1
|
Chen T, Xu Y, Yang F, Pan Y, Ji N, Li J, Zeng X, Chen Q, Jiang L, Shen YQ. Crosstalk of glutamine metabolism between cancer-associated fibroblasts and cancer cells. Cell Signal 2025; 133:111874. [PMID: 40381975 DOI: 10.1016/j.cellsig.2025.111874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2025] [Revised: 05/06/2025] [Accepted: 05/14/2025] [Indexed: 05/20/2025]
Abstract
Glutamine (Gln), a critical metabolic substrate, fuels the uncontrolled proliferation of cancer cells. Cancer-associated fibroblasts (CAFs), essential components of the tumor microenvironment, facilitate tumor progression by supplying Gln to cancer cells and driving drug resistance through metabolic reprogramming. This review highlights the key processes of Gln uptake, transport, and catabolism and explores the metabolic crosstalk between CAFs and cancer cells. It also examines the roles of major oncogenic regulators-c-Myc, mTORC, KRAS, p53, and HIF-in controlling Gln metabolism and shaping therapeutic resistance. Current pharmacological approaches targeting Gln metabolism, including enzyme inhibitors and transporter blockers, are discussed alongside emerging therapeutic strategies and ongoing clinical trials. Lastly, we underscore the importance of integrating advanced technologies like artificial intelligence and spatial omics to refine treatment targeting and develop more effective, personalized therapeutic interventions.
Collapse
Affiliation(s)
- Tingyu Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yiming Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fan Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yanxin Pan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ning Ji
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Zeng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lu Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ying-Qiang Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
2
|
Miao H, Zhang B, Li Y, Ma X, Yang Y, Lin Z, Liu Y. Rosuvastatin inhibits carcinogenesis through Ca 2+ triggered endoplasmic reticulum stress pathway in pancreatic cancer. Cell Signal 2025; 131:111753. [PMID: 40107481 DOI: 10.1016/j.cellsig.2025.111753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 02/17/2025] [Accepted: 03/16/2025] [Indexed: 03/22/2025]
Abstract
BACKGROUND Pancreatic cancer remains one of the most challenging malignancies to treat due to its late-stage diagnosis, aggressive progression, and high resistance to existing therapies. Rosuvastatin (ROV), known for its hypolipidemic effects, which significantly inhibited clonogenic capacity and epithelial-mesenchymal transition (EMT) in prostate cancer cells. However, the anti-cancer mechanisms of ROV in PC have not yet been fully explored. PURPOSE This study aimed to investigate the potential anti-cancer effects of ROV on PC cells and to elucidate the underlying mechanisms. METHODS Cytotoxicity was detected via MTT assay, while epithelial-mesenchymal transition (EMT) markers, Ca2+ levels, and endoplasmic reticulum (ER) stress were observed with fluorescence microscopy. RNA-seq analysis was used to identify significantly changed mRNA expression following ROV treatment. Additionally, western blotting and immunohistochemistry (IHC) were conducted to examine proteins involving in the cell cycle, EMT, Ca2+ signaling, and endoplasmic reticulum stress (ERS) in vitro and in vivo. RESULTS ROV inhibited PC cell proliferation by arresting the cell cycle at the G1/S phase and partially reducing cell mobility during the EMT process. A total of 1336 significantly different RNAs (P < 0.05 and |logFC|>1) were identified and analyzed through RNA-seq, revealing the Ca2+ and ER pathways in PC cells treated with ROV. ROV treatment significantly altered the level of intracellular Ca2+, triggering the ERS pathway and modulating the Ca2+/CaM/CaMKII/ERK pathway. Furthermore, ROV inhibited key proteins within the Ca2+ and ERS pathways, leading to reduced cell proliferation, mobility and G1/S phase arrest. In tumor tissues, the expression of Ki67, EMT markers, Calmodulin, and ATF6 corroborated the in vitro findings. CONCLUSION ROV inhibited proliferation and metastasis in PC cells by inhibiting the EMT process through the Ca2+/CaM/CaMKII/ERK and Ca2+-mediated ERS pathways, highlighting its potential as a prophylactic and therapeutic agent for PC.
Collapse
Affiliation(s)
- Hui Miao
- Central Laboratory, Yanbian University Hospital, Yanji 133000, China; Dunhua City Hospital, Dunhua 133700, China
| | - Baojian Zhang
- Central Laboratory, Yanbian University Hospital, Yanji 133000, China; Key Laboratory of Pathobiology (Yanbian University), State Ethnic Affairs Commission, Yanji 133002, China
| | - Yue Li
- Central Laboratory, Yanbian University Hospital, Yanji 133000, China; Key Laboratory of Pathobiology (Yanbian University), State Ethnic Affairs Commission, Yanji 133002, China
| | - Xiao Ma
- Central Laboratory, Yanbian University Hospital, Yanji 133000, China; Key Laboratory of Pathobiology (Yanbian University), State Ethnic Affairs Commission, Yanji 133002, China
| | - Yang Yang
- Key Laboratory of Pathobiology (Yanbian University), State Ethnic Affairs Commission, Yanji 133002, China
| | - Zhenhua Lin
- Central Laboratory, Yanbian University Hospital, Yanji 133000, China; Key Laboratory of Pathobiology (Yanbian University), State Ethnic Affairs Commission, Yanji 133002, China
| | - Yanqun Liu
- Central Laboratory, Yanbian University Hospital, Yanji 133000, China; Key Laboratory of Pathobiology (Yanbian University), State Ethnic Affairs Commission, Yanji 133002, China.
| |
Collapse
|
3
|
Ghafoor S, Garcia E, Jay DJ, Persad S. Molecular Mechanisms Regulating Epithelial Mesenchymal Transition (EMT) to Promote Cancer Progression. Int J Mol Sci 2025; 26:4364. [PMID: 40362600 PMCID: PMC12072817 DOI: 10.3390/ijms26094364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/27/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025] Open
Abstract
The process of epithelial-mesenchymal transition (EMT) is crucial in various physiological/pathological circumstances such as development, wound healing, stem cell behavior, and cancer progression. It involves the conversion of epithelial cells into a mesenchymal phenotype, which causes the cells to become highly motile. This reprogramming is initiated and controlled by various signaling pathways and governed by several key transcription factors, including Snail 1, Snail 2 (Slug), TWIST 1, TWIST2, ZEB1, ZEB2, PRRX1, GOOSECOID, E47, FOXC2, SOX4, SOX9, HAND1, and HAND2. The intracellular signaling pathways are activated/inactivated by signals received from the extracellular environment and the transcription factors are carefully regulated at the transcriptional, translational, and post-translational levels to maintain tight regulatory control of EMT. One of the most important pathways involved in this process is the transforming growth factor-β (TGFβ) family signaling pathway. This review will discuss the role of EMT in promoting epithelial cancer progression and the convergence/interplay of multiple signaling pathways and transcription factors that regulate this phenomenon.
Collapse
Affiliation(s)
| | | | | | - Sujata Persad
- Department of Pediatrics, Faculty of Medicine and Dentistry, 3020R Katz Group Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AB T6G 2E1, Canada; (S.G.); (E.G.); (D.J.J.)
| |
Collapse
|
4
|
Wu Q, Li P, Zhang H, You S, Xu Z, Liu X, Chen X, Zhang W, Zhou X. Regulator of cullins-1 predicts a poor prognosis and regulates epithelial-mesenchymal transition process through GSK-3β/Wnt signaling in renal cell carcinoma. Transl Androl Urol 2025; 14:974-985. [PMID: 40376526 PMCID: PMC12076244 DOI: 10.21037/tau-2024-646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/27/2025] [Indexed: 05/18/2025] Open
Abstract
Background Renal cell carcinoma (RCC) exhibits malignant biological characteristics of cell invasion and metastasis. The role of regulator of cullins-1 (ROC1) in RCC is unknown. The present work focused on exploring ROC1's biological effect on RCC as well as clarifying its related mechanism. Methods The messenger RNA (mRNA) expression of ROC1 in RCC tumor tissue and normal tissue was examined by reverse transcription-polymerase chain reaction (RT-PCR). We analyzed mRNA expression through RT-PCR, whereas protein level via western blot (WB) assay. We did some biological experiments in this study, including Cell Counting Kit-8 (CCK-8) assay, 5-ethynyl-2'-deoxyuridine (EdU) assay, Transwell invasion assay, and xenograft tumor assay. Results ROC1 expression markedly increased in the RCC samples relative to healthy samples. ROC1 was related to the dismal outcome of RCC patients. We also found that the overexpression of ROC1 (oeROC1) promoted cell proliferation, epithelial-mesenchymal transition (EMT), and invasion, whereas ROC1 interference had opposite effects. ROC1 regulated GSK-3β/Wnt pathway within RCC cells. By constructing the RCC metastasis model in nude mice, it was found that ROC1 knockdown inhibited tumor metastasis, while shGSK-3β could reverse the effect of ROC1 knockdown. Conclusions Collectively, our work preliminarily illuminated the tumor-promoting role of ROC1 in RCC and the potential molecular mechanism. Thus, our study may provide some evidence for the treatment of RCC.
Collapse
Affiliation(s)
- Qi Wu
- Department of Urology, The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, China
| | - Peng Li
- Department of Urology, The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, China
| | - Huijiang Zhang
- Department of Urology, The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, China
| | - Shengjie You
- Department of Urology, The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, China
| | - Zhaoyu Xu
- Department of Urology, The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, China
| | - Xiang Liu
- Department of Urology, The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, China
| | - Xuedong Chen
- Department of Urology, The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, China
| | - Weili Zhang
- Department of Urology, The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, China
| | - Xiaoqing Zhou
- Department of Urology, The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, China
| |
Collapse
|
5
|
Zhong Y, Lu Y, Li J, Ren Q, Fan Y, Meng X, Shao J, Qian H. Discovery of Novel SHP2 ATTEC Degraders against Pancreatic Ductal Adenocarcinoma Harboring KRAS(G12D) Mutations. J Med Chem 2025; 68:8143-8162. [PMID: 40233000 DOI: 10.1021/acs.jmedchem.4c02682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Aberrant expression of the phosphatase SHP2 is implicated in numerous cancers, including KRAS G12D mutation driven PDAC. Although several SHP2 inhibitors have been reported, specific inhibitors with potent efficacy are not yet available. Given the elevated autophagy in PDAC, herein, we first designed novel SHP2 degraders through autophagosome-tethering compound strategy. Among them, the preferred 11n formed hydrogen bonds with Arg 111 and Glu 250 residues of SHP2 to enhance interactions between SHP2 and LC3. 11n also possessed great efficacy and selectivity against KRAS G12D mutant cancer cells versus the wild type. Moreover, the degradation caused by 11n manipulated the signaling pathways associated with cell apoptosis, metastasis, and invasion to inhibit the tumor growth both in vitro and in vivo. These findings not only generated a useful tool for exploring the potential of targeting SHP2 degradation but also offered promising candidates to develop novel drugs based on the autophagy mechanism.
Collapse
Affiliation(s)
- Yue Zhong
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Yan Lu
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Jiahui Li
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Qiang Ren
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Yiqing Fan
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Xiqi Meng
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Jieyu Shao
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Hai Qian
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, 24R Tongjiaxiang, Nanjing 210009, PR China
| |
Collapse
|
6
|
Liu J, Li H, Lin X, Xiong J, Wu G, Ding L, Lin B. Deciphering the heterogeneity of epithelial cells in pancreatic ductal adenocarcinoma: implications for metastasis and immune evasion. World J Surg Oncol 2025; 23:144. [PMID: 40240899 PMCID: PMC12004766 DOI: 10.1186/s12957-025-03793-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 03/29/2025] [Indexed: 04/18/2025] Open
Abstract
OBJECTIVE This study examines the cellular heterogeneity of epithelial cells within pancreatic ductal adenocarcinoma (PDAC) and their contributions to tumor progression, metastasis, and immunosuppressive interactions using single-cell RNA sequencing. METHODS Single-cell RNA-sequencing data from two datasets (GSE154778 and GSE158356) were integrated using the Harmony algorithm, followed by quality control, clustering, and differential gene expression analysis. Distinct subpopulations of epithelial cells were identified, and their gene expression profiles were analyzed. To assess the malignancy of these subpopulations, single-cell copy number variation (CNV) analysis and trajectory analysis were conducted. Additionally, intercellular communication was examined using the CellChat platform. RESULTS The analysis revealed pronounced heterogeneity among PDAC epithelial cells, with specific subpopulations exhibiting distinct roles in tumor proliferation, extracellular matrix remodeling, and metastatic dissemination. Subpopulations 4 and 6 were characterized by increased CNV levels and a more malignant phenotype, suggesting an enhanced capacity for metastasis. Single-cell trajectory analysis, along with CellChat, mapped the temporal evolution of epithelial cells, identifying key regulatory genes such as DCBLD2 and JUN. A prognostic model incorporating five key genes, including KLF6, was developed and demonstrated strong predictive accuracy for patient outcomes. Notably, KLF6 emerged as a critical prognostic marker associated with immune modulation, particularly through interactions with M2 macrophages. CONCLUSION The study highlights the pronounced heterogeneity of epithelial cells in PDAC and their distinct contributions to tumor progression, metastasis, and immune modulation. Through single-cell transcriptomic and CNV analyses, we identified epithelial subpopulations with varying malignant potentials and distinct interactions with the tumor microenvironment. Among these, KLF6 emerged as a key regulator associated with immune modulation and metastasis. Our findings emphasize the significance of epithelial cell heterogeneity in shaping pancreatic cancer progression. These insights provide a foundation for future investigations into novel prognostic markers and therapeutic strategies.
Collapse
Affiliation(s)
- Jie Liu
- Department of Hepatopancreatobiliary Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China
| | - Hui Li
- Department of Hepatopancreatobiliary Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China
| | - Xiuyun Lin
- Department of Hepatopancreatobiliary Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China
| | - Jiani Xiong
- Department of Hepatopancreatobiliary Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China
| | - Guangfeng Wu
- Department of Hepatopancreatobiliary Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China
| | - Lingyan Ding
- Department of Hepatopancreatobiliary Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China
| | - Bin Lin
- Department of Orthodontics, Fujian Medical University Union Hospital, No. 29 of Xinquan Road, Gulou District, Fuzhou, 350001, China.
| |
Collapse
|
7
|
Sun P, Wang S, Wang Y, Wei Z. Ameloblastoma Diagnosis From Serum Metabolic Profiling. Oral Dis 2025. [PMID: 40231726 DOI: 10.1111/odi.15308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 02/13/2025] [Accepted: 02/23/2025] [Indexed: 04/16/2025]
Abstract
INTRODUCTION Ameloblastoma (ABM) is an aggressive, localized, infiltrating epithelial odontogenic neoplasm. The molecular pathogenesis of ABM is unknown, and studying its metabolic profile may allow the identification of biomarkers relevant to the diagnosis and prediction of pathology. METHODS Metabolomic analysis of 41 serum samples from 21 ABM patients and 20 healthy controls (HCs) was performed using gas chromatography-mass spectrometry (GC-MS). Using LASSO regression and receiver operating characteristic analysis, biomarker metabolites were screened and validated, and a diagnostic model was established. Tissue samples from ABM patients were analyzed using BRAF V600E-specific immunohistochemistry to investigate the impact of the BRAF V600E mutation on metabolic reprogramming in ABM. RESULTS A total of 73 metabolites were identified in the samples. The ABM had a total of 32 dysregulated metabolites, of which 30 were downregulated. A diagnostic panel of 10 metabolites was then generated. The panel accurately identified ABM with 100% sensitivity, 100% specificity, and an AUC of 1.00. In addition, the presence of the BRAF-V600E mutation in ABM is associated with increased serum glutamine levels. CONCLUSION This study identified distinct metabolic characteristics of ABM and established a diagnostic model. Our research also shows that BRAF-V600E may contribute to metabolic alterations in ABM.
Collapse
Affiliation(s)
- Peiyin Sun
- General Dentistry, Shanghai Children's Medical Center, School of Medicine, Jiaotong University, Shanghai, China
| | - Shuai Wang
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, Jiangsu, China
| | - Yali Wang
- General Dentistry, Shanghai Children's Medical Center, School of Medicine, Jiaotong University, Shanghai, China
| | - Zheng Wei
- Department of Pediatric Dentistry, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
8
|
Fang L, Gao D, Jiang Z, Li G, Li M. Glutamine's double-edged sword: fueling tumor growth and offering therapeutic hope. Front Immunol 2025; 16:1578940. [PMID: 40276500 PMCID: PMC12018421 DOI: 10.3389/fimmu.2025.1578940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 03/24/2025] [Indexed: 04/26/2025] Open
Abstract
Tumor metabolic reprogramming is a highly complex process that enables tumor survival in the presence of limited nutrients, involving multiple signaling pathways, non-coding RNAs (ncRNAs), and transcription factors. Lately, glutamine has been found to enhance the growth, spread, and drug resistance of cancer cells, while also fostering an immunosuppressive microenvironment that aids tumor development. However, in some tumors, such as pancreatic cancer and melanoma, additional glutamine can inhibit the proliferation of tumor cells, and this mechanism is closely related to the regulation of the immune microenvironment. Therefore, further exploration of glutamine metabolism in tumors is essential for understanding the pathogenesis of cancer and for developing new metabolically targeted therapies. We systematically review the latest research on the reprogramming of glutamine metabolism and its role of tumor growth, spread, and immune system regulation. Additionally, we review the clinical research progress on targeted glutamine therapies and their application in combination with current anti-tumor treatments. Ultimately, we address the challenges and prospects involved in resistance to anti-cancer strategies aimed at glutamine metabolism.
Collapse
Affiliation(s)
- Liguang Fang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Dandan Gao
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Zuomin Jiang
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Guoliang Li
- Jinan Zhangqiu District Hospital of Traditional Chinese medicine, Jinan, Shandong, China
| | - Ming Li
- Jinan Nanshan People's Hospital, Jinan, Shandong, China
- Shandong University of Traditional Chinese Medicine College of Ophthalmology and Optometry, Jinan, Shandong, China
| |
Collapse
|
9
|
Grenier SF, Commisso C. A hormetic response model for glutamine stress in cancer. Trends Cancer 2025; 11:196-203. [PMID: 39681506 PMCID: PMC11903170 DOI: 10.1016/j.trecan.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 11/15/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024]
Abstract
Glutamine metabolism supports the development and progression of many cancers and is considered a therapeutic target. Attempts to inhibit glutamine metabolism have resulted in limited success and have not translated into clinical benefit. The outcomes of these clinical studies, along with preclinical investigations, suggest that cellular stress responses to glutamine deprivation or targeting may be modeled as a biphasic hormetic response. By recognizing the multifaceted aspects of glutamine metabolism inhibition within a more comprehensive biological framework, the adoption of this model may guide future fundamental and translational studies. To achieve clinical efficacy, we posit that as a field we will need to anticipate the hormetic effects of glutamine stress and consider how best to co-target cancer cell adaptive mechanisms.
Collapse
Affiliation(s)
- Shea F Grenier
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Cosimo Commisso
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
10
|
Chen M, Liu H, Xiao Y, Liang R, Xu H, Hong B, Qian Y. Predictive biomarkers of pancreatic cancer metastasis: A comprehensive review. Clin Chim Acta 2025; 569:120176. [PMID: 39914505 DOI: 10.1016/j.cca.2025.120176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 01/26/2025] [Accepted: 01/28/2025] [Indexed: 02/12/2025]
Abstract
This review provides a comprehensive overview of predictive biomarkers associated with metastasis in pancreatic cancer (PC), one of the most aggressive malignancies characterized by late-stage diagnosis and poor prognosis. Metastasis, particularly to the liver, lungs, and lymph nodes, significantly worsens patient outcomes by compromising organ function and promoting disease progression. Reliable biomarkers for predicting and detecting metastasis at early stages are critical for improving survival rates and guiding personalized therapies. This paper highlights both general and specific biomarkers, including genetic mutations, protein expression changes, and carbohydrate tumor markers such as CA19-9. Immunological factors, including PD-L1, inflammatory cytokines, and chemokines, further influence the metastatic process within the tumor microenvironment (TME). Specific biomarkers play pivotal roles in promoting metastasis through mechanisms such as epithelial-to-mesenchymal transition (EMT), tumor microenvironment remodeling, and immune evasion. Emerging markers such as circulating tumor cells (CTCs) and volatile organic compounds (VOCs) offer promising non-invasive tools for metastasis detection and monitoring. This review not only consolidates existing knowledge but also highlights the mechanisms through which specific biomarkers facilitate metastasis. Despite recent progress, challenges such as biomarker standardization, technical variability, and clinical validation remain, and addressing these hurdles is essential for integrating predictive biomarkers into clinical practice. Ultimately, this review contributes to advancing early detection strategies, personalized treatment options, and improved prognosis for PC patients.
Collapse
Affiliation(s)
- Mengting Chen
- Department of Clinical Laboratory, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Hongsen Liu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Yufei Xiao
- Department of Clinical Laboratory, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Ruijin Liang
- The Queen's University of Belfast Joint College, China Medical University, Shenyang 110122, China
| | - Hong Xu
- Departments of Pathology, Quzhou Second People's Hospital, Quzhou 324022, China
| | - Bo Hong
- Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.
| | - Yun Qian
- Department of Clinical Laboratory, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China.
| |
Collapse
|
11
|
Shi J, Han W, Wang J, Kong X. Anti-Tumor Strategies Targeting Nutritional Deprivation: Challenges and Opportunities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2415550. [PMID: 39895165 DOI: 10.1002/adma.202415550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/04/2025] [Indexed: 02/04/2025]
Abstract
Higher and richer nutrient requirements are typical features that distinguish tumor cells from AU: cells, ensuring adequate substrates and energy sources for tumor cell proliferation and migration. Therefore, nutrient deprivation strategies based on targeted technologies can induce impaired cell viability in tumor cells, which are more sensitive than normal cells. In this review, nutrients that are required by tumor cells and related metabolic pathways are introduced, and anti-tumor strategies developed to target nutrient deprivation are described. In addition to tumor cells, the nutritional and metabolic characteristics of other cells in the tumor microenvironment (including macrophages, neutrophils, natural killer cells, T cells, and cancer-associated fibroblasts) and related new anti-tumor strategies are also summarized. In conclusion, recent advances in anti-tumor strategies targeting nutrient blockade are reviewed, and the challenges and prospects of these anti-tumor strategies are discussed, which are of theoretical significance for optimizing the clinical application of tumor nutrition deprivation strategies.
Collapse
Affiliation(s)
- Jinsheng Shi
- Qingdao Key Lab of Common Diseases, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266000, China
| | - Wei Han
- Qingdao Key Lab of Common Diseases, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266000, China
| | - Jie Wang
- Pharmacy Department, Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital), Qingdao, Shandong, 266000, China
| | - Xiaoying Kong
- Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, Shandong, 266071, China
| |
Collapse
|
12
|
Zhang S, Chu X, Zhang Y, Qiu J, Pan L, Gu L, Kang H, Wang L. Expression profile, regulatory mechanism and prognostic potential of MBNL2 in esophageal squamous cell carcinoma. Transl Cancer Res 2025; 14:717-730. [PMID: 40104743 PMCID: PMC11912065 DOI: 10.21037/tcr-24-1933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/09/2025] [Indexed: 03/20/2025]
Abstract
Background It remains to refresh the understanding about the pathogenic mechanism of esophageal squamous cell carcinoma (ESCC). This study aimed to profile the expression of muscleblind like protein 2 (MBNL2), as well as its associations with ESCC behaviors. Methods Bioinformatic tools were used to mine The Cancer Genome Atlas (TCGA) database for the expression data of MBNL2 in ESCC. The expression of MBNL2 in tissue microarray of 179 ESCC patients was determined by immunohistochemistry (IHC), and the relationship of MBNL2 with patients' clinical and pathological characteristics was analyzed. The expression of MBNL2 was tested in fresh ESCC and adjacent normal tissues in vitro. Experiments about cellular invasion, migration and proliferation were performed to detect the impacts of silencing MBNL2 on the biological behaviors of ESCC, and the positive results were checked in vivo. Results In the TCGA database, the expression of MBNL2 in ESCC was higher than that in adjacent tissues (P<0.05). The protein level of MBNL2 in the tissue microarray of 179 ESCC patients was positively correlated with tumor stage and lymph node metastasis, and negatively correlated with the prognosis of patients. The expression of MBNL2 was significantly upregulated in five fresh ESCC tissues, compared to that in adjacent tissues. In functional experiments, knocking down MBNL2 significantly inhibited the migration and invasion of ESCC cell lines KYSE150 and Eca109, but had no significant effect on their proliferation. Finally, silencing MBNL2 inhibited the epithelial-mesenchymal transition (EMT) of ESCC cells, as evidenced by the upregulation of E-cadherin, the downregulation of Snail and Slug. Conclusions MBNL2 is highly expressed in ESCC and associated with its Tumor Node Metastasis (TNM) stage, lymph node metastasis and prognosis. MBNL2 may promote ESCC progression through facilitating EMT.
Collapse
Affiliation(s)
- Shenglai Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Xiaoqin Chu
- Department of Gastroenterology, Hai'an People's Hospital, Hai'an, China
| | - Yan Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Jianwei Qiu
- Department of Gastroenterology, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Liuhong Pan
- Department of Gastroenterology, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Liugen Gu
- Department of Gastroenterology, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Haifeng Kang
- Department of Gastroenterology, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Lin Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
13
|
Wang J, Xie Z, Peng S, Huang Y, Chen B, Chen N. Effect of FLRT3 on epithelial-mesenchymal transition in clear cell renal cell carcinoma. Urologia 2025:3915603251319944. [PMID: 39995192 DOI: 10.1177/03915603251319944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
OBJECTIVE FLRT3 is a member of the fibronectin leucine-rich transmembrane protein family, which regulates cell-cell adhesion and epithelial-mesenchymal transition (EMT). However, the role of FLRT3 in clear cell renal cell carcinoma (ccRCC) remains unknown; therefore, we explored the potential role of FLRT3 in ccRCC. METHODS We analyzed FLRT3 expression levels in ccRCC tissues across multiple databases. We examined the relationship between FLRT3 expression and EMT through single-cell data and transcriptional regulatory network analyses. Additionally, we investigated the association between FLRT3 expression levels and various clinicopathological indicators, compared the impact of FLRT3 expression on patient prognosis, and constructed a nomogram prognostic model. Furthermore, we performed enrichment analyses on differentially expressed genes to reveal potential biological functions and mechanisms. RESULTS FLRT3 expression levels were significantly lower in ccRCC tissues compared to normal kidney tissues and progressively decreased with advancing pathological stages and grades. FLRT3 mediated the promotion of EMT by transcription factor ATF4; survival analysis indicated that patients with high FLRT3 expression had significantly better overall survival compared to those with low FLRT3 expression. Enrichment analysis revealed that FLRT3 was associated with epithelial cell differentiation, retinol metabolic processes, and collagen-containing extracellular matrix. CONCLUSION FLRT3 expression is downregulated in ccRCC and may promote EMT through transcription factor ATF4. Downregulation of FLRT3 is associated with poor prognosis.
Collapse
Affiliation(s)
- Jiongming Wang
- Guangdong Medical University, Zhanjiang City, Guangdong Province, China
| | - Zhouzhou Xie
- Meizhou Clinical Institute of Shantou University Medical College, Meizhou City, Guangdong Province, China
| | - Shansen Peng
- Meizhou Clinical Institute of Shantou University Medical College, Meizhou City, Guangdong Province, China
| | - Yueting Huang
- Guangdong Medical University, Zhanjiang City, Guangdong Province, China
| | - Baitong Chen
- Guangdong Medical University, Zhanjiang City, Guangdong Province, China
| | - Nanhui Chen
- Department of Urology, Meizhou Clinical Institute of Guangdong Medical University, Meizhou, China
| |
Collapse
|
14
|
Ragab EM, Gamal DME, El-Najjar FF, Elkomy HA, Ragab MA, Elantary MA, Basyouni OM, Moustafa SM, El-Naggar SA, Elsherbiny AS. New insights into Notch signaling as a crucial pathway of pancreatic cancer stem cell behavior by chrysin-polylactic acid-based nanocomposite. Discov Oncol 2025; 16:107. [PMID: 39891818 PMCID: PMC11787125 DOI: 10.1007/s12672-025-01846-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/21/2025] [Indexed: 02/03/2025] Open
Abstract
Pancreatic cancer is an extremely deadly illness for which there are few reliable treatments. Recent research indicates that malignant tumors are highly variable and consist of a tiny subset of unique cancer cells, known as cancer stem cells (CSCs), which are responsible for the beginning and spread of tumors. These cells are typically identified by the expression of specific cell surface markers. A population of pancreatic cancer stem cells with aberrantly active developmental signaling pathways has been identified in recent studies of human pancreatic tumors. Among these Notch signaling pathway has been identified as a key regulator of CSCs self-renewal, making it an attractive target for therapeutic intervention. Chrysin-loaded polylactic acid (PLA) as polymeric nanoparticles systems have been growing interest in using as platforms for improved drug delivery. This review aims to explore innovative strategies for targeted therapy and optimized drug delivery in pancreatic CSCs by manipulating the Notch pathway and leveraging PLA-based drug delivery systems. Furthermore, we will assess the capability of PLA nanoparticles to enhance the bioavailability and effectiveness of gemcitabine in pancreatic cancer cells. The insights gained from this review have the potential to contribute to the development of novel treatment approaches that combine targeted therapy with advanced drug delivery utilizing biodegradable polymeric nanoparticles.
Collapse
Affiliation(s)
- Eman M Ragab
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Doaa M El Gamal
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Fares F El-Najjar
- Chemistry/Biochemistry Division, chemistry department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Hager A Elkomy
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Mahmoud A Ragab
- Chemistry/Biochemistry Division, chemistry department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Mariam A Elantary
- Chemistry/Biochemistry Division, chemistry department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Omar M Basyouni
- Chemistry/Zoology Division, chemistry department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Sherif M Moustafa
- Chemistry/Biochemistry Division, chemistry department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Shimaa A El-Naggar
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Abeer S Elsherbiny
- Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
15
|
Chao YY, Lin RC, Su PJ, Wang CA, Tu TY, Hou YC, Tsai YT, Peng IC, Tsai SJ, Shan YS, Wang CY. Melanophilin-induced primary cilia promote pancreatic cancer metastasis. Cell Death Dis 2025; 16:22. [PMID: 39820281 PMCID: PMC11739566 DOI: 10.1038/s41419-025-07344-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 12/11/2024] [Accepted: 01/08/2025] [Indexed: 01/30/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most malignant tumors because of its high metastatic ability. The glutamine (Gln)-deficient microenvironment contributes to PDAC metastasis; however, the underlying molecular mechanisms remain unclear. Here, we demonstrated that melanophilin (MLPH) promotes PDAC metastasis by inducing the regrowth of primary cilia. Using RNA sequencing, we found that MLPH was upregulated in Gln-deficient conditions. MLPH facilitated PDAC metastasis in vitro and in vivo. Clinically, high MLPH expression is positively correlated with metastasis and poor PDAC prognosis. MLPH localized to the centrosome and facilitated the regrowth of primary cilia. The primary ciliogenesis upregulated phospholipase C γ-1 (PLCG1) to promote PDAC metastasis. Interestingly, PLCG1 was localized to the primary cilia, and depletion of PLCG1 alleviated primary ciliogenesis, suggesting a feedforward role for PLCG1 in mediating primary ciliogenesis. Thus, our study revealed a novel function of the MLPH-primary cilia-PLCG1 axis in facilitating PDAC metastasis under Gln deficiency both in vitro and in vivo.
Collapse
Affiliation(s)
- Yu-Ying Chao
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ruei-Ci Lin
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ping-Jui Su
- Division of General Surgery, Department of Surgery, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Chu-An Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ting-Yuan Tu
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Ya-Chin Hou
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Tzui Tsai
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - I-Chen Peng
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Shaw-Jenq Tsai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yan-Shen Shan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Surgery, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Yih Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
16
|
Yang LX, Qi C, Lu S, Ye XS, Merikhian P, Zhang DY, Yao T, Zhao JS, Wu Y, Jia Y, Shan B, Chen J, Mou X, You J, Li W, Feng YX. Alleviation of liver fibrosis by inhibiting a non-canonical ATF4-regulated enhancer program in hepatic stellate cells. Nat Commun 2025; 16:524. [PMID: 39789010 PMCID: PMC11718104 DOI: 10.1038/s41467-024-55738-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 12/20/2024] [Indexed: 01/12/2025] Open
Abstract
Liver fibrosis is a critical liver disease that can progress to more severe manifestations, such as cirrhosis, yet no effective targeted therapies are available. Here, we identify that ATF4, a master transcription factor in ER stress response, promotes liver fibrosis by facilitating a stress response-independent epigenetic program in hepatic stellate cells (HSCs). Unlike its canonical role in regulating UPR genes during ER stress, ATF4 activates epithelial-mesenchymal transition (EMT) gene transcription under fibrogenic conditions. HSC-specific depletion of ATF4 suppresses liver fibrosis in vivo. Mechanistically, TGFβ resets ATF4 to orchestrate a unique enhancer program for the transcriptional activation of pro-fibrotic EMT genes. Analysis of human data confirms a strong correlation between HSC ATF4 expression and liver fibrosis progression. Importantly, a small molecule inhibitor targeting ATF4 translation effectively mitigates liver fibrosis. Together, our findings identify a mechanism promoting liver fibrosis and reveal new opportunities for treating this otherwise non-targetable disease.
Collapse
Affiliation(s)
- Li-Xian Yang
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Chuangye Qi
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Si Lu
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Department of Head and Neck Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiang-Shi Ye
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
| | - Parnaz Merikhian
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
- Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center and UTHealth, Houston, TX, USA
| | - Du-Yu Zhang
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
| | - Tao Yao
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiang-Sha Zhao
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
| | - Ying Wu
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Yongshi Jia
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Bo Shan
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
| | - Jinghai Chen
- Department of Cardiology of Second Affiliated Hospital, State Key Laboratory of Transvascular Implantation Devices, Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaozhou Mou
- Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Jia You
- School of Life Sciences, Westlake University, Hangzhou, China.
| | - Wenbo Li
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA.
- Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center and UTHealth, Houston, TX, USA.
| | - Yu-Xiong Feng
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
17
|
Chen Y, Gao Q, Wang D, Zou X, Li X, Ji J, Liu B. An Overview of Research Advances in Oncology Regarding the Transcription Factor ATF4. Curr Drug Targets 2025; 26:59-72. [PMID: 39350552 DOI: 10.2174/0113894501328461240921062056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/09/2024] [Accepted: 09/10/2024] [Indexed: 02/19/2025]
Abstract
This review provides a comprehensive overview of the recent advancements in research on ATF4 (Activating Transcription Factor 4) within the field of oncology. As a crucial transcription factor, ATF4 has garnered increasing attention for its role in cancer research. The review begins with an exploration of the regulatory mechanisms of ATF4, including its transcriptional control, post-translational modifications, and interactions with other transcription factors. It then highlights key research findings on ATF4's involvement in various aspects of tumor biology, such as cell proliferation, differentiation, apoptosis and survival, invasion and metastasis, and the tumor microenvironment. Furthermore, the review discusses the potential of targeting ATF4 as a novel therapeutic strategy for cancer treatment. It also explores how ATF4's interactions with existing anticancer drugs could inform the development of more effective therapeutic agents. By elucidating the role of ATF4 in tumor biology and its potential clinical applications, this review aims to provide new insights and strategies for cancer treatment.
Collapse
Affiliation(s)
- Yulu Chen
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Qi Gao
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Dan Wang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xun Zou
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xiuming Li
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jing Ji
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Bin Liu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| |
Collapse
|
18
|
Wang JB, Ding SL, Liu XS, Yu T, Wu ZA, Li YX. Hypoxia Affects Mitochondrial Stress and Facilitates Tumor Metastasis of Colorectal Cancer Through Slug SUMOylation. Curr Mol Med 2025; 25:27-36. [PMID: 38013443 DOI: 10.2174/0115665240271525231112121008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) is a malignant tumor. Slug has been found to display a key role in diversified cancers, but its relevant regulatory mechanisms in CRC development are not fully explored. OBJECTIVE Hence, exploring the function and regulatory mechanisms of Slug is critical for the treatment of CRC. METHODS Protein expressions of Slug, N-cadherin, E-cadherin, Snail, HIF-1α, SUMO- 1, Drp1, Opa1, Mfn1/2, PGC-1α, NRF1, and TFAM were measured through western blot. To evaluate the protein expression of Slug and SUMO-1, an immunofluorescence assay was used. Cell migration ability was tested through transwell assay. The SUMOylation of Slug was examined through CO-IP assay. RESULTS Slug displayed higher expression and facilitated tumor metastasis in CRC. In addition, hypoxia treatment was discovered to upregulate HIF-1α, Slug, and SUMO-1 levels, as well as induce Slug SUMOylation. Slug SUMOylation markedly affected mitochondrial biosynthesis, fusion, and mitogen-related protein expression levels to trigger mitochondrial stress. Additionally, the induced mitochondrial stress by hypoxia could be rescued by Slug inhibition and TAK-981 treatment. CONCLUSION Our study expounded that hypoxia affects mitochondrial stress and facilitates tumor metastasis of CRC through Slug SUMOylation.
Collapse
Affiliation(s)
- Jin-Bao Wang
- Department of Surgery, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, 100102, China
| | - Shi-Lin Ding
- Department of Surgery, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, 100102, China
| | - Xiao-Song Liu
- Department of Surgery, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, 100102, China
| | - Tianren Yu
- Department of Surgery, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, 100102, China
| | - Zeng-An Wu
- Department of Surgery, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, 100102, China
| | - Yu-Xiang Li
- Department of Surgery, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, 100102, China
| |
Collapse
|
19
|
Liao K, Liu K, Wang Z, Zhao K, Mei Y. TRIM2 promotes metabolic adaptation to glutamine deprivation via enhancement of CPT1A activity. FEBS J 2025; 292:275-293. [PMID: 38949993 DOI: 10.1111/febs.17218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 05/14/2024] [Accepted: 06/20/2024] [Indexed: 07/03/2024]
Abstract
Cancer cells undergo metabolic adaptation to promote their survival and growth under energy stress conditions, yet the underlying mechanisms remain largely unclear. Here, we report that tripartite motif-containing protein 2 (TRIM2) is upregulated in response to glutamine deprivation by the transcription factor cyclic AMP-dependent transcription factor (ATF4). TRIM2 is shown to specifically interact with carnitine O-palmitoyltransferase 1 (CPT1A), a rate-limiting enzyme of fatty acid oxidation. Via this interaction, TRIM2 enhances the enzymatic activity of CPT1A, thereby regulating intracellular lipid levels and protecting cells from glutamine deprivation-induced apoptosis. Furthermore, TRIM2 is able to promote both in vitro cell proliferation and in vivo xenograft tumor growth via CPT1A. Together, these findings establish TRIM2 as an important regulator of the metabolic adaptation of cancer cells to glutamine deprivation and implicate TRIM2 as a potential therapeutic target for cancer.
Collapse
Affiliation(s)
- Kaimin Liao
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Kaiyue Liu
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhongyu Wang
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Kailiang Zhao
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yide Mei
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
20
|
Hashimoto A, Hashimoto S. Plasticity and Tumor Microenvironment in Pancreatic Cancer: Genetic, Metabolic, and Immune Perspectives. Cancers (Basel) 2024; 16:4094. [PMID: 39682280 DOI: 10.3390/cancers16234094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
Cancer has long been believed to be a genetic disease caused by the accumulation of mutations in key genes involved in cellular processes. However, recent advances in sequencing technology have demonstrated that cells with cancer driver mutations are also present in normal tissues in response to aging, environmental damage, and chronic inflammation, suggesting that not only intrinsic factors within cancer cells, but also environmental alterations are important key factors in cancer development and progression. Pancreatic cancer tissue is mostly comprised of stromal cells and immune cells. The desmoplasmic microenvironment characteristic of pancreatic cancer is hypoxic and hypotrophic. Pancreatic cancer cells may adapt to this environment by rewiring their metabolism through epigenomic changes, enhancing intrinsic plasticity, creating an acidic and immunosuppressive tumor microenvironment, and inducing noncancerous cells to become tumor-promoting. In addition, pancreatic cancer has often metastasized to local and distant sites by the time of diagnosis, suggesting that a similar mechanism is operating from the precancerous stage. Here, we review key recent findings on how pancreatic cancers acquire plasticity, undergo metabolic reprogramming, and promote immunosuppressive microenvironment formation during their evolution. Furthermore, we present the following two signaling pathways that we have identified: one based on the small G-protein ARF6 driven by KRAS/TP53 mutations, and the other based on the RNA-binding protein Arid5a mediated by inflammatory cytokines, which promote both metabolic reprogramming and immune evasion in pancreatic cancer. Finally, the striking diversity among pancreatic cancers in the relative importance of mutational burden and the tumor microenvironment, their clinical relevance, and the potential for novel therapeutic strategies will be discussed.
Collapse
Affiliation(s)
- Ari Hashimoto
- Department of Molecular Biology, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Shigeru Hashimoto
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0818, Japan
| |
Collapse
|
21
|
Zhang Y, Ling L, Maganti S, Hope JL, Galapate CM, Carrette F, Duong-Polk K, Bagchi A, Scott DA, Lowy AM, Bradley LM, Commisso C. Macropinocytosis controls metabolic stress-driven CAF subtype identity in pancreatic cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.29.625709. [PMID: 39677772 PMCID: PMC11642790 DOI: 10.1101/2024.11.29.625709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) tumors are deficient in glutamine, an amino acid that tumor cells and CAFs use to sustain their fitness. In PDAC, both cell types stimulate macropinocytosis as an adaptive response to glutamine depletion. CAFs play a critical role in sculpting the tumor microenvironment, yet how adaptations to metabolic stress impact the stromal architecture remains elusive. In this study, we find that macropinocytosis functions to control CAF subtype identity when glutamine is limiting. Our data demonstrate that metabolic stress leads to an intrinsic inflammatory CAF (iCAF) program driven by MEK/ERK signaling. Utilizing in vivo models, we find that blocking macropinocytosis alters CAF subtypes and reorganizes the tumor stroma. Importantly, these changes in stromal architecture can be exploited to sensitize PDAC to immunotherapy and chemotherapy. Our findings demonstrate that metabolic stress plays a role in shaping the tumor microenvironment, and that this attribute can be harnessed for therapeutic impact.
Collapse
Affiliation(s)
- Yijuan Zhang
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Li Ling
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Swetha Maganti
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Jennifer L. Hope
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Cheska Marie Galapate
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Florent Carrette
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Karen Duong-Polk
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Anindya Bagchi
- Cancer Genome and Epigenetics Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - David A. Scott
- Cancer Metabolism Core Resource, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Andrew M. Lowy
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Division of Surgical Oncology, Department of Surgery, University of California San Diego, La Jolla, CA, USA
| | - Linda M. Bradley
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Cosimo Commisso
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| |
Collapse
|
22
|
Fang Z, Zhang W, Wang H, Zhang C, Li J, Chen W, Xu X, Wang L, Ma M, Zhang S, Li Y. Helicobacter pylori promotes gastric cancer progression by activating the TGF-β/Smad2/EMT pathway through HKDC1. Cell Mol Life Sci 2024; 81:453. [PMID: 39545942 PMCID: PMC11568101 DOI: 10.1007/s00018-024-05491-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 09/21/2024] [Accepted: 10/24/2024] [Indexed: 11/17/2024]
Abstract
Helicobacter pylori (H. pylori) infection is widely acknowledged as the primary risk factor for gastric cancer, facilitating its progression via the Correa cascade. Concurrently, Hexokinase Domain Containing 1 (HKDC1) has been implicated in the mediation of aerobic glycolysis, contributing to tumorigenesis across various cancers. However, the precise role of HKDC1 in the inflammatory transformation associated with H. pylori-induced gastric cancer remains elusive. In this study, transcriptome sequencing revealed a significant correlation between HKDC1 and H. pylori-induced gastric cancer. Subsequent validation using qRT-PCR, immunohistochemistry, and Western blot analysis confirmed elevated HKDC1 expression in both human and murine gastritis and gastric tumors. Moreover, in vitro and in vivo experiments demonstrated that H. pylori infection up-regulates TGF-β1 and p-Smad2, thereby activating the epithelial-mesenchymal transition (EMT) pathway, with HKDC1 playing a pivotal role. Suppression of HKDC1 expression or pharmacological inhibition of TGF-β1 reversed EMT activation, consequently reducing gastric cancer cell proliferation and metastasis. These results underscore HKDC1's essential contribution to H. pylori-induced gastric cancer progression via EMT activation.
Collapse
Affiliation(s)
- Ziqing Fang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 218 JiXi Avenue, Hefei, 230022, Anhui, China
| | - Weitong Zhang
- Department of General Surgery, Yijishan Hospital, Wannan Medical College, Wuhu, 241001, China
| | - Huizhen Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 218 JiXi Avenue, Hefei, 230022, Anhui, China
| | - Chaoyang Zhang
- Department of General Surgery, The Second Affiliated Hospital Zhejiang University, Hangzhou, 310000, China
| | - Jing Li
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 218 JiXi Avenue, Hefei, 230022, Anhui, China
| | - Wanjing Chen
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 218 JiXi Avenue, Hefei, 230022, Anhui, China
| | - Xin Xu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 218 JiXi Avenue, Hefei, 230022, Anhui, China
| | - Luyang Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 218 JiXi Avenue, Hefei, 230022, Anhui, China
| | - Mengdi Ma
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 218 JiXi Avenue, Hefei, 230022, Anhui, China
| | - Shangxin Zhang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 218 JiXi Avenue, Hefei, 230022, Anhui, China
| | - Yongxiang Li
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 218 JiXi Avenue, Hefei, 230022, Anhui, China.
| |
Collapse
|
23
|
Zhao R, Yi Y, Liu H, Xu J, Chen S, Wu D, Wang L, Li F. RHOF promotes Snail1 lactylation by enhancing PKM2-mediated glycolysis to induce pancreatic cancer cell endothelial-mesenchymal transition. Cancer Metab 2024; 12:32. [PMID: 39462429 PMCID: PMC11515152 DOI: 10.1186/s40170-024-00362-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND The influence of the small Rho GTPase Rif (RHOF) on tumor growth, glycolysis, endothelial-mesenchymal transition (EMT), and the potential mechanism of RHOF in pancreatic cancer (PC) were explored. METHODS RHOF expression in PC tissues and cells was assessed by qRT-PCR and western blotting. The viability, proliferation, apoptosis, migration, and invasion of PC cells were assessed using CCK-8, colony formation, EdU, flow cytometry, scratch, and Transwell assays. The expression of EMT- and glycolysis-related proteins was determined using western blotting. The potential mechanisms of action of RHOF in PC were identified using bioinformatic analysis. The effects of RHOF were assessed in vivo using a xenograft mouse model. RESULTS PC cell proliferation, migration, and invasion are accelerated by RHOF overexpression, which inhibited apoptosis. RHOF overexpression promoted EMT and glycolysis as evidenced by a decrease in E-cadherin expression and an increase in N-cadherin, Vimentin, HK2, PKM2, and LDHA expression. Bioinformatic analysis indicated that RHOF activated EMT, glycolysis, and Myc targets and that c-Myc could bind to the PKM2 promoter. RHOF overexpression promotes the lactylation and nuclear translocation of Snail1. Silencing Snail1 reversed the promoting effects of RHOF and lactate on cell migration, invasion, and EMT. Moreover, in vivo tumor growth and EMT were inhibited by RHOF silencing. CONCLUSION RHOF plays an oncogenic role in PC. c-Myc is upregulated by RHOF and promotes PKM2 transcription. PKM2 further induces glycolysis, and the lactate produced by glycolysis causes the lactylation of Snail1, ultimately promoting EMT.
Collapse
Affiliation(s)
- Rui Zhao
- Department of Hepatobiliary Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Yanmin Yi
- Department of Pancreatic Surgery, General Surgery, Qi Lu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, 250012, China
| | - Han Liu
- Department of Pancreatic Surgery, General Surgery, Qi Lu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, 250012, China
| | - Jianwei Xu
- Department of Pancreatic Surgery, General Surgery, Qi Lu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, 250012, China
| | - Shuhai Chen
- Department of Pancreatic Surgery, General Surgery, Qi Lu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, 250012, China
| | - Dong Wu
- Department of Pancreatic Surgery, General Surgery, Qi Lu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, 250012, China
| | - Lei Wang
- Department of Pancreatic Surgery, General Surgery, Qi Lu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, 250012, China.
| | - Feng Li
- Department of Pancreatic Surgery, General Surgery, Qi Lu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, 250012, China.
| |
Collapse
|
24
|
Zang X, Lei K, Wang J, Gong R, Gao C, Jing Z, Song J, Ren H. Targeting aberrant amino acid metabolism for pancreatic cancer therapy: Opportunities for nanoparticles. CHEMICAL ENGINEERING JOURNAL 2024; 498:155071. [DOI: 10.1016/j.cej.2024.155071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
25
|
Zhao C, Liu Z, Peng J, Huang J, Guo J. TRIM47 promotes the Warburg effect and reduces ferroptosis in prostate cancer by FBP1 and FOXO1. Transl Androl Urol 2024; 13:1991-2004. [PMID: 39434735 PMCID: PMC11491198 DOI: 10.21037/tau-23-605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 07/17/2024] [Indexed: 10/23/2024] Open
Abstract
Background Prostate cancer (PC), a malignant tumor occurring in the male prostate tissue, has a high incidence rate. In this study, we explored the role of tripartite motif 47 (TRIM47) in the progression of PC and its underlying mechanism. Methods PC and paracancerous tissues were collected from Shenzhen Peoples's Hospital. The following methods were employed in this experiment: quantitative polymerase chain reaction (qPCR), immunofluorescent staining, cell counting kit-8 (CCK-8), ethynyl deoxyuridine (EdU), and Western blot. Results The expression levels of TRIM47 were up-regulated in patients with PC. TRIM47 was found to promote cell growth and induce the Warburg effect, while also reducing ferroptosis in PC cells. Conversely, the knockdown of TRIM47 [small interfering RNA, (si)-TRIM47] decreased cell growth and the Warburg effect, while promoting ferroptosis in PC cells. Additionally, TRIM47 was observed to induce the protein expression levels of fructose-1,6-bisphosphatase 1 (FBP1) and forkhead box protein O1 (FOXO1) in PC cells. Further, TRIM47 protein was found to interact with both the FBP1 and FOXO1 proteins in the PC cells. The inhibition of FBP1 attenuated the effects of TRIM47 on the Warburg effect in PC cells, while the inhibition of FOXO1 diminished the effects of TRIM47 on ferroptosis in PC cells. Conclusions Our findings suggest that TRIM47 promotes the Warburg effect of PC by inducing FBP1 and FOXO1. Thus, our findings suggest that targeting TRIM47 could serve as a viable therapeutic strategy for the treatment of PC.
Collapse
Affiliation(s)
- Chubiao Zhao
- Department of Urology, Shenzhen People's Hospital, Shenzhen, China
| | - Zengqin Liu
- Department of Urology, Shenzhen People's Hospital, Shenzhen, China
| | - Junming Peng
- Department of Urology, Shenzhen People's Hospital, Shenzhen, China
| | - Jiansheng Huang
- Department of Urology, Shenzhen People's Hospital, Shenzhen, China
| | - Jinan Guo
- Department of Urology, Shenzhen People's Hospital, Shenzhen, China
| |
Collapse
|
26
|
Lan B, Zhuang Z, Zhang J, He Y, Wang N, Deng Z, Mei L, Li Y, Gao Y. Triggering of endoplasmic reticulum stress via ATF4-SPHK1 signaling promotes glioblastoma invasion and chemoresistance. Cell Death Dis 2024; 15:552. [PMID: 39090107 PMCID: PMC11294582 DOI: 10.1038/s41419-024-06936-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
Despite advances in therapies, glioblastoma (GBM) recurrence is almost inevitable due to the aggressive growth behavior of GBM cells and drug resistance. Temozolomide (TMZ) is the preferred drug for GBM chemotherapy, however, development of TMZ resistance is over 50% cases in GBM patients. To investigate the mechanism of TMZ resistance and invasive characteristics of GBM, analysis of combined RNA-seq and ChIP-seq was performed in GBM cells in response to TMZ treatment. We found that the PERK/eIF2α/ATF4 signaling was significantly upregulated in the GBM cells with TMZ treatment, while blockage of ATF4 effectively inhibited cell migration and invasion. SPHK1 expression was transcriptionally upregulated by ATF4 in GBM cells in response to TMZ treatment. Blockage of ATF4-SPHK1 signaling attenuated the cellular and molecular events in terms of invasive characteristics and TMZ resistance. In conclusion, GBM cells acquired chemoresistance in response to TMZ treatment via constant ER stress. ATF4 transcriptionally upregulated SPHK1 expression to promote GBM cell aggression and TMZ resistance. The ATF4-SPHK1 signaling in the regulation of the transcription factors of EMT-related genes could be the underlying mechanism contributing to the invasion ability of GBM cells and TMZ resistance. ATF4-SPHK1-targeted therapy could be a potential strategy against TMZ resistance in GBM patients.
Collapse
Affiliation(s)
- Beiwu Lan
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
- Jilin Province Neuro-oncology Engineering Laboratory, Changchun, China
- Jilin Provincial Key Laboratory of Neuro-oncology, Changchun, China
| | - Zhoudao Zhuang
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
- Jilin Province Neuro-oncology Engineering Laboratory, Changchun, China
- Jilin Provincial Key Laboratory of Neuro-oncology, Changchun, China
| | - Jinnan Zhang
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
- Jilin Province Neuro-oncology Engineering Laboratory, Changchun, China
- Jilin Provincial Key Laboratory of Neuro-oncology, Changchun, China
| | - Yichun He
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
- Jilin Province Neuro-oncology Engineering Laboratory, Changchun, China
- Jilin Provincial Key Laboratory of Neuro-oncology, Changchun, China
| | - Nan Wang
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
- Jilin Province Neuro-oncology Engineering Laboratory, Changchun, China
- Jilin Provincial Key Laboratory of Neuro-oncology, Changchun, China
| | - Zhuoyue Deng
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
- Jilin Province Neuro-oncology Engineering Laboratory, Changchun, China
- Jilin Provincial Key Laboratory of Neuro-oncology, Changchun, China
| | - Lin Mei
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
- Jilin Province Neuro-oncology Engineering Laboratory, Changchun, China
- Jilin Provincial Key Laboratory of Neuro-oncology, Changchun, China
| | - Yan Li
- Department of Surgery, University of Louisville, Louisville, KY, USA
| | - Yufei Gao
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China.
- Jilin Province Neuro-oncology Engineering Laboratory, Changchun, China.
- Jilin Provincial Key Laboratory of Neuro-oncology, Changchun, China.
| |
Collapse
|
27
|
Zhu YH, Jia QY, Yao HF, Duan ZH, Ma XSY, Zheng JH, Yin YF, Liu W, Zhang JF, Hua R, Ma D, Sun YW, Yang JY, Liu DJ, Huo YM. The lncRNA LINC01605 promotes the progression of pancreatic ductal adenocarcinoma by activating the mTOR signaling pathway. Cancer Cell Int 2024; 24:262. [PMID: 39048994 PMCID: PMC11271012 DOI: 10.1186/s12935-024-03440-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 07/08/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND This study investigated the molecular mechanism of long intergenic non-protein coding RNA 1605 (LINC01605) in the process of tumor growth and liver metastasis of pancreatic ductal adenocarcinoma (PDAC). METHODS LINC01605 was filtered out with specificity through TCGA datasets (related to DFS) and our RNA-sequencing data of PDAC tissue samples from Renji Hospital. The expression level and clinical relevance of LINC01605 were then verified in clinical cohorts and samples by immunohistochemical staining assay and survival analysis. Loss- and gain-of-function experiments were performed to estimate the regulatory effects of LINC01605 in vitro. RNA-seq of LINC01605-knockdown PDAC cells and subsequent inhibitor-based cellular function, western blotting, immunofluorescence and rescue experiments were conducted to explore the mechanisms by which LINC01605 regulates the behaviors of PDAC tumor cells. Subcutaneous xenograft models and intrasplenic liver metastasis models were employed to study its role in PDAC tumor growth and liver metastasis in vivo. RESULTS LINC01605 expression is upregulated in both PDAC primary tumor and liver metastasis tissues and correlates with poor clinical prognosis. Loss and gain of function experiments in cells demonstrated that LINC01605 promotes the proliferation and migration of PDAC cells in vitro. In subsequent verification experiments, we found that LINC01605 contributes to PDAC progression through cholesterol metabolism regulation in a LIN28B-interacting manner by activating the mTOR signaling pathway. Furthermore, the animal models showed that LINC01605 facilitates the proliferation and metastatic invasion of PDAC cells in vivo. CONCLUSIONS Our results indicate that the upregulated lncRNA LINC01605 promotes PDAC tumor cell proliferation and migration by regulating cholesterol metabolism via activation of the mTOR signaling pathway in a LIN28B-interacting manner. These findings provide new insight into the role of LINC01605 in PDAC tumor growth and liver metastasis as well as its value for clinical approaches as a metabolic therapeutic target in PDAC.
Collapse
Affiliation(s)
- Yu-Heng Zhu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Qin-Yuan Jia
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Hong-Fei Yao
- Department of Hepato-Biliary-Pancreatic Surgery, General Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, China
| | - Zong-Hao Duan
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xue-Shi-Yu Ma
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jia-Hao Zheng
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yi-Fan Yin
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Wei Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jun-Feng Zhang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Rong Hua
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Ding Ma
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yong-Wei Sun
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Jian-Yu Yang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - De-Jun Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Yan-Miao Huo
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
28
|
Shu F, Liu H, Chen X, Liu Y, Zhou J, Tang L, Cao W, Yang S, Long Y, Li R, Wang H, Wang H, Jiang G. m6A Modification Promotes EMT and Metastasis of Castration-Resistant Prostate Cancer by Upregulating NFIB. Cancer Res 2024; 84:1947-1962. [PMID: 38536119 DOI: 10.1158/0008-5472.can-23-1954] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/04/2023] [Accepted: 03/21/2024] [Indexed: 06/15/2024]
Abstract
The widespread use of androgen receptor (AR) signaling inhibitors has led to an increased incidence of AR-negative castration-resistant prostate cancer (CRPC), limiting effective treatment and patient survival. A more comprehensive understanding of the molecular mechanisms supporting AR-negative CRPC could reveal therapeutic vulnerabilities to improve treatment. This study showed that the transcription factor nuclear factor I/B (NFIB) was upregulated in patient with AR-negative CRPC tumors and cell lines and was positively associated with an epithelial-to-mesenchymal transition (EMT) phenotype. Loss of NFIB inhibited EMT and reduced migration of CRPC cells. NFIB directly bound to gene promoters and regulated the transcription of EMT-related factors E-cadherin (CDH1) and vimentin (VIM), independent of other typical EMT-related transcriptional factors. In vivo data further supported the positive role of NFIB in the metastasis of AR-negative CRPC cells. Moreover, N6-methyladenosine (m6A) modification induced NFIB upregulation in AR-negative CRPC. Mechanistically, the m6A levels of mRNA, including NFIB and its E3 ubiquitin ligase TRIM8, were increased in AR-negative CRPC cells. Elevated m6A methylation of NFIB mRNA recruited YTHDF2 to increase mRNA stability and protein expression. Inversely, the m6A modification of TRIM8 mRNA, induced by ALKBH5 downregulation, decreased its translation and expression, which further promoted NFIB protein stability. Overall, this study reveals that upregulation of NFIB, mediated by m6A modification, triggers EMT and metastasis in AR-negative CRPC. Targeting the m6A/NFIB axis is a potential prevention and treatment strategy for AR-negative CRPC metastasis. SIGNIFICANCE NFIB upregulation mediated by increased m6A levels in AR-negative castration-resistant prostate cancer regulates transcription of EMT-related factors to promote metastasis, providing a potential therapeutic target to improve prostate cancer treatment.
Collapse
Affiliation(s)
- Feng Shu
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Hao Liu
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaohui Chen
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Ye Liu
- Department of Pathology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Jiangli Zhou
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lei Tang
- Department of Pathology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Wanwei Cao
- Department of Pathology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Shanshan Yang
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Yili Long
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Rongna Li
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Hao Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Hongsheng Wang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Guanmin Jiang
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| |
Collapse
|
29
|
Lin J, Hou L, Zhao X, Zhong J, Lv Y, Jiang X, Ye B, Qiao Y. Switch of ELF3 and ATF4 transcriptional axis programs the amino acid insufficiency-linked epithelial-to-mesenchymal transition. Mol Ther 2024; 32:1956-1969. [PMID: 38627967 PMCID: PMC11184330 DOI: 10.1016/j.ymthe.2024.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/19/2024] [Accepted: 04/12/2024] [Indexed: 04/29/2024] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) that endows cancer cells with increased invasive and migratory capacity enables cancer dissemination and metastasis. This process is tightly associated with metabolic reprogramming acquired for rewiring cell status and signaling pathways for survival in dietary insufficiency conditions. However, it remains largely unclear how transcription factor (TF)-mediated transcriptional programs are modulated during the EMT process. Here, we reveal that depletion of a key epithelial TF, ELF3 (E74-like factor-3), triggers a transforming growth factor β (TGF-β) signaling activation-like mesenchymal transcriptomic profile and metastatic features linked to the aminoacyl-tRNA biogenesis pathway. Moreover, the transcriptome alterations elicited by ELF3 depletion perfectly resemble an ATF4-dependent weak response to amino acid starvation. Intriguingly, we observe an exclusive enrichment of ELF3 and ATF4 in epithelial and TGF-β-induced or ELF3-depletion-elicited mesenchymal enhancers, respectively, with rare co-binding on altered enhancers. We also find that the upregulation of aminoacyl-tRNA synthetases and some mesenchymal genes upon amino acid deprivation is diminished in ATF4-depleted cells. In sum, the loss of ELF3 binding on epithelial enhancers and the gain of ATF4 binding on the enhancers of mesenchymal factors and amino acid deprivation responsive genes facilitate the loss of epithelial cell features and the gain of TGF-β-signaling-associated mesenchymal signatures, which further promote lung cancer cell metastasis.
Collapse
Affiliation(s)
- Jianxiang Lin
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China; Shanghai Institute of Precision Medicine, Shanghai 200125, China
| | - Linjun Hou
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xin Zhao
- Department of Geriatrics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
| | - Jingli Zhong
- College of Life Science, Guangzhou University, Guangzhou 510006, China
| | - Yilv Lv
- Department of Thoracic Surgery, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xiaohua Jiang
- Center for Reproduction and Genetics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui, China.
| | - Bo Ye
- Department of Thoracic Surgery, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Yunbo Qiao
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China; Shanghai Institute of Precision Medicine, Shanghai 200125, China.
| |
Collapse
|
30
|
Wu Q, Hatse S, Kenis C, Fernández-García J, Altea-Manzano P, Billen J, Planque M, Vandekeere A, Lambrechts Y, Richard F, Punie K, Neven P, Smeets A, Nevelsteen I, Floris G, Desmedt C, Gomes AP, Fendt SM, Wildiers H. Aging-accumulated methylmalonic acid serum levels at breast cancer diagnosis are not associated with distant metastases. Breast Cancer Res Treat 2024; 205:555-565. [PMID: 38472594 DOI: 10.1007/s10549-024-07260-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 01/18/2024] [Indexed: 03/14/2024]
Abstract
PURPOSE Recent evidence suggests that age-accumulated methylmalonic acid (MMA) promotes breast cancer progression in mice. This study aims to investigate the association between baseline serum MMA concentrations in patients with breast cancer and the development of subsequent distant metastases. METHODS We included 32 patients with early Luminal B-like breast cancer (LumB, median age 62.4y) and 52 patients with early triple-negative breast cancer (TNBC, median age 50.5y) who developed distant metastases within 5 years. They were matched to an equal number of early breast cancer patients (median age 62.2y for LumB and 50.5y for TNBC) who did not develop distant metastases with at least 5 years of follow-up. RESULTS Baseline serum MMA levels at breast cancer diagnosis showed a positive correlation with age (P < 0.001) and a negative correlation with renal function and vitamin B12 (all P < 0.02), but no statistical association was found with BMI or tumor stage (P > 0.6). Between matched pairs, no significant difference was observed in MMA levels, after adjusting for kidney function and age (P = 0.19). Additionally, in a mouse model, a significant decline in MMA levels was observed in the tumor-bearing group compared to the group without tumors before and after tumor establishment or at identical times for the control group (P = 0.03). CONCLUSION Baseline serum MMA levels in patients with breast cancer are not correlated with secondary distant metastasis. Evidence in the mouse model suggests that the presence of a tumor perturbates MMA levels.
Collapse
Affiliation(s)
- Qi Wu
- Laboratory of Experimental Oncology (LEO), Department of Oncology, KU Leuven, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Sigrid Hatse
- Laboratory of Experimental Oncology (LEO), Department of Oncology, KU Leuven, Leuven, Belgium
| | - Cindy Kenis
- Department of General Medical Oncology & Department of Geriatric Medicine, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
- Department of Public Health and Primary Care, Academic Centre for Nursing and Midwifery, KU Leuven, Leuven, Belgium
| | - Juan Fernández-García
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Patricia Altea-Manzano
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Jaak Billen
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Disease and Metabolism, KU Leuven, Leuven, Belgium
| | - Mélanie Planque
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Anke Vandekeere
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Yentl Lambrechts
- Laboratory of Experimental Oncology (LEO), Department of Oncology, KU Leuven, Leuven, Belgium
| | - François Richard
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Kevin Punie
- Department of General Medical Oncology & Department of Geriatric Medicine, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
- Multidisciplinary Breast Center, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Patrick Neven
- Multidisciplinary Breast Center, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Ann Smeets
- Multidisciplinary Breast Center, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
- Department of Surgical Oncology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Ines Nevelsteen
- Multidisciplinary Breast Center, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Giuseppe Floris
- Laboratory for Cell and Tissue Translational Research, Department of Imaging and Radiology, Department of Pathology, KU Leuven, University Hospitals Leuven, Leuven, Belgium
| | - Christine Desmedt
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Ana P Gomes
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000, Leuven, Belgium.
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium.
| | - Hans Wildiers
- Laboratory of Experimental Oncology (LEO), Department of Oncology, KU Leuven, Leuven, Belgium.
- Department of General Medical Oncology & Department of Geriatric Medicine, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium.
- Multidisciplinary Breast Center, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium.
| |
Collapse
|
31
|
Liao Z, Fan H, Weng J, Zhou J, Zheng Y. FAP Serves as a Prognostic Biomarker in Head and Neck Squamous Cell Carcinoma. Anal Cell Pathol (Amst) 2024; 2024:8810804. [PMID: 38826849 PMCID: PMC11142855 DOI: 10.1155/2024/8810804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/24/2024] [Accepted: 05/08/2024] [Indexed: 06/04/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) poses significant challenges with poor survival rates and limited therapeutic strategies. Our study, using The Cancer Genome Atlas (TCGA) data, assesses cancer-associated fibroblast (CAF) gene signatures' clinical relevance. In our analysis across TCGA tumor types, differential gene expression analysis revealed that fibroblast activation protein (FAP) is upregulated in tumor tissues and associated with poorer survival rates in HNSCC. Furthermore, mechanistic studies employing gene-silencing techniques substantiated that FAP knockout led to a significant decrease in cellular proliferation, invasion, and migration in HNSCC cell lines. Through Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses, we established that high FAP expression correlates with vital biological processes such as extracellular matrix organization, angiogenesis, and cellular motility. Importantly, FAP was found to regulate these processes by promoting the expression of key proteins involved in epithelial-mesenchymal transition-related pathways. Additionally, our analysis revealed a significant correlation between FAP expression and the expression profiles of immune checkpoint molecules, underscoring its potential role in immune modulation. Collectively, our findings illuminate FAP's pivotal role in HNSCC pathogenesis and its potential as a prognostic biomarker and therapeutic target. This research lays the groundwork for understanding the multifaceted roles and regulatory mechanisms of CAFs in HNSCC, thereby offering valuable perspectives for the development of targeted therapeutic strategies aimed at improving patient outcomes.
Collapse
Affiliation(s)
- Zhanpeng Liao
- Department of Stomatology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Haidong Fan
- Department of Stomatology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Junquan Weng
- Department of Stomatology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Jieyu Zhou
- Department of Stomatology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Yuyan Zheng
- Department of Stomatology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| |
Collapse
|
32
|
He X, Smith MR, Jarrell ZR, Thi Ly V, Liang Y, Lee CM, Orr M, Go YM, Jones DP. Metabolic alterations and mitochondrial dysfunction in human airway BEAS-2B cells exposed to vanadium pentoxide. Toxicology 2024; 504:153772. [PMID: 38479551 PMCID: PMC11060939 DOI: 10.1016/j.tox.2024.153772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/25/2024] [Accepted: 03/09/2024] [Indexed: 03/24/2024]
Abstract
Vanadium pentoxide (V+5) is a hazardous material that has drawn considerable attention due to its wide use in industrial sectors and increased release into environment from human activities. It poses potential adverse effects on animals and human health, with pronounced impact on lung physiology and functions. In this study, we investigated the metabolic response of human bronchial epithelial BEAS-2B cells to low-level V+5 exposure (0.01, 0.1, and 1 ppm) using liquid chromatography-high resolution mass spectrometry (LC-HRMS). Exposure to V+5 caused extensive changes to cellular metabolism in BEAS-2B cells, including TCA cycle, glycolysis, fatty acids, amino acids, amino sugars, nucleotide sugar, sialic acid, vitamin D3, and drug metabolism, without causing cell death. Altered mitochondrial structure and function were observed with as low as 0.01 ppm (0.2 μM) V+5 exposure. In addition, decreased level of E-cadherin, the prototypical epithelial marker of epithelial-mesenchymal transition (EMT), was observed following V+5 treatment, supporting potential toxicity of V+5 at low levels. Taken together, the present study shows that V+5 has adverse effects on mitochondria and the metabolome which may result in EMT activation in the absence of cell death. Furthermore, results suggest that high-resolution metabolomics could serve as a powerful tool to investigate metal toxicity at levels which do not cause cell death.
Collapse
Affiliation(s)
- Xiaojia He
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA
| | - Matthew Ryan Smith
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA; Atlanta Department of Veterans Affairs Healthcare System, Decatur, GA 30322, USA
| | - Zachery R Jarrell
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA
| | - ViLinh Thi Ly
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA
| | - Yongliang Liang
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA
| | - Choon-Myung Lee
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA
| | - Michael Orr
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA
| | - Young-Mi Go
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA.
| | - Dean P Jones
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
33
|
Gu M, Liu Y, Xin P, Guo W, Zhao Z, Yang X, Ma R, Jiao T, Zheng W. Fundamental insights and molecular interactions in pancreatic cancer: Pathways to therapeutic approaches. Cancer Lett 2024; 588:216738. [PMID: 38401887 DOI: 10.1016/j.canlet.2024.216738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/08/2024] [Accepted: 02/18/2024] [Indexed: 02/26/2024]
Abstract
The gastrointestinal tract can be affected by a number of diseases that pancreatic cancer (PC) is a malignant manifestation of them. The prognosis of PC patients is unfavorable and because of their diagnosis at advanced stage, the treatment of this tumor is problematic. Owing to low survival rate, there is much interest towards understanding the molecular profile of PC in an attempt in developing more effective therapeutics. The conventional therapeutics for PC include surgery, chemotherapy and radiotherapy as well as emerging immunotherapy. However, PC is still incurable and more effort should be performed. The molecular landscape of PC is an underlying factor involved in increase in progression of tumor cells. In the presence review, the newest advances in understanding the molecular and biological events in PC are discussed. The dysregulation of molecular pathways including AMPK, MAPK, STAT3, Wnt/β-catenin and non-coding RNA transcripts has been suggested as a factor in development of tumorigenesis in PC. Moreover, cell death mechanisms such as apoptosis, autophagy, ferroptosis and necroptosis demonstrate abnormal levels. The EMT and glycolysis in PC cells enhance to ensure their metastasis and proliferation. Furthermore, such abnormal changes have been used to develop corresponding pharmacological and nanotechnological therapeutics for PC.
Collapse
Affiliation(s)
- Ming Gu
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Yang Liu
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Peng Xin
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Wei Guo
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Zimo Zhao
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Xu Yang
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Ruiyang Ma
- Department of Otorhinolaryngology, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China.
| | - Taiwei Jiao
- Department of Gastroenterology and Endoscopy, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China.
| | - Wenhui Zheng
- Department of Anesthesiology, The Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110001, China.
| |
Collapse
|
34
|
Wang R, Yan Z. Cancer spreading patterns based on epithelial-mesenchymal plasticity. Front Cell Dev Biol 2024; 12:1259953. [PMID: 38665432 PMCID: PMC11043583 DOI: 10.3389/fcell.2024.1259953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Introduction: Metastasis is a major cause of cancer-related deaths, underscoring the necessity to discern the rules and patterns of cancer cell spreading. Epithelial-mesenchymal plasticity contributes to cancer aggressiveness and metastasis. Despite establishing key determinants of cancer aggressiveness and metastatic ability, a comprehensive understanding of the underlying mechanism is unknown. We aimed to propose a classification system for cancer cells based on epithelial-mesenchymal plasticity, focusing on hysteresis of the epithelial-mesenchymal transition and the hybrid epithelial/mesenchymal phenotype. Methods: We extensively reviewed the concept of epithelial-mesenchymal plasticity, specifically considering the hysteresis of the epithelial-mesenchymal transition and the hybrid epithelial/mesenchymal phenotype. Results: In this review and hypothesis article, based on epithelial-mesenchymal plasticity, especially the hysteresis of epithelial-mesenchymal transition and the hybrid epithelial/mesenchymal phenotype, we proposed a classification of cancer cells, indicating that cancer cells with epithelial-mesenchymal plasticity potential could be classified into four types: irreversible hysteresis, weak hysteresis, strong hysteresis, and hybrid epithelial/mesenchymal phenotype. These four types of cancer cells had varied biology, spreading features, and prognoses. Discussion: Our results highlight that the proposed classification system offers insights into the diverse behaviors of cancer cells, providing implications for cancer aggressiveness and metastasis.
Collapse
Affiliation(s)
- Rui Wang
- Department of Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhaopeng Yan
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
35
|
Li J, Gao P, Qin M, Wang J, Luo Y, Deng P, Hao R, Zhang L, He M, Chen C, Lu Y, Ma Q, Li M, Tan M, Wang L, Yue Y, Wang H, Tian L, Xie J, Chen M, Yu Z, Zhou Z, Pi H. Long-term cadmium exposure induces epithelial-mesenchymal transition in breast cancer cells by activating CYP1B1-mediated glutamine metabolic reprogramming in BT474 cells and MMTV-Erbb2 mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170773. [PMID: 38336054 DOI: 10.1016/j.scitotenv.2024.170773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/04/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
Cadmium (Cd) exposure is known to enhance breast cancer (BC) progression. Cd promotes epithelial-mesenchymal transition (EMT) in BC cells, facilitating BC cell aggressiveness and invasion, but the underlying molecular mechanisms are unclear. Hence, transgenic MMTV-Erbb2 mice (6 weeks) were orally administered Cd (3.6 mg/L, approximately equal to 19.64 μΜ) for 23 weeks, and BC cells (BT474 cells) were exposed to Cd (0, 0.1, 1 or 10 μΜ) for 72 h to investigate the effect of Cd exposure on EMT in BC cells. Chronic Cd exposure dramatically expedited tumor metastasis to multiple organs; decreased E-cadherin density; and increased Vimentin, N-cadherin, ZEB1, and Twist density in the tumor tissues of MMTV-Erbb2 mice. Notably, transcriptomic analysis of BC tumors revealed cytochrome P450 1B1 (CYP1B1) as a key factor that regulates EMT progression in Cd-treated MMTV-Erbb2 mice. Moreover, Cd increased CYP1B1 expression in MMTV-Erbb2 mouse BC tumors and in BT474 cells, and CYP1B1 inhibition decreased Cd-induced BC cell malignancy and EMT in BT474 cells. Importantly, the promotion of EMT by CYP1B1 in Cd-treated BC cells was presumably controlled by glutamine metabolism. This study offers novel perspectives into the effect of environmental Cd exposure on driving BC progression and metastasis, and this study provides important guidance for comprehensively assessing the ecological and health risks of Cd.
Collapse
Affiliation(s)
- Jingdian Li
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Peng Gao
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Mingke Qin
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Junhua Wang
- Nuclear Medicine Department, General Hospital of Tibet Military Area Command, Lhasa 850000, Xizang, China
| | - Yan Luo
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Ping Deng
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Rongrong Hao
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Lei Zhang
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Mindi He
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Chunhai Chen
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Yonghui Lu
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Qinlong Ma
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Min Li
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Miduo Tan
- Department of Breast Surgery, Central Hospital of Zhuzhou City, Central South University, Zhuzhou 412000, Hunan, China
| | - Liting Wang
- Biomedical Analysis Center, Army Medical University, Chongqing 400038, China
| | - Yang Yue
- Bioinformatics Center of Academy of Military Medical Sciences, Beijing 100850, China
| | - Hui Wang
- Nuclear Medicine Department, General Hospital of Tibet Military Area Command, Lhasa 850000, Xizang, China
| | - Li Tian
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Jia Xie
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Mengyan Chen
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Zhengping Yu
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China.
| | - Zhou Zhou
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing 400030, China.
| | - Huifeng Pi
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China; State key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing 400038, China.
| |
Collapse
|
36
|
Hou T, Zhang J, Wang Y, Zhang G, Li S, Fan W, Li R, Sun Q, Liu C. Early Pulmonary Fibrosis-like Changes in the Setting of Heat Exposure: DNA Damage and Cell Senescence. Int J Mol Sci 2024; 25:2992. [PMID: 38474239 DOI: 10.3390/ijms25052992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/22/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
It is well known that extreme heat events happen frequently due to climate change. However, studies examining the direct health impacts of increased temperature and heat waves are lacking. Previous reports revealed that heatstroke induced acute lung injury and pulmonary dysfunction. This study aimed to investigate whether heat exposure induced lung fibrosis and to explore the underlying mechanisms. Male C57BL/6 mice were exposed to an ambient temperature of 39.5 ± 0.5 °C until their core temperature reached the maximum or heat exhaustion state. Lung fibrosis was observed in the lungs of heat-exposed mice, with extensive collagen deposition and the elevated expression of fibrosis molecules, including transforming growth factor-β1 (TGF-β1) and Fibronectin (Fn1) (p < 0.05). Moreover, epithelial-mesenchymal transition (EMT) occurred in response to heat exposure, evidenced by E-cadherin, an epithelial marker, which was downregulated, whereas markers of EMT, such as connective tissue growth factor (CTGF) and the zinc finger transcriptional repressor protein Slug, were upregulated in the heat-exposed lung tissues of mice (p < 0.05). Subsequently, cell senescence examination revealed that the levels of both senescence-associated β-galactosidase (SA-β-gal) staining and the cell cycle protein kinase inhibitor p21 were significantly elevated (p < 0.05). Mechanistically, the cGAS-STING signaling pathway evoked by DNA damage was activated in response to heat exposure (p < 0.05). In summary, we reported a new finding that heat exposure contributed to the development of early pulmonary fibrosis-like changes through the DNA damage-activated cGAS-STING pathway followed by cellular senescence.
Collapse
Affiliation(s)
- Tong Hou
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou 310053, China
| | - Jiyang Zhang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou 310053, China
| | - Yindan Wang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou 310053, China
| | - Guoqing Zhang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou 310053, China
| | - Sanduo Li
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou 310053, China
| | - Wenjun Fan
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou 310053, China
| | - Ran Li
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou 310053, China
| | - Qinghua Sun
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou 310053, China
| | - Cuiqing Liu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou 310053, China
| |
Collapse
|
37
|
Guo Z, Ashrafizadeh M, Zhang W, Zou R, Sethi G, Zhang X. Molecular profile of metastasis, cell plasticity and EMT in pancreatic cancer: a pre-clinical connection to aggressiveness and drug resistance. Cancer Metastasis Rev 2024; 43:29-53. [PMID: 37453022 DOI: 10.1007/s10555-023-10125-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
The metastasis is a multistep process in which a small proportion of cancer cells are detached from the colony to enter into blood cells for obtaining a new place for metastasis and proliferation. The metastasis and cell plasticity are considered major causes of cancer-related deaths since they improve the malignancy of cancer cells and provide poor prognosis for patients. Furthermore, enhancement in the aggressiveness of cancer cells has been related to the development of drug resistance. Metastasis of pancreatic cancer (PC) cells has been considered one of the major causes of death in patients and their undesirable prognosis. PC is among the most malignant tumors of the gastrointestinal tract and in addition to lifestyle, smoking, and other factors, genomic changes play a key role in its progression. The stimulation of EMT in PC cells occurs as a result of changes in molecular interaction, and in addition to increasing metastasis, EMT participates in the development of chemoresistance. The epithelial, mesenchymal, and acinar cell plasticity can occur and determines the progression of PC. The major molecular pathways including STAT3, PTEN, PI3K/Akt, and Wnt participate in regulating the metastasis of PC cells. The communication in tumor microenvironment can provide by exosomes in determining PC metastasis. The components of tumor microenvironment including macrophages, neutrophils, and cancer-associated fibroblasts can modulate PC progression and the response of cancer cells to chemotherapy.
Collapse
Affiliation(s)
- Zhenli Guo
- Department of Oncology, First Affiliated Hospital, Gannan Medical University, 128 Jinling Road, Ganzhou City, Jiangxi Province, 341000, China
| | - Milad Ashrafizadeh
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, Guangdong, China.
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Wei Zhang
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Rongjun Zou
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Gautam Sethi
- Department of Pharmacology, National University of Singapore, 16 Medical Drive, Singapore, 117600, Singapore.
| | - Xianbin Zhang
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
38
|
Pastorino GA, Sheraj I, Huebner K, Ferrero G, Kunze P, Hartmann A, Hampel C, Husnugil HH, Maiuthed A, Gebhart F, Schlattmann F, Gulec Taskiran AE, Oral G, Palmisano R, Pardini B, Naccarati A, Erlenbach-Wuensch K, Banerjee S, Schneider-Stock R. A partial epithelial-mesenchymal transition signature for highly aggressive colorectal cancer cells that survive under nutrient restriction. J Pathol 2024; 262:347-361. [PMID: 38235615 DOI: 10.1002/path.6240] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 10/12/2023] [Accepted: 11/21/2023] [Indexed: 01/19/2024]
Abstract
Partial epithelial-mesenchymal transition (p-EMT) has recently been identified as a hybrid state consisting of cells with both epithelial and mesenchymal characteristics and is associated with the migration, metastasis, and chemoresistance of cancer cells. Here, we describe the induction of p-EMT in starved colorectal cancer (CRC) cells and identify a p-EMT gene signature that can predict prognosis. Functional characterisation of starvation-induced p-EMT in HCT116, DLD1, and HT29 cells showed changes in proliferation, morphology, and drug sensitivity, supported by in vivo studies using the chorioallantoic membrane model. An EMT-specific quantitative polymerase chain reaction (qPCR) array was used to screen for deregulated genes, leading to the establishment of an in silico gene signature that was correlated with poor disease-free survival in CRC patients along with the CRC consensus molecular subtype CMS4. Among the significantly deregulated p-EMT genes, a triple-gene signature consisting of SERPINE1, SOX10, and epidermal growth factor receptor (EGFR) was identified. Starvation-induced p-EMT was characterised by increased migratory potential and chemoresistance, as well as E-cadherin processing and internalisation. Both gene signature and E-cadherin alterations could be reversed by the proteasomal inhibitor MG132. Spatially resolving EGFR expression with high-resolution immunofluorescence imaging identified a proliferation stop in starved CRC cells caused by EGFR internalisation. In conclusion, we have gained insight into a previously undiscovered EMT mechanism that may become relevant when tumour cells are under nutrient stress, as seen in early stages of metastasis. Targeting this process of tumour cell dissemination might help to prevent EMT and overcome drug resistance. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Gil A Pastorino
- Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ilir Sheraj
- Department of Biological Sciences, Orta Dogu Teknik Universitesi, Ankara, Turkey
| | - Kerstin Huebner
- Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Giulio Ferrero
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Philipp Kunze
- Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Arndt Hartmann
- Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Chuanpit Hampel
- Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | - Arnatchai Maiuthed
- Department of Pharmacology, Mahidol University, Bangkok, Thailand
- Centre of Biopharmaceutical Science for Healthy Ageing, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Florian Gebhart
- Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Fynn Schlattmann
- Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Aliye Ezgi Gulec Taskiran
- Department of Biological Sciences, Orta Dogu Teknik Universitesi, Ankara, Turkey
- Department of Molecular Biology and Genetics, Baskent University, Ankara, Turkey
| | - Goksu Oral
- Department of Biological Sciences, Orta Dogu Teknik Universitesi, Ankara, Turkey
| | - Ralph Palmisano
- Optical Imaging Competence Centre FAU OICE, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Barbara Pardini
- Italian Institute for Genomic Medicine (IIGM), c/o FPO-IRCCS Candiolo, Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
| | - Alessio Naccarati
- Italian Institute for Genomic Medicine (IIGM), c/o FPO-IRCCS Candiolo, Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
| | - Katharina Erlenbach-Wuensch
- Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sreeparna Banerjee
- Department of Biological Sciences, Orta Dogu Teknik Universitesi, Ankara, Turkey
- Cancer Systems Biology Laboratory (CanSyl), Orta Dogu Teknik Universitesi, Ankara, Turkey
| | - Regine Schneider-Stock
- Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
39
|
Zhang H, Xu W, Zhu H, Chen X, Tsai HI. Overcoming the limitations of immunotherapy in pancreatic ductal adenocarcinoma: Combining radiotherapy and metabolic targeting therapy. J Cancer 2024; 15:2003-2023. [PMID: 38434964 PMCID: PMC10905401 DOI: 10.7150/jca.92502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/20/2024] [Indexed: 03/05/2024] Open
Abstract
As a novel anticancer therapy, immunotherapy has demonstrated robust efficacy against a few solid tumors but poor efficacy against pancreatic ductal adenocarcinoma (PDAC). This poor outcome is primarily attributable to the intrinsic cancer cell resistance and T-cell exhaustion, which is also the reason for the failure of conventional therapy. The present review summarizes the current PDAC immunotherapy avenues and the underlying resistance mechanisms. Then, the review discusses synergistic combination therapies, such as radiotherapy (RT) and metabolic targeting. Research suggests that RT boosts the antigen of PDAC, which facilitates the anti-tumor immune cell infiltration and exerts function. Metabolic reprogramming contributes to restoring the exhausted T cell function. The current review will help in tailoring combination regimens to enhance the efficacy of immunotherapy. In addition, it will help provide new approaches to address the limitations of the immunosuppressive tumor microenvironment (TME) by examining the relationship among immunotherapy, RT, and metabolism targeting therapy in PDAC.
Collapse
Affiliation(s)
- Han Zhang
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, China
| | - Wenjin Xu
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, China
| | - Haitao Zhu
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, China
- Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xuelian Chen
- Department of Radiology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, China
| | - Hsiang-I Tsai
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, China
- Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
40
|
Lv Q, Shi J, Miao D, Tan D, Zhao C, Xiong Z, Zhang X. miR-1182-mediated ALDH3A2 inhibition affects lipid metabolism and progression in ccRCC by activating the PI3K-AKT pathway. Transl Oncol 2024; 40:101835. [PMID: 38039946 PMCID: PMC10730858 DOI: 10.1016/j.tranon.2023.101835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/02/2023] [Accepted: 11/13/2023] [Indexed: 12/03/2023] Open
Abstract
In clear cell renal cell carcinoma (ccRCC), dysregulated lipid metabolism plays a pivotal role in tumor initiation and progression. This study delves into the unexplored landscape of Dysregulated Aldehyde Dehydrogenase 3 Family Member A2 (ALDH3A2) in ccRCC. Using a combination of "fatty acid metabolism" dataset analysis and differentially expressed genes (DEGs) derived from Gene Expression Omnibus (GEO) database, potential metabolic regulators in ccRCC were identified. Subsequent investigations utilizing public databases, clinical samples, and in vitro experiments revealed that ALDH3A2 was down-regulated in ccRCC, mediated by miR-1182, highlighting its role as an independent prognostic factor for patient survival. Functionally, ALDH3A2 exhibited tumor-suppressive properties, impacting ccRCC cell phenotypes and influencing epithelial-mesenchymal transition. Mechanistically, silencing ALDH3A2 promoted lipid accumulation in ccRCC cells by activating the PI3K-AKT pathway, thereby promoting tumor progression. These findings shed light on the critical role of the miR-1182/ALDH3A2 axis in ccRCC tumorigenesis, emphasizing the potential for targeting lipid metabolism as a promising anti-cancer strategy.
Collapse
Affiliation(s)
- Qingyang Lv
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Jian Shi
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Daojia Miao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Diaoyi Tan
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Chuanyi Zhao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Zhiyong Xiong
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| | - Xiaoping Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| |
Collapse
|
41
|
Saggese P, Pandey A, Alcaraz M, Fung E, Hall A, Yanagawa J, Rodriguez EF, Grogan TR, Giurato G, Nassa G, Salvati A, Shirihai OS, Weisz A, Dubinett SM, Scafoglio C. Glucose Deprivation Promotes Pseudohypoxia and Dedifferentiation in Lung Adenocarcinoma. Cancer Res 2024; 84:305-327. [PMID: 37934116 PMCID: PMC10790128 DOI: 10.1158/0008-5472.can-23-1148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/12/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023]
Abstract
Increased utilization of glucose is a hallmark of cancer. Sodium-glucose transporter 2 (SGLT2) is a critical player in glucose uptake in early-stage and well-differentiated lung adenocarcinoma (LUAD). SGLT2 inhibitors, which are FDA approved for diabetes, heart failure, and kidney disease, have been shown to significantly delay LUAD development and prolong survival in murine models and in retrospective studies in diabetic patients, suggesting that they may be repurposed for lung cancer. Despite the antitumor effects of SGLT2 inhibition, tumors eventually escape treatment. Here, we studied the mechanisms of resistance to glucose metabolism-targeting treatments. Glucose restriction in LUAD and other tumors induced cancer cell dedifferentiation, leading to a more aggressive phenotype. Glucose deprivation caused a reduction in alpha-ketoglutarate (αKG), leading to attenuated activity of αKG-dependent histone demethylases and histone hypermethylation. The dedifferentiated phenotype depended on unbalanced EZH2 activity that suppressed prolyl-hydroxylase PHD3 and increased expression of hypoxia-inducible factor 1α (HIF1α), triggering epithelial-to-mesenchymal transition. Finally, a HIF1α-dependent transcriptional signature of genes upregulated by low glucose correlated with prognosis in human LUAD. Overall, this study furthers current knowledge of the relationship between glucose metabolism and cell differentiation in cancer, characterizing the epigenetic adaptation of cancer cells to glucose deprivation and identifying targets to prevent the development of resistance to therapies targeting glucose metabolism. SIGNIFICANCE Epigenetic adaptation allows cancer cells to overcome the tumor-suppressive effects of glucose restriction by inducing dedifferentiation and an aggressive phenotype, which could help design better metabolic treatments.
Collapse
Affiliation(s)
- Pasquale Saggese
- Department of Medicine (Pulmonary, Critical Care, and Sleep Medicine), David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Aparamita Pandey
- Department of Medicine (Pulmonary, Critical Care, and Sleep Medicine), David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Martín Alcaraz
- Department of Medicine (Pulmonary, Critical Care, and Sleep Medicine), David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Eileen Fung
- Department of Medicine (Pulmonary, Critical Care, and Sleep Medicine), David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
- Department of Surgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Abbie Hall
- Department of Medicine (Pulmonary, Critical Care, and Sleep Medicine), David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Jane Yanagawa
- Department of Surgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Erika F. Rodriguez
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Tristan R. Grogan
- Division of General Internal Medicine and Health Services Research, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Giorgio Giurato
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana,’ University of Salerno, Baronissi (SA), Italy
- Genome Research Center for Health – CRGS, Campus of Medicine of the University of Salerno, Baronissi (SA), Italy
| | - Giovanni Nassa
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana,’ University of Salerno, Baronissi (SA), Italy
- Genome Research Center for Health – CRGS, Campus of Medicine of the University of Salerno, Baronissi (SA), Italy
| | - Annamaria Salvati
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana,’ University of Salerno, Baronissi (SA), Italy
- Genome Research Center for Health – CRGS, Campus of Medicine of the University of Salerno, Baronissi (SA), Italy
- Medical Genomics Program and Division of Onco-Hematology, AOU “S. Giovanni di Dio e Ruggi d'Aragona,” University of Salerno, Salerno, Italy
| | - Orian S. Shirihai
- Department of Medicine (Endocrinology), David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Alessandro Weisz
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana,’ University of Salerno, Baronissi (SA), Italy
- Genome Research Center for Health – CRGS, Campus of Medicine of the University of Salerno, Baronissi (SA), Italy
- Medical Genomics Program and Division of Onco-Hematology, AOU “S. Giovanni di Dio e Ruggi d'Aragona,” University of Salerno, Salerno, Italy
| | - Steven M. Dubinett
- Department of Medicine (Pulmonary, Critical Care, and Sleep Medicine), David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Claudio Scafoglio
- Department of Medicine (Pulmonary, Critical Care, and Sleep Medicine), David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
42
|
Demicco M, Liu XZ, Leithner K, Fendt SM. Metabolic heterogeneity in cancer. Nat Metab 2024; 6:18-38. [PMID: 38267631 DOI: 10.1038/s42255-023-00963-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/06/2023] [Indexed: 01/26/2024]
Abstract
Cancer cells rewire their metabolism to survive during cancer progression. In this context, tumour metabolic heterogeneity arises and develops in response to diverse environmental factors. This metabolic heterogeneity contributes to cancer aggressiveness and impacts therapeutic opportunities. In recent years, technical advances allowed direct characterisation of metabolic heterogeneity in tumours. In addition to the metabolic heterogeneity observed in primary tumours, metabolic heterogeneity temporally evolves along with tumour progression. In this Review, we summarize the mechanisms of environment-induced metabolic heterogeneity. In addition, we discuss how cancer metabolism and the key metabolites and enzymes temporally and functionally evolve during the metastatic cascade and treatment.
Collapse
Affiliation(s)
- Margherita Demicco
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Xiao-Zheng Liu
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Katharina Leithner
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium.
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium.
| |
Collapse
|
43
|
Encarnación-Rosado J, Sohn ASW, Biancur DE, Lin EY, Osorio-Vasquez V, Rodrick T, González-Baerga D, Zhao E, Yokoyama Y, Simeone DM, Jones DR, Parker SJ, Wild R, Kimmelman AC. Targeting pancreatic cancer metabolic dependencies through glutamine antagonism. NATURE CANCER 2024; 5:85-99. [PMID: 37814010 PMCID: PMC10824664 DOI: 10.1038/s43018-023-00647-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/06/2023] [Indexed: 10/11/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) cells use glutamine (Gln) to support proliferation and redox balance. Early attempts to inhibit Gln metabolism using glutaminase inhibitors resulted in rapid metabolic reprogramming and therapeutic resistance. Here, we demonstrated that treating PDAC cells with a Gln antagonist, 6-diazo-5-oxo-L-norleucine (DON), led to a metabolic crisis in vitro. In addition, we observed a profound decrease in tumor growth in several in vivo models using sirpiglenastat (DRP-104), a pro-drug version of DON that was designed to circumvent DON-associated toxicity. We found that extracellular signal-regulated kinase (ERK) signaling is increased as a compensatory mechanism. Combinatorial treatment with DRP-104 and trametinib led to a significant increase in survival in a syngeneic model of PDAC. These proof-of-concept studies suggested that broadly targeting Gln metabolism could provide a therapeutic avenue for PDAC. The combination with an ERK signaling pathway inhibitor could further improve the therapeutic outcome.
Collapse
Affiliation(s)
- Joel Encarnación-Rosado
- Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, USA
- Department of Radiation Oncology, New York University Grossman School of Medicine, New York, NY, USA
| | - Albert S W Sohn
- Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, USA
- Department of Radiation Oncology, New York University Grossman School of Medicine, New York, NY, USA
| | - Douglas E Biancur
- Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, USA
- Department of Radiation Oncology, New York University Grossman School of Medicine, New York, NY, USA
| | - Elaine Y Lin
- Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, USA
- Department of Radiation Oncology, New York University Grossman School of Medicine, New York, NY, USA
| | - Victoria Osorio-Vasquez
- Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, USA
- Department of Radiation Oncology, New York University Grossman School of Medicine, New York, NY, USA
| | - Tori Rodrick
- Division of Advanced Research Technologies, New York University School of Medicine, New York, NY, USA
| | - Diana González-Baerga
- Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, USA
- Department of Radiation Oncology, New York University Grossman School of Medicine, New York, NY, USA
| | - Ende Zhao
- Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, USA
| | | | - Diane M Simeone
- Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, USA
| | - Drew R Jones
- Division of Advanced Research Technologies, New York University School of Medicine, New York, NY, USA
| | - Seth J Parker
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Robert Wild
- Dracen Pharmaceuticals, Inc., San Diego, CA, USA
| | - Alec C Kimmelman
- Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, USA.
- Department of Radiation Oncology, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
44
|
Recouvreux MV, Grenier SF, Zhang Y, Esparza E, Lambies G, Galapate CM, Maganti S, Duong-Polk K, Bhullar D, Naeem R, Scott DA, Lowy AM, Tiriac H, Commisso C. Glutamine mimicry suppresses tumor progression through asparagine metabolism in pancreatic ductal adenocarcinoma. NATURE CANCER 2024; 5:100-113. [PMID: 37814011 PMCID: PMC10956382 DOI: 10.1038/s43018-023-00649-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/06/2023] [Indexed: 10/11/2023]
Abstract
In pancreatic ductal adenocarcinoma (PDAC), glutamine is a critical nutrient that drives a wide array of metabolic and biosynthetic processes that support tumor growth. Here, we elucidate how 6-diazo-5-oxo-L-norleucine (DON), a glutamine antagonist that broadly inhibits glutamine metabolism, blocks PDAC tumor growth and metastasis. We find that DON significantly reduces asparagine production by inhibiting asparagine synthetase (ASNS), and that the effects of DON are rescued by asparagine. As a metabolic adaptation, PDAC cells upregulate ASNS expression in response to DON, and we show that ASNS levels are inversely correlated with DON efficacy. We also show that L-asparaginase (ASNase) synergizes with DON to affect the viability of PDAC cells, and that DON and ASNase combination therapy has a significant impact on metastasis. These results shed light on the mechanisms that drive the effects of glutamine mimicry and point to the utility of cotargeting adaptive responses to control PDAC progression.
Collapse
Affiliation(s)
- Maria Victoria Recouvreux
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Shea F Grenier
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Yijuan Zhang
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Edgar Esparza
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Division of Surgical Sciences, Department of Surgery, University of California San Diego, La Jolla, CA, USA
| | - Guillem Lambies
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Cheska Marie Galapate
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Swetha Maganti
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Karen Duong-Polk
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Deepika Bhullar
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Razia Naeem
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - David A Scott
- Cancer Metabolism Core Resource, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Andrew M Lowy
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Division of Surgical Oncology, Department of Surgery, University of California San Diego, La Jolla, CA, USA
| | - Hervé Tiriac
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Division of Surgical Sciences, Department of Surgery, University of California San Diego, La Jolla, CA, USA
| | - Cosimo Commisso
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
45
|
Shi J, Li W, Jia Z, Peng Y, Hou J, Li N, Meng R, Fu W, Feng Y, Wu L, Zhou L, Wang D, Shen J, Chang J, Wang Y, Cao J. Synaptotagmin 1 Suppresses Colorectal Cancer Metastasis by Inhibiting ERK/MAPK Signaling-Mediated Tumor Cell Pseudopodial Formation and Migration. Cancers (Basel) 2023; 15:5282. [PMID: 37958455 PMCID: PMC10649299 DOI: 10.3390/cancers15215282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/21/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
Although synaptotagmin 1 (SYT1) has been identified participating in a variety of cancers, its role in colorectal cancer (CRC) remains an enigma. This study aimed to demonstrate the effect of SYT1 on CRC metastasis and the underlying mechanism. We first found that SYT1 expressions in CRC tissues were lower than in normal colorectal tissues from the CRC database and collected CRC patients. In addition to this, SYT1 expression was also lower in CRC cell lines than in the normal colorectal cell line. SYT1 expression was downregulated by TGF-β (an EMT mediator) in CRC cell lines. In vitro, SYT1 overexpression repressed pseudopodial formation and reduced cell migration and invasion of CRC cells. SYT1 overexpression also suppressed CRC metastasis in tumor-bearing nude mice in vivo. Moreover, SYT1 overexpression promoted the dephosphorylation of ERK1/2 and downregulated the expressions of Slug and Vimentin, two proteins tightly associated with EMT in tumor metastasis. In conclusion, SYT1 expression is downregulated in CRC. Overexpression of SYT1 suppresses CRC cell migration, invasion, and metastasis by inhibiting ERK/MAPK signaling-mediated CRC cell pseudopodial formation. The study suggests that SYT1 is a suppressor of CRC and may have the potential to be a therapeutic target for CRC.
Collapse
Affiliation(s)
- Jianyun Shi
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan 030606, China
| | - Wenjing Li
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan 030606, China
| | - Zhenhua Jia
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan 030606, China
| | - Ying Peng
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan 030606, China
| | - Jiayi Hou
- Department of Clinical Laboratory, Shanxi Provincial Academy of Traditional Chinese Medicine, Taiyuan 030071, China
| | - Ning Li
- Department of Gastrointestinal and Pancreatic Surgery & Hernia and Abdominal Surgery, Shanxi Provincial People’s Hospital, Taiyuan 030045, China
| | - Ruijuan Meng
- Department of Radiology, The First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan 030606, China
| | - Wei Fu
- Department of Radiology, The First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan 030606, China
| | - Yanlin Feng
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan 030606, China
| | - Lifei Wu
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan 030606, China
| | - Lan Zhou
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan 030606, China
| | - Deping Wang
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan 030606, China
| | - Jing Shen
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan 030606, China
| | - Jiasong Chang
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan 030606, China
| | - Yanqiang Wang
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan 030606, China
| | - Jimin Cao
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan 030606, China
| |
Collapse
|
46
|
Wang X, Zhou L, Wang H, Chen W, Jiang L, Ming G, Wang J. Metabolic reprogramming, autophagy, and ferroptosis: Novel arsenals to overcome immunotherapy resistance in gastrointestinal cancer. Cancer Med 2023; 12:20573-20589. [PMID: 37860928 PMCID: PMC10660574 DOI: 10.1002/cam4.6623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/05/2023] [Accepted: 09/29/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Gastrointestinal cancer poses a serious health threat owing to its high morbidity and mortality. Although immune checkpoint blockade (ICB) therapies have achieved meaningful success in most solid tumors, the improvement in survival in gastrointestinal cancers is modest, owing to sparse immune response and widespread resistance. Metabolic reprogramming, autophagy, and ferroptosis are key regulators of tumor progression. METHODS A literature review was conducted to investigate the role of the metabolic reprogramming, autophagy, and ferroptosis in immunotherapy resistance of gastrointestinal cancer. RESULTS Metabolic reprogramming, autophagy, and ferroptosis play pivotal roles in regulating the survival, differentiation, and function of immune cells within the tumor microenvironment. These processes redefine the nutrient allocation blueprint between cancer cells and immune cells, facilitating tumor immune evasion, which critically impacts the therapeutic efficacy of immunotherapy for gastrointestinal cancers. Additionally, there exists profound crosstalk among metabolic reprogramming, autophagy, and ferroptosis. These interactions are paramount in anti-tumor immunity, further promoting the formation of an immunosuppressive microenvironment and resistance to immunotherapy. CONCLUSIONS Consequently, it is imperative to conduct comprehensive research on the roles of metabolic reprogramming, autophagy, and ferroptosis in the resistance of gastrointestinal tumor immunotherapy. This understanding will illuminate the clinical potential of targeting these pathways and their regulatory mechanisms to overcome immunotherapy resistance in gastrointestinal cancers.
Collapse
Affiliation(s)
- Xiangwen Wang
- Department of General SurgeryThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Liwen Zhou
- Department of StomatologyThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Hongpeng Wang
- Department of General SurgeryThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Wei Chen
- Department of General SurgeryThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Lei Jiang
- Department of General SurgeryThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Guangtao Ming
- Department of General SurgeryThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Jun Wang
- Department of General SurgeryThe First Hospital of Lanzhou UniversityLanzhouChina
| |
Collapse
|
47
|
Wu C, Weis SM, Cheresh DA. Upregulation of fibronectin and its integrin receptors - an adaptation to isolation stress that facilitates tumor initiation. J Cell Sci 2023; 136:jcs261483. [PMID: 37870164 PMCID: PMC10652044 DOI: 10.1242/jcs.261483] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023] Open
Abstract
Tumor initiation at either primary or metastatic sites is an inefficient process in which tumor cells must fulfill a series of conditions. One critical condition involves the ability of individual tumor-initiating cells to overcome 'isolation stress', enabling them to survive within harsh isolating microenvironments that can feature nutrient stress, hypoxia, oxidative stress and the absence of a proper extracellular matrix (ECM). In response to isolation stress, tumor cells can exploit various adaptive strategies to develop stress tolerance and gain stemness features. In this Opinion, we discuss how strategies such as the induction of certain cell surface receptors and deposition of ECM proteins enable tumor cells to endure isolation stress, thereby gaining tumor-initiating potential. As examples, we highlight recent findings from our group demonstrating how exposure of tumor cells to isolation stress upregulates the G-protein-coupled receptor lysophosphatidic acid receptor 4 (LPAR4), its downstream target fibronectin and two fibronectin-binding integrins, α5β1 and αvβ3. These responses create a fibronectin-rich niche for tumor cells, ultimately driving stress tolerance, cancer stemness and tumor initiation. We suggest that approaches to prevent cancer cells from adapting to stress by suppressing LPAR4 induction, blocking its downstream signaling or disrupting fibronectin-integrin interactions hold promise as potential strategies for cancer treatment.
Collapse
Affiliation(s)
- Chengsheng Wu
- Department of Pathology, Moores Cancer Center, University of California San Diego, La Jolla, CA 92037, USA
- Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Sara M. Weis
- Department of Pathology, Moores Cancer Center, University of California San Diego, La Jolla, CA 92037, USA
- Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - David A. Cheresh
- Department of Pathology, Moores Cancer Center, University of California San Diego, La Jolla, CA 92037, USA
- Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92037, USA
| |
Collapse
|
48
|
Guo H, Hu Z, Yang X, Yuan Z, Gao Y, Chen J, Xie L, Chen C, Guo Y, Bai Y. STAT3 inhibition enhances gemcitabine sensitivity in pancreatic cancer by suppressing EMT, immune escape and inducing oxidative stress damage. Int Immunopharmacol 2023; 123:110709. [PMID: 37515849 DOI: 10.1016/j.intimp.2023.110709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/11/2023] [Accepted: 07/23/2023] [Indexed: 07/31/2023]
Abstract
Pancreatic cancer (PC) is a highly-malignant tumor of the digestive system with a very poor prognosis and high mortality. Chemotherapy and PD-1/PD-L1 immune checkpoint blockade are important treatment strategies for advanced PC. However, chemotherapy resistance and poor therapeutic effect of immune checkpoint inhibitors is are the main clinical problems to be solved urgently at present. The effects of combined application of gemcitabine and STAT3 inhibition on the proliferation, apoptosis, migration, and invasion of PC cells (PCCs) were investigated. In addition, oxidative stress (OS), ferroptosis, immune escape, and the epithelial-mesenchymal transition (EMT) were evaluated. STAT3 inhibition with Stattic enhanced the inhibitory activity of gemcitabine on PCC proliferation by regulating the cell cycle. STAT3 inhibition enhanced mitochondrial-dependent apoptosis in gemcitabine-treated PCCs, but did not induce autophagy and ferroptosis. Further study showed that the anti-proliferative and pro-apoptotic effects may be associated with increased OS damage by inactivating Nrf2-HO-1 signaling, as well as DNA damage by inducing the imbalance between ATM andATR-Chk1 pathway. In addition, STAT3 inhibition strengthened gemcitabine-mediated suppression in PCC invasion and migration by antagonizing Smad2/3-dependent EMT. Moreover, the anti-tumorimmuneresponse of gemcitabine was upregulated by Stattic through reducing the expression of PD-L1 and CD47. Mechanistically, combined application of gemcitabine and Stattic suppressed the phosphorylation and nuclear expression of STAT3. Interestingly, the activities of AKT and β-catenin signaling were also regulated, suggesting that drug combination has a broad-spectrum signal regulation effect. STAT3 inhibition enhanced the sensitivity of PCCs to the chemotherapy drug gemcitabine by suppressing EMT and immune escape and inducing OS damage.
Collapse
Affiliation(s)
- Hangcheng Guo
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; The 404th Hospital of Mianyang, 621000 Sichuan, China
| | - Zujian Hu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Xuejia Yang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Ziwei Yuan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Yuanyuan Gao
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Jiawei Chen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Lili Xie
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Chaoyue Chen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Yangyang Guo
- Department of Thyroid and Breast Surgery, Ningbo First Hospital, Ningbo 315000, China
| | - Yongheng Bai
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; National Key Clinical Specialty (General Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
49
|
Liu X, Pan YJ, Kang MJ, Jiang X, Guo ZY, Pei DS. PAK5 potentiates slug transactivation of N-cadherin to facilitate metastasis of renal cell carcinoma. Cell Signal 2023; 110:110803. [PMID: 37437827 DOI: 10.1016/j.cellsig.2023.110803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/05/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
Renal cell carcinoma (RCC) is an aggravating cancer with a poor prognosis and a high rate of metastasis. PAK5, a p21-activated kinases, has shown to be overexpressed in a variety of cancers, including RCC. In previous studies, we discovered that PAK5 regulates cell migration and invasion in RCC cell lines. However, the underlying mechanisms remain obscure. In this study, we consolidated that PAK5 confers a pro-metastatic phenotype RCC cells in vitro and exacerbates metastasis in vivo. High PAK5 expression was associated with an advanced TNM stage and a lower overall survival. Furthermore, PAK5 increases the expression level of N-cadherin. In terms of mechanism, PAK5 bound to Slug and phosphorylated it at serine 87. As a result, phosphorylated Slug transactivated N-cadherin, accelerating the epithelial-mesenchymal transition. Collectively, Slug is a novel PAK5 substrate, and PAK5-mediated phosphorylation of Slug-S87 increases N-cadherin and the pro-metastatic phenotype of RCC, implying that phosphorylated Slug-S87 could be a therapeutic target in progressive RCC.
Collapse
Affiliation(s)
- Xu Liu
- Department of Urology, Xuzhou Children's Hospital, Xuzhou 221002, China
| | - Yao-Jie Pan
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Meng-Jie Kang
- Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou 221002, China
| | - Xin Jiang
- Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou 221002, China
| | - Zhong-Ying Guo
- Department of Pathology, The Affiliated Huai'an NO.1 People's Hospital of Nanjing Medical University, Huai'an, China.
| | - Dong-Sheng Pei
- Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou 221002, China.
| |
Collapse
|
50
|
Wang C, Huang Y, Jia B, Huang Y, Chen J. Heparanase promotes malignant phenotypes of human oral squamous carcinoma cells by regulating the epithelial-mesenchymal transition-related molecules and infiltrated levels of natural killer cells. Arch Oral Biol 2023; 154:105775. [PMID: 37481997 DOI: 10.1016/j.archoralbio.2023.105775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/11/2023] [Accepted: 07/16/2023] [Indexed: 07/25/2023]
Abstract
OBJECTIVES The aim of the present study was to explore the functional role of heparanase (HPSE) and investigate the effect of HPSE on epithelial-mesenchymal transition (EMT) and Tumor-infiltrating activated natural killer cells in oral squamous cell carcinoma (OSCC). MATERIALS AND METHODS human oral squamous carcinoma (SCC-25) cells were transfected with HPSE-specific small interfering RNA. Cell Counting Kit-8 assay was performed to examine cell proliferation, while flow cytometry was performed to analyze the cell cycle. Scratch assay was conducted to analyze cell migration, followed by Transwell assay to determine cell invasion. Real-Time Polymerase Chain Reaction and Western-blot assays were performed to measure epithelial-mesenchymal transition protein expression. RNA Sequencing analysis and tumor-infiltrating immune cells estimation were performed to elucidate the effect of HPSE on OSCC. RESULTS Knockdown of HPSE expression decreased the proliferation rate of SCC-25 cells resulting in a significant elevation in cell percentage at the Gap phase 0/Gap phase 1 phase by suppressed cell migration and invasion. The E-cadherin messenger RNA and protein expression increased while Snail and Vimentin expression decreased. RNA Sequencing analysis performed between small interfering RNA and negative control groups identified 42 differentially expressed genes, such as syndecan binding protein, RAB11A, member RAS oncogene family, and DDB1 and CUL4 associated factor 15. CONCLUSIONS These results indicated that knockdown of HPSE suppressed SCC-25 cell proliferation, invasion, migration, and epithelial-mesenchymal transition, possibly via syndecan binding protein and RAB11A, member RAS oncogene family. Moreover, HPSE regulates the infiltrated levels of natural killer cells activated, possibly via DDB1 and CUL4 associated factor 15.
Collapse
Affiliation(s)
- Changlin Wang
- Department of Stomatology, Yancheng Third People's Hospital,The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng 224001 China
| | - Yisheng Huang
- Stomatological Hospital, Southern Medical University, Guangzhou 510280 China
| | - Bo Jia
- Stomatological Hospital, Southern Medical University, Guangzhou 510280 China
| | - Yuhua Huang
- Department of Stomatology, Guangdong Province Traditional Chinese Medical Hospital, Guangzhou 510120, China.
| | - Jun Chen
- Stomatological Hospital, Southern Medical University, Guangzhou 510280 China.
| |
Collapse
|