1
|
Tao H, Geng J, Bai L, Su D, Zhao Y, Xu G, Zhang M. Regulation of innate lymphoid cell by microbial metabolites. J Mol Med (Berl) 2025; 103:491-509. [PMID: 40128460 DOI: 10.1007/s00109-025-02530-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 02/27/2025] [Accepted: 03/10/2025] [Indexed: 03/26/2025]
Abstract
Innate lymphoid cells (ILCs) are a unique category of immune cell that lack antigen-specific receptors yet possess the capacity to detect signals from the surrounding tissue. The majority of ILCs reside in the lymphoid and mucosal tissues, maintaining close associations with the microbiota. Beyond the contributions of accessory cells and adaptive immune cells, accumulating studies demonstrate that microbial metabolites serve a crucial role in mediating the relationship between ILCs and the microbiota. In this review, we highlight and summarize the roles of microbial metabolites from different sources in modulating ILC subsets, proposing these metabolites as potential therapeutic mechanisms in ILC-mediated diseases.
Collapse
Affiliation(s)
- Hongji Tao
- Department of Gastroenterology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, China
| | - Jingjing Geng
- Division of Gastroenterology and Hepatology; Shanghai Institute of Digestive Disease; NHC Key Laboratory of Digestive Diseases; State Key Laboratory for Oncogenes and Related Genes; Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Long Bai
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Dan Su
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Yu Zhao
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Guifang Xu
- Department of Gastroenterology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, China.
| | - Mingming Zhang
- Division of Gastroenterology and Hepatology; Shanghai Institute of Digestive Disease; NHC Key Laboratory of Digestive Diseases; State Key Laboratory for Oncogenes and Related Genes; Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai, 200001, China.
| |
Collapse
|
2
|
Flögel L, Kaiser E, Hans MC, Goedicke-Fritz S, Bous M, Abdul-Khaliq H, Poryo M, Zemlin M, Weber R. Immunological characterization of pleural effusions in pediatric patients. Front Immunol 2024; 15:1506073. [PMID: 39737183 PMCID: PMC11682977 DOI: 10.3389/fimmu.2024.1506073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 12/02/2024] [Indexed: 01/01/2025] Open
Abstract
Background The pleural cavity represents a unique immunological compartment that can mount inflammatory reactions during infections, after surgery and in chronic immunological diseases. The connection between systemic immune reactions in the blood and local immune reactions in pleural effusions remains unclear. This study provides the first comprehensive immunological characterization of paired blood and pleural effusion samples, utilizing combined cell and cytokine analyses in pediatric patients undergoing cardiac surgery. Methods In 30 pediatric patients (median age: 22 months) with pleural effusion after cardiac surgery for congenital heart defects, corresponding peripheral blood and pleural effusion samples were analyzed for their immune response. We used flow cytometry and multiplex immunoassays to quantify 14 T cell subpopulations and 12 T cell associated cytokines in each biosample. Results IL-6, IL-8, IL-10, TNF (p<0.0001) levels were significantly higher in pleural effusion compared to plasma. In contrast, IFN-γ, GM-CSF, IL-17A levels were lower in pleural effusion than in plasma (p ≤ 0.0005). In comparison to peripheral blood, there was a significantly higher proportion of T helper cells 1 (Th1, p=0.0023), T helper cells 17 (Th17, p=0.0334) and memory effector cytotoxic T cells (CD3+CD8+CD45RO+CD62L-, p=0.0449) in pleural effusion and the same trend was observed for memory effector Th cells (CD3+CD4+CD45RO+CD62L-, p=0.0633) and double-negative T cells (CD3+CD4-CD8-) (p=0.1085). Naïve Th cells (CD3+CD4+CD45RO-CD62L+) and naïve cytotoxic T cells (CD3+CD8+CD45RO-CD62L+) were slightly reduced in pleural effusion compared to peripheral blood (not significant). Conclusion Immunological factors in pleural effusions differed significantly from the corresponding blood samples in pediatric patients after cardiac surgery. The results suggest localized production of specific cytokines within the pleural space, while the distribution of other cytokines in pleural effusions appears to be more reflective of the systemic immune response. We found evidence that on the cellular level, the surface marker CD62L may play a key role in navigating T cells between the blood and pleural effusion. This study confirms that the pleural cavity harbors a unique lymphatic compartment, the analysis of which may be useful for both diagnostic and therapeutic purposes.
Collapse
Affiliation(s)
- Luca Flögel
- Department of General Pediatrics and Neonatology, Saarland University, Campus Homburg, Homburg, Germany
| | - Elisabeth Kaiser
- Department of General Pediatrics and Neonatology, Saarland University, Campus Homburg, Homburg, Germany
| | - Muriel Charlotte Hans
- Department of General Pediatrics and Neonatology, Saarland University, Campus Homburg, Homburg, Germany
| | - Sybelle Goedicke-Fritz
- Department of General Pediatrics and Neonatology, Saarland University, Campus Homburg, Homburg, Germany
| | - Michelle Bous
- Department of General Pediatrics and Neonatology, Saarland University, Campus Homburg, Homburg, Germany
| | - Hashim Abdul-Khaliq
- Department of Pediatric Cardiology, Saarland University Medical Center, Homburg, Germany
| | - Martin Poryo
- Department of Pediatric Cardiology, Saarland University Medical Center, Homburg, Germany
| | - Michael Zemlin
- Department of General Pediatrics and Neonatology, Saarland University, Campus Homburg, Homburg, Germany
| | - Regine Weber
- Department of General Pediatrics and Neonatology, Saarland University, Campus Homburg, Homburg, Germany
| |
Collapse
|
3
|
Tao Q, Wu Q, Xue Y, Chen C, Zhou Y, Shao R, Zhang H, Liu H, Zeng X, Zhou L, Liu Q, Jin H. Prognostic impact of IL7R mutations on acute myeloid leukemia. Ther Adv Hematol 2024; 15:20406207241279533. [PMID: 39346679 PMCID: PMC11439168 DOI: 10.1177/20406207241279533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 07/24/2024] [Indexed: 10/01/2024] Open
Abstract
Background Interleukin-7 receptor (IL7R) mutation has been demonstrated to be an adverse prognostic factor in acute lymphoblastic leukemia (ALL) patients. However, the effects of the IL7R mutation on acute myeloid leukemia (AML) have rarely been reported. Here, we investigated IL7R mutations and their effects on AML patients. Methods A total of 346 newly diagnosed AML patients from January 2017 to July 2020 at Nanfang Hospital were analyzed in this study. A genomic panel of 167 gene targets was detected by next-generation sequencing. Results Among 346 patients, 33 (9.5%) AML patients carried IL7R mutations. With a median follow-up of 50.7 months (95% confidence interval (CI) 17.3-62.2), the 5-year overall survival (OS) rates were 51.5% (95% CI 37.0%-71.0%) and 72.2% (95% CI 67.4%-77.3%; p = 0.008), the 5-year event-free survival (EFS) rates were 36.1% (95% CI 23.2%-57.1%) and 58.1% (95% CI 52.9%-63.8%; p = 0.005), the 5-year non-relapse mortality (NRM) were 21.4% (95% CI 8.5%-38.2%) and 6.2% (95% CI 3.7%-9.5%; p = 0.004) in the IL7R mutant (IL7R MUT ) group and non-IL7R mutant (IL7R WT ) group, respectively. There is no significant difference in the disease-free survival (75.1% vs 73.5%, p = 0.885) and cumulative incidence of relapse (25.7% vs 25.2%, p = 0.933) between IL7R MUT and IL7R WT group. Furthermore, patients who underwent hematopoietic stem cell transplantation (HSCT) still had more adverse outcomes in the IL7R MUT group than in the IL7R WT group (5-year OS: 61.9% vs 85.3%, p = 0.003). In the TET2 (p = 0.013) and DNA methyltransferase 3A (DNMT3A; p = 0.046) mutation subgroups, the presence of IL7R mutations was associated with worse OS than in AML patients without IL7R mutations. Conclusion Our study demonstrated that the IL7R mutation is associated with an inferior prognosis for AML patients. Patients with IL7R mutations have higher NRM, shorter OS, and EFS than patients without IL7R mutations, even patients who have undergone HSCT. Future larger and multicentric prospective studies will be explored.
Collapse
Affiliation(s)
- Qiqi Tao
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Hematology, The Sixth Affiliated Hospital, school of Medicine, South China University of Technology, Foshan, China
| | - Qiaoyuan Wu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Yutong Xue
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Changkun Chen
- Department of Hematology, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, Jiangxi, China
- Department of Hematology, Ganzhou People’s Hospital, Ganzhou, Jiangxi, China
| | - Ya Zhou
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Ruoyang Shao
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Haiyan Zhang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | | | - Xiangzong Zeng
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Hematology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, China
| | - Lingling Zhou
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Qifa Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Hua Jin
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Hematology, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, Jiangxi, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| |
Collapse
|
4
|
Wang W, Li N, Guo X. The crosstalk between ILC3s and adaptive immunity in diseases. FEBS J 2024; 291:3965-3977. [PMID: 37994218 DOI: 10.1111/febs.17014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/26/2023] [Accepted: 11/21/2023] [Indexed: 11/24/2023]
Abstract
RORγt+ group 3 innate lymphoid cells (ILC3s), the innate counterpart of Th17 cells, are enriched in the mucosal area and lymphoid tissues. ILC3s interact with a variety of cells through their effector molecules and play an important role in the host defense against a spectrum of infections. Recent studies suggest that the extensive crosstalk between ILC3s and adaptive immune cells, especially T cells, is essential for maintaining tissue homeostasis. Here we discuss recent advances in the crosstalk between ILC3s and adaptive immune responses in multiple tissues and diseases. Understanding how ILC3s engage with adaptive immune cells will enhance our comprehension of diseases and facilitate the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Wenyan Wang
- Institute for Immunology, Tsinghua University, Beijing, China
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
- Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| | - Na Li
- Institute for Immunology, Tsinghua University, Beijing, China
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
- Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| | - Xiaohuan Guo
- Institute for Immunology, Tsinghua University, Beijing, China
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
- Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| |
Collapse
|
5
|
Hao J, Liu C, Gu Z, Yang X, Lan X, Guo X. Dysregulation of Wnt/β-catenin signaling contributes to intestinal inflammation through regulation of group 3 innate lymphoid cells. Nat Commun 2024; 15:2820. [PMID: 38561332 PMCID: PMC10985070 DOI: 10.1038/s41467-024-45616-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 01/30/2024] [Indexed: 04/04/2024] Open
Abstract
RORγt+ group 3 innate lymphoid cells (ILC3s) are essential for intestinal homeostasis. Dysregulation of ILC3s has been found in the gut of patients with inflammatory bowel disease and colorectal cancer, yet the specific mechanisms still require more investigation. Here we observe increased β-catenin in intestinal ILC3s from inflammatory bowel disease and colon cancer patients compared with healthy donors. In contrast to promoting RORγt expression in T cells, activation of Wnt/β-catenin signaling in ILC3s suppresses RORγt expression, inhibits its proliferation and function, and leads to a deficiency of ILC3s and subsequent intestinal inflammation in mice. Activated β-catenin and its interacting transcription factor, TCF-1, cannot directly suppress RORγt expression, but rather alters global chromatin accessibility and inhibits JunB expression, which is essential for RORγt expression in ILC3s. Together, our findings suggest that dysregulated Wnt/β-catenin signaling impairs intestinal ILC3s through TCF-1/JunB/RORγt regulation, further disrupting intestinal homeostasis, and promoting inflammation and cancer.
Collapse
Affiliation(s)
- Jiacheng Hao
- Institute for Immunology, Tsinghua University, 100084, Beijing, China
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, 100084, Beijing, China
- School of Life Sciences, Tsinghua University, 100084, Beijing, China
- Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, 100084, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Chang Liu
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Zhijie Gu
- Institute for Immunology, Tsinghua University, 100084, Beijing, China
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, 100084, Beijing, China
- School of Life Sciences, Tsinghua University, 100084, Beijing, China
- Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, 100084, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Xuanming Yang
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, China
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, 200240, Shanghai, China
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Xun Lan
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, 100084, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Xiaohuan Guo
- Institute for Immunology, Tsinghua University, 100084, Beijing, China.
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, 100084, Beijing, China.
- Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
6
|
Fu C, Zhang X, Zhang X, Wang D, Han S, Ma Z. Advances in IL-7 Research on Tumour Therapy. Pharmaceuticals (Basel) 2024; 17:415. [PMID: 38675377 PMCID: PMC11054630 DOI: 10.3390/ph17040415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Interleukin-7 (IL-7) is a versatile cytokine that plays a crucial role in regulating the immune system's homeostasis. It is involved in the development, proliferation, and differentiation of B and T cells, as well as being essential for the differentiation and survival of naïve T cells and the production and maintenance of memory T cells. Given its potent biological functions, IL-7 is considered to have the potential to be widely used in the field of anti-tumour immunotherapy. Notably, IL-7 can improve the tumour microenvironment by promoting the development of Th17 cells, which can in turn promote the recruitment of effector T cells and NK cells. In addition, IL-7 can also down-regulate the expression of tumour growth factor-β and inhibit immunosuppression to promote anti-tumour efficacy, suggesting potential clinical applications for anti-tumour immunotherapy. This review aims to discuss the origin of IL-7 and its receptor IL-7R, its anti-tumour mechanism, and the recent advances in the application of IL-7 in tumour therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhenghai Ma
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (C.F.); (X.Z.); (X.Z.); (D.W.); (S.H.)
| |
Collapse
|
7
|
M. S. Barron A, Fabre T, De S. Distinct fibroblast functions associated with fibrotic and immune-mediated inflammatory diseases and their implications for therapeutic development. F1000Res 2024; 13:54. [PMID: 38681509 PMCID: PMC11053351 DOI: 10.12688/f1000research.143472.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/28/2023] [Indexed: 05/01/2024] Open
Abstract
Fibroblasts are ubiquitous cells that can adopt many functional states. As tissue-resident sentinels, they respond to acute damage signals and shape the earliest events in fibrotic and immune-mediated inflammatory diseases. Upon sensing an insult, fibroblasts produce chemokines and growth factors to organize and support the response. Depending on the size and composition of the resulting infiltrate, these activated fibroblasts may also begin to contract or relax thus changing local stiffness within the tissue. These early events likely contribute to the divergent clinical manifestations of fibrotic and immune-mediated inflammatory diseases. Further, distinct changes to the cellular composition and signaling dialogue in these diseases drive progressive fibroblasts specialization. In fibrotic diseases, fibroblasts support the survival, activation and differentiation of myeloid cells, granulocytes and innate lymphocytes, and produce most of the pathogenic extracellular matrix proteins. Whereas, in immune-mediated inflammatory diseases, sequential accumulation of dendritic cells, T cells and B cells programs fibroblasts to support local, destructive adaptive immune responses. Fibroblast specialization has clear implications for the development of effective induction and maintenance therapies for patients with these clinically distinct diseases.
Collapse
Affiliation(s)
- Alexander M. S. Barron
- Inflammation & Immunology Research Unit, Pfizer, Inc., Cambridge, Massachusetts, 02139, USA
| | - Thomas Fabre
- Inflammation & Immunology Research Unit, Pfizer, Inc., Cambridge, Massachusetts, 02139, USA
| | - Saurav De
- Inflammation & Immunology Research Unit, Pfizer, Inc., Cambridge, Massachusetts, 02139, USA
| |
Collapse
|
8
|
Wang J, Gao M, Cheng M, Luo J, Lu M, Xing X, Sun Y, Lu Y, Li X, Shi C, Wang J, Wang N, Yang W, Jiang Y, Huang H, Yang G, Zeng Y, Wang C, Cao X. Single-Cell Transcriptional Analysis of Lamina Propria Lymphocytes in the Jejunum Reveals Innate Lymphoid Cell-like Cells in Pigs. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:130-142. [PMID: 37975680 DOI: 10.4049/jimmunol.2300463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/20/2023] [Indexed: 11/19/2023]
Abstract
Pigs are the most suitable model to study various therapeutic strategies and drugs for human beings, although knowledge about cell type-specific transcriptomes and heterogeneity is poorly available. Through single-cell RNA sequencing and flow cytometry analysis of the types in the jejunum of pigs, we found that innate lymphoid cells (ILCs) existed in the lamina propria lymphocytes (LPLs) of the jejunum. Then, through flow sorting of live/dead-lineage (Lin)-CD45+ cells and single-cell RNA sequencing, we found that ILCs in the porcine jejunum were mainly ILC3s, with a small number of NK cells, ILC1s, and ILC2s. ILCs coexpressed IL-7Rα, ID2, and other genes and differentially expressed RORC, GATA3, and other genes but did not express the CD3 gene. ILC3s can be divided into four subgroups, and genes such as CXCL8, CXCL2, IL-22, IL-17, and NCR2 are differentially expressed. To further detect and identify ILC3s, we verified the classification of ILCs in the porcine jejunum subgroup and the expression of related hallmark genes at the protein level by flow cytometry. For systematically characterizing ILCs in the porcine intestines, we combined our pig ILC dataset with publicly available human and mice ILC data and identified that the human and pig ILCs shared more common features than did those mouse ILCs in gene signatures and cell states. Our results showed in detail for the first time (to our knowledge) the gene expression of porcine jejunal ILCs, the subtype classification of ILCs, and the markers of various ILCs, which provide a basis for an in-depth exploration of porcine intestinal mucosal immunity.
Collapse
Affiliation(s)
- Junhong Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China; and Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Ming Gao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China; and Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Mingyang Cheng
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China; and Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Jiawei Luo
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China; and Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Mei Lu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China; and Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Xinyuan Xing
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China; and Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yu Sun
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China; and Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yiyuan Lu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China; and Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Xiaoxu Li
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China; and Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Chunwei Shi
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China; and Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Jianzhong Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China; and Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Nan Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China; and Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Wentao Yang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China; and Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yanlong Jiang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China; and Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Haibin Huang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China; and Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Guilian Yang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China; and Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yan Zeng
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China; and Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Chunfeng Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China; and Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Xin Cao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China; and Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| |
Collapse
|
9
|
Sonar SA, Watanabe M, Nikolich JŽ. Disorganization of secondary lymphoid organs and dyscoordination of chemokine secretion as key contributors to immune aging. Semin Immunol 2023; 70:101835. [PMID: 37651849 PMCID: PMC10840697 DOI: 10.1016/j.smim.2023.101835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/18/2023] [Accepted: 08/18/2023] [Indexed: 09/02/2023]
Abstract
Aging is characterized by progressive loss of organ and tissue function, and the immune system is no exception to that inevitable principle. Of all the age-related changes in the body, reduction of the size of, and naïve T (Tn) cell output from, the thymus occurs earliest, being prominent already before or by the time of puberty. Therefore, to preserve immunity against new infections, over much of their lives, vertebrates dominantly rely on peripheral maintenance of the Tn cell pool in the secondary lymphoid organs (SLO). However, SLO structure and function subsequently also deteriorate with aging. Several recent studies have made a convincing case that this deterioration is of major importance to the erosion of protective immunity in the last third of life. Specifically, the SLO were found to accumulate multiple degenerative changes with aging. Importantly, the results from adoptive transfer and parabiosis studies teach us that the old microenvironment is the limiting factor for protective immunity in old mice. In this review, we discuss the extent, mechanisms, and potential role of stromal cell aging in the age-related alteration of T cell homeostatic maintenance and immune function decline. We use that discussion to frame the potential strategies to correct the SLO stromal aging defects - in the context of other immune rejuvenation approaches, - to improve functional immune responses and protective immunity in older adults.
Collapse
Affiliation(s)
- Sandip Ashok Sonar
- Department of Immunobiology, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA; The University of Arizona Center on Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
| | - Makiko Watanabe
- Department of Immunobiology, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA; The University of Arizona Center on Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
| | - Janko Ž Nikolich
- Department of Immunobiology, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA; The University of Arizona Center on Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA; the Aegis Consortium for Pandemic-free Future, University of Arizona Health Sciences, USA; BIO5 Institute, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
10
|
Koprivica I, Stanisavljević S, Mićanović D, Jevtić B, Stojanović I, Miljković Đ. ILC3: a case of conflicted identity. Front Immunol 2023; 14:1271699. [PMID: 37915588 PMCID: PMC10616800 DOI: 10.3389/fimmu.2023.1271699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/02/2023] [Indexed: 11/03/2023] Open
Abstract
Innate lymphoid cells type 3 (ILC3s) are the first line sentinels at the mucous tissues, where they contribute to the homeostatic immune response in a major way. Also, they have been increasingly appreciated as important modulators of chronic inflammatory and autoimmune responses, both locally and systemically. The proper identification of ILC3 is of utmost importance for meaningful studies on their role in immunity. Flow cytometry is the method of choice for the detection and characterization of ILC3. However, the analysis of ILC3-related papers shows inconsistency in ILC3 phenotypic definition, as different inclusion and exclusion markers are used for their identification. Here, we present these discrepancies in the phenotypic characterization of human and mouse ILC3s. We discuss the pros and cons of using various markers for ILC3 identification. Furthermore, we consider the possibilities for the efficient isolation and propagation of ILC3 from different organs and tissues for in-vitro and in-vivo studies. This paper calls upon uniformity in ILC3 definition, isolation, and propagation for the increased possibility of confluent interpretation of ILC3's role in immunity.
Collapse
Affiliation(s)
| | | | | | | | | | - Đorđe Miljković
- Department of Immunology, Institute for Biological Research “Siniša Stanković” - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
11
|
Liang B, Xing D. Unveiling the mystery of ILC3s: Their functions and interactions in mucosal immunity. Int Immunopharmacol 2023; 123:110772. [PMID: 37552906 DOI: 10.1016/j.intimp.2023.110772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/10/2023]
Abstract
Innate lymphoid cells (ILCs) are a recently discovered subset of immune cells that play a crucial role in preserving tissue health and combating infections. Among these, ILC3s are particularly vital in regulating mucosal immunity across multiple organs such as the gut, lungs, and skin. The purpose of this article is to present a comprehensive and detailed overview of current knowledge on ILC3s, with a specific emphasis on their intricate interactions with various components of the intestinal microenvironment. Recent research on the complex, bidirectional communication pathways between ILC3s and intestinal epithelial cells, stromal cells, immune cells, microbiota, their metabolites, and diet are highlighted. Furthermore, this review comprehensively examines the diverse functions of ILC3s, which include lymphoid tissue development, tissue repair, infection, inflammation, and metabolic diseases, as well as the effector molecules that facilitate these functions. Overall, this review provides valuable insights into the biological and functional aspects of ILC3s and underscores their potential for developing innovative therapies for immune-mediated disorders, while also acknowledging the remaining knowledge gaps and challenges that need to be addressed.
Collapse
Affiliation(s)
- Bing Liang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China; Qingdao Cancer Institute, Qingdao University, Qingdao, China.
| | - Dongming Xing
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China; Qingdao Cancer Institute, Qingdao University, Qingdao, China; School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
12
|
Zhang W, Zhou Q, Liu H, Xu J, Huang R, Shen B, Guo Y, Ai X, Xu J, Zhao X, Liu Y, Wang Y, Zhi F. Bacteroides fragilis strain ZY-312 facilitates colonic mucosa regeneration in colitis via motivating STAT3 signaling pathway induced by IL-22 from ILC3 secretion. Front Immunol 2023; 14:1156762. [PMID: 37114045 PMCID: PMC10126674 DOI: 10.3389/fimmu.2023.1156762] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Introduction Probiotics play critical roles in relieving inflammatory bowel disease (IBD). However, the underlying mechanism of Bacteroides fragilis strain ZY-312 (B. fragilis) for colonic mucosa regeneration in IBD remains unclear. Methods The weight loss, disease activity index (DAI), colon length, and histopathology-associated index (HAI) were evaluated the therapeutic effects of B. fragilis in a DSS-induced colitis mouse model. Colonic mucosa proliferation and apoptosis level, and mucus density were detected by histological stain. Gut microbiota was sequenced by 16srRNA analysis. The expression of signal transducer and activator of transcription 3 (STAT3) phosphorylation in colonic mucosa was detected in B. fragilis-treated mice in colitis. B. fragilis-regulated immunity factors of motivating downstream STAT3 phosphorylation were screened by ELISA and flow cytometry. Lastly, B. fragilis-mediated colonic mucosa regeneration effects were verified though the knockout of STAT3 (Stat3 △IEC) and IL-22 (IL-22-/-) in mice, and inhibitor of STAT3 and IL-22 in co-culture model. Results B. fragilis alleviated DSS-induced colitis in mice with less weight loss, DAI, colon length shortening, and HAI. Further the results showed that B. fragilis motivated STAT3 phosphorylation in colonic mucosa with the upregulation of proliferation index Ki-67 and mucus density, the downregulation of apoptosis level, and the modulation of gut microbiota through a Stat3 △IEC mice model and STAT3 inhibitor-added model in vitro. Meanhwhile we found that B. fragilis promoted IL-22 production, and increased the percentage of IL-22-secreting type 3 innate lymphocytes (ILC3) in colitis. Consequently, We identified that B. fragilis did not increase the expression of pSTAT3, either proliferation level, mucus density, or alter gut microbiota in IL-22 -/- mice. Discussion B. fragilis may indirectly motivate ILC3 to secrete IL-22, followed by IL-22-induced STAT3 phosphorylation, hence promoting colonic mucosa regeneration in colitis. It indicates that B. fragilis has the potential to be a biological agent for IBD therapy.
Collapse
Affiliation(s)
- Wendi Zhang
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qian Zhou
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongbin Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiahui Xu
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ruo Huang
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Binhai Shen
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yandong Guo
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiuyun Ai
- Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jun Xu
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xinmei Zhao
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yangyang Liu
- Guangzhou ZhiYi Biotechnology Co., Ltd., Guangzhou, China
| | - Ye Wang
- Guangzhou ZhiYi Biotechnology Co., Ltd., Guangzhou, China
| | - Fachao Zhi
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Fachao Zhi,
| |
Collapse
|
13
|
IL-7: Comprehensive review. Cytokine 2022; 160:156049. [DOI: 10.1016/j.cyto.2022.156049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/08/2022] [Accepted: 09/16/2022] [Indexed: 01/08/2023]
|
14
|
Kim KS. Regulation of T cell repertoires by commensal microbiota. Front Cell Infect Microbiol 2022; 12:1004339. [PMID: 36310871 PMCID: PMC9606468 DOI: 10.3389/fcimb.2022.1004339] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/20/2022] [Indexed: 11/25/2022] Open
Abstract
The gut microbiota plays an important role in regulating the host immune systems. It is well established that various commensal microbial species can induce the differentiation of CD4+ T helper subsets such as Foxp3+ regulatory T (Treg) cells and Th17 cells in antigen-dependent manner. The ability of certain microbial species to induce either Treg cells or Th17 cells is often linked to the altered susceptibility to certain immune disorders that are provoked by aberrant T cell response against self-antigens. These findings raise an important question as to how gut microbiota can regulate T cell repertoire and the activation of autoreactive T cells. This review will highlight microbiota-dependent regulation of thymic T cell development, maintenance of T cell repertoire in the secondary lymphoid tissues and the intestine, and microbiota-mediated modulation of autoreactive and tumor neoantigen-specific T cells in autoimmune diseases and tumors, respectively.
Collapse
|
15
|
Li L, Shirkey MW, Zhang T, Piao W, Li X, Zhao J, Mei Z, Guo Y, Saxena V, Kensiski A, Gavzy SJ, Song Y, Ma B, Wu J, Xiong Y, Wu L, Fan X, Roussey H, Li M, Krupnick AS, Abdi R, Bromberg JS. Lymph node fibroblastic reticular cells preserve a tolerogenic niche in allograft transplantation through laminin α4. J Clin Invest 2022; 132:e156994. [PMID: 35775481 PMCID: PMC9246384 DOI: 10.1172/jci156994] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 05/10/2022] [Indexed: 12/13/2022] Open
Abstract
Lymph node (LN) fibroblastic reticular cells (FRCs) define LN niches and regulate lymphocyte homeostasis through producing diverse extracellular matrix (ECM) components. We examined the role of ECM laminin α4 (Lama4) using FRC-Lama4 conditional KO Pdgfrb-Cre-/- × Lama4fl/fl mice. Single-cell RNA-sequencing (scRNA-Seq) data showed the promoter gene Pdgfrb was exclusively expressed in FRCs. Depleting FRC-Lama4 reduced Tregs and dendritic cells, decreased high endothelial venules, impaired the conduit system, and downregulated T cell survival factors in LNs. FRC-Lama4 depletion impaired the homing of lymphocytes to LNs in homeostasis and after allografting. Alloantigen-specific T cells proliferated, were activated to greater degrees in LNs lacking FRC-Lama4, and were more prone to differentiate into effector phenotypes relative to the Treg phenotype. In murine cardiac transplantation, tolerogenic immunosuppression was not effective in FRC-Lama4 recipients, which produced more alloantibodies than WT. After lung transplantation, FRC-Lama4-KO mice had more severe graft rejection with fewer Tregs in their LNs. Overall, FRC-Lama4 critically contributes to a tolerogenic LN niche by supporting T cell migration, constraining T cell activation and proliferation, and promoting Treg differentiation. Hence, it serves as a therapeutic target for immunoengineering.
Collapse
Affiliation(s)
- Lushen Li
- Department of Surgery and
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Marina W. Shirkey
- Department of Surgery and
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | - Wenji Piao
- Department of Surgery and
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Xiaofei Li
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jing Zhao
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | - Vikas Saxena
- Department of Surgery and
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Allison Kensiski
- Department of Surgery and
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Samuel J. Gavzy
- Department of Surgery and
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | - Bing Ma
- Institute for Genome Sciences
| | | | - Yanbao Xiong
- Department of Surgery and
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Long Wu
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Xiaoxuan Fan
- Flow Cytometry Shared Service, Greenebaum Comprehensive Cancer Center. and
| | | | - Meng Li
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | - Reza Abdi
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jonathan S. Bromberg
- Department of Surgery and
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
16
|
Saxena V, Piao W, Li L, Paluskievicz C, Xiong Y, Simon T, Lakhan R, Brinkman CC, Walden S, Hippen KL, WillsonShirkey M, Lee YS, Wagner C, Blazar BR, Bromberg JS. Treg tissue stability depends on lymphotoxin beta-receptor- and adenosine-receptor-driven lymphatic endothelial cell responses. Cell Rep 2022; 39:110727. [PMID: 35443187 PMCID: PMC9093052 DOI: 10.1016/j.celrep.2022.110727] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/23/2022] [Accepted: 03/30/2022] [Indexed: 02/03/2023] Open
Abstract
Regulatory T cell (Treg) lymphatic migration is required for resolving inflammation and prolonging allograft survival. Focusing on Treg interactions with lymphatic endothelial cells (LECs), we dissect mechanisms and functional consequences of Treg transendothelial migration (TEM). Using three genetic mouse models of pancreatic islet transplantation, we show that Treg lymphotoxin (LT) αβ and LEC LTβ receptor (LTβR) signaling are required for efficient Treg migration and suppressive function to prolong allograft survival. Inhibition of LT signaling increases Treg conversion to Foxp3loCD25lo exTregs. In a transwell-based model of TEM across polarized LECs, non-migrated Tregs become exTregs. Such conversion is regulated by LTβR nuclear factor κB (NF-κB) signaling in LECs, which increases interleukin-6 (IL-6) production and drives exTreg conversion. Migrating Tregs are ectonucleotidase CD39hi and resist exTreg conversion in an adenosine-receptor-2A-dependent fashion. Human Tregs migrating across human LECs behave similarly. These molecular interactions can be targeted for therapeutic manipulation of immunity and suppression.
Collapse
Affiliation(s)
- Vikas Saxena
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Wenji Piao
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Lushen Li
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Christina Paluskievicz
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Yanbao Xiong
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Thomas Simon
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Ram Lakhan
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - C Colin Brinkman
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Sarah Walden
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Pediatrics, University of Minnesota Cancer Center, Minneapolis, MN 55455, USA
| | - Keli L Hippen
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Pediatrics, University of Minnesota Cancer Center, Minneapolis, MN 55455, USA
| | - Marina WillsonShirkey
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Young S Lee
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Chelsea Wagner
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Bruce R Blazar
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Pediatrics, University of Minnesota Cancer Center, Minneapolis, MN 55455, USA
| | - Jonathan S Bromberg
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
17
|
Chen D, Tang TX, Deng H, Yang XP, Tang ZH. Interleukin-7 Biology and Its Effects on Immune Cells: Mediator of Generation, Differentiation, Survival, and Homeostasis. Front Immunol 2021; 12:747324. [PMID: 34925323 PMCID: PMC8674869 DOI: 10.3389/fimmu.2021.747324] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
Interleukin-7 (IL-7), a molecule known for its growth-promoting effects on progenitors of B cells, remains one of the most extensively studied cytokines. It plays a vital role in health maintenance and disease prevention, and the congenital deficiency of IL-7 signaling leads to profound immunodeficiency. IL-7 contributes to host defense by regulating the development and homeostasis of immune cells, including T lymphocytes, B lymphocytes, and natural killer (NK) cells. Clinical trials of recombinant IL-7 have demonstrated safety and potent immune reconstitution effects. In this article, we discuss IL-7 and its functions in immune cell development, drawing on a substantial body of knowledge regarding the biology of IL-7. We aim to answer some remaining questions about IL-7, providing insights essential for designing new strategies of immune intervention.
Collapse
Affiliation(s)
- Deng Chen
- Division of Trauma and Surgical Critical Care, Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting-Xuan Tang
- Class 1901, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Hai Deng
- Division of Trauma and Surgical Critical Care, Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang-Ping Yang
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhao-Hui Tang
- Division of Trauma and Surgical Critical Care, Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
18
|
Li Y, Zeng W, Li T, Guo Y, Zheng G, He X, Bai L, Ding G, Jin L, Liu X. Integrative Single-Cell Transcriptomic Analysis of Human Fetal Thymocyte Development. Front Genet 2021; 12:679616. [PMID: 34276782 PMCID: PMC8284395 DOI: 10.3389/fgene.2021.679616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/03/2021] [Indexed: 11/23/2022] Open
Abstract
Intrathymic differentiation of T lymphocytes begins as early as intrauterine stage, yet the T cell lineage decisions of human fetal thymocytes at different gestational ages are not currently understood. Here, we performed integrative single-cell analyses of thymocytes across gestational ages. We identified conserved candidates underlying the selection of T cell receptor (TCR) lineages in different human fetal stages. The trajectory of early thymocyte commitment during fetal growth was also characterized. Comparisons with mouse data revealed conserved and species-specific transcriptional dynamics of thymocyte proliferation, apoptosis and selection. Genome-wide association study (GWAS) data associated with multiple autoimmune disorders were analyzed to characterize susceptibility genes that are highly expressed at specific stages during fetal thymocyte development. In summary, our integrative map describes previously underappreciated aspects of human thymocyte development, and provides a comprehensive reference for understanding T cell lymphopoiesis in a self-tolerant and functional adaptive immune system.
Collapse
Affiliation(s)
- Yuchen Li
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China.,Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Weihong Zeng
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China.,Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Tong Li
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China.,Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Yanyan Guo
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China.,Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Guangyong Zheng
- Bio-Med Big Data Center, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoying He
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Lilian Bai
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China.,Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Guolian Ding
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China.,Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China.,Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Li Jin
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China.,Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Xinmei Liu
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China.,Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China.,Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| |
Collapse
|
19
|
Sbierski-Kind J, Mroz N, Molofsky AB. Perivascular stromal cells: Directors of tissue immune niches. Immunol Rev 2021; 302:10-31. [PMID: 34075598 DOI: 10.1111/imr.12984] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/05/2021] [Accepted: 05/09/2021] [Indexed: 12/12/2022]
Abstract
Perivascular niches are specialized microenvironments where stromal and immune cells interact with vasculature to monitor tissue status. Adventitial perivascular niches surround larger blood vessels and other boundary sites, supporting collections of immune cells, stromal cells, lymphatics, and neurons. Adventitial fibroblasts (AFs), a subtype of mesenchymal stromal cell, are the dominant constituents in adventitial spaces, regulating vascular integrity while organizing the accumulation and activation of a variety of interacting immune cells. In contrast, pericytes are stromal mural cells that support microvascular capillaries and surround organ-specific parenchymal cells. Here, we outline the unique immune and non-immune composition of perivascular tissue immune niches, with an emphasis on the heterogeneity and immunoregulatory functions of AFs and pericytes across diverse organs. We will discuss how perivascular stromal cells contribute to the regulation of innate and adaptive immune responses and integrate immunological signals to impact tissue health and disease.
Collapse
Affiliation(s)
- Julia Sbierski-Kind
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Nicholas Mroz
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA.,Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, CA, USA
| | - Ari B Molofsky
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA.,Diabetes Center, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
20
|
Mahapatro M, Erkert L, Becker C. Cytokine-Mediated Crosstalk between Immune Cells and Epithelial Cells in the Gut. Cells 2021; 10:cells10010111. [PMID: 33435303 PMCID: PMC7827439 DOI: 10.3390/cells10010111] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/28/2020] [Accepted: 01/07/2021] [Indexed: 12/12/2022] Open
Abstract
Cytokines are small proteins that are secreted by a vast majority of cell types in the gut. They not only establish cell-to-cell interactions and facilitate cellular signaling, but also regulate both innate and adaptive immune responses, thereby playing a central role in genetic, inflammatory, and infectious diseases of the gut. Both, immune cells and gut epithelial cells, play important roles in intestinal disease development. The epithelium is located in between the mucosal immune system and the gut microbiome. It not only establishes an efficient barrier against gut microbes, but it also signals information from the gut lumen and its composition to the immune cell compartment. Communication across the epithelial cell layer also occurs in the other direction. Intestinal epithelial cells respond to immune cell cytokines and their response influences and shapes the microbial community within the gut lumen. Thus, the epithelium should be seen as a translator or a moderator between the microbiota and the mucosal immune system. Proper communication across the epithelium seems to be a key to gut homeostasis. Indeed, current genome-wide association studies for intestinal disorders have identified several disease susceptibility loci, which map cytokine signatures and their related signaling genes. A thorough understanding of this tightly regulated cytokine signaling network is crucial. The main objective of this review was to shed light on how cytokines can orchestrate epithelial functions such as proliferation, cell death, permeability, microbe interaction, and barrier maintenance, thereby safeguarding host health. In addition, cytokine-mediated therapy for inflammation and cancer are discussed.
Collapse
|
21
|
Facts and Challenges in Immunotherapy for T-Cell Acute Lymphoblastic Leukemia. Int J Mol Sci 2020; 21:ijms21207685. [PMID: 33081391 PMCID: PMC7589289 DOI: 10.3390/ijms21207685] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL), a T-cell malignant disease that mainly affects children, is still a medical challenge, especially for refractory patients for whom therapeutic options are scarce. Recent advances in immunotherapy for B-cell malignancies based on increasingly efficacious monoclonal antibodies (mAbs) and chimeric antigen receptors (CARs) have been encouraging for non-responding or relapsing patients suffering from other aggressive cancers like T-ALL. However, secondary life-threatening T-cell immunodeficiency due to shared expression of targeted antigens by healthy and malignant T cells is a main drawback of mAb—or CAR-based immunotherapies for T-ALL and other T-cell malignancies. This review provides a comprehensive update on the different immunotherapeutic strategies that are being currently applied to T-ALL. We highlight recent progress on the identification of new potential targets showing promising preclinical results and discuss current challenges and opportunities for developing novel safe and efficacious immunotherapies for T-ALL.
Collapse
|
22
|
Kinsella S, Dudakov JA. When the Damage Is Done: Injury and Repair in Thymus Function. Front Immunol 2020; 11:1745. [PMID: 32903477 PMCID: PMC7435010 DOI: 10.3389/fimmu.2020.01745] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/30/2020] [Indexed: 01/02/2023] Open
Abstract
Even though the thymus is exquisitely sensitive to acute insults like infection, shock, or common cancer therapies such as cytoreductive chemo- or radiation-therapy, it also has a remarkable capacity for repair. This phenomenon of endogenous thymic regeneration has been known for longer even than its primary function to generate T cells, however, the underlying mechanisms controlling the process have been largely unstudied. Although there is likely continual thymic involution and regeneration in response to stress and infection in otherwise healthy people, acute and profound thymic damage such as that caused by common cancer cytoreductive therapies or the conditioning regimes as part of hematopoietic cell transplantation (HCT), leads to prolonged T cell deficiency; precipitating high morbidity and mortality from opportunistic infections and may even facilitate cancer relapse. Furthermore, this capacity for regeneration declines with age as a function of thymic involution; which even at steady state leads to reduced capacity to respond to new pathogens, vaccines, and immunotherapy. Consequently, there is a real clinical need for strategies that can boost thymic function and enhance T cell immunity. One approach to the development of such therapies is to exploit the processes of endogenous thymic regeneration into novel pharmacologic strategies to boost T cell reconstitution in clinical settings of immune depletion such as HCT. In this review, we will highlight recent work that has revealed the mechanisms by which the thymus is capable of repairing itself and how this knowledge is being used to develop novel therapies to boost immune function.
Collapse
Affiliation(s)
- Sinéad Kinsella
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Jarrod A. Dudakov
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Department of Immunology, University of Washington, Seattle, WA, United States
| |
Collapse
|
23
|
Wang W, Li Y, Hao J, He Y, Dong X, Fu YX, Guo X. The Interaction between Lymphoid Tissue Inducer-Like Cells and T Cells in the Mesenteric Lymph Node Restrains Intestinal Humoral Immunity. Cell Rep 2020; 32:107936. [DOI: 10.1016/j.celrep.2020.107936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/27/2020] [Accepted: 06/29/2020] [Indexed: 01/07/2023] Open
|
24
|
Cautivo KM, Steer CA, Molofsky AB. Immune outposts in the adventitia: One foot in sea and one on shore. Curr Opin Immunol 2020; 64:34-41. [PMID: 32339862 DOI: 10.1016/j.coi.2020.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/27/2020] [Accepted: 03/10/2020] [Indexed: 12/19/2022]
Abstract
Advances in microscopy, genetically modified mice, and single-cell RNA sequencing have begun to deconvolute the composition and function of tissue immune niches. Here we discuss the evidence that the adventitia, the outermost layer of larger blood vessels, is a conserved niche and tissue immune outpost for multiple immune cells, including group 2 innate lymphoid cells (ILC2) and subsets of tissue-resident memory T cells, macrophages, and dendritic cells. We also describe the unique non-immune composition at adventitial regions, including fibroblast-like stromal cell subsets, lymphatic and blood endothelial cells, and neurons, and review how immune-stromal crosstalk impacts regional tissue immunity, organ adaptation, and disease.
Collapse
Affiliation(s)
- Kelly M Cautivo
- University of California San Francisco, Departments of Laboratory Medicine, San Francisco, CA, 94143, USA
| | - Catherine A Steer
- University of California San Francisco, Departments of Laboratory Medicine, San Francisco, CA, 94143, USA
| | - Ari B Molofsky
- University of California San Francisco, Departments of Laboratory Medicine, San Francisco, CA, 94143, USA; Diabetes Center, San Francisco, CA, 94143, USA.
| |
Collapse
|
25
|
Satoh-Takayama N, Kato T, Motomura Y, Kageyama T, Taguchi-Atarashi N, Kinoshita-Daitoku R, Kuroda E, Di Santo JP, Mimuro H, Moro K, Ohno H. Bacteria-Induced Group 2 Innate Lymphoid Cells in the Stomach Provide Immune Protection through Induction of IgA. Immunity 2020; 52:635-649.e4. [PMID: 32240600 DOI: 10.1016/j.immuni.2020.03.002] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 01/15/2020] [Accepted: 03/06/2020] [Indexed: 12/21/2022]
Abstract
The intestinal microbiota shapes and directs immune development locally and systemically, but little is known about whether commensal microbes in the stomach can impact their immunological microenvironment. Here, we report that group 2 innate lymphoid cells (ILC2s) were the predominant ILC subset in the stomach and show that their homeostasis and effector functions were regulated by local commensal communities. Microbes elicited interleukin-7 (IL-7) and IL-33 production in the stomach, which in turn triggered the propagation and activation of ILC2. Stomach ILC2s were also rapidly induced following infection with Helicobacter pylori. ILC2-derived IL-5 resulted in the production of IgA, which coated stomach bacteria in both specific pathogen-free (SPF) and H. pylori-infected mice. Our study thus identifies ILC2-dependent IgA response that is regulated by the commensal microbiota, which is implicated in stomach protection by eliminating IgA-coated bacteria including pathogenic H. pylori.
Collapse
Affiliation(s)
- Naoko Satoh-Takayama
- Laboratory for Intestinal Ecosystem, Center for Integrative Medical Sciences, RIKEN Yokohama, Kanagawa 230-0045, Japan; Immunobiology Laboratory, Graduate School of Medical Life Science, Yokohama City University Yokohama, Kanagawa 230-0045, Japan.
| | - Tamotsu Kato
- Laboratory for Intestinal Ecosystem, Center for Integrative Medical Sciences, RIKEN Yokohama, Kanagawa 230-0045, Japan; Immunobiology Laboratory, Graduate School of Medical Life Science, Yokohama City University Yokohama, Kanagawa 230-0045, Japan
| | - Yasutaka Motomura
- Laboratory for Innate Immune Systems, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University Suita, Osaka 565-0871, Japan; Laboratory for Innate Immune Systems, Center for Integrative Medical Sciences, RIKEN Yokohama, Kanagawa 230-0045, Japan
| | - Tomoko Kageyama
- Laboratory for Intestinal Ecosystem, Center for Integrative Medical Sciences, RIKEN Yokohama, Kanagawa 230-0045, Japan
| | - Naoko Taguchi-Atarashi
- Laboratory for Intestinal Ecosystem, Center for Integrative Medical Sciences, RIKEN Yokohama, Kanagawa 230-0045, Japan; Immunobiology Laboratory, Graduate School of Medical Life Science, Yokohama City University Yokohama, Kanagawa 230-0045, Japan
| | - Ryo Kinoshita-Daitoku
- Department of Infection Microbiology, Research Institute for Microbial Diseases, Osaka University Suita, Osaka 565-0871, Japan
| | - Eisuke Kuroda
- Department of Infection Microbiology, Research Institute for Microbial Diseases, Osaka University Suita, Osaka 565-0871, Japan
| | - James P Di Santo
- Innate Immunity Unit, Institut Pasteur, Paris 75015, France; Institut National de la Santé et de la Recherche Médicale (INSERM), U1223 Paris 75013, France
| | - Hitomi Mimuro
- Department of Infection Microbiology, Research Institute for Microbial Diseases, Osaka University Suita, Osaka 565-0871, Japan
| | - Kazuyo Moro
- Laboratory for Innate Immune Systems, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University Suita, Osaka 565-0871, Japan; Laboratory for Innate Immune Systems, Center for Integrative Medical Sciences, RIKEN Yokohama, Kanagawa 230-0045, Japan
| | - Hiroshi Ohno
- Laboratory for Intestinal Ecosystem, Center for Integrative Medical Sciences, RIKEN Yokohama, Kanagawa 230-0045, Japan; Immunobiology Laboratory, Graduate School of Medical Life Science, Yokohama City University Yokohama, Kanagawa 230-0045, Japan; Intestinal Microbiota Project, Kanagawa Institute of Industrial Science and Technology Ebina, Kanagawa 243-0435, Japan.
| |
Collapse
|
26
|
Eken A, Cansever M, Okus FZ, Erdem S, Nain E, Azizoglu ZB, Haliloglu Y, Karakukcu M, Ozcan A, Devecioglu O, Aksu G, Arikan Ayyildiz Z, Topal E, Karakoc Aydiner E, Kiykim A, Metin A, Cipe F, Kaya A, Artac H, Reisli I, Guner SN, Uygun V, Karasu G, Dönmez Altuntas H, Canatan H, Oukka M, Ozen A, Chatila TA, Keles S, Baris S, Unal E, Patiroglu T. ILC3 deficiency and generalized ILC abnormalities in DOCK8-deficient patients. Allergy 2020; 75:921-932. [PMID: 31596517 DOI: 10.1111/all.14081] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 09/10/2019] [Accepted: 09/20/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Dedicator of cytokinesis 8 (DOCK8) deficiency is the main cause of the autosomal recessive hyper-IgE syndrome (HIES). We previously reported the selective loss of group 3 innate lymphoid cell (ILC) number and function in a Dock8-deficient mouse model. In this study, we sought to test whether DOCK8 is required for the function and maintenance of ILC subsets in humans. METHODS Peripheral blood ILC1-3 subsets of 16 DOCK8-deficient patients recruited at the pretransplant stage, and seven patients with autosomal dominant (AD) HIES due to STAT3 mutations, were compared with those of healthy controls or post-transplant DOCK8-deficient patients (n = 12) by flow cytometry and real-time qPCR. Sorted total ILCs from DOCK8- or STAT3-mutant patients and healthy controls were assayed for survival, apoptosis, proliferation, and activation by IL-7, IL-23, and IL-12 by cell culture, flow cytometry, and phospho-flow assays. RESULTS DOCK8-deficient but not STAT3-mutant patients exhibited a profound depletion of ILC3s, and to a lesser extent ILC2s, in their peripheral blood. DOCK8-deficient ILC1-3 subsets had defective proliferation, expressed lower levels of IL-7R, responded less to IL-7, IL-12, or IL-23 cytokines, and were more prone to apoptosis compared with those of healthy controls. CONCLUSION DOCK8 regulates human ILC3 expansion and survival, and more globally ILC cytokine signaling and proliferation. DOCK8 deficiency leads to loss of ILC3 from peripheral blood. ILC3 deficiency may contribute to the susceptibility of DOCK8-deficient patients to infections.
Collapse
|
27
|
Domingues RG, Hepworth MR. Immunoregulatory Sensory Circuits in Group 3 Innate Lymphoid Cell (ILC3) Function and Tissue Homeostasis. Front Immunol 2020; 11:116. [PMID: 32117267 PMCID: PMC7015949 DOI: 10.3389/fimmu.2020.00116] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/16/2020] [Indexed: 12/12/2022] Open
Abstract
Recent years have seen a revolution in our understanding of how cells of the immune system are modulated and regulated not only via complex interactions with other immune cells, but also through a range of potent inputs derived from diverse and varied biological systems. Within complex tissue environments, such as the gastrointestinal tract and lung, these systems act to orchestrate and temporally align immune responses, regulate cellular function, and ensure tissue homeostasis and protective immunity. Group 3 Innate Lymphoid Cells (ILC3s) are key sentinels of barrier tissue homeostasis and critical regulators of host-commensal mutualism—and respond rapidly to damage, inflammation and infection to restore tissue health. Recent findings place ILC3s as strategic integrators of environmental signals. As a consequence, ILC3s are ideally positioned to detect perturbations in cues derived from the environment—such as the diet and microbiota—as well as signals produced by the host nervous, endocrine and circadian systems. Together these cues act in concert to induce ILC3 effector function, and form critical sensory circuits that continually function to reinforce tissue homeostasis. In this review we will take a holistic, organismal view of ILC3 biology and explore the tissue sensory circuits that regulate ILC3 function and align ILC3 responses with changes within the intestinal environment.
Collapse
Affiliation(s)
- Rita G Domingues
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, Manchester Collaborative Centre for Inflammation Research, Lydia Becker Institute of Immunology and Inflammation, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
| | - Matthew R Hepworth
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, Manchester Collaborative Centre for Inflammation Research, Lydia Becker Institute of Immunology and Inflammation, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
28
|
Sheikh A, Abraham N. Interleukin-7 Receptor Alpha in Innate Lymphoid Cells: More Than a Marker. Front Immunol 2019; 10:2897. [PMID: 31921158 PMCID: PMC6917604 DOI: 10.3389/fimmu.2019.02897] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/26/2019] [Indexed: 12/21/2022] Open
Abstract
Innate lymphoid cells (ILCs) are a group of immune cells that are important for defense against pathogens, tissue repair, and lymphoid organogenesis. They share similar characteristics with various subsets of helper T cells but lack specific antigen receptors. Interleukin-7 (IL-7) and thymic stromal lymphopoietin (TSLP) are cytokines that engage the IL-7Rα and have major roles in dictating the fate of ILCs. Recent advances in the field have revealed transcriptional programs associated with ILC development and function. In this article, we will review recent studies of the role of IL-7 and TSLP in ILC development and function during infection and inflammation.
Collapse
Affiliation(s)
- Abdalla Sheikh
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada.,Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Ninan Abraham
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada.,Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.,Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
29
|
Abstract
Natural killer (NK) cells are important innate effectors for their defense against pathogens and tumors without the need of prior sensitization. Along with the growing understanding of basic NK cell biology, it has been widely accepted that NK cells are a heterogeneous population of innate lymphoid cell (ILC) family. Apart from the conventional NK cell (cNK) subset that circulates throughout the body, some non-lymphoid tissues contain tissue-resident NK (trNK) cell subsets, and the composition of NK cell subsets varies greatly with different locations. Except for cNK cells, other ILCs are known as tissue-resident cells. In this review, we summarize the unique properties of trNK cells, discuss their lineage relationship with other ILCs, and highlight recent advances in our understanding of the functions of trNK cells and other ILCs.
Collapse
|
30
|
Flip the coin: IL-7 and IL-7R in health and disease. Nat Immunol 2019; 20:1584-1593. [PMID: 31745336 DOI: 10.1038/s41590-019-0479-x] [Citation(s) in RCA: 227] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 07/26/2019] [Indexed: 12/14/2022]
Abstract
The cytokine IL-7 and its receptor, IL-7R, are critical for T cell and, in the mouse, B cell development, as well as differentiation and survival of naive T cells, and generation and maintenance of memory T cells. They are also required for innate lymphoid cell (ILC) development and maintenance, and consequently for generation of lymphoid structures and barrier defense. Here we discuss the central role of IL-7 and IL-7R in the lymphoid system and highlight the impact of their deregulation, placing a particular emphasis on their 'dark side' as promoters of cancer development. We also explore therapeutic implications and opportunities associated with either positive or negative modulation of the IL-7-IL-7R signaling axis.
Collapse
|
31
|
Loyon R, Jary M, Salomé B, Gomez-Cadena A, Galaine J, Kroemer M, Romero P, Trabanelli S, Adotévi O, Borg C, Jandus C. Peripheral Innate Lymphoid Cells Are Increased in First Line Metastatic Colorectal Carcinoma Patients: A Negative Correlation With Th1 Immune Responses. Front Immunol 2019; 10:2121. [PMID: 31555301 PMCID: PMC6742701 DOI: 10.3389/fimmu.2019.02121] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 08/23/2019] [Indexed: 01/26/2023] Open
Abstract
Several distinct innate lymphoid cell (ILC) populations have been recently identified and shown to play a critical role in the immediate immune defense. In the context of tumors, there is evidence to support a dual role for ILCs with pro- or antitumor effects, depending on the ILC subset and the type of cancer. This ambivalent role has been particularly well-described in colorectal cancer models (CRC), but the presence and the evolution of ILCs in the peripheral blood of metastatic CRC (mCRC) patients have not yet been explored. Here, we investigated the distribution of ILC subsets in 96 mCRC patients who were prospectively included in the “Epitopes-CRC02” trial. Peripheral blood mononuclear cells (PBMCs) were analyzed by flow cytometry at metastatic diagnosis and after 3-months of treatment. The treatments consisted of Oxaliplatin-based chemotherapies for 76% of the patients or Folfiri (5FU, Irinotecan) chemotherapies for 14% of patients. Compared to healthy donors, the frequency of total ILCs was dramatically increased at metastatic diagnosis. CD56+ ILC1-like cells were expanded, whereas ILC2, NCR− ILCP and NCR+ ILCP subsets were decreased. Combined analysis with the systemic anti-telomerase hTERT Th1 CD4 response revealed that patients with low anti-TERT Th1 CD4 responses had the highest frequencies of total ILCs at diagnosis. Of those, 91% had synchronous metastases, and their median progression-free survival was 7.43 months (vs. 9.17 months for the other patients). In these patients, ILC1 and ILC2 were significantly decreased, whereas CD56+ ILC1-like cells were significantly increased compared to patients with low frequency of total ILCs and high anti-TERT responses. After treatment, the NCR+ ILCP were further decreased irrespective of the chemotherapy regimen, whereas the balance between ILC1 and CD56+ ILC1-like cells was modulated mainly by the Folfiri regimen in favor of ILC1. Altogether our results describe the effects of different chemotherapies on ILCs in mCRC patients. We also establish for the first time a link between frequency of ILCs and anti-tumor CD4 T cell responses in cancer patients. Thus, our study supports an interest in monitoring ILCs during cancer therapy to possibly identify predictive biomarkers in mCRC.
Collapse
Affiliation(s)
- Romain Loyon
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, Lausanne, Switzerland
| | - Marine Jary
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France.,Department of Medical Oncology, University Hospital of Besançon, Besançon, France.,INSERM CIC-1431, Clinical Investigation Center in Biotherapy, University Hospital of Besançon, Besançon, France
| | - Bérengère Salomé
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, Lausanne, Switzerland
| | - Alejandra Gomez-Cadena
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, Lausanne, Switzerland
| | - Jeanne Galaine
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
| | - Marie Kroemer
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France.,Department of Pharmacy, University Hospital of Besançon, Besançon, France
| | - Pedro Romero
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, Lausanne, Switzerland
| | - Sara Trabanelli
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, Lausanne, Switzerland
| | - Olivier Adotévi
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France.,Department of Medical Oncology, University Hospital of Besançon, Besançon, France
| | - Christophe Borg
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France.,Department of Medical Oncology, University Hospital of Besançon, Besançon, France
| | - Camilla Jandus
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
32
|
Goonetilleke N, Clutton G, Swanstrom R, Joseph SB. Blocking Formation of the Stable HIV Reservoir: A New Perspective for HIV-1 Cure. Front Immunol 2019; 10:1966. [PMID: 31507594 PMCID: PMC6714000 DOI: 10.3389/fimmu.2019.01966] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/05/2019] [Indexed: 12/13/2022] Open
Abstract
Recent studies demonstrate that the stable HIV-1 reservoir in resting CD4+ T cells is mostly formed from viruses circulating when combination antiretroviral therapy (ART) is initiated. Here we explore the immunological basis for these observations. Untreated HIV-1 infection is characterized by a progressive depletion of memory CD4+ T cells which mostly express CD127, the α chain of the IL-7 receptor (IL-7R). Depletion results from both direct infection and bystander loss of memory CD4+ T cells in part attributed to dysregulated IL-7/IL-7R signaling. While IL-7/IL7R signaling is not essential for the generation of effector CD4+ T cells from naïve cells, it is essential for the further transition of effectors to memory CD4+ T cells and their subsequent homeostatic maintenance. HIV-1 infection therefore limits the transition of CD4+ T cells from an effector to long-lived memory state. With the onset of ART, virus load (VL) levels rapidly decrease and the frequency of CD127+ CD4+ memory T cells increases, indicating restoration of effector to memory transition in CD4+ T cells. Collectively these data suggest that following ART initiation, HIV-1 infected effector CD4+ T cells transition to long-lived, CD127+ CD4+ T cells forming the majority of the stable HIV-1 reservoir. We propose that combining ART initiation with inhibition of IL-7/IL-7R signaling to block CD4+ T cell memory formation will limit the generation of long-lived HIV-infected CD4+ T cells and reduce the overall size of the stable HIV-1 reservoir.
Collapse
Affiliation(s)
- Nilu Goonetilleke
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- UNC HIV-1 Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Genevieve Clutton
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- UNC HIV-1 Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ron Swanstrom
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Lineberger Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Sarah B. Joseph
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Lineberger Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
33
|
Almeida FF, Jacquelot N, Belz GT. Deconstructing deployment of the innate immune lymphocyte army for barrier homeostasis and protection. Immunol Rev 2019; 286:6-22. [PMID: 30294966 PMCID: PMC6446816 DOI: 10.1111/imr.12709] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/16/2018] [Indexed: 12/30/2022]
Abstract
The study of the immune system has shifted from a purely dichotomous separation between the innate and adaptive arms to one that is now highly complex and reshaping our ideas of how steady‐state health is assured. It is now clear that immune cells do not neatly fit into these two streams and immune homeostasis depends on continual dialogue between multiple lineages of the innate (including dendritic cells, innate lymphoid cells, and unconventional lymphocytes) and adaptive (T and B lymphocytes) arms together with a finely tuned synergy between the host and microbes which is essential to ensure immune homeostasis. Innate lymphoid cells are critical players in this new landscape. Here, we discuss recent studies that have elucidated in detail the development of ILCs from their earliest progenitors and examine factors that influence their identification and ability to drive immune homeostasis and long‐term immune protection.
Collapse
Affiliation(s)
- Francisca F Almeida
- Division of Molecular Immunology, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Nicolas Jacquelot
- Division of Molecular Immunology, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Gabrielle T Belz
- Division of Molecular Immunology, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
34
|
Chen C, Zhou M, Yan XG, Chen YX, Cui M, Chen HC, Fu ZF, Zhao L. A recombinant canine distemper virus expressing interleukin-7 enhances humoral immunity. J Gen Virol 2019; 100:602-615. [DOI: 10.1099/jgv.0.001247] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Chen Chen
- 1State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, PR China
- 2Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agriculture University, Wuhan, PR China
- 3College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, PR China
| | - Ming Zhou
- 1State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, PR China
- 2Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agriculture University, Wuhan, PR China
- 3College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, PR China
| | - Xiao-geng Yan
- 1State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, PR China
- 2Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agriculture University, Wuhan, PR China
- 3College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, PR China
| | - Yi-xi Chen
- 1State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, PR China
- 2Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agriculture University, Wuhan, PR China
- 3College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, PR China
| | - Min Cui
- 1State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, PR China
- 2Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agriculture University, Wuhan, PR China
- 3College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, PR China
| | - Huan-chun Chen
- 1State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, PR China
- 2Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agriculture University, Wuhan, PR China
- 3College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, PR China
| | - Zhen-fang Fu
- 4Department of Pathology, University of Georgia, Athens, GA, USA
- 3College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, PR China
- 1State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, PR China
- 2Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agriculture University, Wuhan, PR China
| | - Ling Zhao
- 3College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, PR China
- 1State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, PR China
- 2Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agriculture University, Wuhan, PR China
| |
Collapse
|
35
|
Cherrier DE, Serafini N, Di Santo JP. Innate Lymphoid Cell Development: A T Cell Perspective. Immunity 2019; 48:1091-1103. [PMID: 29924975 DOI: 10.1016/j.immuni.2018.05.010] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 05/15/2018] [Accepted: 05/25/2018] [Indexed: 02/08/2023]
Abstract
Innate lymphoid cells (ILCs) and natural killer (NK) cells have garnered considerable interest due to their unique functional properties in immune defense and tissue homeostasis. Our current understanding of how these cells develop has been greatly facilitated by knowledge of T cell biology. Models of T cell differentiation provided the basis for a conceptual classification of these innate effectors and inspired a scheme of their activation and regulation. In this review, we discuss NK cell and ILC development from a "T cell standpoint" in an attempt to extend the analogy between adaptive T cells and their innate ILC and NK cell counterparts.
Collapse
Affiliation(s)
- Dylan E Cherrier
- Innate Immunity Unit, Institut Pasteur, Paris 75015, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1223, Paris 75015, France; Université Paris Diderot, Paris 75013, France
| | - Nicolas Serafini
- Innate Immunity Unit, Institut Pasteur, Paris 75015, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1223, Paris 75015, France
| | - James P Di Santo
- Innate Immunity Unit, Institut Pasteur, Paris 75015, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1223, Paris 75015, France.
| |
Collapse
|
36
|
The roles for innate lymphoid cells in the human immune system. Semin Immunopathol 2018; 40:407-419. [PMID: 29948108 PMCID: PMC6060849 DOI: 10.1007/s00281-018-0688-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 05/03/2018] [Indexed: 12/23/2022]
Abstract
From constituting a novel and obscure cell population, innate lymphoid cells (ILCs) are now accepted as a self-evident part of the immune system, contributing with unique and complementary functions to immunity by production of effector cytokines and interaction with other cell types. In this review, we discuss the redundant and complementary roles of the highly plastic human ILCs and their interaction with other immune cells with the ultimate aim of placing ILCs in a wider context within the human immune system.
Collapse
|