1
|
Yin W, Xue H, Zhang Y, Li R, Liu M, Yue H, Ge D, Liu N. Steroid constituents of Solidago canadensis alleviate LPS-induced inflammation via AMPK regulated mitophagy/NLRP3 and NF-κB pathway. Eur J Pharmacol 2025; 998:177512. [PMID: 40113066 DOI: 10.1016/j.ejphar.2025.177512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 03/04/2025] [Accepted: 03/14/2025] [Indexed: 03/22/2025]
Abstract
Inflammation is a major risk factor for a variety of human diseases, such as sepsis, Inflammatory Bowel Disease (IBD) and also major cardiovascular disease including atherosclerosis. Solidago canadensis is used as a traditional medicine to treat inflammation-related diseases. However, the component with anti-inflammatory activity of Solidago canadensis is not clear. In this study, we aimed to search for new bioactive steroids from Solidago canadensis and investigate their anti-inflammatory activity both in vitro and in vivo. Lipopolysaccharides (LPS)-stimulated RAW264.7 cells, mouse bone marrow-derived macrophages (BMDMs) and peripheral blood mononuclear cells (PBMCs) were used to induce an inflammation response. Compound 10 outperformed other compounds for superior anti-inflammatory activity and significant inhibition of NLR family, pyrin domain containing 3 (NLRP3) inflammasome activation. Mechanistically, compound 10 induced mitophagy by activating AMP-activated protein kinas (AMPK) to suppress NLRP3 inflammasome activation. Inhibiting AMPK by inhibitor BML-275 significantly attenuated compound 10 induced mitophagy and subsequent the NLRP3 inflammasome. Besides, the NF-κB activation, key step in NLRP3 inflammasome priming, was also suppressed by compound 10 via activation of AMPK. In addition, the in vivo experiments showed that compound 10 could alleviate LPS-induced inflammatory and dextran sulfate sodium salt -induced colitis in C57BL/6 mice. Collectively, the present study, for the first time, shows that the steroids compound 10 exhibited anti-inflammatory effect via AMPK/mitophagy/NLRP3 as well as AMPK/NF-κB/NLRP3 signaling pathway, which strongly suggests the therapeutic potential of compound 10 in various inflammatory diseases.
Collapse
Affiliation(s)
- Wenying Yin
- School of Biological Science and Technology, University of Jinan, Jinan, 250024, China.
| | - Han Xue
- School of Biological Science and Technology, University of Jinan, Jinan, 250024, China.
| | - Yongqi Zhang
- School of Biological Science and Technology, University of Jinan, Jinan, 250024, China.
| | - Rongxian Li
- School of Biological Science and Technology, University of Jinan, Jinan, 250024, China.
| | - Mengjia Liu
- School of Biological Science and Technology, University of Jinan, Jinan, 250024, China.
| | - Hongwei Yue
- Department of Emergency Medicine, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital, Shandong University, Jinan, China.
| | - Di Ge
- School of Biological Science and Technology, University of Jinan, Jinan, 250024, China.
| | - Na Liu
- School of Biological Science and Technology, University of Jinan, Jinan, 250024, China.
| |
Collapse
|
2
|
Gong HB, Yan CY, Ye HE, Tan SY, Chen SS, Ye JW, Sun WY, Tan HL, Luo X, Niu J, Li K, Wang JH, Kurihara H, Li YF, He RR. Screening novel anti-inflammatory peptides inhibiting the NLRP3 inflammasome from UHPLC-MS/MS-characterized peptide profiles of cocoa tea protein hydrolysates. Food Res Int 2025; 212:116519. [PMID: 40382080 DOI: 10.1016/j.foodres.2025.116519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/31/2025] [Accepted: 04/21/2025] [Indexed: 05/20/2025]
Abstract
Cocoa tea (Camellia ptilophylla) is a popular beverage enjoyed worldwide, yet its protein-rich residues are often underutilized during processing. In this study, proteins from cocoa tea were extracted and hydrolyzed with alkaline protease to produce cocoa tea protein hydrolysates (CTPH). The results showed that CTPH exhibited promising anti-inflammatory activity. To uncover bioactive peptides, the hydrolysates were analyzed using UHPLC-MS/MS, and potential peptides were screened through molecular docking targeting the NLRP3 inflammasome. In an in vitro model of NLRP3 inflammasome activation, two active peptides, LLR and LIGF, were found to significantly reduce IL-1β production in PMA-differentiated THP-1 macrophages following treatment with nigericin or ATP. These peptides interact with the NACHT domain of NLRP3 via hydrogen bonding and hydrophobic interactions. Their binding to NLRP3 was further confirmed by CETSA assay. These findings suggest that cocoa tea-derived peptides could offer therapeutic potential for managing inflammation.
Collapse
Affiliation(s)
- Hai-Biao Gong
- Department of Pharmacy, The First Affiliated Hospital, Jinan University, Guangzhou 510632, China / College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangzhou Key Laboratory of State Key Laboratory of Bioactive Molecules and Druggability Assessment/Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs/Guangdong Engineering Research Center of Traditional Chinese Medicine & Disease Susceptibility/Guangdong Engineering Research Center of Traditional Chinese Medicine & Health Products/International Cooperative Laboratory of TCM Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/The Second Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510632, China
| | - Chang-Yu Yan
- Department of Pharmacy, The First Affiliated Hospital, Jinan University, Guangzhou 510632, China / College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangzhou Key Laboratory of State Key Laboratory of Bioactive Molecules and Druggability Assessment/Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs/Guangdong Engineering Research Center of Traditional Chinese Medicine & Disease Susceptibility/Guangdong Engineering Research Center of Traditional Chinese Medicine & Health Products/International Cooperative Laboratory of TCM Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/The Second Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510632, China
| | - Hui-Er Ye
- Department of Pharmacy, The First Affiliated Hospital, Jinan University, Guangzhou 510632, China / College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangzhou Key Laboratory of State Key Laboratory of Bioactive Molecules and Druggability Assessment/Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs/Guangdong Engineering Research Center of Traditional Chinese Medicine & Disease Susceptibility/Guangdong Engineering Research Center of Traditional Chinese Medicine & Health Products/International Cooperative Laboratory of TCM Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/The Second Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510632, China
| | - Shuo-Yan Tan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; State Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China
| | - Shi-Sheng Chen
- Guangzhou Springsnow Biotechnology Co., Ltd, Guangzhou 510670, China
| | - Jian-Wen Ye
- Guangzhou Springsnow Biotechnology Co., Ltd, Guangzhou 510670, China
| | - Wan-Yang Sun
- Department of Pharmacy, The First Affiliated Hospital, Jinan University, Guangzhou 510632, China / College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangzhou Key Laboratory of State Key Laboratory of Bioactive Molecules and Druggability Assessment/Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs/Guangdong Engineering Research Center of Traditional Chinese Medicine & Disease Susceptibility/Guangdong Engineering Research Center of Traditional Chinese Medicine & Health Products/International Cooperative Laboratory of TCM Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/The Second Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510632, China
| | - Hong-Li Tan
- Guangzhou Key Laboratory of State Key Laboratory of Bioactive Molecules and Druggability Assessment/Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs/Guangdong Engineering Research Center of Traditional Chinese Medicine & Disease Susceptibility/Guangdong Engineering Research Center of Traditional Chinese Medicine & Health Products/International Cooperative Laboratory of TCM Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/The Second Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510632, China
| | - Xiang Luo
- Guangzhou Key Laboratory of State Key Laboratory of Bioactive Molecules and Druggability Assessment/Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs/Guangdong Engineering Research Center of Traditional Chinese Medicine & Disease Susceptibility/Guangdong Engineering Research Center of Traditional Chinese Medicine & Health Products/International Cooperative Laboratory of TCM Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/The Second Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510632, China; Department of Food Science and Engineering, Jinan University, Guangzhou 510632, Guangdong, China
| | - Jie Niu
- Guangzhou Key Laboratory of State Key Laboratory of Bioactive Molecules and Druggability Assessment/Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs/Guangdong Engineering Research Center of Traditional Chinese Medicine & Disease Susceptibility/Guangdong Engineering Research Center of Traditional Chinese Medicine & Health Products/International Cooperative Laboratory of TCM Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/The Second Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510632, China
| | - Kun Li
- Guangzhou Key Laboratory of State Key Laboratory of Bioactive Molecules and Druggability Assessment/Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs/Guangdong Engineering Research Center of Traditional Chinese Medicine & Disease Susceptibility/Guangdong Engineering Research Center of Traditional Chinese Medicine & Health Products/International Cooperative Laboratory of TCM Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/The Second Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510632, China
| | - Jing-Hao Wang
- Department of Pharmacy, The First Affiliated Hospital, Jinan University, Guangzhou 510632, China / College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Hiroshi Kurihara
- Department of Pharmacy, The First Affiliated Hospital, Jinan University, Guangzhou 510632, China / College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangzhou Key Laboratory of State Key Laboratory of Bioactive Molecules and Druggability Assessment/Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs/Guangdong Engineering Research Center of Traditional Chinese Medicine & Disease Susceptibility/Guangdong Engineering Research Center of Traditional Chinese Medicine & Health Products/International Cooperative Laboratory of TCM Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/The Second Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510632, China.
| | - Yi-Fang Li
- Department of Pharmacy, The First Affiliated Hospital, Jinan University, Guangzhou 510632, China / College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangzhou Key Laboratory of State Key Laboratory of Bioactive Molecules and Druggability Assessment/Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs/Guangdong Engineering Research Center of Traditional Chinese Medicine & Disease Susceptibility/Guangdong Engineering Research Center of Traditional Chinese Medicine & Health Products/International Cooperative Laboratory of TCM Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/The Second Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510632, China.
| | - Rong-Rong He
- Department of Pharmacy, The First Affiliated Hospital, Jinan University, Guangzhou 510632, China / College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangzhou Key Laboratory of State Key Laboratory of Bioactive Molecules and Druggability Assessment/Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs/Guangdong Engineering Research Center of Traditional Chinese Medicine & Disease Susceptibility/Guangdong Engineering Research Center of Traditional Chinese Medicine & Health Products/International Cooperative Laboratory of TCM Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/The Second Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510632, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China.
| |
Collapse
|
3
|
Dai Z, Wang K, Bai C, Li Y, Yu Q, Chen Z, Liao J, Ding J, Wang Y. Discovery of a novel Thiazole amide inhibitor of Inflammasome and Pyroptosis pathways. Bioorg Chem 2025; 160:108477. [PMID: 40252370 DOI: 10.1016/j.bioorg.2025.108477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 04/11/2025] [Accepted: 04/13/2025] [Indexed: 04/21/2025]
Abstract
Upon the activation of inflammasomes, inflammatory caspases cleave and activate gasdermin D (GSDMD), leading to pore formation that causes cell membrane rupture and amplifies downstream inflammatory responses. Dysregulated inflammasome activation and pyroptosis signaling pathways are implicated in numerous inflammatory diseases. In our work, a set of novel thiazole amide compounds with inhibitory activity against NLRP3 inflammasome-induced pyroptosis was identified. Of all the compounds tested, compound 21 demonstrated the most potent anti-pyroptotic effects. It suppressed GSDMD cleavage and decreased IL-1β and lactate dehydrogenase (LDH) release in a concentration-dependent manner. Compound 21 bound to NLRP3 protein and increased the thermal stability of NLRP3 concentration-dependently. The molecular docking and dynamics simulations revealed that compound 21 binds to the NLRP3 protein's active site, suppressing inflammasome activation. Further investigations showed that compound 21 also partially blocked upstream NF-κB signaling and downstream GSDMD N-terminal domain (GSDMD-NT) oligomerization, which explains its broad inhibitory effects on pyroptosis driven by multiple inflammasomes. Overall, this study presents a promising thiazole amide compound with inhibitory activity against inflammasome activation and subsequent pyroptosis, warranting further exploration.
Collapse
Affiliation(s)
- Zhen Dai
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, Sichuan, China.
| | - Ke Wang
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, Sichuan, China
| | - Chenli Bai
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, Sichuan, China
| | - Yong Li
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China.
| | - Quanwei Yu
- Targeted Tracer Research and development laboratory, Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Zhiping Chen
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, Sichuan, China
| | - Jihong Liao
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, Sichuan, China
| | - Jianjun Ding
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Nanjing, China
| | - Yuxi Wang
- Targeted Tracer Research and development laboratory, Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
4
|
Tang H, Zou X, Chen P, Wang Y, Gao S, Wang T, Xu Y, Ji SL. Broxyquinoline targets NLRP3 to inhibit inflammasome activation and alleviate NLRP3-associated inflammatory diseases. Int Immunopharmacol 2025; 156:114687. [PMID: 40253767 DOI: 10.1016/j.intimp.2025.114687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 04/08/2025] [Accepted: 04/14/2025] [Indexed: 04/22/2025]
Abstract
The NLR family pyrin domain-containing 3 (NLRP3) inflammasome is responsible for various pathogenic and non-pathogenic damage signals and plays a critical role in host defense against pathogens and physiological damage. However, inflammasome activation and its subsequent effects also lead to a variety of inflammatory diseases. In this study, we identified broxyquinoline, an FDA-approved antimicrobial drug, as a effective NLRP3 inflammasome inhibitor. Broxyquinoline suppressed NLRP3 inflammasome-dependent interleukin-1β (IL-1β) release, but did not affect NLRC4 or AIM2 inflammasome activation. Mechanistically, broxyquinoline directly targets Arg165 of NLRP3 protein, thus preventing NEK7-NLRP3 interaction, NLRP3 oligomerization, and ASC speck formation, without affecting the NF-κB pathway. Consequently, broxyquinoline significantly attenuated the progression of monosodium urate (MSU)-induced peritonitis and myelin oligodendrocyte glycoprotein (MOG35-55)-induced experimental autoimmune encephalomyelitis (EAE) in murine models. In conclusion, we demonstrated that broxyquinoline directly targets the NLRP3 protein to suppress the activation of NLRP3 inflammasome and provide a promising therapeutic agent for NLRP3 inflammasome-associated diseases.
Collapse
MESH Headings
- NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
- NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors
- NLR Family, Pyrin Domain-Containing 3 Protein/genetics
- Animals
- Inflammasomes/metabolism
- Inflammasomes/antagonists & inhibitors
- Mice
- Peritonitis/drug therapy
- Peritonitis/chemically induced
- Peritonitis/immunology
- Mice, Inbred C57BL
- Humans
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/chemically induced
- Anti-Inflammatory Agents/therapeutic use
- Anti-Inflammatory Agents/pharmacology
- NIMA-Related Kinases/metabolism
- Interleukin-1beta/metabolism
- Female
- Uric Acid
Collapse
Affiliation(s)
- Huaiping Tang
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Xinxin Zou
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Peipei Chen
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Yunshu Wang
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Shenghan Gao
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Tingting Wang
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, China.
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China; Nanjing Neurology Clinical Medical Center, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, China.
| | - Sen-Lin Ji
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.
| |
Collapse
|
5
|
Zeng X, Yuan Y, Li Y, Hu Z, Hu S. Deciphering the NLRP3 inflammasome in diabetic encephalopathy: Molecular insights and emerging therapeutic targets. Exp Neurol 2025; 391:115304. [PMID: 40383363 DOI: 10.1016/j.expneurol.2025.115304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 05/01/2025] [Accepted: 05/11/2025] [Indexed: 05/20/2025]
Abstract
Diabetic encephalopathy (DE) is a neurological complication characterized by neuroinflammation, cognitive impairment, and memory decline, with its pathogenesis closely linked to the activation of the NLRP3 inflammasome. As a central regulator of the innate immune system, the NLRP3 inflammasome plays a pivotal role in DE progression by mediating neuroinflammation, pyroptosis, mitochondrial dysfunction, oxidative stress, endoplasmic reticulum (ER) stress, and microglial polarization. This review systematically explores the molecular mechanisms by which the NLRP3 inflammasome contributes to DE, focusing on its role in neuroinflammatory cascades and neuronal damage, as well as the diabetes-associated physiological changes that exacerbate DE pathogenesis. Furthermore, we summarize emerging therapeutic strategies targeting the NLRP3 inflammasome, including small-molecule inhibitors and bioactive compounds derived from traditional herbal medicine, highlighting their potential for DE treatment. These findings not only advance our understanding of DE but also provide a foundation for developing NLRP3-targeted pharmacological interventions.
Collapse
Affiliation(s)
- Xinyi Zeng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330031, China; The First Clinical Medical College of Nanchang University, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330031, China
| | - Yi Yuan
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330031, China; School of Huankui Academy, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Yujia Li
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330031, China; The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330031, China
| | - Ziyan Hu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330031, China; The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330031, China
| | - Shan Hu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330031, China.
| |
Collapse
|
6
|
Xu W, Wang L, Chen R, Liu Y, Chen W. Pyroptosis and its role in intestinal ischemia-reperfusion injury: a potential therapeutic target. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04261-1. [PMID: 40372474 DOI: 10.1007/s00210-025-04261-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Accepted: 05/02/2025] [Indexed: 05/16/2025]
Abstract
Intestinal ischemia-reperfusion injury (II/RI) is a critical acute condition characterized by complex pathological mechanisms, including various modes of cell death. Among these, pyroptosis has garnered significant attention in recent years. This review explores the characteristics, molecular mechanisms, and implications of pyroptosis in II/RI, with a focus on therapeutic strategies targeting the pyroptosis pathway. Key processes such as NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome activation, caspase-1 activation, and gasdermin D (GSDMD)-mediated membrane pore formation are identified as central to pyroptosis. Compounds like MCC950, CY-09, metformin, and curcumin have shown promise in attenuating II/RI in preclinical studies by modulating these pathways. However, challenges remain in understanding non-canonical pyroptosis pathways, unraveling the exact mechanisms of GSDMD-induced pore formation, and translating these findings into clinical applications. Addressing these gaps will be crucial for developing innovative and effective treatments for II/RI.
Collapse
Affiliation(s)
- Wenping Xu
- Department of Anesthesiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, 650032, China
| | - Lang Wang
- Department of Anesthesiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, 650032, China
| | - Ruili Chen
- Department of Anesthesiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, 650032, China
| | - Yi Liu
- Department of Anesthesiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, 650032, China
| | - Wendong Chen
- Department of Anesthesiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, 650032, China.
| |
Collapse
|
7
|
Singh DD. NLRP3 inflammasome: structure, mechanism, drug-induced organ toxicity, therapeutic strategies, and future perspectives. RSC Med Chem 2025:d5md00167f. [PMID: 40370650 PMCID: PMC12070810 DOI: 10.1039/d5md00167f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Accepted: 04/22/2025] [Indexed: 05/16/2025] Open
Abstract
Drug-induced toxicity is an important issue in clinical medicine, which typically results in organ dysfunction and adverse health consequences. The family of NOD-like receptors (NLRs) includes intracellular proteins involved in recognizing pathogens and triggering innate immune responses, including the activation of the NLRP3 inflammasome. The NLRP3 (nucleotide-binding oligomerization domain-like receptor family, pyrin domain-containing 3) inflammasome is a critical component for both innate and adaptive immune responses and has been implicated in various drug-induced toxicities, including hepatic, renal, and cardiovascular diseases. The unusual activation of the NLRP3 inflammasome causes the release of pro-inflammatory cytokines, such as IL-1β and IL-18, which can lead to more damage to tissues. Targeting NLRP3 inflammasome is a potential therapeutic endeavour for suppressing drug-induced toxicity. This review provides insights into the mechanism, drug-induced organ toxicity, therapeutic strategies, and prospective therapeutic approaches of the NLRP3 inflammasome and summarizes the developing therapies that target the inflammasome unit. This review has taken up one of the foremost endeavours in understanding and inhibiting the NLRP3 inflammasome as a means of generating safer pharmacological therapies.
Collapse
Affiliation(s)
- Desh Deepak Singh
- Amity Institute of Biotechnology, Amity University Rajasthan Jaipur 303002 India +91 9450078260
| |
Collapse
|
8
|
Bahmani F, Shayanmanesh M, Safari M, Alaei A, Yasaman Pouriafar, Rasti Z, Zaker F, Rostami S, Damerchiloo F, Safa M. Bone marrow microenvironment in myelodysplastic neoplasms: insights into pathogenesis, biomarkers, and therapeutic targets. Cancer Cell Int 2025; 25:175. [PMID: 40349084 PMCID: PMC12065391 DOI: 10.1186/s12935-025-03793-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 04/17/2025] [Indexed: 05/14/2025] Open
Abstract
Myelodysplastic neoplasms (MDS) represent a heterogeneous group of malignant hematopoietic stem and progenitor cell (HSPC) disorders characterized by cytopenia, ineffective hematopoiesis, as well as the potential to progress to acute myeloid leukemia (AML). The pathogenesis of MDS is influenced by intrinsic factors, such as genetic insults, and extrinsic factors, including altered bone marrow microenvironment (BMM) composition and architecture. BMM is reprogrammed in MDS, initially to prevent the development of the disease but eventually to provide a survival advantage to dysplastic cells. Recently, inflammation or age-related inflammation in the bone marrow has been identified as a key pathogenic mechanism for MDS. Inflammatory signals trigger stress hematopoiesis, causing HSPCs to emerge from quiescence and resulting in MDS development. A better understanding of the role of the BMM in the pathogenesis of MDS has opened up new avenues for improving diagnosis, prognosis, and treatment of the disease. This article provides a comprehensive review of the current knowledge regarding the significance of the BMM to MDS pathophysiology and highlights recent advances in developing innovative therapies.
Collapse
Affiliation(s)
- Forouzan Bahmani
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Shayanmanesh
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahdi Safari
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amirarsalan Alaei
- Immunology Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Yasaman Pouriafar
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Rasti
- Department of Hematology, School of Allied Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farhad Zaker
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shahrbano Rostami
- Research Institute for Oncology, Hematology and Cell Therapy, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Damerchiloo
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Safa
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Wu JS, Xu CY, Mo SM, Wu XM, Du ZB, Che L, Zhang YL, Yang KL, Li TD, Ge SX, Zhang TY, Lin ZN, Lin YC. Palmitoylated COX-2 Cys555 reprogrammed mitochondrial metabolism in pyroptotic inflammatory injury in patients with post-acute COVID-19 syndrome. J Adv Res 2025:S2090-1232(25)00299-1. [PMID: 40349960 DOI: 10.1016/j.jare.2025.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 05/04/2025] [Accepted: 05/04/2025] [Indexed: 05/14/2025] Open
Abstract
INTRODUCTION The complex interplay between protein palmitoylation, mitochondrial dynamics, and inflammatory responses plays a pivotal role in respiratory diseases. One significant feature of post-acute coronavirus disease 2019 (COVID-19) syndrome (PACS) is the occurrence of a storm of inflammatory cytokines related to the NOD-like receptor protein 3 (NLRP3). However, the specific mechanisms via which palmitoylation affects mitochondrial function and its impact on the NLRP3 inflammasome under pathological respiratory conditions remain to be elucidated. OBJECTIVE This study aimed to investigate how protein palmitoylation influences inflammatory responses and mitochondrial dynamics in respiratory diseases, such as those induced by the SARS-CoV-2 spike S protein in PACS, thereby providing a therapeutic target for inflammatory lung injury. METHODS In vivo experiments were conducted using AdV5-pADM-CMV-COVID-19-S (AdV5-S) nasal drip-treated C57BL/6 mice to assess NLRP3 inflammasome activation and inflammatory response. In vitro experiments were performed using pCMV-S-transfected human lung epithelial BEAS-2B cells to analyze the effects of DHHC5-mediated palmitoylation of cyclooxygenase-2 (COX-2) at cysteine 555 (COX-2Cys555) on mitochondrial metabolism and NLRP3 inflammasome activation. RESULTS Palmitoylation of COX-2Cys555 enhanced its interaction with hexokinase 2 (HK2) to regulate mitochondrial metabolic reprogramming, leading to NLRP3 inflammasome activation and pyroptosis. Pharmacological and genetic suppression of palmitoylation diminished the mitochondrial localization of palmitoylated COX-2 and its interaction with HK2, thereby reducing mitochondrial metabolic reprogramming. Furthermore, genetic intervention targeting DHHC5 (shDhhc5) alleviated NLRP3 activation and pyroptosis, mitigating the chronic inflammatory damage associated with PACS. CONCLUSION This study highlights the regulatory role of COX-2Cys555 palmitoylation in mitochondrial metabolism and lung inflammatory injury, and suggests potential therapeutic targets to combat respiratory pathogenesis linked to palmitoylated COX-2.
Collapse
Affiliation(s)
- Jia-Shen Wu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiang'an Hospital of Xiamen University, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Chi-Yu Xu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiang'an Hospital of Xiamen University, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Su-Min Mo
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiang'an Hospital of Xiamen University, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Xin-Mou Wu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiang'an Hospital of Xiamen University, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Ze-Bang Du
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiang'an Hospital of Xiamen University, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Lin Che
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiang'an Hospital of Xiamen University, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Yi-Ling Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiang'an Hospital of Xiamen University, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Kai-Li Yang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiang'an Hospital of Xiamen University, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Ting-Dong Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiang'an Hospital of Xiamen University, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Sheng-Xiang Ge
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiang'an Hospital of Xiamen University, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Tian-Ying Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiang'an Hospital of Xiamen University, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Zhong-Ning Lin
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiang'an Hospital of Xiamen University, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Yu-Chun Lin
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiang'an Hospital of Xiamen University, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
10
|
Wang J, Li LL, Zhao ZA, Niu CY, Zhao ZG. NLRP3 Inflammasome-mediated pyroptosis in acute lung injury: Roles of main lung cell types and therapeutic perspectives. Int Immunopharmacol 2025; 154:114560. [PMID: 40184810 DOI: 10.1016/j.intimp.2025.114560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/14/2025] [Accepted: 03/23/2025] [Indexed: 04/07/2025]
Abstract
The NLRP3 inflammasome plays a pivotal role in the pathogenesis of acute lung injury (ALI) by regulating pyroptosis, a highly inflammatory form of programmed cell death. NLRP3-mediated pyroptosis leads to alveolar epithelial cell injury, increased pulmonary microvascular endothelial permeability, excessive alveolar macrophage activation, and neutrophil dysfunction, collectively driving ALI progression. In addition to the classical NLRP3-dependent pathway, the non-canonical pyroptosis pathway (caspase-4/5/11) also contributes to ALI by inducing pyroptotic cell death in AECs and ECs, further amplifying NLRP3 activation through damage-associated molecular patterns (DAMP) release. Moreover, neutrophils (NE) pyroptosis exhibits dual roles in ALI, as it enhances pathogen clearance but also exacerbates excessive inflammation and tissue damage, highlighting the complexity of its regulation. Targeting the NLRP3 inflammasome and pyroptotic pathways has emerged as a promising therapeutic strategy for ALI. Various NLRP3 inhibitors (e.g., MCC950, CY-09, OLT1177) and pyroptosis inhibitors have demonstrated significant anti-inflammatory and tissue-protective effects in preclinical models. However, the clinical translation of NLRP3-targeted therapies remains challenging due to off-target effects, potential immunosuppression, lack of patient stratification strategies, and compensatory activation of alternative inflammasomes (e.g., AIM2, NLRC4). Future studies should focus on optimizing the selectivity of NLRP3 inhibitors, developing personalized therapeutic approaches, and exploring combination strategies to enhance their clinical applicability in ALI.
Collapse
Affiliation(s)
- Jing Wang
- Department of Pathophysiology in Basic Medical College, Hebei Medical University, Shijiazhuang, Hebei 050017, China; Institute of Microcirculation, Hebei North University, Zuanshinan Road 11, Zhangjiakou, Hebei 075000, China
| | - Lu-Lu Li
- Institute of Microcirculation, Hebei North University, Zuanshinan Road 11, Zhangjiakou, Hebei 075000, China
| | - Zhen-Ao Zhao
- Institute of Microcirculation, Hebei North University, Zuanshinan Road 11, Zhangjiakou, Hebei 075000, China
| | - Chun-Yu Niu
- Department of Pathophysiology in Basic Medical College, Hebei Medical University, Shijiazhuang, Hebei 050017, China; Institute of Microcirculation, Hebei North University, Zuanshinan Road 11, Zhangjiakou, Hebei 075000, China; Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Zhangjiakou, Hebei 075000, China.
| | - Zi-Gang Zhao
- Institute of Microcirculation, Hebei North University, Zuanshinan Road 11, Zhangjiakou, Hebei 075000, China; Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Zhangjiakou, Hebei 075000, China.
| |
Collapse
|
11
|
Zhang Z, Shimizu T. Recent advances in structural studies of NLRP3 and NLRP1 inflammasome regulation. Curr Opin Struct Biol 2025; 92:103057. [PMID: 40334522 DOI: 10.1016/j.sbi.2025.103057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 05/09/2025]
Abstract
The NOD-like receptor (NLR) family comprises inflammasome sensors that are critical intracellular pattern recognition receptors of the innate immune system. The NLR family members NLRP3 and NLRP1 can be activated by a wide range of pathogenic, chemical, self-derived and stress-related stimuli. In recent years, remarkable progress in functional and structural studies of these two receptors have shed light on their complicated and entirely different activation and regulation mechanisms. This review focuses on recent structural studies of NLRP3 and NLRP1, emphasizing the regulatory steps mediated by various activation and inhibitory factors.
Collapse
Affiliation(s)
- Zhikuan Zhang
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Toshiyuki Shimizu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
12
|
Li Z, Cheng W, Gao K, Liang S, Ke L, Wang M, Fan J, Li D, Zhang P, Xu Z, Li N. Pyroptosis: A spoiler of peaceful coexistence between cells in degenerative bone and joint diseases. J Adv Res 2025; 71:227-262. [PMID: 38876191 DOI: 10.1016/j.jare.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/23/2024] [Accepted: 06/07/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND As people age, degenerative bone and joint diseases (DBJDs) become more prevalent. When middle-aged and elderly people are diagnosed with one or more disorders such as osteoporosis (OP), osteoarthritis (OA), and intervertebral disc degeneration (IVDD), it often signals the onset of prolonged pain and reduced functionality. Chronic inflammation has been identified as the underlying cause of various degenerative diseases, including DBJDs. Recently, excessive activation of pyroptosis, a form of programed cell death (PCD) mediated by inflammasomes, has emerged as a primary driver of harmful chronic inflammation. Consequently, pyroptosis has become a potential target for preventing and treating DBJDs. AIM OF REVIEW This review explored the physiological and pathological roles of the pyroptosis pathway in bone and joint development and its relation to DBJDs. Meanwhile, it elaborated the molecular mechanisms of pyroptosis within individual cell types in the bone marrow and joints, as well as the interplay among different cell types in the context of DBJDs. Furthermore, this review presented the latest compelling evidence supporting the idea of regulating the pyroptosis pathway for DBJDs treatment, and discussed the potential, limitations, and challenges of various therapeutic strategies involving pyroptosis regulation. KEY SCIENTIFIC CONCEPTS OF REVIEW In summary, an interesting identity for the unregulated pyroptosis pathway in the context of DBJDs was proposed in this review, which was undertaken as a spoiler of peaceful coexistence between cells in a degenerative environment. Over the extended course of DBJDs, pyroptosis pathway perpetuated its activity through crosstalk among pyroptosis cascades in different cell types, thus exacerbating the inflammatory environment throughout the entire bone marrow and joint degeneration environment. Correspondingly, pyroptosis regulation therapy emerged as a promising option for clinical treatment of DBJDs.
Collapse
Affiliation(s)
- Zhichao Li
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wenxiang Cheng
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Kuanhui Gao
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Songlin Liang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Liqing Ke
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Mengjie Wang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Jilin Fan
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Dandan Li
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050011, China
| | - Peng Zhang
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Faculty of Biomedical Engineering, Shenzhen University of Advanced Technology, Shenzhen 518000, China; Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, 518000 China; Shandong Zhongke Advanced Technology Co., Ltd., Jinan, 250300 China.
| | - Zhanwang Xu
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Nianhu Li
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| |
Collapse
|
13
|
Lu Y, Cheng L, Xiong Y, Huang C, Liu Z, Shen C, Wang H, Qiu Y, Yang SB, Wu M, Zhang X. NLRP3 Inflammasome in Vascular Dementia: Regulatory Mechanisms, Functions, and Therapeutic Implications: A Comprehensive Review. CNS Neurosci Ther 2025; 31:e70403. [PMID: 40326096 PMCID: PMC12052953 DOI: 10.1111/cns.70403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/20/2025] [Accepted: 04/10/2025] [Indexed: 05/07/2025] Open
Abstract
BACKGROUND Vascular dementia, the second most common type of dementia globally after Alzheimer's disease, is associated with neuroinflammation. Activation of the NLRP3 inflammasome, an important pattern recognition receptor in human innate immunity, plays a key role in the pathogenesis of vascular dementia. RESULTS The NLRP3 inflammasome pathway destroys neuronal cells primarily through the production of IL-18 and IL-1β. Moreover, it exacerbates vascular dementia by producing IL-18, IL-1β, and the N-terminal fragment of GSDMD, which also contributes to neuronal cell death. Thus, blocking the NLRP3 inflammasome pathway presents a new therapeutic strategy for treating vascular dementia, thereby delaying or curing the disease more effectively and mitigating adverse effects. CONCLUSIONS This review explores the role and mechanisms of the NLRP3 inflammasome in vascular dementia, summarizing current research and therapeutic strategies. Investigating the activation of the NLRP3 inflammasome can reveal the pathogenesis of vascular dementia from a new perspective and propose innovative preventive and treatment strategies.
Collapse
Affiliation(s)
- Yujia Lu
- Department of PathologyClinical Medical School of Jiujiang UniversityJiujiangJiangxiChina
- Jiujiang Clinical Precision Medicine Research CenterJiujiangJiangxiChina
| | - Lin Cheng
- Jiujiang Clinical Precision Medicine Research CenterJiujiangJiangxiChina
- Department of NeurologyClinical Medical School of Jiujiang UniversityJiujiangJiangxiChina
| | - Yinyi Xiong
- Jiujiang Clinical Precision Medicine Research CenterJiujiangJiangxiChina
- Department of RehabilitationClinical Medical School of Jiujiang UniversityJiujiangJiangxiChina
| | - Chunyan Huang
- Jiujiang Clinical Precision Medicine Research CenterJiujiangJiangxiChina
| | - Ziying Liu
- Department of PathologyClinical Medical School of Jiujiang UniversityJiujiangJiangxiChina
- Jiujiang Clinical Precision Medicine Research CenterJiujiangJiangxiChina
| | - Chunxiao Shen
- Department of PathologyClinical Medical School of Jiujiang UniversityJiujiangJiangxiChina
- Jiujiang Clinical Precision Medicine Research CenterJiujiangJiangxiChina
| | - Huaying Wang
- Department of PathologyClinical Medical School of Jiujiang UniversityJiujiangJiangxiChina
- Jiujiang Clinical Precision Medicine Research CenterJiujiangJiangxiChina
| | - Yuemin Qiu
- Department of PathologyClinical Medical School of Jiujiang UniversityJiujiangJiangxiChina
- Jiujiang Clinical Precision Medicine Research CenterJiujiangJiangxiChina
| | - Seung Bum Yang
- Department of ParamedicineWonkwang Health Science UniversityIksanRepublic of Korea
| | - Moxin Wu
- Jiujiang Clinical Precision Medicine Research CenterJiujiangJiangxiChina
| | - Xiaorong Zhang
- Department of PathologyClinical Medical School of Jiujiang UniversityJiujiangJiangxiChina
- Jiujiang Clinical Precision Medicine Research CenterJiujiangJiangxiChina
| |
Collapse
|
14
|
Ye L, Huang W, Li W, Yao Y, Peng Q, Fu Z, Xie S, He Q, Liu Y, Wan P, Sun B. Loteprednol etabonate alleviates NLRP3 inflammasome-associated inflammatory diseases in mice by suppressing the transcription of IL-1β. Int J Biol Macromol 2025; 306:141644. [PMID: 40032104 DOI: 10.1016/j.ijbiomac.2025.141644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/24/2025] [Accepted: 02/28/2025] [Indexed: 03/05/2025]
Abstract
Excessive activation of the NLRP3 inflammasome leads to cellular inflammation and tissue damage. Finding an inhibitor of its activation is urgent need for NLRP3 inflammasome-associated inflammatory diseases. In this study, we identified Loteprednol etabonate (LE), a well-known anti-inflammatory drug for ocular conditions, as a potent inhibitor of NLRP3 inflammasome activation through screening an FDA-approved drug library. In cellular models, LE significantly reduced IL-1β transcription, suppressed NLRP3 inflammasome activation, and finally inhibited the maturation and secretion of IL-1β and GSDMD-mediated pyroptosis. Mechanistic investigations showed that LE might inhibit IL-1β transcription by blocking both NF-κB and AP-1 signaling pathways. Furthermore, in mouse models of NLRP3 inflammasome-associated inflammatory diseases, including LPS-induced sepsis and DSS-induced colitis, intraperitoneal injection of LE significantly suppressed inflammatory response and improved mice survival rate. Collectively, these findings identify LE as a novel inhibitor of NLRP3 inflammasome activation, offering a promising therapeutic strategy for the treatment of NLRP3 inflammasome-associated inflammatory diseases.
Collapse
Affiliation(s)
- Lirui Ye
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Weichen Huang
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Weiling Li
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Yulin Yao
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Qian Peng
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Zhengqi Fu
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Shoufeng Xie
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Qi He
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Yuchen Liu
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Pin Wan
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China; Department of Immunology, School of Medicine, Jianghan University, Wuhan 430056, China.
| | - Binlian Sun
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China; Department of Immunology, School of Medicine, Jianghan University, Wuhan 430056, China.
| |
Collapse
|
15
|
Paik S, Kim JK, Shin HJ, Park EJ, Kim IS, Jo EK. Updated insights into the molecular networks for NLRP3 inflammasome activation. Cell Mol Immunol 2025:10.1038/s41423-025-01284-9. [PMID: 40307577 DOI: 10.1038/s41423-025-01284-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 03/17/2025] [Indexed: 05/02/2025] Open
Abstract
Over the past decade, significant advances have been made in our understanding of how NACHT-, leucine-rich-repeat-, and pyrin domain-containing protein 3 (NLRP3) inflammasomes are activated. These findings provide detailed insights into the transcriptional and posttranslational regulatory processes, the structural-functional relationship of the activation processes, and the spatiotemporal dynamics of NLRP3 activation. Notably, the multifaceted mechanisms underlying the licensing of NLRP3 inflammasome activation constitute a focal point of intense research. Extensive research has revealed the interactions of NLRP3 and its inflammasome components with partner molecules in terms of positive and negative regulation. In this Review, we provide the current understanding of the complex molecular networks that play pivotal roles in regulating NLRP3 inflammasome priming, licensing and assembly. In addition, we highlight the intricate and interconnected mechanisms involved in the activation of the NLRP3 inflammasome and the associated regulatory pathways. Furthermore, we discuss recent advances in the development of therapeutic strategies targeting the NLRP3 inflammasome to identify potential therapeutics for NLRP3-associated inflammatory diseases. As research continues to uncover the intricacies of the molecular networks governing NLRP3 activation, novel approaches for therapeutic interventions against NLRP3-related pathologies are emerging.
Collapse
Affiliation(s)
- Seungwha Paik
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- System Network Inflammation Control Research Center, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Biomedical Research Institute, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Jin Kyung Kim
- Department of Microbiology, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Hyo Jung Shin
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Department of Biochemistry and Cell Biology, Eulji University School of Medicine, Daejeon, Republic of Korea
- Brain Research Institute, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Eun-Jin Park
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - In Soo Kim
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Biomedical Research Institute, Chungnam National University Hospital, Daejeon, Republic of Korea
- Department of Pharmacology, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea.
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea.
- Biomedical Research Institute, Chungnam National University Hospital, Daejeon, Republic of Korea.
| |
Collapse
|
16
|
Wei X, Ran S, Yan X, Huang J, Xue L, He TC, Zhang H, Wu S. Pyroptosis in Pulpitis. J Inflamm Res 2025; 18:5867-5879. [PMID: 40322528 PMCID: PMC12050040 DOI: 10.2147/jir.s516502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 04/19/2025] [Indexed: 05/08/2025] Open
Abstract
Pulpitis is an inflammatory disease occurs in the pulp tissues. Continuous development of pulpitis can lead to apical periodontitis and seriously damage the function of teeth, affecting the oral health and daily life of patients. Pyroptosis, alternatively termed inflammatory necrosis, is a type of programmed cell death that is characterized by the swelling of cells until the cell membrane is broken. The GSDM family of proteins can be activated by a variety of pathways, which can lead to the puncture of cell membrane, inducing the release of cellular contents and inflammatory cytokines like IL-1β and IL-18 to activate a strong inflammatory response. Pyroptosis in dental pulp may be an important direction to find new targets for pulpal inflammation prevention and treatment, which deserves further study. In this article, we reviewed the activation mechanism and potential role of pyroptosis in the progression of pulpitis, along with the interaction between pyroptosis and other regulated cell death (RCD) pathways. This review aims to enrich the mechanism under the development of dental pulp inflammation, and to uncover potential therapeutic targets for early alleviation and treatment of pulp inflammation.
Collapse
Affiliation(s)
- Xiaorui Wei
- The Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Municipal Health Commission Key Laboratory of Oral Biomedical Engineering, Chongqing, People’s Republic of China
| | - Shidian Ran
- The Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Municipal Health Commission Key Laboratory of Oral Biomedical Engineering, Chongqing, People’s Republic of China
| | - Xingrui Yan
- The Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Municipal Health Commission Key Laboratory of Oral Biomedical Engineering, Chongqing, People’s Republic of China
| | - Jindie Huang
- The Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Municipal Health Commission Key Laboratory of Oral Biomedical Engineering, Chongqing, People’s Republic of China
| | - Linyu Xue
- The Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Municipal Health Commission Key Laboratory of Oral Biomedical Engineering, Chongqing, People’s Republic of China
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Hongmei Zhang
- The Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Municipal Health Commission Key Laboratory of Oral Biomedical Engineering, Chongqing, People’s Republic of China
| | - Si Wu
- The Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Municipal Health Commission Key Laboratory of Oral Biomedical Engineering, Chongqing, People’s Republic of China
| |
Collapse
|
17
|
Maurya R, Sharma A, Naqvi S. Decoding NLRP3 Inflammasome Activation in Alzheimer's Disease: A Focus on Receptor Dynamics. Mol Neurobiol 2025:10.1007/s12035-025-04918-1. [PMID: 40232645 DOI: 10.1007/s12035-025-04918-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 04/03/2025] [Indexed: 04/16/2025]
Abstract
Alzheimer's disease (AD) is a leading neurodegenerative disorder marked by progressive cognitive decline and significant neuropsychiatric disturbances. Neuroinflammation, mediated by the NLRP3 inflammasome, is increasingly recognized as a critical factor in AD pathogenesis. The NLRP3 inflammasome, a crucial component of the innate immune system, is activated in response to both pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). In AD, amyloid-beta (Aβ) plaques and tau aggregates act as DAMPs, triggering NLRP3 inflammasome activation in microglia and astrocytes. This activation leads to the production of pro-inflammatory cytokines IL-1β and IL-18, contributing to chronic neuroinflammation and neuronal death. This review explores the intricate mechanisms involved in NLRP3 activation, with a particular focus on TREM-2, Msn Kinase MINK, NF-κB, Toll-like receptors, and P2X7 receptors. Understanding these mechanisms offers insight into the multifaceted regulation of the NLRP3 inflammasome and its impact on AD pathology. By elucidating the roles of TREM-2, MINK1, NF-κB, TLRs, and P2X7 receptors, this review highlights potential therapeutic targets for modulating NLRP3 activity. Targeting these pathways could offer novel strategies for mitigating neuroinflammation and slowing the progression of AD. The interplay between these receptors and signaling pathways underscores the complexity of NLRP3 inflammasome regulation and its significance in AD, providing a foundation for future research aimed at developing effective therapeutic interventions.
Collapse
Affiliation(s)
- Ranika Maurya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER-R), Lucknow, UP, 226002, India
| | - Abha Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER-R), Lucknow, UP, 226002, India
| | - Saba Naqvi
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER-R), Lucknow, UP, 226002, India.
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER-R), Lucknow, UP, 226002, India.
| |
Collapse
|
18
|
Hu T, Fang Z. Explore potential immune-related targets of leeches in the treatment of type 2 diabetes based on network pharmacology and machine learning. Front Genet 2025; 16:1554622. [PMID: 40296871 PMCID: PMC12036332 DOI: 10.3389/fgene.2025.1554622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/25/2025] [Indexed: 04/30/2025] Open
Abstract
Introduction Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder that poses a significant global health burden due to its profound effects on systemic physiological homeostasis. Without timely intervention, the disease can progress insidiously, leading to multisystem complications such as cardiovascular, renal, and neuropathic pathologies. Consequently, pharmacological intervention becomes crucial in managing the condition. Leeches have been traditionally used in Chinese medicine for their potential to inhibit the progression of T2DM and its associated complications; however, the specific mechanisms underlying their action and target pathways remain poorly understood. The objective of this study was to predict potential therapeutic targets of leeches in the treatment of T2DM. Methods We collected active components and targets associated with leeches from four online databases, while disease-related targets were sourced from the GeneCards and OMIM databases. Following this, we performed Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Gene expression data were obtained from the GSE184050 dataset. Important immune cell types were identified through immunoinfiltration analysis in conjunction with single sample enrichment analysis (ssGSEA). Additionally, weighted co-expression network analysis (WGCNA) was utilized to identify significantly associated genes. Finally, we employed LASSO regression, SVM-RFE, XGBoost, and random forest algorithms to further predict potential targets, followed by validation through molecular docking. Results Leeches may influence cellular immunity by modulating immune receptor activity, particularly through the activation of RGS10, CAPS2, and OPA1, thereby impacting the pathology of Type 2 Diabetes Mellitus (T2DM). Discussion However, it is important to note that our results lack experimental validation; therefore, further research is warranted to substantiate these findings.
Collapse
Affiliation(s)
- Tairan Hu
- Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Zhaohui Fang
- Department of Cardioiogy, First Hospital Affiliated to Anhui University of Traditional Chinese Medicine, Branch of National Clinical Research Center for Chinese Medicine Cardiology, Institution of Cardiovascular Disease, Anhui Academy of Chinese Medicine Sciences, Hefei, China
| |
Collapse
|
19
|
Liu X, He H, Qi M, Jiang Z, Lin B, Wang X, Wang D, Ma M, Jiang W, Zhou R. A small molecule directly targets NLRP3 to promote inflammasome activation and antitumor immunity. Cell Death Dis 2025; 16:252. [PMID: 40185713 PMCID: PMC11971322 DOI: 10.1038/s41419-025-07578-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 03/02/2025] [Accepted: 03/20/2025] [Indexed: 04/07/2025]
Abstract
Immune checkpoint blockade (ICB) therapies have emerged as promising treatment of cancer, but the efficacy is limited. NLRP3 inflammasome activation in tumor microenvironment can promote the infiltration of cytotoxic lymphocytes and antitumor immunity, but it is unclear whether ICB resistance can be overcome by directly targeting NLRP3. Here we show that a small molecule compound directly targeting NLRP3 can induce inflammasome activation and anti-tumor immunity. 2-guanidinobezimidazole (2GBI) directly bound to NLRP3 and induced inflammasome activation, which was independent of potassium efflux, chloride efflux and mitochondrial dysfunction. 2GBI treatment alone promoted anti-tumor immunity and inhibited tumor growth via NLRP3-dependent manner. Moreover, 2GBI treatment could overcome ICB resistance and exerted synergistic anti-tumor effects. These results suggest that targeting NLRP3 is a potential strategy to induce anti-tumor immunity and improve the efficacy of ICB.
Collapse
Affiliation(s)
- Xuemei Liu
- National Key Laboratory of immune response and immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Hongbin He
- National Key Laboratory of immune response and immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Minghui Qi
- National Key Laboratory of immune response and immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhongjun Jiang
- National Key Laboratory of immune response and immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Bolong Lin
- National Key Laboratory of immune response and immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Xiaqiong Wang
- National Key Laboratory of immune response and immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Di Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Ming Ma
- National Key Laboratory of immune response and immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| | - Wei Jiang
- National Key Laboratory of immune response and immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| | - Rongbin Zhou
- National Key Laboratory of immune response and immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
20
|
Montazeri-Khosh Z, Ebrahimpour A, Keshavarz M, Sheybani-Arani M, Samiei A. Combination therapies and other therapeutic approaches targeting the NLRP3 inflammasome and neuroinflammatory pathways: a promising approach for traumatic brain injury. Immunopharmacol Immunotoxicol 2025; 47:159-175. [PMID: 39762721 DOI: 10.1080/08923973.2024.2444956] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/15/2024] [Indexed: 03/29/2025]
Abstract
OBJECTIVES Traumatic brain injury (TBI) precipitates a neuroinflammatory cascade, with the NLRP3 inflammasome emerging as a critical mediator. This review scrutinizes the complex activation pathways of the NLRP3 inflammasome by underscoring the intricate interplay between calcium signaling, mitochondrial disturbances, redox imbalances, lysosomal integrity, and autophagy. It is hypothesized that a combination therapy approach-integrating NF-κB pathway inhibitors with NLRP3 inflammasome antagonists-holds the potential to synergistically dampen the inflammatory storm associated with TBI. METHODS A comprehensive analysis of literature detailing NLRP3 inflammasome activation pathways and therapeutic interventions was conducted. Empirical evidence supporting the concurrent administration of MCC950 and Rapamycin was reviewed to assess the efficacy of dual-action strategies compared to single-agent treatments. RESULTS Findings highlight potassium efflux and calcium signaling as novel targets for intervention, with cathepsin B inhibitors showing promise in mitigating neuroinflammation. Dual therapies, particularly MCC950 and Rapamycin, demonstrate enhanced efficacy in reducing neuroinflammation. Autophagy promotion, alongside NLRP3 inhibition, emerges as a complementary therapeutic avenue to reverse neuroinflammatory damage. CONCLUSION Combination therapies targeting the NLRP3 inflammasome and related pathways offer significant potential to enhance recovery in TBI patients. This review presents compelling evidence for the development of such strategies, marking a new frontier in neuroinflammatory research and therapeutic innovation.
Collapse
Affiliation(s)
- Zana Montazeri-Khosh
- Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Ahmad Ebrahimpour
- Student Research Committee, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mina Keshavarz
- Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | | | - Afshin Samiei
- Tobacco and Health Research Center, Endocrinology and Metabolism Research Center, Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
21
|
Zou G, Tang Y, Yang J, Fu S, Li Y, Ren X, Zhou N, Zhao W, Gao J, Ruan Z, Jiang Z. Signal-induced NLRP3 phase separation initiates inflammasome activation. Cell Res 2025:10.1038/s41422-025-01096-6. [PMID: 40164768 DOI: 10.1038/s41422-025-01096-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/03/2025] [Indexed: 04/02/2025] Open
Abstract
NLRP3 inflammasome is activated by diverse stimuli including infections, intracellular and environmental irritants. How NLRP3 senses these unrelated stimuli and what activates NLRP3 remain unknown. Here we report that signal-dependent NLRP3 phase separation initiated its activation, in which the palmitoyltransferase ZDHHC7-mediated tonic NLRP3 palmitoylation and an IDR region in the FISNA domain of NLRP3 play important roles. Moreover, three conserved hydrophobic residues in the IDR critically mediate multivalent weak interactions. NLRP3-activating stimuli including K+ efflux and NLRP3-interacting molecules imiquimod, palmitate, and cardiolipin all cause NLRP3 conformational change and induce its phase separation and activation in cells and/or in vitro. Surprisingly, amphiphilic molecules like di-alcohols used to inhibit biomolecular phase separation and chemotherapeutic drugs doxorubicin and paclitaxel activate NLRP3 independently of ZDHHC7 by directly inducing NLRP3 phase separation. Mechanistically, amphiphilic molecules decrease the solubility of both palmitoylated and non-palmitoylated NLRP3 to directly induce its phase separation and activation while NLRP3 palmitoylation reduces its solubility to some extent without activation. Therefore, ZDHHC7-mediated NLRP3 palmitoylation in resting cells licenses its activation by lowering the threshold for NLRP3 phase separation in response to any of the diverse stimuli whereas NLRP3 solubility-reducing molecules like di-alcohols and chemotherapeutic drugs activate NLRP3 directly. The signal-induced NLRP3 phase separation likely provides the simplest and most direct mechanistic basis for NLRP3 activation.
Collapse
Affiliation(s)
- Gonglu Zou
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Yuluan Tang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Jie Yang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Shuo Fu
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Yuheng Li
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Xuanyao Ren
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Nanhai Zhou
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Wenlong Zhao
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Juyi Gao
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Ziran Ruan
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Zhengfan Jiang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
22
|
Xu W, Huang Y, Zhou R. NLRP3 inflammasome in neuroinflammation and central nervous system diseases. Cell Mol Immunol 2025; 22:341-355. [PMID: 40075143 PMCID: PMC11955557 DOI: 10.1038/s41423-025-01275-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
Neuroinflammation plays an important role in the pathogenesis of various central nervous system (CNS) diseases. The NLRP3 inflammasome is an important intracellular multiprotein complex composed of the innate immune receptor NLRP3, the adaptor protein ASC, and the protease caspase-1. The activation of the NLRP3 inflammasome can induce pyroptosis and the release of the proinflammatory cytokines IL-1β and IL-18, thus playing a central role in immune and inflammatory responses. Recent studies have revealed that the NLRP3 inflammasome is activated in the brain to induce neuroinflammation, leading to further neuronal damage and functional impairment, and contributes to the pathological process of various neurological diseases, such as multiple sclerosis, Parkinson's disease, Alzheimer's disease, and stroke. In this review, we summarize the important role of the NLRP3 inflammasome in the pathogenesis of neuroinflammation and the pathological course of CNS diseases and discuss potential approaches to target the NLRP3 inflammasome for the treatment of CNS diseases.
Collapse
Grants
- 81821001, 82130107, 82330052, 82202038, U20A20359 National Natural Science Foundation of China (National Science Foundation of China)
- National Key research and development program of China (grant number (2020YFA0509101), The Strategic Priority Research Program of the Chinese Academy of Sciences (XDB0940000),
- MEXT | JST | Strategic Promotion of Innovative R and D (Strategic Promotion of Innovative R&D)
- the CAS Project for Young Scientists in Basic Research (YSBR-074) and the Fundamental Research Funds for the Central Universities, the outstanding Youth Project of Anhui Provincial Natural Science Foundation (2408085Y049), the Research Start-up Funding of the Institute of Health and Medicine, Hefei Comprehensive National Science Center (2024KYQD004), the Natural Science Foundation of Jiangsu Province (BK20221085),
- The key project of Anhui Provincial Department of Education Fund (2024AH052060).
Collapse
Affiliation(s)
- Wen Xu
- Neurology Department, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China
| | - Yi Huang
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, 230601, China.
| | - Rongbin Zhou
- National Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China.
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
| |
Collapse
|
23
|
Liang JY, Yuan XL, Jiang JM, Zhang P, Tan K. Targeting the NLRP3 inflammasome in Parkinson's disease: From molecular mechanism to therapeutic strategy. Exp Neurol 2025; 386:115167. [PMID: 39884329 DOI: 10.1016/j.expneurol.2025.115167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/13/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
Parkinson's disease is the second most common neurodegenerative disease, characterized by substantial loss of dopaminergic (DA) neurons, the formation of Lewy bodies (LBs) in the substantia nigra, and pronounced neuroinflammation. The nucleotide-binding domain like leucine-rich repeat- and pyrin domain-containing protein 3 (NLRP3) inflammasome is one of the pattern recognition receptors (PRRs) that function as intracellular sensors in response to both pathogenic microbes and sterile triggers associated with Parkinson's disease. These triggers include reactive oxygen species (ROS), misfolding protein aggregation, and potassium ion (K+) efflux. Upon activation, it recruits and activates caspase-1, then processes the pro-inflammatory cytokines interleukin-1β (IL-1β) and IL-18, which mediate neuroinflammation in Parkinson's disease. In this review, we provide a comprehensive overview of NLRP3 inflammasome, detailing its structure, activation pathways, and the factors that trigger its activation. We also explore the pathological mechanisms by which NLRP3 contributes to Parkinson's disease and discuss potential strategies for targeting NLRP3 as a therapeutic approach.
Collapse
Affiliation(s)
- Jin-Yu Liang
- Department of Clinical Laboratory Medicine, Zhuzhou Kind Cardiovascular Disease Hospital, Hunan Province, China
| | - Xiao-Lei Yuan
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Jia-Mei Jiang
- Institute of Neurology, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421000, Hunan, PR China
| | - Ping Zhang
- Department of Neurology, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421000, Hunan, PR China
| | - Kuang Tan
- Department of Clinical Laboratory Medicine, Zhuzhou Kind Cardiovascular Disease Hospital, Hunan Province, China.
| |
Collapse
|
24
|
Khadour FA, Khadour YA, Xu T. Electroacupuncture delays the progression of juvenile collagen-induced arthritis via regulation NLRP3/ NF-κB signaling pathway -mediated pyroptosis and its influence on autophagy. Clin Rheumatol 2025; 44:1713-1728. [PMID: 40067573 DOI: 10.1007/s10067-025-07354-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/22/2025] [Accepted: 01/24/2025] [Indexed: 04/13/2025]
Abstract
BACKGROUND Juvenile idiopathic arthritis (JIA) can lead to synovial inflammation. JIA is a chronic autoimmune inflammatory condition that primarily affects children. It is recognized as the most prevalent form of arthritis in the pediatric population and is associated with significant impairment and disability. Electroacupuncture (EA) effectively treats various synovium-related conditions, including symptoms of synovial inflammation, in both human and animal models. However, the specific mechanism by which EA protects against JIA remains unclear. Therefore, we conducted a comprehensive study to investigate the protective mechanisms of EA in a rat model. We aimed to examine the impact of EA on pathological changes in synovial tissue of juvenile collagen-induced arthritis (CIA) rats. METHODS The CIA model was established using Sprague‒Dawley (SD) rats aged 2-3 weeks. In this study, we investigated the potential role of EA on JIA by regulating the NLRP3-NF-κB axis in juvenile CIA rats and its influence on autophagy. To verify the effect of EA on juvenile CIA, the expression of NLRP3 was overexpressed by an adeno-associated virus injected into the knee joint of the CIA rats. RESULTS In this study, we observed that NLRP3 plays an important role in developing juvenile CIA and that NLRP3 overexpression exacerbates inflammation and increases synovium inflammation. We also demonstrated that the expression of NLRP3 was increased in synovial tissue, and NLRP3 could upregulate the NF-κB signal pathway and influence inflammation. Moreover, we also found increases in the expression of NLRP3 by impairing autophagy capacity and activation of the pyroptosis pathway in the synovium of the juvenile CIA rats. CONCLUSION Moreover, we also discovered that EA decreased the expression of NLRP3 by restoring the impaired autophagy capacity and inhibiting the NLRP3-NF-κB axis, thereby delaying the progression of juvenile CIA. These results showed that EA is effective in inhibiting inflammation and synovial degeneration and alleviating the progression of juvenile CIA. As a result, our results provide new insight into the mechanism by which EA delays the development of juvenile CIA, offering a novel therapeutic regimen for JIA. This trial was registered with ClinicalTrials.gov, number NCT10203935. Registered October 07, 2023. Key Points • NLRP3 plays a critical role in juvenile collagen-induced arthritis (CIA), with its overexpression linked to increased inflammation in synovial tissue. • Electroacupuncture (EA) reduces NLRP3 expression and inhibits the NLRP3-NF-κB axis, mitigating inflammatory responses and delaying juvenile CIA progression. • EA restores impaired autophagy in juvenile CIA rats, promoting cellular health and inflammation management. • EA alleviates synovial degeneration, improving joint health and function in juvenile CIA models.
Collapse
Affiliation(s)
- Fater A Khadour
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Rehabilitation, Faculty of Medicine, Al Baath University, Homs, Syria
- Department of Physical Therapy, Health Science Faculty, Al-Baath University, Homs, Syria
| | - Younes A Khadour
- Department of Rehabilitation, Faculty of Medicine, Al Baath University, Homs, Syria
- Department of Physical Therapy, Cairo University, Cairo, 11835, Egypt
| | - Tao Xu
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
25
|
Chen X, Wang Y, Huang J, Dou H, Zhang Z, Zheng Y, Long R, Zhang X, Xu F, Ye W, Xiao Q. Tamibarotene directly targets the NACHT domain of NLRP3 to alleviate acute myocardial infarction. Biochem Pharmacol 2025; 234:116801. [PMID: 39952330 DOI: 10.1016/j.bcp.2025.116801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/14/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
The aberrant activation of the nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing protein 3 (NLRP3) inflammasome has been implicated in the exacerbation of myocardial damage and the subsequent development of heart failure following myocardial infarction (MI). Inhibiting NLRP3 inflammasome activation offers a promising therapeutic strategy for mitigating MI-related injury, although no NLRP3 inhibitors have received Food and Drug administration (FDA) approval to date. To identify novel NLRP3 inflammasome inhibitors through the repurposing of FDA-approved drugs, Tamibarotene emerged as a potent inhibitor with a favorable safety profile. Mechanistically, Tamibarotene inhibits NLRP3 inflammasome activation independently of retinoic acid receptor activation, binding to Phe410 and Ile417 within the nucleotide-binding and oligomerization (NACHT) domain in an ATPase activity-dependent manner. This interaction further inhibits the assembly of the NLRP3 inflammasome. In a murine model of MI, Tamibarotene significantly reduced myocardial damage and improved cardiac function by inhibiting NLRP3 inflammasome activation. In summary, NLRP3 has been identified as a direct target of Tamibarotene for myocardial repair following MI, indicating that Tamibarotene could serve as a potential precursor for the development of innovative NLRP3 inhibitors.
Collapse
Affiliation(s)
- Xiuhui Chen
- Department of Pharmacy, the Eighth People' s Hospital of Dongguan, Dongguan Children' s Hospital Affiliated to Guangdong Medical University, Dongguan 523000, China; Key Laboratory of Precision Pharmacy and Pharmaceutical Basic Research, Dongguan Institute of Pediatrics, the Eighth People's Hospital of Dongguan, Dongguan Children's Hospital Affiliated to Guangdong Medical University, Dongguan 523000, China
| | - Yunjing Wang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Junjun Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Huaqian Dou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Zhe Zhang
- Department of Cardiovascular Medicine & the Eighth People's Hospital of Dongguan, Dongguan Children's Hospital Affiliated to Guangdong Medical University, Dongguan 523000, China
| | - Yutong Zheng
- Department of Pharmacy, the Eighth People' s Hospital of Dongguan, Dongguan Children' s Hospital Affiliated to Guangdong Medical University, Dongguan 523000, China; Key Laboratory of Precision Pharmacy and Pharmaceutical Basic Research, Dongguan Institute of Pediatrics, the Eighth People's Hospital of Dongguan, Dongguan Children's Hospital Affiliated to Guangdong Medical University, Dongguan 523000, China
| | - Rui Long
- Department of Neonatology, Dongguan Children's Hospital Affiliated to Guangdong Medical University, Dongguan 523000, China
| | - Xiaofeng Zhang
- Department of Pharmacy, the Eighth People' s Hospital of Dongguan, Dongguan Children' s Hospital Affiliated to Guangdong Medical University, Dongguan 523000, China
| | - Fengdan Xu
- Department of Neonatology, Dongguan Children's Hospital Affiliated to Guangdong Medical University, Dongguan 523000, China.
| | - Weijun Ye
- Department of Pharmacy, the Eighth People' s Hospital of Dongguan, Dongguan Children' s Hospital Affiliated to Guangdong Medical University, Dongguan 523000, China; Key Laboratory of Precision Pharmacy and Pharmaceutical Basic Research, Dongguan Institute of Pediatrics, the Eighth People's Hospital of Dongguan, Dongguan Children's Hospital Affiliated to Guangdong Medical University, Dongguan 523000, China.
| | - Qing Xiao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|
26
|
Duggan MR, Morgan DG, Price BR, Rajbanshi B, Martin-Peña A, Tansey MG, Walker KA. Immune modulation to treat Alzheimer's disease. Mol Neurodegener 2025; 20:39. [PMID: 40165251 PMCID: PMC11956194 DOI: 10.1186/s13024-025-00828-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 03/11/2025] [Indexed: 04/02/2025] Open
Abstract
Immune mechanisms play a fundamental role in Alzheimer's disease (AD) pathogenesis, suggesting that approaches which target immune cells and immunologically relevant molecules can offer therapeutic opportunities beyond the recently approved amyloid beta monoclonal therapies. In this review, we provide an overview of immunomodulatory therapeutics in development, including their preclinical evidence and clinical trial results. Along with detailing immune processes involved in AD pathogenesis and highlighting how these mechanisms can be therapeutically targeted to modify disease progression, we summarize knowledge gained from previous trials of immune-based interventions, and provide a series of recommendations for the development of future immunomodulatory therapeutics to treat AD.
Collapse
Affiliation(s)
- Michael R Duggan
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Intramural Research Program, Baltimore, MD, 21224, USA
| | - David G Morgan
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
| | | | - Binita Rajbanshi
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Alfonso Martin-Peña
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Malú Gámez Tansey
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Keenan A Walker
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Intramural Research Program, Baltimore, MD, 21224, USA.
| |
Collapse
|
27
|
Singh V, Ubaid S, Kashif M, Singh T, Singh G, Pahwa R, Singh A. Role of inflammasomes in cancer immunity: mechanisms and therapeutic potential. J Exp Clin Cancer Res 2025; 44:109. [PMID: 40155968 PMCID: PMC11954315 DOI: 10.1186/s13046-025-03366-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/15/2025] [Indexed: 04/01/2025] Open
Abstract
Inflammasomes are multi-protein complexes that detect pathogenic and damage-associated molecular patterns, activating caspase-1, pyroptosis, and the maturation of pro-inflammatory cytokines such as IL-1β and IL-18Within the tumor microenvironment, inflammasomes like NLRP3 play critical roles in cancer initiation, promotion, and progression. Their activation influences the crosstalk between innate and adaptive immunity by modulating immune cell recruitment, cytokine secretion, and T-cell differentiation. While inflammasomes can contribute to tumor growth and metastasis through chronic inflammation, their components also present novel therapeutic targets. Several inhibitors targeting inflammasome components- such as sensor proteins (e.g., NLRP3, AIM2), adaptor proteins (e.g., ASC), caspase-1, and downstream cytokines- are being explored to modulate inflammasome activity. These therapeutic strategies aim to modulate inflammasome activity to enhance anti-tumor immune responses and improve clinical outcomes. Understanding the role of inflammasomes in cancer immunity is crucial for developing interventions that effectively bridge innate and adaptive immune responses for better therapeutic outcomes.
Collapse
Affiliation(s)
- Vivek Singh
- Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Saba Ubaid
- Department of Biochemistry, King George'S Medical University (KGMU), U.P, Lucknow, 226003, India
| | - Mohammad Kashif
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Tanvi Singh
- Department of Biochemistry, King George'S Medical University (KGMU), U.P, Lucknow, 226003, India
| | - Gaurav Singh
- Department of Biochemistry, King George'S Medical University (KGMU), U.P, Lucknow, 226003, India
| | - Roma Pahwa
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Anand Singh
- Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
28
|
Saad HM, Atef E, Elsayed AE. New Insights on the Potential Role of Pyroptosis in Parkinson's Neuropathology and Therapeutic Targeting of NLRP3 Inflammasome with Recent Advances in Nanoparticle-Based miRNA Therapeutics. Mol Neurobiol 2025:10.1007/s12035-025-04818-4. [PMID: 40100493 DOI: 10.1007/s12035-025-04818-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 03/03/2025] [Indexed: 03/20/2025]
Abstract
Parkinson's disease (PD) is a widespread neurodegenerative disorder characterized by the gradual degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNc). This review aims to summarize the recent advancements in the pathophysiological mechanisms of pyroptosis, mediated by NLRP3 inflammasome, in advancing PD and the anti-pyroptotic agents that target NLRP3 inflammatory pathways and miRNA. PD pathophysiology is primarily linked to the aggregation of α-synuclein, the overproduction of reactive oxygen species (ROS), and the development of neuroinflammation due to microglial activation. Prior research indicated that a significant quantity of microglia is activated in both PD patients and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse models, triggering neuroinflammation and resulting in a cascade of cellular death. Microglia possess an inflammatory complex pathway termed the nucleotide-binding oligomerization domain-, leucine-rich repeat, and pyrin domain-containing 3 (NLRP3) inflammasome. Activation of the NLRP-3 inflammasome results in innate cytokines maturation, including IL-18 and IL-1β, which initiates the neuroinflammatory signal and induces a type of inflammatory cell death known as pyroptosis. Upon neuronal damage, intracellular levels of damage-associated molecular patterns (DAMPs), including reactive oxygen species (ROS), would build. DAMPs induce unregulated cell death and subsequent release of oxidative intermediates and pro-inflammatory cytokines, leading to the progression of PD. Thus, targeting of neuroinflammation using antipyroptotic medications can be efficiently achieved by blocking NLRP3 and obstructing IL-1β signaling and release. Furthermore, many research studies showed that miRNAs have been identified as regulators of the NLRP3 inflammasome and Nrf2 signal, which subsequently modulate the NLRP3-Nrf2 axis in PD. Nanotechnology promises potential for the advancement of miRNA-based therapies. Nanoparticles that ensure miRNA stability, traverse the blood-brain barrier (BBB) and distribute miRNA targeting regions needed to be created. In conclusion, targeting the pyroptosis pathway via NLRP3 or miRNA may serve as a prospective therapeutic strategy for PD in the future.
Collapse
Affiliation(s)
- Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matruh, 51744, Egypt.
| | - Esraa Atef
- Department of Medical Physiology, Faculty of Medicine, Menoufia University, Shebeen ElKom, 32511, Egypt
| | - Abeer E Elsayed
- Department of Physiology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matruh, 51744, Egypt
| |
Collapse
|
29
|
Wang H, Ma L, Su W, Liu Y, Xie N, Liu J. NLRP3 inflammasome in health and disease (Review). Int J Mol Med 2025; 55:48. [PMID: 39930811 PMCID: PMC11781521 DOI: 10.3892/ijmm.2025.5489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/16/2024] [Indexed: 02/13/2025] Open
Abstract
Activation of inflammasomes is the activation of inflammation‑related caspase mediated by the assembly signal of multi‑protein complex and the maturity of inflammatory factors, such as IL‑1β and IL‑18. Among them, the Nod‑like receptor family pyrin domain containing 3 (NLRP3) inflammasome is the most thoroughly studied type of inflammatory corpuscle at present, which is involved in the occurrence and development of numerous human diseases. Therefore, targeting the NLRP3 inflammasome has become the focus of drug development for related diseases. In this paper, the research progress of the NLRP3 inflammasome in recent years is summarized, including the activation and regulation of NLRP3 and its association with diseases. A deep understanding of the regulatory mechanism of NLRP3 will be helpful to the discovery of new drug targets and the development of therapeutic drugs.
Collapse
Affiliation(s)
- Haoran Wang
- Department of Orthopaedics, Tongji Hospital Affiliated to Tongji University, Shanghai 200065, P.R. China
| | - Li Ma
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, P.R. China
| | - Weiran Su
- Department of Internal Medicine, Jiading District Central Hospital, Shanghai 201800, P.R. China
| | - Yangruoyu Liu
- Department of Orthopaedics, Tongji Hospital Affiliated to Tongji University, Shanghai 200065, P.R. China
| | - Ning Xie
- Department of Orthopaedics, Tongji Hospital Affiliated to Tongji University, Shanghai 200065, P.R. China
| | - Jun Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, P.R. China
| |
Collapse
|
30
|
Zhang W, Zhang L, Fu S, Yan R, Zhang X, Song J, Lu Y. Roles of NLRC4 inflammasome in neurological disorders: Mechanisms, implications, and therapeutic potential. Pharmacol Ther 2025; 267:108803. [PMID: 39855275 DOI: 10.1016/j.pharmthera.2025.108803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 01/01/2025] [Accepted: 01/18/2025] [Indexed: 01/27/2025]
Abstract
The nucleotide-binding oligomerization domain-like receptor family caspase recruitment domain containing 4 (NLRC4) inflammasome, a vital component of the innate immune system, is known for defending against bacterial infections. However, recent insights have revealed its significant impact on neurological disorders. This comprehensive review discussed the mechanisms underlying the activation and regulation of the NLRC4 inflammasome, highlighting the complexity of its response to cellular stress and damage signals. The biological functions of NLRC4 were explored, particularly its influence on cytokine production and the induction of pyroptosis, a form of inflammatory cell death. This review further emphasized the role of the NLRC4 inflammasome in brain injuries and neurodegenerative disorders. In the realm of brain injuries such as stroke and traumatic brain injury, as well as in neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, multiple sclerosis, and amyotrophic lateral sclerosis, the NLRC4 inflammasome played a pivotal role in modulating neuroinflammatory responses, which was crucial for understanding the progression and potential therapeutic targeting of these conditions. The emerging role of NLRC4 in psychiatric disorders and its potential impact on glioma progression were also examined. Additionally, this review presented a thorough summary of the latest research on inhibitors that impeded the assembly and activation of the NLRC4 inflammasome, pointing to new therapeutic possibilities in neurological disorders. In conclusion, by integrating current knowledge on the activation and regulation of NLRC4 with its biological functions and clinical implications, this article underscored the importance of NLRC4 inflammasome in neurological pathologies, which opened new possibilities for the treatment of challenging neurological conditions.
Collapse
Affiliation(s)
- Wen Zhang
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Li Zhang
- Beijing Key Laboratory of Polymorphic Drugs, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Shuo Fu
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Rong Yan
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xue Zhang
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Junke Song
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China.
| | - Yang Lu
- Beijing Key Laboratory of Polymorphic Drugs, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
31
|
Li XL, Lin ZH, Chen SR, Ni S, Lin GY, Wang W, Lin JY, Zhao Q, Cong C, Xu LW. Tiaogeng decoction improves mild cognitive impairment in menopausal APP/PS1 mice through the ERs/NF-κ b/AQP1 signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 138:156391. [PMID: 39848022 DOI: 10.1016/j.phymed.2025.156391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/20/2024] [Accepted: 01/12/2025] [Indexed: 01/25/2025]
Abstract
People with mild cognitive impairment (MCI) carry a considerable risk of developing dementia. Studies have shown that female sex hormones have long-lasting neuroprotective and anti-aging properties, and the increased risk of MCI and AD is associated with the lack of estrogen during menopause. Previous studies have shown that Tiao Geng Decoction (TGD) may have antioxidant and anti apoptotic properties, which may prevent neurodegenerative diseases. However, whether TGD is effective in improving mild cognitive impairment due to postmenopausal estrogen deficiency and its potential pharmacological mechanisms remain unclear. The aim of this study was to investigate the possible pharmacological mechanisms of TGD in preventing postmenopausal MCI. We utilized RNA-seq technology to screen for differentially expressed genes (DEGs) and enrichment pathways in the hippocampal tissue of different groups of mice. Additionally, we adopted single-cell sequencing technology to study the cell types of Alzheimer's disease (AD) group and Normal Control (NC) group, the differential marker genes of each cell subgroup, and the GO enrichment analysis of each cell type. Both RNA sequencing and single-cell sequencing results showed a significant correlation between TGD and NF-κb pathway in improving mild cognitive impairment in postmenopausal women. The experimental verification results showed that the spatial learning and memory abilities of APP/PS1 model mice were weakened after ovariectomy, and the reproductive cycle on vaginal smears was in the interphase of diestrus. The levels of serum E2, and P-tau181 in mice were significantly down regulated, while the levels of brain tissue homogenate A β 42, IL-1 β, and IL-18 were significantly up-regulated, indicating successful modeling. Combining Western blotting, RT-qPCR, and transmission electron microscopy analyses, it was found that the low estrogen environment induced by oophorectomy can activate the NF-κb signaling pathway, activate the expression of NLRP3 inflammasome and A β secretase BACE1, and induce neuroinflammatory damage in hippocampal astrocytes. These results conform to the modeling characteristics of MCI. After TGD intervention, the spatial learning and memory abilities of MCI mice were significantly improved. The pharmacological validation results indicated that high concentration doses of TGD had a more significant effect on MCI. Subsequently, we used high concentration TGD (0.32 g/ml) as the traditional Chinese medicine group for further validation, protein blotting and RT-qPCR results indicated that TGD can effectively stimulate the secretion of ER α and ER β, inhibit the NF-κb pathway, downregulate BACE1, and inhibit the expression of NLRP3 inflammasome related proteins. In addition, the immunofluorescence results of hippocampal astrocytes showed that TGD can effectively facilitate the expression of AQP1 and significantly lower the sedimentation of A β compared with the model group. Our research suggests that there is a high correlation between a low estrogen environment and the occurrence and development of MCI. TGD may regulate the ERs/NF - κ b/AQP1 signaling pathway, promote estrogen secretion, activate AQP1, reduce A β deposition, reverse MCI neuroinflammatory injury, improve mild cognitive impairment, and prevent the occurrence of AD. This study revealed for the first time that TGD may be a potential new alternative drug for preventing and improving menopausal MCI.
Collapse
Affiliation(s)
- Xuan-Ling Li
- Department of Gynecology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Zhi-Heng Lin
- Department of Gynecology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Si-Ru Chen
- Department of Gynecology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Shuang Ni
- Department of Gynecology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Guang-Yao Lin
- Department of Gynecology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Wei Wang
- Gansu University of Traditional Chinese Medicine Affiliated Hospital, Gansu, 730000, China
| | - Jing-Yu Lin
- Department of Gynecology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Qian Zhao
- Department of Gynecology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Chao Cong
- Department of Gynecology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Lian-Wei Xu
- Department of Gynecology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| |
Collapse
|
32
|
Khadour FA, Khadour YA, Xu T. NLRP3 overexpression exacerbated synovium tissue degeneration in juvenile collagen-induced arthritis. Sci Rep 2025; 15:7024. [PMID: 40016261 PMCID: PMC11868420 DOI: 10.1038/s41598-025-86720-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 01/13/2025] [Indexed: 03/01/2025] Open
Abstract
Juvenile idiopathic arthritis (JIA) can lead to synovial inflammation. JIA is a chronic autoimmune inflammatory condition that primarily affects children. It is recognized as the most prevalent form of arthritis in the pediatric population and is associated with significant impairment and disability. As an inflammatory regulator, Nod-like receptor 3 (NLRP3) has been implicated in various autoimmune diseases. However, the specific mechanism by which NLRP3 impacts the progress of JIA remains unclear. Therefore, we conducted this study to investigate the specific mechanism of NLRP3 on the progress of synovial inflammation in juvenile collagen-induced arthritis (CIA). The CIA model was established using Sprague‒Dawley (SD) rats aged 2-3 weeks. In this study, we investigated the potential role of NLRP3 on JIA by regulating the NLRP3-NF-κB axis in CIA rats. To verify the effect of NLRP3 on JIA, the expression of NLRP3 was knocked down or overexpressed by an adeno-associated virus injected into the knee joint of the CIA rats. In this study, we observed that NLRP3 plays an important role in the development of juvenile CIA, and knocking down NLRP3 inhibited inflammation and alleviated synovium inflammation. We also demonstrated that the expression of NLRP3 was increased in synovial tissue, and NLRP3 could upregulate the NF-κB signal pathway and influence inflammation. Moreover, we also found that increases in the expression of NLRP3 impairs autophagy capacity and increases activation of the pyroptosis pathway in the synovium of the juvenile CIA rats. The results demonstrated that NLRP3 interferes with synovial inflammation in juvenile CIA. These results provide new insight into the mechanism by which NLRP3 impacts the development of JIA and suggest that targeting the NLRP3 inflammasome may represent a promising therapeutic strategy for managing JIA.
Collapse
MESH Headings
- Animals
- NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
- NLR Family, Pyrin Domain-Containing 3 Protein/genetics
- Rats
- Synovial Membrane/pathology
- Synovial Membrane/metabolism
- Rats, Sprague-Dawley
- Arthritis, Experimental/pathology
- Arthritis, Experimental/metabolism
- Arthritis, Experimental/genetics
- NF-kappa B/metabolism
- Arthritis, Juvenile/pathology
- Arthritis, Juvenile/metabolism
- Arthritis, Juvenile/genetics
- Male
- Signal Transduction
- Disease Models, Animal
- Inflammasomes/metabolism
Collapse
Affiliation(s)
- Fater A Khadour
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095#, Jie-Fang Avenue, Qiaokou District, Wuhan, 430030, Hubei, China
- Department of Rehabilitation, Faculty of Medicine, Al Baath University, Homs, Syria
- Department of Physical Therapy, Health Science Faculty, Al-Baath University, Homs, Syria
| | - Younes A Khadour
- Department of Rehabilitation, Faculty of Medicine, Al Baath University, Homs, Syria
- Department of Physical Therapy, Cairo University, Cairo, 11835, Egypt
| | - Tao Xu
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095#, Jie-Fang Avenue, Qiaokou District, Wuhan, 430030, Hubei, China.
| |
Collapse
|
33
|
Qiao M, Ni J, Qing H, Qiu Y, Quan Z. Role of Peripheral NLRP3 Inflammasome in Cognitive Impairments: Insights of Non-central Factors. Mol Neurobiol 2025:10.1007/s12035-025-04779-8. [PMID: 40000575 DOI: 10.1007/s12035-025-04779-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 02/13/2025] [Indexed: 02/27/2025]
Abstract
Cognitive impairments are common clinical manifestation of Alzheimer's disease, vascular dementia, type 2 diabetes mellitus, and autoimmune diseases. Emerging evidence has suggested a strong correlation between peripheral chronic inflammation and cognitive impairments. For example, nearly 40% of individuals with inflammatory bowel disease also suffer from cognitive impairments. In this condition, NLRP3 inflammasome (NLRP3-I) generating pro-inflammatory cytokines like IL-1β serves as a significant effector, and its persistence exerts adverse effects to both periphery and the brain. Moreover, investigations on serum biomarkers of mild cognitive impairments have shown NLRP3-I components' upregulation, suggesting the involvement of peripheral inflammasome pathway in this disorder. Here, we systematically reviewed the current knowledge of NLRP3-I in inflammatory disease to uncover its potential role in bridging peripheral chronic inflammation and cognitive impairments. This review summarizes the molecular features and ignition process of NLRP3-I in inflammatory response. Meanwhile, various effects of NLRP3-I involved in peripheral inflammation-associated disease are also reviewed, especially its chronic disturbances to brain homeostasis and cognitive function through routes including gut-brain, liver-brain, and kidney-brain axes. In addition, current promising compounds and their targets relative to NLRP3-I are discussed in the context of cognitive impairments. Through the detailed investigation, this review highlights the critical role of peripheral NLRP3-I in the pathogenesis of cognitive disorders, and offers novel perspectives for developing effective therapeutic interventions for diseases associated with cognitive impairments. The present review outlines the current knowledge on the ignition of NLRP3-I in inflammatory disease and more importantly, emphasizes the role of peripheral NLRP3-I as a causal pathway in the development of cognitive disorders. Although major efforts to restrain cognitive decline are mainly focused on the central nervous system, it has become clear that disturbances from peripheral immune are closely associated with the dysfunctional brain. Therefore, attenuation of these inflammatory changes through inhibiting the NLRP3-I pathway in early inflammatory disease may reduce future risk of cognitive impairments, and in the meantime, considerations on such pathogenesis for combined drug therapy will be required in the clinical evaluation of cognitive disorders.
Collapse
Affiliation(s)
- Mengfan Qiao
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Junjun Ni
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen, 518172, China
| | - Yunjie Qiu
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| | - Zhenzhen Quan
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
34
|
Yu H, Ren K, Jin Y, Zhang L, Liu H, Huang Z, Zhang Z, Chen X, Yang Y, Wei Z. Mitochondrial DAMPs: Key mediators in neuroinflammation and neurodegenerative disease pathogenesis. Neuropharmacology 2025; 264:110217. [PMID: 39557152 DOI: 10.1016/j.neuropharm.2024.110217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/02/2024] [Accepted: 11/13/2024] [Indexed: 11/20/2024]
Abstract
Neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS) are increasingly linked to mitochondrial dysfunction and neuroinflammation. Central to this link are mitochondrial damage-associated molecular patterns (mtDAMPs), including mitochondrial DNA, ATP, and reactive oxygen species, released during mitochondrial stress or damage. These mtDAMPs activate inflammatory pathways, such as the NLRP3 inflammasome and cGAS-STING, contributing to the progression of neurodegenerative diseases. This review delves into the mechanisms by which mtDAMPs drive neuroinflammation and discusses potential therapeutic strategies targeting these pathways to mitigate neurodegeneration. Additionally, it explores the cross-talk between mitochondria and the immune system, highlighting the complex interplay that exacerbates neuronal damage. Understanding the role of mtDAMPs could pave the way for novel treatments aimed at modulating neuroinflammation and slowing disease progression, ultimately improving patient outcome.
Collapse
Affiliation(s)
- Haihan Yu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Kaidi Ren
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Yage Jin
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Li Zhang
- Key Clinical Laboratory of Henan Province, Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Hui Liu
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Zhen Huang
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Ziheng Zhang
- College of Life Sciences, Xinjiang University, Urumqi, Xinjiang, 830046, PR China
| | - Xing Chen
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China.
| | - Yang Yang
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China.
| | - Ziqing Wei
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China.
| |
Collapse
|
35
|
Kuriakose BB, Zwamel AH, Mutar AA, Uthirapathy S, Bishoyi AK, Naidu KS, Hjazi A, Nakash P, Arya R, Almalki SG. The critical role of NLRP3 in drug resistance of cancers: Focus on the molecular mechanisms and possible therapeutics. Semin Oncol 2025; 52:27-40. [PMID: 40037148 DOI: 10.1016/j.seminoncol.2025.152337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/08/2025] [Accepted: 02/12/2025] [Indexed: 03/06/2025]
Abstract
Nod-like receptor protein 3 (NLRP3) is a member of the leucine-rich repeat-containing protein (NLR) canonical inflammasome family. It regulates the pathophysiology of cancer by facilitating immune responses and apoptotic proteins. Furthermore, it has been observed that chemotherapy activates NLRP3 in human malignancies. The secretion of IL-1β and IL-22 to promote cancer spread may be triggered by NLRP3 activation. Furthermore, earlier studies have exhibited that NLRP3 may cause medication resistance when used in cancer treatments given that cell viability may be regulated by NLRP3 depletion. Additionally, clinical studies have demonstrated correlation between NLRP3 expression, lymphogenesis, and cancer metastasis. Various NLRP3 agonists may cause the EMT process, stimulate IL-1β and Wnt/β-catenin signaling, and alter miRNA function in drug-resistant cells. This review seeks to clarify the possibility involvement of NLRP3-related pathways in the control of cancer cells' resistance to widely used treatment approaches, such as chemotherapy. In the end, an improved perception of the corresponding mechanisms behind NLRP3's tumor-supporting activities will help NLRP3-based treatments advance in the future.
Collapse
Affiliation(s)
- Beena Briget Kuriakose
- Department of Basic Medical Sciences, College of Applied Medical Sciences, King khalid University, Khamis Mushayt, Kingdom of Saudi Arabia
| | - Ahmed Hussein Zwamel
- Department of medical analysis, Medical laboratory technique college, the Islamic University, Najaf, Iraq; Department of medical analysis, Medical laboratory technique college, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Department of medical analysis, Medical laboratory technique college, the Islamic University of Babylon, Babylon, Iraq
| | - Ayad Abdulrazzaq Mutar
- Medical Laboratory Techniques department, College of Health and medical technology, Al-maarif University, Anbar, Iraq.
| | - Subasini Uthirapathy
- Pharmacy Department, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Ashok Kumar Bishoyi
- Marwadi University Research Center, Department of Microbiology, Faculty of Science, Marwadi University, Rajkot, Gujarat, India
| | - K Satyam Naidu
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh, India
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Princse Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Prashant Nakash
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, India
| | - Renu Arya
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab, India
| | - Sami G Almalki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| |
Collapse
|
36
|
Li D, Xu W, He S, Li X, Wang Y, Lv Q, Chen N, Dong L, Guo F, Shi F. Scutellarin inhibits pyroptosis via selective autophagy degradation of p30/GSDMD and suppression of ASC oligomerization. Pharmacol Res 2025; 212:107605. [PMID: 39824372 DOI: 10.1016/j.phrs.2025.107605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 01/02/2025] [Accepted: 01/14/2025] [Indexed: 01/20/2025]
Abstract
Most of the pyroptosis inhibitors targeted Gasdermin D (GSDMD) are functioning by restraining GSDMD-N (p30) oligomerization. For the first time, this work discovered a pyroptosis inhibitor taking effect by degrading p30 and GSDMD. As the principal bioactive constituent in Erigeron breviscapus, scutellarin (SCU) assumes a pivotal role in the realm of anti-inflammatory processes. In this study, SCU demonstrated efficacy in hindering pyroptosis mediated by the NOD-like receptor protein 3 (NLRP3) inflammasome, absent in melanoma 2 (AIM2) inflammasome, NLR-family CARD-containing protein 4 (NLRC4) inflammasome, and that activated through the non-canonical pathway. The inhibitory effect is achieved by thwarting apoptosis-associated speck-like protein containing CARD (ASC) oligomerization and inducing the ubiquitin-dependent selective autophagy of p30/GSDMD. Throughout the autophagic process, SCU facilitates selective autophagy of the pyroptosis executor p30/GSDMD through K33-linked polyubiquitination at Lys51 catalyzed by the E3 ligase tripartite motif-containing 21 (TRIM21). This process contributes to the recognition of p30/GSDMD by the cargo receptor sequestosome 1 (SQSTM1)/p62. The characteristic positions SCU as a prospective clinical intervention for a broader spectrum of inflammatory-related disorders.
Collapse
Affiliation(s)
- Danyue Li
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou 310058, China; Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Weilv Xu
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou 310058, China
| | - Suhui He
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinyue Li
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yumeng Wang
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qian Lv
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou 310058, China
| | - Nan Chen
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lu Dong
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou 310058, China
| | - Feng Guo
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310012,China
| | - Fushan Shi
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou 310058, China; Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
37
|
Cai L, Fan Q, Pang R, Chen C, Zhang Y, Xie H, Huang J, Wang Y, Li P, Huang D, Jin X, Zhou Y, Li Y. Microglia programmed cell death in neurodegenerative diseases and CNS injury. Apoptosis 2025; 30:446-465. [PMID: 39656359 PMCID: PMC11799081 DOI: 10.1007/s10495-024-02041-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2024] [Indexed: 02/06/2025]
Abstract
Programmed cell death (PCD) has emerged as a critical regulatory mechanism in the initiation and progression of various pathological conditions. PCD in microglia, including necroptosis, pyroptosis, apoptosis, ferroptosis, and autophagy, occurs in a variety of central nervous system (CNS) diseases. Dysregulation of microglia can lead to excessive tissue damage or neuronal death in CNS injury. Various injury stimuli trigger aberrant activation of the PCD pathway of microglia, which then further leads to inflammatory cascades that exacerbates CNS pathology in a vicious cycle. Therefore, targeting PCD in microglia is considered an important avenue for the treatment of various neurodegenerative diseases and CNS injury. In this review, we summarize the major and recent findings focusing on the mechanisms of PCD in microglia modulating functions in neurodegenerative diseases and CNS injury and provide a systematic overview of the current inhibitors targeting various PCD pathways, which may provide important therapeutic targets that merit further investigation.
Collapse
Affiliation(s)
- Ling Cai
- Department of Anesthesiology, Key Laboratory of the Ministry of Education, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiuyue Fan
- Department of Anesthesiology, Key Laboratory of the Ministry of Education, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui Pang
- Department of Anesthesiology, Key Laboratory of the Ministry of Education, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Chen
- Department of Anesthesiology, Key Laboratory of the Ministry of Education, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yueman Zhang
- Department of Anesthesiology, Key Laboratory of the Ministry of Education, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haiyi Xie
- Department of Anesthesiology, Key Laboratory of the Ministry of Education, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingyi Huang
- Department of Anesthesiology, Key Laboratory of the Ministry of Education, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Wang
- Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peiying Li
- Department of Anesthesiology, Key Laboratory of the Ministry of Education, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dan Huang
- Department of Anesthesiology, Key Laboratory of the Ministry of Education, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xia Jin
- Department of Anesthesiology, Key Laboratory of the Ministry of Education, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yuxi Zhou
- Department of Anesthesiology, Key Laboratory of the Ministry of Education, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yan Li
- Department of Anesthesiology, Key Laboratory of the Ministry of Education, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
38
|
Tork MAB, Fotouhi S, Roozi P, Negah SS. Targeting NLRP3 Inflammasomes: A Trojan Horse Strategy for Intervention in Neurological Disorders. Mol Neurobiol 2025; 62:1840-1881. [PMID: 39042218 DOI: 10.1007/s12035-024-04359-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/09/2024] [Indexed: 07/24/2024]
Abstract
Recently, a growing focus has been on identifying critical mechanisms in neurological diseases that trigger a cascade of events, making it easier to target them effectively. One such mechanism is the inflammasome, an essential component of the immune response system that plays a crucial role in disease progression. The NLRP3 (nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain containing 3) inflammasome is a subcellular multiprotein complex that is widely expressed in the central nervous system (CNS) and can be activated by a variety of external and internal stimuli. When activated, the NLRP3 inflammasome triggers the production of proinflammatory cytokines interleukin-1β (IL-1β) and interleukin-18 (IL-18) and facilitates rapid cell death by assembling the inflammasome. These cytokines initiate inflammatory responses through various downstream signaling pathways, leading to damage to neurons. Therefore, the NLRP3 inflammasome is considered a significant contributor to the development of neuroinflammation. To counter the damage caused by NLRP3 inflammasome activation, researchers have investigated various interventions such as small molecules, antibodies, and cellular and gene therapy to regulate inflammasome activity. For instance, recent studies indicate that substances like micro-RNAs (e.g., miR-29c and mR-190) and drugs such as melatonin can reduce neuronal damage and suppress neuroinflammation through NLRP3. Furthermore, the transplantation of bone marrow mesenchymal stem cells resulted in a significant reduction in the levels of pyroptosis-related proteins NLRP3, caspase-1, IL-1β, and IL-18. However, it would benefit future research to have an in-depth review of the pharmacological and biological interventions targeting inflammasome activity. Therefore, our review of current evidence demonstrates that targeting NLRP3 inflammasomes could be a pivotal approach for intervention in neurological disorders.
Collapse
Affiliation(s)
- Mohammad Amin Bayat Tork
- Clinical Research Development Unit, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soroush Fotouhi
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parvin Roozi
- Department of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Sajad Sahab Negah
- Clinical Research Development Unit, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran.
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Pardis Campus, Azadi Square, Kalantari Blvd., Mashhad, Iran.
| |
Collapse
|
39
|
Ren D, Ye X, Chen R, Jia X, He X, Tao J, Jin T, Wu S, Zhang H. Activation and evasion of inflammasomes during viral and microbial infection. Cell Mol Life Sci 2025; 82:56. [PMID: 39833559 PMCID: PMC11753444 DOI: 10.1007/s00018-025-05575-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/31/2024] [Accepted: 01/02/2025] [Indexed: 01/22/2025]
Abstract
The inflammasome is a cytoplasmic multiprotein complex that induces the maturation of the proinflammatory cytokines interleukin-1β (IL-1β) and interleukin-18 (IL-18) or pyroptosis by activating caspases, which play critical roles in regulating inflammation, cell death, and various cellular processes. Multiple studies have shown that the inflammasome is a key regulator of the host defence response against pathogen infections. During the process of pathogenic microbe invasion into host cells, the host's innate immune system recognizes these microbes by activating inflammasomes, triggering inflammatory responses to clear the microbes and initiate immune responses. Moreover, microbial pathogens have evolved various mechanisms to inhibit or evade the activation of inflammasomes. Therefore, we review the interactions between viruses and microbes with inflammasomes during the invasion process, highlight the molecular mechanisms of inflammasome activation induced by microbial pathogen infection, and highlight the corresponding strategies that pathogens employ to evade inflammasome activity. Finally, we also discuss potential therapeutic strategies for the treatment of pathogenic microbial infections via the targeting of inflammasomes and their products.
Collapse
Affiliation(s)
- Dan Ren
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, 323000, China
| | - Xiaoou Ye
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, 323000, China
| | - Ruiming Chen
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, 323000, China
| | - Xiuzhi Jia
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, 323000, China
| | - Xianhong He
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, 323000, China
| | - Jinhui Tao
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, People's Republic of China
| | - Tengchuan Jin
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, 323000, China.
- Laboratory of Structural Immunology, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, People's Republic of China.
| | - Songquan Wu
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, 323000, China.
| | - Hongliang Zhang
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, 323000, China.
| |
Collapse
|
40
|
Matico R, Grauwen K, Chauhan D, Yu X, Abdiaj I, Adhikary S, Adriaensen I, Aranzazu GM, Alcázar J, Bassi M, Brisse E, Cañellas S, Chaudhuri S, Delgado F, Diéguez-Vázquez A, Du Jardin M, Eastham V, Finley M, Jacobs T, Keustermans K, Kuhn R, Llaveria J, Leenaerts J, Linares ML, Martín ML, Martín-Pérez R, Martínez C, Miller R, Muñoz FM, Muratore ME, Nooyens A, Perez-Benito L, Perrier M, Pietrak B, Serré J, Sharma S, Somers M, Suarez J, Tresadern G, Trabanco AA, Van den Bulck D, Van Gool M, Van Hauwermeiren F, Varghese T, Vega JA, Youssef SA, Edwards MJ, Oehlrich D, Van Opdenbosch N. Navigating from cellular phenotypic screen to clinical candidate: selective targeting of the NLRP3 inflammasome. EMBO Mol Med 2025; 17:54-84. [PMID: 39653810 PMCID: PMC11730736 DOI: 10.1038/s44321-024-00181-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 11/23/2024] [Accepted: 11/26/2024] [Indexed: 01/15/2025] Open
Abstract
The NLRP3 inflammasome plays a pivotal role in host defense and drives inflammation against microbial threats, crystals, and danger-associated molecular patterns (DAMPs). Dysregulation of NLRP3 activity is associated with various human diseases, making it an attractive therapeutic target. Patients with NLRP3 mutations suffer from Cryopyrin-Associated Periodic Syndrome (CAPS) emphasizing the clinical significance of modulating NLRP3. In this study, we present the identification of a novel chemical class exhibiting selective and potent inhibition of the NLRP3 inflammasome. Through a comprehensive structure-activity relationship (SAR) campaign, we optimized the lead molecule, compound A, for in vivo applications. Extensive in vitro and in vivo characterization of compound A confirmed the high selectivity and potency positioning compound A as a promising clinical candidate for diseases associated with aberrant NLRP3 activity. This research contributes to the ongoing efforts in developing targeted therapies for conditions involving NLRP3-mediated inflammation, opening avenues for further preclinical and clinical investigations.
Collapse
Affiliation(s)
- Rosalie Matico
- Janssen Research & Development, LLC, Discovery Technologies and Molecular Pharmacology (DTMP), Spring House, PA, 19044, USA
| | - Karolien Grauwen
- Janssen Interventional Oncology, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Dhruv Chauhan
- Janssen Interventional Oncology, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Xiaodi Yu
- Janssen Research & Development, LLC, Discovery Technologies and Molecular Pharmacology (DTMP), Spring House, PA, 19044, USA
| | - Irini Abdiaj
- Janssen Research & Development, LLC, Global Discovery Chemistry (GDC), C. Río Jarama, 75, 45007, Toledo, Spain
| | - Suraj Adhikary
- Janssen Research & Development, LLC, Discovery Technologies and Molecular Pharmacology (DTMP), Spring House, PA, 19044, USA
| | - Ine Adriaensen
- Janssen Research & Development, LLC, In Vivo Sciences (IVS), Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Garcia Molina Aranzazu
- Janssen Research & Development, LLC, Global Discovery Chemistry (GDC), C. Río Jarama, 75, 45007, Toledo, Spain
| | - Jesus Alcázar
- Janssen Research & Development, LLC, Global Discovery Chemistry (GDC), C. Río Jarama, 75, 45007, Toledo, Spain
| | - Michela Bassi
- Janssen Research & Development, LLC, Global Discovery Chemistry (GDC), Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Ellen Brisse
- Janssen Interventional Oncology, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Santiago Cañellas
- Janssen Research & Development, LLC, Global Discovery Chemistry (GDC), C. Río Jarama, 75, 45007, Toledo, Spain
| | - Shubhra Chaudhuri
- Janssen Research & Development, LLC, Preclinical Sciences and Translational Safety (PSTS), Spring House, PA, 19044, USA
| | - Francisca Delgado
- Janssen Research & Development, LLC, Global Discovery Chemistry (GDC), C. Río Jarama, 75, 45007, Toledo, Spain
| | - Alejandro Diéguez-Vázquez
- Janssen Research & Development, LLC, Global Discovery Chemistry (GDC), C. Río Jarama, 75, 45007, Toledo, Spain
| | - Marc Du Jardin
- Janssen Research & Development, LLC, Discovery Pharmaceutics, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Victoria Eastham
- Janssen Research & Development, LLC, Discovery Technologies and Molecular Pharmacology (DTMP), Spring House, PA, 19044, USA
| | - Michael Finley
- Janssen Research & Development, LLC, Discovery Technologies and Molecular Pharmacology (DTMP), Spring House, PA, 19044, USA
| | - Tom Jacobs
- Janssen Research & Development, LLC, Preclinical Sciences and Translational Safety (PSTS), Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Ken Keustermans
- Charles River Laboratories, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Robert Kuhn
- Janssen Interventional Oncology, Spring House, PA, 19044, USA
| | - Josep Llaveria
- Janssen Research & Development, LLC, Global Discovery Chemistry (GDC), C. Río Jarama, 75, 45007, Toledo, Spain
| | - Jos Leenaerts
- Janssen Research & Development, LLC, Global Discovery Chemistry (GDC), Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Maria Lourdes Linares
- Janssen Research & Development, LLC, Global Discovery Chemistry (GDC), C. Río Jarama, 75, 45007, Toledo, Spain
| | - Maria Luz Martín
- Janssen Research & Development, LLC, Global Discovery Chemistry (GDC), C. Río Jarama, 75, 45007, Toledo, Spain
| | - Rosa Martín-Pérez
- Janssen Interventional Oncology, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Carlos Martínez
- Janssen Research & Development, LLC, Global Discovery Chemistry (GDC), C. Río Jarama, 75, 45007, Toledo, Spain
| | - Robyn Miller
- Janssen Research & Development, LLC, Discovery Technologies and Molecular Pharmacology (DTMP), Spring House, PA, 19044, USA
| | - Frances M Muñoz
- Janssen Research & Development, LLC, Discovery Technologies and Molecular Pharmacology (DTMP), Spring House, PA, 19044, USA
| | - Michael E Muratore
- Janssen Research & Development, LLC, Global Discovery Chemistry (GDC), Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Amber Nooyens
- Janssen Interventional Oncology, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Laura Perez-Benito
- Janssen Research & Development, LLC, Therapeutic Discovery, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Mathieu Perrier
- Janssen Research & Development, LLC, Global Discovery Chemistry (GDC), Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Beth Pietrak
- Janssen Research & Development, LLC, Discovery Technologies and Molecular Pharmacology (DTMP), Spring House, PA, 19044, USA
| | - Jef Serré
- Janssen Interventional Oncology, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Sujata Sharma
- Janssen Research & Development, LLC, Discovery Technologies and Molecular Pharmacology (DTMP), Spring House, PA, 19044, USA
| | - Marijke Somers
- Janssen Research & Development, LLC, Drug Metabolism and Phamacokinetcs (DMPK), Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Javier Suarez
- Janssen Research & Development, LLC, Discovery Technologies and Molecular Pharmacology (DTMP), Spring House, PA, 19044, USA
| | - Gary Tresadern
- Janssen Research & Development, LLC, Therapeutic Discovery, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Andres A Trabanco
- Janssen Research & Development, LLC, Global Discovery Chemistry (GDC), C. Río Jarama, 75, 45007, Toledo, Spain
| | - Dries Van den Bulck
- Janssen Research & Development, LLC, Discovery Technologies and Molecular Pharmacology (DTMP), Spring House, PA, 19044, USA
| | - Michiel Van Gool
- Janssen Research & Development, LLC, Global Discovery Chemistry (GDC), Turnhoutseweg 30, 2340, Beerse, Belgium
| | | | - Teena Varghese
- Janssen Research & Development, LLC, Discovery Technologies and Molecular Pharmacology (DTMP), Spring House, PA, 19044, USA
| | - Juan Antonio Vega
- Janssen Research & Development, LLC, Global Discovery Chemistry (GDC), C. Río Jarama, 75, 45007, Toledo, Spain
| | - Sameh A Youssef
- Janssen Research & Development, LLC, Preclinical Sciences and Translational Safety (PSTS), Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Matthew J Edwards
- Janssen Interventional Oncology, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Daniel Oehlrich
- Janssen Research & Development, LLC, Global Discovery Chemistry (GDC), Turnhoutseweg 30, 2340, Beerse, Belgium
| | | |
Collapse
|
41
|
Kim JK, Sapkota A, Roh T, Jo EK. The intricate interactions between inflammasomes and bacterial pathogens: Roles, mechanisms, and therapeutic potentials. Pharmacol Ther 2025; 265:108756. [PMID: 39581503 DOI: 10.1016/j.pharmthera.2024.108756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/06/2024] [Accepted: 11/19/2024] [Indexed: 11/26/2024]
Abstract
Inflammasomes are intracellular multiprotein complexes that consist of a sensor, an adaptor, and a caspase enzyme to cleave interleukin (IL)-1β and IL-18 into their mature forms. In addition, caspase-1 and -11 activation results in the cleavage of gasdermin D to form pores, thereby inducing pyroptosis. Activation of the inflammasome and pyroptosis promotes host defense against pathogens, whereas dysregulation of the inflammasome can result in various pathologies. Inflammasomes exhibit versatile microbial signal detection, directly or indirectly, through cellular processes, such as ion fluctuations, reactive oxygen species generation, and the disruption of intracellular organelle function; however, bacteria have adaptive strategies to manipulate the inflammasome by altering microbe-associated molecular patterns, intercepting innate pathways with secreted effectors, and attenuating inflammatory and cell death responses. In this review, we summarize recent advances in the diverse roles of the inflammasome during bacterial infections and discuss how bacteria exploit inflammasome pathways to establish infections or persistence. In addition, we highlight the therapeutic potential of harnessing bacterial immune subversion strategies against acute and chronic bacterial infections. A more comprehensive understanding of the significance of inflammasomes in immunity and their intricate roles in the battle between bacterial pathogens and hosts will lead to the development of innovative strategies to address emerging threats posed by the expansion of drug-resistant bacterial infections.
Collapse
Affiliation(s)
- Jin Kyung Kim
- Department of Microbiology, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Asmita Sapkota
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea; Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Taylor Roh
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea; Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea; Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea.
| |
Collapse
|
42
|
Sun K, Chen M, Kong X, Hou W, Xu Z, Liu L. Cardiac-specific Suv39h1 knockout ameliorates high-fat diet induced diabetic cardiomyopathy via regulating Hmox1 transcription. Life Sci 2025; 360:123258. [PMID: 39580141 DOI: 10.1016/j.lfs.2024.123258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/04/2024] [Accepted: 11/15/2024] [Indexed: 11/25/2024]
Abstract
AIM Diabetic Cardiomyopathy (DCM), a common complication of Type 2 Diabetic Mellitus (T2DM), has been emerging as one of the leading causes of mortality in T2DM patients. During the past decade, although, clinical studies concerning DCM are increasing at an exponential rate, mechanisms underlying this disease still can't be clearly defined. Here, we aim to recognize the function of Suv39h1 in DCM and to explore underlying mechanisms during this disease, providing new insights into DCM and novel guide for clinical therapy development. MATERIALS AND METHODS We employed cardiac specific Suv39h1 knockout mice to reveal the role of Suv39h1 in high-fat diet induced DCM and using human cardiomyocyte line AC16 cells treated with Suv39h1 siRNA or inhibitor Chaetocin to further explore the mechanism during lipotoxicity condition. KEY FINDINGS Cardiac Suv39h1 knockout ameliorated manifestations of DCM, including cardiac function indexes, cardiomyocyte hypertrophy, interstitial fibrosis, along with improved metabolic disorder in mice. Further, interfering human AC16 cardiomyocytes with siSuv39h1 down-regulated lipotoxicity induced cardiac hypertrophy, inflammation, and fibrosis markers. Subsequent mRNA-seq using siSuv39h1 and SCR AC16 cells discovered a well-recognized cytoprotective, anti-oxidant, and anti-inflammation factor-Hmox1, prominently upregulated in Suv39h1 ablation cells versus SCR under lipotoxicity condition. ChIP assay revealed that Suv39h1 could bind to Hmox1 promoter and reversed by Chaetocin or small interfering RNA. SIGNIFICANCE These results suggested that the protective effects in DCM rendered by Suv39h1 ablation may work through activating Hmox1 transcription and protein function, providing new insights into pathogenesis of DCM and novel epigenetic target for clinical DCM therapies.
Collapse
Affiliation(s)
- Ke Sun
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd, Nanjing 210023, China
| | - Maohui Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd, Nanjing 210023, China
| | - Xiangyu Kong
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd, Nanjing 210023, China
| | - Weiyuan Hou
- Department of Cardiac Surgery, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Northern Jiangsu Institute of Clinical Medicine, Nanjing Medical University, Huai'an 223001, China
| | - Zhiwei Xu
- Department of Cardiac Surgery, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Northern Jiangsu Institute of Clinical Medicine, Nanjing Medical University, Huai'an 223001, China.
| | - Li Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd, Nanjing 210023, China.
| |
Collapse
|
43
|
Coll RC, Schroder K. Inflammasome components as new therapeutic targets in inflammatory disease. Nat Rev Immunol 2025; 25:22-41. [PMID: 39251813 DOI: 10.1038/s41577-024-01075-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2024] [Indexed: 09/11/2024]
Abstract
Inflammation drives pathology in many human diseases for which there are no disease-modifying drugs. Inflammasomes are signalling platforms that can induce pathological inflammation and tissue damage, having potential as an exciting new class of drug targets. Small-molecule inhibitors of the NLRP3 inflammasome that are now in clinical trials have demonstrated proof of concept that inflammasomes are druggable, and so drug development programmes are now focusing on other key inflammasome molecules. In this Review, we describe the potential of inflammasome components as candidate drug targets and the novel inflammasome inhibitors that are being developed. We discuss how the signalling biology of inflammasomes offers mechanistic insights for therapeutic targeting. We also discuss the major scientific and technical challenges associated with drugging these molecules during preclinical development and clinical trials.
Collapse
Affiliation(s)
- Rebecca C Coll
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK.
| | - Kate Schroder
- Institute for Molecular Bioscience (IMB), The University of Queensland, St Lucia, Queensland, Australia.
| |
Collapse
|
44
|
Pazhouhesh Far N, Hajiheidari Varnousafaderani M, Faghihkhorasani F, Etemad S, Abdulwahid AHRR, Bakhtiarinia N, Mousaei A, Dortaj E, Karimi S, Ebrahimi N, Aref AR. Breaking the barriers: Overcoming cancer resistance by targeting the NLRP3 inflammasome. Br J Pharmacol 2025; 182:3-25. [PMID: 39394867 DOI: 10.1111/bph.17352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 08/06/2024] [Accepted: 08/14/2024] [Indexed: 10/14/2024] Open
Abstract
Inflammation has a pivotal role in the initiation and progression of various cancers, contributing to crucial processes such as metastasis, angiogenesis, cell proliferation and invasion. Moreover, the release of cytokines mediated by inflammation within the tumour microenvironment (TME) has a crucial role in orchestrating these events. The activation of inflammatory caspases, facilitated by the recruitment of caspase-1, is initiated by the activation of pattern recognition receptors on the immune cell membrane. This activation results in the production of proinflammatory cytokines, including IL-1β and IL-18, and participates in diverse biological processes with significant implications. The NOD-Like Receptor Protein 3 (NLRP3) inflammasome holds a central role in innate immunity and regulates inflammation through releasing IL-1β and IL-18. Moreover, it interacts with various cellular compartments. Recently, the mechanisms underlying NLRP3 inflammasome activation have garnered considerable attention. Disruption in NLRP3 inflammasome activation has been associated with a spectrum of inflammatory diseases, encompassing diabetes, enteritis, neurodegenerative diseases, obesity and tumours. The NLRP3 impact on tumorigenesis varies across different cancer types, with contrasting roles observed. For example, colorectal cancer associated with colitis can be suppressed by NLRP3, whereas gastric and skin cancers may be promoted by its activity. This review provides comprehensive insights into the structure, biological characteristics and mechanisms of the NLRP3 inflammasome, with a specific focus on the relationship between NLRP3 and tumour-related immune responses, and TME. Furthermore, the review explores potential strategies for targeting cancers via NLRP3 inflammasome modulation. This encompasses innovative approaches, including NLRP3-based nanoparticles, gene-targeted therapy and immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Nazanin Pazhouhesh Far
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Science, Islamic Azad University, Tehran, Iran
| | | | | | - Sareh Etemad
- Department of Pathology, Faculty of Anatomical Pathology, Ghaem Hospital, University of Medicine, Mashhad, Iran
| | | | | | - Afsaneh Mousaei
- Department of Biology, College of Science, Qaemshahr Branch, Islamic Azad University, Qaem Shahr, Iran
| | - Elahe Dortaj
- Department of Ergonomics, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soroush Karimi
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nasim Ebrahimi
- Genetics Division, Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Isfahan, Iran
| | - Amir Reza Aref
- Mass General Cancer Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
45
|
Ilyas S, Manan A, Park C, Jo HG, Lee D. Harnessing the Power of Machine Learning Guided Discovery of NLRP3 Inhibitors Towards the Effective Treatment of Rheumatoid Arthritis. Cells 2024; 14:27. [PMID: 39791728 PMCID: PMC11719798 DOI: 10.3390/cells14010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/16/2024] [Accepted: 12/20/2024] [Indexed: 01/12/2025] Open
Abstract
The NLRP3 inflammasome, plays a critical role in the pathogenesis of rheumatoid arthritis (RA) by activating inflammatory cytokines such as IL1β and IL18. Targeting NLRP3 has emerged as a promising therapeutic strategy for RA. In this study, a multidisciplinary approach combining machine learning, quantitative structure-activity relationship (QSAR) modeling, structure-activity landscape index (SALI), docking, molecular dynamics (MD), and molecular mechanics Poisson-Boltzmann surface area MM/PBSA assays was employed to identify novel NLRP3 inhibitors. The ChEMBL database was used to retrieve compounds with known IC50 values to train machine learning (ML) models using the Lazy Predict package. After data pre-processing, 401 non-redundant structures were selected for exploratory data analysis (EDA). PubChem and MACCS fingerprints were used to predict the inhibitory activities of the compounds. SALI was used to identify structurally similar compounds with significantly different biological activities. The compounds were docked using MOE to assess their binding affinities and interactions with key residues in NLRP3. The models were evaluated, and a comparative analysis revealed that the ensemble Random Forest (RF) model (PubChem fingerprints) with RMSE (0.731), R2 (0.622), and MAPE (8.988) and bootstrap aggregating model (MACCS fingerprints) with RMSE (0.687), R2 (0.666), and MAPE (9.216) on the testing set performed well, in accordance with the Organization for Economic Cooperation and Development (OECD) guidelines. Out of all docked compounds, the two most promising compounds (ChEMBL5289544 and ChEMBL5219789) with binding scores of -7.5 and -8.2 kcal/mol were further investigated by MD to evaluate their stability and dynamic behavior within the binding site. MD simulations (200 ns) revealed strong structural stability, flexibility, and interactions in the selected complexes. MM/PBSA binding free energy calculations revealed that van der Waals and electrostatic forces were the key drivers of the binding of the protein with ligands. The outcomes obtained can be used to design more potent and selective NLRP3 inhibitors as therapeutic agents for the treatment of inflammatory diseases such as RA. However, concerns related to the lack of large datasets, experimental validation, and high computational costs remain.
Collapse
Affiliation(s)
- Sidra Ilyas
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si 13120, Republic of Korea; (S.I.)
| | - Abdul Manan
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea;
| | - Chanyoon Park
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si 13120, Republic of Korea; (S.I.)
| | - Hee-Geun Jo
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si 13120, Republic of Korea; (S.I.)
- Naturalis Inc. 6, Daewangpangyo-ro, Bundang-gu, Seongnam-si 13549, Republic of Korea
| | - Donghun Lee
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si 13120, Republic of Korea; (S.I.)
| |
Collapse
|
46
|
Wang Q, Yang S, Zhang X, Zhang S, Chen L, Wang W, Chen N, Yan J. Inflammasomes in neurodegenerative diseases. Transl Neurodegener 2024; 13:65. [PMID: 39710713 PMCID: PMC11665095 DOI: 10.1186/s40035-024-00459-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/27/2024] [Indexed: 12/24/2024] Open
Abstract
Inflammasomes represent a crucial component of the innate immune system, which respond to threats by recognizing different molecules. These are known as pathogen-associated molecular patterns (PAMPs) or host-derived damage-associated molecular patterns (DAMPs). In neurodegenerative diseases and neuroinflammation, the accumulation of misfolded proteins, such as beta-amyloid and alpha-synuclein, can lead to inflammasome activation, resulting in the release of interleukin (IL)-1β and IL-18. This activation also induces pyroptosis, the release of inflammatory mediators, and exacerbates neuroinflammation. Increasing evidence suggests that inflammasomes play a pivotal role in neurodegenerative diseases. Therefore, elucidating and investigating the activation and regulation of inflammasomes in these diseases is of paramount importance. This review is primarily focused on evidence indicating that inflammasomes are activated through the canonical pathway in these diseases. Inflammasomes as potential targets for treating neurodegenerative diseases are also discussed.
Collapse
Affiliation(s)
- Qianchen Wang
- Department of Pharmacy, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Songwei Yang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Xuan Zhang
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Shanshan Zhang
- China Three Gorges University College of Medicine and Health Sciences, Yichang, 443002, China
| | - Liping Chen
- Department of Pharmacy, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Wanxue Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Naihong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Jiaqing Yan
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
47
|
Chen D, Plott T, Wiest M, Van Trump W, Komalo B, Nguyen D, Marsh C, Heinrich J, Fuller CJ, Nicolaisen L, Cambronero E, Nguyen A, Elabd C, Rubbo F, DeVay Jacobson R. A combined AI and cell biology approach surfaces targets and mechanistically distinct Inflammasome inhibitors. iScience 2024; 27:111404. [PMID: 39687021 PMCID: PMC11648265 DOI: 10.1016/j.isci.2024.111404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/20/2024] [Accepted: 11/13/2024] [Indexed: 12/18/2024] Open
Abstract
Inflammasomes are protein complexes that mediate innate immune responses whose dysregulation has been linked to a spectrum of acute and chronic human conditions, which dictates therapeutic development that is aligned with disease variability. We designed a scalable, physiologic high-content imaging assay in human PBMCs that we analyzed using a combination of machine-learning and cell biology methods. This resulted in a set of biologically interpretable readouts that can resolve a spectrum of cellular states associated with inflammasome activation and inhibition. These methods were applied to a phenotypic screen that surfaced mechanistically distinct inflammasome inhibitors from an annotated 12,000 compound library. A set of over 100 inhibitors, including an array of Raf-pathway inhibitors, were validated in downstream functional assays. This approach demonstrates how complementary machine learning-based methods can be used to generate profiles of cellular states associated with different stages of complex biological pathways and yield compound and target discovery.
Collapse
Affiliation(s)
- Daniel Chen
- Spring Discovery, Inc., 1125 Industrial Road, San Carlos, CA 94070, USA
| | - Tempest Plott
- Spring Discovery, Inc., 1125 Industrial Road, San Carlos, CA 94070, USA
| | - Michael Wiest
- Spring Discovery, Inc., 1125 Industrial Road, San Carlos, CA 94070, USA
| | - Will Van Trump
- Spring Discovery, Inc., 1125 Industrial Road, San Carlos, CA 94070, USA
| | - Ben Komalo
- Spring Discovery, Inc., 1125 Industrial Road, San Carlos, CA 94070, USA
| | - Dat Nguyen
- Spring Discovery, Inc., 1125 Industrial Road, San Carlos, CA 94070, USA
| | - Charlie Marsh
- Spring Discovery, Inc., 1125 Industrial Road, San Carlos, CA 94070, USA
| | - Jarred Heinrich
- Spring Discovery, Inc., 1125 Industrial Road, San Carlos, CA 94070, USA
| | - Colin J. Fuller
- Spring Discovery, Inc., 1125 Industrial Road, San Carlos, CA 94070, USA
| | - Lauren Nicolaisen
- Spring Discovery, Inc., 1125 Industrial Road, San Carlos, CA 94070, USA
| | - Elisa Cambronero
- Spring Discovery, Inc., 1125 Industrial Road, San Carlos, CA 94070, USA
| | - An Nguyen
- Spring Discovery, Inc., 1125 Industrial Road, San Carlos, CA 94070, USA
| | - Christian Elabd
- Spring Discovery, Inc., 1125 Industrial Road, San Carlos, CA 94070, USA
| | - Francesco Rubbo
- Spring Discovery, Inc., 1125 Industrial Road, San Carlos, CA 94070, USA
| | | |
Collapse
|
48
|
Yang Y, Liu D, Cao H, Lu L, Zhang W, Liu C, Zeng Y, Shang F, Tao Y, Zhao B, Wang F, Tang T, Deng M. Rosthornin B alleviates inflammatory diseases via directly targeting NLRP3. FASEB J 2024; 38:e70248. [PMID: 39673686 PMCID: PMC11646051 DOI: 10.1096/fj.202401198r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/02/2024] [Accepted: 12/04/2024] [Indexed: 12/16/2024]
Abstract
Aberrant activation of the NLRP3 inflammasome contributes to the evolution of diverse inflammatory diseases. Inhibition of the NLRP3 inflammasome has been proven to be an effective treatment strategy for NLRP3-driven diseases. This study revealed that multiple natural diterpenes from Isodon plants can inhibit the NLRP3 inflammasome, among which Rosthornin B (Ros B) exhibited the best inhibitory effect, with an IC50 of 0.39 μM. Further study revealed that Ros B directly interacts with NLRP3, thereby restraining NEK7-NLRP3 interaction and inhibiting NLRP3 inflammasome assembly and activation. Remarkably, Ros B had a significant therapeutic benefit in mouse models of NLRP3-driven septic shock, peritonitis, and colitis. Our study has identified a series of natural diterpenes that target the NLRP3 inflammasome. These natural diterpenes, especially those with low IC50 values, may lead to the development of new drugs and potential clinical therapies for diseases driven by NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Yanqing Yang
- Department of Clinical LaboratoryThe First Affiliated Hospital of Bengbu Medical UniversityBengbuAnhuiChina
- Anhui Provincial Key Laboratory of Immunology in Chronic DiseaseBengbu Medical UniversityBengbuAnhuiChina
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation‐Related DiseasesBengbuAnhuiChina
| | - Didi Liu
- Department of Clinical LaboratoryThe First Affiliated Hospital of Bengbu Medical UniversityBengbuAnhuiChina
- Anhui Provincial Key Laboratory of Immunology in Chronic DiseaseBengbu Medical UniversityBengbuAnhuiChina
| | - Hairuo Cao
- Department of Clinical LaboratoryThe First Affiliated Hospital of Bengbu Medical UniversityBengbuAnhuiChina
- Anhui Provincial Key Laboratory of Immunology in Chronic DiseaseBengbu Medical UniversityBengbuAnhuiChina
| | - Li Lu
- Department of Clinical LaboratoryThe First Affiliated Hospital of Bengbu Medical UniversityBengbuAnhuiChina
- Anhui Provincial Key Laboratory of Immunology in Chronic DiseaseBengbu Medical UniversityBengbuAnhuiChina
| | - Wei Zhang
- Department of Clinical LaboratoryThe First Affiliated Hospital of Bengbu Medical UniversityBengbuAnhuiChina
- Anhui Provincial Key Laboratory of Immunology in Chronic DiseaseBengbu Medical UniversityBengbuAnhuiChina
| | - Chenfei Liu
- Department of Clinical LaboratoryThe First Affiliated Hospital of Bengbu Medical UniversityBengbuAnhuiChina
- Anhui Provincial Key Laboratory of Immunology in Chronic DiseaseBengbu Medical UniversityBengbuAnhuiChina
| | - Yao Zeng
- Department of Clinical LaboratoryThe First Affiliated Hospital of Bengbu Medical UniversityBengbuAnhuiChina
- Anhui Provincial Key Laboratory of Immunology in Chronic DiseaseBengbu Medical UniversityBengbuAnhuiChina
| | - Feifei Shang
- Department of Clinical LaboratoryThe First Affiliated Hospital of Bengbu Medical UniversityBengbuAnhuiChina
- Anhui Provincial Key Laboratory of Immunology in Chronic DiseaseBengbu Medical UniversityBengbuAnhuiChina
| | - Ye Tao
- Department of Otolaryngology‐Head and Neck SurgeryThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Bao Zhao
- Department of OtolaryngologyThe First Affiliated Hospital of Bengbu Medical UniversityBengbuAnhuiChina
| | - Fengchao Wang
- Department of Clinical LaboratoryThe First Affiliated Hospital of Bengbu Medical UniversityBengbuAnhuiChina
| | - Tiantian Tang
- Laboratory of Nutrition and Development, Beijing Pediatric Research Institute, Beijing Children's HospitalCapital Medical University, National Center for Children's HealthBeijingChina
| | - Mengmeng Deng
- Department of Clinical LaboratoryThe First Affiliated Hospital of Bengbu Medical UniversityBengbuAnhuiChina
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation‐Related DiseasesBengbuAnhuiChina
| |
Collapse
|
49
|
Sun R, Chu J, Li P. Inflammasomes and idiopathic inflammatory myopathies. Front Immunol 2024; 15:1449969. [PMID: 39723212 PMCID: PMC11668653 DOI: 10.3389/fimmu.2024.1449969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 11/15/2024] [Indexed: 12/28/2024] Open
Abstract
Idiopathic inflammatory myopathies (IIM) are a group of systemic autoimmune diseases characterized by muscle weakness and elevated serum creatine kinase levels. Recent research has highlighted the role of the innate immune system, particularly inflammasomes, in the pathogenesis of IIM. This review focuses on the role of inflammasomes, specifically NLRP3 and AIM2, and their associated proteins in the development of IIM. We discuss the molecular mechanisms of pyroptosis, a programmed cell death pathway that triggers inflammation, and its association with IIM. The NLRP3 inflammasome, in particular, has been implicated in muscle fiber necrosis and the subsequent release of damage-associated molecular patterns (DAMPs), leading to inflammation. We also explore the potential therapeutic implications of targeting the NLRP3 inflammasome with inhibitors such as glyburide and MCC950, which have shown promise in reducing inflammation and improving muscle function in preclinical models. Additionally, we discuss the role of caspases, particularly caspase-1, in the canonical pyroptotic pathway associated with IIM. The understanding of these mechanisms offers new avenues for therapeutic intervention and a better comprehension of IIM pathophysiology.
Collapse
Affiliation(s)
- Rui Sun
- Department of Rheumatology, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Jiyan Chu
- Department of Rheumatology, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
- Graduate School, Dalian Medical University, Dalian, Liaoning, China
| | - Ping Li
- Department of Rheumatology, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| |
Collapse
|
50
|
Alam MS, Anwar MJ, Maity MK, Azam F, Jaremko M, Emwas AH. The Dynamic Role of Curcumin in Mitigating Human Illnesses: Recent Advances in Therapeutic Applications. Pharmaceuticals (Basel) 2024; 17:1674. [PMID: 39770516 PMCID: PMC11679877 DOI: 10.3390/ph17121674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/02/2024] [Accepted: 12/07/2024] [Indexed: 01/11/2025] Open
Abstract
Herbal medicine, particularly in developing regions, remains highly popular due to its cost-effectiveness, accessibility, and minimal risk of adverse effects. Curcuma longa L., commonly known as turmeric, exemplifies such herbal remedies with its extensive history of culinary and medicinal applications across Asia for thousands of years. Traditionally utilized as a dye, flavoring, and in cultural rituals, turmeric has also been employed to treat a spectrum of medical conditions, including inflammatory, bacterial, and fungal infections, jaundice, tumors, and ulcers. Building on this longstanding use, contemporary biochemical and clinical research has identified curcumin-the primary active compound in turmeric-as possessing significant therapeutic potential. This review hypothesizes that curcumin's antioxidant properties are pivotal in preventing and treating chronic inflammatory diseases, which are often precursors to more severe conditions, such as cancer, and neurological disorders, like Parkinson's and Alzheimer's disease. Additionally, while curcumin demonstrates a favorable safety profile, its anticoagulant effects warrant cautious application. This article synthesizes recent studies to elucidate the molecular mechanisms underlying curcumin's actions and evaluates its therapeutic efficacy in various human illnesses, including cancer, inflammatory bowel disease, osteoarthritis, atherosclerosis, peptic ulcers, COVID-19, psoriasis, vitiligo, and depression. By integrating diverse research findings, this review aims to provide a comprehensive perspective on curcumin's role in modern medicine and its potential as a multifaceted therapeutic agent.
Collapse
Affiliation(s)
- Md Shamshir Alam
- Department of Pharmacy Practice, College of Pharmacy, National University of Science and Technology, P.O. Box 620, Bosher, Muscat 130, Oman
| | - Md Jamir Anwar
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| | - Manish Kumar Maity
- Department of Pharmacy Practice, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, Haryana, India
| | - Faizul Azam
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| |
Collapse
|