhou
- Department of Gastroenterology, Beijing University of Chinese Medicine Shenzhen Hospital (Longgang), Shenzhen 518172, China
| | - Dan-Dan Luo
- Department of Graduate and Scientific Research, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, China
| | - Dun-Hui Yang
- Department of Otolaryngology, Shenzhen Key Laboratory of Otolaryngology, Shenzhen Institute of Otolaryngology, Shenzhen Longgang Otolaryngology Hospital, Shenzhen, 518172, China
| | - Xi-Jia Wang
- Department of Graduate and Scientific Research, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, China
| | - Bao-Hui Cheng
- Department of Otolaryngology, Shenzhen Key Laboratory of Otolaryngology, Shenzhen Institute of Otolaryngology, Shenzhen Longgang Otolaryngology Hospital, Shenzhen, 518172, China.
| | - Xian-Hai Zeng
- Department of Graduate and Scientific Research, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, China; Department of Otolaryngology, Shenzhen Key Laboratory of Otolaryngology, Shenzhen Institute of Otolaryngology, Shenzhen Longgang Otolaryngology Hospital, Shenzhen, 518172, China.
| |
Collapse
|
13
|
Yu X, Cai B, Yu L, Li N, Wu C, Hu Z, Tang D, Chen R, Qiu C. Wogonoside Ameliorates Airway Inflammation and Mucus Hypersecretion via NF-κB/STAT6 Signaling in Ovalbumin-Induced Murine Acute Asthma. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7033-7042. [PMID: 38507725 DOI: 10.1021/acs.jafc.3c04082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Asthma is recognized as a chronic respiratory illness characterized by airway inflammation and airway hyperresponsiveness. Wogonoside, a flavonoid glycoside, is reported to significantly alleviate the inflammation response and oxidative stress. Herein, this study aimed to investigate the therapeutic effect and underlying mechanism of wogonoside on airway inflammation and mucus hypersecretion in a murine asthma model and in human bronchial epithelial cells (16HBE). BALB/c mice were sensitized and challenged with ovalbumin (OVA). Pulmonary function and the number of cells in the bronchoalveolar lavage fluid (BALF) were examined. Pathological changes in lung tissue in each group were evaluated via hematoxylin and eosin and periodic acid-Schiff staining, and changes in levels of cytokines in BALF and of immunoglobulin E in serum were determined via an enzyme-linked immunosorbent assay. The expression of relevant genes in lung tissue was analyzed via real-time PCR. Western blotting and immunofluorescence were employed to detect the expression of relevant proteins in lung tissue and 16HBE cells. Treatment with 10 and 20 mg/kg wogonoside significantly attenuated the OVA-induced increase of inflammatory cell infiltration, mucus secretion, and goblet cell percentage and improved pulmonary function. Wogonoside treatment reduced the level of T-helper 2 cytokines including interleukin (IL)-4, IL-5, and IL-13 in BALF and of IgE in serum and decreased the mRNA levels of cytokines (IL-4, IL-5, IL-6, IL-13, and IL-1β and tumor necrosis factor-α), chemokines (CCL-2, CCL-11, and CCL-24), and mucoproteins (MUC5AC, MUC5B, and GOB5) in lung tissues. The expression of MUC5AC and the phosphorylation of STAT6 and NF-κB p65 in lung tissues and 16HBE cells were significantly downregulated after wogonoside treatment. Thus, wogonoside treatment may effectively decrease airway inflammation, airway remodeling, and mucus hypersecretion via blocking NF-κB/STAT6 activation.
Collapse
Affiliation(s)
- Xiu Yu
- Department of Respiratory and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital, South University of Science and Technology, Shenzhen 518020, China
| | - Bicheng Cai
- Department of Respiratory and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital, South University of Science and Technology, Shenzhen 518020, China
| | - Li Yu
- Department of Respiratory and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital, South University of Science and Technology, Shenzhen 518020, China
| | - Nan Li
- Department of Respiratory and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital, South University of Science and Technology, Shenzhen 518020, China
| | - Chujie Wu
- Department of Respiratory and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital, South University of Science and Technology, Shenzhen 518020, China
| | - Zhiquan Hu
- Department of Respiratory and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital, South University of Science and Technology, Shenzhen 518020, China
| | - Dong Tang
- Department of Respiratory and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital, South University of Science and Technology, Shenzhen 518020, China
| | - Rongchang Chen
- Department of Respiratory and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital, South University of Science and Technology, Shenzhen 518020, China
| | - Chen Qiu
- Department of Respiratory and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital, South University of Science and Technology, Shenzhen 518020, China
| |
Collapse
|
14
|
Qin Z, Chen Y, Wang Y, Xu Y, Liu T, Mu Q, Huang C. Immunometabolism in the pathogenesis of asthma. Immunology 2024; 171:1-17. [PMID: 37652466 DOI: 10.1111/imm.13688] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/14/2023] [Indexed: 09/02/2023] Open
Abstract
Bronchial asthma is a heterogeneous disease characterised by chronic airway inflammation. A variety of immune cells such as eosinophils, mast cells, T lymphocytes, neutrophils and airway epithelial cells are involved in the airway inflammation and airway hyperresponsiveness in asthma pathogenesis, resulting in extensive and variable reversible expiratory airflow limitation. However, the precise molecular mechanisms underlying the allergic immune responses, particularly immunometabolism, remains unclear. Studies have detected enhanced oxidative stress, and abnormal metabolic progresses of glycolysis, fatty acid and amino acid in various immune cells, inducing dysregulation of innate and adaptive immune responses in asthma pathogenesis. Immunometabolism mechanisms contain multiple signalling pathways, providing novel therapy targets for asthma. This review summarises the current knowledge on immunometabolism reprogramming in asthma pathogenesis, as well as potential therapy strategies.
Collapse
Affiliation(s)
- Ziwen Qin
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yujuan Chen
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yue Wang
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yeyang Xu
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Tingting Liu
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Qian Mu
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Chuanjun Huang
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
15
|
Xu G(B, Pan YX, Mei W, Chen H. Single-Cell RNA Sequencing (scRNA-seq) Identifies L1CAM as a Key Mediator between Epithelial Tuft Cell and Innate Lymphoid Cell in the Colon of Hnrnp I Knockout Mice. Biomedicines 2023; 11:2734. [PMID: 37893107 PMCID: PMC10604312 DOI: 10.3390/biomedicines11102734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/26/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
(1) Background: Knockout (KO) of heterogeneous nuclear ribonucleoprotein I (Hnrnp I) in mouse intestinal epithelial cells (IECs) induced a severe inflammatory response in the colon, followed by hyperproliferation. This study aimed to investigate the epithelial lineage dynamics and cell-cell communications that underlie inflammation and colitis. (2) Methods: Single cells were isolated from the colons of wildtype (WT) and KO mice and used in scRNA-seq. Whole colons were collected for immunofluorescence staining and cytokine assays. (3) Results: from scRNA-seq, the number of DCLK1 + colonic tuft cells was significantly higher in the Hnrnp I KO mice compared to the WT mice. This was confirmed by immunofluorescent staining of DCLK1. The DCLK1 + colonic tuft cells in KO mice developed unique communications with lymphocytes via interactions between surface L1 cell adhesion molecule (L1CAM) and integrins. In the KO mice colons, a significantly elevated level of inflammatory cytokines IL4, IL6, and IL13 were observed, which marks type-2 immune responses directed by group 2 innate lymphoid cells (ILC2s). (4) Conclusions: This study demonstrates one critical cellular function of colonic tuft cells, which facilitates type-2 immune responses by communicating with ILC2s via the L1CAM-integrins interaction. This communication promotes pro-inflammatory signaling pathways in ILC2, leading to the increased secretion of inflammatory cytokines.
Collapse
Affiliation(s)
- Guanying (Bianca) Xu
- Department of Food Science and Human Nutrition, College of Agricultural, Consumer, and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (G.X.); (Y.-X.P.)
| | - Yuan-Xiang Pan
- Department of Food Science and Human Nutrition, College of Agricultural, Consumer, and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (G.X.); (Y.-X.P.)
- Division of Nutritional Sciences, College of Agricultural, Consumer, and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Wenyan Mei
- Division of Nutritional Sciences, College of Agricultural, Consumer, and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Hong Chen
- Department of Food Science and Human Nutrition, College of Agricultural, Consumer, and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (G.X.); (Y.-X.P.)
- Division of Nutritional Sciences, College of Agricultural, Consumer, and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
16
|
Marciniak M, Wagner M. Innate lymphoid cells and tumor-derived lactic acid: novel contenders in an enduring game. Front Immunol 2023; 14:1236301. [PMID: 37868977 PMCID: PMC10585168 DOI: 10.3389/fimmu.2023.1236301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/25/2023] [Indexed: 10/24/2023] Open
Abstract
Aerobic glycolysis, also known as the Warburg effect, has for a prolonged period of time been perceived as a defining feature of tumor metabolism. The redirection of glucose utilization towards increased production of lactate by cancer cells enables their rapid proliferation, unceasing growth, and longevity. At the same time, it serves as a significant contributor to acidification of the tumor microenvironment, which, in turn, imposes substantial constraints on infiltrating immune cells. Here, we delve into the influence of tumor-derived lactic acid on innate lymphoid cells (ILCs) and discuss potential therapeutic approaches. Given the abundance of ILCs in barrier tissues such as the skin, we provide insights aimed at translating this knowledge into therapies that may specifically target skin cancer.
Collapse
Affiliation(s)
- Mateusz Marciniak
- Cancer Biomarkers Research Group, Łukasiewicz Research Network - PORT Polish Center for Technology Development, Wrocław, Poland
| | - Marek Wagner
- Cancer Biomarkers Research Group, Łukasiewicz Research Network - PORT Polish Center for Technology Development, Wrocław, Poland
- Department of Biomedicine, University of Bergen, Bergen, Norway
| |
Collapse
|
17
|
Huang Y, Zhu L, Cheng S, Dai R, Huang C, Song Y, Peng B, Li X, Wen J, Gong Y, Hu Y, Qian L, Zhu L, Zhang F, Yu L, Yi C, Gu W, Ling Z, Ma L, Tang W, Peng L, Shi G, Zhang Y, Sun B. Solar ultraviolet B radiation promotes α-MSH secretion to attenuate the function of ILC2s via the pituitary-lung axis. Nat Commun 2023; 14:5601. [PMID: 37699899 PMCID: PMC10497598 DOI: 10.1038/s41467-023-41319-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 08/30/2023] [Indexed: 09/14/2023] Open
Abstract
The immunomodulatory effects of ultraviolet B (UVB) radiation in human diseases have been described. Whether type 2 lung inflammation is directly affected by solar ultraviolet (UV) radiation is not fully understood. Here, we show a possible negative correlation between solar UVB radiation and asthmatic inflammation in humans and mice. UVB exposure to the eyes induces hypothalamus-pituitary activation and α-melanocyte-stimulating hormone (α-MSH) accumulation in the serum to suppress allergic airway inflammation by targeting group 2 innate lymphoid cells (ILC2) through the MC5R receptor in mice. The α-MSH/MC5R interaction limits ILC2 function through attenuation of JAK/STAT and NF-κB signaling. Consistently, we observe that the plasma α-MSH concentration is negatively correlated with the number and function of ILC2s in the peripheral blood mononuclear cells (PBMC) of patients with asthma. We provide insights into how solar UVB radiation-driven neuroendocrine α-MSH restricts ILC2-mediated lung inflammation and offer a possible strategy for controlling allergic diseases.
Collapse
Affiliation(s)
- Yuying Huang
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Lin Zhu
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Shipeng Cheng
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Ranran Dai
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunrong Huang
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanyan Song
- Department of Biostatistics, Clinical Research Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bo Peng
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuezhen Li
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jing Wen
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yi Gong
- Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Yunqian Hu
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ling Qian
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Linyun Zhu
- Shanghai Putuo District Central Hospital, Shanghai, China
| | - Fengying Zhang
- Shanghai Putuo District People's Hospital, Shanghai, China
| | - Li Yu
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chunyan Yi
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Wangpeng Gu
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Zhiyang Ling
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Liyan Ma
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Wei Tang
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Li Peng
- Shanghai Key Laboratory of Meteorology and Health, Shanghai Meteorological Service, Shanghai, China.
| | - Guochao Shi
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yaguang Zhang
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
- Med-X Institute, Center for Immunological and Metabolic Diseases, The First Affiliated Hospital of Xi'an JiaoTong University, Xi'an JiaoTong University, Xi'an, Shaanxi, P. R. China.
| | - Bing Sun
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
18
|
Thio CLP, Chang YJ. The modulation of pulmonary group 2 innate lymphoid cell function in asthma: from inflammatory mediators to environmental and metabolic factors. Exp Mol Med 2023; 55:1872-1884. [PMID: 37696890 PMCID: PMC10545775 DOI: 10.1038/s12276-023-01021-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/21/2023] [Accepted: 03/29/2023] [Indexed: 09/13/2023] Open
Abstract
A dysregulated type 2 immune response is one of the fundamental causes of allergic asthma. Although Th2 cells are undoubtedly central to the pathogenesis of allergic asthma, the discovery of group 2 innate lymphoid cells (ILC2s) has added another layer of complexity to the etiology of this chronic disease. Through their inherent innate type 2 responses, ILC2s not only contribute to the initiation of airway inflammation but also orchestrate the recruitment and activation of other members of innate and adaptive immunity, further amplifying the inflammatory response. Moreover, ILC2s exhibit substantial cytokine plasticity, as evidenced by their ability to produce type 1- or type 17-associated cytokines under appropriate conditions, underscoring their potential contribution to nonallergic, neutrophilic asthma. Thus, understanding the mechanisms of ILC2 functions is pertinent. In this review, we present an overview of the current knowledge on ILC2s in asthma and the regulatory factors that modulate lung ILC2 functions in various experimental mouse models of asthma and in humans.
Collapse
Affiliation(s)
| | - Ya-Jen Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei City, 115, Taiwan.
- Institute of Translational Medicine and New Drug Development, China Medical University, Taichung City, 404, Taiwan.
| |
Collapse
|
19
|
Malik B, Bartlett NW, Upham JW, Nichol KS, Harrington J, Wark PAB. Severe asthma ILC2s demonstrate enhanced proliferation that is modified by biologics. Respirology 2023; 28:758-766. [PMID: 37114915 PMCID: PMC10946917 DOI: 10.1111/resp.14506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 03/22/2023] [Indexed: 04/29/2023]
Abstract
BACKGROUND AND OBJECTIVE Type 2 (T2) innate lymphoid cells (ILC2s) contribute to airway inflammation and disease in asthma. We hypothesize that ILC2s isolated from people with severe allergic and eosinophilic asthma would exhibit an enhanced T2 inflammatory activity that would be altered following treatment with mepolizumab and omalizumab. We compare peripheral blood (PB) isolated ILC2's proliferative capacity, IL-5 and IL-13 secretion and phenotype between healthy without asthma (HC), non-asthma allergic (NAA), mild asthma (MA) and severe allergic and eosinophilic asthma (SA) subjects. We then determined the impact of 6 months treatment with either mepolizumab or omalizumab on ILC2s physiology of SA subjects. METHODS ILC2s were sorted and cultured in the presence of IL-2, IL-25, IL-33 and thymic stromal lymphopoietin (TSLP) for 14 days. ILC2s proliferation, phenotypes and functions were assessed using flowcytometry. The ILC2s response was then reassessed following clinically successful treatment of SA subjects with mepolizumab and omalizumab. RESULTS SA ILC2s demonstrated increased proliferative capacity, TSLP receptor (TSLPR), GATA3 and NFATc1 protein expressions and increased IL-5 and IL-13 release. ILC2s were also capable of releasing IL-6 in response to stimulation. Mepolizumab treatment reduced ILC2s proliferative capacity and expression of TSLPR, GATA3 and NFATc1. Both mepolizumab and omalizumab were associated with reduced ILC2s release of IL-5 and IL-13, only mepolizumab reduced IL-6. CONCLUSION ILC2s from severe allergic and eosinophilic asthma demonstrated an active phenotype typified by increased proliferation, TSLPR, GATA3 and NFATc1 expression and increased IL-5, IL-13 and IL-6 release. Mepolizumab reduced markers of ILC2s activation.
Collapse
Affiliation(s)
- Bilal Malik
- Immune Health Program, Hunter Medical Research InstituteUniversity of NewcastleCallaghanNew South WalesAustralia
| | - Nathan W. Bartlett
- Immune Health Program, Hunter Medical Research InstituteUniversity of NewcastleCallaghanNew South WalesAustralia
| | - John W. Upham
- Department of Respiratory MedicinePrincess Alexandra HospitalBrisbaneQueenslandAustralia
| | - Kristy S. Nichol
- Immune Health Program, Hunter Medical Research InstituteUniversity of NewcastleCallaghanNew South WalesAustralia
| | - John Harrington
- Department of Respiratory and Sleep MedicineJohn Hunter HospitalNew Lambton HeightsNew South WalesAustralia
| | - Peter A. B. Wark
- Immune Health Program, Hunter Medical Research InstituteUniversity of NewcastleCallaghanNew South WalesAustralia
- Department of Respiratory and Sleep MedicineJohn Hunter HospitalNew Lambton HeightsNew South WalesAustralia
| |
Collapse
|
20
|
Chen L, Sun R, Lei C, Xu Z, Song Y, Deng Z. Alcohol-mediated susceptibility to lung fibrosis is associated with group 2 innate lymphoid cells in mice. Front Immunol 2023; 14:1178498. [PMID: 37457733 PMCID: PMC10343460 DOI: 10.3389/fimmu.2023.1178498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/01/2023] [Indexed: 07/18/2023] Open
Abstract
Chronic alcohol ingestion promotes acute lung injury and impairs immune function. However, the mechanisms involved are incompletely understood. Here, we show that alcohol feeding enhances bleomycin-induced lung fibrosis and inflammation via the regulation of type 2 innate immune responses, especially by group 2 innate lymphoid cells (ILC2s). Neuroimmune interactions have emerged as critical modulators of lung inflammation. We found alcohol consumption induced the accumulation of ILC2 and reduced the production of the neuropeptide calcitonin gene-related peptide (CGRP), primarily released from sensory nerves and pulmonary neuroendocrine cells (PNECs). CGRP potently suppressed alcohol-driven type 2 cytokine signals in vivo. Vagal ganglia TRPV1+ afferents mediated immunosuppression occurs through the release of CGRP. Inactivation of the TRPV1 receptor enhanced bleomycin-induced fibrosis. In addition, mice lacking the CGRP receptor had the increased lung inflammation and fibrosis and type 2 cytokine production as well as exaggerated responses to alcohol feeding. Together, these data indicate that alcohol consumption regulates the interaction of CGRP and ILC2, which is a critical contributor of lung inflammation and fibrosis.
Collapse
Affiliation(s)
- Liang Chen
- Department of Surgery, Division of Immunotherapy, University of Louisville, Louisville, KY, United States
- Department of Respiratory and Critical Care Medicine, The Affiliated Huaian No. 1 People’s Hospital, Nanjing Medical University, Huai’an, Jiangsu, China
- Brown Cancer Center, University of Louisville, Louisville, KY, United States
| | - Rui Sun
- Department of Surgery, Division of Immunotherapy, University of Louisville, Louisville, KY, United States
- Brown Cancer Center, University of Louisville, Louisville, KY, United States
| | - Chao Lei
- Department of Surgery, Division of Immunotherapy, University of Louisville, Louisville, KY, United States
- Brown Cancer Center, University of Louisville, Louisville, KY, United States
| | - Zhishan Xu
- Department of Surgery, Division of Immunotherapy, University of Louisville, Louisville, KY, United States
- Brown Cancer Center, University of Louisville, Louisville, KY, United States
| | - Yong Song
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Zhongbin Deng
- Department of Surgery, Division of Immunotherapy, University of Louisville, Louisville, KY, United States
- Brown Cancer Center, University of Louisville, Louisville, KY, United States
| |
Collapse
|
21
|
Kotas ME, Patel NN, Cope EK, Gurrola JG, Goldberg AN, Pletcher SD, Seibold MA, Moore CM, Gordon ED. IL-13-associated epithelial remodeling correlates with clinical severity in nasal polyposis. J Allergy Clin Immunol 2023; 151:1277-1285. [PMID: 36736797 PMCID: PMC10243183 DOI: 10.1016/j.jaci.2022.12.826] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND Epithelial remodeling is a histopathologic feature of chronic inflammatory airway diseases including chronic rhinosinusitis (CRS). Cell-type shifts and their relationship to CRS endotypes and severity are incompletely described. OBJECTIVE We sought to understand the relationship of epithelial cell remodeling to inflammatory endotypes and disease outcomes in CRS. METHODS Using cell-type transcriptional signatures derived from epithelial single-cell sequencing, we analyzed bulk RNA-sequencing data from sinus epithelial brushings obtained from patients with CRS with and without nasal polyps in comparison to healthy controls. RESULTS The airway epithelium in nasal polyposis displayed increased tuft cell transcripts and decreased ciliated cell transcripts along with an IL-13 activation signature. In contrast, CRS without polyps showed an IL-17 activation signature. IL-13 activation scores were associated with increased tuft cell, goblet cell, and mast cell scores and decreased ciliated cell scores. Furthermore, the IL-13 score was strongly associated with a previously reported activated ("polyp") tuft cell score and a prostaglandin E2 activation signature. The Lund-Mackay score, a computed tomographic metric of sinus opacification, correlated positively with activated tuft cell, mast cell, prostaglandin E2, and IL-13 signatures and negatively with ciliated cell transcriptional signatures. CONCLUSIONS These results demonstrate that cell-type alterations and prostaglandin E2 stimulation are key components of IL-13-induced epithelial remodeling in nasal polyposis, whereas IL-17 signaling is more prominent in CRS without polyps, and that clinical severity correlates with the degree of IL-13-driven epithelial remodeling.
Collapse
Affiliation(s)
- Maya E Kotas
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco, Calif
| | - Neil N Patel
- Department of Otolaryngology - Head and Neck Surgery, University of California, San Francisco, Calif
| | - Emily K Cope
- Center for Applied Microbiome Sciences, the Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Ariz
| | - Jose G Gurrola
- Department of Otolaryngology - Head and Neck Surgery, University of California, San Francisco, Calif
| | - Andrew N Goldberg
- Department of Otolaryngology - Head and Neck Surgery, University of California, San Francisco, Calif
| | - Steven D Pletcher
- Department of Otolaryngology - Head and Neck Surgery, University of California, San Francisco, Calif; Surgical Service, ENT Section, San Francisco VA Medical Center, San Francisco, Calif
| | - Max A Seibold
- Center for Genes, Environment, and Health, National Jewish Health, Denver, Colo; Department of Pediatrics, National Jewish Health, Denver, Colo; Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, Colo
| | - Camille M Moore
- Center for Genes, Environment, and Health, National Jewish Health, Denver, Colo; Department of Biostatistics and Informatics, University of Colorado, Aurora, Colo.
| | - Erin D Gordon
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco, Calif.
| |
Collapse
|
22
|
Napolitano M, di Vico F, Ruggiero A, Fabbrocini G, Patruno C. The hidden sentinel of the skin: An overview on the role of interleukin-13 in atopic dermatitis. Front Med (Lausanne) 2023; 10:1165098. [PMID: 37144036 PMCID: PMC10151557 DOI: 10.3389/fmed.2023.1165098] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/31/2023] [Indexed: 05/06/2023] Open
Abstract
Recent evidence suggests that interleukin (IL)-13 is a crucial cytokine involved in the pathogenesis of atopic dermatitis (AD). It is a central driver of type-2 T-helper inflammation and is overexpressed in lesional skin of AD patients. Upon release in peripheral skin, IL-13 activates its receptors, recruits inflammatory cells, and modifies the skin microbiome. IL-13 also reduces the expression of epidermal barrier proteins and activates sensory nerve mediating the itch transmission signal. Novel therapeutics that target IL-13 seem to be efficacious and safe for the treatment of patients with moderate-to-severe AD. The aim of our manuscript is to review the role that IL-13 plays in AD immunopathogenesis.
Collapse
Affiliation(s)
- Maddalena Napolitano
- Department of Medicine and Health Sciences Vincenzo Tiberio, University of Molise, Campobasso, Italy
| | - Francesca di Vico
- Section of Dermatology, Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Campania, Italy
| | - Angelo Ruggiero
- Section of Dermatology, Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Campania, Italy
| | - Gabriella Fabbrocini
- Section of Dermatology, Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Campania, Italy
| | - Cataldo Patruno
- Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| |
Collapse
|
23
|
Molofsky AB, Locksley RM. The ins and outs of innate and adaptive type 2 immunity. Immunity 2023; 56:704-722. [PMID: 37044061 PMCID: PMC10120575 DOI: 10.1016/j.immuni.2023.03.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 04/14/2023]
Abstract
Type 2 immunity is orchestrated by a canonical group of cytokines primarily produced by innate lymphoid cells, group 2, and their adaptive counterparts, CD4+ helper type 2 cells, and elaborated by myeloid cells and antibodies that accumulate in response. Here, we review the cytokine and cellular circuits that mediate type 2 immunity. Building from insights in cytokine evolution, we propose that innate type 2 immunity evolved to monitor the status of microbe-rich epithelial barriers (outside) and sterile parenchymal borders (inside) to meet the functional demands of local tissue, and, when necessary, to relay information to the adaptive immune system to reinforce demarcating borders to sustain these efforts. Allergic pathology likely results from deviations in local sustaining units caused by alterations imposed by environmental effects during postnatal developmental windows and exacerbated by mutations that increase vulnerabilities. This framework positions T2 immunity as central to sustaining tissue repair and regeneration and provides a context toward understanding allergic disease.
Collapse
Affiliation(s)
- Ari B Molofsky
- Department of Lab Medicine, University of California, San Francisco, San Francisco, CA 94143-0451, USA
| | - Richard M Locksley
- Howard Hughes Medical Institute and Department of Medicine, University of California, San Francisco, San Francisco, CA 94143-0795, USA.
| |
Collapse
|
24
|
Loos P, Baiwir J, Maquet C, Javaux J, Sandor R, Lallemand F, Marichal T, Machiels B, Gillet L. Dampening type 2 properties of group 2 innate lymphoid cells by a gammaherpesvirus infection reprograms alveolar macrophages. Sci Immunol 2023; 8:eabl9041. [PMID: 36827420 DOI: 10.1126/sciimmunol.abl9041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
Immunological dysregulation in asthma is associated with changes in exposure to microorganisms early in life. Gammaherpesviruses (γHVs), such as Epstein-Barr virus, are widespread human viruses that establish lifelong infection and profoundly shape host immunity. Using murid herpesvirus 4 (MuHV-4), a mouse γHV, we show that after infection, lung-resident and recruited group 2 innate lymphoid cells (ILC2s) exhibit a reduced ability to expand and produce type 2 cytokines in response to house dust mites, thereby contributing to protection against asthma. In contrast, MuHV-4 infection triggers GM-CSF production by those lung ILC2s, which orders the differentiation of monocytes (Mos) into alveolar macrophages (AMs) without promoting their type 2 functions. In the context of γHV infection, ILC2s are therefore essential cells within the pulmonary niche that imprint the tissue-specific identity of Mo-derived AMs and shape their function well beyond the initial acute infection.
Collapse
Affiliation(s)
- Pauline Loos
- Laboratory of Immunology and Vaccinology, Faculty of Veterinary Medicine, FARAH, ULiège, Liège 4000, Belgium
| | - Jérôme Baiwir
- Laboratory of Immunology and Vaccinology, Faculty of Veterinary Medicine, FARAH, ULiège, Liège 4000, Belgium
| | - Céline Maquet
- Laboratory of Immunology and Vaccinology, Faculty of Veterinary Medicine, FARAH, ULiège, Liège 4000, Belgium
| | - Justine Javaux
- Laboratory of Immunology and Vaccinology, Faculty of Veterinary Medicine, FARAH, ULiège, Liège 4000, Belgium
| | - Rémy Sandor
- Laboratory of Immunology and Vaccinology, Faculty of Veterinary Medicine, FARAH, ULiège, Liège 4000, Belgium
| | - François Lallemand
- Centre Hospitalier Universitaire de Liège, Département de Physique Médicale, Service médical de radiothérapie, Liège 4000, Belgium
| | - Thomas Marichal
- Laboratory of Immunophysiology, GIGA-Research and Faculty of Veterinary Medicine, ULiège, Liège 4000, Belgium
| | - Bénédicte Machiels
- Laboratory of Immunology and Vaccinology, Faculty of Veterinary Medicine, FARAH, ULiège, Liège 4000, Belgium
| | - Laurent Gillet
- Laboratory of Immunology and Vaccinology, Faculty of Veterinary Medicine, FARAH, ULiège, Liège 4000, Belgium
| |
Collapse
|
25
|
Laidlaw TM, Boyce JA. Updates on immune mechanisms in aspirin-exacerbated respiratory disease. J Allergy Clin Immunol 2023; 151:301-309. [PMID: 36184313 PMCID: PMC9905222 DOI: 10.1016/j.jaci.2022.08.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/03/2022] [Accepted: 08/10/2022] [Indexed: 02/07/2023]
Abstract
Aspirin-exacerbated respiratory disease has fascinated and frustrated specialists in allergy/immunology, pulmonology, and otorhinolaryngology for decades. It generally develops in previously healthy young adults and is unremitting and challenging to treat. The classical triad of asthma, nasal polyposis, and pathognomonic respiratory reactions to aspirin and other cyclooxygenase-1 inhibitors is accompanied by high levels of mast cell activation, cysteinyl leukotriene production, platelet activation, and severe type 2 respiratory inflammation. The "unbraking" of mast cell activation and further cysteinyl leukotriene generation induced by cyclooxygenase-1 inhibition reflect an idiosyncratic dependency on cyclooxygenase-1-derived products, likely prostaglandin E2, to maintain a tenuous homeostasis. Although cysteinyl leukotrienes are clear disease effectors, little else was known about their cellular sources and targets, and the contributions from other mediators and type 2 respiratory inflammation effector cells to disease pathophysiology were unknown until recently. The applications of targeted biological therapies, single-cell genomics, and transgenic animal approaches have substantially advanced our understanding of aspirin-exacerbated respiratory disease pathogenesis and treatment and have also revealed disease heterogeneity. This review covers novel insights into the immunopathogenesis of aspirin-exacerbated respiratory disease from each of these lines of research, including the roles of lipid mediators, effector cell populations, and inflammatory cytokines, discusses unanswered questions regarding cause and pathogenesis, and considers potential future therapeutic options.
Collapse
Affiliation(s)
- Tanya M Laidlaw
- Department of Medicine, the Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Harvard Medical School, Jeff and Penny Vinik Center for Translational Immunology Research, Boston, Mass.
| | - Joshua A Boyce
- Department of Medicine, the Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Harvard Medical School, Jeff and Penny Vinik Center for Translational Immunology Research, Boston, Mass
| |
Collapse
|
26
|
McDaniel MM, Lara HI, von Moltke J. Initiation of type 2 immunity at barrier surfaces. Mucosal Immunol 2023; 16:86-97. [PMID: 36642383 DOI: 10.1016/j.mucimm.2022.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 01/15/2023]
Abstract
Although seemingly unrelated, parasitic worms, venoms, and allergens all induce a type 2 immune response. The effector functions and clinical features of type 2 immunity are well-defined, but fundamental questions about the initiation of type 2 immunity remain unresolved. How are these enormously diverse type 2 stimuli first detected? How are type 2 helper T cells primed and regulated? And how do mechanisms of type 2 initiation vary across tissues? Here, we review the common themes governing type 2 immune sensing and explore aspects of T cell priming and effector reactivation that make type 2 helper T cells a unique T helper lineage. Throughout the review, we emphasize the importance of non-hematopoietic cells and highlight how the unique anatomy and physiology of each barrier tissue shape mechanisms of type 2 immune initiation.
Collapse
Affiliation(s)
- Margaret M McDaniel
- Department of Immunology, University of Washington School of Medicine, Seattle, USA.
| | - Heber I Lara
- Department of Immunology, University of Washington School of Medicine, Seattle, USA
| | - Jakob von Moltke
- Department of Immunology, University of Washington School of Medicine, Seattle, USA
| |
Collapse
|
27
|
Nagai J, Lin J, Boyce JA. Macrophage P2Y6 Receptor Signaling Selectively Activates NFATC2 and Suppresses Allergic Lung Inflammation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:2293-2303. [PMID: 36307120 PMCID: PMC9719840 DOI: 10.4049/jimmunol.2200452] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/05/2022] [Indexed: 12/14/2022]
Abstract
Innate immune responses to innocuous Ags can either prevent or facilitate adaptive type 2 allergic inflammation, but the mechanisms are incompletely understood. We now demonstrate that macrophage UDP-specific type 6 purinergic (P2Y6) receptors selectively activate NFATC2, a member of the NFAT family, to drive an innate IL-12/IFN-γ axis that prevents type 2 allergic inflammation. UDP priming potentiated IL-12p40 production in bone marrow-derived macrophages (BMMs) stimulated by the house dust mite Dermatophagoides farinae (Df) in a P2Y6-dependent manner. Inhibitions of phospholipase C, calcium increase, and calcineurin eliminated UDP-potentiated Df-induced IL-12p40 production. UDP specifically induced nuclear translocation of NFATC2, but not NFATC1 and NFATC3, in BMMs in a P2Y6-dependent manner. UDP-potentiated IL-12p40 production by BMMs and Df-induced IL-12p40 gene expression by alveolar macrophages were abrogated in cells from Nfatc2 knockout mice. Pulmonary transplantation of wild-type but not Nfatc2 knockout macrophages increased Df-induced IL-12 production and IFN-γ expression in P2ry6 fl/fl/Cre/+ recipient mice. Finally, Nfatc2 knockout mice showed significantly increased indices of type 2 immunopathology in response to Df challenge, similar to P2ry6 fl/fl/Cre/+ mice. Thus, macrophage P2Y6 receptor signaling selectively utilizes NFATC2 to potentiate an innate IL-12/IFN-γ axis, a potential mechanism that protects against inappropriate type 2 immune responses.
Collapse
Affiliation(s)
- Jun Nagai
- Department of Medicine, Harvard Medical School, Boston, MA
- Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital, Boston, MA
| | - Junrui Lin
- Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital, Boston, MA
| | - Joshua A. Boyce
- Department of Medicine, Harvard Medical School, Boston, MA
- Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital, Boston, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA; and
- Jeff and Penny Vinik Center for Allergic Disease Research, Boston, MA
| |
Collapse
|
28
|
Fujisawa S, Nagata Y, Suzuki R. Leukotriene D4 accelerates antigen-mediated mast cell responses via the cysteinyl leukotriene 1 receptor. Cell Immunol 2022; 382:104632. [PMID: 36274438 DOI: 10.1016/j.cellimm.2022.104632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/01/2022] [Accepted: 10/11/2022] [Indexed: 01/13/2023]
Abstract
Cysteinyl leukotrienes (CysLTs), released from mast cells (MCs), are important mediators in allergy. Type 1 receptors for CysLTs (CysLT1R) are involved in accelerating IgE-mediated MC activation. In this study, we aimed to elucidate the mechanisms underlying CysLT1R-mediated MC activation. The CysLT1R agonist/antagonist was applied to two types of major MC models-RBL-2H3 cells and bone marrow-derived MCs (BMMCs). The use of CysLT1R and CysLT2R inhibitors revealed that CysLT1R plays a major role in the acceleration of MC activation. The administration of the CysLT1R agonist leukotriene D4 upregulated IgE-mediated Akt and ERK phosphorylation and subsequently enhanced TNF-α expression, suggesting that CysLT1R regulates the downstream pathway of MC activation. However, these observations were not corroborated by CysLT1R knockdown using shRNA, suggesting a differential regulatory mechanism between the temporal and constitutive inhibitions of CysLT. In conclusion, CysLT1R enhances MC activation by accelerating IgE-induced signal transduction, which enables the co-regulation of rapid degranulation and delayed synthesis of inflammatory mediators in MCs.
Collapse
Affiliation(s)
- Sakura Fujisawa
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Ishikawa 920-1192, Japan
| | - Yuka Nagata
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Ishikawa 920-1192, Japan
| | - Ryo Suzuki
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Ishikawa 920-1192, Japan.
| |
Collapse
|
29
|
Stanbery AG, Shuchi Smita, Jakob von Moltke, Tait Wojno ED, Ziegler SF. TSLP, IL-33, and IL-25: Not just for allergy and helminth infection. J Allergy Clin Immunol 2022; 150:1302-1313. [PMID: 35863509 PMCID: PMC9742339 DOI: 10.1016/j.jaci.2022.07.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/16/2022] [Accepted: 07/08/2022] [Indexed: 12/14/2022]
Abstract
The release of cytokines from epithelial and stromal cells is critical for the initiation and maintenance of tissue immunity. Three such cytokines, thymic stromal lymphopoietin, IL-33, and IL-25, are important regulators of type 2 immune responses triggered by parasitic worms and allergens. In particular, these cytokines activate group 2 innate lymphoid cells, TH2 cells, and myeloid cells, which drive hallmarks of type 2 immunity. However, emerging data indicate that these tissue-associated cytokines are not only involved in canonical type 2 responses but are also important in the context of viral infections, cancer, and even homeostasis. Here, we provide a brief review of the roles of thymic stromal lymphopoietin, IL-33, and IL-25 in diverse immune contexts, while highlighting their relative contributions in tissue-specific responses. We also emphasize a biologically motivated framework for thinking about the integration of multiple immune signals, including the 3 featured in this review.
Collapse
Affiliation(s)
| | - Shuchi Smita
- Department of Immunology, University of Washington, Seattle, Wash
| | - Jakob von Moltke
- Department of Immunology, University of Washington, Seattle, Wash
| | | | - Steven F Ziegler
- Department of Immunology, University of Washington, Seattle, Wash; Benaroya Research Institute, Seattle, Wash.
| |
Collapse
|
30
|
Tomiaki C, Miyauchi K, Ki S, Suzuki Y, Suzuki N, Morimoto H, Mukoyama Y, Kubo M. Role of FK506-sensitive signals in asthmatic lung inflammation. Front Immunol 2022; 13:1014462. [PMID: 36439133 PMCID: PMC9683035 DOI: 10.3389/fimmu.2022.1014462] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/20/2022] [Indexed: 04/02/2025] Open
Abstract
Asthma is airway inflammatory diseases caused by the activation of group 2 innate lymphoid cells (ILC2s) and type 2 helper T (TH2) cells. Cysteine proteases allergen cause tissue damage to airway epithelial cells and activate ILC2-mediated type 2 airway inflammation. FK506 is an immunosuppressive agent against calcium-dependent NFAT activation that is also effective against asthmatic inflammation. However, the effects of FK506 on cysteine protease allergen-mediated airway inflammation remain unclear. In this study, we investigated the suppressive effects of FK506 on airway inflammation. FK506 had a partial inhibitory effect on ILC2-dependent eosinophil inflammation and a robust inhibitory effect on T cell-dependent eosinophil inflammation in a cysteine protease-induced mouse asthma model. The infiltration of T1/ST2+ CD4 T cells in the lungs contributed to the persistence of eosinophil infiltration in the airway; FK506 completely inhibited the infiltration of T1/ST2+ CD4 T cells. In the initial phase, FK506 treatment targeted lung ILC2 activation induced by leukotriene B4 (LTB4)-mediated calcium signaling, but not IL-33 signaling. FK506 also inhibited the IL-13-dependent accumulation of T1/ST2+ CD4 T cells in the lungs of the later responses. These results indicated that FK506 potently suppressed airway inflammation by targeting ILC2 activation and T1/ST2+ CD4 T cell accumulation.
Collapse
Affiliation(s)
- Chihiro Tomiaki
- Laboratory for Cytokine Regulation, Research Center for Integrative Medical Sciences (IMS), RIKEN Yokohama Institute, Yokohama, Kanagawa, Japan
| | - Kosuke Miyauchi
- Laboratory for Cytokine Regulation, Research Center for Integrative Medical Sciences (IMS), RIKEN Yokohama Institute, Yokohama, Kanagawa, Japan
| | - Sewon Ki
- Laboratory for Cytokine Regulation, Research Center for Integrative Medical Sciences (IMS), RIKEN Yokohama Institute, Yokohama, Kanagawa, Japan
| | - Yoshie Suzuki
- Laboratory for Cytokine Regulation, Research Center for Integrative Medical Sciences (IMS), RIKEN Yokohama Institute, Yokohama, Kanagawa, Japan
| | - Narumi Suzuki
- Laboratory for Cytokine Regulation, Research Center for Integrative Medical Sciences (IMS), RIKEN Yokohama Institute, Yokohama, Kanagawa, Japan
| | | | - Yohei Mukoyama
- Global Business Development Department, Maruho Co., Ltd., Kyoto, Japan
| | - Masato Kubo
- Laboratory for Cytokine Regulation, Research Center for Integrative Medical Sciences (IMS), RIKEN Yokohama Institute, Yokohama, Kanagawa, Japan
- Division of Molecular Pathology, Research Institute for Biomedical Science, Tokyo University of Science, Chiba, Japan
| |
Collapse
|
31
|
Badrani JH, Strohm AN, Lacasa L, Civello B, Cavagnero K, Haung YA, Amadeo M, Naji LH, Lund SJ, Leng A, Kim H, Baum RE, Khorram N, Mondal M, Seumois G, Pilotte J, Vanderklish PW, McGee HM, Doherty TA. RNA-binding protein RBM3 intrinsically suppresses lung innate lymphoid cell activation and inflammation partially through CysLT1R. Nat Commun 2022; 13:4435. [PMID: 35908044 PMCID: PMC9338970 DOI: 10.1038/s41467-022-32176-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 07/19/2022] [Indexed: 11/09/2022] Open
Abstract
Innate lymphoid cells (ILC) promote lung inflammation in asthma through cytokine production. RNA-binding proteins (RBPs) are critical post-transcriptional regulators, although less is known about RBPs in ILC biology. Here, we demonstrate that RNA-binding motif 3 (RBM3) is highly expressed in lung ILCs and is further induced by alarmins TSLP and IL-33. Rbm3-/- and Rbm3-/-Rag2-/- mice exposed to asthma-associated Alternaria allergen develop enhanced eosinophilic lung inflammation and ILC activation. IL-33 stimulation studies in vivo and in vitro show that RBM3 suppressed lung ILC responses. Further, Rbm3-/- ILCs from bone marrow chimeric mice display increased ILC cytokine production suggesting an ILC-intrinsic suppressive function of RBM3. RNA-sequencing of Rbm3-/- lung ILCs demonstrates increased expression of type 2/17 cytokines and cysteinyl leukotriene 1 receptor (CysLT1R). Finally, Rbm3-/-Cyslt1r-/- mice show dependence on CysLT1R for accumulation of ST2+IL-17+ ILCs. Thus, RBM3 intrinsically regulates lung ILCs during allergen-induced type 2 inflammation that is partially dependent on CysLT1R.
Collapse
Affiliation(s)
- Jana H. Badrani
- grid.266100.30000 0001 2107 4242Divison of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, CA USA
| | - Allyssa N. Strohm
- grid.266100.30000 0001 2107 4242Divison of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, CA USA ,Veterans Affairs San Diego Health Care System, La Jolla, CA USA
| | - Lee Lacasa
- grid.266100.30000 0001 2107 4242Divison of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, CA USA
| | - Blake Civello
- grid.266100.30000 0001 2107 4242Divison of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, CA USA
| | - Kellen Cavagnero
- grid.266100.30000 0001 2107 4242Divison of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, CA USA
| | - Yung-An Haung
- grid.266100.30000 0001 2107 4242Divison of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, CA USA ,grid.145695.a0000 0004 1798 0922Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Michael Amadeo
- grid.266100.30000 0001 2107 4242Divison of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, CA USA
| | - Luay H. Naji
- grid.266100.30000 0001 2107 4242Divison of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, CA USA
| | - Sean J. Lund
- grid.266100.30000 0001 2107 4242Divison of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, CA USA
| | - Anthea Leng
- grid.266100.30000 0001 2107 4242Divison of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, CA USA
| | - Hyojoung Kim
- grid.266100.30000 0001 2107 4242Divison of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, CA USA
| | - Rachel E. Baum
- grid.266100.30000 0001 2107 4242Divison of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, CA USA
| | - Naseem Khorram
- grid.266100.30000 0001 2107 4242Divison of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, CA USA
| | - Monalisa Mondal
- grid.185006.a0000 0004 0461 3162La Jolla Institute, La Jolla, CA USA
| | - Grégory Seumois
- grid.185006.a0000 0004 0461 3162La Jolla Institute, La Jolla, CA USA
| | - Julie Pilotte
- grid.214007.00000000122199231The Scripps Research Institute, La Jolla, CA USA
| | | | - Heather M. McGee
- grid.266100.30000 0001 2107 4242Divison of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, CA USA ,grid.250671.70000 0001 0662 7144NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute, La Jolla, CA USA ,grid.410425.60000 0004 0421 8357Departments of Radiation Oncology and Immuno-Oncology, City of Hope, Duarte, CA USA ,Department of Molecular Medicine, La Jolla, CA USA
| | - Taylor A. Doherty
- grid.266100.30000 0001 2107 4242Divison of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, CA USA ,Veterans Affairs San Diego Health Care System, La Jolla, CA USA
| |
Collapse
|
32
|
Taketomi Y, Murakami M. Regulatory Roles of Phospholipase A2 Enzymes and Bioactive Lipids in Mast Cell Biology. Front Immunol 2022; 13:923265. [PMID: 35833146 PMCID: PMC9271868 DOI: 10.3389/fimmu.2022.923265] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/30/2022] [Indexed: 11/26/2022] Open
Abstract
Lipids play fundamental roles in life as an essential component of cell membranes, as a major source of energy, as a body surface barrier, and as signaling molecules that transmit intracellular and intercellular signals. Lipid mediators, a group of bioactive lipids that mediates intercellular signals, are produced via specific biosynthetic enzymes and transmit signals via specific receptors. Mast cells, a tissue-resident immune cell population, produce several lipid mediators that contribute to exacerbation or amelioration of allergic responses and also non-allergic inflammation, host defense, cancer and fibrosis by controlling the functions of microenvironmental cells as well as mast cell themselves in paracrine and autocrine fashions. Additionally, several bioactive lipids produced by stromal cells regulate the differentiation, maturation and activation of neighboring mast cells. Many of the bioactive lipids are stored in membrane phospholipids as precursor forms and released spatiotemporally by phospholipase A2 (PLA2) enzymes. Through a series of studies employing gene targeting and lipidomics, several enzymes belonging to the PLA2 superfamily have been demonstrated to participate in mast cell-related diseases by mobilizing unique bioactive lipids in multiple ways. In this review, we provide an overview of our current understanding of the regulatory roles of several PLA2-driven lipid pathways in mast cell biology.
Collapse
|
33
|
Finding a Niche: Tissue Immunity and Innate Lymphoid Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1365:57-73. [PMID: 35567741 DOI: 10.1007/978-981-16-8387-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The immune system plays essential roles in maintaining homeostasis in mammalian tissues that extend beyond pathogen clearance and host defense. Recently, several homeostatic circuits comprised of paired hematopoietic and non-hematopoietic cells have been described to influence tissue composition and turnover in development and after perturbation. Crucial circuit components include innate lymphoid cells (ILCs), which seed developing organs and shape their resident tissues by influencing progenitor fate decisions, microbial interactions, and neuronal activity. As they develop in tissues, ILCs undergo transcriptional imprinting that encodes receptivity to corresponding signals derived from their resident tissues but ILCs can also shift their transcriptional profiles to adapt to specific types of tissue perturbation. Thus, ILC functions are embedded within their resident tissues, where they constitute key regulators of homeostatic responses that can lead to both beneficial and pathogenic outcomes. Here, we examine the interactions between ILCs and various non-hematopoietic tissue cells, and discuss how specific ILC-tissue cell circuits form essential elements of tissue immunity.
Collapse
|
34
|
Crosstalk between ILC2s and Th2 CD4+ T Cells in Lung Disease. J Immunol Res 2022; 2022:8871037. [PMID: 35592688 PMCID: PMC9113865 DOI: 10.1155/2022/8871037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/30/2022] [Accepted: 04/18/2022] [Indexed: 12/03/2022] Open
Abstract
Cytokine secretion, such as interleukin-4 (IL-4), IL-5, IL-9, IL-13, and amphiregulin (Areg), by type 2 innate lymphoid cells (ILC2s) is indispensable for homeostasis, remodeling/repairing tissue structure, inflammation, and tumor immunity. Often viewed as the innate cell surrogate of T helper type 2 (Th2) cells, ILC2s not only secrete the same type 2 cytokines, but are also inextricably related to CD4+T cells in terms of cell origin and regulatory factors, bridging between innate and adaptive immunity. ILC2s interact with CD4+T cells to play a leading role in a variety of diseases through secretory factors. Here, we review the latest progress on ILC2s and CD4+T cells in the lung, the close relationship between the two, and their relevance in the lung disease and immunity. This literature review aids future research in pulmonary type 2 immune diseases and guides innovative treatment approaches for these diseases.
Collapse
|
35
|
Oyesola OO, Souza COS, Loke P. The Influence of Genetic and Environmental Factors and Their Interactions on Immune Response to Helminth Infections. Front Immunol 2022; 13:869163. [PMID: 35572520 PMCID: PMC9103684 DOI: 10.3389/fimmu.2022.869163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/04/2022] [Indexed: 12/20/2022] Open
Abstract
Helminth infection currently affect over 2 billion people worldwide, with those with the most pathologies and morbidities, living in regions with unequal and disproportionate access to effective healthcare solutions. Host genetics and environmental factors play critical roles in modulating and regulating immune responses following exposure to various pathogens and insults. However, the interplay of environment and genetic factors in influencing who gets infected and the establishment, persistence, and clearance of helminth parasites remains unclear. Inbred strains of mice have long been used to investigate the role of host genetic factors on pathogenesis and resistance to helminth infection in a laboratory setting. This review will discuss the use of ecological and environmental mouse models to study helminth infections and how this could be used in combination with host genetic variation to explore the relative contribution of these factors in influencing immune response to helminth infections. Improved understanding of interactions between genetics and the environment to helminth immune responses would be important for efforts to identify and develop new prophylactic and therapeutic options for the management of helminth infections and their pathogenesis.
Collapse
Affiliation(s)
- Oyebola O. Oyesola
- Laboratory of Parasitic Disease, National Institute of Allergy and Infectious Disease (NIAID), National Institute of Health, Bethesda, MD, United States
| | | | | |
Collapse
|
36
|
Menghani SV, Cutcliffe MP, Sanchez-Rosario Y, Pok C, Watson A, Neubert MJ, Ochoa K, Wu HJJ, Johnson MDL. N, N-Dimethyldithiocarbamate Elicits Pneumococcal Hypersensitivity to Copper and Macrophage-Mediated Clearance. Infect Immun 2022; 90:e0059721. [PMID: 35311543 PMCID: PMC9022595 DOI: 10.1128/iai.00597-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/12/2022] [Indexed: 12/26/2022] Open
Abstract
Streptococcus pneumoniae is a Gram-positive, encapsulated bacterium that is a significant cause of disease burden in pediatric and elderly populations. The rise in unencapsulated disease-causing strains and antimicrobial resistance in S. pneumoniae has increased the need for developing new antimicrobial strategies. Recent work by our laboratory has identified N,N-dimethyldithiocarbamate (DMDC) as a copper-dependent antimicrobial against bacterial, fungal, and parasitic pathogens. As a bactericidal antibiotic against S. pneumoniae, DMDC's ability to work as a copper-dependent antibiotic and its ability to work in vivo warranted further investigation. Here, our group studied the mechanisms of action of DMDC under various medium and excess-metal conditions and investigated DMDC's interactions with the innate immune system in vitro and in vivo. Of note, we found that DMDC plus copper significantly increased the internal copper concentration, hydrogen peroxide stress, nitric oxide stress, and the in vitro macrophage killing efficiency and decreased capsule. Furthermore, we found that in vivo DMDC treatment increased the quantity of innate immune cells in the lung during infection. Taken together, this study provides mechanistic insights regarding DMDC's activity as an antibiotic at the host-pathogen interface.
Collapse
Affiliation(s)
- Sanjay V. Menghani
- Department of Immunobiology, University of Arizona College of Medicine—Tucson, Tucson, Arizona, USA
- Medical Scientist Training M.D.-Ph.D. Program (MSTP), University of Arizona College of Medicine—Tucson, Tucson, Arizona, USA
| | - Madeline P. Cutcliffe
- Department of Immunobiology, University of Arizona College of Medicine—Tucson, Tucson, Arizona, USA
| | - Yamil Sanchez-Rosario
- Department of Immunobiology, University of Arizona College of Medicine—Tucson, Tucson, Arizona, USA
| | - Chansorena Pok
- Department of Immunobiology, University of Arizona College of Medicine—Tucson, Tucson, Arizona, USA
| | - Alison Watson
- Department of Immunobiology, University of Arizona College of Medicine—Tucson, Tucson, Arizona, USA
| | - Miranda J. Neubert
- Department of Immunobiology, University of Arizona College of Medicine—Tucson, Tucson, Arizona, USA
| | - Klariza Ochoa
- Department of Immunobiology, University of Arizona College of Medicine—Tucson, Tucson, Arizona, USA
| | - Hsin-Jung Joyce Wu
- Department of Immunobiology, University of Arizona College of Medicine—Tucson, Tucson, Arizona, USA
- Arizona Arthritis Center, University of Arizona College of Medicine—Tucson, Tucson, Arizona, USA
| | - Michael D. L. Johnson
- Department of Immunobiology, University of Arizona College of Medicine—Tucson, Tucson, Arizona, USA
- Valley Fever Center for Excellence, University of Arizona College of Medicine—Tucson, Tucson, Arizona, USA
- BIO5 Institute, University of Arizona College of Medicine—Tucson, Tucson, Arizona, USA
- Asthma and Airway Disease Research Center, University of Arizona College of Medicine—Tucson, Tucson, Arizona, USA
| |
Collapse
|
37
|
Abstract
Although tuft cells were discovered over 60 years ago, their functions have long been enigmatic, especially in human health. Nonetheless, tuft cells have recently emerged as key orchestrators of the host response to diverse microbial infections in the gut and airway. While tuft cells are epithelial in origin, they exhibit functions akin to immune cells and mediate important interkingdom interactions between the host and helminths, protists, viruses, and bacteria. With broad intra- and intertissue heterogeneity, tuft cells sense and respond to microbes with exquisite specificity. Tuft cells can recognize helminth and protist infection, driving a type 2 immune response to promote parasite expulsion. Tuft cells also serve as the primary physiologic target of persistent murine norovirus (MNV) and promote immune evasion. Recently, tuft cells were also shown to be infected by rotavirus. Other viral infections, such as influenza A virus, can induce tuft cell–dependent tissue repair. In the context of coinfection, tuft cells promote neurotropic flavivirus replication by dampening antiviral adaptive immune responses. Commensal and pathogenic bacteria can regulate tuft cell abundance and function and, in turn, tuft cells are implicated in modulating bacterial infiltration and mucosal barrier integrity. However, the contribution of tuft cells to microbial sensing in humans and their resulting effector responses are poorly characterized. Herein, we aim to provide a comprehensive overview of microbial activation of tuft cells with an emphasis on tuft cell heterogeneity and differences between mouse and human tuft cell biology as it pertains to human health and disease.
Collapse
Affiliation(s)
- Madison S. Strine
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, Connecticut, United States of America
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Craig B. Wilen
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, Connecticut, United States of America
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, United States of America
- Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut, United States of America
- * E-mail: ,
| |
Collapse
|
38
|
Xiao Q, Han X, Liu G, Zhou D, Zhang L, He J, Xu H, Zhou P, Yang Q, Chen J, Zhou J, Jiang G, Yao Z. Adenosine restrains ILC2-driven allergic airway inflammation via A2A receptor. Mucosal Immunol 2022; 15:338-350. [PMID: 34921233 DOI: 10.1038/s41385-021-00475-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/05/2021] [Accepted: 12/05/2021] [Indexed: 02/04/2023]
Abstract
Although group 2 Innate Lymphoid Cells (ILC2s) play important roles in driving the pathogenesis of allergic airway inflammation, the molecular mechanisms regulating ILC2 responses remain to be fully elucidated. Adenosine signaling is emerging as an important factor to limit excessive inflammation and tissue damage, its role in ILC2-driven airway inflammation remains to be understood. Here we identify adenosine as a negative regulator of ILC2s and allergic airway inflammation. Elevation of adenosine was observed in lungs after protease papain challenge. Adenosine receptor A2A was abundantly expressed in lung ILC2s. The adenosine analog NECA significantly suppress ILC2s responses and relieved airway inflammation induced by IL-33 or papain. Conversely, blockage of adenosine synthesis by CD73 inhibitor APCP or deficiency of A2A aggravated murine airway inflammation. Adoptive transfer of ILC2s into immunodeficiency NCG mice demonstrated that the regulation of ILC2 by adenosine was cell intrinsic. Mechanistic studies showed that the effects of adenosine on ILC2s were associated with changes in transcriptional profiling, and the elevation of intracellular cAMP and resulted NF-κB downregulation. These observations indicate that adenosine-A2A signaling is a negative regulator of ILC2s, which confers protection against airway inflammation and represents a novel therapeutic target for controlling asthma.
Collapse
Affiliation(s)
- Qiang Xiao
- Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Department of Clinical laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Xu Han
- Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Gaoyu Liu
- Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Dongmei Zhou
- Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Lijuan Zhang
- Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Juan He
- Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Haixu Xu
- Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Pan Zhou
- Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Quan Yang
- Key Laboratory of Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences; Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jiangfan Chen
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, China
| | - Jie Zhou
- Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| | - Guanmin Jiang
- Department of Clinical laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China.
| | - Zhi Yao
- Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
39
|
The Role of the Intestinal Epithelium in the "Weep and Sweep" Response during Gastro-Intestinal Helminth Infections. Animals (Basel) 2022; 12:ani12020175. [PMID: 35049796 PMCID: PMC8772803 DOI: 10.3390/ani12020175] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/25/2021] [Accepted: 01/10/2022] [Indexed: 02/08/2023] Open
Abstract
Simple Summary The immune system actively combats intruders such as bacteria, viruses, fungi, and protozoan and metazoan parasites using leukocytes. During an infection white blood cells are activated to internalize bacteria or viruses and release a number of molecules to kill pathogens. Unfortunately, those mechanisms are ineffective against larger intruders like helminths, which are too large to be killed by a single immune cell. To eliminate gastro-intestinal helminths an integrated response involving the nervous, endocrine, and immune systems are used to expel the parasites. This is achieved through increased gut hydration and muscle contractions which detach worms from the gut and lead to release outside the body in a “weep and sweep” response. Epithelial cells of the intestine are significant players in this process, being responsible for detecting the presence of helminths in the gut and participating in the regulation of parasite expulsion. This paper describes the role of the gut epithelium in detecting and eliminating helminths from the intestine. Abstract Helminths are metazoan parasites infecting around 1.5 billion people all over the world. During coevolution with hosts, worms have developed numerous ways to trick and evade the host immune response, and because of their size, they cannot be internalized and killed by immune cells in the same way as bacteria or viruses. During infection, a substantial Th2 component to the immune response is evoked which helps restrain Th1-mediated tissue damage. Although an enhanced Th2 response is often not enough to kill the parasite and terminate an infection in itself, when tightly coordinated with the nervous, endocrine, and motor systems it can dislodge parasites from tissues and expel them from the gut. A significant role in this “weep and seep” response is attributed to intestinal epithelial cells (IEC). This review highlights the role of various IEC lineages (enterocytes, tuft cells, Paneth cells, microfold cells, goblet cells, and intestine stem cells) during the course of helminth infections and summarizes their roles in regulating gut architecture and permeability, and muscle contractions and interactions with the immune and nervous system.
Collapse
|
40
|
Vacca F, Le Gros G. Tissue-specific immunity in helminth infections. Mucosal Immunol 2022; 15:1212-1223. [PMID: 35680972 PMCID: PMC9178325 DOI: 10.1038/s41385-022-00531-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/25/2022] [Accepted: 05/16/2022] [Indexed: 02/04/2023]
Abstract
A characteristic feature of host responses to helminth infections is the development of profound systemic and tissue-localised Type 2 immune responses that play critical roles in immunity, tissue repair and tolerance of the parasite at tissue sites. These same Type 2 responses are also seen in the tissue-associated immune-pathologies seen in asthma, atopic dermatitis and many forms of allergies. The recent identification of new subtypes of immune cells and cytokine pathways that influence both immune and non-immune cells and tissues creates the opportunity for reviewing helminth parasite-host responses in the context of tissue specific immunity. This review focuses on the new discoveries of the cells and cytokines involved in tissue specific immune responses to helminths and how these contribute to host immunity against helminth infection and allow the host to accommodate the presence of parasites when they cannot be eliminated.
Collapse
Affiliation(s)
- Francesco Vacca
- grid.250086.90000 0001 0740 0291Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Graham Le Gros
- grid.250086.90000 0001 0740 0291Malaghan Institute of Medical Research, Wellington, New Zealand
| |
Collapse
|
41
|
Kabata H, Motomura Y, Kiniwa T, Kobayashi T, Moro K. ILCs and Allergy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1365:75-95. [DOI: 10.1007/978-981-16-8387-9_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
42
|
Cayrol C. IL-33, an Alarmin of the IL-1 Family Involved in Allergic and Non Allergic Inflammation: Focus on the Mechanisms of Regulation of Its Activity. Cells 2021; 11:cells11010107. [PMID: 35011670 PMCID: PMC8750818 DOI: 10.3390/cells11010107] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 02/04/2023] Open
Abstract
Interleukin-33 (IL-33) is a member of the interleukin-1 (IL-1) family that is expressed in the nuclei of endothelial and epithelial cells of barrier tissues, among others. It functions as an alarm signal that is released upon tissue or cellular injury. IL-33 plays a central role in the initiation and amplification of type 2 innate immune responses and allergic inflammation by activating various target cells expressing its ST2 receptor, including mast cells and type 2 innate lymphoid cells. Depending on the tissue environment, IL-33 plays a wide variety of roles in parasitic and viral host defense, tissue repair and homeostasis. IL-33 has evolved a variety of sophisticated regulatory mechanisms to control its activity, including nuclear sequestration and proteolytic processing. It is involved in many diseases, including allergic, inflammatory and infectious diseases, and is a promising therapeutic target for the treatment of severe asthma. In this review, I will summarize the literature around this fascinating pleiotropic cytokine. In the first part, I will describe the basics of IL-33, from the discovery of interleukin-33 to its function, including its expression, release and signaling pathway. The second part will be devoted to the regulation of IL-33 protein leading to its activation or inactivation.
Collapse
Affiliation(s)
- Corinne Cayrol
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France
| |
Collapse
|
43
|
Ualiyeva S, Lemire E, Aviles EC, Wong C, Boyd AA, Lai J, Liu T, Matsumoto I, Barrett NA, Boyce JA, Haber AL, Bankova LG. Tuft cell-produced cysteinyl leukotrienes and IL-25 synergistically initiate lung type 2 inflammation. Sci Immunol 2021; 6:eabj0474. [PMID: 34932383 DOI: 10.1126/sciimmunol.abj0474] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Saltanat Ualiyeva
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Evan Lemire
- Department of Environmental Health, Harvard School of Public Health, Boston, MA, USA
| | - Evelyn C Aviles
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Caitlin Wong
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Amelia A Boyd
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Juying Lai
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Tao Liu
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | | | - Nora A Barrett
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Joshua A Boyce
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Adam L Haber
- Department of Environmental Health, Harvard School of Public Health, Boston, MA, USA
| | - Lora G Bankova
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
44
|
Schetters STT, Schuijs MJ. Pulmonary Eosinophils at the Center of the Allergic Space-Time Continuum. Front Immunol 2021; 12:772004. [PMID: 34868033 PMCID: PMC8634472 DOI: 10.3389/fimmu.2021.772004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/27/2021] [Indexed: 01/01/2023] Open
Abstract
Eosinophils are typically a minority population of circulating granulocytes being released from the bone-marrow as terminally differentiated cells. Besides their function in the defense against parasites and in promoting allergic airway inflammation, regulatory functions have now been attributed to eosinophils in various organs. Although eosinophils are involved in the inflammatory response to allergens, it remains unclear whether they are drivers of the asthma pathology or merely recruited effector cells. Recent findings highlight the homeostatic and pro-resolving capacity of eosinophils and raise the question at what point in time their function is regulated. Similarly, eosinophils from different physical locations display phenotypic and functional diversity. However, it remains unclear whether eosinophil plasticity remains as they develop and travel from the bone marrow to the tissue, in homeostasis or during inflammation. In the tissue, eosinophils of different ages and origin along the inflammatory trajectory may exhibit functional diversity as circumstances change. Herein, we outline the inflammatory time line of allergic airway inflammation from acute, late, adaptive to chronic processes. We summarize the function of the eosinophils in regards to their resident localization and time of recruitment to the lung, in all stages of the inflammatory response. In all, we argue that immunological differences in eosinophils are a function of time and space as the allergic inflammatory response is initiated and resolved.
Collapse
Affiliation(s)
- Sjoerd T T Schetters
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.,Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Martijn J Schuijs
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.,Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| |
Collapse
|
45
|
Popple SJ, Burrows K, Mortha A, Osborne LC. Remote regulation of type 2 immunity by intestinal parasites. Semin Immunol 2021; 53:101530. [PMID: 34802872 DOI: 10.1016/j.smim.2021.101530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 02/06/2023]
Abstract
The intestinal tract is the target organ of most parasitic infections, including those by helminths and protozoa. These parasites elicit prototypical type 2 immune activation in the host's immune system with striking impact on the local tissue microenvironment. Despite local containment of these parasites within the intestinal tract, parasitic infections also mediate immune adaptation in peripheral organs. In this review, we summarize the current knowledge on how such gut-tissue axes influence important immune-mediated resistance and disease tolerance in the context of coinfections, and elaborate on the implications of parasite-regulated gut-lung and gut-brain axes on the development and severity of airway inflammation and central nervous system diseases.
Collapse
Affiliation(s)
- S J Popple
- Department of Microbiology & Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - K Burrows
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - A Mortha
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - L C Osborne
- Department of Microbiology & Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
46
|
The Pathology of Type 2 Inflammation-Associated Itch in Atopic Dermatitis. Diagnostics (Basel) 2021; 11:diagnostics11112090. [PMID: 34829437 PMCID: PMC8618746 DOI: 10.3390/diagnostics11112090] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/06/2021] [Accepted: 11/09/2021] [Indexed: 12/20/2022] Open
Abstract
Accumulated evidence on type 2 inflammation-associated itch in atopic dermatitis has recently been reported. Crosstalk between the immune and nervous systems (neuroimmune interactions) is prominent in atopic dermatitis research, particularly regarding itch and inflammation. A comprehensive understanding of bidirectional neuroimmune interactions will provide insights into the pathogenesis of itch and its treatment. There is currently no agreed cure for itch in atopic dermatitis; however, increasing numbers of novel and targeted biologic agents have potential for its management and are in the advanced stages of clinical trials. In this review, we summarize and discuss advances in our understanding of type 2 inflammation-associated itch and implications for its management and treatment in patients with atopic dermatitis.
Collapse
|
47
|
Olguín-Martínez E, Ruiz-Medina BE, Licona-Limón P. Tissue-Specific Molecular Markers and Heterogeneity in Type 2 Innate Lymphoid Cells. Front Immunol 2021; 12:757967. [PMID: 34759931 PMCID: PMC8573327 DOI: 10.3389/fimmu.2021.757967] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/21/2021] [Indexed: 12/25/2022] Open
Abstract
Innate lymphoid cells (ILCs) are the most recently described group of lymphoid subpopulations. These tissue-resident cells display a heterogeneity resembling that observed on different groups of T cells, hence their categorization as cytotoxic NK cells and helper ILCs type 1, 2 and 3. Each one of these groups is highly diverse and expresses different markers in a context-dependent manner. Type 2 innate lymphoid cells (ILC2s) are activated in response to helminth parasites and regulate the immune response. They are involved in the etiology of diseases associated with allergic responses as well as in the maintenance of tissue homeostasis. Markers associated with their identification differ depending on the tissue and model used, making the study and understanding of these cells a cumbersome task. This review compiles evidence for the heterogeneity of ILC2s as well as discussion and analyses of molecular markers associated with their identity, function, tissue-dependent expression, and how these markers contribute to the interaction of ILC2s with specific microenvironments to maintain homeostasis or respond to pathogenic challenges.
Collapse
Affiliation(s)
- Enrique Olguín-Martínez
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, Mexico
| | - Blanca E Ruiz-Medina
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, Mexico
| | - Paula Licona-Limón
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, Mexico
| |
Collapse
|
48
|
Orimo K, Tamari M, Saito H, Matsumoto K, Nakae S, Morita H. Characteristics of tissue-resident ILCs and their potential as therapeutic targets in mucosal and skin inflammatory diseases. Allergy 2021; 76:3332-3348. [PMID: 33866593 DOI: 10.1111/all.14863] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/30/2021] [Accepted: 04/12/2021] [Indexed: 12/11/2022]
Abstract
Discovery of innate lymphoid cells (ILCs), which are non-T and non-B lymphocytes that have no antigen-specific receptors, changed the classical concept of the mechanism of allergy, which had been explained mainly as antigen-specific acquired immunity based on IgE and Th2 cells. The discovery led to dramatic improvement in our understanding of the mechanism of non-IgE-mediated allergic inflammation. Numerous studies conducted in the past decade have elucidated the characteristics of each ILC subset in various organs and tissues and their ontogeny. We now know that each ILC subset exhibits heterogeneity. Moreover, the functions and activating/suppressing factors of each ILC subset were found to differ among both organs and types of tissue. Therefore, in this review, we summarize our current knowledge of ILCs by focusing on the organ/tissue-specific features of each subset to understand their roles in various organs. We also discuss ILCs' involvement in human inflammatory diseases in various organs and potential therapeutic/preventive strategies that target ILCs.
Collapse
Affiliation(s)
- Keisuke Orimo
- Department of Allergy and Clinical Immunology National Research Institute for Child Health and Development Tokyo Japan
| | - Masato Tamari
- Department of Allergy and Clinical Immunology National Research Institute for Child Health and Development Tokyo Japan
| | - Hirohisa Saito
- Department of Allergy and Clinical Immunology National Research Institute for Child Health and Development Tokyo Japan
| | - Kenji Matsumoto
- Department of Allergy and Clinical Immunology National Research Institute for Child Health and Development Tokyo Japan
| | - Susumu Nakae
- Graduate School of Integrated Sciences for Life Hiroshima University Hiroshima Japan
- Precursory Research for Embryonic Science and Technology Japan Science and Technology Agency Saitama Japan
| | - Hideaki Morita
- Department of Allergy and Clinical Immunology National Research Institute for Child Health and Development Tokyo Japan
| |
Collapse
|
49
|
Alkon N, Bauer WM, Krausgruber T, Goh I, Griss J, Nguyen V, Reininger B, Bangert C, Staud C, Brunner PM, Bock C, Haniffa M, Stingl G. Single-cell analysis reveals innate lymphoid cell lineage infidelity in atopic dermatitis. J Allergy Clin Immunol 2021; 149:624-639. [PMID: 34363841 PMCID: PMC9130781 DOI: 10.1016/j.jaci.2021.07.025] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 06/23/2021] [Accepted: 07/13/2021] [Indexed: 12/16/2022]
Abstract
Background Although ample knowledge exists about phenotype and function of cutaneous T lymphocytes, much less is known about the lymphocytic components of the skin’s innate immune system. Objective To better understand the biologic role of cutaneous innate lymphoid cells (ILCs), we investigated their phenotypic and molecular features under physiologic (normal human skin [NHS]) and pathologic (lesional skin of patients with atopic dermatitis [AD]) conditions. Methods Skin punch biopsies and reduction sheets as well as blood specimens were obtained from either patients with AD or healthy individuals. Cell and/or tissue samples were analyzed by flow cytometry, immunohistochemistry, and single-cell RNA sequencing or subjected to in vitro/ex vivo culture. Results Notwithstanding substantial quantitative differences between NHS and AD skin, we found that the vast majority of cutaneous ILCs belong to the CRTH2+ subset and reside in the upper skin layers. Single-cell RNA sequencing of cutaneous ILC-enriched cell samples confirmed the predominance of biologically heterogeneous group 2 ILCs and, for the first time, demonstrated considerable ILC lineage infidelity (coexpression of genes typical of either type 2 [GATA3 and IL13] or type 3/17 [RORC, IL22, and IL26] immunity within individual cells) in lesional AD skin, and to a much lesser extent, in NHS. Similar events were demonstrated in ILCs from skin explant cultures and in vitro expanded ILCs from the peripheral blood. Conclusion These findings support the concept that instead of being a stable entity with well-defined components, the skin immune system consists of a network of highly flexible cellular players that are capable of adjusting their function to the needs and challenges of the environment.
Collapse
Affiliation(s)
- Natalia Alkon
- Department of Dermatology, Medical University of Vienna, Vienna, Austria.
| | - Wolfgang M Bauer
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Thomas Krausgruber
- Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Issac Goh
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Johannes Griss
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Vy Nguyen
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Baerbel Reininger
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Christine Bangert
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Clement Staud
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Medical University of Vienna, Vienna, Austria
| | - Patrick M Brunner
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Christoph Bock
- Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; Center for Medical Statistics, Informatics, and Intelligent Systems, Institute of Artificial Intelligence and Decision Support, Medical University of Vienna, Vienna, Austria
| | - Muzlifah Haniffa
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom; Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom; Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Georg Stingl
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
50
|
The dual function of ILC2: From host protection to pathogenic players in type 2 asthma. Mol Aspects Med 2021; 80:100981. [PMID: 34193344 DOI: 10.1016/j.mam.2021.100981] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/01/2021] [Accepted: 06/01/2021] [Indexed: 01/10/2023]
Abstract
Innate lymphoid cells type 2 (ILC2) are considered the innate counterpart of Th2 cells and cooperate with them in host protection against helminths and in the pathogenesis of allergic diseases. ILC2 are characterized by type 2 cytokines production (IL-13, IL-4 and IL-5) and by GATA-3 transcription factor expression. Belonging to innate immune system, ILC2 lack of antigen specific receptor and their activation is controlled mainly by epithelial derived cytokines, such as TSLP, IL-25, and IL-33. ILC2 are located in a strategic position in the airway mucosa and are important to patrol the airways, to recruit other immune system cells and to activate resident cells in response to pathogens injury and/or tissue damage. In the last decade, many studies, in both humans and mice, focused on ILC2, fully investigating their main features such as the development from the precursor, the stimuli for their activation or inhibition, their plasticity, their classification in different subsets, and finally, their pathogenetic role in type 2 immune-mediated disorders. In this review we performed an excursus on phenotypical and functional properties on both human and mouse ILC2, in physiological and pathological conditions (mainly in type 2 asthma), considering this cell subset as target for specific therapeutic strategies.
Collapse
|