1
|
Sadeghi M, Moghaddam A, Amiri AM, Charoghdoozi K, Mohammadi M, Dehnavi S, Orazizadeh M. Improving the Wound Healing Process: Pivotal role of Mesenchymal stromal/stem Cells and Immune Cells. Stem Cell Rev Rep 2025; 21:680-697. [PMID: 39921839 DOI: 10.1007/s12015-025-10849-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2025] [Indexed: 02/10/2025]
Abstract
Wound healing, a physiological process, involves several different types of cells, from immune cells to non-immune cells, including mesenchymal stromal/stem cells (MSC), and their interactions. Immune cells including macrophages, neutrophils, dendritic cells (DC), innate lymphoid cells (ILC), natural killer (NK) cells, and B and T lymphocytes participate in wound healing by secreting various mediators and interacting with other cells. MSCs, as self-renewing, fast proliferating, and multipotent stromal/stem cells, are found in a wide variety of tissues and critically involved in different phases of wound healing by secreting various molecules that help to improve tissue healing and regeneration. In this review, first, we described the four main phases of wound healing, second, we reviewed the function of MSCs, MSC secretome and immune cells in improving the progress of wound repair (mainly focusing on skin wound healing), third, we explained the immune cells/MSCs interactions in the process of wound healing and regeneration, and finally, we introduce clinical applications of MSCs to improve the process of wound healing.
Collapse
Affiliation(s)
- Mahvash Sadeghi
- Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Asma Moghaddam
- Cellular and Molecular Research Center, Medical Basic Sciences Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Anatomical Sciences, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Amir Mohammad Amiri
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Kianush Charoghdoozi
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojgan Mohammadi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sajad Dehnavi
- Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mahmoud Orazizadeh
- Cellular and Molecular Research Center, Medical Basic Sciences Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Department of Anatomical Sciences, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
2
|
Miyazaki K, Horie K, Watanabe H, Hidaka R, Hayashi R, Hayatsu N, Fujiwara K, Kuwata R, Uehata T, Ochi Y, Takenaka M, Kawaguchi RK, Ikuta K, Takeuchi O, Ogawa S, Hozumi K, Holländer GA, Kondoh G, Akiyama T, Miyazaki M. A feedback amplifier circuit with Notch and E2A orchestrates T-cell fate and suppresses the innate lymphoid cell lineages during thymic ontogeny. Genes Dev 2025; 39:384-400. [PMID: 39904558 PMCID: PMC11874989 DOI: 10.1101/gad.352111.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 01/13/2025] [Indexed: 02/06/2025]
Abstract
External signals from the thymic microenvironment and the activities of lineage-specific transcription factors (TFs) instruct T-cell versus innate lymphoid cell (ILC) fates. However, mechanistic insights into how factors such as Notch1-Delta-like-4 (Dll4) signaling and E-protein TFs collaborate to establish T-cell identity remain rudimentary. Using multiple in vivo approaches and single-cell multiome analysis, we identified a feedback amplifier circuit that specifies fetal and adult T-cell fates. In early T progenitors (ETPs) in the fetal thymus, Notch signaling minimally lowered E-protein antagonist Id2 levels, and high Id2 abundance favored the differentiation of ETPs into ILCs. Conversely, in the adult thymus, Notch signaling markedly decreased Id2 abundance in ETPs, substantially elevating E-protein DNA binding and in turn promoting the activation of a T-cell lineage-specific gene expression program linked with V(D)J gene recombination and T-cell receptor signaling. Our findings indicate that, in the fetal versus the adult thymus, a simple feedback amplifier circuit dictated by Notch-mediated signals and Id2 abundance enforces T-cell identity and suppresses ILC development.
Collapse
Affiliation(s)
- Kazuko Miyazaki
- Laboratory of Immunology, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Kenta Horie
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Kanagawa 230-0045, Japan
| | - Hitomi Watanabe
- Laboratory of Integrative Biological Sciences, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Reiko Hidaka
- Laboratory of Immunology, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Rinako Hayashi
- Laboratory of Immunology, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Norihito Hayatsu
- Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Sciences, Kanagawa 230-0045, Japan
| | - Kentaro Fujiwara
- Laboratory of Immunology, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Rei Kuwata
- Laboratory of Immunology, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Takuya Uehata
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Yotaro Ochi
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Makoto Takenaka
- Laboratory of Integrative Biological Sciences, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | | | - Koichi Ikuta
- Laboratory of Immune Regulation, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Osamu Takeuchi
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
- Institute for the Advanced Study of Human Biology (WPI ASHBi), Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institute, Stockholm 171 77, Sweden
| | - Katsuto Hozumi
- Department of Immunology, Tokai University School of Medicine, Kanagawa 259-1193, Japan
| | - Georg A Holländer
- Department of Pediatrics, Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford OX3 7TY, United Kingdom
- Pediatric Immunology, Department of Biomedicine, University of Basel and University Children's Hospital Basel, Basel 4056, Switzerland
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, Basel 4056, Switzerland
| | - Gen Kondoh
- Laboratory of Integrative Biological Sciences, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Taishin Akiyama
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Kanagawa 230-0045, Japan
| | - Masaki Miyazaki
- Laboratory of Immunology, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan;
| |
Collapse
|
3
|
Takao T, Matsui A, Kikutake C, Kan-O K, Inoue A, Suyama M, Okamoto I, Ito M. Maternal asthma imprints fetal lung ILC2s via glucocorticoid signaling leading to worsened allergic airway inflammation in murine adult offspring. Nat Commun 2025; 16:631. [PMID: 39805834 PMCID: PMC11730321 DOI: 10.1038/s41467-025-55941-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025] Open
Abstract
The root of asthma can be linked to early life, with prenatal environments influencing risk. We investigate the effects of maternal asthma on the offspring's lungs during fetal and adult life. Adult offspring of asthmatic mothers show an increase in lung group 2 innate lymphoid cell (ILC2) number and function with allergen-induced lung inflammation. Offspring of asthmatic mothers show phenotypic alteration of their lung ILC2s during fetal life, with increased expression of genes related to activation and glucocorticoid signaling. Furthermore, these offspring carry overlapping chromatin-accessible altered regions, including glucocorticoid receptor-binding regions in their lung ILC2s both at the fetal stage and adulthood, suggesting persistent prenatal epigenetic changes. Moreover, maternal exposure to glucocorticoids has similar effects on fetal lung ILC2s and contributes to allergen-induced lung inflammation during adulthood. Thus, asthma during pregnancy may have long-term effects on lung ILC2s in the offspring from the embryonic period, contributing to an increased risk of developing asthma.
Collapse
Affiliation(s)
- Tomoaki Takao
- Division of Allergy and Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ako Matsui
- Division of Allergy and Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Chie Kikutake
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Keiko Kan-O
- Department of Respiratory Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Azusa Inoue
- Laboratory for Epigenome Inheritance, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Tokyo Metropolitan University, Hachioji, Japan
| | - Mikita Suyama
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Isamu Okamoto
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Minako Ito
- Division of Allergy and Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
4
|
Maekawa A, Ueda-Hayakawa I, Shimbo T, Yamazaki S, Ouchi Y, Kitayama T, Tamai K, Fujimoto M. Single-cell transcriptomic profiling of lung fibroblasts in a bleomycin-induced systemic sclerosis mouse model. Biochem Biophys Res Commun 2024; 741:151017. [PMID: 39608052 DOI: 10.1016/j.bbrc.2024.151017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 11/17/2024] [Indexed: 11/30/2024]
Abstract
Systemic sclerosis (SSc) is a complex autoimmune disease characterized by fibrosis, vascular abnormalities, and immune dysfunction, with no definitive cure. Patients with progressive pulmonary fibrosis face a high mortality risk, underscoring the urgent need for effective treatments. Although fibroblasts are recognized as key drivers of fibrosis, the precise molecular mechanisms remain poorly understood. In this study, we employ single-cell RNA sequencing to explore the role of fibroblasts in pulmonary fibrosis. Using a mouse model induced by subcutaneous bleomycin administration, we identify two distinct fibroblast subpopulations: nephronectin-positive (NPNT) and peptidase inhibitor 16-positive cells(PI16). NPNT-positive fibroblasts, located around the alveoli, exhibit increased extracellular matrix expression following bleomycin treatment. To further understand pulmonary fibrosis, subcutaneous and intratracheal bleomycin-induced mouse models are compared. A comparative gene expression analysis reveals shared and unique features between the models, highlighting the complexity of the fibrotic process. These findings offer valuable insights into the molecular mechanisms of SSc-associated pulmonary fibrosis and may inform the development of therapies targeting specific fibroblast subpopulations or pathways.
Collapse
Affiliation(s)
- Aya Maekawa
- Department of Dermatology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Ikuko Ueda-Hayakawa
- Department of Dermatology, Graduate School of Medicine, Osaka University, Suita, Japan.
| | - Takashi Shimbo
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, Japan; StemRIM Institute of Regeneration-Inducing Medicine, Osaka University, Suita, Osaka, Japan.
| | | | | | | | - Katsuto Tamai
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, Japan; StemRIM Inc., Ibaraki, Osaka, Japan
| | - Manabu Fujimoto
- Department of Dermatology, Graduate School of Medicine, Osaka University, Suita, Japan
| |
Collapse
|
5
|
Pease NA, Denecke KM, Chen L, Gerges PH, Kueh HY. A timed epigenetic switch balances T and ILC lineage proportions in the thymus. Development 2024; 151:dev203016. [PMID: 39655434 PMCID: PMC11664168 DOI: 10.1242/dev.203016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 11/04/2024] [Indexed: 01/11/2025]
Abstract
How multipotent progenitors give rise to multiple cell types in defined numbers is a central question in developmental biology. Epigenetic switches, acting at single gene loci, can generate extended delays in the activation of lineage-specifying genes and impact lineage decisions and cell type output. Here, we analyzed a timed epigenetic switch controlling expression of mouse Bcl11b, a transcription factor that drives T-cell commitment, but only after a multi-day delay. To investigate roles for this delay in controlling lineage decision making, we analyzed progenitors with a deletion in a distal Bcl11b enhancer, which extends this delay by ∼3 days. Strikingly, delaying Bcl11b activation reduces T-cell output but enhances innate lymphoid cell (ILC) generation in the thymus by redirecting uncommitted progenitors to the ILC lineages. Mechanistically, delaying Bcl11b activation promoted ILC redirection by enabling upregulation of the ILC-specifying transcription factor PLZF. Despite the upregulation of PLZF, committed ILC progenitors could subsequently express Bcl11b, which is also needed for type 2 ILC differentiation. These results show that epigenetic switches can control the activation timing and order of lineage-specifying genes to modulate cell type numbers and proportions.
Collapse
Affiliation(s)
- Nicholas A. Pease
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98105, USA
| | - Kathryn M. Denecke
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - Lihua Chen
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - Peter Habib Gerges
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Hao Yuan Kueh
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98105, USA
| |
Collapse
|
6
|
Shimba A, Tani-Ichi S, Masuda K, Cui G, Munakata S, Abe S, Kitano S, Miyachi H, Kawamoto H, Ikuta K. A Chimeric IL-7Rα/IL-2Rβ Receptor Promotes the Differentiation of T Cell Progenitors into B Cells and Type 2 Innate Lymphoid Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:952-964. [PMID: 39140896 DOI: 10.4049/jimmunol.2300483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 07/29/2024] [Indexed: 08/15/2024]
Abstract
IL-7 and IL-2 are evolutionarily related cytokines that play critical roles in the development and expansion of immune cells. Although both IL-7R and IL-2R activate similar signaling molecules, whether their signals have specific or overlapping functions during lymphocyte differentiation remains unclear. To address this question, we generated IL-7R α-chain (IL-7Rα)/IL-2R β-chain (IL-24β) (72R) knock-in mice expressing a chimeric receptor consisting of the extracellular domain of IL-7Rα and the intracellular domain of IL-2Rβ under the control of the endogenous IL-7Rα promoter. Notably, this 72R receptor induced higher levels of STAT5 and Akt phosphorylation in T cells. In the periphery of 72R mice, the number of T cells, B cells, and type 2 innate lymphoid cells (ILC2s) was increased, whereas early T cell progenitors and double-negative 2 thymocytes were reduced in the thymus. In addition, cell proliferation and Notch signaling were impaired in the early thymocytes of 72R mice, leading to their differentiation into thymic B cells. Interestingly, ILC2s were increased in the thymus of 72R mice. Early T cell progenitors from 72R mice, but not from wild-type mice, differentiated into NK cells and ILC2-like cells when cocultured with a thymic stromal cell line. Thus, this study indicates that the chimeric 72R receptor transduces more robust signals than the authentic IL-7Rα, thereby inducing the alternative differentiation of T cell progenitors into other cell lineages. This suggests that cytokine receptors may provide instructive signals for cell fate decisions.
Collapse
Affiliation(s)
- Akihiro Shimba
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shizue Tani-Ichi
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kyoko Masuda
- Laboratory of Immunology, Department of Regeneration Science and Engineering, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Guangwei Cui
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Satoru Munakata
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Shinya Abe
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Satsuki Kitano
- Reproductive Engineering Team, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Hitoshi Miyachi
- Reproductive Engineering Team, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Hiroshi Kawamoto
- Laboratory of Immunology, Department of Regeneration Science and Engineering, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Koichi Ikuta
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
7
|
Sun S, Motazedian A, Li JY, Wijanarko K, Zhu JJ, Tharmarajah K, Strumila KA, Shkaruta A, Nigos LR, Schiesser JV, Yu Y, Neeson PJ, Ng ES, Elefanty AG, Stanley EG. Efficient generation of human NOTCH ligand-expressing haemogenic endothelial cells as infrastructure for in vitro haematopoiesis and lymphopoiesis. Nat Commun 2024; 15:7698. [PMID: 39227582 PMCID: PMC11371830 DOI: 10.1038/s41467-024-51974-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 08/14/2024] [Indexed: 09/05/2024] Open
Abstract
Arterial endothelial cells (AECs) are the founder cells for intraembryonic haematopoiesis. Here, we report a method for the efficient generation of human haemogenic DLL4+ AECs from pluripotent stem cells (PSC). Time-series single-cell RNA-sequencing reveals the dynamic evolution of haematopoiesis and lymphopoiesis, generating cell types with counterparts present in early human embryos, including stages marked by the pre-haematopoietic stem cell genes MECOM/EVI1, MLLT3 and SPINK2. DLL4+ AECs robustly support lymphoid differentiation, without the requirement for exogenous NOTCH ligands. Using this system, we find IL7 acts as a morphogenic factor determining the fate choice between the T and innate lymphoid lineages and also plays a role in regulating the relative expression level of RAG1. Moreover, we document a developmental pathway by which human RAG1+ lymphoid precursors give rise to the natural killer cell lineage. Our study describes an efficient method for producing lymphoid progenitors, providing insights into their endothelial and haematopoietic ontogeny, and establishing a platform to investigate the development of the human blood system.
Collapse
Affiliation(s)
- Shicheng Sun
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, Australia.
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia.
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Parkville, VIC, Australia.
- Changping Laboratory, Beijing, China.
| | - Ali Motazedian
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, Australia
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Jacky Y Li
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Kevin Wijanarko
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Joe Jiang Zhu
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Kothila Tharmarajah
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Kathleen A Strumila
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Anton Shkaruta
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - L Rayburn Nigos
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, Australia
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Jacqueline V Schiesser
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Yi Yu
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Paul J Neeson
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Elizabeth S Ng
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Andrew G Elefanty
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Edouard G Stanley
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, Australia.
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia.
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Parkville, VIC, Australia.
| |
Collapse
|
8
|
Daley AD, Bénézech C. Fat-associated lymphoid clusters: Supporting visceral adipose tissue B cell function in immunity and metabolism. Immunol Rev 2024; 324:78-94. [PMID: 38717136 DOI: 10.1111/imr.13339] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/09/2024] [Indexed: 07/23/2024]
Abstract
It is now widely understood that visceral adipose tissue (VAT) is a highly active and dynamic organ, with many functions beyond lipid accumulation and storage. In this review, we discuss the immunological role of this tissue, underpinned by the presence of fat-associated lymphoid clusters (FALCs). FALC's distinctive structure and stromal cell composition support a very different immune cell mix to that found in classical secondary lymphoid organs, which underlies their unique functions of filtration, surveillance, innate-like immune responses, and adaptive immunity within the serous cavities. FALCs are important B cell hubs providing B1 cell-mediated frontline protection against infection and supporting B2 cell-adaptative immune responses. Beyond these beneficial immune responses orchestrated by FALCs, immune cells within VAT play important homeostatic role. Dysregulation of immune cells during obesity and aging leads to chronic pathological "metabolic inflammation", which contributes to the development of cardiometabolic diseases. Here, we examine the emerging and complex functions of B cells in VAT homeostasis and the metabolic complications of obesity, highlighting the potential role that FALCs play and emphasize the areas where further research is needed.
Collapse
Affiliation(s)
- Alexander D Daley
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Cécile Bénézech
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
9
|
Barnes JL, Yoshida M, He P, Worlock KB, Lindeboom RGH, Suo C, Pett JP, Wilbrey-Clark A, Dann E, Mamanova L, Richardson L, Polanski K, Pennycuick A, Allen-Hyttinen J, Herczeg IT, Arzili R, Hynds RE, Teixeira VH, Haniffa M, Lim K, Sun D, Rawlins EL, Oliver AJ, Lyons PA, Marioni JC, Ruhrberg C, Tuong ZK, Clatworthy MR, Reading JL, Janes SM, Teichmann SA, Meyer KB, Nikolić MZ. Early human lung immune cell development and its role in epithelial cell fate. Sci Immunol 2023; 8:eadf9988. [PMID: 38100545 PMCID: PMC7615868 DOI: 10.1126/sciimmunol.adf9988] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 11/03/2023] [Indexed: 12/17/2023]
Abstract
Studies of human lung development have focused on epithelial and mesenchymal cell types and function, but much less is known about the developing lung immune cells, even though the airways are a major site of mucosal immunity after birth. An unanswered question is whether tissue-resident immune cells play a role in shaping the tissue as it develops in utero. Here, we profiled human embryonic and fetal lung immune cells using scRNA-seq, smFISH, and immunohistochemistry. At the embryonic stage, we observed an early wave of innate immune cells, including innate lymphoid cells, natural killer cells, myeloid cells, and lineage progenitors. By the canalicular stage, we detected naive T lymphocytes expressing high levels of cytotoxicity genes and the presence of mature B lymphocytes, including B-1 cells. Our analysis suggests that fetal lungs provide a niche for full B cell maturation. Given the presence and diversity of immune cells during development, we also investigated their possible effect on epithelial maturation. We found that IL-1β drives epithelial progenitor exit from self-renewal and differentiation to basal cells in vitro. In vivo, IL-1β-producing myeloid cells were found throughout the lung and adjacent to epithelial tips, suggesting that immune cells may direct human lung epithelial development.
Collapse
Affiliation(s)
- Josephine L Barnes
- UCL Respiratory, Division of Medicine, University College London, London, UK
| | - Masahiro Yoshida
- UCL Respiratory, Division of Medicine, University College London, London, UK
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, Japan
| | - Peng He
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge, UK
| | - Kaylee B Worlock
- UCL Respiratory, Division of Medicine, University College London, London, UK
| | - Rik G H Lindeboom
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Chenqu Suo
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - J Patrick Pett
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | | | - Emma Dann
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Lira Mamanova
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Enhanc3D Genomics Ltd, Cambridge, UK
| | - Laura Richardson
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | | | - Adam Pennycuick
- UCL Respiratory, Division of Medicine, University College London, London, UK
| | | | - Iván T Herczeg
- UCL Respiratory, Division of Medicine, University College London, London, UK
| | - Romina Arzili
- UCL Respiratory, Division of Medicine, University College London, London, UK
| | - Robert E Hynds
- Epithelial Cell Biology in ENT Research (EpiCENTR) Group, Developmental Biology and Cancer Department, Great Ormond Street UCL Institute of Child Health, University College London, London, UK
- CRUK Lung Cancer Centre Of Excellence, UCL Cancer Institute, University College London, London, UK
| | - Vitor H Teixeira
- UCL Respiratory, Division of Medicine, University College London, London, UK
| | - Muzlifah Haniffa
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
- Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Kyungtae Lim
- Wellcome Trust/CRUK Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Department of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Dawei Sun
- Wellcome Trust/CRUK Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Emma L Rawlins
- Wellcome Trust/CRUK Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Amanda J Oliver
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Paul A Lyons
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - John C Marioni
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge, UK
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| | | | - Zewen Kelvin Tuong
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Ian Frazer Centre for Children's Immunotherapy Research, Child Health Research Centre, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Menna R Clatworthy
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - James L Reading
- CRUK Lung Cancer Centre Of Excellence, UCL Cancer Institute, University College London, London, UK
- Tumour Immunodynamics and Interception Laboratory, Cancer Institute, University College London, London, UK
| | - Sam M Janes
- UCL Respiratory, Division of Medicine, University College London, London, UK
- CRUK Lung Cancer Centre Of Excellence, UCL Cancer Institute, University College London, London, UK
- University College London Hospitals NHS Foundation Trust, London, UK
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- Department of Physics/Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Kerstin B Meyer
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Marko Z Nikolić
- UCL Respiratory, Division of Medicine, University College London, London, UK
- University College London Hospitals NHS Foundation Trust, London, UK
| |
Collapse
|
10
|
Takami D, Abe S, Shimba A, Asahi T, Cui G, Tani-Ichi S, Hara T, Miyata K, Ikutani M, Takatsu K, Oike Y, Ikuta K. Lung group 2 innate lymphoid cells differentially depend on local IL-7 for their distribution, activation, and maintenance in innate and adaptive immunity-mediated airway inflammation. Int Immunol 2023; 35:513-530. [PMID: 37493250 DOI: 10.1093/intimm/dxad029] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/24/2023] [Indexed: 07/27/2023] Open
Abstract
Interleukin-7 (IL-7) is a cytokine critical for the development and maintenance of group 2 innate lymphoid cells (ILC2s). ILC2s are resident in peripheral tissues such as the intestine and lung. However, whether IL-7 produced in the lung plays a role in the maintenance and function of lung ILC2s during airway inflammation remains unknown. IL-7 was expressed in bronchoalveolar epithelial cells and lymphatic endothelial cells (LECs). To investigate the role of local IL-7 in lung ILC2s, we generated two types of IL-7 conditional knockout (IL-7cKO) mice: Sftpc-Cre (SPC-Cre) IL-7cKO mice specific for bronchial epithelial cells and type 2 alveolar epithelial cells and Lyve1-Cre IL-7cKO mice specific for LECs. In steady state, ILC2s were located near airway epithelia, although lung ILC2s were unchanged in the two lines of IL-7cKO mice. In papain-induced airway inflammation dependent on innate immunity, lung ILC2s localized near bronchia via CCR4 expression, and eosinophil infiltration and type 2 cytokine production were reduced in SPC-Cre IL-7cKO mice. In contrast, in house dust mite (HDM)-induced airway inflammation dependent on adaptive immunity, lung ILC2s localized near lymphatic vessels via their CCR2 expression 2 weeks after the last challenge. Furthermore, lung ILC2s were decreased in Lyve1-Cre IL-7cKO mice in the HDM-induced inflammation because of decreased cell survival and proliferation. Finally, administration of anti-IL-7 antibody attenuated papain-induced inflammation by suppressing the activation of ILC2s. Thus, this study demonstrates that IL-7 produced by bronchoalveolar epithelial cells and LECs differentially controls the activation and maintenance of lung ILC2s, where they are localized in airway inflammation.
Collapse
Affiliation(s)
- Daichi Takami
- Department of Virus Research, Laboratory of Immune Regulation, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Shinya Abe
- Department of Virus Research, Laboratory of Immune Regulation, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Akihiro Shimba
- Department of Virus Research, Laboratory of Immune Regulation, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Takuma Asahi
- Department of Virus Research, Laboratory of Immune Regulation, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
- Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Guangwei Cui
- Department of Virus Research, Laboratory of Immune Regulation, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Shizue Tani-Ichi
- Department of Virus Research, Laboratory of Immune Regulation, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Takahiro Hara
- Department of Virus Research, Laboratory of Immune Regulation, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Keishi Miyata
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Masashi Ikutani
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8511, Japan
| | - Kiyoshi Takatsu
- Toyama Prefectural Institute for Pharmaceutical Research, Toyama 930-8501, Japan
| | - Yuichi Oike
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Koichi Ikuta
- Department of Virus Research, Laboratory of Immune Regulation, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| |
Collapse
|
11
|
Russi AE, Shivakumar P, Luo Z, Bezerra J. Plasticity between type 2 innate lymphoid cell subsets and amphiregulin expression regulates epithelial repair in biliary atresia. Hepatology 2023; 78:1035-1049. [PMID: 37078450 PMCID: PMC10524120 DOI: 10.1097/hep.0000000000000418] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/22/2023] [Indexed: 04/21/2023]
Abstract
BACKGROUND AND AIMS Although a dysregulated type 1 immune response is integral to the pathogenesis of biliary atresia, studies in both humans and mice have uncovered a type 2 response, primarily driven by type 2 innate lymphoid cells. In nonhepatic tissues, natural type 2 innate lymphoid cell (nILC2s) regulate epithelial proliferation and tissue repair, whereas inflammatory ILC2s (iIlC2s) drive tissue inflammation and injury. The aim of this study is to determine the mechanisms used by type 2 innate lymphoid cell (ILC2) subpopulations to regulate biliary epithelial response to an injury. APPROACH AND RESULTS Using Spearman correlation analysis, nILC2 transcripts, but not those of iILC2s, are positively associated with cholangiocyte abundance in biliary atresia patients at the time of diagnosis. nILC2s are identified in the mouse liver through flow cytometry. They undergo expansion and increase amphiregulin production after IL-33 administration. This drives epithelial proliferation dependent on the IL-13/IL-4Rα/STAT6 pathway as determined by decreased nILC2s and reduced epithelial proliferation in knockout strains. The addition of IL-2 promotes inter-lineage plasticity towards a nILC2 phenotype. In experimental biliary atresia induced by rotavirus, this pathway promotes epithelial repair and tissue regeneration. The genetic loss or molecular inhibition of any part of this circuit switches nILC2s to inflammatory type 2 innate lymphoid cell-like, resulting in decreased amphiregulin production, decreased epithelial proliferation, and the full phenotype of experimental biliary atresia. CONCLUSIONS These findings identify a key function of the IL-13/IL-4Rα/STAT6 pathway in ILC2 plasticity and an alternate circuit driven by IL-2 to promote nILC2 stability and amphiregulin expression. This pathway induces epithelial homeostasis and repair in experimental biliary atresia.
Collapse
Affiliation(s)
- Abigail E Russi
- Division of Gastroenterology, Hepatology and Nutrition at Cincinnati Children’s Hospital Medical Center; Cincinnati OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine; Cincinnati OH, USA
| | - Pranavkumar Shivakumar
- Division of Gastroenterology, Hepatology and Nutrition at Cincinnati Children’s Hospital Medical Center; Cincinnati OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine; Cincinnati OH, USA
| | - Zhenhua Luo
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China, 510080
| | - Jorge Bezerra
- Department of Pediatrics, University of Texas Southwestern Medical Center and Children’s Health of Dallas, TX, USA
| |
Collapse
|
12
|
Liu Y, Liu Z, Liang J, Sun C. ILC2s control obesity by regulating energy homeostasis and browning of white fat. Int Immunopharmacol 2023; 120:110272. [PMID: 37210911 DOI: 10.1016/j.intimp.2023.110272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/27/2023] [Accepted: 04/29/2023] [Indexed: 05/23/2023]
Abstract
Innate lymphoid cells (ILCs) have been a hot topic in recent research, they are widely distributed in vivo and play an important role in different tissues. The important role of group 2 innate lymphoid cells (ILC2s) in the conversion of white fat into beige fat has attracted widespread attention. Studies have shown that ILC2s regulate adipocyte differentiation and lipid metabolism. This article reviews the types and functions of ILCs, focusing on the relationship between differentiation, development and function of ILC2s, and elaborates on the relationship between peripheral ILC2s and browning of white fat and body energy homeostasis. This has important implications for the future treatment of obesity and related metabolic diseases.
Collapse
Affiliation(s)
- Yuexia Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Zunhai Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Juntong Liang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Chao Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
13
|
Molofsky AB, Locksley RM. The ins and outs of innate and adaptive type 2 immunity. Immunity 2023; 56:704-722. [PMID: 37044061 PMCID: PMC10120575 DOI: 10.1016/j.immuni.2023.03.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 04/14/2023]
Abstract
Type 2 immunity is orchestrated by a canonical group of cytokines primarily produced by innate lymphoid cells, group 2, and their adaptive counterparts, CD4+ helper type 2 cells, and elaborated by myeloid cells and antibodies that accumulate in response. Here, we review the cytokine and cellular circuits that mediate type 2 immunity. Building from insights in cytokine evolution, we propose that innate type 2 immunity evolved to monitor the status of microbe-rich epithelial barriers (outside) and sterile parenchymal borders (inside) to meet the functional demands of local tissue, and, when necessary, to relay information to the adaptive immune system to reinforce demarcating borders to sustain these efforts. Allergic pathology likely results from deviations in local sustaining units caused by alterations imposed by environmental effects during postnatal developmental windows and exacerbated by mutations that increase vulnerabilities. This framework positions T2 immunity as central to sustaining tissue repair and regeneration and provides a context toward understanding allergic disease.
Collapse
Affiliation(s)
- Ari B Molofsky
- Department of Lab Medicine, University of California, San Francisco, San Francisco, CA 94143-0451, USA
| | - Richard M Locksley
- Howard Hughes Medical Institute and Department of Medicine, University of California, San Francisco, San Francisco, CA 94143-0795, USA.
| |
Collapse
|
14
|
Li S, Wang CS, Montel-Hagen A, Chen HC, Lopez S, Zhou O, Dai K, Tsai S, Satyadi W, Botero C, Wong C, Casero D, Crooks GM, Seet CS. Strength of CAR signaling determines T cell versus ILC differentiation from pluripotent stem cells. Cell Rep 2023; 42:112241. [PMID: 36906850 PMCID: PMC10315155 DOI: 10.1016/j.celrep.2023.112241] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 01/04/2023] [Accepted: 02/23/2023] [Indexed: 03/13/2023] Open
Abstract
Generation of chimeric antigen receptor (CAR) T cells from pluripotent stem cells (PSCs) will enable advances in cancer immunotherapy. Understanding how CARs affect T cell differentiation from PSCs is important for this effort. The recently described artificial thymic organoid (ATO) system supports in vitro differentiation of PSCs to T cells. Unexpectedly, PSCs transduced with a CD19-targeted CAR resulted in diversion of T cell differentiation to the innate lymphoid cell 2 (ILC2) lineage in ATOs. T cells and ILC2s are closely related lymphoid lineages with shared developmental and transcriptional programs. Mechanistically, we show that antigen-independent CAR signaling during lymphoid development enriched for ILC2-primed precursors at the expense of T cell precursors. We applied this understanding to modulate CAR signaling strength through expression level, structure, and presentation of cognate antigen to demonstrate that the T cell-versus-ILC lineage decision can be rationally controlled in either direction, providing a framework for achieving CAR-T cell development from PSCs.
Collapse
Affiliation(s)
- Suwen Li
- Department of Medicine, Division of Hematology-Oncology, David Geffen School of Medicine (DGSOM), University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Chloe S Wang
- Department of Medicine, Division of Hematology-Oncology, David Geffen School of Medicine (DGSOM), University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Amélie Montel-Hagen
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ho-Chung Chen
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Shawn Lopez
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Olivia Zhou
- Department of Medicine, Division of Hematology-Oncology, David Geffen School of Medicine (DGSOM), University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kristy Dai
- Department of Medicine, Division of Hematology-Oncology, David Geffen School of Medicine (DGSOM), University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Steven Tsai
- Department of Medicine, Division of Hematology-Oncology, David Geffen School of Medicine (DGSOM), University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - William Satyadi
- Department of Medicine, Division of Hematology-Oncology, David Geffen School of Medicine (DGSOM), University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Carlos Botero
- Department of Medicine, Division of Hematology-Oncology, David Geffen School of Medicine (DGSOM), University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Claudia Wong
- Department of Medicine, Division of Hematology-Oncology, David Geffen School of Medicine (DGSOM), University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - David Casero
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Gay M Crooks
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Broad Stem Cell Research Center (BSCRC), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center (JCCC), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Christopher S Seet
- Department of Medicine, Division of Hematology-Oncology, David Geffen School of Medicine (DGSOM), University of California, Los Angeles, Los Angeles, CA 90095, USA; Broad Stem Cell Research Center (BSCRC), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center (JCCC), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
15
|
Yashiro T, Moro K. Crossing the valley of death: Toward translational research regarding ILC2. Allergol Int 2023; 72:187-193. [PMID: 36646561 DOI: 10.1016/j.alit.2022.12.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 01/16/2023] Open
Abstract
Group 2 innate lymphoid cells (ILC2s) are tissue-resident innate lymphoid cells that express the transcription factor GATA3 as a master regulator, which leads to the production of large amounts of type 2 cytokines, such as IL-5 and IL-13. ILC2s are activated by epithelial cell-derived cytokines, including IL-33 and IL-25, and play a key role in parasite expulsion, allergic responses, tissue repair, and metabolism. In the first five years after the discovery of ILC2s, research mainly focused on their function through cytokine receptors. However, in recent years, their regulatory mechanisms through not only cytokine receptors but also lipids, neuropeptides, and hormones have become a hot topic. For ILC2s that do not recognize foreign antigens, receptor expression of such endogenous factors is important, and the diverse expression patterns create the individuality of ILC2s in each organ. By considering the mechanisms of differentiation and regulation of ILC2s and their role in disease while taking into account spatio-temporal information, it is expected that new therapeutic strategies targeting ILC2s will be developed. Herein, we summarize the current understanding of ILC2s in lung homeostasis and pathology and provide valuable insights that will help to guide the future development of therapeutic methods for ILC2-mediated lung diseases.
Collapse
Affiliation(s)
- Takuya Yashiro
- Laboratory for Innate Immune Systems, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan; Life-omics Research Division, Institute for Open and Transdisciplinary Research Initiative, Osaka University, Osaka, Japan.
| | - Kazuyo Moro
- Laboratory for Innate Immune Systems, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan; Laboratory for Innate Immune Systems, RIKEN Center for Integrative Medical Sciences (IMS), Kanagawa, Japan; Laboratory for Innate Immune Systems, Immunology Frontier Research Center (IFReC), Osaka University, Osaka, Japan; Laboratory for Innate Immune Systems, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan; Life-omics Research Division, Institute for Open and Transdisciplinary Research Initiative, Osaka University, Osaka, Japan.
| |
Collapse
|
16
|
Hernández-Torres DC, Stehle C. Embryonic ILC-poiesis across tissues. Front Immunol 2022; 13:1040624. [PMID: 36605193 PMCID: PMC9807749 DOI: 10.3389/fimmu.2022.1040624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
The family of innate lymphoid cells (ILCs), consisting of Group 1 ILCs (natural killer cells and ILC1), ILC2, and ILC3, are critical effectors of innate immunity, inflammation, and homeostasis post-natally, but also exert essential functions before birth. Recent studies during critical developmental periods in the embryo have hinted at complex waves of tissue colonization, and highlighted the breadth of multipotent and committed ILC progenitors from both classic fetal hematopoietic organs such as the liver, as well as tissue sites such as the lung, thymus, and intestine. Assessment of the mechanisms driving cell fate and function of the ILC family in the embryo will be vital to the understanding ILC biology throughout fetal life and beyond.
Collapse
Affiliation(s)
- Daniela Carolina Hernández-Torres
- Innate Immunity, German Rheumatism Research Center (DRFZ), Leibniz Association, Berlin, Germany,Medical Department I, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany,*Correspondence: Daniela Carolina Hernández-Torres, ; Christina Stehle,
| | - Christina Stehle
- Innate Immunity, German Rheumatism Research Center (DRFZ), Leibniz Association, Berlin, Germany,Medical Department I, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany,*Correspondence: Daniela Carolina Hernández-Torres, ; Christina Stehle,
| |
Collapse
|
17
|
Chen J, Huang J, Shi J, Li M, Zhao E, Li G, Chen X, Wang T, Li Q, Li W, Ma J, Mao W, Fang R, Hao J, Huang W, Xiang AP, Zhang X. Nestin+ Peyer's patch resident MSCs enhance healing of inflammatory bowel disease through IL-22-mediated intestinal epithelial repair. Cell Prolif 2022; 56:e13363. [PMID: 36404603 PMCID: PMC9890526 DOI: 10.1111/cpr.13363] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/29/2022] [Accepted: 10/26/2022] [Indexed: 11/22/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic condition characterized by gastrointestinal tract inflammation and still lacks satisfactory treatments. Mesenchymal stromal cells (MSCs) show promising potential for treating IBD, but their therapeutic efficacy varies depending on the tissue of origin. We aim to investigate whether intestine Peyer's patch (PP)-derived MSCs have superior immunomodulatory effects on T cells and better therapeutic effects on IBD compared with bone marrow-derived MSCs. We isolated PPs-derived Nestin+ MSCs (MSCsPP ) and bone marrow-derived Nestin+ MSCs (MSCsBM ) from Nestin-GFP transgenic mice to explore their curative effects on murine IBD model. Moreover, we tested the effects of IL-22 knockdown and IL-22 overexpression on the therapeutic efficacy of MSCsPP and MSCsBM in murine IBD, respectively. We demonstrated that Nestin+ cells derived from murine PPs exhibit MSC-like biological characteristics. Compared with MSCsBM , MSCsPP possess enhanced immunoregulatory ability to suppress T cell proliferation and inflammatory cytokine production. Moreover, we observed that MSCsPP exhibited greater therapeutic efficacy than MSCsBM in murine IBD models. Interestingly, IL-22, which was highly expressed in MSCsPP , could alleviate the severity of the intestinal inflammation, while knockdown IL-22 of MSCsPP remarkably weakened the therapeutic effects. More importantly, IL-22 overexpressing MSCsBM could significantly improve the symptoms of murine IBD models. This study systemically demonstrated that murine MSCsPP have a prominent advantage in murine IBD treatment, partly through IL-22.
Collapse
Affiliation(s)
- Jieying Chen
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of EducationSun Yat‐sen UniversityGuangzhouGuangdongChina,National‐Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of MedicineSun Yat‐Sen UniversityGuangzhouChina
| | - Jing Huang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of EducationSun Yat‐sen UniversityGuangzhouGuangdongChina,National‐Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of MedicineSun Yat‐Sen UniversityGuangzhouChina
| | - Jiahao Shi
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of EducationSun Yat‐sen UniversityGuangzhouGuangdongChina,National‐Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of MedicineSun Yat‐Sen UniversityGuangzhouChina
| | - Minrong Li
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of EducationSun Yat‐sen UniversityGuangzhouGuangdongChina,National‐Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of MedicineSun Yat‐Sen UniversityGuangzhouChina
| | - Erming Zhao
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of EducationSun Yat‐sen UniversityGuangzhouGuangdongChina,National‐Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of MedicineSun Yat‐Sen UniversityGuangzhouChina
| | - Gang Li
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of EducationSun Yat‐sen UniversityGuangzhouGuangdongChina,National‐Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of MedicineSun Yat‐Sen UniversityGuangzhouChina
| | - Xiaoyong Chen
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of EducationSun Yat‐sen UniversityGuangzhouGuangdongChina,National‐Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of MedicineSun Yat‐Sen UniversityGuangzhouChina
| | - Tao Wang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of EducationSun Yat‐sen UniversityGuangzhouGuangdongChina,National‐Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of MedicineSun Yat‐Sen UniversityGuangzhouChina
| | - Qiaojia Li
- Department of Medical Ultrasonicthe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Weiqiang Li
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of EducationSun Yat‐sen UniversityGuangzhouGuangdongChina,National‐Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of MedicineSun Yat‐Sen UniversityGuangzhouChina
| | - Jianping Ma
- Shenzhen Qianhai Shekou Free Trade Zone HospitalShenzhenChina
| | - Wenzhe Mao
- Shenzhen Qianhai Shekou Free Trade Zone HospitalShenzhenChina
| | - Rui Fang
- Shenzhen Qianhai Shekou Free Trade Zone HospitalShenzhenChina
| | - Jiang Hao
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of EducationSun Yat‐sen UniversityGuangzhouGuangdongChina,National‐Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of MedicineSun Yat‐Sen UniversityGuangzhouChina
| | - Weijun Huang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of EducationSun Yat‐sen UniversityGuangzhouGuangdongChina,National‐Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of MedicineSun Yat‐Sen UniversityGuangzhouChina
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of EducationSun Yat‐sen UniversityGuangzhouGuangdongChina,National‐Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of MedicineSun Yat‐Sen UniversityGuangzhouChina
| | - Xiaoran Zhang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of EducationSun Yat‐sen UniversityGuangzhouGuangdongChina,National‐Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of MedicineSun Yat‐Sen UniversityGuangzhouChina
| |
Collapse
|
18
|
Sun H, Tan J, Chen H, Wu N, Su B. Immune niches orchestrated by intestinal mesenchymal stromal cells lining the crypt-villus. Front Immunol 2022; 13:1057932. [PMID: 36405734 PMCID: PMC9669707 DOI: 10.3389/fimmu.2022.1057932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/20/2022] [Indexed: 07/22/2023] Open
Abstract
The mammalian intestine is an organ that can be spatially defined by two axes: longitudinal and vertical. Such anatomical structure ensures the maintenance of a relatively immuno-quiescent and proliferation-promoting crypt for intestinal stem cell differentiation while actively warding off the invading intestinal microbes at the villus tip during digestion and nutrient absorption. Such behavior is achieved by the fine coordination among intestinal epithelial cells, intestinal mesenchymal stromal cells and tissue-resident immune cells like myeloid cells and lymphocytes. Among these cell types resided in the colon, intestinal mesenchymal stromal cells are considered to be the essential link between epithelium, vasculature, neuronal system, and hematopoietic compartment. Recent advancement of single cell and spatial transcriptomics has enabled us to characterize the spatial and functional heterogeneity of intestinal mesenchymal stromal cells. These studies reveal distinctive intestinal mesenchymal stromal cells localized in different regions of the intestine with diverse functions including but not limited to providing cytokines and growth factors essential for different immune cells and epithelial cells which predict niche formation for immune function from the villus tip to the crypt bottom. In this review, we aim to provide an overall view of the heterogeneity of intestinal mesenchymal stromal cells, the spatial distribution of these cells along with their interaction with immune cells and the potential regulatory cytokine profile of these cell types. Summarization of such information may enrich our current understanding of the immuno-regulatory functions of the newly identified mesenchymal stromal cell subsets beyond their epithelial regulatory function.
Collapse
Affiliation(s)
- Hongxiang Sun
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and the Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Gastroenterology, Center for Immune-Related Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Jiao Tong University School of Medicine–Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianmei Tan
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and the Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Gastroenterology, Center for Immune-Related Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Jiao Tong University School of Medicine–Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongqian Chen
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and the Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Gastroenterology, Center for Immune-Related Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Jiao Tong University School of Medicine–Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ningbo Wu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and the Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Gastroenterology, Center for Immune-Related Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Jiao Tong University School of Medicine–Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bing Su
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and the Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Gastroenterology, Center for Immune-Related Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Jiao Tong University School of Medicine–Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
19
|
Identification of hematopoietic stem cells residing in the meninges of adult mice at steady state. Cell Rep 2022; 41:111592. [DOI: 10.1016/j.celrep.2022.111592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 05/16/2022] [Accepted: 10/11/2022] [Indexed: 11/09/2022] Open
|
20
|
Sparano C, Solís-Sayago D, Vijaykumar A, Rickenbach C, Vermeer M, Ingelfinger F, Litscher G, Fonseca A, Mussak C, Mayoux M, Friedrich C, Nombela-Arrieta C, Gasteiger G, Becher B, Tugues S. Embryonic and neonatal waves generate distinct populations of hepatic ILC1s. Sci Immunol 2022; 7:eabo6641. [PMID: 36054340 DOI: 10.1126/sciimmunol.abo6641] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Group 1 innate lymphoid cells (ILCs) comprising circulating natural killer (cNK) cells and tissue-resident ILC1s are critical for host defense against pathogens and tumors. Despite a growing understanding of their role in homeostasis and disease, the ontogeny of group 1 ILCs remains largely unknown. Here, we used fate mapping and single-cell transcriptomics to comprehensively investigate the origin and turnover of murine group 1 ILCs. Whereas cNK cells are continuously replaced throughout life, we uncovered tissue-dependent development and turnover of ILC1s. A first wave of ILC1s emerges during embryogenesis in the liver and transiently colonizes fetal tissues. After birth, a second wave quickly replaces ILC1s in most tissues apart from the liver, where they layer with embryonic ILC1s, persist until adulthood, and undergo a specific developmental program. Whereas embryonically derived ILC1s give rise to a cytotoxic subset, the neonatal wave establishes the full spectrum of ILC1s. Our findings uncover key ontogenic features of murine group 1 ILCs and their association with cellular identities and functions.
Collapse
Affiliation(s)
- Colin Sparano
- Innate Lymphoid Cells and Cancer, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Darío Solís-Sayago
- Innate Lymphoid Cells and Cancer, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Anjali Vijaykumar
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Chiara Rickenbach
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Marijne Vermeer
- Innate Lymphoid Cells and Cancer, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Florian Ingelfinger
- Inflammation Research, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Gioana Litscher
- Innate Lymphoid Cells and Cancer, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - André Fonseca
- Innate Lymphoid Cells and Cancer, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Caroline Mussak
- Innate Lymphoid Cells and Cancer, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Maud Mayoux
- Innate Lymphoid Cells and Cancer, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Christin Friedrich
- Würzburg Institute of Systems Immunology, Max Planck Research Group, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - César Nombela-Arrieta
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Georg Gasteiger
- Würzburg Institute of Systems Immunology, Max Planck Research Group, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Burkhard Becher
- Inflammation Research, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Sonia Tugues
- Innate Lymphoid Cells and Cancer, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
21
|
Song EH, Xu M, Yang J, Xiao Y, Griffith AV, Xiong N. Delta-like 4-Derived Notch Signals Differentially Regulate Thymic Generation of Skin-Homing CCR10 +NK1.1 + Innate Lymphoid Cells at Neonatal and Adult Stages. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:950-959. [PMID: 35922065 PMCID: PMC9492633 DOI: 10.4049/jimmunol.2100870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 06/27/2022] [Indexed: 11/06/2022]
Abstract
The thymus is a primary lymphoid organ for T cell development. Increasing evidence found that the thymus is also an important site for development of innate lymphoid cells (ILCs). ILCs generated in thymi acquire unique homing properties that direct their localization into barrier tissues such as the skin and intestine, where they help local homeostasis. Mechanisms underlying the developmental programming of unique tissue-homing properties of ILCs are poorly understood. We report in this article that thymic stroma-derived Notch signaling is differentially involved in thymic generation of a population of NK1.1+ group 1 ILCs (ILC1s) with the CCR10+ skin-homing property in adult and neonatal mice. We found that thymic generation of CCR10+NK1.1+ ILC1s is increased in T cell-deficient mice at adult, but not neonatal, stages, supporting the notion that a large number of developing T cells interfere with signals required for generation of CCR10+NK1.1+ ILC1s. In an in vitro differentiation assay, increasing Notch signals promotes generation of CCR10+NK1.1+ ILC1s from hematopoietic progenitors. Knockout of the Notch ligand Delta-like 4 in thymic stroma impairs generation of CCR10+NK1.1+ ILC1s in adult thymi, but development of CCR10+NK1.1+ ILC1s in neonatal thymi is less dependent on Delta-like 4-derived Notch signals. Mechanistically, the Notch signaling is required for proper expression of the IL-7R CD127 on thymic NK1.1+ ILC1s, and deficiency of CD127 also impairs thymic generation of CCR10+NK1.1+ ILC1s at adult, but not perinatal, stages. Our findings advanced understanding of regulatory mechanisms of thymic innate lymphocyte development.
Collapse
Affiliation(s)
- Eun Hyeon Song
- The Molecular, Cellular, and Integrative Biosciences Graduate Program, Pennsylvania State University, University Park, PA
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center San Antonio, San Antonio, TX
| | - Ming Xu
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center San Antonio, San Antonio, TX
| | - Jie Yang
- The Molecular, Cellular, and Integrative Biosciences Graduate Program, Pennsylvania State University, University Park, PA
| | - Yangming Xiao
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center San Antonio, San Antonio, TX
| | - Ann V Griffith
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center San Antonio, San Antonio, TX
| | - Na Xiong
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center San Antonio, San Antonio, TX;
- Division of Dermatology and Cutaneous Surgery, Department of Medicine, University of Texas Health Science Center San Antonio, San Antonio, TX; and
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA
| |
Collapse
|
22
|
Misawa T, Wagner M, Koyasu S. ILC2s and Adipose Tissue Homeostasis: Progress to Date and the Road Ahead. Front Immunol 2022; 13:876029. [PMID: 35784368 PMCID: PMC9243262 DOI: 10.3389/fimmu.2022.876029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/04/2022] [Indexed: 11/14/2022] Open
Abstract
Group 2 innate lymphoid cells (ILC2s) were initially identified as a new type of lymphocytes that produce vigorous amounts of type 2 cytokines in adipose tissue. Subsequent studies revealed that ILC2s are present not only in adipose tissue but also in various other tissues such as lung and skin. ILC2s are generally recognized as tissue-resident immune cells that regulate tissue homeostasis. ILC2s express receptors for various humoral factors and thus can change their functions or distribution depending on the environment and circumstances. In this review, we will outline our recent understanding of ILC2 biology and discuss future directions for ILC2 research, particularly in adipose tissue and metabolic homeostasis.
Collapse
Affiliation(s)
- Takuma Misawa
- Laboratory for Immune Cell Systems, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Marek Wagner
- Laboratory for Immune Cell Systems, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Shigeo Koyasu
- Laboratory for Immune Cell Systems, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- *Correspondence: Shigeo Koyasu,
| |
Collapse
|
23
|
Finding a Niche: Tissue Immunity and Innate Lymphoid Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1365:57-73. [PMID: 35567741 DOI: 10.1007/978-981-16-8387-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The immune system plays essential roles in maintaining homeostasis in mammalian tissues that extend beyond pathogen clearance and host defense. Recently, several homeostatic circuits comprised of paired hematopoietic and non-hematopoietic cells have been described to influence tissue composition and turnover in development and after perturbation. Crucial circuit components include innate lymphoid cells (ILCs), which seed developing organs and shape their resident tissues by influencing progenitor fate decisions, microbial interactions, and neuronal activity. As they develop in tissues, ILCs undergo transcriptional imprinting that encodes receptivity to corresponding signals derived from their resident tissues but ILCs can also shift their transcriptional profiles to adapt to specific types of tissue perturbation. Thus, ILC functions are embedded within their resident tissues, where they constitute key regulators of homeostatic responses that can lead to both beneficial and pathogenic outcomes. Here, we examine the interactions between ILCs and various non-hematopoietic tissue cells, and discuss how specific ILC-tissue cell circuits form essential elements of tissue immunity.
Collapse
|
24
|
Hidaka R, Miyazaki K, Miyazaki M. The E-Id Axis Instructs Adaptive Versus Innate Lineage Cell Fate Choice and Instructs Regulatory T Cell Differentiation. Front Immunol 2022; 13:890056. [PMID: 35603170 PMCID: PMC9120639 DOI: 10.3389/fimmu.2022.890056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
Immune responses are primarily mediated by adaptive and innate immune cells. Adaptive immune cells, such as T and B cells, evoke antigen-specific responses through the recognition of specific antigens. This antigen-specific recognition relies on the V(D)J recombination of immunoglobulin (Ig) and T cell receptor (TCR) genes mediated by recombination-activating gene (Rag)1 and Rag2 (Rag1/2). In addition, T and B cells employ cell type-specific developmental pathways during their activation processes, and the regulation of these processes is strictly regulated by the transcription factor network. Among these factors, members of the basic helix-loop-helix (bHLH) transcription factor mammalian E protein family, including E12, E47, E2-2, and HEB, orchestrate multiple adaptive immune cell development, while their antagonists, Id proteins (Id1-4), function as negative regulators. It is well established that a majority of T and B cell developmental trajectories are regulated by the transcriptional balance between E and Id proteins (the E-Id axis). E2A is critically required not only for B cell but also for T cell lineage commitment, whereas Id2 and Id3 enforce the maintenance of naïve T cells and naïve regulatory T (Treg) cells. Here, we review the current knowledge of E- and Id-protein function in T cell lineage commitment and Treg cell differentiation.
Collapse
|
25
|
Ricardo-Gonzalez RR, Molofsky AB, Locksley RM. ILC2s - development, divergence, dispersal. Curr Opin Immunol 2022; 75:102168. [PMID: 35176675 PMCID: PMC9131705 DOI: 10.1016/j.coi.2022.102168] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 12/15/2022]
Abstract
Over the last decade, we have come to appreciate group 2 innate lymphoid cells (ILC2s) as important players in host and tissue immunity. New studies of ILC2s and their precursors using novel reporter mice, advanced microscopy, and multi-omics approaches have expanded our knowledge on how these cells contribute to tissue physiology and function. This review highlights recent literature on this enigmatic cell, and we organize our discussion across three important paradigms in ILC2 biology: development, divergence, and dispersal. In addition, we frame our discussion in the context of other innate and adaptive immune cells to emphasize the relevance of expanding knowledge of ILC2s and tissue immunity.
Collapse
Affiliation(s)
- Roberto R Ricardo-Gonzalez
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA; Department of Microbiology & Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Ari B Molofsky
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA; Diabetes Center, University of California San Francisco, San Francisco, CA, USA
| | - Richard M Locksley
- Department of Microbiology & Immunology, University of California San Francisco, San Francisco, CA, USA; Department of Medicine, University of California San Francisco, San Francisco, CA, USA; Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
26
|
Abstract
More than a decade ago, type 2 innate lymphoid cells (ILC2s) were discovered to be members of a family of innate immune cells consisting of five subsets that form a first line of defence against infections before the recruitment of adaptive immune cells. Initially, ILC2s were implicated in the early immune response to parasitic infections, but it is now clear that ILC2s are highly diverse and have crucial roles in the regulation of tissue homeostasis and repair. ILC2s can also regulate the functions of other type 2 immune cells, including T helper 2 cells, type 2 macrophages and eosinophils. Dysregulation of ILC2s contributes to type 2-mediated pathology in a wide variety of diseases, potentially making ILC2s attractive targets for therapeutic interventions. In this Review, we focus on the spectrum of ILC2 phenotypes that have been described across different tissues and disease states with an emphasis on human ILC2s. We discuss recent insights in ILC2 biology and suggest how this knowledge might be used for novel disease treatments and improved human health. Type 2 innate lymphoid cells (ILC2s) have diverse phenotypes across different tissues and disease states. Recent insights into ILC2 biology raise new possibilities for the improved treatment of cancer and of metabolic, infectious and chronic inflammatory diseases.
Collapse
Affiliation(s)
- Hergen Spits
- Department of Experimental Immunology, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, Netherlands.
| | - Jenny Mjösberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden.
| |
Collapse
|
27
|
Hirano KI, Hosokawa H, Yahata T, Ando K, Tanaka M, Imai J, Yazawa M, Ohtsuka M, Negishi N, Habu S, Sato T, Hozumi K. Dll1 Can Function as a Ligand of Notch1 and Notch2 in the Thymic Epithelium. Front Immunol 2022; 13:852427. [PMID: 35371023 PMCID: PMC8968733 DOI: 10.3389/fimmu.2022.852427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/22/2022] [Indexed: 11/30/2022] Open
Abstract
T-cell development in the thymus is dependent on Notch signaling induced by the interaction of Notch1, present on immigrant cells, with a Notch ligand, delta-like (Dll) 4, on the thymic epithelial cells. Phylogenetic analysis characterizing the properties of the Dll4 molecule suggests that Dll4 emerged from the common ancestor of lobe- and ray-finned fishes and diverged into bony fishes and terrestrial organisms, including mammals. The thymus evolved in cartilaginous fishes before Dll4, suggesting that T-cell development in cartilaginous fishes is dependent on Dll1 instead of Dll4. In this study, we compared the function of both Dll molecules in the thymic epithelium using Foxn1-cre and Dll4-floxed mice with conditional transgenic alleles in which the Dll1 or Dll4 gene is transcribed after the cre-mediated excision of the stop codon. The expression of Dll1 in the thymic epithelium completely restored the defect in the Dll4-deficient condition, suggesting that Dll1 can trigger Notch signaling that is indispensable for T-cell development in the thymus. Moreover, using bone marrow chimeras with Notch1- or Notch2-deficient hematopoietic cells, we showed that Dll1 is able to activate Notch signaling, which is sufficient to induce T-cell development, with both the receptors, in contrast to Dll4, which works only with Notch1, in the thymic environment. These results strongly support the hypothesis that Dll1 regulates T-cell development via Notch1 and/or Notch2 in the thymus of cartilaginous fishes and that Dll4 has replaced Dll1 in inducing thymic Notch signaling via Notch1 during evolution.
Collapse
Affiliation(s)
- Ken-ichi Hirano
- Department of Immunology, Tokai University School of Medicine, Isehara, Japan
| | - Hiroyuki Hosokawa
- Department of Immunology, Tokai University School of Medicine, Isehara, Japan
- Institute of Medical Sciences, Tokai University, Isehara, Japan
| | - Takashi Yahata
- Institute of Medical Sciences, Tokai University, Isehara, Japan
- Department of Innovative Medical Science, Tokai University School of Medicine, Isehara, Japan
| | - Kiyoshi Ando
- Institute of Medical Sciences, Tokai University, Isehara, Japan
- Department of Hematology and Oncology, Tokai University School of Medicine, Isehara, Japan
| | - Masayuki Tanaka
- Support Center of Medical Research and Education, Tokai University School of Medicine, Isehara, Japan
| | - Jin Imai
- Divison of Gastroenterology and Hepatology, Tokai University School of Medicine, Isehara, Japan
| | - Masaki Yazawa
- Department of Immunology, Tokai University School of Medicine, Isehara, Japan
| | - Masato Ohtsuka
- Institute of Medical Sciences, Tokai University, Isehara, Japan
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Japan
| | - Naoko Negishi
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | - Sonoko Habu
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | - Takehito Sato
- Department of Immunology, Tokai University School of Medicine, Isehara, Japan
| | - Katsuto Hozumi
- Department of Immunology, Tokai University School of Medicine, Isehara, Japan
- *Correspondence: Katsuto Hozumi,
| |
Collapse
|
28
|
Das A, Harly C, Ding Y, Bhandoola A. ILC Differentiation from Progenitors in the Bone Marrow. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1365:7-24. [DOI: 10.1007/978-981-16-8387-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
29
|
Trained immunity in type 2 immune responses. Mucosal Immunol 2022; 15:1158-1169. [PMID: 36065058 PMCID: PMC9705254 DOI: 10.1038/s41385-022-00557-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/27/2022] [Accepted: 08/08/2022] [Indexed: 02/04/2023]
Abstract
Immunological memory of innate immune cells, also termed "trained immunity", allows for cross-protection against distinct pathogens, but may also drive chronic inflammation. Recent studies have shown that memory responses associated with type 2 immunity do not solely rely on adaptive immune cells, such as T- and B cells, but also involve the innate immune system and epithelial cells. Memory responses have been described for monocytes, macrophages and airway epithelial cells of asthmatic patients as well as for macrophages and group 2 innate lymphoid cells (ILC2) from allergen-sensitized or helminth-infected mice. The metabolic and epigenetic mechanisms that mediate allergen- or helminth-induced reprogramming of innate immune cells are only beginning to be uncovered. Trained immunity has been implicated in helminth-driven immune regulation and allergen-specific immunotherapy, suggesting its exploitation in future therapies. Here, we discuss recent advances and key remaining questions regarding the mechanisms and functions of trained type 2 immunity in infection and inflammation.
Collapse
|
30
|
ILC Differentiation in the Thymus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1365:25-39. [DOI: 10.1007/978-981-16-8387-9_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Cayrol C. IL-33, an Alarmin of the IL-1 Family Involved in Allergic and Non Allergic Inflammation: Focus on the Mechanisms of Regulation of Its Activity. Cells 2021; 11:cells11010107. [PMID: 35011670 PMCID: PMC8750818 DOI: 10.3390/cells11010107] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 02/04/2023] Open
Abstract
Interleukin-33 (IL-33) is a member of the interleukin-1 (IL-1) family that is expressed in the nuclei of endothelial and epithelial cells of barrier tissues, among others. It functions as an alarm signal that is released upon tissue or cellular injury. IL-33 plays a central role in the initiation and amplification of type 2 innate immune responses and allergic inflammation by activating various target cells expressing its ST2 receptor, including mast cells and type 2 innate lymphoid cells. Depending on the tissue environment, IL-33 plays a wide variety of roles in parasitic and viral host defense, tissue repair and homeostasis. IL-33 has evolved a variety of sophisticated regulatory mechanisms to control its activity, including nuclear sequestration and proteolytic processing. It is involved in many diseases, including allergic, inflammatory and infectious diseases, and is a promising therapeutic target for the treatment of severe asthma. In this review, I will summarize the literature around this fascinating pleiotropic cytokine. In the first part, I will describe the basics of IL-33, from the discovery of interleukin-33 to its function, including its expression, release and signaling pathway. The second part will be devoted to the regulation of IL-33 protein leading to its activation or inactivation.
Collapse
Affiliation(s)
- Corinne Cayrol
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France
| |
Collapse
|
32
|
Zhang N, Kim SH, Gainullina A, Erlich EC, Onufer EJ, Kim J, Czepielewski RS, Helmink BA, Dominguez JR, Saunders BT, Ding J, Williams JW, Jiang JX, Segal BH, Zinselmeyer BH, Randolph GJ, Kim KW. LYVE1+ macrophages of murine peritoneal mesothelium promote omentum-independent ovarian tumor growth. J Exp Med 2021; 218:e20210924. [PMID: 34714329 PMCID: PMC8575007 DOI: 10.1084/jem.20210924] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/13/2021] [Accepted: 10/14/2021] [Indexed: 12/11/2022] Open
Abstract
Two resident macrophage subsets reside in peritoneal fluid. Macrophages also reside within mesothelial membranes lining the peritoneal cavity, but they remain poorly characterized. Here, we identified two macrophage populations (LYVE1hi MHC IIlo-hi CX3CR1gfplo/- and LYVE1lo/- MHC IIhi CX3CR1gfphi subsets) in the mesenteric and parietal mesothelial linings of the peritoneum. These macrophages resembled LYVE1+ macrophages within surface membranes of numerous organs. Fate-mapping approaches and analysis of newborn mice showed that LYVE1hi macrophages predominantly originated from embryonic-derived progenitors and were controlled by CSF1 made by Wt1+ stromal cells. Their gene expression profile closely overlapped with ovarian tumor-associated macrophages previously described in the omentum. Indeed, syngeneic epithelial ovarian tumor growth was strongly reduced following in vivo ablation of LYVE1hi macrophages, including in mice that received omentectomy to dissociate the role from omental macrophages. These data reveal that the peritoneal compartment contains at least four resident macrophage populations and that LYVE1hi mesothelial macrophages drive tumor growth independently of the omentum.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Seung Hyeon Kim
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL
| | - Anastasiia Gainullina
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
- Computer Technologies Department, ITMO University, St. Petersburg, Russia
| | - Emma C. Erlich
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Emily J. Onufer
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Jiseon Kim
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL
| | - Rafael S. Czepielewski
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Beth A. Helmink
- Department of Surgery, Section of Surgical Oncology, Washington University School of Medicine, St. Louis, MO
| | - Joseph R. Dominguez
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL
| | - Brian T. Saunders
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Jie Ding
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL
| | - Jesse W. Williams
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Jean X. Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Brahm H. Segal
- Departments of Internal Medicine and Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
- Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY
| | - Bernd H. Zinselmeyer
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Gwendalyn J. Randolph
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Ki-Wook Kim
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL
| |
Collapse
|
33
|
Momiuchi Y, Motomura Y, Suga E, Mizuno H, Kikuta J, Morimoto A, Mochizuki M, Otaki N, Ishii M, Moro K. Group 2 innate lymphoid cells in bone marrow regulate osteoclastogenesis in a reciprocal manner via RANKL, GM-CSF and IL-13. Int Immunol 2021; 33:573-585. [PMID: 34498703 DOI: 10.1093/intimm/dxab062] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/16/2021] [Indexed: 12/29/2022] Open
Abstract
Group 2 innate lymphoid cells (ILC2s) are tissue-resident cells that play different roles in different organs by sensing surrounding environmental factors. Initially, it was thought that ILC2s in bone marrow (BM) are progenitors for systemic ILC2s, which migrate to other organs and acquire effector functions. However, accumulating evidence that ILC2s differentiate in peripheral tissues suggests that BM ILC2s may play a specific role in the BM as a unique effector per se. Here, we demonstrate that BM ILC2s highly express the receptor activator of nuclear factor κB ligand (RANKL), a robust cytokine for osteoclast differentiation and activation, and RANKL expression on ILC2s is up-regulated by interleukin (IL)-2, IL-7 and all-trans retinoic acid (ATRA). BM ILC2s co-cultured with BM-derived monocyte/macrophage lineage cells (BMMs) in the presence of IL-7 induce the differentiation of tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts in a RANKL-dependent manner. In contrast, BM ILC2s stimulated with IL-33 down-regulate RANKL expression and convert BMMs differentiation into M2 macrophage-like cells rather than osteoclasts by granulocyte macrophage colony-stimulating factor (GM-CSF) and IL-13 production. Intravital imaging using two-photon microscopy revealed that a depletion of ILC2s prominently impaired in vivo osteoclast activity in an IL-7 plus ATRA-induced bone loss mouse model. These results suggest that ILC2s regulate osteoclast activation and contribute to bone homeostasis in both steady state and IL-33-induced inflammation.
Collapse
Affiliation(s)
- Yoshiki Momiuchi
- Laboratory for Innate Immune Systems, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Turumi-ku, Yokohama-shi, Kanagawa 230-0045, Japan.,Department of Medical Life Sciences, Graduate School of Medical Life Sciences, Yokohama City University, 1-7-29 Suehiro-cho, Turumi-ku, Yokohama-shi, Kanagawa 230-0045, Japan
| | - Yasutaka Motomura
- Laboratory for Innate Immune Systems, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Turumi-ku, Yokohama-shi, Kanagawa 230-0045, Japan.,Laboratory for Innate Immune Systems, Department for Microbiology and Immunology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita-shi, Osaka 565-0871, Japan.,Laboratory for Innate Immune Systems, Osaka University Immunology Frontier Research Center, 3-1 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Emiko Suga
- Laboratory for Innate Immune Systems, Department for Microbiology and Immunology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Hiroki Mizuno
- Department of Immunology and Cell Biology, Osaka University Immunology Frontier Research Center, Osaka University, 2-2 Yamadaoka, Suita-shi, Osaka 565-0871, Japan.,Department of Immunology and Cell Biology, Graduate School of Medicine & Frontier Biosciences, Osaka University, 2-2 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Junichi Kikuta
- Department of Immunology and Cell Biology, Osaka University Immunology Frontier Research Center, Osaka University, 2-2 Yamadaoka, Suita-shi, Osaka 565-0871, Japan.,Department of Immunology and Cell Biology, Graduate School of Medicine & Frontier Biosciences, Osaka University, 2-2 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Akito Morimoto
- Department of Immunology and Cell Biology, Osaka University Immunology Frontier Research Center, Osaka University, 2-2 Yamadaoka, Suita-shi, Osaka 565-0871, Japan.,Department of Immunology and Cell Biology, Graduate School of Medicine & Frontier Biosciences, Osaka University, 2-2 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Miho Mochizuki
- Laboratory for Innate Immune Systems, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Turumi-ku, Yokohama-shi, Kanagawa 230-0045, Japan
| | - Natsuko Otaki
- Laboratory for Innate Immune Systems, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Turumi-ku, Yokohama-shi, Kanagawa 230-0045, Japan.,Department of Microbiology and Immunology, Graduate School of Medicine, Keio University, 3-5 Shinano-machi, Shinjyuku-ku, Tokyo 160-8582, Japan
| | - Masaru Ishii
- Department of Immunology and Cell Biology, Osaka University Immunology Frontier Research Center, Osaka University, 2-2 Yamadaoka, Suita-shi, Osaka 565-0871, Japan.,Department of Immunology and Cell Biology, Graduate School of Medicine & Frontier Biosciences, Osaka University, 2-2 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Kazuyo Moro
- Laboratory for Innate Immune Systems, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Turumi-ku, Yokohama-shi, Kanagawa 230-0045, Japan.,Department of Medical Life Sciences, Graduate School of Medical Life Sciences, Yokohama City University, 1-7-29 Suehiro-cho, Turumi-ku, Yokohama-shi, Kanagawa 230-0045, Japan.,Laboratory for Innate Immune Systems, Department for Microbiology and Immunology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita-shi, Osaka 565-0871, Japan.,Laboratory for Innate Immune Systems, Osaka University Immunology Frontier Research Center, 3-1 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| |
Collapse
|
34
|
Liu C, Gong Y, Zhang H, Yang H, Zeng Y, Bian Z, Xin Q, Bai Z, Zhang M, He J, Yan J, Zhou J, Li Z, Ni Y, Wen A, Lan Y, Hu H, Liu B. Delineating spatiotemporal and hierarchical development of human fetal innate lymphoid cells. Cell Res 2021; 31:1106-1122. [PMID: 34239074 PMCID: PMC8486758 DOI: 10.1038/s41422-021-00529-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/08/2021] [Indexed: 02/07/2023] Open
Abstract
Whereas the critical roles of innate lymphoid cells (ILCs) in adult are increasingly appreciated, their developmental hierarchy in early human fetus remains largely elusive. In this study, we sorted human hematopoietic stem/progenitor cells, lymphoid progenitors, putative ILC progenitor/precursors and mature ILCs in the fetal hematopoietic, lymphoid and non-lymphoid tissues, from 8 to 12 post-conception weeks, for single-cell RNA-sequencing, followed by computational analysis and functional validation at bulk and single-cell levels. We delineated the early phase of ILC lineage commitment from hematopoietic stem/progenitor cells, which mainly occurred in fetal liver and intestine. We further unveiled interleukin-3 receptor as a surface marker for the lymphoid progenitors in fetal liver with T, B, ILC and myeloid potentials, while IL-3RA- lymphoid progenitors were predominantly B-lineage committed. Notably, we determined the heterogeneity and tissue distribution of each ILC subpopulation, revealing the proliferating characteristics shared by the precursors of each ILC subtype. Additionally, a novel unconventional ILC2 subpopulation (CRTH2- CCR9+ ILC2) was identified in fetal thymus. Taken together, our study illuminates the precise cellular and molecular features underlying the stepwise formation of human fetal ILC hierarchy with remarkable spatiotemporal heterogeneity.
Collapse
Affiliation(s)
- Chen Liu
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Yandong Gong
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Han Zhang
- Department of Blood Transfusion, Daping Hospital, Army Military Medical University, Chongqing, China
| | - Hua Yang
- Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, China
| | - Yang Zeng
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhilei Bian
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Qian Xin
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Zhijie Bai
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Man Zhang
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Jian He
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Jing Yan
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Jie Zhou
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zongcheng Li
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yanli Ni
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Aiqing Wen
- Department of Blood Transfusion, Daping Hospital, Army Military Medical University, Chongqing, China.
| | - Yu Lan
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China.
| | - Hongbo Hu
- Center for Immunology and Hematology, the State Key Laboratory of Biotherapy, West China Hospital, Sichuan University. Collaboration and Innovation Center for Biotherapy, Chengdu, China.
| | - Bing Liu
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China.
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China.
| |
Collapse
|
35
|
Kobayashi T, Motomura Y, Moro K. Discovery of group 2 innate lymphoid cells has changed the concept of type 2 immune diseases. Int Immunol 2021; 33:705-709. [PMID: 34498700 PMCID: PMC8633664 DOI: 10.1093/intimm/dxab063] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/08/2021] [Indexed: 12/30/2022] Open
Abstract
Group 2 innate lymphoid cells (ILC2s), discovered in 2010, have been recognized as immune cells with unique functions and their involvement in various diseases has been clarified. Before 2010, the antigen-specific response was a primary focus of immunology research, and immune responses were considered almost equivalent to biological responses to foreign antigens. However, with the emergence of ILC2s, the importance of ‘antigen-independent responses’ was confirmed, and this concept has permeated basic and clinical research as well as drug development. When ILC2s were discovered, their function in the acute phase of diseases garnered attention because of their rapid and potent type 2 immune response. However, several studies have revealed that the main role of ILC2s is more closely related to the chronicity of diseases, such as allergy and fibrosis, than to the induction of diseases. In this review, we discuss how ILC2 research has affected the concept of ‘Taishitsu’, a Japanese term describing the overall nature of an individual as determined by the interaction of genetic and acquired predisposition.
Collapse
Affiliation(s)
- Tetsuro Kobayashi
- Laboratory for Innate Immune Systems, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Yasutaka Motomura
- Laboratory for Innate Immune Systems, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka Suita-shi, Osaka 565-0871, Japan.,Laboratory for Innate Immune Systems, Immunology Frontier Research Center (iFReC), Osaka University, 3-1, Yamadaoka Suita-shi, Osaka 565-0871, Japan
| | - Kazuyo Moro
- Laboratory for Innate Immune Systems, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.,Laboratory for Innate Immune Systems, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka Suita-shi, Osaka 565-0871, Japan.,Laboratory for Innate Immune Systems, Immunology Frontier Research Center (iFReC), Osaka University, 3-1, Yamadaoka Suita-shi, Osaka 565-0871, Japan.,Laboratory for Innate Immune Systems, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka Suita-shi, Osaka 565-0871, Japan.,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, 2-2 Yamadaoka Suita-shi, Osaka 565-0871, Japan
| |
Collapse
|
36
|
Zheng H, Zhang Y, Pan J, Liu N, Qin Y, Qiu L, Liu M, Wang T. The Role of Type 2 Innate Lymphoid Cells in Allergic Diseases. Front Immunol 2021; 12:586078. [PMID: 34177881 PMCID: PMC8220221 DOI: 10.3389/fimmu.2021.586078] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 05/10/2021] [Indexed: 12/22/2022] Open
Abstract
Allergic diseases are significant diseases that affect many patients worldwide. In the past few decades, the incidence of allergic diseases has increased significantly due to environmental changes and social development, which has posed a substantial public health burden and even led to premature death. The understanding of the mechanism underlying allergic diseases has been substantially advanced, and the occurrence of allergic diseases and changes in the immune system state are known to be correlated. With the identification and in-depth understanding of innate lymphoid cells, researchers have gradually revealed that type 2 innate lymphoid cells (ILC2s) play important roles in many allergic diseases. However, our current studies of ILC2s are limited, and their status in allergic diseases remains unclear. This article provides an overview of the common phenotypes and activation pathways of ILC2s in different allergic diseases as well as potential research directions to improve the understanding of their roles in different allergic diseases and ultimately find new treatments for these diseases.
Collapse
Affiliation(s)
- Haocheng Zheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yi Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jiachuang Pan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Nannan Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yu Qin
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Linghui Qiu
- Journal Press of Global Traditional Chinese Medicine, Beijing, China
| | - Min Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Tieshan Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
37
|
Shin SB, McNagny KM. ILC-You in the Thymus: A Fresh Look at Innate Lymphoid Cell Development. Front Immunol 2021; 12:681110. [PMID: 34025680 PMCID: PMC8136430 DOI: 10.3389/fimmu.2021.681110] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/20/2021] [Indexed: 01/20/2023] Open
Abstract
The discovery of innate lymphoid cells (ILCs) has revolutionized our understanding of innate immunity and immune cell interactions at epithelial barrier sites. Their presence and maintenance are critical for modulating immune homeostasis, responding to injury or infection, and repairing damaged tissues. To date, ILCs have been defined by a set of transcription factors, surface antigens and cytokines, and their functions resemble those of three major classes of helper T cell subsets, Th1, Th2 and Th17. Despite this, the lack of antigen-specific surface receptors and the notion that ILCs can develop in the absence of the thymic niche have clearly set them apart from the T-cell lineage and promulgated a dogma that ILCs develop directly from progenitors in the bone marrow. Interestingly however, emerging studies have challenged the BM-centric view of adult ILC development and suggest that ILCs could arise neonatally from developing T cell progenitors. In this review, we discuss ILC development in parallel to T-cell development and summarize key findings that support a T-cell-centric view of ILC ontogeny.
Collapse
Affiliation(s)
- Samuel B Shin
- Department of Experimental Medicine, University of British Columbia, Vancouver, BC, Canada.,School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Kelly M McNagny
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
38
|
Sudo T, Motomura Y, Okuzaki D, Hasegawa T, Yokota T, Kikuta J, Ao T, Mizuno H, Matsui T, Motooka D, Yoshizawa R, Nagasawa T, Kanakura Y, Moro K, Ishii M. Group 2 innate lymphoid cells support hematopoietic recovery under stress conditions. J Exp Med 2021; 218:e20200817. [PMID: 33666647 PMCID: PMC7941180 DOI: 10.1084/jem.20200817] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 10/29/2020] [Accepted: 02/02/2021] [Indexed: 12/18/2022] Open
Abstract
The cell-cycle status of hematopoietic stem and progenitor cells (HSPCs) becomes activated following chemotherapy-induced stress, promoting bone marrow (BM) regeneration; however, the underlying molecular mechanism remains elusive. Here we show that BM-resident group 2 innate lymphoid cells (ILC2s) support the recovery of HSPCs from 5-fluorouracil (5-FU)-induced stress by secreting granulocyte-macrophage colony-stimulating factor (GM-CSF). Mechanistically, IL-33 released from chemo-sensitive B cell progenitors activates MyD88-mediated secretion of GM-CSF in ILC2, suggesting the existence of a B cell-ILC2 axis for maintaining hematopoietic homeostasis. GM-CSF knockout mice treated with 5-FU showed severe loss of myeloid lineage cells, causing lethality, which was rescued by transferring BM ILC2s from wild-type mice. Further, the adoptive transfer of ILC2s to 5-FU-treated mice accelerates hematopoietic recovery, while the reduction of ILC2s results in the opposite effect. Thus, ILC2s may function by "sensing" the damaged BM spaces and subsequently support hematopoietic recovery under stress conditions.
Collapse
Affiliation(s)
- Takao Sudo
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Osaka, Japan
- World Premier International Research Center Initiative Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yasutaka Motomura
- World Premier International Research Center Initiative Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Laboratory for Innate Immune Systems, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan
- Laboratory for Innate Immune Systems, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Daisuke Okuzaki
- Single Cell Genomics, Human Immunology, World Premier International Research Center Initiative Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Tetsuo Hasegawa
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Osaka, Japan
| | - Takafumi Yokota
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Junichi Kikuta
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Osaka, Japan
- World Premier International Research Center Initiative Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Laboratory of Bioimaging and Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Tomoka Ao
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Osaka, Japan
- Laboratory of Bioimaging and Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Hiroki Mizuno
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Osaka, Japan
- World Premier International Research Center Initiative Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Takahiro Matsui
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Osaka, Japan
- Department of Pathology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Daisuke Motooka
- Single Cell Genomics, Human Immunology, World Premier International Research Center Initiative Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Ryosuke Yoshizawa
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Osaka, Japan
| | - Takashi Nagasawa
- World Premier International Research Center Initiative Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Laboratory of Stem Cell Biology and Developmental Immunology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Osaka, Japan
| | - Yuzuru Kanakura
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kazuyo Moro
- World Premier International Research Center Initiative Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Laboratory for Innate Immune Systems, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan
- Laboratory for Innate Immune Systems, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Masaru Ishii
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Osaka, Japan
- World Premier International Research Center Initiative Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Laboratory of Bioimaging and Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| |
Collapse
|
39
|
Ghaedi M, Takei F. Innate lymphoid cell development. J Allergy Clin Immunol 2021; 147:1549-1560. [PMID: 33965092 DOI: 10.1016/j.jaci.2021.03.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 12/25/2022]
Abstract
Innate lymphoid cells (ILCs) mainly reside at barrier surfaces and regulate tissue homeostasis and immunity. ILCs are divided into 3 groups, group 1 ILCs, group 2 ILCs, and group 3 ILC3, on the basis of their similar effector programs to T cells. The development of ILCs from lymphoid progenitors in adult mouse bone marrow has been studied in detail, and multiple ILC progenitors have been characterized. ILCs are mostly tissue-resident cells that develop in the perinatal period. More recently, ILC progenitors have also been identified in peripheral tissues. In this review, we discuss the stepwise transcription factor-directed differentiation of mouse ILC progenitors into mature ILCs, the critical time windows in ILC development, and the contribution of bone marrow versus tissue ILC progenitors to the pool of mature ILCs in tissues.
Collapse
Affiliation(s)
- Maryam Ghaedi
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Fumio Takei
- the Department of Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, British Columbia, Canada; Terry Fox Laboratory, B.C. Cancer, Vancouver, British Columbia, Canada.
| |
Collapse
|
40
|
Rodriguez-Rodriguez N, Gogoi M, McKenzie AN. Group 2 Innate Lymphoid Cells: Team Players in Regulating Asthma. Annu Rev Immunol 2021; 39:167-198. [PMID: 33534604 PMCID: PMC7614118 DOI: 10.1146/annurev-immunol-110119-091711] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Type 2 immunity helps protect the host from infection, but it also plays key roles in tissue homeostasis, metabolism, and repair. Unfortunately, inappropriate type 2 immune reactions may lead to allergy and asthma. Group 2 innate lymphoid cells (ILC2s) in the lungs respond rapidly to local environmental cues, such as the release of epithelium-derived type 2 initiator cytokines/alarmins, producing type 2 effector cytokines such as IL-4, IL-5, and IL-13 in response to tissue damage and infection. ILC2s are associated with the severity of allergic asthma, and experimental models of lung inflammation have shown how they act as playmakers, receiving signals variously from stromal and immune cells as well as the nervous system and then distributing cytokine cues to elicit type 2 immune effector functions and potentiate CD4+ T helper cell activation, both of which characterize the pathology of allergic asthma. Recent breakthroughs identifying stromal- and neuronal-derived microenvironmental cues that regulate ILC2s, along with studies recognizing the potential plasticity of ILC2s, have improved our understanding of the immunoregulation of asthma and opened new avenues for drug discovery.
Collapse
Affiliation(s)
- Noe Rodriguez-Rodriguez
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, Cambridgeshire, CB2 0QH. UK
| | - Mayuri Gogoi
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, Cambridgeshire, CB2 0QH. UK
| | - Andrew N.J. McKenzie
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, Cambridgeshire, CB2 0QH. UK,Corresponding author:
| |
Collapse
|
41
|
Piperoglou C, Larid G, Vallentin B, Balligand L, Crinier A, Banzet N, Farnarier C, Gomez-Massa E, Adalia AC, Michel G, Galambrun C, Barlogis V, Vivier E, Vély F. Innate lymphoid cell recovery and occurrence of GvHD after hematopoietic stem cell transplantation. J Leukoc Biol 2021; 111:161-172. [PMID: 33847423 DOI: 10.1002/jlb.5a1019-522rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 11/09/2022] Open
Abstract
Lymphocytes are essential for microbial immunity, tumor surveillance, and tissue homeostasis. However, the in vivo development and function of helper-like innate lymphoid cells (ILCs) in humans remain much less well understood than those of T, B, and NK cells. We monitored hematopoietic stem cell transplantation (HSCT) to determine the kinetics of ILC development in both children and adults. It was found that, unlike NK cells, helper-like ILCs recovered slowly, mirroring the pattern observed for T cells, with normalization achieved at 1 year. The type of graft and the proportion of CD34+ cells in the graft did not significantly affect ILC reconstitution. As HSCT is often complicated by acute or chronic graft-versus-host disease (GVHD), the potential role of ILC subsets in maintaining tissue integrity in these conditions was also analyzed. It was found that GVHD was associated with lower levels of activated and gut-homing NKp44+ ILCP, consistent with a non-redundant role of this ILC subset in preventing this life-threatening disorder in lymphopenic conditions.
Collapse
Affiliation(s)
- Christelle Piperoglou
- APHM, Hôpital de la Timone, Service d'Immunologie, Marseille-Immunopole, Marseille, France
| | - Guillaume Larid
- APHM, Hôpital de la Timone, Service d'Immunologie, Marseille-Immunopole, Marseille, France
| | - Blandine Vallentin
- APHM, Hôpital de la Timone, Service d'Hématologie et Oncologie Pédiatrique, Marseille, France
| | - Laura Balligand
- APHM, Hôpital de la Timone, Service d'Hématologie et Oncologie Pédiatrique, Marseille, France
| | | | - Nathalie Banzet
- APHM, Hôpital de la Timone, Service d'Immunologie, Marseille-Immunopole, Marseille, France
| | - Catherine Farnarier
- APHM, Hôpital de la Timone, Service d'Immunologie, Marseille-Immunopole, Marseille, France
| | | | | | -
- APHM, Hôpital de la Timone, Service d'Immunologie, Marseille-Immunopole, Marseille, France
| | - Gérard Michel
- APHM, Hôpital de la Timone, Service d'Hématologie et Oncologie Pédiatrique, Marseille, France
| | - Claire Galambrun
- APHM, Hôpital de la Timone, Service d'Hématologie et Oncologie Pédiatrique, Marseille, France
| | - Vincent Barlogis
- APHM, Hôpital de la Timone, Service d'Hématologie et Oncologie Pédiatrique, Marseille, France
| | - Eric Vivier
- APHM, Hôpital de la Timone, Service d'Immunologie, Marseille-Immunopole, Marseille, France.,Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France.,Innate Pharma Research Labs, Innate Pharma, Marseille, France
| | - Frédéric Vély
- APHM, Hôpital de la Timone, Service d'Immunologie, Marseille-Immunopole, Marseille, France.,Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| |
Collapse
|
42
|
Bai L, Vienne M, Tang L, Kerdiles Y, Etiennot M, Escalière B, Galluso J, Wei H, Sun R, Vivier E, Peng H, Tian Z. Liver type 1 innate lymphoid cells develop locally via an interferon-γ-dependent loop. Science 2021; 371:eaba4177. [PMID: 33766856 DOI: 10.1126/science.aba4177] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 05/10/2020] [Accepted: 02/02/2021] [Indexed: 12/11/2022]
Abstract
The pathways that lead to the development of tissue-resident lymphocytes, including liver type 1 innate lymphoid cells (ILC1s), remain unclear. We show here that the adult mouse liver contains Lin-Sca-1+Mac-1+ hematopoietic stem cells derived from the fetal liver. This population includes Lin-CD122+CD49a+ progenitors that can generate liver ILC1s but not conventional natural killer cells. Interferon-γ (IFN-γ) production by the liver ILC1s themselves promotes the development of these cells in situ, through effects on their IFN-γR+ liver progenitors. Thus, an IFN-γ-dependent loop drives liver ILC1 development in situ, highlighting the contribution of extramedullary hematopoiesis to regional immune composition within the liver.
Collapse
Affiliation(s)
- Lu Bai
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Margaux Vienne
- Aix Marseille Univ., CNRS, INSERM, CIML, Marseille, France
| | - Ling Tang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Yann Kerdiles
- Aix Marseille Univ., CNRS, INSERM, CIML, Marseille, France
| | | | | | | | - Haiming Wei
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
- Research Unit for NK Cell Study, Chinese Academy of Medical Sciences, Beijing, China
| | - Rui Sun
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Institute of Immunology, University of Science and Technology of China, Hefei, China
- Research Unit for NK Cell Study, Chinese Academy of Medical Sciences, Beijing, China
| | - Eric Vivier
- Aix Marseille Univ., CNRS, INSERM, CIML, Marseille, France.
- APHM, Hôpital de la Timone, Marseille-Immunopole, Marseille, France
- Innate Pharma, Marseille, France
| | - Hui Peng
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Institute of Immunology, University of Science and Technology of China, Hefei, China
- Research Unit for NK Cell Study, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhigang Tian
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Institute of Immunology, University of Science and Technology of China, Hefei, China
- Research Unit for NK Cell Study, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
43
|
Miyazaki K, Miyazaki M. The Interplay Between Chromatin Architecture and Lineage-Specific Transcription Factors and the Regulation of Rag Gene Expression. Front Immunol 2021; 12:659761. [PMID: 33796120 PMCID: PMC8007930 DOI: 10.3389/fimmu.2021.659761] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/02/2021] [Indexed: 12/17/2022] Open
Abstract
Cell type-specific gene expression is driven through the interplay between lineage-specific transcription factors (TFs) and the chromatin architecture, such as topologically associating domains (TADs), and enhancer-promoter interactions. To elucidate the molecular mechanisms of the cell fate decisions and cell type-specific functions, it is important to understand the interplay between chromatin architectures and TFs. Among enhancers, super-enhancers (SEs) play key roles in establishing cell identity. Adaptive immunity depends on the RAG-mediated assembly of antigen recognition receptors. Hence, regulation of the Rag1 and Rag2 (Rag1/2) genes is a hallmark of adaptive lymphoid lineage commitment. Here, we review the current knowledge of 3D genome organization, SE formation, and Rag1/2 gene regulation during B cell and T cell differentiation.
Collapse
Affiliation(s)
- Kazuko Miyazaki
- Laboratory of Immunology, Institute for Frontier Life and Medial Sciences, Kyoto University, Kyoto, Japan
| | - Masaki Miyazaki
- Laboratory of Immunology, Institute for Frontier Life and Medial Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
44
|
The Cross-Talk between Mesenchymal Stem Cells and Immune Cells in Tissue Repair and Regeneration. Int J Mol Sci 2021; 22:ijms22052472. [PMID: 33804369 PMCID: PMC7957490 DOI: 10.3390/ijms22052472] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are self-renewable, rapidly proliferating, multipotent stem cells which reside in almost all post-natal tissues. MSCs possess potent immunoregulatory properties and, in juxtacrine and paracrine manner, modulate phenotype and function of all immune cells that participate in tissue repair and regeneration. Additionally, MSCs produce various pro-angiogenic factors and promote neo-vascularization in healing tissues, contributing to their enhanced repair and regeneration. In this review article, we summarized current knowledge about molecular mechanisms that regulate the crosstalk between MSCs and immune cells in tissue repair and regeneration.
Collapse
|
45
|
Hosokawa H, Masuhara K, Koizumi M. Transcription factors regulate early T cell development via redeployment of other factors: Functional dynamics of constitutively required factors in cell fate decisions. Bioessays 2021; 43:e2000345. [PMID: 33624856 DOI: 10.1002/bies.202000345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/30/2021] [Accepted: 02/08/2021] [Indexed: 01/02/2023]
Abstract
Establishment of cell lineage identity from multipotent progenitors is controlled by cooperative actions of lineage-specific and stably expressed transcription factors, combined with input from environmental signals. Lineage-specific master transcription factors activate and repress gene expression by recruiting consistently expressed transcription factors and chromatin modifiers to their target loci. Recent technical advances in genome-wide and multi-omics analysis have shed light on unexpected mechanisms that underlie more complicated actions of transcription factors in cell fate decisions. In this review, we discuss functional dynamics of stably expressed and continuously required factors, Notch and Runx family members, throughout developmental stages of early T cell development in the thymus. Pre- and post-commitment stage-specific transcription factors induce dynamic redeployment of Notch and Runx binding genomic regions. Thus, together with stage-specific transcription factors, shared transcription factors across distinct developmental stages regulate acquisition of T lineage identity.
Collapse
Affiliation(s)
- Hiroyuki Hosokawa
- Department of Immunology, Tokai University School of Medicine, Isehara, Kanagawa, Japan.,Institute of Medical Sciences, Tokai University, Isehara, Kanagawa, Japan
| | - Kaori Masuhara
- Department of Immunology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Maria Koizumi
- Department of Immunology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| |
Collapse
|
46
|
Distinct Waves from the Hemogenic Endothelium Give Rise to Layered Lymphoid Tissue Inducer Cell Ontogeny. Cell Rep 2021; 32:108004. [PMID: 32783932 DOI: 10.1016/j.celrep.2020.108004] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 05/18/2020] [Accepted: 07/16/2020] [Indexed: 01/28/2023] Open
Abstract
During embryogenesis, lymphoid tissue inducer (LTi) cells are essential for lymph node organogenesis. These cells are part of the innate lymphoid cell (ILC) family. Although their earliest embryonic hematopoietic origin is unclear, other innate immune cells have been shown to be derived from early hemogenic endothelium in the yolk sac as well as the aorta-gonad-mesonephros. A proper model to discriminate between these locations was unavailable. In this study, using a Cxcr4-CreERT2 lineage tracing model, we identify a major contribution from embryonic hemogenic endothelium, but not the yolk sac, toward LTi progenitors. Conversely, embryonic LTi cells are replaced by hematopoietic stem cell-derived cells in adults. We further show that, in the fetal liver, common lymphoid progenitors differentiate into highly dynamic alpha-lymphoid precursor cells that, at this embryonic stage, preferentially mature into LTi precursors and establish their functional LTi cell identity only after reaching the periphery.
Collapse
|
47
|
Michieletto MF, Henao-Mejia J. Ontogeny and heterogeneity of innate lymphoid cells and the noncoding genome. Immunol Rev 2021; 300:152-166. [PMID: 33559175 DOI: 10.1111/imr.12950] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 12/13/2022]
Abstract
Since their discovery a decade ago, it has become evident that innate lymphoid cells (ILCs) play critical roles in protective immune responses against intracellular and extracellular pathogens but are also central regulators of epithelial barrier integrity and tissue homeostasis. ILCs populate almost every tissue in mammalian organisms; therefore, not surprisingly, dysregulation of their functions contributes to the development and progression of multiple inflammatory and metabolic diseases. Our knowledge of the transcriptional programs governing the development, differentiation, and functions of the different groups of ILCs has increased dramatically in the last ten years. However, with the advent of new technologies, an unprecedented level of heterogeneity, plasticity, and developmental complexity has started to be revealed. In this review, we highlight recent advances in our understanding of ILC development and their biological functions. In particular, we aim to emphasize how our increasing knowledge of the chromatin landscape and the noncoding genome of these innate lymphocytes is allowing us to better understand their development and functions in different contexts during homeostasis and inflammation. Moreover, we propose that the design of more refined genetic tools to study tissue-specific ILCs and their functions can be accomplished by leveraging our understanding of how specific noncoding elements of the genome regulate gene expression in ILCs.
Collapse
Affiliation(s)
- Michaël F Michieletto
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jorge Henao-Mejia
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Division of Protective Immunity, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
48
|
RORα is a critical checkpoint for T cell and ILC2 commitment in the embryonic thymus. Nat Immunol 2021; 22:166-178. [PMID: 33432227 PMCID: PMC7116838 DOI: 10.1038/s41590-020-00833-w] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 11/03/2020] [Indexed: 01/30/2023]
Abstract
Type 2 innate lymphoid cells (ILC2) contribute to immune homeostasis, protective immunity and tissue repair. Here we demonstrate that functional ILC2 cells can arise in the embryonic thymus from shared T cell precursors, preceding the emergence of CD4+CD8+ (double-positive) T cells. Thymic ILC2 cells migrated to mucosal tissues, with colonization of the intestinal lamina propria. Expression of the transcription factor RORα repressed T cell development while promoting ILC2 development in the thymus. From RNA-seq, assay for transposase-accessible chromatin sequencing (ATAC-seq) and chromatin immunoprecipitation followed by sequencing (ChIP-seq) data, we propose a revised transcriptional circuit to explain the co-development of T cells and ILC2 cells from common progenitors in the thymus. When Notch signaling is present, BCL11B dampens Nfil3 and Id2 expression, permitting E protein-directed T cell commitment. However, concomitant expression of RORα overrides the repression of Nfil3 and Id2 repression, allowing ID2 to repress E proteins and promote ILC2 differentiation. Thus, we demonstrate that RORα expression represents a critical checkpoint at the bifurcation of the T cell and ILC2 lineages in the embryonic thymus.
Collapse
|
49
|
Liu C, Lan Y, Liu B, Zhang H, Hu H. T Cell Development: Old Tales Retold By Single-Cell RNA Sequencing. Trends Immunol 2021; 42:165-175. [PMID: 33446417 DOI: 10.1016/j.it.2020.12.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023]
Abstract
Mammalian T cell development initiates from the migration of hematopoietic progenitors to the thymus, which undergo cell proliferation, T-lineage specification and commitment, as well as positive and negative selection. These processes are precisely controlled at multiple levels and have been intensively studied using gene-modified animal models and in vitro coculture systems. However, several long-standing questions, including the characterization of the rare but crucial progenitors/precursors and the molecular mechanisms underlying their fate decision, have been dampened because of cell scarcity and lack of appropriate techniques. Single-cell RNA sequencing (scRNA-seq) makes it possible to investigate and resolve some of these questions, leading to new remarkable progress in identifying and characterizing early thymic progenitors and delineating the refined developmental trajectories of conventional and unconventional T cells.
Collapse
Affiliation(s)
- Chen Liu
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100071, China
| | - Yu Lan
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Bing Liu
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100071, China; Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou 510632, China; State Key Laboratory of Experimental Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Huiyuan Zhang
- Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China.
| | - Hongbo Hu
- Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China.
| |
Collapse
|
50
|
Kiniwa T, Moro K. Localization and site-specific cell-cell interactions of group 2 innate lymphoid cells. Int Immunol 2021; 33:251-259. [PMID: 33403383 PMCID: PMC8060991 DOI: 10.1093/intimm/dxab001] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022] Open
Abstract
Group 2 innate lymphoid cells (ILC2s) are novel lymphocytes discovered in 2010. Unlike T or B cells, ILC2s are activated non-specifically by environmental factors and produce various cytokines, thus playing a role in tissue homeostasis, diseases including allergic diseases, and parasite elimination. ILC2s were first reported as cells abundantly present in fat-associated lymphoid clusters in adipose tissue. However, subsequent studies revealed their presence in various tissues throughout the body, acting as key players in tissue-specific diseases. Recent histologic analyses revealed that ILC2s are concentrated in specific regions in tissues, such as the lamina propria and perivascular regions, with their function being controlled by the surrounding cells, such as epithelial cells and other immune cells, via cytokine and lipid production or by cell–cell interactions through surface molecules. Especially, some stromal cells have been identified as the niche cells for ILC2s, both in the steady state and under inflammatory conditions, through the production of IL-33 or extracellular matrix factors. Additionally, peripheral neurons reportedly co-localize with ILC2s and alter their function directly through neurotransmitters. These findings suggest that the different localizations or different cell–cell interactions might affect the function of ILC2s. Furthermore, generally, ILC2s are thought to be tissue-resident cells; however, they occasionally migrate to other tissues and perform a new role; this supports the importance of the microenvironment for their function. We summarize here the current understanding of how the microenvironment controls ILC2 localization and function with the aim of promoting the development of novel diagnostic and therapeutic methods.
Collapse
Affiliation(s)
- Tsuyoshi Kiniwa
- Laboratory for Innate Immune Systems, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | - Kazuyo Moro
- Laboratory for Innate Immune Systems, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, Japan.,Laboratory for Innate Immune Systems, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka Suita-shi, Osaka, Japan.,Laboratory for Innate Immune Systems, IFReC, Osaka University, 3-1 Yamadaoka Suita-shi, Osaka, Japan
| |
Collapse
|