1
|
Chen J, Yang Y, Luan S, Xu W, Gao Y. Tertiary lymphoid structures in gliomas: impact on tumour immunity and progression. J Transl Med 2025; 23:528. [PMID: 40346572 PMCID: PMC12065291 DOI: 10.1186/s12967-025-06510-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Accepted: 04/16/2025] [Indexed: 05/11/2025] Open
Abstract
Tertiary lymphoid structures (TLSs) are ectopic lymphoid formations that develop in chronically inflamed tissues, including various solid tumours. In the context of gliomas, the presence of TLSs has recently attracted considerable attention because of their potential implications in tumour immunology and therapy. The tumour immune microenvironment (TIME) plays a crucial role in cancer progression, and tumour-infiltrating immune cells (TILs) are key players in this environment. These immune cell aggregates, known as TLSs, display distinct characteristics across different solid tumours. However, central nervous system (CNS) tumours are highly heterogeneous, and the immune environment within these tumours is often more deficient than that of peripheral tissue tumours. This leads to differences in the formation and function of TLSs in CNS tumours. These variations are particularly relevant in the context of glioma immunotherapy and could have important implications for treatment strategies. This review focuses on the composition and function of TLSs, examines the complexity of the glioblastoma (GBM) immune microenvironment, and highlights the unique characteristics of TLSs in GBM, providing new theoretical insights and practical foundations for targeting TLSs in glioma immunotherapy.
Collapse
Affiliation(s)
- Jiatong Chen
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuechao Yang
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shuang Luan
- Maternity & Child Care Center Of DeZhou, Shanghai, Shandong, China
| | - Wenhao Xu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Yang Gao
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Ismailov A, Spallone A, Belogurov A, Herbert A, Poptsova M. Molecular biology of the deadliest cancer - glioblastoma: what do we know? Front Immunol 2025; 16:1530305. [PMID: 40191211 PMCID: PMC11968700 DOI: 10.3389/fimmu.2025.1530305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/07/2025] [Indexed: 04/09/2025] Open
Abstract
Glioblastomas are the most prevalent primary brain tumors and are associated with a dramatically poor prognosis. Despite an intensive treatment approach, including maximal surgical tumor removal followed by radio- and chemotherapy, the median survival for glioblastoma patients has remained around 18 months for decades. Glioblastoma is distinguished by its highly complex mechanisms of immune evasion and pronounced heterogeneity. This variability is apparent both within the tumor itself, which can exhibit multiple phenotypes simultaneously, and in its surrounding microenvironment. Another key feature of glioblastoma is its "cold" microenvironment, characterized by robust immunosuppression. Recent advances in single-cell RNA sequencing have uncovered new promising insights, revealing previously unrecognized aspects of this tumor. In this review, we consolidate current knowledge on glioblastoma cells and its microenvironment, with an emphasis on their biological properties and unique patterns of molecular communication through signaling pathways. The evidence underscores the critical need for personalized poly-immunotherapy and other approaches to overcome the plasticity of glioblastoma stem cells. Analyzing the tumor microenvironment of individual patients using single-cell transcriptomics and implementing a customized immunotherapeutic strategy could potentially improve survival outcomes for those facing this formidable disease.
Collapse
Affiliation(s)
- Aly Ismailov
- International Laboratory of Bioinformatics, Institute of Artificial Intelligence and Digital Sciences, Faculty of Computer Science, National Research University Higher School of Economics, Moscow, Russia
| | - Aldo Spallone
- International Laboratory of Bioinformatics, Institute of Artificial Intelligence and Digital Sciences, Faculty of Computer Science, National Research University Higher School of Economics, Moscow, Russia
- Laboratory of Hormonal Regulation Proteins, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences (RAS), Moscow, Russia
| | - Alexey Belogurov
- Laboratory of Hormonal Regulation Proteins, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences (RAS), Moscow, Russia
- Scientific and Educational Institute of Fundamental Medicine named after V.I. Pokrovsky, Department of Biological Chemistry, Russian University of Medicine, Moscow, Russia
| | - Alan Herbert
- International Laboratory of Bioinformatics, Institute of Artificial Intelligence and Digital Sciences, Faculty of Computer Science, National Research University Higher School of Economics, Moscow, Russia
- Discovery Department, InsideOutBio, Boston, MA, United States
| | - Maria Poptsova
- International Laboratory of Bioinformatics, Institute of Artificial Intelligence and Digital Sciences, Faculty of Computer Science, National Research University Higher School of Economics, Moscow, Russia
| |
Collapse
|
3
|
Padzińska-Pruszyńska IB, Taciak B, Kiraga Ł, Smolarska A, Górczak M, Kucharzewska P, Kubiak M, Szeliga J, Matejuk A, Król M. Targeting Cancer: Microenvironment and Immunotherapy Innovations. Int J Mol Sci 2024; 25:13569. [PMID: 39769334 PMCID: PMC11679359 DOI: 10.3390/ijms252413569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
In 2024, the United States was projected to experience 2 million new cancer diagnoses and approximately 611,720 cancer-related deaths, reflecting a broader global trend in which cancer cases are anticipated to exceed 35 million by 2050. This increasing burden highlights ongoing challenges in cancer treatment despite significant advances that have reduced cancer mortality by 31% since 1991. Key obstacles include the disease's inherent heterogeneity and complexity, such as treatment resistance, cancer stem cells, and the multifaceted tumor microenvironment (TME). The TME-comprising various tumor and immune cells, blood vessels, and biochemical factors-plays a crucial role in tumor growth and resistance to therapies. Recent innovations in cancer treatment, particularly in the field of immuno-oncology, have leveraged insights into TME interactions. An emerging example is the FDA-approved therapy using tumor-infiltrating lymphocytes (TILs), demonstrating the potential of cell-based approaches in solid tumors. However, TIL therapy is just one of many strategies being explored. This review provides a comprehensive overview of the emerging field of immuno-oncology, focusing on how novel therapies targeting or harnessing components of the TME could enhance treatment efficacy and address persistent challenges in cancer care.
Collapse
Affiliation(s)
- Irena Barbara Padzińska-Pruszyńska
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (I.B.P.-P.); (B.T.); (A.S.); (M.G.); (P.K.); (M.K.); (J.S.)
| | - Bartłomiej Taciak
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (I.B.P.-P.); (B.T.); (A.S.); (M.G.); (P.K.); (M.K.); (J.S.)
| | - Łukasz Kiraga
- Division of Pharmacology and Toxicology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-787 Warsaw, Poland;
| | - Anna Smolarska
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (I.B.P.-P.); (B.T.); (A.S.); (M.G.); (P.K.); (M.K.); (J.S.)
| | - Małgorzata Górczak
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (I.B.P.-P.); (B.T.); (A.S.); (M.G.); (P.K.); (M.K.); (J.S.)
| | - Paulina Kucharzewska
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (I.B.P.-P.); (B.T.); (A.S.); (M.G.); (P.K.); (M.K.); (J.S.)
| | - Małgorzata Kubiak
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (I.B.P.-P.); (B.T.); (A.S.); (M.G.); (P.K.); (M.K.); (J.S.)
| | - Jacek Szeliga
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (I.B.P.-P.); (B.T.); (A.S.); (M.G.); (P.K.); (M.K.); (J.S.)
| | - Agata Matejuk
- Department of Immunology, Collegium Medicum, University of Zielona Góra, 65-046 Zielona Góra, Poland;
| | - Magdalena Król
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (I.B.P.-P.); (B.T.); (A.S.); (M.G.); (P.K.); (M.K.); (J.S.)
| |
Collapse
|
4
|
Ma S, Pan X, Gan J, Guo X, He J, Hu H, Wang Y, Ning S, Zhi H. DNA methylation heterogeneity attributable to a complex tumor immune microenvironment prompts prognostic risk in glioma. Epigenetics 2024; 19:2318506. [PMID: 38439715 PMCID: PMC10936651 DOI: 10.1080/15592294.2024.2318506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 02/07/2024] [Indexed: 03/06/2024] Open
Abstract
Gliomas are malignant tumours of the human nervous system with different World Health Organization (WHO) classifications, glioblastoma (GBM) with higher grade and are more malignant than lower-grade glioma (LGG). To dissect how the DNA methylation heterogeneity in gliomas is influenced by the complex cellular composition of the tumour immune microenvironment, we first compared the DNA methylation profiles of purified human immune cells and bulk glioma tissue, stratifying three tumour immune microenvironmental subtypes for GBM and LGG samples from The Cancer Genome Atlas (TCGA). We found that more intermediate methylation sites were enriched in glioma tumour tissues, and used the Proportion of sites with Intermediate Methylation (PIM) to compare intertumoral DNA methylation heterogeneity. A larger PIM score reflected stronger DNA methylation heterogeneity. Enhanced DNA methylation heterogeneity was associated with stronger immune cell infiltration, better survival rates, and slower tumour progression in glioma patients. We then created a Cell-type-associated DNA Methylation Heterogeneity Contribution (CMHC) score to explore the impact of different immune cell types on heterogeneous CpG site (CpGct) in glioma tissues. We identified eight prognosis-related CpGct to construct a risk score: the Cell-type-associated DNA Methylation Heterogeneity Risk (CMHR) score. CMHR was positively correlated with cytotoxic T-lymphocyte infiltration (CTL), and showed better predictive performance for IDH status (AUC = 0.96) and glioma histological phenotype (AUC = 0.81). Furthermore, DNA methylation alterations of eight CpGct might be related to drug treatments of gliomas. In conclusion, we indicated that DNA methylation heterogeneity is associated with a complex tumour immune microenvironment, glioma phenotype, and patient's prognosis.
Collapse
Affiliation(s)
- Shuangyue Ma
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Xu Pan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Jing Gan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Xiaxin Guo
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Jiaheng He
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Haoyu Hu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yuncong Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Shangwei Ning
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Hui Zhi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| |
Collapse
|
5
|
Liu Z, Chen J, Ren Y, Liu S, Ba Y, Zuo A, Luo P, Cheng Q, Xu H, Han X. Multi-stage mechanisms of tumor metastasis and therapeutic strategies. Signal Transduct Target Ther 2024; 9:270. [PMID: 39389953 PMCID: PMC11467208 DOI: 10.1038/s41392-024-01955-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 07/18/2024] [Accepted: 08/24/2024] [Indexed: 10/12/2024] Open
Abstract
The cascade of metastasis in tumor cells, exhibiting organ-specific tendencies, may occur at numerous phases of the disease and progress under intense evolutionary pressures. Organ-specific metastasis relies on the formation of pre-metastatic niche (PMN), with diverse cell types and complex cell interactions contributing to this concept, adding a new dimension to the traditional metastasis cascade. Prior to metastatic dissemination, as orchestrators of PMN formation, primary tumor-derived extracellular vesicles prepare a fertile microenvironment for the settlement and colonization of circulating tumor cells at distant secondary sites, significantly impacting cancer progression and outcomes. Obviously, solely intervening in cancer metastatic sites passively after macrometastasis is often insufficient. Early prediction of metastasis and holistic, macro-level control represent the future directions in cancer therapy. This review emphasizes the dynamic and intricate systematic alterations that occur as cancer progresses, illustrates the immunological landscape of organ-specific PMN creation, and deepens understanding of treatment modalities pertinent to metastasis, thereby identifying some prognostic and predictive biomarkers favorable to early predict the occurrence of metastasis and design appropriate treatment combinations.
Collapse
Affiliation(s)
- Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Interventional Institute of Zhengzhou University, Zhengzhou, Henan, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan, China
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingqi Chen
- Department of Clinical Medicine, Zhengzhou University, Zhengzhou, Henan, China
| | - Yuqing Ren
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shutong Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuhao Ba
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Anning Zuo
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Peng Luo
- The Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Hui Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Interventional Institute of Zhengzhou University, Zhengzhou, Henan, China.
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan, China.
| |
Collapse
|
6
|
Panek WK, Toedebusch RG, Mclaughlin BE, Dickinson PJ, Van Dyke JE, Woolard KD, Berens ME, Lesniak MS, Sturges BK, Vernau KM, Li C, Miska J, Toedebusch CM. The CCL2-CCR4 axis promotes Regulatory T cell trafficking to canine glioma tissues. J Neurooncol 2024; 169:647-658. [PMID: 39046599 PMCID: PMC11341612 DOI: 10.1007/s11060-024-04766-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/02/2024] [Indexed: 07/25/2024]
Abstract
PURPOSE Spontaneously occurring glioma in pet dogs is increasingly recognized as a valuable translational model for human glioblastoma. Canine high-grade glioma and human glioblastomas share many molecular similarities, including the accumulation of immunosuppressive regulatory T cells (Tregs) that inhibit anti-tumor immune responses. Identifying in dog mechanisms responsible for Treg recruitment may afford to target the cellular population driving immunosuppression, the results providing a rationale for translational clinical studies in human patients. Our group has previously identified C-C motif chemokine 2 (CCL2) as a glioma-derived T-reg chemoattractant acting on chemokine receptor 4 (CCR4) in a murine orthotopic glioma model. Recently, we demonstrated a robust increase of CCL2 in the brain tissue of canine patients bearing high-grade glioma. METHODS We performed a series of in vitro experiments using canine Tregs and patient-derived canine glioma cell lines (GSC 1110, GSC 0514, J3T-Bg, G06A) to interrogate the CCL2-CCR4 signaling axis in the canine. RESULTS We established a flow cytometry gating strategy for identifying and isolating FOXP3+ Tregs in dogs. The canine CD4 + CD25high T-cell population was highly enriched in FOXP3 and CCR4 expression, indicating they are bona fide Tregs. Canine Treg migration was enhanced by CCL2 or by glioma cell line-derived supernatant. Blockade of the CCL2-CCR4 axis significantly reduced migration of canine Tregs. CCL2 mRNA was expressed in all glioma cell lines, and expression increased when exposed to Tregs but not CD4 + helper T-cells. CONCLUSION Our study validates CCL2-CCR4 as a bi-directional Treg-glioma immunosuppressive and tumor-promoting axis in canine high-grade glioma.
Collapse
Affiliation(s)
- W K Panek
- Department of Surgical and Radiological Sciences, University of California, Davis, One Shields Avenue, 2112 Tupper Hall, Davis, CA, 95616-5270, USA.
- Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, 380 South University Avenue, 419 Hill Pavilion, Philadelphia, PA, 19104, USA.
| | - R G Toedebusch
- Department of Surgical and Radiological Sciences, University of California, Davis, One Shields Avenue, 2112 Tupper Hall, Davis, CA, 95616-5270, USA
| | - B E Mclaughlin
- University of California Davis, Flow Cytometry Shared Resource, Davis, CA, USA
| | - P J Dickinson
- Department of Surgical and Radiological Sciences, University of California, Davis, One Shields Avenue, 2112 Tupper Hall, Davis, CA, 95616-5270, USA
| | - J E Van Dyke
- University of California Davis, Flow Cytometry Shared Resource, Davis, CA, USA
| | - K D Woolard
- Department of Pathology, Microbiology and Immunology, University of California, Davis, Davis, CA, USA
| | - M E Berens
- Cancer and Cell Biology Division, The Translational Genomics Research Institute, Phoenix, AZ, USA
| | - M S Lesniak
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - B K Sturges
- Department of Surgical and Radiological Sciences, University of California, Davis, One Shields Avenue, 2112 Tupper Hall, Davis, CA, 95616-5270, USA
| | - K M Vernau
- Department of Surgical and Radiological Sciences, University of California, Davis, One Shields Avenue, 2112 Tupper Hall, Davis, CA, 95616-5270, USA
| | - C Li
- Department of Surgical and Radiological Sciences, University of California, Davis, One Shields Avenue, 2112 Tupper Hall, Davis, CA, 95616-5270, USA
| | - J Miska
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Christine M Toedebusch
- Department of Surgical and Radiological Sciences, University of California, Davis, One Shields Avenue, 2112 Tupper Hall, Davis, CA, 95616-5270, USA.
| |
Collapse
|
7
|
Wang S, Castro BA, Katz JL, Arrieta V, Najem H, Vazquez-Cervantes GI, Wan H, Olson IE, Hou D, Dapash M, Billingham LK, Chia TY, Wei C, Rashidi A, Platanias LC, McCortney K, Horbinski CM, Stupp R, Zhang P, Ahmed AU, Sonabend AM, Heimberger AB, Lesniak MS, Riviere-Cazaux C, Burns T, Miska J, Fischietti M, Lee-Chang C. B cell-based therapy produces antibodies that inhibit glioblastoma growth. J Clin Invest 2024; 134:e177384. [PMID: 39207859 PMCID: PMC11473152 DOI: 10.1172/jci177384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Glioblastoma (GBM) is a highly aggressive and malignant brain tumor with limited therapeutic options and a poor prognosis. Despite current treatments, the invasive nature of GBM often leads to recurrence. A promising alternative strategy is to harness the potential of the immune system against tumor cells. Our previous data showed that the BVax (B cell-based vaccine) can induce therapeutic responses in preclinical models of GBM. In this study, we aimed to characterize the antigenic reactivity of BVax-derived Abs and evaluate their therapeutic potential. We performed immunoproteomics and functional assays in murine models and samples from patients with GBM. Our investigations revealed that BVax distributed throughout the GBM tumor microenvironment and then differentiated into Ab-producing plasmablasts. Proteomics analyses indicated that the Abs produced by BVax had unique reactivity, predominantly targeting factors associated with cell motility and the extracellular matrix. Crucially, these Abs inhibited critical processes such as GBM cell migration and invasion. These findings provide valuable insights into the therapeutic potential of BVax-derived Abs for patients with GBM, pointing toward a novel direction for GBM immunotherapy.
Collapse
Affiliation(s)
- Si Wang
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
- Lou and Jean Malnati Brain Tumor Institute, Chicago, Illinois, USA
| | - Brandyn A. Castro
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Neurological Surgery, University of Chicago Medicine, Chicago, Illinois, USA
| | - Joshua L. Katz
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
- Lou and Jean Malnati Brain Tumor Institute, Chicago, Illinois, USA
| | - Victor Arrieta
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
- Lou and Jean Malnati Brain Tumor Institute, Chicago, Illinois, USA
| | - Hinda Najem
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
- Lou and Jean Malnati Brain Tumor Institute, Chicago, Illinois, USA
| | - Gustavo I. Vazquez-Cervantes
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
- Lou and Jean Malnati Brain Tumor Institute, Chicago, Illinois, USA
| | - Hanxiao Wan
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
- Lou and Jean Malnati Brain Tumor Institute, Chicago, Illinois, USA
| | - Ian E. Olson
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
- Lou and Jean Malnati Brain Tumor Institute, Chicago, Illinois, USA
| | - David Hou
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Mark Dapash
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Leah K. Billingham
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
- Lou and Jean Malnati Brain Tumor Institute, Chicago, Illinois, USA
| | - Tzu-yi Chia
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
- Lou and Jean Malnati Brain Tumor Institute, Chicago, Illinois, USA
| | - Chao Wei
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
- Lou and Jean Malnati Brain Tumor Institute, Chicago, Illinois, USA
| | - Aida Rashidi
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Leonidas C. Platanias
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois, USA
- Department of Medicine, Division of Hematology and Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA
| | - Kathleen McCortney
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
- Lou and Jean Malnati Brain Tumor Institute, Chicago, Illinois, USA
| | - Craig M. Horbinski
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
- Lou and Jean Malnati Brain Tumor Institute, Chicago, Illinois, USA
| | - Roger Stupp
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
- Lou and Jean Malnati Brain Tumor Institute, Chicago, Illinois, USA
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Peng Zhang
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
- Lou and Jean Malnati Brain Tumor Institute, Chicago, Illinois, USA
| | - Atique U. Ahmed
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
- Lou and Jean Malnati Brain Tumor Institute, Chicago, Illinois, USA
| | - Adam M. Sonabend
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
- Lou and Jean Malnati Brain Tumor Institute, Chicago, Illinois, USA
| | - Amy B. Heimberger
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
- Lou and Jean Malnati Brain Tumor Institute, Chicago, Illinois, USA
| | - Maciej S. Lesniak
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
- Lou and Jean Malnati Brain Tumor Institute, Chicago, Illinois, USA
| | | | - Terry Burns
- Department of Neurological Surgery, Mayo Clinic, Rochester, Minnesotta, USA
| | - Jason Miska
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
- Lou and Jean Malnati Brain Tumor Institute, Chicago, Illinois, USA
| | - Mariafausta Fischietti
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois, USA
- Department of Medicine, Division of Hematology and Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Catalina Lee-Chang
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
- Lou and Jean Malnati Brain Tumor Institute, Chicago, Illinois, USA
| |
Collapse
|
8
|
Chen T, Ma W, Wang X, Ye Q, Hou X, Wang Y, Jiang C, Meng X, Sun Y, Cai J. Insights of immune cell heterogeneity, tumor-initiated subtype transformation, drug resistance, treatment and detecting technologies in glioma microenvironment. J Adv Res 2024:S2090-1232(24)00315-1. [PMID: 39097088 DOI: 10.1016/j.jare.2024.07.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/30/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024] Open
Abstract
BACKGROUND With the gradual understanding of glioma development and the immune microenvironment, many immune cells have been discovered. Despite the growing comprehension of immune cell functions and the clinical application of immunotherapy, the precise roles and characteristics of immune cell subtypes, how glioma induces subtype transformation of immune cells and its impact on glioma progression have yet to be understood. AIM OF THE REVIEW In this review, we comprehensively center on the four major immune cells within the glioma microenvironment, particularly neutrophils, macrophages, lymphocytes, myeloid-derived suppressor cells (MDSCs), and other significant immune cells. We discuss (1) immune cell subtype markers, (2) glioma-induced immune cell subtype transformation, (3) the mechanisms of each subtype influencing chemotherapy resistance, (4) therapies targeting immune cells, and (5) immune cell-associated single-cell sequencing. Eventually, we identified the characteristics of immune cell subtypes in glioma, comprehensively summarized the exact mechanism of glioma-induced immune cell subtype transformation, and concluded the progress of single-cell sequencing in exploring immune cell subtypes in glioma. KEY SCIENTIFIC CONCEPTS OF REVIEW In conclusion, we have analyzed the mechanism of chemotherapy resistance detailly, and have discovered prospective immunotherapy targets, excavating the potential of novel immunotherapies approach that synergistically combines radiotherapy, chemotherapy, and surgery, thereby paving the way for improved immunotherapeutic strategies against glioma and enhanced patient outcomes.
Collapse
Affiliation(s)
- Tongzheng Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenbin Ma
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xin Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qile Ye
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xintong Hou
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yiwei Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chuanlu Jiang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China; The Six Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiangqi Meng
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Ying Sun
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Jinquan Cai
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
9
|
Pan D, Wang Q, Shen A, Qi Z, Zheng C, Hu B. When DNA damage responses meet tumor immunity: From mechanism to therapeutic opportunity. Int J Cancer 2024; 155:384-399. [PMID: 38655783 DOI: 10.1002/ijc.34954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/12/2024] [Accepted: 03/26/2024] [Indexed: 04/26/2024]
Abstract
DNA damage is a prevalent phenomenon in the context of cancer progression. Evidence suggests that DNA damage responses (DDR) are pivotal in overcoming tumor immune evasion. Alternatively, traditional radiotherapy and chemotherapy operate by inducing DNA damage, consequently stimulating the immune system to target tumors. The intricate interplay between signaling pathways involved in DDR and immune activation underscores the significance of considering both factors in developing improved immunotherapies. By delving deeper into the mechanisms underlying immune activation brought on by DNA damage, it becomes possible to identify novel treatment approaches that boost the anticancer immune response while minimizing undesirable side effects. This review explores the mechanisms behind DNA damage-induced antitumor immune responses, the importance of DNA damage in antitumor immunity, and potential therapeutic approaches for cancer immunotherapy targeting DDR. Additionally, we discuss the challenges of combination therapy and strategies for integrating DNA damage-targeting therapies with current cancer immunotherapy. In summary, this review highlights the critical role of DNA damage in tumor immunology, underscoring the potential of DDR inhibitors as promising therapeutic modalities for cancer treatment.
Collapse
Affiliation(s)
- Dong Pan
- Department of Radiation Medicine, School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Dermatology, Duke University Medical Center, Durham, North Carolina, USA
| | - Qi Wang
- Department of Radiation Medicine, School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Aihua Shen
- Department of Radiation Medicine, School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang Engineering Research Center for Innovation and Application of Intelligent Radiotherapy Technology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Wenzhou Key Laboratory of Basic Science and Translational Research of Radiation Oncology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhihao Qi
- Department of Radiation Medicine, School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chunfu Zheng
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Burong Hu
- Department of Radiation Medicine, School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang Engineering Research Center for Innovation and Application of Intelligent Radiotherapy Technology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Wenzhou Key Laboratory of Basic Science and Translational Research of Radiation Oncology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
10
|
Qian W, Zhang L, Zhang F, Ye J, Wan Z, Chen H, Luo C. Integrative analysis reveals the potential prognostic roles and immunological values of unc-5 netrin receptor A (UNC5A) in glioma. Discov Oncol 2024; 15:297. [PMID: 39039366 PMCID: PMC11263319 DOI: 10.1007/s12672-024-01174-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 07/17/2024] [Indexed: 07/24/2024] Open
Abstract
BACKGROUND UNC5A had been reported to play crucial roles in multiple cancers. However, little was known about the associations among UNC5A and glioma. Therefore, we first combined scRNA-seq, proteomics, as well as bulk RNA-seq in order to investigate UNC5A's functions in gliomas. METHODS Online databases provided scRNA-seq, proteomics, as well as bulk RNA-seq data on UNC5A in gliomas. The following procedures were conducted in order: QRT-PCR, Norman chart, gene set enrichment analysis (GSEA), and univariate/multifactor Cox regression analyses. We further explored the associations among UNC5A and tumor immunity. RESULTS By comparing gliomas with normal tissues, the TCGA dataset showed a significantly reduced expression of UNC5A, which was also confirmed by GSE50161, GSE4290, and QRT-PCR findings (p < 0.05). In both the TCGA and CGGA datasets, gliomas patients with low-UNC5A expression would have poorer overall survival (OS) prognoses (p < 0.05). ScRNA-seq analysis by the CancerSEA online website presented that UNC5A had a low expression in various glioma clusters and significantly associated with six functional states. Moreover, UNC5A might be a reliable independent biomarker of OS in gliomas patients (p < 0.05). Based on the results of GSEA, UNC5A might be connected to three significant pathways in gliomas. We also successfully created a Norman chart to assess the OS prognoses of these patients. Additionally, in aspects of tumor immunity, the infiltration levels of immune cells in LGG, the immune cell pathways, tumor immune microenvironment, as well as immune checkpoints in both LGG and GBM were revealed to be significantly influenced by UNC5A (p < 0.05). CONCLUSIONS UNC5A was found to have prognostic and immunological significance in gliomas, offering patients with gliomas new treatment options.
Collapse
Affiliation(s)
- Wenbo Qian
- Department of Neurosurgery, Tongji Hospital of Tongji University, School of Medicine, Tongji University, Putuo District, No. 389 Xincun Road, Shanghai, 200092, China
| | - Lei Zhang
- Department of Neurosurgery, Tongji Hospital of Tongji University, School of Medicine, Tongji University, Putuo District, No. 389 Xincun Road, Shanghai, 200092, China
| | - Fenglin Zhang
- Department of Neurosurgery, Tongji Hospital of Tongji University, School of Medicine, Tongji University, Putuo District, No. 389 Xincun Road, Shanghai, 200092, China
| | - Jingliang Ye
- Department of Neurosurgery, Tongji Hospital of Tongji University, School of Medicine, Tongji University, Putuo District, No. 389 Xincun Road, Shanghai, 200092, China
| | - Zhiping Wan
- Department of Neurosurgery, Tongji Hospital of Tongji University, School of Medicine, Tongji University, Putuo District, No. 389 Xincun Road, Shanghai, 200092, China
| | - Huairui Chen
- Department of Neurosurgery, Tongji Hospital of Tongji University, School of Medicine, Tongji University, Putuo District, No. 389 Xincun Road, Shanghai, 200092, China.
| | - Chun Luo
- Department of Neurosurgery, Tongji Hospital of Tongji University, School of Medicine, Tongji University, Putuo District, No. 389 Xincun Road, Shanghai, 200092, China.
| |
Collapse
|
11
|
Panek WK, Toedebusch RG, Mclaughlin BE, Dickinson PJ, Dyke JE, Woolard KD, Berens ME, Lesniak MS, Sturges BK, Vernau KM, Li C, Miska JM, Toedebusch CM. The CCL2-CCR4 Axis Promotes Regulatory T Cell Trafficking to Canine Glioma Tissues. RESEARCH SQUARE 2024:rs.3.rs-4474288. [PMID: 38947002 PMCID: PMC11213221 DOI: 10.21203/rs.3.rs-4474288/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Purpose Spontaneously occurring glioma in pet dogs is increasingly recognized as a valuable translational model for human glioblastoma. Canine high grade glioma and human glioblastomas share many molecular similarities, including accumulation of immunosuppressive regulatory T cells (Tregs) that inhibit anti-tumor immune responses. Identifying in dog mechanisms responsible for Treg recruitment may afford targeting the cellular population driving immunosuppression, the results providing a rationale for translational clinical studies in human patients. Our group has previously identified C-C motif chemokine 2 (CCL2) as a glioma-derived T-reg chemoattractant acting on chemokine receptor 4 (CCR4) in a murine orthotopic model of glioma. Recently, we demonstrated a robust increase of CCL2 in the brain tissue of canine patients bearing high-grade glioma. Methods We performed a series of in vitro experiments using canine Tregs and patient-derived canine glioma cell lines (GSC 1110, GSC 0514, J3T-Bg, G06A) to interrogate the CCL2-CCR4 signaling axis in the canine. Results We established a flow cytometry gating strategy for identification and isolation of FOXP3+ Tregs in dogs. The canine CD4 + CD25high T-cell population was highly enriched in FOXP3 and CCR4 expression, indicating they are bona fide Tregs. Canine Treg migration was enhanced by CCL2 or by glioma cell line-derived supernatant. Blockade of the CCL2-CCR4 axis significantly reduced migration of canine Tregs. CCL2 mRNA was expressed in all glioma cell lines and expression increased when exposed to Tregs but not to CD4 + helper T-cells. Conclusion Our study validates CCL2-CCR4 as a bi-directional Treg-glioma immunosuppressive and tumor-promoting axis in canine high-grade glioma.
Collapse
Affiliation(s)
| | | | - B E Mclaughlin
- University of California Davis, Flow Cytometry Shared Resource
| | | | - J E Dyke
- University of California Davis, Flow Cytometry Shared Resource
| | | | - M E Berens
- The Translational Genomics Research Institute
| | | | | | | | - C Li
- University of California, Davis
| | | | | |
Collapse
|
12
|
Li Y, Zheng Y, Liu T, Liao C, Shen G, He Z. The potential and promise for clinical application of adoptive T cell therapy in cancer. J Transl Med 2024; 22:413. [PMID: 38693513 PMCID: PMC11064426 DOI: 10.1186/s12967-024-05206-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/15/2024] [Indexed: 05/03/2024] Open
Abstract
Adoptive cell therapy has revolutionized cancer treatment, especially for hematologic malignancies. T cells are the most extensively utilized cells in adoptive cell therapy. Currently, tumor-infiltrating lymphocytes, T cell receptor-transgenic T cells and chimeric antigen receptor T cells are the three main adoptive T cell therapies. Tumor-infiltrating lymphocytes kill tumors by reinfusing enlarged lymphocytes that naturally target tumor-specific antigens into the patient. T cell receptor-transgenic T cells have the ability to specifically destroy tumor cells via the precise recognition of exogenous T cell receptors with major histocompatibility complex. Chimeric antigen receptor T cells transfer genes with specific antigen recognition structural domains and T cell activation signals into T cells, allowing T cells to attack tumors without the assistance of major histocompatibility complex. Many barriers have been demonstrated to affect the clinical efficacy of adoptive T cell therapy, such as tumor heterogeneity and antigen loss, hard trafficking and infiltration, immunosuppressive tumor microenvironment and T cell exhaustion. Several strategies to improve the efficacy of adoptive T cell therapy have been explored, including multispecific chimeric antigen receptor T cell therapy, combination with immune checkpoint blockade, targeting the immunosuppressive tumor microenvironment, etc. In this review, we will summarize the current status and clinical application, followed by major bottlenecks in adoptive T cell therapy. In addition, we will discuss the promising strategies to improve adoptive T cell therapy. Adoptive T cell therapy will result in even more incredible advancements in solid tumors if the aforementioned problems can be handled.
Collapse
Affiliation(s)
- Yinqi Li
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, China
| | - Yeteng Zheng
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, China
| | - Taiqing Liu
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, China
| | - Chuanyun Liao
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, China
| | - Guobo Shen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, China.
| | - Zhiyao He
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, China.
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
13
|
Zhou C, Xu H, Luo J. Meningeal lymphatic vasculature, a general target for glioblastoma therapy? FUNDAMENTAL RESEARCH 2024; 4:267-269. [PMID: 38933521 PMCID: PMC11197748 DOI: 10.1016/j.fmre.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/19/2022] [Accepted: 04/03/2023] [Indexed: 06/28/2024] Open
Abstract
Glioblastoma (GBM) causes nearly universal mortality as a result of the failure of conventional therapies including surgical resection, targeted radiation therapy, and chemotherapy. An increasingly important treatment option is combining immunotherapy with other therapies in both preclinical and clinical studies. The central nervous system (CNS) has been historically considered an immune privileged area, but increasing evidence, including the recent rediscovery of meningeal lymphatic vessels (MLVs), has overturned this notion. MLVs are populated by multiple immune cells and connect the CNS to the periphery by draining cerebrospinal fluid with soluble CNS antigens and immune cells into cervical lymph nodes. In the past few years, more and more studies have indicated that MLVs are involved in the regulation of inflammation and the immune response in the pathogenesis of various CNS diseases including GBM. Here, we explore the critical interlinkages between MLVs and GBM therapies including chemotherapy, radiotherapy and immunotherapy, and propose the meningeal lymphatic vasculature as a general target for GBM therapy.
Collapse
Affiliation(s)
| | | | - Jincai Luo
- Laboratory of Vascular Biology, Institute of Molecular Medicine, College of Future Technology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China
| |
Collapse
|
14
|
Hou D, Wan H, Katz JL, Wang S, Castro BA, Vazquez-Cervantes GI, Arrieta VA, Dhiantravan S, Najem H, Rashidi A, Chia TY, Arjmandi T, Collado J, Billingham L, Lopez-Rosas A, Han Y, Sonabend AM, Heimberger AB, Zhang P, Miska J, Lee-Chang C. Antigen-presenting B cells promote TCF-1 + PD1 - stem-like CD8 + T-cell proliferation in glioblastoma. Front Immunol 2024; 14:1295218. [PMID: 38268923 PMCID: PMC10806106 DOI: 10.3389/fimmu.2023.1295218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/27/2023] [Indexed: 01/26/2024] Open
Abstract
Understanding the spatial relationship and functional interaction of immune cells in glioblastoma (GBM) is critical for developing new therapeutics that overcome the highly immunosuppressive tumor microenvironment. Our study showed that B and T cells form clusters within the GBM microenvironment within a 15-μm radius, suggesting that B and T cells could form immune synapses within the GBM. However, GBM-infiltrating B cells suppress the activation of CD8+ T cells. To overcome this immunosuppression, we leveraged B-cell functions by activating them with CD40 agonism, IFNγ, and BAFF to generate a potent antigen-presenting B cells named BVax. BVax had improved antigen cross-presentation potential compared to naïve B cells and were primed to use the IL15-IL15Ra mechanism to enhance T cell activation. Compared to naïve B cells, BVax could improve CD8 T cell activation and proliferation. Compared to dendritic cells (DCs), which are the current gold standard professional antigen-presenting cell, BVax promoted highly proliferative T cells in-vitro that had a stem-like memory T cell phenotype characterized by CD62L+CD44- expression, high TCF-1 expression, and low PD-1 and granzyme B expression. Adoptive transfer of BVax-activated CD8+ T cells into tumor-bearing brains led to T cell reactivation with higher TCF-1 expression and elevated granzyme B production compared to DC-activated CD8+ T cells. Adoptive transfer of BVax into an irradiated immunocompetent tumor-bearing host promoted more CD8+ T cell proliferation than adoptive transfer of DCs. Moreover, highly proliferative CD8+ T cells in the BVax group had less PD-1 expression than those highly proliferative CD8+ T cells in the DC group. The findings of this study suggest that BVax and DC could generate distinctive CD8+ T cells, which potentially serve multiple purposes in cellular vaccine development.
Collapse
Affiliation(s)
- David Hou
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Hanxiao Wan
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Joshua L. Katz
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Si Wang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Brandyn A. Castro
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Neurological Surgery, University of Illinois Chicago, Chicago, IL, United States
| | - Gustavo I. Vazquez-Cervantes
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Victor A. Arrieta
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Silpol Dhiantravan
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Hinda Najem
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Aida Rashidi
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Tzu-yi Chia
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Tarlan Arjmandi
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Biotechnology, McCormick School of Engineering, Northwestern University, Evanston, IL, United States
| | - Jimena Collado
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Leah Billingham
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Aurora Lopez-Rosas
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Yu Han
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Adam M. Sonabend
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Lou and Jean Malnati Brain Tumor Institute, Chicago, IL, United States
| | - Amy B. Heimberger
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Lou and Jean Malnati Brain Tumor Institute, Chicago, IL, United States
| | - Peng Zhang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Lou and Jean Malnati Brain Tumor Institute, Chicago, IL, United States
| | - Jason Miska
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Lou and Jean Malnati Brain Tumor Institute, Chicago, IL, United States
| | - Catalina Lee-Chang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Lou and Jean Malnati Brain Tumor Institute, Chicago, IL, United States
| |
Collapse
|
15
|
De Simone M, Conti V, Palermo G, De Maria L, Iaconetta G. Advancements in Glioma Care: Focus on Emerging Neurosurgical Techniques. Biomedicines 2023; 12:8. [PMID: 38275370 PMCID: PMC10813759 DOI: 10.3390/biomedicines12010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/08/2023] [Accepted: 12/09/2023] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Despite significant advances in understanding the molecular pathways of glioma, translating this knowledge into effective long-term solutions remains a challenge. Indeed, gliomas pose a significant challenge to neurosurgical oncology because of their diverse histopathological features, genetic heterogeneity, and clinical manifestations. Relevant sections: This study focuses on glioma complexity by reviewing recent advances in their management, also considering new classification systems and emerging neurosurgical techniques. To bridge the gap between new neurosurgical approaches and standards of care, the importance of molecular diagnosis and the use of techniques such as laser interstitial thermal therapy (LITT) and focused ultrasound (FUS) are emphasized, exploring how the integration of molecular knowledge with emerging neurosurgical approaches can personalize and improve the treatment of gliomas. CONCLUSIONS The choice between LITT and FUS should be tailored to each case, considering factors such as tumor characteristics and patient health. LITT is favored for larger, complex tumors, while FUS is standard for smaller, deep-seated ones. Both techniques are equally effective for small and superficial tumors. Our study provides clear guidance for treating pediatric low-grade gliomas and highlights the crucial roles of LITT and FUS in managing high-grade gliomas in adults. This research sets the stage for improved patient care and future developments in the field of neurosurgery.
Collapse
Affiliation(s)
- Matteo De Simone
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (V.C.); (G.P.); (G.I.)
| | - Valeria Conti
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (V.C.); (G.P.); (G.I.)
- Clinical Pharmacology and Pharmacogenetics Unit, University Hospital “San Giovanni di Dio e Ruggi, D’Aragona”, 84131 Salerno, Italy
| | - Giuseppina Palermo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (V.C.); (G.P.); (G.I.)
| | - Lucio De Maria
- Unit of Neurosurgery, Department of Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, 25123 Brescia, Italy;
- Unit of Neurosurgery, Department of Clinical Neuroscience, Geneva University Hospitals (HUG), 1205 Geneva, Switzerland
| | - Giorgio Iaconetta
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (V.C.); (G.P.); (G.I.)
- Neurosurgery Unit, University Hospital “San Giovanni di Dio e Ruggi, D’Aragona”, 84131 Salerno, Italy
| |
Collapse
|
16
|
Nafe R, Hattingen E. Cellular Components of the Tumor Environment in Gliomas-What Do We Know Today? Biomedicines 2023; 12:14. [PMID: 38275375 PMCID: PMC10813739 DOI: 10.3390/biomedicines12010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
A generation ago, the molecular properties of tumor cells were the focus of scientific interest in oncology research. Since then, it has become increasingly apparent that the tumor environment (TEM), whose major components are non-neoplastic cell types, is also of utmost importance for our understanding of tumor growth, maintenance and resistance. In this review, we present the current knowledge concerning all cellular components within the TEM in gliomas, focusing on their molecular properties, expression patterns and influence on the biological behavior of gliomas. Insight into the TEM of gliomas has expanded considerably in recent years, including many aspects that previously received only marginal attention, such as the phenomenon of phagocytosis of glioma cells by macrophages and the role of the thyroid-stimulating hormone on glioma growth. We also discuss other topics such as the migration of lymphocytes into the tumor, phenotypic similarities between chemoresistant glioma cells and stem cells, and new clinical approaches with immunotherapies involving the cells of TEM.
Collapse
Affiliation(s)
- Reinhold Nafe
- Department of Neuroradiology, Clinics of Johann Wolfgang Goethe-University, Schleusenweg 2-16, D-60528 Frankfurt am Main, Germany;
| | | |
Collapse
|
17
|
Khanal S, Wieland A, Gunderson AJ. Mechanisms of tertiary lymphoid structure formation: cooperation between inflammation and antigenicity. Front Immunol 2023; 14:1267654. [PMID: 37809103 PMCID: PMC10551175 DOI: 10.3389/fimmu.2023.1267654] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/04/2023] [Indexed: 10/10/2023] Open
Abstract
To mount an effective anti-tumor immune response capable of controlling or eliminating disease, sufficient numbers of lymphocytes must be recruited to malignant tissue and allowed to sustain their effector functions. Indeed, higher infiltration of T and B cells in tumor tissue, often referred to as "hot tumors", is prognostic for patient survival and predictive of response to immunotherapy in almost all cancer types. The organization of tertiary lymphoid structures (TLS) in solid tumors is a unique example of a hot tumor whereby T and B lymphocytes aggregate with antigen presenting cells and high endothelial venules reflecting the cellular organization observed in lymphoid tissue. Many groups have reported that the presence of preexisting TLS in tumors is associated with a superior adaptive immune response, response to immunotherapy, and improved survivorship over those without TLS. Accordingly, there is significant interest into understanding the mechanisms of how and why TLS organize so that they can be elicited therapeutically in patients with few or no TLS. Unfortunately, the most commonly used mouse models of cancer do not spontaneously form TLS, thus significantly restricting our understanding of TLS biology. This brief review will summarize our current state of knowledge of TLS neogenesis and address the current gaps in the field.
Collapse
Affiliation(s)
- Shrijan Khanal
- Division of Surgical Oncology, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Andreas Wieland
- Department of Otolaryngology, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Andrew J. Gunderson
- Division of Surgical Oncology, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
18
|
Qian W, Wang Q, Zhang C, Zhu J, Zhang Q, Luo C. M2 macrophage marker CHI3L2 could serve as a potential prognostic and immunological biomarker in glioma by integrated single-cell and bulk RNA-Seq analysis. J Gene Med 2023; 25:e3523. [PMID: 37147894 DOI: 10.1002/jgm.3523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND CHI3L2 plays a crucial role in multiple cancers, but its importance in glioma remains unclear. Hence, we comprehensively integrated bulk RNA-sequencing (RNA-seq), proteomics and single-cell RNA-seq (scRNA-seq) to determine the roles of CHI3L2 in gliomas. METHODS Bulk RNA-seq, proteomics and scRNA-seq data of CHI3L2 in glioma were obtained from online databases. The quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry (IHC) were conducted to verify the CHI3L2 expression. Then, univariate and multivariate Cox regression analyses, Norman charts and gene set enrichment analysis (GSEA) were performed. Finally, the associations between CHI3L2 and tumor immunity were explored. RESULTS The expression of CHI3L2 was markedly higher in glioma cancers compared with normal tissues from analysis of the data of the Cancer Genome Atlas and Chinese Glioma Genome Atlas datasets and as verified by GSE4290, GSE50161, qRT-PCR and IHC results (p < 0.05). High expression of CHI3L2 suggested poor overall survival (OS) prognosis in gliomas (p < 0.05). CHI3L2 might also serve as an independent predictor of OS for gliomas (p < 0.05) and we also constructed a Norman chart to predict these patients' survival prognosis with good performance. GSEA analysis showed that CHI3L2 might be involved with eight pathways in gliomas. Regarding tumor immunity, CHI3L2 was found to be significantly involved with immune cell infiltration levels of low-grade glioma, the tumor immune microenvironment, immune checkpoints and immune cells in both low-grade glioma and glioblastoma (p < 0.05). Additionally, scRNA-seq data for CHI3L2 in glioma from the TISCH2 website showed that CHI3L2 is mainly expressed in astrocytes, endothelial cells, CD8+ T cells, mono/macrophage cells, etc. CONCLUSIONS: CHI3L2 presents prognostic and immunological values in glioma, providing novel therapeutic targets for glioma patients.
Collapse
Affiliation(s)
- Wenbo Qian
- Department of Neurosurgery, Tongji Hospital of Tongji University, School of Medicine, Tongji University, Shanghai, China
| | - Qi Wang
- Department of Neurosurgery, Tongji Hospital of Tongji University, School of Medicine, Tongji University, Shanghai, China
| | - Chi Zhang
- Department of Neurosurgery, Tongji Hospital of Tongji University, School of Medicine, Tongji University, Shanghai, China
| | - Junle Zhu
- Department of Neurosurgery, Tongji Hospital of Tongji University, School of Medicine, Tongji University, Shanghai, China
| | - Qing Zhang
- Center of Reproductive Medicine, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chun Luo
- Department of Neurosurgery, Tongji Hospital of Tongji University, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
19
|
Spallone A. Editorial: Modern neurosurgical management of gliomas, including local therapies. Front Oncol 2023; 13:1217180. [PMID: 37614507 PMCID: PMC10443098 DOI: 10.3389/fonc.2023.1217180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/10/2023] [Indexed: 08/25/2023] Open
Affiliation(s)
- Aldo Spallone
- Institute of Bioorganic Chemistry (IBKh) Institute, Russian Academy of Sciences (RAS), Moscow, Russia
| |
Collapse
|
20
|
Eckerdt F, Platanias LC. Emerging Role of Glioma Stem Cells in Mechanisms of Therapy Resistance. Cancers (Basel) 2023; 15:3458. [PMID: 37444568 PMCID: PMC10340782 DOI: 10.3390/cancers15133458] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/14/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Since their discovery at the beginning of this millennium, glioma stem cells (GSCs) have sparked extensive research and an energetic scientific debate about their contribution to glioblastoma (GBM) initiation, progression, relapse, and resistance. Different molecular subtypes of GBM coexist within the same tumor, and they display differential sensitivity to chemotherapy. GSCs contribute to tumor heterogeneity and recapitulate pathway alterations described for the three GBM subtypes found in patients. GSCs show a high degree of plasticity, allowing for interconversion between different molecular GBM subtypes, with distinct proliferative potential, and different degrees of self-renewal and differentiation. This high degree of plasticity permits adaptation to the environmental changes introduced by chemo- and radiation therapy. Evidence from mouse models indicates that GSCs repopulate brain tumors after therapeutic intervention, and due to GSC plasticity, they reconstitute heterogeneity in recurrent tumors. GSCs are also inherently resilient to standard-of-care therapy, and mechanisms of resistance include enhanced DNA damage repair, MGMT promoter demethylation, autophagy, impaired induction of apoptosis, metabolic adaptation, chemoresistance, and immune evasion. The remarkable oncogenic properties of GSCs have inspired considerable interest in better understanding GSC biology and functions, as they might represent attractive targets to advance the currently limited therapeutic options for GBM patients. This has raised expectations for the development of novel targeted therapeutic approaches, including targeting GSC plasticity, chimeric antigen receptor T (CAR T) cells, and oncolytic viruses. In this review, we focus on the role of GSCs as drivers of GBM and therapy resistance, and we discuss how insights into GSC biology and plasticity might advance GSC-directed curative approaches.
Collapse
Affiliation(s)
- Frank Eckerdt
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL 60611, USA
- Division of Hematology-Oncology, Department of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Leonidas C. Platanias
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL 60611, USA
- Division of Hematology-Oncology, Department of Medicine, Northwestern University, Chicago, IL 60611, USA
- Medicine Service, Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
21
|
Ding L, Sun L, Bu MT, Zhang Y, Scott LN, Prins RM, Su MA, Lechner MG, Hugo W. Antigen presentation by clonally diverse CXCR5+ B cells to CD4 and CD8 T cells is associated with durable response to immune checkpoint inhibitors. Front Immunol 2023; 14:1176994. [PMID: 37435085 PMCID: PMC10330698 DOI: 10.3389/fimmu.2023.1176994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/22/2023] [Indexed: 07/13/2023] Open
Abstract
Introduction Increased T cell infiltration and interferon gamma (IFNγ) pathway activation are seen in tumors of melanoma patients who respond to ICI (immune checkpoint inhibitor) or MAPK pathway inhibitor (MAPKi) therapies. Yet, the rate of durable tumor control after ICI is almost twice that of MAPKi, suggesting that additional mechanisms may be present in patients responding to ICI therapy that are beneficial for anti-tumor immunity. Methods We used transcriptional analysis and clinical outcomes from patients treated with ICI or MAPKi therapies to delineate immune mechanisms driving tumor response. Results We discovered response to ICI is associated with CXCL13-driven recruitment of CXCR5+ B cells with significantly higher clonal diversity than MAPKi. Our in vitro data indicate that CXCL13 production was increased in human peripheral blood mononuclear cells by anti-PD1, but not MAPKi, treatment. Higher B cell infiltration and B cell receptor (BCR) diversity allows presentation of diverse tumor antigens by B cells, resulting in activation of follicular helper CD4 T cells (Tfh) and tumor reactive CD8 T cells after ICI therapy. Higher BCR diversity and IFNγ pathway score post-ICI are associated with significantly longer patient survival compared to those with either one or none. Conclusions Response to ICI, but not to MAPKi, depends on the recruitment of CXCR5+ B cells into the tumor microenvironment and their productive tumor antigen presentation to follicular helper and cytotoxic, tumor reactive T cells. Our study highlights the potential of CXCL13 and B cell based strategies to enhance the rate of durable response in melanoma patients treated with ICI.
Collapse
Affiliation(s)
- Lizhong Ding
- Department of Medicine, Division of Dermatology, University of California, Los Angeles, Los Angeles, CA, United States
- Parker Institute for Cancer Immunotherapy, University of California, Los Angeles, Los Angeles, CA, United States
| | - Lu Sun
- Parker Institute for Cancer Immunotherapy, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, United States
| | - Melissa T. Bu
- Department of Medicine, Division of Dermatology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Yanjun Zhang
- Department of Medicine, Division of Dermatology, University of California, Los Angeles, Los Angeles, CA, United States
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lauren N. Scott
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of California, Los Angeles, Los Angeles, CA, United States
| | - Robert M. Prins
- Parker Institute for Cancer Immunotherapy, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, United States
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, United States
| | - Maureen A. Su
- Parker Institute for Cancer Immunotherapy, University of California, Los Angeles, Los Angeles, CA, United States
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Pediatrics, Division of Pediatric Endocrinology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Melissa G. Lechner
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Willy Hugo
- Department of Medicine, Division of Dermatology, University of California, Los Angeles, Los Angeles, CA, United States
- Parker Institute for Cancer Immunotherapy, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
22
|
Eisenbarth D, Wang YA. Glioblastoma heterogeneity at single cell resolution. Oncogene 2023; 42:2155-2165. [PMID: 37277603 PMCID: PMC10913075 DOI: 10.1038/s41388-023-02738-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/08/2023] [Accepted: 05/23/2023] [Indexed: 06/07/2023]
Abstract
Glioblastoma (GBM) is one of the deadliest types of cancer and highly refractory to chemoradiation and immunotherapy. One of the main reasons for this resistance to therapy lies within the heterogeneity of the tumor and its associated microenvironment. The vast diversity of cell states, composition of cells, and phenotypical characteristics makes it difficult to accurately classify GBM into distinct subtypes and find effective therapies. The advancement of sequencing technologies in recent years has further corroborated the heterogeneity of GBM at the single cell level. Recent studies have only begun to elucidate the different cell states present in GBM and how they correlate with sensitivity to therapy. Furthermore, it has become clear that GBM heterogeneity not only depends on intrinsic factors but also strongly differs between new and recurrent GBM, and treatment naïve and experienced patients. Understanding and connecting the complex cellular network that underlies GBM heterogeneity will be indispensable in finding new ways to tackle this deadly disease. Here, we present an overview of the multiple layers of GBM heterogeneity and discuss novel findings in the age of single cell technologies.
Collapse
Affiliation(s)
- David Eisenbarth
- The Brown Center for Immunotherapy, Department of Medicine, Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Y Alan Wang
- The Brown Center for Immunotherapy, Department of Medicine, Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
23
|
Rafii S, Kandoussi S, Ghouzlani A, Naji O, Reddy KP, Ullah Sadiqi R, Badou A. Deciphering immune microenvironment and cell evasion mechanisms in human gliomas. Front Oncol 2023; 13:1135430. [PMID: 37274252 PMCID: PMC10235598 DOI: 10.3389/fonc.2023.1135430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/04/2023] [Indexed: 06/06/2023] Open
Abstract
Gliomas are considered one of the most malignant cancers in the body. Despite current therapies, including surgery, chemotherapy, and radiotherapy, these tumors usually recur with more aggressive and resistant phenotypes. Indeed, the survival following these conventional therapies is very poor, which makes immunotherapy the subject of active research at present. The anti-tumor immune response could also be considered a prognostic factor since each stage of cancer development is regulated by immune cells. However, glioma microenvironment contains malignant cells that secrete numerous chemokines, cytokines and growth factors, promoting the infiltration of immunosuppressive cells into the tumor, which limit the functioning of the immune system against glioma cells. Recently, researchers have been able to reverse the immune resistance of cancer cells and thus activate the anti-tumor immune response through different immunotherapy strategies. Here, we review the general concept of glioma's immune microenvironment and report the impact of its distinct components on the anti-tumor immune response. We also discuss the mechanisms of glioma cell evasion from the immune response and pinpoint some potential therapeutic pathways, which could alleviate such resistance.
Collapse
Affiliation(s)
- Soumaya Rafii
- Immuno-Genetics and Human Pathologies Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Sarah Kandoussi
- Immuno-Genetics and Human Pathologies Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Amina Ghouzlani
- Immuno-Genetics and Human Pathologies Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Oumayma Naji
- Immuno-Genetics and Human Pathologies Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | | | - Rizwan Ullah Sadiqi
- Faculty of Science and Technology, Middlesex University, London, United Kingdom
| | - Abdallah Badou
- Immuno-Genetics and Human Pathologies Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
- Mohammed VI Center for Research and Innovation, Rabat, Morocco and Mohammed VI University of Sciences and Health, Casablanca, Morocco
| |
Collapse
|
24
|
Hou D, Katz JL, Lee-Chang C. Generation of B-cell-based cellular vaccine for cancer in murine models. STAR Protoc 2023; 4:102219. [PMID: 37083319 PMCID: PMC10322876 DOI: 10.1016/j.xpro.2023.102219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/23/2023] [Accepted: 03/13/2023] [Indexed: 04/22/2023] Open
Abstract
A B-cell-based cellular vaccine (BVax), produced from 4-1BBL+ B cells, can select tumor-specific B cells that, upon ex vivo culture, can generate tumor-specific antibodies and activate T cells. Here, we present a protocol to generate a B-cell-based vaccine in a CT2A orthotopic glioma murine model. We describe steps for BVax production involving glioma cell implantation, tissue harvesting, 4-1BBL+ B cell isolation, and activation. We also describe assessing BVax phenotype in vitro and in vivo functional status. For complete details on the use and execution of this protocol, please refer to Lee-Chang et al. (2021).1.
Collapse
Affiliation(s)
- David Hou
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Lou and Jean Malnati Brain Tumor Institute, Chicago, IL, USA
| | - Joshua L Katz
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Lou and Jean Malnati Brain Tumor Institute, Chicago, IL, USA
| | - Catalina Lee-Chang
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Lou and Jean Malnati Brain Tumor Institute, Chicago, IL, USA.
| |
Collapse
|
25
|
Dmello C, Zhao J, Chen L, Gould A, Castro B, Arrieta VA, Zhang DY, Kim KS, Kanojia D, Zhang P, Miska J, Yeeravalli R, Habashy K, Saganty R, Kang SJ, Fares J, Liu C, Dunn G, Bartom E, Schipma MJ, Hsu PD, Alghamri MS, Lesniak MS, Heimberger AB, Rabadan R, Lee-Chang C, Sonabend AM. Checkpoint kinase 1/2 inhibition potentiates anti-tumoral immune response and sensitizes gliomas to immune checkpoint blockade. Nat Commun 2023; 14:1566. [PMID: 36949040 PMCID: PMC10033639 DOI: 10.1038/s41467-023-36878-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/21/2023] [Indexed: 03/24/2023] Open
Abstract
Whereas the contribution of tumor microenvironment to the profound immune suppression of glioblastoma (GBM) is clear, tumor-cell intrinsic mechanisms that regulate resistance to CD8 T cell mediated killing are less understood. Kinases are potentially druggable targets that drive tumor progression and might influence immune response. Here, we perform an in vivo CRISPR screen to identify glioma intrinsic kinases that contribute to evasion of tumor cells from CD8 T cell recognition. The screen reveals checkpoint kinase 2 (Chek2) to be the most important kinase contributing to escape from CD8 T-cell recognition. Genetic depletion or pharmacological inhibition of Chek2 with blood-brain-barrier permeable drugs that are currently being evaluated in clinical trials, in combination with PD-1 or PD-L1 blockade, lead to survival benefit in multiple preclinical glioma models. Mechanistically, loss of Chek2 enhances antigen presentation, STING pathway activation and PD-L1 expression in mouse gliomas. Analysis of human GBMs demonstrates that Chek2 expression is inversely associated with antigen presentation and T-cell activation. Collectively, these results support Chek2 as a promising target for enhancement of response to immune checkpoint blockade therapy in GBM.
Collapse
Affiliation(s)
- Crismita Dmello
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | - Junfei Zhao
- Program for Mathematical Genomics, Department of Systems Biology, Columbia University, New York, NY, USA
- Department of Biomedical Informatics, Columbia University, New York, NY, USA
| | - Li Chen
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Andrew Gould
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Brandyn Castro
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Section of Neurological Surgery, University of Chicago Medicine, Chicago, IL, USA
| | - Victor A Arrieta
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- PECEM, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Daniel Y Zhang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Kwang-Soo Kim
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Deepak Kanojia
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Peng Zhang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jason Miska
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ragini Yeeravalli
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Karl Habashy
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ruth Saganty
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Seong Jae Kang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jawad Fares
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Connor Liu
- Department of Neurological Surgery, Washington University School of Medicine, St Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Gavin Dunn
- Department of Neurological Surgery, Washington University School of Medicine, St Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
- The Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St Louis, MO, USA
| | - Elizabeth Bartom
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL, USA
| | - Matthew J Schipma
- NUSeq Core, Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Patrick D Hsu
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Mahmoud S Alghamri
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Maciej S Lesniak
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Amy B Heimberger
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Raul Rabadan
- Program for Mathematical Genomics, Department of Systems Biology, Columbia University, New York, NY, USA
- Department of Biomedical Informatics, Columbia University, New York, NY, USA
- Department of Neurology, Department of Pathology, Institute for Cancer Genetics, Columbia University Medical Center, New York, NY, USA
| | - Catalina Lee-Chang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | - Adam M Sonabend
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
26
|
Laumont CM, Nelson BH. B cells in the tumor microenvironment: Multi-faceted organizers, regulators, and effectors of anti-tumor immunity. Cancer Cell 2023; 41:466-489. [PMID: 36917951 DOI: 10.1016/j.ccell.2023.02.017] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/11/2023] [Accepted: 02/12/2023] [Indexed: 03/14/2023]
Abstract
Our understanding of tumor-infiltrating lymphocytes (TILs) is rapidly expanding beyond T cell-centric perspectives to include B cells and plasma cells, collectively referred to as TIL-Bs. In many cancers, TIL-Bs carry strong prognostic significance and are emerging as key predictors of response to immune checkpoint inhibitors. TIL-Bs can perform multiple functions, including antigen presentation and antibody production, which allow them to focus immune responses on cognate antigen to support both T cell responses and innate mechanisms involving complement, macrophages, and natural killer cells. In the stroma of the most immunologically "hot" tumors, TIL-Bs are prominent components of tertiary lymphoid structures, which resemble lymph nodes structurally and functionally. Additionally, TIL-Bs participate in a variety of other lympho-myeloid aggregates and engage in dynamic interactions with the tumor stroma. Here, we summarize our current understanding of TIL-Bs in human cancer, highlighting the compelling therapeutic opportunities offered by their unique tumor recognition and effector mechanisms.
Collapse
Affiliation(s)
- Céline M Laumont
- Deeley Research Centre, BC Cancer, Victoria, BC V8R 6V5, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Brad H Nelson
- Deeley Research Centre, BC Cancer, Victoria, BC V8R 6V5, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8P 3E6, Canada.
| |
Collapse
|
27
|
Wang X, Zhang Q, Zhou J, Xiao Z, Liu J, Deng S, Hong X, Huang W, Cai M, Guo Y, Huang J, Wang Y, Lin L, Zhu K. T cell-mediated targeted delivery of tadalafil regulates immunosuppression and polyamine metabolism to overcome immune checkpoint blockade resistance in hepatocellular carcinoma. J Immunother Cancer 2023; 11:jitc-2022-006493. [PMID: 36813307 PMCID: PMC9950981 DOI: 10.1136/jitc-2022-006493] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Immune checkpoint blockade (ICB) monotherapy provides poor survival benefit in hepatocellular carcinoma (HCC) due to ICB resistance caused by immunosuppressive tumor microenvironment (TME) and drug discontinuation resulting from immune-related side effects. Thus, novel strategies that can simultaneously reshape immunosuppressive TME and ameliorate side effects are urgently needed. METHODS Both in vitro and orthotopic HCC models were used to explore and demonstrate the new role of a conventional, clinically used drug, tadalafil (TA), in conquering immunosuppressive TME. In detail, the effect of TA on M2 polarization and polyamine metabolism in tumor-associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs) was identified. After making clear the aforementioned immune regulatory effect of TA, we introduced a nanomedicine-based strategy of tumor-targeted drug delivery to make better use of TA to reverse immunosuppressive TME and overcome ICB resistance for HCC immunotherapy. A dual pH-sensitive nanodrug simultaneously carrying both TA and programmed cell death receptor 1 antibody (aPD-1) was developed, and its ability for tumor-targeted drug delivery and TME-responsive drug release was evaluated in an orthotopic HCC model. Finally, the immune regulatory effect, antitumor therapeutic effect, as well as side effects of our nanodrug combining both TA and aPD-1 were analyzed. RESULTS TA exerted a new role in conquering immunosuppressive TME by inhibiting M2 polarization and polyamine metabolism in TAMs and MDSCs. A dual pH-sensitive nanodrug was successfully synthesized to simultaneously carry both TA and aPD-1. On one hand, the nanodrug realized tumor-targeted drug delivery by binding to circulating programmed cell death receptor 1-positive T cells and following their infiltration into tumor. On the other hand, the nanodrug facilitated efficient intratumoral drug release in acidic TME, releasing aPD-1 for ICB and leaving TA-encapsulated nanodrug to dually regulate TAMs and MDSCs. By virtue of the combined application of TA and aPD-1, as well as the efficient tumor-targeted drug delivery, our nanodrug effectively inhibited M2 polarization and polyamine metabolism in TAMs and MDSCs to conquer immunosuppressive TME, which contributed to remarkable ICB therapeutic efficacy with minimal side effects in HCC. CONCLUSIONS Our novel tumor-targeted nanodrug expands the application of TA in tumor therapy and holds great potential to break the logjam of ICB-based HCC immunotherapy.
Collapse
Affiliation(s)
- Xiaobin Wang
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Interventional Cancer Center, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qiaoyun Zhang
- College of Chemistry and Materials Science, Jinan University, Guangzhou, China
| | - Jingwen Zhou
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Interventional Cancer Center, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zecong Xiao
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Interventional Cancer Center, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jianxin Liu
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Interventional Cancer Center, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Shaohui Deng
- PCFM Lab of Ministry of Education School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, China
| | - Xiaoyang Hong
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Interventional Cancer Center, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Wensou Huang
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Interventional Cancer Center, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Mingyue Cai
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Interventional Cancer Center, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yongjian Guo
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Interventional Cancer Center, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jingjun Huang
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Interventional Cancer Center, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yong Wang
- College of Chemistry and Materials Science, Jinan University, Guangzhou, China
| | - Liteng Lin
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Interventional Cancer Center, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Kangshun Zhu
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Interventional Cancer Center, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
28
|
Lee-Chang C, Lesniak MS. Next-generation antigen-presenting cell immune therapeutics for gliomas. J Clin Invest 2023; 133:e163449. [PMID: 36719372 PMCID: PMC9888388 DOI: 10.1172/jci163449] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Antigen presentation machinery and professional antigen-presenting cells (APCs) are fundamental for an efficacious immune response against cancers, especially in the context of T cell-centric immunotherapy. Dendritic cells (DCs), the gold standard APCs, play a crucial role in initiating and maintaining a productive antigen-specific adaptive immunity. In recent decades, ex vivo-differentiated DCs from circulating CD14+ monocytes have become the reference for APC-based immunotherapy. DCs loaded with tumor-associated antigens, synthetic peptides, or RNA activate T cells with antitumor properties. This strategy has paved the way for the development of alternative antigen-presenting vaccination strategies, such as monocytes, B cells, and artificial APCs, that have shown effective therapeutic outcomes in preclinical cancer models. The search for alternative APC platforms was initiated by the overall limited clinical impact of DC vaccines, especially in indications such as gliomas, a primary brain tumor known for resistance to any immune intervention. In this Review, we navigate the APC immune therapeutics' past, present, and future in the context of primary brain tumors.
Collapse
Affiliation(s)
- Catalina Lee-Chang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Malnati Brain Tumor Institute, Chicago, Illinois, USA
| | - Maciej S. Lesniak
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Malnati Brain Tumor Institute, Chicago, Illinois, USA
| |
Collapse
|
29
|
Rastogi I, Jeon D, Moseman JE, Muralidhar A, Potluri HK, McNeel DG. Role of B cells as antigen presenting cells. Front Immunol 2022; 13:954936. [PMID: 36159874 PMCID: PMC9493130 DOI: 10.3389/fimmu.2022.954936] [Citation(s) in RCA: 141] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/19/2022] [Indexed: 01/27/2023] Open
Abstract
B cells have been long studied for their role and function in the humoral immune system. Apart from generating antibodies and an antibody-mediated memory response against pathogens, B cells are also capable of generating cell-mediated immunity. It has been demonstrated by several groups that B cells can activate antigen-specific CD4 and CD8 T cells, and can have regulatory and cytotoxic effects. The function of B cells as professional antigen presenting cells (APCs) to activate T cells has been largely understudied. This, however, requires attention as several recent reports have demonstrated the importance of B cells within the tumor microenvironment, and B cells are increasingly being evaluated as cellular therapies. Antigen presentation through B cells can be through antigen-specific (B cell receptor (BCR) dependent) or antigen non-specific (BCR independent) mechanisms and can be modulated by a variety of intrinsic and external factors. This review will discuss the pathways and mechanisms by which B cells present antigens, and how B cells differ from other professional APCs.
Collapse
|
30
|
Cao TQ, Wainwright DA, Lee-Chang C, Miska J, Sonabend AM, Heimberger AB, Lukas RV. Next Steps for Immunotherapy in Glioblastoma. Cancers (Basel) 2022; 14:4023. [PMID: 36011015 PMCID: PMC9406905 DOI: 10.3390/cancers14164023] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/12/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
Outcomes for glioblastoma (GBM) patients undergoing standard of care treatment remain poor. Here we discuss the portfolio of previously investigated immunotherapies for glioblastoma, including vaccine therapy and checkpoint inhibitors, as well as novel emerging therapeutic approaches. In addition, we explore the factors that potentially influence response to immunotherapy, which should be considered in future research aimed at improving immunotherapy efficacy.
Collapse
Affiliation(s)
- Toni Q. Cao
- Department of Neurology, Northwestern University, Chicago, IL 60611, USA
| | - Derek A. Wainwright
- Department of Neurological Surgery, Northwestern University, Chicago, IL 60611, USA
- Lou & Jean Malnati Brain Tumor Institute, Chicago, IL 60611, USA
- Department of Medicine, Division of Hematology/Oncology, Northwestern University, Chicago, IL 60611, USA
- Department of Neuroscience, Northwestern University, Chicago, IL 60611, USA
- Department of Microbiology-Immunology, Northwestern University, Chicago, IL 60611, USA
| | - Catalina Lee-Chang
- Department of Neurological Surgery, Northwestern University, Chicago, IL 60611, USA
- Lou & Jean Malnati Brain Tumor Institute, Chicago, IL 60611, USA
| | - Jason Miska
- Department of Neurological Surgery, Northwestern University, Chicago, IL 60611, USA
- Lou & Jean Malnati Brain Tumor Institute, Chicago, IL 60611, USA
| | - Adam M. Sonabend
- Department of Neurological Surgery, Northwestern University, Chicago, IL 60611, USA
- Lou & Jean Malnati Brain Tumor Institute, Chicago, IL 60611, USA
| | - Amy B. Heimberger
- Department of Neurological Surgery, Northwestern University, Chicago, IL 60611, USA
- Lou & Jean Malnati Brain Tumor Institute, Chicago, IL 60611, USA
| | - Rimas V. Lukas
- Department of Neurology, Northwestern University, Chicago, IL 60611, USA
- Lou & Jean Malnati Brain Tumor Institute, Chicago, IL 60611, USA
| |
Collapse
|
31
|
Lauko A, Lo A, Ahluwalia MS, Lathia JD. Cancer cell heterogeneity & plasticity in glioblastoma and brain tumors. Semin Cancer Biol 2022; 82:162-175. [PMID: 33640445 PMCID: PMC9618157 DOI: 10.1016/j.semcancer.2021.02.014] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/22/2021] [Indexed: 12/25/2022]
Abstract
Brain tumors remain one of the most difficult tumors to treat and, depending on the diagnosis, have a poor prognosis. Of brain tumors, glioblastoma (GBM) is the most common malignant glioma and has a dismal prognosis, with only about 5% of patients alive five years after diagnosis. While advances in targeted therapies and immunotherapies are rapidly improving outcomes in a variety of other cancers, the standard of care for GBM has largely remained unaltered since 2005. There are many well-studied challenges that are either unique to brain tumors (i.e., blood-brain barrier and immunosuppressive environment) or amplified within GBM (i.e., tumor heterogeneity at the cellular and molecular levels, plasticity, and cancer stem cells) that make this disease particularly difficult to treat. While we touch on all these concepts, the focus of this review is to discuss the immense inter- and intra-tumoral heterogeneity and advances in our understanding of tumor cell plasticity and epigenetics in GBM. With each improvement in technology, our understanding of the complexity of tumoral heterogeneity and plasticity improves and we gain more clarity on the causes underlying previous therapeutic failures. However, these advances are unlocking new therapeutic opportunities that scientists and physicians are currently exploiting and have the potential for new breakthroughs.
Collapse
Affiliation(s)
- Adam Lauko
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, United States; Medical Scientist Training Program, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Alice Lo
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Manmeet S Ahluwalia
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH, United States; Case Comprehensive Cancer Center, Cleveland, OH, United States
| | - Justin D Lathia
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, United States; Medical Scientist Training Program, Case Western Reserve University School of Medicine, Cleveland, OH, United States; Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH, United States; Case Comprehensive Cancer Center, Cleveland, OH, United States.
| |
Collapse
|
32
|
Laumont CM, Banville AC, Gilardi M, Hollern DP, Nelson BH. Tumour-infiltrating B cells: immunological mechanisms, clinical impact and therapeutic opportunities. Nat Rev Cancer 2022; 22:414-430. [PMID: 35393541 PMCID: PMC9678336 DOI: 10.1038/s41568-022-00466-1] [Citation(s) in RCA: 285] [Impact Index Per Article: 95.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/03/2022] [Indexed: 01/03/2023]
Abstract
Although immunotherapy research to date has focused largely on T cells, there is mounting evidence that tumour-infiltrating B cells and plasma cells (collectively referred to as tumour-infiltrating B lymphocytes (TIL-Bs)) have a crucial, synergistic role in tumour control. In many cancers, TIL-Bs have demonstrated strong predictive and prognostic significance in the context of both standard treatments and immune checkpoint blockade, offering the prospect of new therapeutic opportunities that leverage their unique immunological properties. Drawing insights from autoimmunity, we review the molecular phenotypes, architectural contexts, antigen specificities, effector mechanisms and regulatory pathways relevant to TIL-Bs in human cancer. Although the field is young, the emerging picture is that TIL-Bs promote antitumour immunity through their unique mode of antigen presentation to T cells; their role in assembling and perpetuating immunologically 'hot' tumour microenvironments involving T cells, myeloid cells and natural killer cells; and their potential to combat immune editing and tumour heterogeneity through the easing of self-tolerance mechanisms. We end by discussing the most promising approaches to enhance TIL-B responses in concert with other immune cell subsets to extend the reach, potency and durability of cancer immunotherapy.
Collapse
Affiliation(s)
- Céline M Laumont
- Deeley Research Centre, BC Cancer, Victoria, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Allyson C Banville
- Deeley Research Centre, BC Cancer, Victoria, British Columbia, Canada
- Interdisciplinary Oncology Program, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mara Gilardi
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute, San Diego, CA, USA
| | - Daniel P Hollern
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute, San Diego, CA, USA
| | - Brad H Nelson
- Deeley Research Centre, BC Cancer, Victoria, British Columbia, Canada.
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada.
| |
Collapse
|
33
|
Challenges in glioblastoma immunotherapy: mechanisms of resistance and therapeutic approaches to overcome them. Br J Cancer 2022; 127:976-987. [DOI: 10.1038/s41416-022-01864-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/23/2022] [Accepted: 05/12/2022] [Indexed: 11/08/2022] Open
|
34
|
CD40-CD40L in Neurological Disease. Int J Mol Sci 2022; 23:ijms23084115. [PMID: 35456932 PMCID: PMC9031401 DOI: 10.3390/ijms23084115] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 02/06/2023] Open
Abstract
Immune-inflammatory conditions in the central nervous system (CNS) rely on molecular and cellular interactions which are homeostatically maintained to protect neural tissue from harm. The CD40–CD40L interaction upregulates key proinflammatory molecules, a function best understood in the context of infection, during which B-cells are activated via CD40 signaling to produce antibodies. However, the role of CD40 in neurological disease of non-infectious etiology is unclear. We review the role of CD40–CD40L in traumatic brain injury, Alzheimer’s Disease, Parkinson’s Disease, stroke, epilepsy, nerve injury, multiple sclerosis, ALS, myasthenia gravis and brain tumors. We also highlight therapeutic advancements targeting the CD40 system to either attenuate the neuroinflammatory response or leverage the downstream effects of CD40 signaling for direct tumor cell lysis.
Collapse
|
35
|
Esemen Y, Awan M, Parwez R, Baig A, Rahman S, Masala I, Franchini S, Giakoumettis D. Molecular Pathogenesis of Glioblastoma in Adults and Future Perspectives: A Systematic Review. Int J Mol Sci 2022; 23:2607. [PMID: 35269752 PMCID: PMC8910150 DOI: 10.3390/ijms23052607] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 02/04/2023] Open
Abstract
Glioblastoma (GBM) is the most common and malignant tumour of the central nervous system. Recent appreciation of the heterogeneity amongst these tumours not only changed the WHO classification approach, but also created the need for developing novel and personalised therapies. This systematic review aims to highlight recent advancements in understanding the molecular pathogenesis of the GBM and discuss related novel treatment targets. A systematic search of the literature in the PubMed library was performed following the PRISMA guidelines for molecular pathogenesis and therapeutic advances. Original and meta-analyses studies from the last ten years were reviewed using pre-determined search terms. The results included articles relevant to GBM development focusing on the aberrancy in cell signaling pathways and intracellular events. Theragnostic targets and vaccination to treat GBM were also explored. The molecular pathophysiology of GBM is complex. Our systematic review suggests targeting therapy at the stemness, p53 mediated pathways and immune modulation. Exciting novel immune therapy involving dendritic cell vaccines, B-cell vaccines and viral vectors may be the future of treating GBM.
Collapse
Affiliation(s)
- Yagmur Esemen
- Neurosurgical Department, Queen’s Hospital, Romford, London RM7 0AG, UK; (Y.E.); (M.A.); (R.P.); (A.B.); (S.R.)
| | - Mariam Awan
- Neurosurgical Department, Queen’s Hospital, Romford, London RM7 0AG, UK; (Y.E.); (M.A.); (R.P.); (A.B.); (S.R.)
| | - Rabeeia Parwez
- Neurosurgical Department, Queen’s Hospital, Romford, London RM7 0AG, UK; (Y.E.); (M.A.); (R.P.); (A.B.); (S.R.)
| | - Arsalan Baig
- Neurosurgical Department, Queen’s Hospital, Romford, London RM7 0AG, UK; (Y.E.); (M.A.); (R.P.); (A.B.); (S.R.)
| | - Shahinur Rahman
- Neurosurgical Department, Queen’s Hospital, Romford, London RM7 0AG, UK; (Y.E.); (M.A.); (R.P.); (A.B.); (S.R.)
| | - Ilaria Masala
- Department of Trauma and Orthopedics, The James Cook University Hospital, Middlesbrough TS4 3BW, UK;
| | - Sonia Franchini
- General Surgery Department, Queen’s Hospital, Romford, London RM7 0AG, UK;
| | - Dimitrios Giakoumettis
- Neurosurgical Department, Queen’s Hospital, Romford, London RM7 0AG, UK; (Y.E.); (M.A.); (R.P.); (A.B.); (S.R.)
| |
Collapse
|
36
|
Challenges and Opportunities for Immunotherapeutic Intervention against Myeloid Immunosuppression in Glioblastoma. J Clin Med 2022; 11:jcm11041069. [PMID: 35207340 PMCID: PMC8880446 DOI: 10.3390/jcm11041069] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/05/2022] [Accepted: 02/10/2022] [Indexed: 12/25/2022] Open
Abstract
Glioblastoma multiforme (GBM), the most common and deadly brain cancer, exemplifies the paradigm that cancers grow with help from an immunosuppressive tumor microenvironment (TME). In general, TME includes a large contribution from various myeloid lineage-derived cell types, including (in the brain) altered pathogenic microglia as well as monocyte-macrophages (Macs), myeloid-derived suppressor cells (MDSC) and dendritic cell (DC) populations. Each can have protective roles, but has, by definition, been coopted by the tumor in patients with progressive disease. However, evidence demonstrates that myeloid immunosuppressive activities can be reversed in different ways, leading to enthusiasm for this therapeutic approach, both alone and in combination with potentially synergistic immunotherapeutic and other strategies. Here, we review the current understanding of myeloid cell immunosuppression of anti-tumor responses as well as potential targets, challenges, and developing means to reverse immunosuppression with various therapeutics and their status. Targets include myeloid cell colony stimulating factors (CSFs), insulin-like growth factor 1 (IGF1), several cytokines and chemokines, as well as CD40 activation and COX2 inhibition. Approaches in clinical development include antibodies, antisense RNA-based drugs, cell-based combinations, polarizing cytokines, and utilizing Macs as a platform for Chimeric Antigen Receptors (CAR)-based tumor targeting, like with CAR-T cells. To date, promising clinical results have been reported with several of these approaches.
Collapse
|
37
|
Ljubimov VA, Ramesh A, Davani S, Danielpour M, Breunig JJ, Black KL. Neurosurgery at the crossroads of immunology and nanotechnology. New reality in the COVID-19 pandemic. Adv Drug Deliv Rev 2022; 181:114033. [PMID: 34808227 PMCID: PMC8604570 DOI: 10.1016/j.addr.2021.114033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/19/2021] [Accepted: 10/28/2021] [Indexed: 12/12/2022]
Abstract
Neurosurgery as one of the most technologically demanding medical fields rapidly adapts the newest developments from multiple scientific disciplines for treating brain tumors. Despite half a century of clinical trials, survival for brain primary tumors such as glioblastoma (GBM), the most common primary brain cancer, or rare ones including primary central nervous system lymphoma (PCNSL), is dismal. Cancer therapy and research have currently shifted toward targeted approaches, and personalized therapies. The orchestration of novel and effective blood-brain barrier (BBB) drug delivery approaches, targeting of cancer cells and regulating tumor microenvironment including the immune system are the key themes of this review. As the global pandemic due to SARS-CoV-2 virus continues, neurosurgery and neuro-oncology must wrestle with the issues related to treatment-related immune dysfunction. The selection of chemotherapeutic treatments, even rare cases of hypersensitivity reactions (HSRs) that occur among immunocompromised people, and number of vaccinations they have to get are emerging as a new chapter for modern Nano neurosurgery.
Collapse
Affiliation(s)
- Vladimir A Ljubimov
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | | | | | - Moise Danielpour
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Joshua J Breunig
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Keith L Black
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
38
|
Abstract
Faced with unique immunobiology and marked heterogeneity, treatment strategies for glioblastoma require therapeutic approaches that diverge from conventional oncological strategies. The selection and prioritization of targeted and immunotherapeutic strategies will need to carefully consider these features and companion biomarkers developed alongside treatment strategies to identify the appropriate patient populations. Novel clinical trial strategies that interrogate the tumor microenvironment for drug penetration and target engagement will inform go/no-go later-stage clinical studies. Innovative trial designs and analyses are needed to move effective agents toward regulatory approvals more rapidly.
Collapse
Affiliation(s)
- Mustafa Khasraw
- Duke University School of Medicine, Durham, North Carolina 27710, USA
| | - Yoko Fujita
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Catalina Lee-Chang
- Department of Neurosurgery, Northwestern University, Chicago, Illinois 60611, USA;
| | - Irina V Balyasnikova
- Department of Neurosurgery, Northwestern University, Chicago, Illinois 60611, USA;
| | - Hinda Najem
- Department of Neurosurgery, Northwestern University, Chicago, Illinois 60611, USA;
| | - Amy B Heimberger
- Department of Neurosurgery, Northwestern University, Chicago, Illinois 60611, USA;
| |
Collapse
|
39
|
B cells in central nervous system disease: diversity, locations and pathophysiology. Nat Rev Immunol 2022; 22:513-524. [PMID: 34903877 PMCID: PMC8667979 DOI: 10.1038/s41577-021-00652-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2021] [Indexed: 12/13/2022]
Abstract
B cells represent a relatively minor cell population within both the healthy and diseased central nervous system (CNS), yet they can have profound effects. This is emphasized in multiple sclerosis, in which B cell-depleting therapies are arguably the most efficacious treatment for the condition. In this Review, we discuss how B cells enter and persist in the CNS and how, in many neurological conditions, B cells concentrate within CNS barriers but are rarely found in the parenchyma. We highlight how B cells can contribute to CNS pathology through antibody secretion, antigen presentation and secretion of neurotoxic molecules, using examples from CNS tumours, CNS infections and autoimmune conditions such as neuromyelitis optica and, in particular, multiple sclerosis. Overall, understanding common and divergent principles of B cell accumulation and their effects within the CNS could offer new insights into treating these devastating neurological conditions.
Collapse
|
40
|
Attia N, Mashal M, Pemminati S, Omole A, Edmondson C, Jones W, Priyadarshini P, Mughal T, Aziz P, Zenick B, Perez A, Lacken M. Cell-Based Therapy for the Treatment of Glioblastoma: An Update from Preclinical to Clinical Studies. Cells 2021; 11:116. [PMID: 35011678 PMCID: PMC8750228 DOI: 10.3390/cells11010116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/08/2021] [Accepted: 12/14/2021] [Indexed: 01/12/2023] Open
Abstract
Glioblastoma (GB), an aggressive primary tumor of the central nervous system, represents about 60% of all adult primary brain tumors. It is notorious for its extremely low (~5%) 5-year survival rate which signals the unsatisfactory results of the standard protocol for GB therapy. This issue has become, over time, the impetus for the discipline of bringing novel therapeutics to the surface and challenging them so they can be improved. The cell-based approach in treating GB found its way to clinical trials thanks to a marvelous number of preclinical studies that probed various types of cells aiming to combat GB and increase the survival rate. In this review, we aimed to summarize and discuss the up-to-date preclinical studies that utilized stem cells or immune cells to treat GB. Likewise, we tried to summarize the most recent clinical trials using both cell categories to treat or prevent recurrence of GB in patients. As with any other therapeutics, cell-based therapy in GB is still hampered by many drawbacks. Therefore, we highlighted several novel techniques, such as the use of biomaterials, scaffolds, nanoparticles, or cells in the 3D context that may depict a promising future when combined with the cell-based approach.
Collapse
Affiliation(s)
- Noha Attia
- The American University of Antigua-College of Medicine, Coolidge 1451, Antigua and Barbuda; (S.P.); (A.O.); (C.E.); (W.J.); (P.P.); (T.M.); (P.A.); (B.Z.); (A.P.); (M.L.)
- Laboratory of Pharmaceutics, NanoBioCel Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
- Histology and Cell Biology Department, Faculty of Medicine, University of Alexandria, Alexandria 21561, Egypt
| | - Mohamed Mashal
- The American University of Antigua-College of Medicine, Coolidge 1451, Antigua and Barbuda; (S.P.); (A.O.); (C.E.); (W.J.); (P.P.); (T.M.); (P.A.); (B.Z.); (A.P.); (M.L.)
- Laboratory of Pharmaceutics, NanoBioCel Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Sudhakar Pemminati
- The American University of Antigua-College of Medicine, Coolidge 1451, Antigua and Barbuda; (S.P.); (A.O.); (C.E.); (W.J.); (P.P.); (T.M.); (P.A.); (B.Z.); (A.P.); (M.L.)
| | - Adekunle Omole
- The American University of Antigua-College of Medicine, Coolidge 1451, Antigua and Barbuda; (S.P.); (A.O.); (C.E.); (W.J.); (P.P.); (T.M.); (P.A.); (B.Z.); (A.P.); (M.L.)
| | - Carolyn Edmondson
- The American University of Antigua-College of Medicine, Coolidge 1451, Antigua and Barbuda; (S.P.); (A.O.); (C.E.); (W.J.); (P.P.); (T.M.); (P.A.); (B.Z.); (A.P.); (M.L.)
| | - Will Jones
- The American University of Antigua-College of Medicine, Coolidge 1451, Antigua and Barbuda; (S.P.); (A.O.); (C.E.); (W.J.); (P.P.); (T.M.); (P.A.); (B.Z.); (A.P.); (M.L.)
| | - Priyanka Priyadarshini
- The American University of Antigua-College of Medicine, Coolidge 1451, Antigua and Barbuda; (S.P.); (A.O.); (C.E.); (W.J.); (P.P.); (T.M.); (P.A.); (B.Z.); (A.P.); (M.L.)
| | - Temoria Mughal
- The American University of Antigua-College of Medicine, Coolidge 1451, Antigua and Barbuda; (S.P.); (A.O.); (C.E.); (W.J.); (P.P.); (T.M.); (P.A.); (B.Z.); (A.P.); (M.L.)
| | - Pauline Aziz
- The American University of Antigua-College of Medicine, Coolidge 1451, Antigua and Barbuda; (S.P.); (A.O.); (C.E.); (W.J.); (P.P.); (T.M.); (P.A.); (B.Z.); (A.P.); (M.L.)
| | - Blesing Zenick
- The American University of Antigua-College of Medicine, Coolidge 1451, Antigua and Barbuda; (S.P.); (A.O.); (C.E.); (W.J.); (P.P.); (T.M.); (P.A.); (B.Z.); (A.P.); (M.L.)
| | - Ambar Perez
- The American University of Antigua-College of Medicine, Coolidge 1451, Antigua and Barbuda; (S.P.); (A.O.); (C.E.); (W.J.); (P.P.); (T.M.); (P.A.); (B.Z.); (A.P.); (M.L.)
| | - Morgan Lacken
- The American University of Antigua-College of Medicine, Coolidge 1451, Antigua and Barbuda; (S.P.); (A.O.); (C.E.); (W.J.); (P.P.); (T.M.); (P.A.); (B.Z.); (A.P.); (M.L.)
| |
Collapse
|
41
|
Cui C, Wang J, Fagerberg E, Chen PM, Connolly KA, Damo M, Cheung JF, Mao T, Askari AS, Chen S, Fitzgerald B, Foster GG, Eisenbarth SC, Zhao H, Craft J, Joshi NS. Neoantigen-driven B cell and CD4 T follicular helper cell collaboration promotes anti-tumor CD8 T cell responses. Cell 2021; 184:6101-6118.e13. [PMID: 34852236 PMCID: PMC8671355 DOI: 10.1016/j.cell.2021.11.007] [Citation(s) in RCA: 273] [Impact Index Per Article: 68.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 07/21/2021] [Accepted: 11/05/2021] [Indexed: 12/31/2022]
Abstract
CD4 T follicular helper (TFH) cells support B cells, which are critical for germinal center (GC) formation, but the importance of TFH-B cell interactions in cancer is unclear. We found enrichment of TFH cell transcriptional signature correlates with GC B cell signature and with prolonged survival in individuals with lung adenocarcinoma (LUAD). We further developed a murine LUAD model in which tumor cells express B cell- and T cell-recognized neoantigens. Interactions between tumor-specific TFH and GC B cells, as well as interleukin (IL)-21 primarily produced by TFH cells, are necessary for tumor control and effector CD8 T cell function. Development of TFH cells requires B cells and B cell-recognized neoantigens. Thus, tumor neoantigens can regulate the fate of tumor-specific CD4 T cells by facilitating their interactions with tumor-specific B cells, which in turn promote anti-tumor immunity by enhancing CD8 T cell effector functions.
Collapse
Affiliation(s)
- Can Cui
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jiawei Wang
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, CT 06510, USA
| | - Eric Fagerberg
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Ping-Min Chen
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Kelli A Connolly
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Martina Damo
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Julie F Cheung
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Tianyang Mao
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Adnan S Askari
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Shuting Chen
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Brittany Fitzgerald
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Gena G Foster
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Stephanie C Eisenbarth
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Internal Medicine (Rheumatology, Allergy and Immunology), Yale University School of Medicine, New Haven, CT 06520, USA; Department of Lab Medicine, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Hongyu Zhao
- Department of Biostatistics, Yale School of Public Health, New Haven, CT 06510, USA
| | - Joseph Craft
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Internal Medicine (Rheumatology, Allergy and Immunology), Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Nikhil S Joshi
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
42
|
Hermawan A, Putri H. Systematic analysis of potential targets of the curcumin analog pentagamavunon-1 (PGV-1) in overcoming resistance of glioblastoma cells to bevacizumab. Saudi Pharm J 2021; 29:1289-1302. [PMID: 34819791 PMCID: PMC8596150 DOI: 10.1016/j.jsps.2021.09.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 09/24/2021] [Indexed: 12/26/2022] Open
Abstract
Background Glioblastoma is one of the most aggressive and deadliest malignant tumors. Acquired resistance decreases the effectiveness of bevacizumab in glioblastoma treatment and thus increases the mortality rate in patients with glioblastoma. In this study, the potential targets of pentagamavunone-1 (PGV-1), a curcumin analog, were explored as a complementary treatment to bevacizumab in glioblastoma therapy. Methods Target prediction, data collection, and analysis were conducted using the similarity ensemble approach (SEA), SwissTargetPrediction, STRING DB, and Gene Expression Omnibus (GEO) datasets. Gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were conducted using Webgestalt and DAVID, respectively. Hub genes were selected based on the highest degree scores using the CytoHubba. Analysis of genetic alterations and gene expression as well as Kaplan–Meier survival analysis of selected genes were conducted with cBioportal and GEPIA. Immune infiltration correlations between selected genes and immune cells were analyzed with database TIMER 2.0. Results We found 374 targets of PGV-1, 1139 differentially expressed genes (DEGs) from bevacizumab-resistant-glioblastoma cells. A Venn diagram analysis using these two sets of data resulted in 21 genes that were identified as potential targets of PGV-1 against bevacizumab resistance (PBR). PBR regulated the metabolism of xenobiotics by cytochrome P450. Seven potential therapeutic PBR, namely GSTM1, AKR1C3, AKR1C4, PTGS2, ADAM10, AKR1B1, and HSD17B110 were found to have genetic alterations in 1.2%–30% of patients with glioblastoma. Analysis using the GEPIA database showed that the mRNA expression of ADAM10, AKR1B1, and HSD17B10 was significantly upregulated in glioblastoma patients. Kaplan–Meier survival analysis showed that only patients with low mRNA expression of AKR1B1 had significantly better overall survival than the patients in the high mRNA group. We also found a correlation between PBR and immune cells and thus revealed the potential of PGV-1 as an immunotherapeutic agent via targeting of PBR. Conclusion This study highlighted seven PBR, namely, GSTM1, AKR1C3, AKR1C4, PTGS2, ADAM10, AKR1B1, and HSD17B110. This study also emphasized the potential of PBR as a target for immunotherapy with PGV-1. Further validation of the results of this study is required for the development of PGV-1 as an adjunct to immunotherapy for glioblastoma to counteract bevacizumab resistance.
Collapse
Key Words
- ADAM10, a disintegrant and metalloproteinase 10
- AKRs, Aldo keto reductases
- Bevacizumab resistance
- Bioinformatics
- CAFs, Cancer-associated fibroblasts
- COX-2, cyclooxigenase-2
- DEGs, differentially expressed genes
- DT, Direct targets of PGV-1
- GSTM1, glutathione S-transferase mu 1
- GSTP1, glutathione S-transferase Pi-1
- Glioblastoma
- HSD17B10, Human type 10 17beta-hydroxysteroid dehydrogenase
- Immunotherapy
- KEGG, Kyoto Encyclopedia of Genes and Genomes
- PBR, potential therapeutic target genes of PGV-1 against bevacizumab resistance glioblastoma
- PGV-1
- PGV-1, Pentagamavunon-1
- PTGS2, prostaglandin-endoperoxide synthase 2
- ROS, reactive oxygen species
- SEA, Similarity ensemble approach
- Target prediction
- VEGF, vascular endothelial growth factor
- Webgestalt, WEB-based GEne SeT AnaLysis Toolkit
Collapse
Affiliation(s)
- Adam Hermawan
- Laboratory of Macromolecular Engineering, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281 Yogyakarta, Indonesia
| | - Herwandhani Putri
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281 Yogyakarta, Indonesia
| |
Collapse
|
43
|
Ait Ssi S, Chraa D, El Azhary K, Sahraoui S, Olive D, Badou A. Prognostic Gene Expression Signature in Patients With Distinct Glioma Grades. Front Immunol 2021; 12:685213. [PMID: 34539626 PMCID: PMC8448281 DOI: 10.3389/fimmu.2021.685213] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 08/10/2021] [Indexed: 12/28/2022] Open
Abstract
Background Glioma is the most common type of primary brain tumor in adults. Patients with the most malignant form have an overall survival time of <16 months. Although considerable progress has been made in defining the adapted therapeutic strategies, measures to counteract tumor escape have not kept pace, due to the developed resistance of malignant glioma. In fact, identifying the nature and role of distinct tumor-infiltrating immune cells in glioma patients would decipher potential mechanisms behind therapy failure. Methods We integrated into our study glioma transcriptomic datasets from the Cancer Genome Atlas (TCGA) cohort (154 GBM and 516 LGG patients). LM22 immune signature was built using CIBERSORT. Hierarchical clustering and UMAP dimensional reduction algorithms were applied to identify clusters among glioma patients either in an unsupervised or supervised way. Furthermore, differential gene expression (DGE) has been performed to unravel the top expressed genes among the identified clusters. Besides, we used the least absolute shrinkage and selection operator (LASSO) and Cox regression algorithm to set up the most valuable prognostic factor. Results Our study revealed, following gene enrichment analysis, the presence of two distinct groups of patients. The first group, defined as cluster 1, was characterized by the presence of immune cells known to exert efficient antitumoral immune response and was associated with better patient survival, whereas the second group, cluster 2, which exhibited a poor survival, was enriched with cells and molecules, known to set an immunosuppressive pro-tumoral microenvironment. Interestingly, we revealed that gene expression signatures were also consistent with each immune cluster function. A strong presence of activated NK cells was revealed in cluster 1. In contrast, potent immunosuppressive components such as regulatory T cells, neutrophils, and M0/M1/M2 macrophages were detected in cluster 2, where, in addition, inhibitory immune checkpoints, such as PD-1, CTLA-4, and TIM-3, were also significantly upregulated. Finally, Cox regression analysis further corroborated that tumor-infiltrating cells from cluster 2 exerted a significant impact on patient prognosis. Conclusion Our work brings to light the tight implication of immune components on glioma patient prognosis. This would contribute to potentially developing better immune-based therapeutic approaches.
Collapse
Affiliation(s)
- Saadia Ait Ssi
- Cellular and Molecular Pathology Laboratory, Faculty of Medicine and Pharmacy of Casablanca, Hassan II University, Casablanca, Morocco
| | - Dounia Chraa
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, 41068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM 105, Marseille, France
| | - Khadija El Azhary
- Cellular and Molecular Pathology Laboratory, Faculty of Medicine and Pharmacy of Casablanca, Hassan II University, Casablanca, Morocco
| | - Souha Sahraoui
- Mohammed VI Center of Oncology, CHU Ibn Rochd, Faculty of Medicine and Pharmacy of Casablanca, Hassan II University, Casablanca, Morocco
| | - Daniel Olive
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, 41068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM 105, Marseille, France
| | - Abdallah Badou
- Cellular and Molecular Pathology Laboratory, Faculty of Medicine and Pharmacy of Casablanca, Hassan II University, Casablanca, Morocco
| |
Collapse
|
44
|
Page A, Hubert J, Fusil F, Cosset FL. Exploiting B Cell Transfer for Cancer Therapy: Engineered B Cells to Eradicate Tumors. Int J Mol Sci 2021; 22:9991. [PMID: 34576154 PMCID: PMC8468294 DOI: 10.3390/ijms22189991] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 01/22/2023] Open
Abstract
Nowadays, cancers still represent a significant health burden, accounting for around 10 million deaths per year, due to ageing populations and inefficient treatments for some refractory cancers. Immunotherapy strategies that modulate the patient's immune system have emerged as good treatment options. Among them, the adoptive transfer of B cells selected ex vivo showed promising results, with a reduction in tumor growth in several cancer mouse models, often associated with antitumoral immune responses. Aside from the benefits of their intrinsic properties, including antigen presentation, antibody secretion, homing and long-term persistence, B cells can be modified prior to reinfusion to increase their therapeutic role. For instance, B cells have been modified mainly to boost their immuno-stimulatory activation potential by forcing the expression of costimulatory ligands using defined culture conditions or gene insertion. Moreover, tumor-specific antigen presentation by infused B cells has been increased by ex vivo antigen loading (peptides, RNA, DNA, virus) or by the sorting/ engineering of B cells with a B cell receptor specific to tumor antigens. Editing of the BCR also rewires B cell specificity toward tumor antigens, and may trigger, upon antigen recognition, the secretion of antitumor antibodies by differentiated plasma cells that can then be recognized by other immune components or cells involved in tumor clearance by antibody-dependent cell cytotoxicity or complement-dependent cytotoxicity for example. With the expansion of gene editing methodologies, new strategies to reprogram immune cells with whole synthetic circuits are being explored: modified B cells can sense disease-specific biomarkers and, in response, trigger the expression of therapeutic molecules, such as molecules that counteract the tumoral immunosuppressive microenvironment. Such strategies remain in their infancy for implementation in B cells, but are likely to expand in the coming years.
Collapse
Affiliation(s)
| | | | | | - François-Loïc Cosset
- CIRI-Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46 Allée d’Italie, F-69007 Lyon, France; (A.P.); (J.H.); (F.F.)
| |
Collapse
|
45
|
Dapash M, Hou D, Castro B, Lee-Chang C, Lesniak MS. The Interplay between Glioblastoma and Its Microenvironment. Cells 2021; 10:2257. [PMID: 34571905 PMCID: PMC8469987 DOI: 10.3390/cells10092257] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 01/05/2023] Open
Abstract
GBM is the most common primary brain tumor in adults, and the aggressive nature of this tumor contributes to its extremely poor prognosis. Over the years, the heterogeneous and adaptive nature of GBM has been highlighted as a major contributor to the poor efficacy of many treatments including various immunotherapies. The major challenge lies in understanding and manipulating the complex interplay among the different components within the tumor microenvironment (TME). This interplay varies not only by the type of cells interacting but also by their spatial distribution with the TME. This review highlights the various immune and non-immune components of the tumor microenvironment and their consequences of the efficacy of immunotherapies. Understanding the independent and interdependent aspects of the various sub-populations encapsulated by the immune and non-immune components will allow for more targeted therapies. Meanwhile, understanding how the TME creates and responds to different environmental pressures such as hypoxia may allow for other multimodal approaches in the treatment of GBM. Ultimately, a better understanding of the GBM TME will aid in the development and advancement of more effective treatments and in improving patient outcomes.
Collapse
Affiliation(s)
- Mark Dapash
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (M.D.); (D.H.); (B.C.)
- Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - David Hou
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (M.D.); (D.H.); (B.C.)
| | - Brandyn Castro
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (M.D.); (D.H.); (B.C.)
- Department of Neurosurgery, University of Chicago, Chicago, IL 60637, USA
| | - Catalina Lee-Chang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (M.D.); (D.H.); (B.C.)
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Maciej S. Lesniak
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (M.D.); (D.H.); (B.C.)
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
46
|
van Hooren L, Vaccaro A, Ramachandran M, Vazaios K, Libard S, van de Walle T, Georganaki M, Huang H, Pietilä I, Lau J, Ulvmar MH, Karlsson MCI, Zetterling M, Mangsbo SM, Jakola AS, Olsson Bontell T, Smits A, Essand M, Dimberg A. Agonistic CD40 therapy induces tertiary lymphoid structures but impairs responses to checkpoint blockade in glioma. Nat Commun 2021; 12:4127. [PMID: 34226552 PMCID: PMC8257767 DOI: 10.1038/s41467-021-24347-7] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 06/09/2021] [Indexed: 12/19/2022] Open
Abstract
Gliomas are brain tumors characterized by an immunosuppressive microenvironment. Immunostimulatory agonistic CD40 antibodies (αCD40) are in clinical development for solid tumors, but are yet to be evaluated for glioma. Here, we demonstrate that systemic delivery of αCD40 in preclinical glioma models induces the formation of tertiary lymphoid structures (TLS) in proximity of meningeal tissue. In treatment-naïve glioma patients, the presence of TLS correlates with increased T cell infiltration. However, systemic delivery of αCD40 induces hypofunctional T cells and impairs the response to immune checkpoint inhibitors in pre-clinical glioma models. This is associated with a systemic induction of suppressive CD11b+ B cells post-αCD40 treatment, which accumulate in the tumor microenvironment. Our work unveils the pleiotropic effects of αCD40 therapy in glioma and reveals that immunotherapies can modulate TLS formation in the brain, opening up for future opportunities to regulate the immune response. Agonistic CD40 antibodies (αCD40) have broad immunostimulatory properties, however their efficacy in glioma remains unclear. Here the authors show that αCD40 promotes the formation of tertiary lymphoid structures but does not improve survival and impairs the response to immune checkpoint blockade in murine glioma models.
Collapse
Affiliation(s)
- Luuk van Hooren
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Alessandra Vaccaro
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Mohanraj Ramachandran
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Konstantinos Vazaios
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Sylwia Libard
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden.,Department of Pathology, Uppsala University Hospital, Uppsala, Sweden
| | - Tiarne van de Walle
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Maria Georganaki
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Hua Huang
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Ilkka Pietilä
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Joey Lau
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Maria H Ulvmar
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Mikael C I Karlsson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Maria Zetterling
- Department of Neuroscience, Neurology, Uppsala University, Uppsala, Sweden
| | - Sara M Mangsbo
- Department of Pharmaceutical Biosciences, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Asgeir S Jakola
- Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg, Sweden.,Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Thomas Olsson Bontell
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Pathology and Cytology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Anja Smits
- Department of Neuroscience, Neurology, Uppsala University, Uppsala, Sweden.,Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Magnus Essand
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Anna Dimberg
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
47
|
Fares J, Ulasov I, Timashev P, Lesniak MS. Emerging principles of brain immunology and immune checkpoint blockade in brain metastases. Brain 2021; 144:1046-1066. [PMID: 33893488 PMCID: PMC8105040 DOI: 10.1093/brain/awab012] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 12/12/2022] Open
Abstract
Brain metastases are the most common type of brain tumours, harbouring an immune microenvironment that can in principle be targeted via immunotherapy. Elucidating some of the immunological intricacies of brain metastases has opened a therapeutic window to explore the potential of immune checkpoint inhibitors in this globally lethal disease. Multiple lines of evidence suggest that tumour cells hijack the immune regulatory mechanisms in the brain for the benefit of their own survival and progression. Nonetheless, the role of the immune checkpoint in the complex interplays between cancers cells and T cells and in conferring resistance to therapy remains under investigation. Meanwhile, early phase trials with immune checkpoint inhibitors have reported clinical benefit in patients with brain metastases from melanoma and non-small cell lung cancer. In this review, we explore the workings of the immune system in the brain, the immunology of brain metastases, and the current status of immune checkpoint inhibitors in the treatment of brain metastases.
Collapse
Affiliation(s)
- Jawad Fares
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ilya Ulasov
- Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Maciej S Lesniak
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
48
|
Bi H, Zhang C. Extrinsic factors associated with the response to immunotherapy in glioblastoma. Cancer Lett 2021; 511:47-55. [PMID: 33933551 DOI: 10.1016/j.canlet.2021.04.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/10/2021] [Accepted: 04/25/2021] [Indexed: 12/20/2022]
Abstract
Glioblastoma (GBM) is a heterogeneous and lethal brain tumor. Despite the success of immune checkpoint inhibitors against various malignancies, GBM remains largely refractory to treatment. The immune microenvironment of GBM is highly immunosuppressive, which poses a major hurdle for the success of immunotherapy. Obviously, except for the GBM cells itself, there are also extrinsic reasons for the lack of efficacy of immunotherapy. Accumulated evidence indicates that factors other than GBM cells determine the efficacy of immunotherapy. In this review, we first described the unique immune microenvironment of the brain, which must be considered when using immunotherapy in patients with GBM. Second, we also described the mechanisms by which different immune and non-immune cells in the GBM microenvironment affect the efficacy of immunotherapy. Furthermore, the impact of standard therapies on the response to immunotherapy was delineated. Finally, we briefly discussed strategies for resolving these problems and improving the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Hongye Bi
- Department of Neurology, Tianjin Union Hospital, Tianjin, 300000, China
| | - Chunzhi Zhang
- Department of Radiation Oncology, Tianjin Hospital, Tianjin 300211, China.
| |
Collapse
|
49
|
Banerjee K, Núñez FJ, Haase S, McClellan BL, Faisal SM, Carney SV, Yu J, Alghamri MS, Asad AS, Candia AJN, Varela ML, Candolfi M, Lowenstein PR, Castro MG. Current Approaches for Glioma Gene Therapy and Virotherapy. Front Mol Neurosci 2021; 14:621831. [PMID: 33790740 PMCID: PMC8006286 DOI: 10.3389/fnmol.2021.621831] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/16/2021] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive primary brain tumor in the adult population and it carries a dismal prognosis. Inefficient drug delivery across the blood brain barrier (BBB), an immunosuppressive tumor microenvironment (TME) and development of drug resistance are key barriers to successful glioma treatment. Since gliomas occur through sequential acquisition of genetic alterations, gene therapy, which enables to modification of the genetic make-up of target cells, appears to be a promising approach to overcome the obstacles encountered by current therapeutic strategies. Gene therapy is a rapidly evolving field with the ultimate goal of achieving specific delivery of therapeutic molecules using either viral or non-viral delivery vehicles. Gene therapy can also be used to enhance immune responses to tumor antigens, reprogram the TME aiming at blocking glioma-mediated immunosuppression and normalize angiogenesis. Nano-particles-mediated gene therapy is currently being developed to overcome the BBB for glioma treatment. Another approach to enhance the anti-glioma efficacy is the implementation of viro-immunotherapy using oncolytic viruses, which are immunogenic. Oncolytic viruses kill tumor cells due to cancer cell-specific viral replication, and can also initiate an anti-tumor immunity. However, concerns still remain related to off target effects, and therapeutic and transduction efficiency. In this review, we describe the rationale and strategies as well as advantages and disadvantages of current gene therapy approaches against gliomas in clinical and preclinical studies. This includes different delivery systems comprising of viral, and non-viral delivery platforms along with suicide/prodrug, oncolytic, cytokine, and tumor suppressor-mediated gene therapy approaches. In addition, advances in glioma treatment through BBB-disruptive gene therapy and anti-EGFRvIII/VEGFR gene therapy are also discussed. Finally, we discuss the results of gene therapy-mediated human clinical trials for gliomas. In summary, we highlight the progress, prospects and remaining challenges of gene therapies aiming at broadening our understanding and highlighting the therapeutic arsenal for GBM.
Collapse
Affiliation(s)
- Kaushik Banerjee
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Felipe J. Núñez
- Laboratory of Molecular and Cellular Therapy, Fundación Instituto Leloir, Buenos Aires, Argentina
| | - Santiago Haase
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Brandon L. McClellan
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Immunology Graduate Program, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Syed M. Faisal
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Stephen V. Carney
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Cancer Biology Graduate Program, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Jin Yu
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Mahmoud S. Alghamri
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Antonela S. Asad
- Departamento de Biología e Histología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alejandro J. Nicola Candia
- Departamento de Biología e Histología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Maria Luisa Varela
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Marianela Candolfi
- Departamento de Biología e Histología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Pedro R. Lowenstein
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Maria G. Castro
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|