1
|
Shaw S, Jiang W, Rush J, Dumont N, Kim J, Singh R, Skepner A, Khodier C, Raffier C, Murphy Z, Yan N, Schluter C, Yu X, Szuchnicki M, Sathappa M, Kahn J, Sperling AS, Wagner F, McKinney DC, Gould AE, Garvie CW, Miller PG. Identification of small molecule inhibitors of PPM1D using an integrated drug discovery platform. iScience 2025; 28:112069. [PMID: 40124519 PMCID: PMC11930361 DOI: 10.1016/j.isci.2025.112069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/23/2024] [Accepted: 02/17/2025] [Indexed: 03/25/2025] Open
Abstract
PPM1D is a serine/threonine phosphatase recurrently activated in cancer, regulates the DNA damage response (DDR), and suppresses p53. Though PPM1D inhibition impairs tumor growth in cancer models and is the subject of multiple drug discovery efforts, no PPM1D inhibitors with clinical potential have been identified. We screened 600,000 compounds in a displacement assay and generated a hit series with nanomolar activity. We optimized our leads using internally developed assays to interrogate PPM1D, p53, and the DDR and defined important structure-activity relationships. Using an in vivo bioluminescent readout of p53 activation, we compared different DDR and p53 modulators and showed that despite having a distinct chemical structure, our lead compound had comparable in vivo activity to established PPM1D inhibitors. Our approach yielded multiple allosteric inhibitors of PPM1D, deepened our understanding of PPM1D as a drug target, and is highly amenable to studying other modulators of the DDR and p53.
Collapse
Affiliation(s)
- Subrata Shaw
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Wei Jiang
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Jason Rush
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Nancy Dumont
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - John Kim
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Ritu Singh
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Adam Skepner
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Carol Khodier
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Cerise Raffier
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Zachary Murphy
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Ni Yan
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
- Krantz Family Center for Cancer Research and Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Cameron Schluter
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
- Krantz Family Center for Cancer Research and Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Xiao Yu
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Mateusz Szuchnicki
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Murugappan Sathappa
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Josephine Kahn
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Adam S. Sperling
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Florence Wagner
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - David C. McKinney
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Alexandra E. Gould
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Colin W. Garvie
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Peter G. Miller
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
- Krantz Family Center for Cancer Research and Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
2
|
Wang P, Wang M, Zhan J, Hu X, Meng X. Renal ewing sarcoma in a young female: a case report and review of targeted therapy. Front Surg 2025; 12:1512474. [PMID: 40104406 PMCID: PMC11913866 DOI: 10.3389/fsurg.2025.1512474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 02/18/2025] [Indexed: 03/20/2025] Open
Abstract
Ewing sarcoma (ES) is an aggressive neoplasm predominantly affecting pediatric and adolescent populations. Renal involvement in ES is exceedingly rare, representing less than 1% of all renal malignancies. Herein, we present the case of a 22-year-old female diagnosed with renal Ewing sarcoma (RES) accompanied by renal vein thrombosis. The patient reported a one-month history of persistent left lumbar pain, prompting hospitalization. Magnetic resonance imaging identified an extensive left suprarenal mass measuring 13.5 × 10.5 × 4.5 cm, with concurrent renal vein thrombosis. The comprehensive evaluation of histopathology, immunohistochemistry and molecular genetics confirmed RES. The treatment included radical left nephrectomy, followed by adjuvant chemotherapy (i.e., vincristine, epirubicin and cyclophosphamide) after surgery. Genetic analysis of the tumor revealed mutations in P53 and STGA2. Follow-up contrast-enhanced computed tomography scans of the patient demonstrated metastatic progression to the pancreas. The patient passed away after a 7-month follow-up period. This article reviews our treatment experience and recent developments in targeted therapies. Aiming to provide new approaches for the treatment of RES, this combines next-generation sequencing technology with targeted therapy to promote the optimization of targeted treatments.
Collapse
Affiliation(s)
| | - Mingfa Wang
- Department of Pathology, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Jiangtao Zhan
- Department of Urology, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Xinming Hu
- Department of Urology, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | | |
Collapse
|
3
|
Saha G, Ghosh MK. The key vulnerabilities and therapeutic opportunities in the USP7-p53/MDM2 axis in cancer. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119908. [PMID: 39880128 DOI: 10.1016/j.bbamcr.2025.119908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/10/2025] [Accepted: 01/24/2025] [Indexed: 01/31/2025]
Abstract
The MDM2/MDMX-p53 circuitry is essential for controlling the development, apoptosis, immune response, angiogenesis, senescence, cell cycle progression, and proliferation of cancer cells. Research has demonstrated that USP7 exerts strong control over p53, MDM2, and MDMX stability, with multiple mediator proteins influencing the USP7-p53-MDM2/MDMX axis to modify p53 expression level and function. In cases where p53 is of the wild type (Wt-p53) in tumors, inhibiting USP7 promotes the degradation of MDM2/MDMX, leading to the activation of p53 signaling. This, in turn, results in cell cycle arrest and apoptosis. Hence, targeting USP7 presents a promising avenue for cancer therapy. Targeting USP7 in tumors that harbor mutant p53 (Mut-p53) is unlikely and remains largely unexplored due to the existence of numerous USP7 targets that function independently of p53. Considering that Mut-p53 exhibits resistance to degradation by MDM2 and other E3 ligases and also shares the same signaling pathways as Wt-p53, it is reasonable to suggest that USP7 may play a role in stabilizing Mut-p53. However, there is still much to be done in this area. If the hypothesis is correct, USP7 may be a potent target in cancers containing both Wt-p53 and Mut-p53.
Collapse
Affiliation(s)
- Gouranga Saha
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Mrinal K Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India.
| |
Collapse
|
4
|
Jia K, Cao L, Yu Y, Jing D, Wu W, Van Tine BA, Shao Z. Signaling pathways and targeted therapies in Ewing sarcoma. Pharmacol Ther 2025; 266:108765. [PMID: 39622389 DOI: 10.1016/j.pharmthera.2024.108765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/08/2024]
Abstract
Ewing sarcoma, the second most prevalent malignant bone tumor with potential occurrence in soft tissues, exhibits a high level of aggressiveness, primarily afflicting children and adolescents. It is characterized by fusion proteins arising from chromosomal translocations. The fusion proteins induce aberrations in multiple signaling pathways and molecules, constituting a key event in oncogenic transformation. While diagnostic and therapeutic modalities have advanced in recent decades and multimodal treatments, including surgery, radiotherapy, and chemotherapy, have significantly improved survival of patients with localized tumors, patients with metastatic tumors continue to face poor prognoses. There persists a pressing need for novel alternative treatments, yet the translation of our understanding of Ewing sarcoma pathogenesis into improved clinical outcomes remains a critical challenge. Here, we provide a comprehensive review of Ewing sarcoma, including fusion proteins, various signaling pathways, pivotal pathogenetic molecules implicated in its development, and associated targeted therapies and immunotherapies. We summarize past endeavors, current advancements, and deliberate on limitations and future research directions. It is envisaged that this review will furnish novel insights into prospective treatment avenues for Ewing sarcoma.
Collapse
Affiliation(s)
- Ke Jia
- Department of Orthopaedics, Union hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Li Cao
- Department of Orthopaedics, Union hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Washington University School of Medicine, St Louis, MO, USA.
| | - Yihan Yu
- Department of Orthopaedics, Union hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Doudou Jing
- Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Taiyuan 030001, China.
| | - Wei Wu
- Department of Orthopaedics, Union hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | | | - Zengwu Shao
- Department of Orthopaedics, Union hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
5
|
Wu L, Wang J, Chai L, Chen J, Jin X. Roles of deubiquitinases in urologic cancers (Review). Oncol Lett 2024; 28:609. [PMID: 39525605 PMCID: PMC11544529 DOI: 10.3892/ol.2024.14743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/23/2024] [Indexed: 11/16/2024] Open
Abstract
Human health is endangered by the occurrence and progression of urological cancers, including renal cell carcinoma, prostate cancer and bladder cancer, which are usually associated with the activation of oncogenic factors and inhibition of cancer suppressors. The primary mechanism for protein breakdown in cells is the ubiquitin-proteasome system, whilst deubiquitinases contribute to the reversal of this process. However, both are important for protein homeostasis. Deubiquitination may also be involved in the control of the cell cycle, proliferation and apoptosis, and dysregulated deubiquitination is associated with the malignant transformation, invasion and metastasis of urologic malignancies. Therefore, a comprehensive summary of the mechanisms underlying deubiquitination in urological cancers may provide novel strategies and insights for diagnosis and treatment. The present review aimed to methodically clarify the role of deubiquitinating enzymes in urinary system cancers as well as their prospective application prospects for clinical treatment.
Collapse
Affiliation(s)
- Liangpei Wu
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang 315040, P.R. China
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Jiahui Wang
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang 315040, P.R. China
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Lin Chai
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang 315040, P.R. China
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Jun Chen
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang 315040, P.R. China
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| |
Collapse
|
6
|
Colaco JC, Suresh B, Kaushal K, Singh V, Ramakrishna S. The Role of Deubiquitinating Enzymes in Primary Bone Cancer. Mol Biotechnol 2024:10.1007/s12033-024-01254-y. [PMID: 39177860 DOI: 10.1007/s12033-024-01254-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 07/01/2024] [Indexed: 08/24/2024]
Abstract
Bone is a living, intricate, and dynamic tissue providing locomotion and protection of the body. It also performs hematopoiesis and mineral homeostasis. Osteosarcoma (OS), Ewing sarcoma (ES), and chondrosarcoma (CS) are primary bone cancers. OS and ES mostly develop in younger individuals, and CS generally develops in adults. Ubiquitination regulates numerous cellular processes. The deubiquitinating enzymes (DUBs) detach the ubiquitin molecules from the ubiquitin labeled substrate, altering ubiquitinated protein functions and regulating protein stability via various signaling pathways. Protein homeostasis and bone remodeling are both crucially influenced by the UPS. Recently, there have been several reports on DUBs involved in bone homeostasis and various bone disorders through the regulation of osteoblasts and osteoclasts via NF-κB, Wnt/β-catenin, TRAF6, TGFβ, ERK1/2, and PI3K/Akt pathways. However, DUBs regulating function in bone homeostasis is still in its infancy. Here, we summarized several recent identifications on DUBs, with a focus on their role in bone cancer progression. Therefore, the study attempts to summarize association with the expression level of DUBs as key factors driving bone cancers and also provide new insights on DUBs as key pharmacologic targets for bone cancer therapeutics.
Collapse
Affiliation(s)
- Jencia Carminha Colaco
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Bharathi Suresh
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Kamini Kaushal
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Vijai Singh
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, Gujarat, 382715, India.
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea.
- College of Medicine, Hanyang University, Seoul, 04763, South Korea.
| |
Collapse
|
7
|
Jiang W, Shaw S, Rush J, Dumont N, Kim J, Singh R, Skepner A, Khodier C, Raffier C, Yan N, Schluter C, Yu X, Szuchnicki M, Sathappa M, Kahn J, Sperling AS, McKinney DC, Gould AE, Garvie CW, Miller PG. Identification of Small Molecule Inhibitors of PPM1D Using a Novel Drug Discovery Platform. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.20.595001. [PMID: 38826457 PMCID: PMC11142126 DOI: 10.1101/2024.05.20.595001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Protein phosphatase, Mg2+/Mn2+ dependent 1D (PPM1D), is a serine/threonine phosphatase that is recurrently activated in cancer, regulates the DNA damage response (DDR), and suppresses the activation of p53. Consistent with its oncogenic properties, genetic loss or pharmacologic inhibition of PPM1D impairs tumor growth and sensitizes cancer cells to cytotoxic therapies in a wide range of preclinical models. Given the therapeutic potential of targeting PPM1D specifically and the DDR and p53 pathway more generally, we sought to deepen our biological understanding of PPM1D as a drug target and determine how PPM1D inhibition differs from other therapeutic approaches to activate the DDR. We performed a high throughput screen to identify new allosteric inhibitors of PPM1D, then generated and optimized a suite of enzymatic, cell-based, and in vivo pharmacokinetic and pharmacodynamic assays to drive medicinal chemistry efforts and to further interrogate the biology of PPM1D. Importantly, this drug discovery platform can be readily adapted to broadly study the DDR and p53. We identified compounds distinct from previously reported allosteric inhibitors and showed in vivo on-target activity. Our data suggest that the biological effects of inhibiting PPM1D are distinct from inhibitors of the MDM2-p53 interaction and standard cytotoxic chemotherapies. These differences also highlight the potential therapeutic contexts in which targeting PPM1D would be most valuable. Therefore, our studies have identified a series of new PPM1D inhibitors, generated a suite of in vitro and in vivo assays that can be broadly used to interrogate the DDR, and provided important new insights into PPM1D as a drug target.
Collapse
Affiliation(s)
- Wei Jiang
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Subrata Shaw
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Jason Rush
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Nancy Dumont
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - John Kim
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Ritu Singh
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Adam Skepner
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Carol Khodier
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Cerise Raffier
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Ni Yan
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
- Center for Cancer Research and Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
| | - Cameron Schluter
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
- Center for Cancer Research and Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
| | - Xiao Yu
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Mateusz Szuchnicki
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Murugappan Sathappa
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Josephine Kahn
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Adam S. Sperling
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - David C. McKinney
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Alexandra E. Gould
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Colin W. Garvie
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Peter G. Miller
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
- Center for Cancer Research and Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
| |
Collapse
|
8
|
Rask GC, Taslim C, Bayanjargal A, Cannon MV, Selich-Anderson J, Crow JC, Duncan A, Theisen ER. Seclidemstat blocks the transcriptional function of multiple FET-fusion oncoproteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.19.594897. [PMID: 38826330 PMCID: PMC11142045 DOI: 10.1101/2024.05.19.594897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Genes encoding the RNA-binding proteins FUS, EWSR1, and TAF15 (FET proteins) are involved in chromosomal translocations in rare sarcomas. FET-rearranged sarcomas are often aggressive malignancies affecting patients of all ages. New therapies are needed. These translocations fuse the 5' portion of the FET gene with a 3' partner gene encoding a transcription factor (TF). The resulting fusion proteins are oncogenic TFs with a FET protein low complexity domain (LCD) and a DNA binding domain. FET fusion proteins have proven stubbornly difficult to target directly and promising strategies target critical co-regulators. One candidate is lysine specific demethylase 1 (LSD1). LSD1 is recruited by multiple FET fusions, including EWSR1::FLI1. LSD1 promotes EWSR1::FLI1 activity and treatment with the noncompetitive inhibitor SP-2509 blocks EWSR1::FLI1 transcriptional function. A similar molecule, seclidemstat (SP-2577), is currently in clinical trials for FET-rearranged sarcomas (NCT03600649). However, whether seclidemstat has pharmacological activity against FET fusions has not been demonstrated. Here, we evaluate the in vitro potency of seclidemstat against multiple FET-rearranged sarcoma cell lines, including Ewing sarcoma, desmoplastic small round cell tumor, clear cell sarcoma, and myxoid liposarcoma. We also define the transcriptomic effects of seclidemstat treatment and evaluated the activity of seclidemstat against FET fusion transcriptional regulation. Seclidemstat showed potent activity in cell viability assays across FET-rearranged sarcomas and disrupted the transcriptional function of all tested fusions. Though epigenetic and targeted inhibitors are unlikely to be effective as a single agents in the clinic, these data suggest seclidemstat remains a promising new treatment strategy for patients with FET-rearranged sarcomas.
Collapse
Affiliation(s)
- Galen C. Rask
- Center for Childhood Cancer Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, 43215, USA
| | - Cenny Taslim
- Center for Childhood Cancer Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, 43215, USA
| | - Ariunaa Bayanjargal
- Center for Childhood Cancer Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, 43215, USA
- Medical Scientist Training Program, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Matthew V. Cannon
- Center for Childhood Cancer Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, 43215, USA
| | - Julia Selich-Anderson
- Center for Childhood Cancer Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, 43215, USA
| | - Jesse C. Crow
- Center for Childhood Cancer Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, 43215, USA
| | | | - Emily R. Theisen
- Center for Childhood Cancer Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, 43215, USA
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
9
|
Schnorenberg M, Hawley KM, Thomas-Toth AT, Watkins EA, Tian Y, Ting JM, Leak LB, Kucera IM, Raczy MM, Kung AL, Hubbell JA, Tirrell MV, LaBelle JL. Targeted Polymersome Delivery of a Stapled Peptide for Drugging the Tumor Protein p53:BCL-2-Family Axis in Diffuse Large B-Cell Lymphoma. ACS NANO 2023; 17:23374-23390. [PMID: 37688780 PMCID: PMC10722602 DOI: 10.1021/acsnano.3c04112] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/30/2023] [Indexed: 09/11/2023]
Abstract
Diffuse large B-cell lymphoma (DLBCL) remains a formidable diagnosis in need of new treatment paradigms. In this work, we elucidated an opportunity for therapeutic synergy in DLBCL by reactivating tumor protein p53 with a stapled peptide, ATSP-7041, thereby priming cells for apoptosis and enhancing their sensitivity to BCL-2 family modulation with a BH3-mimetic, ABT-263 (navitoclax). While this combination was highly effective at activating apoptosis in DLBCL in vitro, it was highly toxic in vivo, resulting in a prohibitively narrow therapeutic window. We, therefore, developed a targeted nanomedicine delivery platform to maintain the therapeutic potency of this combination while minimizing its toxicity via packaging and targeted delivery of a stapled peptide. We developed a CD19-targeted polymersome using block copolymers of poly(ethylene glycol) disulfide linked to poly(propylene sulfide) (PEG-SS-PPS) for ATSP-7041 delivery into DLBCL cells. Intracellular delivery was optimized in vitro and validated in vivo by using an aggressive human DLBCL xenograft model. Targeted delivery of ATSP-7041 unlocked the ability to systemically cotreat with ABT-263, resulting in delayed tumor growth, prolonged survival, and no overt toxicity. This work demonstrates a proof-of-concept for antigen-specific targeting of polymersome nanomedicines, targeted delivery of a stapled peptide in vivo, and synergistic dual intrinsic apoptotic therapy against DLBCL via direct p53 reactivation and BCL-2 family modulation.
Collapse
Affiliation(s)
- Mathew
R. Schnorenberg
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
- Department
of Pediatrics, Section of Hematology/Oncology, University of Chicago, Chicago, Illinois 60637, United States
- Medical
Scientist Training Program, Pritzker School of Medicine, University of Chicago, Chicago, Illinois 60637, United States
| | - Katrina M. Hawley
- Department
of Pediatrics, Section of Hematology/Oncology, University of Chicago, Chicago, Illinois 60637, United States
| | - Anika T. Thomas-Toth
- Department
of Pediatrics, Section of Hematology/Oncology, University of Chicago, Chicago, Illinois 60637, United States
| | - Elyse A. Watkins
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
| | - Yu Tian
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
- Department
of Pediatrics, Section of Hematology/Oncology, University of Chicago, Chicago, Illinois 60637, United States
| | - Jeffrey M. Ting
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
| | - Logan B. Leak
- Department
of Pediatrics, Section of Hematology/Oncology, University of Chicago, Chicago, Illinois 60637, United States
| | - Isadora M. Kucera
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
- Department
of Pediatrics, Section of Hematology/Oncology, University of Chicago, Chicago, Illinois 60637, United States
| | - Michal M. Raczy
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
| | - Andrew L. Kung
- Department
of Pediatrics, Memorial Sloan Kettering
Cancer Center, New York, New York 10065, United States
| | - Jeffrey A. Hubbell
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
| | - Matthew V. Tirrell
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
| | - James L. LaBelle
- Department
of Pediatrics, Section of Hematology/Oncology, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
10
|
Zhang K, Sun T, Li W, Guo Y, Li A, Hsieh M, Wang J, Wu J, Arvanitis L, Raz DJ. Inhibition of USP7 upregulates USP22 and activates its downstream cancer-related signaling pathways in human cancer cells. Cell Commun Signal 2023; 21:319. [PMID: 37946202 PMCID: PMC10634000 DOI: 10.1186/s12964-023-01320-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/14/2023] [Indexed: 11/12/2023] Open
Abstract
Deubiquitinases (DUBs) play important roles in various human cancers and targeting DUBs is considered as a novel anticancer therapeutic strategy. Overexpression of ubiquitin specific protease 7 and 22 (USP7 and USP22) are associated with malignancy, therapy resistance, and poor prognosis in many cancers. Although both DUBs are involved in the regulation of similar genes and signaling pathways, such as histone H2B monoubiquitination (H2Bub1), c-Myc, FOXP3, and p53, the interdependence of USP22 and USP7 expression has never been described. In the study, we found that targeting USP7 via either siRNA-mediated knockdown or pharmaceutical inhibitors dramatically upregulates USP22 in cancer cells. Mechanistically, the elevated USP22 occurs through a transcriptional pathway, possibly due to desuppression of the transcriptional activity of SP1 via promoting its degradation upon USP7 inhibition. Importantly, increased USP22 expression leads to significant activation of downstream signal pathways including H2Bub1 and c-Myc, which may potentially enhance cancer malignancy and counteract the anticancer efficacy of USP7 inhibition. Importantly, targeting USP7 further suppresses the in vitro proliferation of USP22-knockout (USP22-Ko) A549 and H1299 lung cancer cells and induces a stronger activation of p53 tumor suppressor signaling pathway. In addition, USP22-Ko cancer cells are more sensitive to a combination of cisplatin and USP7 inhibitor. USP7 inhibitor treatment further suppresses in vivo angiogenesis and tumor growth and induced more apoptosis in USP22-Ko cancer xenografts. Taken together, our findings demonstrate that USP7 inhibition can dramatically upregulate USP22 in cancer cells; and targeting USP7 and USP22 may represent a more effective approach for targeted cancer therapy, which warrants further study. Video Abstract.
Collapse
Affiliation(s)
- Keqiang Zhang
- Division of Thoracic Surgery, City of Hope National Medical Center, Duarte, CA, USA.
| | - Ting Sun
- Division of Thoracic Surgery, City of Hope National Medical Center, Duarte, CA, USA
- Faculty of Health Science, University of Macau, Macau, China
| | - Wendong Li
- Division of Thoracic Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - Yuming Guo
- Division of Comparative Medicine, City of Hope National Medical Center, Duarte, CA, USA
| | - Aimin Li
- Pathology Core of Shared Resources, City of Hope National Medical Center, Duarte, CA, USA
| | - Marcus Hsieh
- Division of Thoracic Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - Jinghan Wang
- Department of Hepatobiliary and Pancreatic Surgery, East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jun Wu
- Division of Comparative Medicine, City of Hope National Medical Center, Duarte, CA, USA
| | - Leonidas Arvanitis
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, USA
| | - Dan J Raz
- Division of Thoracic Surgery, City of Hope National Medical Center, Duarte, CA, USA.
| |
Collapse
|
11
|
Tsibulnikov S, Fayzullina D, Karlina I, Schroeder BA, Karpova O, Timashev P, Ulasov I. Ewing sarcoma treatment: a gene therapy approach. Cancer Gene Ther 2023; 30:1066-1071. [PMID: 37037906 PMCID: PMC10088695 DOI: 10.1038/s41417-023-00615-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 02/07/2023] [Accepted: 03/28/2023] [Indexed: 04/12/2023]
Abstract
Ewing sarcoma (ES) is an aggressive malignant tumor, characterized by non-random chromosomal translocations that produce fusion genes. Fusion genes and fusion protein products are promising targets for gene therapy. Therapeutic approaches and strategies vary based on target molecules (nucleotides, proteins) of interest. We present an extensive literature review of active molecules for gene therapy and methods of gene therapy delivery, both of which are necessary for successful treatment.
Collapse
Affiliation(s)
- Sergey Tsibulnikov
- Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, World-Class Research Centre "Digital Biodesign and Personalized Healthcare", I.M. Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Daria Fayzullina
- Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, World-Class Research Centre "Digital Biodesign and Personalized Healthcare", I.M. Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Irina Karlina
- Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, World-Class Research Centre "Digital Biodesign and Personalized Healthcare", I.M. Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Brett A Schroeder
- National Cancer Institute, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Olga Karpova
- Section of Virology, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Peter Timashev
- World-Class Research Centre "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Ilya Ulasov
- Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, World-Class Research Centre "Digital Biodesign and Personalized Healthcare", I.M. Sechenov First Moscow State Medical University, Moscow, 119991, Russia.
| |
Collapse
|
12
|
Carreira LD, Oliveira RI, Moreira VM, Salvador JAR. Ubiquitin-specific protease 7 (USP7): an emerging drug target for cancer treatment. Expert Opin Ther Targets 2023; 27:1043-1058. [PMID: 37789645 DOI: 10.1080/14728222.2023.2266571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/29/2023] [Indexed: 10/05/2023]
Abstract
INTRODUCTION Ubiquitin-specific protease 7 (USP7) also known as herpesvirus-associated ubiquitin-specific protease (HAUSP) is a well-characterized cysteine protease that belongs to the largest subfamily of deubiquitinating enzymes (DUBs). It is involved in multiple signaling pathways, some of them dysregulated in malignant tumors. USP7 inhibition can lead to cell growth arrest and apoptosis through inhibition of tumor promoters and stabilization of tumor suppressors, making it a promising druggable target for cancer therapy. AREAS COVERED This review covers the structure of USP7, its function in multiple signaling pathways and relevance in cancer, as well as recent advances and future perspectives in the development of USP7 inhibitors for cancer therapy. EXPERT OPINION Literature reports display the multiple antitumor activities of USP7 inhibitors, both in vitro and in vivo. Nonetheless, none have entered clinical trials so far, highlighting the need to delve into a deeper understanding of USP7 binding sites and the development of more accurate compound screening methods. Despite these challenges, further development of USP7 inhibitors is promising as a valuable new approach for cancer treatment, including the ability to address chemoresistance.
Collapse
Affiliation(s)
- Laura D Carreira
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Rita I Oliveira
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Vânia M Moreira
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Jorge A R Salvador
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
13
|
Ishikawa R, Saito K, Misawa T, Demizu Y, Saito Y. Identification of the Stapled α-Helical Peptide ATSP-7041 as a Substrate and Strong Inhibitor of OATP1B1 In Vitro. Biomolecules 2023; 13:1002. [PMID: 37371582 DOI: 10.3390/biom13061002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
ATSP-7041, a stapled α-helical peptide that inhibits murine double minute-2 (MDM2) and MDMX activities, is a promising modality targeting protein-protein interactions. As peptides of molecular weights over 1000 Da are not usually evaluated, data on the drug-drug interaction (DDI) potential of stapled α-helical peptides remain scarce. Here, we evaluate the interaction of ATSP-7041 with hepatic cytochrome P450s (CYPs; CYP1A2, CYP2C9, CYP2C19, CYP3A4, and CYP2D6) and transporters (organic anion transporting polypeptides (OATPs; OATP1B1 and OATP1B3), P-glycoprotein (P-gp), and breast cancer resistance protein (BCRP)). ATSP-7041 demonstrated negligible metabolism in human liver S9 fraction and a limited inhibition of CYP activities in yeast microsomes or S9 fractions. On the contrary, a substantial uptake by OATPs in HEK 293 cells, a strong inhibition of OATP activities in the cells, and an inhibition of P-gp and BCRP activities in reversed membrane vesicles were observed for ATSP-7041. A recent report describes that ALRN-6924, an ATSP-7041 analog, inhibited OATP activities in vivo; therefore, we focused on the interaction between ATSP-7041 and OATP1B1 to demonstrate that ATSP-7041, as a higher molecular weight stapled peptide, is a substrate and strong inhibitor of OATP1B1 activity. Our findings demonstrated the possibility of transporter-mediated DDI potential by high molecular weight stapled peptides and the necessity of their evaluation for drug development.
Collapse
Affiliation(s)
- Rika Ishikawa
- Division of Medical Safety Science, National Institute of Health Sciences, Kawasaki 210-9501, Japan
| | - Kosuke Saito
- Division of Medical Safety Science, National Institute of Health Sciences, Kawasaki 210-9501, Japan
| | - Takashi Misawa
- Division of Organic Chemistry, National Institute of Health Sciences, Kawasaki 210-9501, Japan
| | - Yosuke Demizu
- Division of Organic Chemistry, National Institute of Health Sciences, Kawasaki 210-9501, Japan
| | - Yoshiro Saito
- Division of Medical Safety Science, National Institute of Health Sciences, Kawasaki 210-9501, Japan
| |
Collapse
|
14
|
Apfelbaum AA, Wrenn ED, Lawlor ER. The importance of fusion protein activity in Ewing sarcoma and the cell intrinsic and extrinsic factors that regulate it: A review. Front Oncol 2022; 12:1044707. [PMID: 36505823 PMCID: PMC9727305 DOI: 10.3389/fonc.2022.1044707] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/27/2022] [Indexed: 11/24/2022] Open
Abstract
Accumulating evidence shows that despite clonal origins tumors eventually become complex communities comprised of phenotypically distinct cell subpopulations. This heterogeneity arises from both tumor cell intrinsic programs and signals from spatially and temporally dynamic microenvironments. While pediatric cancers usually lack the mutational burden of adult cancers, they still exhibit high levels of cellular heterogeneity that are largely mediated by epigenetic mechanisms. Ewing sarcomas are aggressive bone and soft tissue malignancies with peak incidence in adolescence and the prognosis for patients with relapsed and metastatic disease is dismal. Ewing sarcomas are driven by a single pathognomonic fusion between a FET protein and an ETS family transcription factor, the most common of which is EWS::FLI1. Despite sharing a single driver mutation, Ewing sarcoma cells demonstrate a high degree of transcriptional heterogeneity both between and within tumors. Recent studies have identified differential fusion protein activity as a key source of this heterogeneity which leads to profoundly different cellular phenotypes. Paradoxically, increased invasive and metastatic potential is associated with lower EWS::FLI1 activity. Here, we review what is currently understood about EWS::FLI1 activity, the cell autonomous and tumor microenvironmental factors that regulate it, and the downstream consequences of these activity states on tumor progression. We specifically highlight how transcription factor regulation, signaling pathway modulation, and the extracellular matrix intersect to create a complex network of tumor cell phenotypes. We propose that elucidation of the mechanisms by which these essential elements interact will enable the development of novel therapeutic approaches that are designed to target this complexity and ultimately improve patient outcomes.
Collapse
Affiliation(s)
| | | | - Elizabeth R. Lawlor
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute and Department of Pediatrics, University of Washington, Seattle, WA, United States
| |
Collapse
|
15
|
Oliveira RI, Guedes RA, Salvador JAR. Highlights in USP7 inhibitors for cancer treatment. Front Chem 2022; 10:1005727. [PMID: 36186590 PMCID: PMC9520255 DOI: 10.3389/fchem.2022.1005727] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Ubiquitin-specific protease 7 (USP7) is a member of one of the most largely studied families of deubiquitylating enzymes. It plays a key role modulating the levels of multiple proteins, including tumor suppressors, transcription factors, epigenetic modulators, DNA repair proteins, and regulators of the immune response. The abnormal expression of USP7 is found in various malignant tumors and a high expression signature generally indicates poor tumor prognosis. This suggests USP7 as a promising prognostic and druggable target for cancer therapy. Nonetheless, no approved drugs targeting USP7 have already entered clinical trials. Therefore, the development of potent and selective USP7 inhibitors still requires intensive research and development efforts before the pre-clinical benefits translate into the clinic. This mini review systematically summarizes the role of USP7 as a drug target for cancer therapeutics, as well as the scaffolds, activities, and binding modes of some of the most representative small molecule USP7 inhibitors reported in the scientific literature. To wind up, development challenges and potential combination therapies using USP7 inhibitors for less tractable tumors are also disclosed.
Collapse
Affiliation(s)
- Rita I. Oliveira
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Romina A. Guedes
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Jorge A. R. Salvador
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- *Correspondence: Jorge A. R. Salvador,
| |
Collapse
|
16
|
Zhu H, Mellors JS, Chan WC, Thompson JW, Ficarro SB, Tavares I, Bratt AS, Decker J, Krause M, Kruppa G, Buhrlage SJ, Marto JA. On-Chip Preconcentration Microchip Capillary Electrophoresis Based CE-PRM-LIVE for High-Throughput Selectivity Profiling of Deubiquitinase Inhibitors. Anal Chem 2022; 94:9508-9513. [PMID: 35729701 PMCID: PMC10654755 DOI: 10.1021/acs.analchem.2c01337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The family of deubiquitinases (DUBs) comprises ∼100 enzymes that cleave ubiquitin from substrate proteins and thereby regulate key aspects of human physiology. DUBs have recently emerged as disease-relevant and chemically tractable, although currently there are no approved DUB-targeting drugs and most preclinical small molecules are low-potency and/or multitargeted. We paired a novel capillary electrophoresis microchip containing an integrated, "on-chip" C18 bed (SPE-ZipChip) with a TMT version of our recently described PRM-LIVE acquisition scheme on a timsTOF Pro mass spectrometer to facilitate rapid activity-based protein profiling of DUB inhibitors. We demonstrate the ability of the SPE-ZipChip to improve proteome coverage of complex samples as well as the quantitation integrity of CE-PRM-LIVE for TMT labeled samples. These technologies provide a platform to accurately quantify competitive binding of covalent and reversible inhibitors in a multiplexed assay that spans 49 endogenous DUBs in less than 15 min.
Collapse
Affiliation(s)
- He Zhu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - J Scott Mellors
- 908 Devices Inc., Boston, Massachusetts 02210, United States
| | - Wai Cheung Chan
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - J Will Thompson
- 908 Devices Inc., Boston, Massachusetts 02210, United States
| | - Scott B Ficarro
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Isidoro Tavares
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Ariana S Bratt
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Jens Decker
- Bruker Daltonics GmbH & Co. KG, Bremen 28359, Germany
| | | | - Gary Kruppa
- Bruker S.R.O., District Brno-City 61900 Czech Republic
| | - Sara J Buhrlage
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Jarrod A Marto
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| |
Collapse
|
17
|
Giannikopoulos P, Parham DM. Pediatric Sarcomas: The Next Generation of Molecular Studies. Cancers (Basel) 2022; 14:2515. [PMID: 35626119 PMCID: PMC9139929 DOI: 10.3390/cancers14102515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/13/2022] [Accepted: 05/13/2022] [Indexed: 02/04/2023] Open
Abstract
Pediatric sarcomas constitute one of the largest groups of childhood cancers, following hematopoietic, neural, and renal lesions. Partly because of their diversity, they continue to offer challenges in diagnosis and treatment. In spite of the diagnostic, nosologic, and therapeutic gains made with genetic technology, newer means for investigation are needed. This article reviews emerging technology being used to study human neoplasia and how these methods might be applicable to pediatric sarcomas. Methods reviewed include single cell RNA sequencing (scRNAseq), spatial multi-omics, high-throughput functional genomics, and clustered regularly interspersed short palindromic sequence-Cas9 (CRISPR-Cas9) technology. In spite of these advances, the field continues to be challenged by a dearth of properly annotated materials, particularly from recurrences and metastases and pre- and post-treatment samples.
Collapse
Affiliation(s)
| | - David M. Parham
- Department of Anatomic Pathology, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
- Department of Pathology, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
| |
Collapse
|
18
|
Pedot G, Marques JG, Ambühl PP, Wachtel M, Kasper S, Ngo QA, Niggli FK, Schäfer BW. Retracted: Inhibition of HDACs reduces Ewing sarcoma tumor growth through EWS-FLI1 protein destabilization. Neoplasia 2022; 27:100784. [PMID: 35366465 PMCID: PMC8971315 DOI: 10.1016/j.neo.2022.100784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/26/2022] [Accepted: 03/10/2022] [Indexed: 11/24/2022]
Abstract
Oncogenic transcription factors lacking enzymatic activity or targetable binding pockets are typically considered "undruggable". An example is provided by the EWS-FLI1 oncoprotein, whose continuous expression and activity as transcription factor are critically required for Ewing sarcoma tumor formation, maintenance, and proliferation. Because neither upstream nor downstream targets have so far disabled its oncogenic potential, we performed a high-throughput drug screen (HTS), enriched for FDA-approved drugs, coupled to a Global Protein Stability (GPS) approach to identify novel compounds capable to destabilize EWS-FLI1 protein by enhancing its degradation through the ubiquitin-proteasome system. The protein stability screen revealed the dual histone deacetylase (HDAC) and phosphatidylinositol-3-kinase (PI3K) inhibitor called fimepinostat (CUDC-907) as top candidate to modulate EWS-FLI1 stability. Fimepinostat strongly reduced EWS-FLI1 protein abundance, reduced viability of several Ewing sarcoma cell lines and PDX-derived primary cells and delayed tumor growth in a xenograft mouse model, whereas it did not significantly affect healthy cells. Mechanistically, we demonstrated that EWS-FLI1 protein levels were mainly regulated by fimepinostat's HDAC activity. Our study demonstrates that HTS combined to GPS is a reliable approach to identify drug candidates able to modulate stability of EWS-FLI1 and lays new ground for the development of novel therapeutic strategies aimed to reduce Ewing sarcoma tumor progression.
Collapse
Affiliation(s)
- Gloria Pedot
- Department of Oncology and Children's Research Center, University Children's Hospital, Steinwiesstrasse 32, 8032, Zurich, Switzerland
| | - Joana Graça Marques
- Department of Oncology and Children's Research Center, University Children's Hospital, Steinwiesstrasse 32, 8032, Zurich, Switzerland
| | - Philip P Ambühl
- Department of Oncology and Children's Research Center, University Children's Hospital, Steinwiesstrasse 32, 8032, Zurich, Switzerland
| | - Marco Wachtel
- Department of Oncology and Children's Research Center, University Children's Hospital, Steinwiesstrasse 32, 8032, Zurich, Switzerland
| | - Stephanie Kasper
- Department of Oncology and Children's Research Center, University Children's Hospital, Steinwiesstrasse 32, 8032, Zurich, Switzerland
| | - Quy A Ngo
- Department of Oncology and Children's Research Center, University Children's Hospital, Steinwiesstrasse 32, 8032, Zurich, Switzerland
| | - Felix K Niggli
- Department of Oncology and Children's Research Center, University Children's Hospital, Steinwiesstrasse 32, 8032, Zurich, Switzerland
| | - Beat W Schäfer
- Department of Oncology and Children's Research Center, University Children's Hospital, Steinwiesstrasse 32, 8032, Zurich, Switzerland.
| |
Collapse
|
19
|
Fayzullina D, Tsibulnikov S, Stempen M, Schroeder BA, Kumar N, Kharwar RK, Acharya A, Timashev P, Ulasov I. Novel Targeted Therapeutic Strategies for Ewing Sarcoma. Cancers (Basel) 2022; 14:cancers14081988. [PMID: 35454895 PMCID: PMC9032664 DOI: 10.3390/cancers14081988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/03/2022] [Accepted: 04/11/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Ewing sarcoma is an uncommon cancer that arises in mesenchymal tissues and represents the second most widespread malignant bone neoplasm after osteosarcoma in children. Therapy has increased the 5-year survival rate in the last 40 years, although the recurrence rate has remained high. There is an immediate and unmet need for the development of novel Ewing sarcoma therapies. We offer new prospective targets for the therapy of Ewing sarcoma. The EWSR1/FLI1 fusion protein, which is identified in 85–90% of Ewing sarcoma tumors, and its direct targets are given special focus in this study. Experimantal therapy that targets multiple signaling pathways activated during ES progression, alone or in combination with existing regimens, may become the new standard of care for Ewing sarcoma patients, improving patient survival. Abstract Ewing sarcoma (ES) is an uncommon cancer that arises in mesenchymal tissues and represents the second most widespread malignant bone neoplasm after osteosarcoma in children. Amplifications in genomic, proteomic, and metabolism are characteristics of sarcoma, and targeting altered cancer cell molecular processes has been proposed as the latest promising strategy to fight cancer. Recent technological advancements have elucidated some of the underlying oncogenic characteristics of Ewing sarcoma. Offering new insights into the physiological basis for this phenomenon, our current review examines the dynamics of ES signaling as it related to both ES and the microenvironment by integrating genomic and proteomic analyses. An extensive survey of the literature was performed to compile the findings. We have also highlighted recent and ongoing studies integrating metabolomics and genomics aimed at better understanding the complex interactions as to how ES adapts to changing biochemical changes within the tumor microenvironment.
Collapse
Affiliation(s)
- Daria Fayzullina
- Group of Experimental Biotherapy and Diagnostic, Department of Advanced Materials, Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow 119991, Russia
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.F.); (S.T.); (M.S.); (P.T.)
| | - Sergey Tsibulnikov
- Group of Experimental Biotherapy and Diagnostic, Department of Advanced Materials, Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow 119991, Russia
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.F.); (S.T.); (M.S.); (P.T.)
| | - Mikhail Stempen
- Group of Experimental Biotherapy and Diagnostic, Department of Advanced Materials, Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow 119991, Russia
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.F.); (S.T.); (M.S.); (P.T.)
| | - Brett A. Schroeder
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA;
| | - Naveen Kumar
- Tumor Immunology Lab, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India; (N.K.); (A.A.)
| | - Rajesh Kumar Kharwar
- Endocrine Research Lab, Department of Zoology, Kutir Post Graduate College, Chakkey, Jaunpur 222146, India;
| | - Arbind Acharya
- Tumor Immunology Lab, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India; (N.K.); (A.A.)
| | - Peter Timashev
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.F.); (S.T.); (M.S.); (P.T.)
- Department of Advanced Materials, Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Ilya Ulasov
- Group of Experimental Biotherapy and Diagnostic, Department of Advanced Materials, Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow 119991, Russia
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.F.); (S.T.); (M.S.); (P.T.)
- Correspondence:
| |
Collapse
|
20
|
Tu R, Ma J, Zhang P, Kang Y, Xiong X, Zhu J, Li M, Zhang C. The emerging role of deubiquitylating enzymes as therapeutic targets in cancer metabolism. Cancer Cell Int 2022; 22:130. [PMID: 35307036 PMCID: PMC8935717 DOI: 10.1186/s12935-022-02524-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 02/14/2022] [Indexed: 11/10/2022] Open
Abstract
AbstractCancer cells must rewire cellular metabolism to satisfy the unbridled proliferation, and metabolic reprogramming provides not only the advantage for cancer cell proliferation but also new targets for cancer treatment. However, the plasticity of the metabolic pathways makes them very difficult to target. Deubiquitylating enzymes (DUBs) are proteases that cleave ubiquitin from the substrate proteins and process ubiquitin precursors. While the molecular mechanisms are not fully understood, many DUBs have been shown to be involved in tumorigenesis and progression via controlling the dysregulated cancer metabolism, and consequently recognized as potential drug targets for cancer treatment. In this article, we summarized the significant progress in understanding the key roles of DUBs in cancer cell metabolic rewiring and the opportunities for the application of DUBs inhibitors in cancer treatment, intending to provide potential implications for both research purpose and clinical applications.
Collapse
|
21
|
Khadka P, Reitman ZJ, Lu S, Buchan G, Gionet G, Dubois F, Carvalho DM, Shih J, Zhang S, Greenwald NF, Zack T, Shapira O, Pelton K, Hartley R, Bear H, Georgis Y, Jarmale S, Melanson R, Bonanno K, Schoolcraft K, Miller PG, Condurat AL, Gonzalez EM, Qian K, Morin E, Langhnoja J, Lupien LE, Rendo V, Digiacomo J, Wang D, Zhou K, Kumbhani R, Guerra Garcia ME, Sinai CE, Becker S, Schneider R, Vogelzang J, Krug K, Goodale A, Abid T, Kalani Z, Piccioni F, Beroukhim R, Persky NS, Root DE, Carcaboso AM, Ebert BL, Fuller C, Babur O, Kieran MW, Jones C, Keshishian H, Ligon KL, Carr SA, Phoenix TN, Bandopadhayay P. PPM1D mutations are oncogenic drivers of de novo diffuse midline glioma formation. Nat Commun 2022; 13:604. [PMID: 35105861 PMCID: PMC8807747 DOI: 10.1038/s41467-022-28198-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/07/2022] [Indexed: 12/23/2022] Open
Abstract
The role of PPM1D mutations in de novo gliomagenesis has not been systematically explored. Here we analyze whole genome sequences of 170 pediatric high-grade gliomas and find that truncating mutations in PPM1D that increase the stability of its phosphatase are clonal driver events in 11% of Diffuse Midline Gliomas (DMGs) and are enriched in primary pontine tumors. Through the development of DMG mouse models, we show that PPM1D mutations potentiate gliomagenesis and that PPM1D phosphatase activity is required for in vivo oncogenesis. Finally, we apply integrative phosphoproteomic and functional genomics assays and find that oncogenic effects of PPM1D truncation converge on regulators of cell cycle, DNA damage response, and p53 pathways, revealing therapeutic vulnerabilities including MDM2 inhibition.
Collapse
Affiliation(s)
- Prasidda Khadka
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA, 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Harvard Biological and Biomedical Sciences PhD Program, Harvard University, Cambridge, MA, 02138, USA
| | - Zachary J Reitman
- Department of Radiation Oncology, Duke University, Durham, NC, 27710, USA
- Duke Cancer Institute, Duke University, Durham, NC, 27710, USA
- The Preston Robert Tisch Brain Tumor Center at Duke, Duke University, Durham, NC, 27710, USA
| | - Sophie Lu
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, 02215, USA
| | - Graham Buchan
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, 02215, USA
| | - Gabrielle Gionet
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, 02215, USA
| | - Frank Dubois
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA, 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Diana M Carvalho
- Division of Molecular Pathology, Institute of Cancer Research, London, UK
| | - Juliann Shih
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Shu Zhang
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Noah F Greenwald
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA, 02215, USA
| | - Travis Zack
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA, 02215, USA
| | - Ofer Shapira
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA, 02215, USA
| | - Kristine Pelton
- Department of Oncologic Pathology, Dana Farber Cancer Institute, Boston, MA, 02215, USA
| | - Rachel Hartley
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Heather Bear
- Research in Patient Services, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45267, USA
| | - Yohanna Georgis
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, 02215, USA
| | - Spandana Jarmale
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, 02215, USA
| | - Randy Melanson
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Kevin Bonanno
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Kathleen Schoolcraft
- Department of Oncologic Pathology, Dana Farber Cancer Institute, Boston, MA, 02215, USA
| | - Peter G Miller
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Alexandra L Condurat
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, 02215, USA
| | - Elizabeth M Gonzalez
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, 02215, USA
| | - Kenin Qian
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, 02215, USA
| | - Eric Morin
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, 02215, USA
| | - Jaldeep Langhnoja
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Leslie E Lupien
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, 02215, USA
| | - Veronica Rendo
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA, 02215, USA
| | - Jeromy Digiacomo
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, 02215, USA
| | - Dayle Wang
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, 02215, USA
| | - Kevin Zhou
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, 02215, USA
| | - Rushil Kumbhani
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, 02215, USA
| | | | - Claire E Sinai
- Department of Oncologic Pathology, Dana Farber Cancer Institute, Boston, MA, 02215, USA
| | - Sarah Becker
- Department of Oncologic Pathology, Dana Farber Cancer Institute, Boston, MA, 02215, USA
| | - Rachel Schneider
- Department of Oncologic Pathology, Dana Farber Cancer Institute, Boston, MA, 02215, USA
| | - Jayne Vogelzang
- Department of Oncologic Pathology, Dana Farber Cancer Institute, Boston, MA, 02215, USA
| | - Karsten Krug
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Amy Goodale
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Tanaz Abid
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Zohra Kalani
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | | | - Rameen Beroukhim
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA, 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Nicole S Persky
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - David E Root
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Angel M Carcaboso
- Department of Pediatric Hematology and Oncology, Hospital Sant Joan de Deu, Institut de Recerca Sant Joan de Deu, Barcelona, 08950, Spain
| | - Benjamin L Ebert
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA
| | - Christine Fuller
- Department of Pathology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45267, USA
| | - Ozgun Babur
- College of Science and Mathematics, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Mark W Kieran
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, 02215, USA
- Bristol Myers Squibb, Boston, Devens, MA, 01434, USA
| | - Chris Jones
- Division of Molecular Pathology, Institute of Cancer Research, London, UK
| | | | - Keith L Ligon
- Department of Oncologic Pathology, Dana Farber Cancer Institute, Boston, MA, 02215, USA
| | - Steven A Carr
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Timothy N Phoenix
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, 45267, USA.
- Research in Patient Services, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45267, USA.
| | - Pratiti Bandopadhayay
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, 02215, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
22
|
Noncanonical roles of p53 in cancer stemness and their implications in sarcomas. Cancer Lett 2022; 525:131-145. [PMID: 34742870 DOI: 10.1016/j.canlet.2021.10.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 09/24/2021] [Accepted: 10/25/2021] [Indexed: 12/25/2022]
Abstract
Impairment of the prominent tumor suppressor p53, well known for its canonical role as the "guardian of the genome", is found in almost half of human cancers. More recently, p53 has been suggested to be a crucial regulator of stemness, orchestrating the differentiation of embryonal and adult stem cells, suppressing reprogramming into induced pluripotent stem cells, or inhibiting cancer stemness (i.e., cancer stem cells, CSCs), which underlies the development of therapy-resistant tumors. This review addresses these noncanonical roles of p53 and their implications in sarcoma initiation and progression. Indeed, dysregulation of p53 family proteins is a common event in sarcomas and is associated with poor survival. Additionally, emerging studies have demonstrated that loss of wild-type p53 activity hinders the terminal differentiation of mesenchymal stem cells and leads to the development of aggressive sarcomas. This review summarizes recent findings on the roles of aberrant p53 in sarcoma development and stemness and further describes therapeutic approaches to restore normal p53 activity as a promising anti-CSC strategy to treat refractory sarcomas.
Collapse
|
23
|
Varca AC, Casalena D, Chan WC, Hu B, Magin RS, Roberts RM, Liu X, Zhu H, Seo HS, Dhe-Paganon S, Marto JA, Auld D, Buhrlage SJ. Identification and validation of selective deubiquitinase inhibitors. Cell Chem Biol 2021; 28:1758-1771.e13. [PMID: 34129829 PMCID: PMC9473745 DOI: 10.1016/j.chembiol.2021.05.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 03/11/2021] [Accepted: 05/19/2021] [Indexed: 12/17/2022]
Abstract
Deubiquitinating enzymes (DUBs) are a class of isopeptidases that regulate ubiquitin dynamics through catalytic cleavage of ubiquitin from protein substrates and ubiquitin precursors. Despite growing interest in DUB biological function and potential as therapeutic targets, few selective small-molecule inhibitors and no approved drugs currently exist. To identify chemical scaffolds targeting specific DUBs and establish a broader framework for future inhibitor development across the gene family, we performed high-throughput screening of a chemically diverse small-molecule library against eight different DUBs, spanning three well-characterized DUB families. Promising hit compounds were validated in a series of counter-screens and orthogonal assays, as well as further assessed for selectivity across expanded panels of DUBs. Through these efforts, we have identified multiple highly selective DUB inhibitors and developed a roadmap for rapidly identifying and validating selective inhibitors of related enzymes.
Collapse
Affiliation(s)
- Anthony C Varca
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Dominick Casalena
- FAST Lab, Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Wai Cheung Chan
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Bin Hu
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Robert S Magin
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Rebekka M Roberts
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Xiaoxi Liu
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - He Zhu
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Hyuk-Soo Seo
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Sirano Dhe-Paganon
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jarrod A Marto
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Douglas Auld
- FAST Lab, Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Sara J Buhrlage
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
24
|
Vazquez F, Sellers WR. Are CRISPR Screens Providing the Next Generation of Therapeutic Targets? Cancer Res 2021; 81:5806-5809. [PMID: 34853037 PMCID: PMC10078623 DOI: 10.1158/0008-5472.can-21-1784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/20/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022]
Abstract
CRISPR screens combined with molecular and genetic profiling of large panels of cell lines are helping to systematically identify cancer vulnerabilities. These large-scale screens, together with focused in vivo and isogenic cell line screens, have identified a growing number of promising targets and led directly to numerous target-specific drug discovery programs, several of which have reached clinical testing. However, systematic loss-of-function studies are still in their early stages. Genetic redundancy, the limitation of cell line models for many cancer types, and the difficulty of conducting complex in vitro and in vivo screens remain opportunities for discovery. We expect that over the next few years, efforts like the Cancer Dependency Map along with more focused screens will play a significant role in the creation of a roadmap of oncology therapeutic targets.
Collapse
Affiliation(s)
| | - William R Sellers
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts.,Dana-Farber Cancer Institute, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
25
|
Mullard M, Lavaud M, Regnier L, Tesfaye R, Ory B, Rédini F, Verrecchia F. Ubiquitin-specific proteases as therapeutic targets in paediatric primary bone tumours? Biochem Pharmacol 2021; 194:114797. [PMID: 34678225 DOI: 10.1016/j.bcp.2021.114797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 01/04/2023]
Abstract
In children and young adults, primary malignant bone tumours are mainly composed of osteosarcoma and Ewing's sarcoma. Despite advances in treatments, nearly 40% of patients succumb to these diseases. In particular, the clinical outcome of metastatic osteosarcoma or Ewing's sarcoma remains poor, with less than 30% of patients who develop metastases surviving five years after initial diagnosis. Over the last decade, the cancer research community has shown considerable interest in the processes of protein ubiquitination and deubiquitination. In particular, a growing number of studies show the relevance to target the ubiquitin-specific protease (USP) family in various cancers. This review provides an update on the current knowledge regarding the implication of these USPs in the progression of bone sarcoma: osteosarcoma and Ewing's sarcoma.
Collapse
Affiliation(s)
- Mathilde Mullard
- INSERM, Université de Nantes, UMR1238, "Bone Sarcoma and Remodelling of Calcified Tissues", 44000 Nantes, France
| | - Mélanie Lavaud
- INSERM, Université de Nantes, UMR1238, "Bone Sarcoma and Remodelling of Calcified Tissues", 44000 Nantes, France
| | - Laura Regnier
- INSERM, Université de Nantes, UMR1238, "Bone Sarcoma and Remodelling of Calcified Tissues", 44000 Nantes, France
| | - Robel Tesfaye
- INSERM, Université de Nantes, UMR1238, "Bone Sarcoma and Remodelling of Calcified Tissues", 44000 Nantes, France
| | - Benjamin Ory
- INSERM, Université de Nantes, UMR1238, "Bone Sarcoma and Remodelling of Calcified Tissues", 44000 Nantes, France
| | - Françoise Rédini
- INSERM, Université de Nantes, UMR1238, "Bone Sarcoma and Remodelling of Calcified Tissues", 44000 Nantes, France
| | - Franck Verrecchia
- INSERM, Université de Nantes, UMR1238, "Bone Sarcoma and Remodelling of Calcified Tissues", 44000 Nantes, France.
| |
Collapse
|
26
|
Harakandi C, Nininahazwe L, Xu H, Liu B, He C, Zheng YC, Zhang H. Recent advances on the intervention sites targeting USP7-MDM2-p53 in cancer therapy. Bioorg Chem 2021; 116:105273. [PMID: 34474304 DOI: 10.1016/j.bioorg.2021.105273] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/10/2021] [Accepted: 08/14/2021] [Indexed: 01/29/2023]
Abstract
The ubiquitin-specific protease 7 (USP7)-murine double minute 2 (MDM2)-p53 network plays an important role in the regulation of p53, a tumor suppressor which plays critical roles in regulating cell growth, proliferation, cell cycle progression, apoptosis and immune response. The overexpression of USP7 and MDM2 in human cancers contributes to cancer initiation and progression, and their inhibition reactivates p53 signalings and causes cell cycle arrest and apoptosis. Herein, the current state of pharmacological characterization, potential applications in cancer treatment and mechanism of action of small molecules used to target and inhibit MDM2 and USP7 proteins are highlighted, along with the outcomes in clinical and preclinical settings. Moreover, challenges and advantages of these strategies, as well as perspectives in USP7-MDM2-p53 field are analyzed in detail. The investigation and application of MDM2 and USP7 inhibitors will deepen our understanding of the function of USP7-MDM2-p53 network, and feed in the development of effective and safe cancer therapies where USP7-MDM2-p53 network is implicated.
Collapse
Affiliation(s)
- Chrisanta Harakandi
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Lauraine Nininahazwe
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Haiwei Xu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Bingrui Liu
- College of Public Health, North China University of Science and Technology, Tangshan 063503, China
| | - Chenghua He
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yi-Chao Zheng
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Hang Zhang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| |
Collapse
|
27
|
Tang F, Tie Y, Wei YQ, Tu CQ, Wei XW. Targeted and immuno-based therapies in sarcoma: mechanisms and advances in clinical trials. Biochim Biophys Acta Rev Cancer 2021; 1876:188606. [PMID: 34371128 DOI: 10.1016/j.bbcan.2021.188606] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/04/2021] [Accepted: 08/02/2021] [Indexed: 02/08/2023]
Abstract
Sarcomas represent a distinct group of rare malignant tumors with high heterogeneity. Limited options with clinical efficacy for the metastatic or local advanced sarcoma existed despite standard therapy. Recently, targeted therapy according to the molecular and genetic phenotype of individual sarcoma is a promising option. Among these drugs, anti-angiogenesis therapy achieved favorable efficacy in sarcomas. Inhibitors targeting cyclin-dependent kinase 4/6, poly-ADP-ribose polymerase, insulin-like growth factor-1 receptor, mTOR, NTRK, metabolisms, and epigenetic drugs are under clinical evaluation for sarcomas bearing the corresponding signals. Immunotherapy represents a promising and favorable method in advanced solid tumors. However, most sarcomas are immune "cold" tumors, with only alveolar soft part sarcoma and undifferentiated pleomorphic sarcoma respond to immune checkpoint inhibitors. Cellular therapies with TCR-engineered T cells, chimeric antigen receptor T cells, tumor infiltrating lymphocytes, and nature killer cells transfer show therapeutic potential. Identifying tumor-specific antigens and exploring immune modulation factors arguing the efficacy of these immunotherapies are the current challenges. This review focuses on the mechanisms, advances, and potential strategies of targeted and immune-based therapies in sarcomas.
Collapse
Affiliation(s)
- Fan Tang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China; Department of Orthopeadics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Tie
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yu-Quan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Chong-Qi Tu
- Department of Orthopeadics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
| | - Xia-Wei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
28
|
Su S, Chen J, Jiang Y, Wang Y, Vital T, Zhang J, Laggner C, Nguyen KT, Zhu Z, Prevatte AW, Barker NK, Herring LE, Davis IJ, Liu P. SPOP and OTUD7A Control EWS-FLI1 Protein Stability to Govern Ewing Sarcoma Growth. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2004846. [PMID: 34060252 PMCID: PMC8292909 DOI: 10.1002/advs.202004846] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/11/2021] [Indexed: 05/08/2023]
Abstract
Chromosomal translocation results in development of an Ewing sarcoma breakpoint region 1-Friend leukemia integration 1 (EWS-FLI1) fusion oncogene in the majority of Ewing sarcoma. The persistent dependence of the tumor for this oncoprotein points to EWS-FLI1 as an ideal drug target. Although EWS-FLI1 transcriptional targets and binding partners are evaluated, the mechanisms regulating EWS-FLI1 protein stability remain elusive. Speckle-type POZ protein (SPOP) and OTU domain-containing protein 7A (OTUD7A) are identified as the bona fide E3 ligase and deubiquitinase, respectively, that control EWS-FLI1 protein turnover in Ewing sarcoma. Casein kinase 1-mediated phosphorylation of the VTSSS degron in the FLI1 domain enhances SPOP activity to degrade EWS-FLI1. Opposing this process, OTUD7A deubiquitinates and stabilizes EWS-FLI1. Depletion of OTUD7A in Ewing sarcoma cell lines reduces EWS-FLI1 protein abundance and impedes Ewing sarcoma growth in vitro and in mice. Performing an artificial-intelligence-based virtual drug screen of a 4-million small molecule library, 7Ai is identified as a potential OTUD7A catalytic inhibitor. 7Ai reduces EWS-FLI1 protein levels and decreases Ewing sarcoma growth in vitro and in a xenograft mouse model. This study supports the therapeutic targeting of OTUD7A as a novel strategy for Ewing sarcoma bearing EWS-FLI1 and related fusions, and may also be applicable to other cancers dependent on aberrant FLI1 expression.
Collapse
Affiliation(s)
- Siyuan Su
- Lineberger Comprehensive Cancer CenterThe University of North Carolina at Chapel HillChapel HillNC27599USA
- Department of Biochemistry and BiophysicsSchool of MedicineThe University of North Carolina at Chapel HillChapel HillNC27599USA
| | - Jianfeng Chen
- Lineberger Comprehensive Cancer CenterThe University of North Carolina at Chapel HillChapel HillNC27599USA
- Department of Biochemistry and BiophysicsSchool of MedicineThe University of North Carolina at Chapel HillChapel HillNC27599USA
| | - Yao Jiang
- Lineberger Comprehensive Cancer CenterThe University of North Carolina at Chapel HillChapel HillNC27599USA
- Present address:
Cancer CenterUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Ying Wang
- Lineberger Comprehensive Cancer CenterThe University of North Carolina at Chapel HillChapel HillNC27599USA
- Department of Biochemistry and BiophysicsSchool of MedicineThe University of North Carolina at Chapel HillChapel HillNC27599USA
| | - Tamara Vital
- Lineberger Comprehensive Cancer CenterThe University of North Carolina at Chapel HillChapel HillNC27599USA
- Department of GeneticsThe University of North Carolina at Chapel HillChapel HillNC27599USA
- Department of PediatricsThe University of North Carolina at Chapel HillChapel HillNC 27599USA
| | - Jiaming Zhang
- Lineberger Comprehensive Cancer CenterThe University of North Carolina at Chapel HillChapel HillNC27599USA
- Present address:
Department of Oral Medicine, Infection, and ImmunityHarvard School of Dental MedicineBostonMA02215USA
| | | | | | - Zhichuan Zhu
- Lineberger Comprehensive Cancer CenterThe University of North Carolina at Chapel HillChapel HillNC27599USA
- Department of Biochemistry and BiophysicsSchool of MedicineThe University of North Carolina at Chapel HillChapel HillNC27599USA
| | - Alex W. Prevatte
- UNC Proteomics Core FacilityDepartment of PharmacologyThe University of North Carolina at Chapel HillChapel HillNC27599USA
| | - Natalie K. Barker
- UNC Proteomics Core FacilityDepartment of PharmacologyThe University of North Carolina at Chapel HillChapel HillNC27599USA
| | - Laura E. Herring
- UNC Proteomics Core FacilityDepartment of PharmacologyThe University of North Carolina at Chapel HillChapel HillNC27599USA
| | - Ian J. Davis
- Lineberger Comprehensive Cancer CenterThe University of North Carolina at Chapel HillChapel HillNC27599USA
- Department of GeneticsThe University of North Carolina at Chapel HillChapel HillNC27599USA
- Department of PediatricsThe University of North Carolina at Chapel HillChapel HillNC 27599USA
| | - Pengda Liu
- Lineberger Comprehensive Cancer CenterThe University of North Carolina at Chapel HillChapel HillNC27599USA
- Department of Biochemistry and BiophysicsSchool of MedicineThe University of North Carolina at Chapel HillChapel HillNC27599USA
| |
Collapse
|
29
|
Genome-wide CRISPR screens reveal synthetic lethal interaction between CREBBP and EP300 in diffuse large B-cell lymphoma. Cell Death Dis 2021; 12:419. [PMID: 33911074 PMCID: PMC8080727 DOI: 10.1038/s41419-021-03695-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 12/18/2022]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common type of aggressive lymphoid malignancy and a highly heterogeneous disease. In this study, we performed whole-genome and transcriptome sequencing, and a genome-wide CRISPR-Cas9-knockout screen to study an activated B-cell-like DLBCL cell line (RC-K8). We identified a distinct pattern of genetic essentialities in RC-K8, including a dependency on CREBBP and MDM2. The dependency on CREBBP is associated with a balanced translocation involving EP300, which results in a truncated form of the protein that lacks the critical histone acetyltransferase (HAT) domain. The synthetic lethal interaction between CREBBP and EP300 genes, two frequently mutated epigenetic modulators in B-cell lymphoma, was further validated in the previously published CRISPR-Cas9 screens and inhibitor assays. Our study suggests that integration of the unbiased functional screen results with genomic and transcriptomic data can identify both common and unique druggable vulnerabilities in DLBCL and histone acetyltransferases inhibition could be a therapeutic option for CREBBP or EP300 mutated cases.
Collapse
|
30
|
Banerjee A, Malonia SK, Dutta S. Frontiers of CRISPR-Cas9 for Cancer Research and Therapy. JOURNAL OF EXPLORATORY RESEARCH IN PHARMACOLOGY 2021; 000:000-000. [DOI: 10.14218/jerp.2020.00033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
31
|
Dharia NV, Kugener G, Guenther LM, Malone CF, Durbin AD, Hong AL, Howard TP, Bandopadhayay P, Wechsler CS, Fung I, Warren AC, Dempster JM, Krill-Burger JM, Paolella BR, Moh P, Jha N, Tang A, Montgomery P, Boehm JS, Hahn WC, Roberts CWM, McFarland JM, Tsherniak A, Golub TR, Vazquez F, Stegmaier K. A first-generation pediatric cancer dependency map. Nat Genet 2021; 53:529-538. [PMID: 33753930 PMCID: PMC8049517 DOI: 10.1038/s41588-021-00819-w] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/16/2021] [Indexed: 01/31/2023]
Abstract
Exciting therapeutic targets are emerging from CRISPR-based screens of high mutational-burden adult cancers. A key question, however, is whether functional genomic approaches will yield new targets in pediatric cancers, known for remarkably few mutations, which often encode proteins considered challenging drug targets. To address this, we created a first-generation pediatric cancer dependency map representing 13 pediatric solid and brain tumor types. Eighty-two pediatric cancer cell lines were subjected to genome-scale CRISPR-Cas9 loss-of-function screening to identify genes required for cell survival. In contrast to the finding that pediatric cancers harbor fewer somatic mutations, we found a similar complexity of genetic dependencies in pediatric cancer cell lines compared to that in adult models. Findings from the pediatric cancer dependency map provide preclinical support for ongoing precision medicine clinical trials. The vulnerabilities observed in pediatric cancers were often distinct from those in adult cancer, indicating that repurposing adult oncology drugs will be insufficient to address childhood cancers.
Collapse
Affiliation(s)
- Neekesh V Dharia
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Guillaume Kugener
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Lillian M Guenther
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Clare F Malone
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Adam D Durbin
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Oncology, Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Andrew L Hong
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Pediatrics, Emory University and Department of Hematology and Oncology, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Thomas P Howard
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Pratiti Bandopadhayay
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Caroline S Wechsler
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Iris Fung
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | | | | | | | - Phoebe Moh
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- University of Maryland, College Park, MD, USA
| | - Nishant Jha
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Andrew Tang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Jesse S Boehm
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - William C Hahn
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Charles W M Roberts
- Department of Oncology, Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | | | - Todd R Golub
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Francisca Vazquez
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
| | - Kimberly Stegmaier
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
32
|
Shaw TI, Dong L, Tian L, Qian C, Liu Y, Ju B, High A, Kavdia K, Pagala VR, Shaner B, Pei D, Easton J, Janke LJ, Porter SN, Ma X, Cheng C, Pruett-Miller SM, Choi J, Yu J, Peng J, Gu W, Look AT, Downing JR, Zhang J. Integrative network analysis reveals USP7 haploinsufficiency inhibits E-protein activity in pediatric T-lineage acute lymphoblastic leukemia (T-ALL). Sci Rep 2021; 11:5154. [PMID: 33664368 PMCID: PMC7933146 DOI: 10.1038/s41598-021-84647-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 02/16/2021] [Indexed: 12/13/2022] Open
Abstract
USP7, which encodes a deubiquitylating enzyme, is among the most frequently mutated genes in pediatric T-ALL, with somatic heterozygous loss-of-function mutations (haploinsufficiency) predominantly affecting the subgroup that has aberrant TAL1 oncogene activation. Network analysis of > 200 T-ALL transcriptomes linked USP7 haploinsufficiency with decreased activities of E-proteins. E-proteins are also negatively regulated by TAL1, leading to concerted down-regulation of E-protein target genes involved in T-cell development. In T-ALL cell lines, we showed the physical interaction of USP7 with E-proteins and TAL1 by mass spectrometry and ChIP-seq. Haploinsufficient but not complete CRISPR knock-out of USP7 showed accelerated cell growth and validated transcriptional down-regulation of E-protein targets. Our study unveiled the synergistic effect of USP7 haploinsufficiency with aberrant TAL1 activation on T-ALL, implicating USP7 as a haploinsufficient tumor suppressor in T-ALL. Our findings caution against a universal oncogene designation for USP7 while emphasizing the dosage-dependent consequences of USP7 inhibitors currently under development as potential cancer therapeutics.
Collapse
Affiliation(s)
- Timothy I Shaw
- Department of Computational Biology, St Jude Children's Research Hospital, 262 Danny Thomas Place, MS321, Memphis, TN, 38105, USA
| | - Li Dong
- Department of Computational Biology, St Jude Children's Research Hospital, 262 Danny Thomas Place, MS321, Memphis, TN, 38105, USA
| | - Liqing Tian
- Department of Computational Biology, St Jude Children's Research Hospital, 262 Danny Thomas Place, MS321, Memphis, TN, 38105, USA
| | - Chenxi Qian
- Department of Computational Biology, St Jude Children's Research Hospital, 262 Danny Thomas Place, MS321, Memphis, TN, 38105, USA
| | - Yu Liu
- Department of Computational Biology, St Jude Children's Research Hospital, 262 Danny Thomas Place, MS321, Memphis, TN, 38105, USA
| | - Bensheng Ju
- Department of Computational Biology, St Jude Children's Research Hospital, 262 Danny Thomas Place, MS321, Memphis, TN, 38105, USA
| | - Anthony High
- Center for Proteomics and Metabolomics, St Jude Children's Research Hospital, Memphis, USA
| | - Kanisha Kavdia
- Center for Proteomics and Metabolomics, St Jude Children's Research Hospital, Memphis, USA
| | - Vishwajeeth R Pagala
- Center for Proteomics and Metabolomics, St Jude Children's Research Hospital, Memphis, USA
| | - Bridget Shaner
- Department of Computational Biology, St Jude Children's Research Hospital, 262 Danny Thomas Place, MS321, Memphis, TN, 38105, USA
| | - Deqing Pei
- Department of Biostatistics, St Jude Children's Research Hospital, Memphis, USA
| | - John Easton
- Department of Computational Biology, St Jude Children's Research Hospital, 262 Danny Thomas Place, MS321, Memphis, TN, 38105, USA
| | - Laura J Janke
- Department of Pathology, St Jude Children's Research Hospital, Memphis, USA
| | - Shaina N Porter
- Department of Cell and Molecular Biology, St Jude Children's Research Hospital, Memphis, USA
| | - Xiaotu Ma
- Department of Computational Biology, St Jude Children's Research Hospital, 262 Danny Thomas Place, MS321, Memphis, TN, 38105, USA
| | - Cheng Cheng
- Department of Biostatistics, St Jude Children's Research Hospital, Memphis, USA
| | - Shondra M Pruett-Miller
- Department of Cell and Molecular Biology, St Jude Children's Research Hospital, Memphis, USA
| | - John Choi
- Department of Pathology, St Jude Children's Research Hospital, Memphis, USA
| | - Jiyang Yu
- Department of Computational Biology, St Jude Children's Research Hospital, 262 Danny Thomas Place, MS321, Memphis, TN, 38105, USA
| | - Junmin Peng
- Center for Proteomics and Metabolomics, St Jude Children's Research Hospital, Memphis, USA
- Departments of Structural Biology and Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, USA
| | - Wei Gu
- Department of Pathology and Cell Biology and Institute for Cancer Genetics, Columbia University, New York, USA
| | - A Thomas Look
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02216, USA
| | - James R Downing
- Department of Pathology, St Jude Children's Research Hospital, Memphis, USA
| | - Jinghui Zhang
- Department of Computational Biology, St Jude Children's Research Hospital, 262 Danny Thomas Place, MS321, Memphis, TN, 38105, USA.
| |
Collapse
|
33
|
Liu W, Wang S, Lin B, Zhang W, Ji G. Applications of CRISPR/Cas9 in the research of malignant musculoskeletal tumors. BMC Musculoskelet Disord 2021; 22:149. [PMID: 33546657 PMCID: PMC7866880 DOI: 10.1186/s12891-021-04020-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 01/26/2021] [Indexed: 12/05/2022] Open
Abstract
Background Malignant tumors of the musculoskeletal system, especially osteosarcoma, Ewing sarcoma and rhabdomyosarcoma, pose a major threat to the lives and health of adolescents and children. Current treatments for musculoskeletal tumors mainly include surgery, chemotherapy, and radiotherapy. The problems of chemotherapy resistance, poor long-term outcome of radiotherapy, and the inherent toxicity and side effects of chemical drugs make it extremely urgent to seek new treatment strategies. Main text As a potent gene editing tool, the rapid development of CRISPR/Cas9 technology in recent years has prompted scientists to apply it to the study of musculoskeletal tumors. This review summarizes the application of CRISPR/Cas9 technology for the treatment of malignant musculoskeletal tumors, focusing on its essential role in the field of basic research. Conclusion CRISPR, has demonstrated strong efficacy in targeting tumor-related genes, and its future application in the clinical treatment of musculoskeletal tumors is promising.
Collapse
Affiliation(s)
- Wei Liu
- Department of Orthopaedics, Xiang'an Hospital, School of Medicine, Xiamen University, No. 2000 East Xiang'an Road, Xiang'an District, Xiamen, 361102, China
| | - Shubin Wang
- Department of Orthopaedics, Xiang'an Hospital, School of Medicine, Xiamen University, No. 2000 East Xiang'an Road, Xiang'an District, Xiamen, 361102, China
| | - Binhui Lin
- Department of Orthopaedics, Xiang'an Hospital, School of Medicine, Xiamen University, No. 2000 East Xiang'an Road, Xiang'an District, Xiamen, 361102, China
| | - Wei Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Guangrong Ji
- Department of Orthopaedics, Xiang'an Hospital, School of Medicine, Xiamen University, No. 2000 East Xiang'an Road, Xiang'an District, Xiamen, 361102, China.
| |
Collapse
|
34
|
MDM4 inhibition: a novel therapeutic strategy to reactivate p53 in hepatoblastoma. Sci Rep 2021; 11:2967. [PMID: 33536467 PMCID: PMC7859402 DOI: 10.1038/s41598-021-82542-4] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 01/06/2021] [Indexed: 12/14/2022] Open
Abstract
Hepatoblastoma (HB) is the most common pediatric liver malignancy. High-risk patients have poor survival, and current chemotherapies are associated with significant toxicities. Targeted therapies are needed to improve outcomes and patient quality of life. Most HB cases are TP53 wild-type; therefore, we hypothesized that targeting the p53 regulator Murine double minute 4 (MDM4) to reactivate p53 signaling may show efficacy. MDM4 expression was elevated in HB patient samples, and increased expression was strongly correlated with decreased expression of p53 target genes. Treatment with NSC207895 (XI-006), which inhibits MDM4 expression, or ATSP-7041, a stapled peptide dual inhibitor of MDM2 and MDM4, showed significant cytotoxic and antiproliferative effects in HB cells. Similar phenotypes were seen with short hairpin RNA (shRNA)-mediated inhibition of MDM4. Both NSC207895 and ATSP-7041 caused significant upregulation of p53 targets in HB cells. Knocking-down TP53 with shRNA or overexpressing MDM4 led to resistance to NSC207895-mediated cytotoxicity, suggesting that this phenotype is dependent on the MDM4-p53 axis. MDM4 inhibition also showed efficacy in a murine model of HB with significantly decreased tumor weight and increased apoptosis observed in the treatment group. This study demonstrates that inhibition of MDM4 is efficacious in HB by upregulating p53 tumor suppressor signaling.
Collapse
|
35
|
Abstract
Ewing sarcoma (EwS) is a highly aggressive pediatric bone cancer that is defined by a somatic fusion between the EWSR1 gene and an ETS family member, most frequently the FLI1 gene, leading to expression of a chimeric transcription factor EWSR1-FLI1. Otherwise, EwS is one of the most genetically stable cancers. The situation when the major cancer driver is well known looks like a unique opportunity for applying the systems biology approach in order to understand the EwS mechanisms as well as to uncover some general mechanistic principles of carcinogenesis. A number of studies have been performed revealing the direct and indirect effects of EWSR1-FLI1 on multiple aspects of cellular life. Nevertheless, the emerging picture of the oncogene action appears to be highly complex and systemic, with multiple reciprocal influences between the immediate consequences of the driver mutation and intracellular and intercellular molecular mechanisms, including regulation of transcription, epigenome, and tumoral microenvironment. In this chapter, we present an overview of existing molecular profiling resources available for EwS tumors and cell lines and provide an online comprehensive catalogue of publicly available omics and other datasets. We further highlight the systems biology studies of EwS, involving mathematical modeling of networks and integration of molecular data. We conclude that despite the seeming simplicity, a lot has yet to be understood on the systems-wide mechanisms connecting the driver mutation and the major cellular phenotypes of this pediatric cancer. Overall, this chapter can serve as a guide for a systems biology researcher to start working on EwS.
Collapse
|
36
|
The emerging nature of Ubiquitin-specific protease 7 (USP7): a new target in cancer therapy. Drug Discov Today 2020; 26:490-502. [PMID: 33157193 DOI: 10.1016/j.drudis.2020.10.028] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/05/2020] [Accepted: 10/28/2020] [Indexed: 11/24/2022]
Abstract
Human ubiquitin-specific protease 7 (USP7) is a deubiquitinating enzyme that removes the ubiquitin (Ub) protein and spares substrates from degradation. Given its regulation of proteins involved in several cellular processes, abnormal expression and activity of USP7 are associated with several types of disease, including cancer. In this review, we summarize the developments in our understanding of USP7 over the past 5 years, focusing on its role in related cancers. Furthermore, we discuss clinical studies of USP7, including in vivo and pharmacological studies, as well as the development of USP7 inhibitors. A comprehensive understanding of USP7 will expand our knowledge of the structure and function of USP7-mediated signaling and shed light on drug discovery for different diseases in which USP7 is implicated.
Collapse
|
37
|
Dinhof C, Pirker C, Kroiss P, Kirchhofer D, Gabler L, Gojo J, Lötsch-Gojo D, Stojanovic M, Timelthaler G, Ferk F, Knasmüller S, Reisecker J, Spiegl-Kreinecker S, Birner P, Preusser M, Berger W. p53 Loss Mediates Hypersensitivity to ETS Transcription Factor Inhibition Based on PARylation-Mediated Cell Death Induction. Cancers (Basel) 2020; 12:cancers12113205. [PMID: 33143299 PMCID: PMC7693367 DOI: 10.3390/cancers12113205] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/13/2020] [Accepted: 10/26/2020] [Indexed: 01/31/2023] Open
Abstract
Simple Summary ETS transcription factors are potent oncogenic drivers in several cancer types and represent promising therapeutic targets. However, molecular factors influencing response to ETS factor inhibition are widely unknown so far. Here, we uncover that sensitivity of cancer cells against ETS factor blockade by the small molecule inhibitor YK-4-279 is strongly promoted by p53 loss in a MAPK-driven background. Induction of a parthanatos-like cell death based on a deregulated MAPK/ETS1/p53/PARP1 signal axis is identified as underlying molecular mechanism. Hence, this study suggests a novel and biomarker-driven therapeutic strategy for p53-deleted tumours, generally known for their profound therapy resistance. Abstract The small-molecule E26 transformation-specific (ETS) factor inhibitor YK-4-279 was developed for therapy of ETS/EWS fusion-driven Ewing’s sarcoma. Here we aimed to identify molecular factors underlying YK-4-279 responsiveness in ETS fusion-negative cancers. Cell viability screenings that deletion of P53 induced hypersensitization against YK-4-279 especially in the BRAFV600E-mutated colon cancer model RKO. This effect was comparably minor in the BRAF wild-type HCT116 colon cancer model. Out of all ETS transcription factor family members, especially ETS1 overexpression at mRNA and protein level was induced by deletion of P53 specifically under BRAF-mutated conditions. Exposure to YK-4-279 reverted ETS1 upregulation induced by P53 knock-out in RKO cells. Despite upregulation of p53 by YK-4-279 itself in RKOp53 wild-type cells, YK-4-279-mediated hyperphosphorylation of histone histone H2A.x was distinctly more pronounced in the P53 knock-out background. YK-4-279-induced cell death in RKOp53-knock-out cells involved hyperPARylation of PARP1, translocation of the apoptosis-inducible factor AIF into nuclei, and induction of mitochondrial membrane depolarization, all hallmarks of parthanatos. Accordingly, pharmacological PARP as well as BRAFV600E inhibition showed antagonistic activity with YK-4-279 especially in the P53 knock-out background. Taken together, we identified ETS factor inhibition as a promising strategy for the treatment of notoriously therapy-resistant p53-null solid tumours with activating MAPK mutations.
Collapse
Affiliation(s)
- Carina Dinhof
- Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, 1090 Vienna, Austria; (C.D.); (C.P.); (P.K.); (D.K.); (L.G.); (D.L.-G.); (M.S.); (G.T.); (F.F.); (S.K.); (J.R.)
- Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria;
| | - Christine Pirker
- Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, 1090 Vienna, Austria; (C.D.); (C.P.); (P.K.); (D.K.); (L.G.); (D.L.-G.); (M.S.); (G.T.); (F.F.); (S.K.); (J.R.)
- Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria;
| | - Philipp Kroiss
- Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, 1090 Vienna, Austria; (C.D.); (C.P.); (P.K.); (D.K.); (L.G.); (D.L.-G.); (M.S.); (G.T.); (F.F.); (S.K.); (J.R.)
- Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria;
| | - Dominik Kirchhofer
- Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, 1090 Vienna, Austria; (C.D.); (C.P.); (P.K.); (D.K.); (L.G.); (D.L.-G.); (M.S.); (G.T.); (F.F.); (S.K.); (J.R.)
- Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria;
| | - Lisa Gabler
- Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, 1090 Vienna, Austria; (C.D.); (C.P.); (P.K.); (D.K.); (L.G.); (D.L.-G.); (M.S.); (G.T.); (F.F.); (S.K.); (J.R.)
- Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria;
| | - Johannes Gojo
- Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria;
- Department of Pediatrics and Adolescent Medicine and Comprehensive Center for Pediatrics, Medical University of Vienna, 1090 Vienna, Austria
| | - Daniela Lötsch-Gojo
- Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, 1090 Vienna, Austria; (C.D.); (C.P.); (P.K.); (D.K.); (L.G.); (D.L.-G.); (M.S.); (G.T.); (F.F.); (S.K.); (J.R.)
- Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria;
- Department of Neurosurgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Mirjana Stojanovic
- Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, 1090 Vienna, Austria; (C.D.); (C.P.); (P.K.); (D.K.); (L.G.); (D.L.-G.); (M.S.); (G.T.); (F.F.); (S.K.); (J.R.)
- Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria;
| | - Gerald Timelthaler
- Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, 1090 Vienna, Austria; (C.D.); (C.P.); (P.K.); (D.K.); (L.G.); (D.L.-G.); (M.S.); (G.T.); (F.F.); (S.K.); (J.R.)
| | - Franziska Ferk
- Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, 1090 Vienna, Austria; (C.D.); (C.P.); (P.K.); (D.K.); (L.G.); (D.L.-G.); (M.S.); (G.T.); (F.F.); (S.K.); (J.R.)
| | - Siegfried Knasmüller
- Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, 1090 Vienna, Austria; (C.D.); (C.P.); (P.K.); (D.K.); (L.G.); (D.L.-G.); (M.S.); (G.T.); (F.F.); (S.K.); (J.R.)
| | - Johannes Reisecker
- Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, 1090 Vienna, Austria; (C.D.); (C.P.); (P.K.); (D.K.); (L.G.); (D.L.-G.); (M.S.); (G.T.); (F.F.); (S.K.); (J.R.)
| | - Sabine Spiegl-Kreinecker
- Department of Neurosurgery, Neuromed Campus, Kepler University Hospital GmbH, Johannes Kepler University, 4040 Linz, Austria;
| | - Peter Birner
- Clinical Institute of Pathology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Matthias Preusser
- Division of Oncology, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria;
| | - Walter Berger
- Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, 1090 Vienna, Austria; (C.D.); (C.P.); (P.K.); (D.K.); (L.G.); (D.L.-G.); (M.S.); (G.T.); (F.F.); (S.K.); (J.R.)
- Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria;
- Correspondence: ; Tel.: +43-(0)1-40160-57555
| |
Collapse
|
38
|
DUBs Activating the Hedgehog Signaling Pathway: A Promising Therapeutic Target in Cancer. Cancers (Basel) 2020; 12:cancers12061518. [PMID: 32531973 PMCID: PMC7352588 DOI: 10.3390/cancers12061518] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/01/2020] [Accepted: 06/06/2020] [Indexed: 12/29/2022] Open
Abstract
The Hedgehog (HH) pathway governs cell proliferation and patterning during embryonic development and is involved in regeneration, homeostasis and stem cell maintenance in adult tissues. The activity of this signaling is finely modulated at multiple levels and its dysregulation contributes to the onset of several human cancers. Ubiquitylation is a coordinated post-translational modification that controls a wide range of cellular functions and signaling transduction pathways. It is mediated by a sequential enzymatic network, in which ubiquitin ligases (E3) and deubiquitylase (DUBs) proteins are the main actors. The dynamic balance of the activity of these enzymes dictates the abundance and the fate of cellular proteins, thus affecting both physiological and pathological processes. Several E3 ligases regulating the stability and activity of the key components of the HH pathway have been identified. Further, DUBs have emerged as novel players in HH signaling transduction, resulting as attractive and promising drug targets. Here, we review the HH-associated DUBs, discussing the consequences of deubiquitylation on the maintenance of the HH pathway activity and its implication in tumorigenesis. We also report the recent progress in the development of selective inhibitors for the DUBs here reviewed, with potential applications for the treatment of HH-related tumors.
Collapse
|
39
|
Deng W, Li J, Dorrah K, Jimenez-Tapia D, Arriaga B, Hao Q, Cao W, Gao Z, Vadgama J, Wu Y. The role of PPM1D in cancer and advances in studies of its inhibitors. Biomed Pharmacother 2020; 125:109956. [PMID: 32006900 PMCID: PMC7080581 DOI: 10.1016/j.biopha.2020.109956] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/08/2020] [Accepted: 01/23/2020] [Indexed: 12/16/2022] Open
Abstract
A greater understanding of factors causing cancer initiation, progression and evolution is of paramount importance. Among them, the serine/threonine phosphatase PPM1D, also referred to as wild-type p53-induced phosphatase 1 (Wip1) or protein phosphatase 2C delta (PP2Cδ), is emerging as an important oncoprotein due to its negative regulation on a number of crucial cancer suppressor pathways. Initially identified as a p53-regulated gene, PPM1D has been afterwards found amplified and more recently mutated in many human cancers such as breast cancer. The latest progress in this field further reveals that selective inhibition of PPM1D to delay tumor onset or reduce tumor burden represents a promising anti-cancer strategy. Here, we review the advances in the studies of the PPM1D activity and its relevance to various cancers, and recent progress in development of PPM1D inhibitors and discuss their potential application in cancer therapy. Consecutive research on PPM1D and its relationship with cancer is essential, as it ultimately contributes to the etiology and treatment of cancer.
Collapse
Affiliation(s)
- Wenhong Deng
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China; Division of Cancer Research and Training, Department of Internal Medicine, Charles Drew University of Medicine and Science, David Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Jieqing Li
- Division of Cancer Research and Training, Department of Internal Medicine, Charles Drew University of Medicine and Science, David Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Kimberly Dorrah
- Division of Cancer Research and Training, Department of Internal Medicine, Charles Drew University of Medicine and Science, David Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Denise Jimenez-Tapia
- Division of Cancer Research and Training, Department of Internal Medicine, Charles Drew University of Medicine and Science, David Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Brando Arriaga
- Division of Cancer Research and Training, Department of Internal Medicine, Charles Drew University of Medicine and Science, David Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Qiongyu Hao
- Division of Cancer Research and Training, Department of Internal Medicine, Charles Drew University of Medicine and Science, David Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Wei Cao
- Division of Cancer Research and Training, Department of Internal Medicine, Charles Drew University of Medicine and Science, David Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Zhaoxia Gao
- Department of General Surgery, 5th Hospital of Wuhan, Wuhan, 430050, China; Department of Surgery, Johns Hopkins Hospital Bayview Campus, Baltimore, MD, USA
| | - Jay Vadgama
- Division of Cancer Research and Training, Department of Internal Medicine, Charles Drew University of Medicine and Science, David Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA.
| | - Yong Wu
- Division of Cancer Research and Training, Department of Internal Medicine, Charles Drew University of Medicine and Science, David Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA.
| |
Collapse
|
40
|
Identification of a Structural Determinant for Selective Targeting of HDMX. Structure 2020; 28:847-857.e5. [PMID: 32359398 DOI: 10.1016/j.str.2020.04.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/11/2020] [Accepted: 04/11/2020] [Indexed: 11/21/2022]
Abstract
p53 is a critical tumor-suppressor protein that guards the human genome against mutations by inducing cell-cycle arrest or apoptosis. Cancer cells subvert p53 by deletion, mutation, or overexpression of the negative regulators HDM2 and HDMX. For tumors that retain wild-type p53, its reactivation by pharmacologic targeting of HDM2 and/or HDMX represents a promising strategy, with a series of selective small-molecule HDM2 inhibitors and a dual HDM2/HDMX stapled-peptide inhibitor being evaluated in clinical trials. Because selective HDM2 targeting can cause hematologic toxicity, selective HDMX inhibitors could provide an alternative p53-reactivation strategy, but clinical candidates remain elusive. Here, we applied a mutation-scanning approach to uncover p53-based stapled peptides that are selective for HDMX. Crystal structures of stapled-peptide/HDMX complexes revealed a molecular mechanism for the observed specificity, which was validated by HDMX mutagenesis. Thus, we provide a blueprint for the development of HDMX-selective inhibitors to dissect and target the p53/HDMX interaction.
Collapse
|
41
|
Kohlmeyer JL, Gordon DJ, Tanas MR, Monga V, Dodd RD, Quelle DE. CDKs in Sarcoma: Mediators of Disease and Emerging Therapeutic Targets. Int J Mol Sci 2020; 21:E3018. [PMID: 32344731 PMCID: PMC7215455 DOI: 10.3390/ijms21083018] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 12/13/2022] Open
Abstract
Sarcomas represent one of the most challenging tumor types to treat due to their diverse nature and our incomplete understanding of their underlying biology. Recent work suggests cyclin-dependent kinase (CDK) pathway activation is a powerful driver of sarcomagenesis. CDK proteins participate in numerous cellular processes required for normal cell function, but their dysregulation is a hallmark of many pathologies including cancer. The contributions and significance of aberrant CDK activity to sarcoma development, however, is only partly understood. Here, we describe what is known about CDK-related alterations in the most common subtypes of sarcoma and highlight areas that warrant further investigation. As disruptions in CDK pathways appear in most, if not all, subtypes of sarcoma, we discuss the history and value of pharmacologically targeting CDKs to combat these tumors. The goals of this review are to (1) assess the prevalence and importance of CDK pathway alterations in sarcomas, (2) highlight the gap in knowledge for certain CDKs in these tumors, and (3) provide insight into studies focused on CDK inhibition for sarcoma treatment. Overall, growing evidence demonstrates a crucial role for activated CDKs in sarcoma development and as important targets for sarcoma therapy.
Collapse
Affiliation(s)
- Jordan L Kohlmeyer
- Molecular Medicine Graduate Program, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
- The Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, 2-570 Bowen Science Bldg., Iowa City, IA 52242, USA
| | - David J Gordon
- The Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Munir R Tanas
- The Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Varun Monga
- The Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (V.M.); (R.D.D.)
| | - Rebecca D Dodd
- The Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (V.M.); (R.D.D.)
| | - Dawn E Quelle
- Molecular Medicine Graduate Program, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
- The Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, 2-570 Bowen Science Bldg., Iowa City, IA 52242, USA
- The Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| |
Collapse
|
42
|
Qi SM, Cheng G, Cheng XD, Xu Z, Xu B, Zhang WD, Qin JJ. Targeting USP7-Mediated Deubiquitination of MDM2/MDMX-p53 Pathway for Cancer Therapy: Are We There Yet? Front Cell Dev Biol 2020; 8:233. [PMID: 32300595 PMCID: PMC7142254 DOI: 10.3389/fcell.2020.00233] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 03/19/2020] [Indexed: 01/13/2023] Open
Abstract
The p53 tumor suppressor protein and its major negative regulators MDM2 and MDMX oncoproteins form the MDM2/MDMX-p53 circuitry, which plays critical roles in regulating cancer cell growth, proliferation, cell cycle progression, apoptosis, senescence, angiogenesis, and immune response. Recent studies have shown that the stabilities of p53, MDM2, and MDMX are tightly controlled by the ubiquitin-proteasome system. Ubiquitin specific protease 7 (USP7), one of the most studied deubiquitinating enzymes plays a crucial role in protecting MDM2 and MDMX from ubiquitination-mediated proteasomal degradation. USP7 is overexpressed in human cancers and contributes to cancer initiation and progression. USP7 inhibition promotes the degradation of MDM2 and MDMX, activates the p53 signaling, and causes cell cycle arrest and apoptosis, making USP7 a potential target for cancer therapy. Several small-molecule inhibitors of USP7 have been developed and shown promising efficacy in preclinical settings. In the present review, we focus on recent advances in the understanding of the USP7-MDM2/MDMX-p53 network in human cancers as well as the discovery and development of USP7 inhibitors for cancer therapy.
Collapse
Affiliation(s)
- Si-Min Qi
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Gang Cheng
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiang-Dong Cheng
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Zhiyuan Xu
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Beihua Xu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wei-Dong Zhang
- School of Pharmacy, Naval Medical University, Shanghai, China.,Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiang-Jiang Qin
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.,Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| |
Collapse
|
43
|
Breakthrough Technologies Reshape the Ewing Sarcoma Molecular Landscape. Cells 2020; 9:cells9040804. [PMID: 32225029 PMCID: PMC7226764 DOI: 10.3390/cells9040804] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/21/2020] [Accepted: 03/24/2020] [Indexed: 12/14/2022] Open
Abstract
Ewing sarcoma is a highly aggressive round cell mesenchymal neoplasm, most often occurring in children and young adults. At the molecular level, it is characterized by the presence of recurrent chromosomal translocations. In the last years, next-generation technologies have contributed to a more accurate diagnosis and a refined classification. Moreover, the application of these novel technologies has highlighted the relevance of intertumoral and intratumoral molecular heterogeneity and secondary genetic alterations. Furthermore, they have shown evidence that genomic features can change as the tumor disseminates and are influenced by treatment as well. Similarly, next-generation technologies applied to liquid biopsies will significantly impact patient management by allowing the early detection of relapse and monitoring response to treatment. Finally, the use of these novel technologies has provided data of great value in order to discover new druggable pathways. Thus, this review provides concise updates on the latest progress of these breakthrough technologies, underscoring their importance in the generation of key knowledge, prognosis, and potential treatment of Ewing Sarcoma.
Collapse
|
44
|
Schauer NJ, Liu X, Magin RS, Doherty LM, Chan WC, Ficarro SB, Hu W, Roberts RM, Iacob RE, Stolte B, Giacomelli AO, Perera S, McKay K, Boswell SA, Weisberg EL, Ray A, Chauhan D, Dhe-Paganon S, Anderson KC, Griffin JD, Li J, Hahn WC, Sorger PK, Engen JR, Stegmaier K, Marto JA, Buhrlage SJ. Selective USP7 inhibition elicits cancer cell killing through a p53-dependent mechanism. Sci Rep 2020; 10:5324. [PMID: 32210275 PMCID: PMC7093416 DOI: 10.1038/s41598-020-62076-x] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 02/25/2020] [Indexed: 12/21/2022] Open
Abstract
Ubiquitin specific peptidase 7 (USP7) is a deubiquitinating enzyme (DUB) that removes ubiquitin tags from specific protein substrates in order to alter their degradation rate and sub-cellular localization. USP7 has been proposed as a therapeutic target in several cancers because it has many reported substrates with a role in cancer progression, including FOXO4, MDM2, N-Myc, and PTEN. The multi-substrate nature of USP7, combined with the modest potency and selectivity of early generation USP7 inhibitors, has presented a challenge in defining predictors of response to USP7 and potential patient populations that would benefit most from USP7-targeted drugs. Here, we describe the structure-guided development of XL177A, which irreversibly inhibits USP7 with sub-nM potency and selectivity across the human proteome. Evaluation of the cellular effects of XL177A reveals that selective USP7 inhibition suppresses cancer cell growth predominantly through a p53-dependent mechanism: XL177A specifically upregulates p53 transcriptional targets transcriptome-wide, hotspot mutations in TP53 but not any other genes predict response to XL177A across a panel of ~500 cancer cell lines, and TP53 knockout rescues XL177A-mediated growth suppression of TP53 wild-type (WT) cells. Together, these findings suggest TP53 mutational status as a biomarker for response to USP7 inhibition. We find that Ewing sarcoma and malignant rhabdoid tumor (MRT), two pediatric cancers that are sensitive to other p53-dependent cytotoxic drugs, also display increased sensitivity to XL177A.
Collapse
Affiliation(s)
- Nathan J Schauer
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Xiaoxi Liu
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Robert S Magin
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Laura M Doherty
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Systems Biology and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Wai Cheung Chan
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Scott B Ficarro
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Oncologic Pathology and Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Wanyi Hu
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Rebekka M Roberts
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Roxana E Iacob
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
| | - Björn Stolte
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, MA, USA
- Dr. von Hauner Children's Hospital, Department of Pediatrics, University Hospital, LMU Munich, Munich, Germany
- The Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Andrew O Giacomelli
- The Broad Institute of MIT and Harvard University, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | | | - Kyle McKay
- Department of Chemistry, University of Vermont, Burlington, VT, USA
| | - Sarah A Boswell
- Department of Systems Biology and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Ellen L Weisberg
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Arghya Ray
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- The LeBow Institute for Myeloma Therapeutics and Jerome Lipper Myeloma Center, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Dharminder Chauhan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- The LeBow Institute for Myeloma Therapeutics and Jerome Lipper Myeloma Center, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sirano Dhe-Paganon
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Ken C Anderson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- The LeBow Institute for Myeloma Therapeutics and Jerome Lipper Myeloma Center, Dana-Farber Cancer Institute, Boston, MA, USA
| | - James D Griffin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jianing Li
- Department of Chemistry, University of Vermont, Burlington, VT, USA
| | - William C Hahn
- The Broad Institute of MIT and Harvard University, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Peter K Sorger
- Department of Systems Biology and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - John R Engen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
| | - Kimberly Stegmaier
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, MA, USA
- The Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Jarrod A Marto
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Oncologic Pathology and Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Sara J Buhrlage
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
45
|
Xie Y, Yang Y, He Y, Wang X, Zhang P, Li H, Liang S. Synthetic Biology Speeds Up Drug Target Discovery. Front Pharmacol 2020; 11:119. [PMID: 32174833 PMCID: PMC7054250 DOI: 10.3389/fphar.2020.00119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/28/2020] [Indexed: 02/05/2023] Open
Abstract
As a rising emerging field, synthetic biology intends to realize precise regulations of cellular network by constructing artificial synthetic circuits, and it brings great opportunities to treat diseases and discover novel drug targets. Depending on the combination mode of different logic gates, various synthetic circuits are created to carry out multilevel regulations. In given synthetic circuits, drugs often act as inputs to drive circuits operation. It is becoming available to construct drug-responsive gene circuits for experimentally treating various disease models, including metabolic disease, immunity disease, cancer and bacterial infection. Synthetic biology works well in association with the CRISPR system for drug target functional screening. Remarkably, more and more well-designed circuits are developed to discover novel drug targets and precisely regulate drug therapy for diseases.
Collapse
Affiliation(s)
- Yixuan Xie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yanfang Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yu He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Xixi Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Peng Zhang
- Department of Urinary Surgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Haocheng Li
- Department of Mathematics and Statistics, University of Calgary, Calgary, AB, Canada
| | - Shufang Liang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| |
Collapse
|
46
|
Pomella S, Rota R. The CRISP(Y) Future of Pediatric Soft Tissue Sarcomas. Front Chem 2020; 8:178. [PMID: 32232030 PMCID: PMC7083251 DOI: 10.3389/fchem.2020.00178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 02/26/2020] [Indexed: 12/14/2022] Open
Abstract
The RNA-guided clustered regularly interspaced palindromic repeats (CRISPR)/associated nuclease 9 (Cas9)-based genome editing technology has increasingly become a recognized method for translational research. In oncology, the ease and versatility of CRISPR/Cas9 has made it possible to obtain many results in the identification of new target genes and in unravel mechanisms of resistance to therapy. The majority of the studies have been made on adult tumors so far. In this mini review we present an overview on the major aspects of CRISPR/Cas9 technology with a focus on a group of rare pediatric malignancies, soft tissue sarcomas, on which this approach is having promising results.
Collapse
Affiliation(s)
| | - Rossella Rota
- Department of Oncohematology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW We provide an overview of the current landscape of drug development relevant to childhood cancers. We present recent and ongoing efforts to identify therapeutic targets in pediatric cancers. We describe efforts to improve the approach to clinical trials and highlight the role regulatory changes and multistakeholder platforms play in advancing pediatric cancer drug development. RECENT FINDINGS Expanding knowledge of the genetic landscape of pediatric malignancies through clinical genomics studies has yielded an increasing number of potential targets for intervention. In parallel, new therapies for children with cancer have shifted from cytotoxic agents to targeted therapy, with examples of striking activity in patients with tumors driven by oncogenic kinase fusions. Innovative trial designs and recent governmental policies provide opportunities for accelerating development of targeted therapies in pediatric oncology. SUMMARY Novel treatment strategies in pediatric oncology increasingly utilize molecularly targeted agents either as monotherapy or in combination with conventional cytotoxic agents. The interplay between new target identification, efforts to improve clinical trial design and new government regulations relevant to pediatric cancer drug development has the potential to advance novel agents into frontline care of children with cancer.
Collapse
|
48
|
Zhang W, Zhang J, Xu C, Zhang S, Bian S, Jiang F, Ni W, Qu L, Lu C, Ni R, Fan Y, Xiao M, Liu J. Ubiquitin-specific protease 7 is a drug-able target that promotes hepatocellular carcinoma and chemoresistance. Cancer Cell Int 2020; 20:28. [PMID: 32002017 PMCID: PMC6986148 DOI: 10.1186/s12935-020-1109-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/16/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Ubiquitin-specific protease 7 (USP7) is a de-ubiquitin enzyme that plays an essential role in multiple cancers and becomes a target for treatment. However, the role of USP7 and its therapeutic value for HCC remains unclear. METHODS USP7 expression was examined in HCC tissues by western blot and immunohistochemistry. The correlation of USP7 and HCC prognosis was analyzed by Kaplan-Meier survival method. Mass spectrometry was determined and cell proliferation and tumorigenicity assays were conducted in vitro and in vivo treated by P22077 and sgRNA-USP7. RESULTS USP7 expression was significantly increased in HCC and associated with its progression. Interestingly, many HCC cells are sensitive to USP7 inhibition by using P22077. P22077 treatment not only induced cell death but also inhibited cell proliferation and migration in Huh7 and SK-Hep1 cells. In a xenograft model, P22077 efficiently inhibited tumor growth. In chemo-resistant HCC cells, P22077 decreased cell sensitivity to chemotherapy. In addition, mass spectrometry reveals 224 of significantly changed proteins upon P22077 treatment. CONCLUSIONS We demonstrate a critical role of USP7 in HCC devolvement and chemoresistance. Disruption of USP7 function results in dis-regulated several key biological processes and subsequently activates BAX. USP7 might be a novel and drug-able target in HCC.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, 226001 Jiangsu People’s Republic of China
- Medical College, Nantong University, Nantong, 226001 China
| | - Jingxin Zhang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, 226001 Jiangsu People’s Republic of China
- Medical College, Nantong University, Nantong, 226001 China
| | - Chenzhou Xu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, 226001 Jiangsu People’s Republic of China
- Medical College, Nantong University, Nantong, 226001 China
| | - Shiqing Zhang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, 226001 Jiangsu People’s Republic of China
- Medical College, Nantong University, Nantong, 226001 China
| | - Saiyan Bian
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, 226001 Jiangsu People’s Republic of China
- Medical College, Nantong University, Nantong, 226001 China
| | - Feng Jiang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, 226001 Jiangsu People’s Republic of China
| | - Wenkai Ni
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, 226001 Jiangsu People’s Republic of China
| | - Lishuai Qu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, 226001 Jiangsu People’s Republic of China
| | - Cuihua Lu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, 226001 Jiangsu People’s Republic of China
| | - Runzhou Ni
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, 226001 Jiangsu People’s Republic of China
| | - Yihui Fan
- Laboratory of Medical Science, School of Medicine, Nantong University, Jiangsu, 226001 China
| | - Mingbing Xiao
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, 226001 Jiangsu People’s Republic of China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001 Jiangsu People’s Republic of China
| | - Jinxia Liu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, 226001 Jiangsu People’s Republic of China
| |
Collapse
|
49
|
Lei T, Xiao B, He Y, Qu J, Sun Z, Li L. [Development and applications of CRISPR/Cas9 library screening technology in cancer research]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:1381-1386. [PMID: 31852637 DOI: 10.12122/j.issn.1673-4254.2019.11.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The CRISPR/Cas9 technology has developed rapidly in recent years with fast, simple and accurate editing functions to allow gene knockout, knock in, activation and interference. It has become a powerful genetic screening tool and been widely used in various models including cell lines, mice and zebrafish. The application of CRISPR system in constructing genome library for high-throughput screening is the main strategy for target gene research of diseases, especially neoplasms. Here we summarize the rationales and recent development of CRISPR/Cas9 library screening technology, the strategies for improving the off-target effects, the basic workflow of library screening and the application of this technology in tumor research.
Collapse
Affiliation(s)
- Ting Lei
- Department of Laboratory Medicine, General Hospital of Southern Theatre Command of PLA, Guangzhou 510010, China.,Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Bin Xiao
- Department of Laboratory Medicine, General Hospital of Southern Theatre Command of PLA, Guangzhou 510010, China
| | - Yongyin He
- Department of Laboratory Medicine, General Hospital of Southern Theatre Command of PLA, Guangzhou 510010, China.,Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jing Qu
- Department of Laboratory Medicine, General Hospital of Southern Theatre Command of PLA, Guangzhou 510010, China
| | - Zhaohui Sun
- Department of Laboratory Medicine, General Hospital of Southern Theatre Command of PLA, Guangzhou 510010, China
| | - Linhai Li
- Department of Laboratory Medicine, General Hospital of Southern Theatre Command of PLA, Guangzhou 510010, China
| |
Collapse
|
50
|
Burdova K, Storchova R, Palek M, Macurek L. WIP1 Promotes Homologous Recombination and Modulates Sensitivity to PARP Inhibitors. Cells 2019; 8:cells8101258. [PMID: 31619012 PMCID: PMC6830099 DOI: 10.3390/cells8101258] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 09/30/2019] [Accepted: 10/10/2019] [Indexed: 12/23/2022] Open
Abstract
Genotoxic stress triggers a combined action of DNA repair and cell cycle checkpoint pathways. Protein phosphatase 2C delta (referred to as WIP1) is involved in timely inactivation of DNA damage response by suppressing function of p53 and other targets at chromatin. Here we show that WIP1 promotes DNA repair through homologous recombination. Loss or inhibition of WIP1 delayed disappearance of the ionizing radiation-induced 53BP1 foci in S/G2 cells and promoted cell death. We identify breast cancer associated protein 1 (BRCA1) as interactor and substrate of WIP1 and demonstrate that WIP1 activity is needed for correct dynamics of BRCA1 recruitment to chromatin flanking the DNA lesion. In addition, WIP1 dephosphorylates 53BP1 at Threonine 543 that was previously implicated in mediating interaction with RIF1. Finally, we report that inhibition of WIP1 allowed accumulation of DNA damage in S/G2 cells and increased sensitivity of cancer cells to a poly-(ADP-ribose) polymerase inhibitor olaparib. We propose that inhibition of WIP1 may increase sensitivity of BRCA1-proficient cancer cells to olaparib.
Collapse
Affiliation(s)
- Kamila Burdova
- Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, CZ14220 Prague, Czech Republic.
| | - Radka Storchova
- Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, CZ14220 Prague, Czech Republic.
| | - Matous Palek
- Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, CZ14220 Prague, Czech Republic.
| | - Libor Macurek
- Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, CZ14220 Prague, Czech Republic.
| |
Collapse
|