1
|
Xiao G, Wang X, Xu Z, Liu Y, Jing J. Lung-specific metastasis: the coevolution of tumor cells and lung microenvironment. Mol Cancer 2025; 24:118. [PMID: 40241074 PMCID: PMC12001740 DOI: 10.1186/s12943-025-02318-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 03/31/2025] [Indexed: 04/18/2025] Open
Abstract
The vast majority of cancer-related deaths are attributed to metastasis. The lung, being a common site for cancer metastasis, is highly prone to being a target for multiple cancer types and causes a heavy disease burden. Accumulating evidence has demonstrated that tumor metastasis necessitates continuous interactions between tumor cells and distant metastatic niches. Nevertheless, a comprehensive elucidation of the underlying mechanisms governing lung-specific metastasis still poses a formidable challenge. In this review, we depict the lung susceptibility and the molecular profiles of tumors with the potential for lung metastasis. Under the conceptual framework of "Reciprocal Tumor-Lung Metastatic Symbiosis" (RTLMS), we mechanistically delineate the bidirectional regulatory dynamics and coevolutionary adaptation between tumor cells and distal pulmonary niches during lung-specific metastasis, including the induction of pre-metastatic-niches, positive responses of the lung, tumor colonization, dormancy, and reawakening. An enhanced understanding of the latest mechanisms is essential for developing targeted strategies to counteract lung-specific metastasis.
Collapse
Affiliation(s)
- Guixiu Xiao
- Breast Disease Center and Institute for Breast Health Medicine, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xinmin Wang
- Institute of Breast Health Medicine, West China Hospital, Sichuan University Chengdu, Sichuan, 610041, China
| | - Zihan Xu
- Institute of Breast Health Medicine, West China Hospital, Sichuan University Chengdu, Sichuan, 610041, China
- Department of Medical Oncology, West China Hospital, Sichuan University, Cancer Center, Chengdu, Sichuan, 610041, China
| | - Yanyang Liu
- Department of Medical Oncology, West China Hospital, Sichuan University, Cancer Center, Chengdu, Sichuan, 610041, China.
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Jing Jing
- Breast Disease Center and Institute for Breast Health Medicine, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
2
|
Bertacchi M, Theiß S, Ahmed A, Eibl M, Loubat A, Maharaux G, Phromkrasae W, Chakrabandhu K, Camgöz A, Antonaci M, Schaaf CP, Studer M, Laugsch M. Unravelling the conundrum of nucleolar NR2F1 localization using antibody-based approaches in vitro and in vivo. Commun Biol 2025; 8:594. [PMID: 40204944 PMCID: PMC11982218 DOI: 10.1038/s42003-025-07985-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 03/21/2025] [Indexed: 04/11/2025] Open
Abstract
As a transcription factor, NR2F1 regulates spatiotemporal gene expression in the nucleus particularly during development. Aberrant NR2F1 causes the rare neurodevelopmental disorder Bosch-Boonstra-Schaaf Optic Atrophy Syndrome. In addition, altered NR2F1 expression is frequently observed in various cancers and is considered a prognostic marker or potential therapeutic target. NR2F1 has been found in both the nucleus and nucleoli, suggesting a non-canonical and direct role in the latter compartment. Hence, we studied this phenomenon employing various in vitro and in vivo models using different antibody-dependent approaches. Examination of seven commonly used anti-NR2F1 antibodies in different human cancer and stem cells as well as in wild type and null mice revealed that NR2F1 nucleolar localization is artificial and has no functional role. Our subsequent comparative analysis demonstrated which anti-NR2F1 antibody best fits which approach. The data allow for correct data interpretation and underline the need to optimize any antibody-mediated technique.
Collapse
Affiliation(s)
- Michele Bertacchi
- Université Côte d'Azur, CNRS, Inserm, Institute of Biology Valrose (iBV), 06108, Nice, France.
| | - Susanne Theiß
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Ayat Ahmed
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Michael Eibl
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Agnès Loubat
- Université Côte d'Azur, CNRS, Inserm, Institute of Biology Valrose (iBV), 06108, Nice, France
| | - Gwendoline Maharaux
- Université Côte d'Azur, CNRS, Inserm, Institute of Biology Valrose (iBV), 06108, Nice, France
| | - Wanchana Phromkrasae
- Université Côte d'Azur, CNRS, Inserm, Institute of Biology Valrose (iBV), 06108, Nice, France
| | - Krittalak Chakrabandhu
- Université Côte d'Azur, CNRS, Inserm, Institute of Biology Valrose (iBV), 06108, Nice, France
| | - Aylin Camgöz
- Hopp Children's Cancer Center (KITZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Marco Antonaci
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | | | - Michèle Studer
- Université Côte d'Azur, CNRS, Inserm, Institute of Biology Valrose (iBV), 06108, Nice, France
| | - Magdalena Laugsch
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
3
|
Lewandowski M, Busch R, Marschner JA, Merk D. Comparative Evaluation and Profiling of Chemical Tools for the Nuclear Hormone Receptor Family 2. ACS Pharmacol Transl Sci 2025; 8:854-870. [PMID: 40046426 PMCID: PMC7617459 DOI: 10.1021/acsptsci.4c00719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Nuclear receptors regulate transcription in response to ligand signals and enable the pharmacological control of gene expression. However, many nuclear receptors are still poorly explored and are not accessible to ligand-based target identification studies. In particular, most members of the NR2 family are among the least studied proteins of the class, and apart from the retinoid X receptors (RXR), validated NR2 ligands are very rare. Here, we gathered the NR2 modulators reported in literature for comparative profiling in uniform test systems. Most candidate compounds displayed insufficient on-target activity or selectivity to be used as chemical tools for NR2 receptors underscoring the urgent need for further NR2 ligand development. Nevertheless, a small NR2 modulator set could be assembled for application in a chemogenomic fashion. There are 48 ligand-activated transcription factors in humans forming the superfamily of nuclear receptors (NRs, Figure 1a),1,2 which translate (endogenous) ligand signals into changes in gene expression patterns.3 The multifaceted roles of NRs span pivotal physiological processes, encompassing metabolism, inflammation, and cellular differentiation.4 Over decades, the NR1 and NR3 receptor families, including (steroid) hormone receptors and lipid sensors, have emerged as well-explored therapeutic targets of essential drugs like, for example, glucocorticoids as anti-inflammatory drugs, estrogen receptor modulators as contraceptives and anticancer agents, and PPAR agonists as oral antidiabetics.5-7 Despite this progress, a significant portion of the NR superfamily remains understudied, particularly within the NR2 family which comprises the hepatocyte nuclear factor-4 receptors (HNF4α/γ; NR2A1/2), the retinoid X receptors (RXRα/β/γ; NR2B1-3), the testicular receptors (TR2/4; NR2C1/2), the tailless-like receptors (TLX and PNR; NR2E1/3), and the COUP-TF-like receptors (COUP-TF1/2, V-erBA-related gene; NR2F1/2/6).8,9 Apart from RXR, all NR2 receptors are considered as orphan, and their ligands remain widely elusive. Therefore, chemical tools for most NR2 receptors are rare and poorly annotated posing an obstacle to target identification and validation studies. To enable chemogenomics on NR2 receptors and improve annotation, of the few available ligands, we gathered a scarce collection of NR2 modulators (agonists, antagonists, inverse agonists) for comparative evaluation and profiling. While the NR2B family (RXR) is well covered with high-quality ligands and a few early tools are available for NR2E1, we found the available ligands of the NR2A and NR2C families of insufficient quality to be used as chemical tools.
Collapse
Affiliation(s)
- Max Lewandowski
- Ludwig-Maximilians-Universität München, Department of Pharmacy, 81377Munich, Germany
| | - Romy Busch
- Ludwig-Maximilians-Universität München, Department of Pharmacy, 81377Munich, Germany
| | - Julian A. Marschner
- Ludwig-Maximilians-Universität München, Department of Pharmacy, 81377Munich, Germany
| | - Daniel Merk
- Ludwig-Maximilians-Universität München, Department of Pharmacy, 81377Munich, Germany
| |
Collapse
|
4
|
Yang S, Seo J, Choi J, Kim SH, Kuk Y, Park KC, Kang M, Byun S, Joo JY. Towards understanding cancer dormancy over strategic hitching up mechanisms to technologies. Mol Cancer 2025; 24:47. [PMID: 39953555 PMCID: PMC11829473 DOI: 10.1186/s12943-025-02250-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 01/28/2025] [Indexed: 02/17/2025] Open
Abstract
Delving into cancer dormancy has been an inherent task that may drive the lethal recurrence of cancer after primary tumor relief. Cells in quiescence can survive for a short or long term in silence, may undergo genetic or epigenetic changes, and can initiate relapse through certain contextual cues. The state of dormancy can be induced by multiple conditions including cancer drug treatment, in turn, undergoes a life cycle that generally occurs through dissemination, invasion, intravasation, circulation, immune evasion, extravasation, and colonization. Throughout this cascade, a cellular machinery governs the fate of individual cells, largely affected by gene regulation. Despite its significance, a precise view of cancer dormancy is yet hampered. Revolutionizing advanced single cell and long read sequencing through analysis methodologies and artificial intelligence, the most recent stage in the research tool progress, is expected to provide a holistic view of the diverse aspects of cancer dormancy.
Collapse
Affiliation(s)
- Sumin Yang
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, 15588, Korea
| | - Jieun Seo
- Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
- Department of Functional Genomics, University of Science and Technology, Daejeon, 34113, Korea
| | - Jeonghyeon Choi
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, 15588, Korea
| | - Sung-Hyun Kim
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, 15588, Korea
| | - Yunmin Kuk
- Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
- Department of Functional Genomics, University of Science and Technology, Daejeon, 34113, Korea
| | - Kyung Chan Park
- Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
- Department of Functional Genomics, University of Science and Technology, Daejeon, 34113, Korea
| | - Mingon Kang
- Department of Computer Science, University of Nevada, Las Vegas, NV, 89154, USA
| | - Sangwon Byun
- Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea.
- Department of Functional Genomics, University of Science and Technology, Daejeon, 34113, Korea.
| | - Jae-Yeol Joo
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, 15588, Korea.
- Department of Pharmacy, College of Pharmacy, Hanyang University, Rm 407, Bldg.42, 55 Hanyangdaehak-ro, Sangnok-gu Ansan, Gyeonggi-do, 15588, Republic of Korea.
| |
Collapse
|
5
|
Zhao K, Sun T, Sun Q, Chen Z, Wang T, Yang J, Li L, Zhu Y, Liu X, Yang D, Lin B, Lu N. Nerve Growth Factor Signaling Promotes Nuclear Translocation of TRAF4 to Enhance Tumor Stemness and Metastatic Dormancy Via C-Jun-mediated IL-8 Autocrine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2414437. [PMID: 39716976 PMCID: PMC11831473 DOI: 10.1002/advs.202414437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/03/2024] [Indexed: 12/25/2024]
Abstract
Tumor necrosis factor receptor-associated factor 4 (TRAF4), an E3 ubiquitin ligase, is frequently overexpressed in tumors. Although its cytoplasmic role in tumor progression is well-documented, the precise mechanisms underlying its nuclear localization and functional contributions in tumor cells remain elusive. This study demonstrated a positive correlation between the expression of nuclear TRAF4 and both tumor grades and stemness signatures in human cancer tissues. Notably, reduced nuclear TRAF4 led to decreased stemness properties and metastatic dormancy of tumor cells. Conversely, restoring nuclear TRAF4 in TRAF4-knockout (TRAF4-KO) cells augmented these cellular capabilities. Within the nucleus, the TRAF domain of TRAF4 interacted with c-Jun, thereby stimulating its transcriptional activity. This interaction subsequently led to an enhancement of the promoter activity of interleukin-8 (IL-8), which is identified as a mediator of nuclear TRAF4-induced tumor dormancy. Additionally, activation of AKT signaling by nerve growth factor facilitated TRAF4 phosphorylation at Ser242, enhancing its interaction with 14-3-3θ and promoting its nuclear translocation. Importantly, pharmacological modulation of TRAF4 nuclear translocation is found to suppress tumor tumorigenicity and metastasis in tumor models. This study highlights the critical role of nuclear TRAF4 in regulating tumor stemness and dormancy, positioning it as a potential therapeutic target for metastatic and refractory cancers.
Collapse
Affiliation(s)
- Kai Zhao
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Carcinogenesis and InterventionDepartment of PhysiologySchool of Basic Medicine and Clinical PharmacyChina Pharmaceutical University24 TongjiaxiangNanjing210009China
| | - Tifan Sun
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Carcinogenesis and InterventionDepartment of PhysiologySchool of Basic Medicine and Clinical PharmacyChina Pharmaceutical University24 TongjiaxiangNanjing210009China
| | - Qiruo Sun
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Carcinogenesis and InterventionDepartment of PhysiologySchool of Basic Medicine and Clinical PharmacyChina Pharmaceutical University24 TongjiaxiangNanjing210009China
| | - Zhenzhong Chen
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Carcinogenesis and InterventionDepartment of PhysiologySchool of Basic Medicine and Clinical PharmacyChina Pharmaceutical University24 TongjiaxiangNanjing210009China
| | - Tiepeng Wang
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Carcinogenesis and InterventionDepartment of PhysiologySchool of Basic Medicine and Clinical PharmacyChina Pharmaceutical University24 TongjiaxiangNanjing210009China
- School of PharmacyNanjing University of Chinese Medicine138 Xianlin Rd.Nanjing210023China
| | - Jinming Yang
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Carcinogenesis and InterventionDepartment of PhysiologySchool of Basic Medicine and Clinical PharmacyChina Pharmaceutical University24 TongjiaxiangNanjing210009China
- Department of PharmacyThe Second Hospital of NanjingAffiliated Hospital to Nanjing University of Chinese MedicineNanjing210003China
| | - Lei Li
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjing210029China
| | - Yanan Zhu
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Carcinogenesis and InterventionDepartment of PhysiologySchool of Basic Medicine and Clinical PharmacyChina Pharmaceutical University24 TongjiaxiangNanjing210009China
| | - Xinye Liu
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Carcinogenesis and InterventionDepartment of PhysiologySchool of Basic Medicine and Clinical PharmacyChina Pharmaceutical University24 TongjiaxiangNanjing210009China
| | - Dawei Yang
- Department of PharmacyThe Second Hospital of NanjingAffiliated Hospital to Nanjing University of Chinese MedicineNanjing210003China
| | - Binyan Lin
- School of PharmacyNanjing University of Chinese Medicine138 Xianlin Rd.Nanjing210023China
| | - Na Lu
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Carcinogenesis and InterventionDepartment of PhysiologySchool of Basic Medicine and Clinical PharmacyChina Pharmaceutical University24 TongjiaxiangNanjing210009China
| |
Collapse
|
6
|
Kadamb R, Anton ML, Purwin TJ, Seeneevassen L, Chua V, Waltrich F, Teh JLF, Nieto MA, Sato T, Terai M, Roman SR, De Koning L, Zheng D, Aplin AE, Aguirre-Ghiso JA. Lineage commitment pathways epigenetically oppose oncogenic Gαq/11-YAP1 signaling in dormant disseminated uveal melanoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.03.05.583565. [PMID: 38496663 PMCID: PMC10942354 DOI: 10.1101/2024.03.05.583565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Uveal melanoma (UM) can remain in clinical dormancy for decades only to later produce lethal metastases. Using Gαq/11 mut /BAP1 wt UM xenograft models and human metastatic samples, we identified NR2F1 as a key inducer of UM disseminated cancer cell (DCC) dormancy. Dormant UM DCCs upregulate NR2F1, neural crest genes and, along with suppression of proliferation programs, NR2F1 silences YAP1/TEAD1 transcription by altering histone H3 activation marks. YAP1 can reciprocally repress NR2F1, but inhibiting Gαq/11 signaling or activating NR2F1 can arrest UM growth. NR2F1 knockout led to dormant DCC awakening and liver metastatic growth. NR2F1 and YAP1 inverse expression was confirmed in human livers carrying UM solitary, small DCC clusters as well as large metastases. Intriguingly, RNA-seq and Cut&Run analysis revealed that NR2F1 short-circuits oncogene signaling by repressing multiple G-protein signaling components. Our work provides previously unrecognized mechanistic insight into UM DCC dormancy and potential pathways for interception. Statement of significance NR2F1 epigenetically suppresses genes associated with G-protein signaling, cell cycle, and YAP1/TEAD1 pathways, inducing dormancy in uveal melanoma (UM) disseminated cancer cells. This study unveils novel markers for UM dormancy and reactivation, positioning NR2F1 as a promising target for intercepting residual and UM metastatic disease.
Collapse
|
7
|
Blath J, Kraut A, Paul T, Tóbiás A. A stochastic population model for the impact of cancer cell dormancy on therapy success. J Theor Biol 2025; 597:111995. [PMID: 39566574 DOI: 10.1016/j.jtbi.2024.111995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 09/24/2024] [Accepted: 11/08/2024] [Indexed: 11/22/2024]
Abstract
Therapy evasion - and subsequent disease progression - is a major challenge in current oncology. An important role in this context seems to be played by various forms of cancer cell dormancy. For example, therapy-induced dormancy, over short timescales, can create serious obstacles to aggressive treatment approaches such as chemotherapy, and long-term dormancy may lead to relapses and metastases even many years after an initially successful treatment. In this paper, we focus on individual cancer cells switching into and out of a dormant state both spontaneously as well as in response to treatment. We introduce an idealized mathematical model, based on stochastic agent-based interactions, for the dynamics of cancer cell populations involving individual short-term dormancy, and allow for a range of (multi-drug) therapy protocols. Our analysis - based on simulations of the many-particle limit - shows that in our model, depending on the specific underlying dormancy mechanism, even a small initial population (of explicitly quantifiable size) of dormant cells can lead to therapy failure under classical single-drug treatments that would successfully eradicate the tumour in the absence of dormancy. We further investigate and quantify the effectiveness of several multi-drug regimes (manipulating dormant cancer cells in specific ways, including increasing or decreasing resuscitation rates or targeting dormant cells directly). Relying on quantitative results for concrete simulation parameters, we provide some general basic rules for the design of (multi-)drug treatment protocols depending on the types and processes of dormancy mechanisms present in the population.
Collapse
Affiliation(s)
- Jochen Blath
- Goethe-Universität Frankfurt, Robert-Mayer-Straße 10, 60325 Frankfurt am Main, Germany.
| | - Anna Kraut
- School of Mathematics, University of Minnesota - Twin Cities, 206 Church St SE, Minneapolis, MN 55455, USA.
| | - Tobias Paul
- HU Berlin, Rudower Chaussee 25, 12489 Berlin, Germany.
| | - András Tóbiás
- Department of Computer Science and Information Theory, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary.
| |
Collapse
|
8
|
Chen W, Mao Y, Zhan Y, Li W, Wu J, Mao X, Xu B, Shu F. Exosome-delivered NR2F1-AS1 and NR2F1 drive phenotypic transition from dormancy to proliferation in treatment-resistant prostate cancer via stabilizing hormonal receptors. J Nanobiotechnology 2024; 22:761. [PMID: 39695778 DOI: 10.1186/s12951-024-03025-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/19/2024] [Indexed: 12/20/2024] Open
Abstract
Cancer cells acquire the ability to reprogram their phenotype in response to targeted therapies, yet the transition from dormancy to proliferation in drug-resistant cancers remains poorly understood. In prostate cancer, we utilized high-plasticity mouse models and enzalutamide-resistant (ENZ-R) cellular models to elucidate NR2F1 as a key factor in lineage transition and ENZ resistance. Depletion of NR2F1 drives ENZ-R cells into a relative dormancy state, characterized by reduced proliferation and heightened drug resistance, while NR2F1 overexpression yields contrasting outcomes. Transcriptional sequencing analysis of NR2F1-silenced prostate cancer cells and tissues from the Cancer Genome Atlas-prostate cancer and SU2C cohorts indicated exosomes as the most enriched cell component, with pathways implicated in steroid hormone biosynthesis and drug metabolism. Moreover, NR2F1-AS1 forms a complex with SRSF1 to upregulate NR2F1 expression, facilitating its binding with ESR1 to sustain hormonal receptor expression and enhance proliferation in ENZ-R cells. Furthermore, HnRNPA2B1 interacts with NR2F1 and NR2F1-AS1, assisting their packaging into exosomes, wherein exosomal NR2F1 and NR2F1-AS1 promote the proliferation of dormant ENZ-R cells. Our works offer novel insights into the reawaking of dormant drug-resistant cancer cells governed by NR2F1 upregulation triggered by exosome-derived NR2F1-AS1 and NR2F1, suggesting therapeutic potential for phenotype reversal.
Collapse
Affiliation(s)
- Wenbin Chen
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Yiyou Mao
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - YiYuan Zhan
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Wenfeng Li
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Jun Wu
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiangming Mao
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Bin Xu
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Fangpeng Shu
- Department of Urology, Guangzhou Women and Children's Medical Center, National Children's Medical Center for South Central Region, Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
9
|
Liu W, Kovacs AH, Hou J. Cancer Cells in Sleep Mode: Wake Them to Eliminate or Keep Them Asleep Forever? Cells 2024; 13:2022. [PMID: 39682769 PMCID: PMC11640528 DOI: 10.3390/cells13232022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/03/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
Cancer cell dormancy is a critical phase in cancer development, wherein cancer cells exist in a latent state marked by temporary but reversible growth arrest. This dormancy phase contributes to anticancer drug resistance, cancer recurrence, and metastasis. Treatment strategies aimed at cancer dormancy can be categorized into two contradictory approaches: inducing cancer cells into a dormant state or eliminating dormant cells. While the former seeks to establish permanent dormancy, the latter aims at eradicating this small population of dormant cells. In this review, we explore the current advancements in therapeutic methods targeting cancer cell dormancy and discuss future strategies. The concept of cancer cell dormancy has emerged as a promising avenue for novel cancer treatments, holding the potential for breakthroughs in the future.
Collapse
Affiliation(s)
- Wenjie Liu
- Department of Chemistry, Lakehead University, 955 Oliver Rd, Thunder Bay, ON P7B 5E1, Canada; (W.L.); (A.H.K.)
- Thunder Bay Regional Health Research Institute, 980 Oliver Road, Thunder Bay, ON P7B 6V4, Canada
| | - Antal H. Kovacs
- Department of Chemistry, Lakehead University, 955 Oliver Rd, Thunder Bay, ON P7B 5E1, Canada; (W.L.); (A.H.K.)
| | - Jinqiang Hou
- Department of Chemistry, Lakehead University, 955 Oliver Rd, Thunder Bay, ON P7B 5E1, Canada; (W.L.); (A.H.K.)
- Thunder Bay Regional Health Research Institute, 980 Oliver Road, Thunder Bay, ON P7B 6V4, Canada
| |
Collapse
|
10
|
Kim MJ. Tracing Quiescent Cancer Cells In Vivo. Cancers (Basel) 2024; 16:3822. [PMID: 39594777 PMCID: PMC11593267 DOI: 10.3390/cancers16223822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/10/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
QCCs have long gained significant interest as potential "seeds" for recurrent cancers. Clinical evidence suggests that a subset of cancer cells exits the cell cycle and enters a quiescent state following anti-cancer treatment. These microscopic-residual QCCs are extremely challenging to trace and detect within patients. Additionally, QCCs resist conventional anti-cancer therapies due to the lack of cell activity. Notably, upon the unknown environmental cues in unknown time points, sometimes decades later, QCCs can reactivate, triggering cancer relapse at primary or secondary sites. Currently, no targeted therapies or diagnostic tools exist for QCCs, and their molecular regulatory mechanisms remain largely unknown. The major challenge in understanding QCCs lies in the limited availability of human-relevant pre-clinical models that trace and collect QCCs in vivo. This review provides an overview of existing QCC tracing systems and analyzes their limitations. It also cautiously proposes potential improvements for tracing QCCs in vivo based on recent advancements in QCC studies and lineage-tracing techniques. Developing human-relevant and easily accessible in vivo tracing systems will be a crucial step in advancing QCC diagnostics and therapeutic strategies.
Collapse
Affiliation(s)
- Moon Jong Kim
- Department of Life Science, Gachon University, Seongnam 13120, Republic of Korea;
- Department of Health Science and Technology, GAIHST, Lee Gil Ya Cancer and Diabetes Institute, Incheon 21999, Republic of Korea
| |
Collapse
|
11
|
Haynes NM, Chadwick TB, Parker BS. The complexity of immune evasion mechanisms throughout the metastatic cascade. Nat Immunol 2024; 25:1793-1808. [PMID: 39285252 DOI: 10.1038/s41590-024-01960-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/12/2024] [Indexed: 09/29/2024]
Abstract
Metastasis, the spread of cancer from a primary site to distant organs, is an important challenge in oncology. This Review explores the complexities of immune escape mechanisms used throughout the metastatic cascade to promote tumor cell dissemination and affect organotropism. Specifically, we focus on adaptive plasticity of disseminated epithelial tumor cells to understand how they undergo phenotypic transitions to survive microenvironmental conditions encountered during metastasis. The interaction of tumor cells and their microenvironment is analyzed, highlighting the local and systemic effects that innate and adaptive immune systems have in shaping an immunosuppressive milieu to foster aggressive metastatic tumors. Effectively managing metastatic disease demands a multipronged approach to target the parallel and sequential mechanisms that suppress anti-tumor immunity. This management necessitates a deep understanding of the complex interplay between tumor cells, their microenvironment and immune responses that we provide with this Review.
Collapse
Affiliation(s)
- Nicole M Haynes
- Cancer Evolution and Metastasis Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Thomas B Chadwick
- Cancer Evolution and Metastasis Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Belinda S Parker
- Cancer Evolution and Metastasis Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
12
|
Zhang K, Zhang H, Wang B, Gao S, Sun C, Jia C, Cui J. NR2F1 overexpression alleviates trophoblast cell dysfunction by inhibiting GDF15/MAPK axis in preeclampsia. Hum Cell 2024; 37:1405-1420. [PMID: 39007956 DOI: 10.1007/s13577-024-01095-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/15/2024] [Indexed: 07/16/2024]
Abstract
Abnormal functions of trophoblast cells are associated with the pathogenesis of preeclampsia (PE). Nuclear receptor subfamily 2 group F member 1 (NR2F1) acts as a transcriptionally regulator in many diseases, but its role in PE remains unknown. Hypoxia/reoxygenation (H/R)-stimulated HTR-8/SVneo cells were used to mimic PE injury in vitro. NR2F1 overexpression alleviated trophoblast apoptosis, as evidenced by the decreased number of TUNEL-positive cells and the downregulation of caspase 3 and caspase 9 expression in cells. NR2F1 overexpression increased the invasion and migration ability of HTR-8/SVneo cells, accompanied by increased protein levels of matrix metalloproteinase (MMP)-2 and MMP-9. mRNA-seq was applied to explore the underlying mechanism of NR2F1, identifying growth differentiation factor 15 (GDF15) as the possible downstream effector. Dual-luciferase reporter, ChIP-qPCR, and DNA pull-down assays confirmed that NR2F1 bound to the promoter of GDF15 and transcriptionally inhibited its expression. GDF15 overexpression increased apoptosis and decreased the ability of invasion and migration in HTR-8/SVneo cells expressing NR2F1. MAPK pathway was involved in the regulation of PE. Administration of p38 inhibitor, ERK inhibitor, and JNK inhibitor reversed the effect of simultaneous overexpression NR2F1 and GDF15 on trophoblast apoptosis, invasion, and migration. Our findings demonstrated that NR2F1 overexpression inhibited trophoblast apoptosis and promoted trophoblast invasion and migration. NR2F1 might negatively regulate GDF15 expression by binding to its promoter region, which further inhibited MAPK signaling pathway in PE. Our study highlights that NR2F1 might sever as a potential target in PE.
Collapse
Affiliation(s)
- Ke Zhang
- Department of Obstetrics, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Hailing Zhang
- Department of Obstetrics, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Bing Wang
- Department of Obstetrics, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Shanshan Gao
- Department of Obstetrics, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Caiping Sun
- Department of Obstetrics, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Cong Jia
- Department of Obstetrics, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Jinquan Cui
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Zhengzhou University, No. 2, Jingba Road, Zhengzhou, Henan, People's Republic of China.
| |
Collapse
|
13
|
Janssens J, Kim P, Kim SJ, Wedrychowski A, Kadiyala GN, Hunt PW, Deeks SG, Wong JK, Yukl SA. Mechanisms and efficacy of small molecule latency-promoting agents to inhibit HIV reactivation ex vivo. JCI Insight 2024; 9:e183084. [PMID: 39163135 PMCID: PMC11466185 DOI: 10.1172/jci.insight.183084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/07/2024] [Indexed: 08/22/2024] Open
Abstract
Drugs that inhibit HIV transcription and/or reactivation of latent HIV have been proposed as a strategy to reduce HIV-associated immune activation or to achieve a functional cure, yet comparative studies are lacking. We evaluated 26 drugs, including drugs previously reported to inhibit HIV transcription (inhibitors of Tat-dependent HIV transcription, Rev, HSF-1/PTEF-b, HSP90, Jak/Stat, or SIRT1/Tat deacetylation) and other agents that were not tested before (inhibitors of PKC, NF-κB, SP-1, or histone acetyltransferase; NR2F1 agonists), elongation (inhibitors of CDK9/ PTEF-b), completion (inhibitors of PolyA-polymerase), or splicing (inhibitors of human splice factors). To investigate if those drugs would vary in their ability to affect different blocks to HIV transcription, we measured levels of initiated, elongated, midtranscribed, completed, and multiply spliced HIV RNA in PBMCs from antiretroviral therapy-suppressed individuals following ex vivo treatment with each drug and subsequent T cell activation. We identified new drugs that prevent HIV reactivation, including CDK and splicing inhibitors. While some drugs inhibited 1 or 2 steps, other drugs (CDK inhibitors, splicing inhibitors, tanespimycin, and triptolide) inhibited multiple stages of HIV transcription and blocked the production of supernatant viral RNA. These drugs and targets deserve further study in strategies aimed at reducing HIV-associated immune activation or achieving a functional cure.
Collapse
Affiliation(s)
- Julie Janssens
- Department of Medicine, University of California San Francisco (UCSF), San Francisco, California, USA
- Department of Medicine, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| | - Peggy Kim
- Department of Medicine, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| | - Sun Jin Kim
- Department of Medicine, University of California San Francisco (UCSF), San Francisco, California, USA
- Department of Medicine, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| | - Adam Wedrychowski
- Department of Medicine, University of California San Francisco (UCSF), San Francisco, California, USA
- Department of Medicine, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| | - Gayatri N. Kadiyala
- Department of Medicine, University of California San Francisco (UCSF), San Francisco, California, USA
- Department of Medicine, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| | - Peter W. Hunt
- Department of Medicine, University of California San Francisco (UCSF), San Francisco, California, USA
| | - Steven G. Deeks
- Department of Medicine, University of California San Francisco (UCSF), San Francisco, California, USA
| | - Joseph K. Wong
- Department of Medicine, University of California San Francisco (UCSF), San Francisco, California, USA
- Department of Medicine, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| | - Steven A. Yukl
- Department of Medicine, University of California San Francisco (UCSF), San Francisco, California, USA
- Department of Medicine, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| |
Collapse
|
14
|
Senchukova MA. Colorectal cancer and dormant metastases: Put to sleep or destroy? World J Gastrointest Oncol 2024; 16:2304-2317. [PMID: 38994146 PMCID: PMC11236221 DOI: 10.4251/wjgo.v16.i6.2304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/19/2024] [Accepted: 04/30/2024] [Indexed: 06/13/2024] Open
Abstract
After reading the review by An et al "Biological factors driving colorectal cancer metastasis", which covers the problem of the metastasis of colorectal cancer (CRC), I had a desire to discuss with readers one of the exciting problems associated with dormant metastases. Most deaths from CRCs are caused by metastases, which can be detected both at diagnosis of the primary tumor and several years or even decades after treatment. This is because tumor cells that enter the bloodstream can be destroyed by the immune system, cause metastatic growth, or remain dormant for a long time. Dormant tumor cells may not manifest themselves throughout a person's life or, after some time and under appropriate conditions, may give rise to the growth of metastases. In this editorial, we will discuss the most important features of dormant metastases and the mechanisms of premetastatic niche formation, as well as factors that contribute to the activation of dormant metastases in CRCs. We will pay special attention to the possible mechanisms involved in the formation of circulating tumor cell complexes and the choice of therapeutic strategies that promote the dormancy or destruction of tumor cells in CRCs.
Collapse
Affiliation(s)
- Marina A Senchukova
- Department of Oncology, Orenburg State Medical University, Orenburg 460000, Russia
| |
Collapse
|
15
|
Wang Y, Wang L, Wei Y, Wei C, Yang H, Chen Q, Zhang R, Shen H. Advances in the molecular regulation mechanism of tumor dormancy and its therapeutic strategy. Discov Oncol 2024; 15:184. [PMID: 38795254 PMCID: PMC11127899 DOI: 10.1007/s12672-024-01049-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 05/20/2024] [Indexed: 05/27/2024] Open
Abstract
Tumor dormancy is a stage in the growth and development of malignant cells and is one of the biological characteristics of malignant cells. Complex transitions involving dormant tumor cells between quiescent and proliferative states pose challenges for tumor eradication. This paper explores the biological features and molecular mechanisms of tumor dormancy and highlights emerging therapies. The strategies discussed promise innovative clinical potential against malignant tumors. Understanding the mechanisms of dormancy can help provide valuable insights into the diagnosis and treatment of malignant tumors to advance the fight against this world problem.
Collapse
Affiliation(s)
- Yuan Wang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 51006, People's Republic of China
| | - Linlin Wang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 51006, People's Republic of China
| | - Yaojun Wei
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 51006, People's Republic of China
| | - Chuang Wei
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 51006, People's Republic of China
| | - Haohang Yang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 51006, People's Republic of China
| | - Qiurui Chen
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 51006, People's Republic of China
| | - Rongxin Zhang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 51006, People's Republic of China.
| | - Han Shen
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 51006, People's Republic of China.
| |
Collapse
|
16
|
Feigelman G, Simanovich E, Brockmeyer P, Rahat MA. EMMPRIN promotes spheroid organization and metastatic formation: comparison between monolayers and spheroids of CT26 colon carcinoma cells. Front Immunol 2024; 15:1374088. [PMID: 38725999 PMCID: PMC11079191 DOI: 10.3389/fimmu.2024.1374088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
Background In vitro studies often use two-dimensional (2D) monolayers, but 3D cell organization, such as in spheroids, better mimics the complexity of solid tumors. To metastasize, cancer cells undergo the process of epithelial-to-mesenchymal transition (EMT) to become more invasive and pro-angiogenic, with expression of both epithelial and mesenchymal markers. Aims We asked whether EMMPRIN/CD147 contributes to the formation of the 3D spheroid structure, and whether spheroids, which are often used to study proliferation and drug resistance, could better model the EMT process and the metastatic properties of cells, and improve our understanding of the role of EMMPRIN in them. Methods We used the parental mouse CT26 colon carcinoma (CT26-WT) cells, and infected them with a lentivirus vector to knock down EMMPRIN expression (CT26-KD cells), or with an empty lentivirus vector (CT26-NC) that served as a negative control. In some cases, we repeated the experiments with the 4T1 or LLC cell lines. We compared the magnitude of change between CT26-KD and CT26-WT/NC cells in different metastatic properties in cells seeded as monolayers or as spheroids formed by the scaffold-free liquid overlay method. Results We show that reduced EMMPRIN expression changed the morphology of cells and their spatial organization in both 2D and 3D models. The 3D models more clearly demonstrated how reduced EMMPRIN expression inhibited proliferation and the angiogenic potential, while it enhanced drug resistance, invasiveness, and EMT status, and moreover it enhanced cell dormancy and prevented CT26-KD cells from forming metastatic-like lesions when seeded on basement membrane extract (BME). Most interestingly, this approach enabled us to identify that EMMPRIN and miR-146a-5p form a negative feedback loop, thus identifying a key mechanism for EMMPRIN activities. These results underline EMMPRIN role as a gatekeeper that prevents dormancy, and suggest that EMMPRIN links EMT characteristics to the process of spheroid formation. Conclusions Thus, 3D models can help identify mechanisms by which EMMPRIN facilitates tumor and metastasis progression, which might render EMMPRIN as a promising target for anti-metastatic tumor therapy.
Collapse
Affiliation(s)
- Gabriele Feigelman
- Immunotherapy Laboratory, Research Laboratories, Carmel Medical Center, Haifa, Israel
- Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Elina Simanovich
- Immunotherapy Laboratory, Research Laboratories, Carmel Medical Center, Haifa, Israel
| | - Phillipp Brockmeyer
- Department of Oral and Maxillofacial Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Michal A. Rahat
- Immunotherapy Laboratory, Research Laboratories, Carmel Medical Center, Haifa, Israel
- Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
17
|
Liu R, Zhao Y, Su S, Kwabil A, Njoku PC, Yu H, Li X. Unveiling cancer dormancy: Intrinsic mechanisms and extrinsic forces. Cancer Lett 2024; 591:216899. [PMID: 38649107 DOI: 10.1016/j.canlet.2024.216899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/06/2024] [Accepted: 04/12/2024] [Indexed: 04/25/2024]
Abstract
Tumor cells disseminate in various distant organs at early stages of cancer progression. These disseminated tumor cells (DTCs) can stay dormant/quiescent without causing patient symptoms for years or decades. These dormant tumor cells survive despite curative treatments by entering growth arrest, escaping immune surveillance, and/or developing drug resistance. However, these dormant cells can reactivate to proliferate, causing metastatic progression and/or relapse, posing a threat to patients' survival. It's unclear how cancer cells maintain dormancy and what triggers their reactivation. What are better approaches to prevent metastatic progression and relapse through harnessing cancer dormancy? To answer these remaining questions, we reviewed the studies of tumor dormancy and reactivation in various types of cancer using different model systems, including the brief history of dormancy studies, the intrinsic characteristics of dormant cells, and the external cues at the cellular and molecular levels. Furthermore, we discussed future directions in the field and the strategies for manipulating dormancy to prevent metastatic progression and recurrence.
Collapse
Affiliation(s)
- Ruihua Liu
- School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, 010070, China; Department of Cell and Cancer Biology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA
| | - Yawei Zhao
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA
| | - Shang Su
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA
| | - Augustine Kwabil
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA
| | - Prisca Chinonso Njoku
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA
| | - Haiquan Yu
- School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, 010070, China.
| | - Xiaohong Li
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA.
| |
Collapse
|
18
|
Marino V, Phromkrasae W, Bertacchi M, Cassini P, Chakrabandhu K, Dell'Orco D, Studer M. Disrupted protein interaction dynamics in a genetic neurodevelopmental disorder revealed by structural bioinformatics and genetic code expansion. Protein Sci 2024; 33:e4953. [PMID: 38511490 PMCID: PMC10955615 DOI: 10.1002/pro.4953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/13/2024] [Accepted: 02/17/2024] [Indexed: 03/22/2024]
Abstract
Deciphering the structural effects of gene variants is essential for understanding the pathophysiological mechanisms of genetic diseases. Using a neurodevelopmental disorder called Bosch-Boonstra-Schaaf Optic Atrophy Syndrome (BBSOAS) as a genetic disease model, we applied structural bioinformatics and Genetic Code Expansion (GCE) strategies to assess the pathogenic impact of human NR2F1 variants and their binding with known and novel partners. While the computational analyses of the NR2F1 structure delineated the molecular basis of the impact of several variants on the isolated and complexed structures, the GCE enabled covalent and site-specific capture of transient supramolecular interactions in living cells. This revealed the variable quaternary conformations of NR2F1 variants and highlighted the disrupted interplay with dimeric partners and the newly identified co-factor, CRABP2. The disclosed consequence of the pathogenic mutations on the conformation, supramolecular interplay, and alterations in the cell cycle, viability, and sub-cellular localization of the different variants reflect the heterogeneous disease spectrum of BBSOAS and set up novel foundation for unveiling the complexity of neurodevelopmental diseases.
Collapse
Affiliation(s)
- Valerio Marino
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological ChemistryUniversity of VeronaVeronaItaly
| | | | | | - Paul Cassini
- University Côte d'Azur, CNRS, Inserm, iBVNiceFrance
| | | | - Daniele Dell'Orco
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological ChemistryUniversity of VeronaVeronaItaly
| | | |
Collapse
|
19
|
Tran TTT, Hung JJ. PTEN decreases NR2F1 expression to inhibit ciliogenesis during EGFR L858R-induced lung cancer progression. Cell Death Dis 2024; 15:225. [PMID: 38499532 PMCID: PMC10948910 DOI: 10.1038/s41419-024-06610-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 03/20/2024]
Abstract
Lung cancer is the major cause of death worldwide. Activation of oncogenes or inhibition of tumor suppressors causes cancer formation. Previous studies have indicated that PTEN, as a tumor suppressor, inhibits cancer formation. In this study, we studied the role of PTEN in EGFRL858R-induced lung cancer in vivo. Interestingly, loss of PTEN increased bronchial cell hyperplasia but decreased alveolar cell hyperplasia in EGFRL858R*PTEN-/--induced lung cancer. Systematic analysis of gene expression by RNA-seq showed that several genes related to ciliogenesis were upregulated in EGFRL858R*PTEN-/--induced lung cancer and subsequently showed that bronchial ciliated cells were hyperplastic. Several critical ciliogenesis-related genes, such as Mucin5A, DNAI2, and DNAI3, were found to be regulated by NR2F1. Next, NR2F1 was found to be inhibited by overexpression of PTEN, indicating that PTEN negatively regulates NR2F1, thereby inhibiting the expression of ciliogenesis-related genes and leading to the inhibition of bronchial cell hyperplasia during EGFRL858R-induced lung cancer progression. In addition, we also found that PTEN decreased AKT phosphorylation in A549, KRAS mutant, and H1299 cells but increased AKT phosphorylation in PC9, EGFRL858R, and H1299L858R cells, suggesting that PTEN may function as a tumor suppressor and an oncogene in lung cancers with KRAS mutation and EGFR mutation, respectively. PTEN acts as a double-edged sword that differentially regulates EGFRL858R-induced lung cancer progression in different genomic backgrounds. Understanding the PTEN in lung cancer with different genetic backgrounds will be beneficial for therapy in the future.
Collapse
Affiliation(s)
- Thi Thanh Truc Tran
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Jan-Jong Hung
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
20
|
Aleksandrova KV, Vorobev ML, Suvorova II. mTOR pathway occupies a central role in the emergence of latent cancer cells. Cell Death Dis 2024; 15:176. [PMID: 38418814 PMCID: PMC10902345 DOI: 10.1038/s41419-024-06547-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/18/2024] [Accepted: 02/07/2024] [Indexed: 03/02/2024]
Abstract
The current focus in oncology research is the translational control of cancer cells as a major mechanism of cellular plasticity. Recent evidence has prompted a reevaluation of the role of the mTOR pathway in cancer development leading to new conclusions. The mechanistic mTOR inhibition is well known to be a tool for generating quiescent stem cells and cancer cells. In response to mTOR suppression, quiescent cancer cells dynamically change their proteome, triggering alternative non-canonical translation mechanisms. The shift to selective translation may have clinical relevance, since quiescent tumor cells can acquire new phenotypical features. This review provides new insights into the patterns of mTOR functioning in quiescent cancer cells, enhancing our current understanding of the biology of latent metastasis.
Collapse
Affiliation(s)
| | - Mikhail L Vorobev
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russian Federation
| | - Irina I Suvorova
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russian Federation.
| |
Collapse
|
21
|
Aouad P, Quinn HM, Berger A, Brisken C. Tumor dormancy: EMT beyond invasion and metastasis. Genesis 2024; 62:e23552. [PMID: 37776086 DOI: 10.1002/dvg.23552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/31/2023] [Accepted: 09/12/2023] [Indexed: 10/01/2023]
Abstract
More than two-thirds of cancer-related deaths are attributable to metastases. In some tumor types metastasis can occur up to 20 years after diagnosis and successful treatment of the primary tumor, a phenomenon termed late recurrence. Metastases arise from disseminated tumor cells (DTCs) that leave the primary tumor early on in tumor development, either as single cells or clusters, adapt to new environments, and reduce or shut down their proliferation entering a state of dormancy for prolonged periods of time. Dormancy has been difficult to track clinically and study experimentally. Recent advances in technology and disease modeling have provided new insights into the molecular mechanisms orchestrating dormancy and the switch to a proliferative state. A new role for epithelial-mesenchymal transition (EMT) in inducing plasticity and maintaining a dormant state in several cancer models has been revealed. In this review, we summarize the major findings linking EMT to dormancy control and highlight the importance of pre-clinical models and tumor/tissue context when designing studies. Understanding of the cellular and molecular mechanisms controlling dormant DTCs is pivotal in developing new therapeutic agents that prevent distant recurrence by maintaining a dormant state.
Collapse
Affiliation(s)
- Patrick Aouad
- Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Hazel M Quinn
- ISREC-Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Adeline Berger
- Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Cathrin Brisken
- ISREC-Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- The Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, UK
| |
Collapse
|
22
|
Yue SY, Niu D, Liu XH, Li WY, Ding K, Fang HY, Wu XD, Li C, Guan Y, Du HX. BLCA prognostic model creation and validation based on immune gene-metabolic gene combination. Discov Oncol 2023; 14:232. [PMID: 38103068 PMCID: PMC10725402 DOI: 10.1007/s12672-023-00853-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/14/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Bladder cancer (BLCA) is a prevalent urinary system malignancy. Understanding the interplay of immunological and metabolic genes in BLCA is crucial for prognosis and treatment. METHODS Immune/metabolism genes were extracted, their expression profiles analyzed. NMF clustering found prognostic genes. Immunocyte infiltration and tumor microenvironment were examined. Risk prognostic signature using Cox/LASSO methods was developed. Immunological Microenvironment and functional enrichment analysis explored. Immunotherapy response and somatic mutations evaluated. RT-qPCR validated gene expression. RESULTS We investigated these genes in 614 BLCA samples, identifying relevant prognostic genes. We developed a predictive feature and signature comprising 7 genes (POLE2, AHNAK, SHMT2, NR2F1, TFRC, OAS1, CHKB). This immune and metabolism-related gene (IMRG) signature showed superior predictive performance across multiple datasets and was independent of clinical indicators. Immunotherapy response and immune cell infiltration correlated with the risk score. Functional enrichment analysis revealed distinct biological pathways between low- and high-risk groups. The signature demonstrated higher prediction accuracy than other signatures. qRT-PCR confirmed differential gene expression and immunotherapy response. CONCLUSIONS The model in our work is a novel assessment tool to measure immunotherapy's effectiveness and anticipate BLCA patients' prognosis, offering new avenues for immunological biomarkers and targeted treatments.
Collapse
Affiliation(s)
- Shao-Yu Yue
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, People's Republic of China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Di Niu
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, People's Republic of China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Xian-Hong Liu
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, People's Republic of China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Wei-Yi Li
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, People's Republic of China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Ke Ding
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, People's Republic of China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Hong-Ye Fang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, People's Republic of China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Xin-Dong Wu
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, People's Republic of China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Chun Li
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, People's Republic of China.
- Institute of Urology, Anhui Medical University, Hefei, Anhui, People's Republic of China.
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, People's Republic of China.
| | - Yu Guan
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, People's Republic of China.
- Institute of Urology, Anhui Medical University, Hefei, Anhui, People's Republic of China.
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, People's Republic of China.
| | - He-Xi Du
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, People's Republic of China.
- Institute of Urology, Anhui Medical University, Hefei, Anhui, People's Republic of China.
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, People's Republic of China.
| |
Collapse
|
23
|
Calvo V, Zheng W, Adam-Artigues A, Staschke KA, Huang X, Cheung JF, Nobre AR, Fujisawa S, Liu D, Fumagalli M, Surguladze D, Stokes ME, Nowacek A, Mulvihill M, Farias EF, Aguirre-Ghiso JA. A PERK-Specific Inhibitor Blocks Metastatic Progression by Limiting Integrated Stress Response-Dependent Survival of Quiescent Cancer Cells. Clin Cancer Res 2023; 29:5155-5172. [PMID: 37982738 PMCID: PMC10842363 DOI: 10.1158/1078-0432.ccr-23-1427] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/05/2023] [Accepted: 10/12/2023] [Indexed: 11/21/2023]
Abstract
PURPOSE The integrated stress response (ISR) kinase PERK serves as a survival factor for both proliferative and dormant cancer cells. We aim to validate PERK inhibition as a new strategy to specifically eliminate solitary disseminated cancer cells (DCC) in secondary sites that eventually reawake and originate metastasis. EXPERIMENTAL DESIGN A novel clinical-grade PERK inhibitor (HC4) was tested in mouse syngeneic and PDX models that present quiescent/dormant DCCs or growth-arrested cancer cells in micro-metastatic lesions that upregulate ISR. RESULTS HC4 significantly blocks metastasis, by killing quiescent/slow-cycling ISRhigh, but not proliferative ISRlow DCCs. HC4 blocked expansion of established micro-metastasis that contained ISRhigh slow-cycling cells. Single-cell gene expression profiling and imaging revealed that a significant proportion of solitary DCCs in lungs were indeed dormant and displayed an unresolved ER stress as revealed by high expression of a PERK-regulated signature. In human breast cancer metastasis biopsies, GADD34 expression (PERK-regulated gene) and quiescence were positively correlated. HC4 effectively eradicated dormant bone marrow DCCs, which usually persist after rounds of therapies. Importantly, treatment with CDK4/6 inhibitors (to force a quiescent state) followed by HC4 further reduced metastatic burden. In HNSCC and HER2+ cancers HC4 caused cell death in dormant DCCs. In HER2+ tumors, PERK inhibition caused killing by reducing HER2 activity because of sub-optimal HER2 trafficking and phosphorylation in response to EGF. CONCLUSIONS Our data identify PERK as a unique vulnerability in quiescent or slow-cycling ISRhigh DCCs. The use of PERK inhibitors may allow targeting of pre-existing or therapy-induced growth arrested "persister" cells that escape anti-proliferative therapies.
Collapse
Affiliation(s)
- Veronica Calvo
- HiberCell, Inc, 619 West 54th Street, 8th Floor, New York, NY USA
- Division of Hematology and Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Current affiliation: Pathos, Chicago, IL, USA
| | - Wei Zheng
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, NY, USA
- Montefiore Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Anna Adam-Artigues
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, NY, USA
- Montefiore Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Kirk A. Staschke
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, USA
| | - Xin Huang
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, NY, USA
- Montefiore Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Julie F. Cheung
- Division of Hematology and Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ana Rita Nobre
- Division of Hematology and Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sho Fujisawa
- Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - David Liu
- HiberCell, Inc, 619 West 54th Street, 8th Floor, New York, NY USA
| | - Maria Fumagalli
- HiberCell, Inc, 619 West 54th Street, 8th Floor, New York, NY USA
| | - David Surguladze
- HiberCell, Inc, 619 West 54th Street, 8th Floor, New York, NY USA
| | | | - Ari Nowacek
- HiberCell, Inc, 619 West 54th Street, 8th Floor, New York, NY USA
| | - Mark Mulvihill
- HiberCell, Inc, 619 West 54th Street, 8th Floor, New York, NY USA
| | - Eduardo F. Farias
- HiberCell, Inc, 619 West 54th Street, 8th Floor, New York, NY USA
- Current affiliation: Serinus Biosciences, New York, NY, USA
| | - Julio A. Aguirre-Ghiso
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, NY, USA
- Montefiore Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
24
|
Janin M, Davalos V, Esteller M. Cancer metastasis under the magnifying glass of epigenetics and epitranscriptomics. Cancer Metastasis Rev 2023; 42:1071-1112. [PMID: 37369946 PMCID: PMC10713773 DOI: 10.1007/s10555-023-10120-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023]
Abstract
Most of the cancer-associated mortality and morbidity can be attributed to metastasis. The role of epigenetic and epitranscriptomic alterations in cancer origin and progression has been extensively demonstrated during the last years. Both regulations share similar mechanisms driven by DNA or RNA modifiers, namely writers, readers, and erasers; enzymes responsible of respectively introducing, recognizing, or removing the epigenetic or epitranscriptomic modifications. Epigenetic regulation is achieved by DNA methylation, histone modifications, non-coding RNAs, chromatin accessibility, and enhancer reprogramming. In parallel, regulation at RNA level, named epitranscriptomic, is driven by a wide diversity of chemical modifications in mostly all RNA molecules. These two-layer regulatory mechanisms are finely controlled in normal tissue, and dysregulations are associated with every hallmark of human cancer. In this review, we provide an overview of the current state of knowledge regarding epigenetic and epitranscriptomic alterations governing tumor metastasis, and compare pathways regulated at DNA or RNA levels to shed light on a possible epi-crosstalk in cancer metastasis. A deeper understanding on these mechanisms could have important clinical implications for the prevention of advanced malignancies and the management of the disseminated diseases. Additionally, as these epi-alterations can potentially be reversed by small molecules or inhibitors against epi-modifiers, novel therapeutic alternatives could be envisioned.
Collapse
Affiliation(s)
- Maxime Janin
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute (IJC), IJC Building, Germans Trias I Pujol, Ctra de Can Ruti, Cami de Les Escoles S/N, 08916 Badalona, Barcelona, Spain
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain
| | - Veronica Davalos
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute (IJC), IJC Building, Germans Trias I Pujol, Ctra de Can Ruti, Cami de Les Escoles S/N, 08916 Badalona, Barcelona, Spain
| | - Manel Esteller
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute (IJC), IJC Building, Germans Trias I Pujol, Ctra de Can Ruti, Cami de Les Escoles S/N, 08916 Badalona, Barcelona, Spain.
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain.
- Institucio Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Catalonia, Spain.
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Catalonia, Spain.
| |
Collapse
|
25
|
Nasr MM, Lynch CC. How circulating tumor cluster biology contributes to the metastatic cascade: from invasion to dissemination and dormancy. Cancer Metastasis Rev 2023; 42:1133-1146. [PMID: 37442876 PMCID: PMC10713810 DOI: 10.1007/s10555-023-10124-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023]
Abstract
Circulating tumor cells (CTCs) are known to be prognostic for metastatic relapse and are detected in patients as solitary cells or cell clusters. Circulating tumor cell clusters (CTC clusters) have been observed clinically for decades and are of significantly higher metastatic potential compared to solitary CTCs. Recent studies suggest distinct differences in CTC cluster biology regarding invasion and survival in circulation. However, differences regarding dissemination, dormancy, and reawakening require more investigations compared to solitary CTCs. Here, we review the current state of CTC cluster research and consider their clinical significance. In addition, we discuss the concept of collective invasion by CTC clusters and molecular evidence as to how cluster survival in circulation compares to that of solitary CTCs. Molecular differences between solitary and clustered CTCs during dormancy and reawakening programs will also be discussed. We also highlight future directions to advance our current understanding of CTC cluster biology.
Collapse
Affiliation(s)
- Mostafa M Nasr
- Tumor Biology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
- Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL, USA
| | - Conor C Lynch
- Tumor Biology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.
| |
Collapse
|
26
|
Abstract
The pattern of delayed recurrence in a subset of breast cancer patients has long been explained by a model that incorporates a variable period of cellular or tumor mass dormancy prior to disease relapse. In this review, we critically evaluate existing data to develop a framework for inferring the existence of dormancy in clinical contexts of breast cancer. We integrate these clinical data with rapidly evolving mechanistic insights into breast cancer dormancy derived from a broad array of genetically engineered mouse models as well as experimental models of metastasis. Finally, we propose actionable interventions and discuss ongoing clinical trials that translate the wealth of knowledge gained in the laboratory to the long-term clinical management of patients at a high risk of developing recurrence.
Collapse
Affiliation(s)
- Erica Dalla
- Division of Hematology and Oncology, Department of Medicine and Department of Otolaryngology, Department of Oncological Sciences, Black Family Stem Cell Institute, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Amulya Sreekumar
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Julio A Aguirre-Ghiso
- Department of Cell Biology, Department of Oncology, Cancer Dormancy and Tumor Microenvironment Institute, Montefiore Einstein Cancer Center, Gruss Lipper Biophotonics Center, Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Institute for Aging Research, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Lewis A Chodosh
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Medicine, Abramson Cancer Center, and 2-PREVENT Translational Center of Excellence, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
27
|
Liu R, Su S, Xing J, Liu K, Zhao Y, Stangis M, Jacho DP, Yildirim-Ayan ED, Gatto-Weis CM, Chen B, Li X. Tumor removal limits prostate cancer cell dissemination in bone and osteoblasts induce cancer cell dormancy through focal adhesion kinase. J Exp Clin Cancer Res 2023; 42:264. [PMID: 37821954 PMCID: PMC10566127 DOI: 10.1186/s13046-023-02849-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/02/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND Disseminated tumor cells (DTCs) can enter a dormant state and cause no symptoms in cancer patients. On the other hand, the dormant DTCs can reactivate and cause metastases progression and lethal relapses. In prostate cancer (PCa), relapse can happen after curative treatments such as primary tumor removal. The impact of surgical removal on PCa dissemination and dormancy remains elusive. Furthermore, as dormant DTCs are asymptomatic, dormancy-induction can be an operational cure for preventing metastases and relapse of PCa patients. METHODS We used a PCa subcutaneous xenograft model and species-specific PCR to survey the DTCs in various organs at different time points of tumor growth and in response to tumor removal. We developed in vitro 2D and 3D co-culture models to recapitulate the dormant DTCs in the bone microenvironment. Proliferation assays, fluorescent cell cycle reporter, qRT-PCR, and Western Blot were used to characterize the dormancy phenotype. We performed RNA sequencing to determine the dormancy signature of PCa. A drug repurposing algorithm was applied to predict dormancy-inducing drugs and a top candidate was validated for the efficacy and the mechanism of dormancy induction. RESULTS We found DTCs in almost all mouse organs examined, including bones, at week 2 post-tumor cell injections. Surgical removal of the primary tumor reduced the overall DTC abundance, but the DTCs were enriched only in the bones. We found that osteoblasts, but not other cells of the bones, induced PCa cell dormancy. RNA-Seq revealed the suppression of mitochondrial-related biological processes in osteoblast-induced dormant PCa cells. Importantly, the mitochondrial-related biological processes were found up-regulated in both circulating tumor cells and bone metastases from PCa patients' data. We predicted and validated the dormancy-mimicking effect of PF-562,271 (PF-271), an inhibitor of focal adhesion kinase (FAK) in vitro. Decreased FAK phosphorylation and increased nuclear translocation were found in both co-cultured and PF-271-treated C4-2B cells, suggesting that FAK plays a key role in osteoblast-induced PCa dormancy. CONCLUSIONS Our study provides the first insights into how primary tumor removal enriches PCa cell dissemination in the bones, defines a unique osteoblast-induced PCa dormancy signature, and identifies FAK as a PCa cell dormancy gatekeeper.
Collapse
Affiliation(s)
- Ruihua Liu
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, the University of Toledo, 3000 Transverse Drive, Toledo, OH, 43614, USA
| | - Shang Su
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, the University of Toledo, 3000 Transverse Drive, Toledo, OH, 43614, USA
| | - Jing Xing
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
| | - Ke Liu
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
| | - Yawei Zhao
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, the University of Toledo, 3000 Transverse Drive, Toledo, OH, 43614, USA
| | - Mary Stangis
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, the University of Toledo, 3000 Transverse Drive, Toledo, OH, 43614, USA
| | - Diego P Jacho
- Bioengineering Department, the University of Toledo, Toledo, OH, 43606, USA
| | | | - Cara M Gatto-Weis
- Department of Pathology, College of Medicine and Life Sciences, the University of Toledo, Toledo, OH, 43614, USA
| | - Bin Chen
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA.
- Department of Pharmacology and Toxicology, Michigan State University, Grand Rapids, MI, 49503, USA.
| | - Xiaohong Li
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, the University of Toledo, 3000 Transverse Drive, Toledo, OH, 43614, USA.
| |
Collapse
|
28
|
Yao Y, Lv J, Wang G, Hong X. Multi-omics analysis and validation of the tumor microenvironment of hepatocellular carcinoma under RNA modification patterns. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:18318-18344. [PMID: 38052560 DOI: 10.3934/mbe.2023814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
BACKGROUND Multiple types of RNA modifications are associated with the prognosis of hepatocellular carcinoma (HCC) patients. However, the overall mediating effect of RNA modifications on the tumor microenvironment (TME) and the prognosis of patients with HCC is unclear. METHODS Thoroughly analyze the TME, biological processes, immune infiltration and patient prognosis based on RNA modification patterns and gene patterns. Construct a prognostic model (RNA modification score, RNAM-S) to predict the overall survival (OS) in HCC patients. Analyze the immune status, cancer stem cell (CSC), mutations and drug sensitivity of HCC patients in both the high and low RNAM-S groups. Verify the expression levels of the four characteristic genes of the prognostic RNAM-S using in vitro cell experiments. RESULTS Two modification patterns and two gene patterns were identified in this study. Both the high-expression modification pattern and the gene pattern exhibited worse OS. A prognostic RNAM-S model was constructed based on four featured genes (KIF20A, NR1I2, NR2F1 and PLOD2). Cellular experiments suggested significant dysregulation of the expression levels of these four genes. In addition, validation of the RNAM-S model using each data set showed good predictive performance of the model. The two groups of HCC patients (high and low RNAM-S groups) exhibited significant differences in immune status, CSC, mutation and drug sensitivity. CONCLUSION The findings of the study demonstrate the clinical value of RNA modifications, which provide new insights into the individualized treatment for patients with HCC.
Collapse
Affiliation(s)
- Yuanqian Yao
- Guangxi University of Chinese medicine, NanNing 530000, China
| | - Jianlin Lv
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Guangyao Wang
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Xiaohua Hong
- Guangxi University of Chinese medicine, NanNing 530000, China
| |
Collapse
|
29
|
Zhong S, Borlak J. Sex disparities in non-small cell lung cancer: mechanistic insights from a cRaf transgenic disease model. EBioMedicine 2023; 95:104763. [PMID: 37625265 PMCID: PMC10470261 DOI: 10.1016/j.ebiom.2023.104763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/10/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Women are at greater risk of developing non-small cell lung cancer (NSCLC), yet the underlying causes remain unclear. METHODS We performed whole genome scans in lung tumours of cRaf transgenic mice and identified miRNA, transcription factor and hormone receptor dependent gene regulations. We confirmed hormone receptors by immunohistochemistry and constructed regulatory gene networks by considering experimentally validated miRNA-gene and transcription factor-miRNA/gene targets. Bioinformatics, genomic foot-printing and gene enrichment analysis established sex-specific circuits of lung tumour growth. Translational research involved a large cohort of NSCLC patients. We evaluated commonalities in sex-specific NSCLC gene regulations between mice and humans and determined their prognostic value in Kaplan-Meier survival statistics and COX proportional hazard regression analysis. FINDINGS Overexpression of the cRaf kinase elicited an extraordinary 8-fold increase in tumour growth among females, and nearly 70% of the 112 differentially expressed genes (DEGs) were female specific. We identified oncogenes, oncomirs, tumour suppressors, cell cycle regulators and MAPK/EGFR signalling molecules, which prompted sex-based differences in NSCLC, and we deciphered a regulatory gene-network, which protected males from accelerated tumour growth. Strikingly, 41% of DEGs are targets of hormone receptors, and the majority (85%) are oestrogen receptor (ER) dependent. We confirmed the role of ER in a large cohort of NSCLC patients and validated 40% of DEGs induced by cRaf in clinical tumour samples. INTERPRETATION We report the molecular wiring that prompted sex disparities in tumour growth. This allowed us to propose the development of molecular targeted therapies by jointly blocking ER, CDK1 and arginase 2 in NSCLC. FUNDING We gratefully acknowledge the financial support of the Lower Saxony Ministry of Culture and Sciences and Volkswagen Foundation, Germany to JB (25A.5-7251-99-3/00) and of the Chinese Scholarship Council to SZ (202008080022). This publication is funded by the Deutsche Forschungsgemeinschaft (DFG) as part of the "Open Access Publikationskosten" program.
Collapse
Affiliation(s)
- Shen Zhong
- Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany
| | - Jürgen Borlak
- Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany.
| |
Collapse
|
30
|
Singh DK, Carcamo S, Farias EF, Hasson D, Zheng W, Sun D, Huang X, Cheung J, Nobre AR, Kale N, Sosa MS, Bernstein E, Aguirre-Ghiso JA. 5-Azacytidine- and retinoic-acid-induced reprogramming of DCCs into dormancy suppresses metastasis via restored TGF-β-SMAD4 signaling. Cell Rep 2023; 42:112560. [PMID: 37267946 PMCID: PMC10592471 DOI: 10.1016/j.celrep.2023.112560] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/31/2023] [Accepted: 05/08/2023] [Indexed: 06/04/2023] Open
Abstract
Disseminated cancer cells (DCCs) in secondary organs can remain dormant for years to decades before reactivating into overt metastasis. Microenvironmental signals leading to cancer cell chromatin remodeling and transcriptional reprogramming appear to control onset and escape from dormancy. Here, we reveal that the therapeutic combination of the DNA methylation inhibitor 5-azacytidine (AZA) and the retinoic acid receptor ligands all-trans retinoic acid (atRA) or AM80, an RARα-specific agonist, promotes stable dormancy in cancer cells. Treatment of head and neck squamous cell carcinoma (HNSCC) or breast cancer cells with AZA+atRA induces a SMAD2/3/4-dependent transcriptional program that restores transforming growth factor β (TGF-β)-signaling and anti-proliferative function. Significantly, either combination, AZA+atRA or AZA+AM80, strongly suppresses HNSCC lung metastasis formation by inducing and maintaining solitary DCCs in a SMAD4+/NR2F1+ non-proliferative state. Notably, SMAD4 knockdown is sufficient to drive resistance to AZA+atRA-induced dormancy. We conclude that therapeutic doses of AZA and RAR agonists may induce and/or maintain dormancy and significantly limit metastasis development.
Collapse
Affiliation(s)
- Deepak K Singh
- Division of Hematology and Oncology, Department of Medicine and Department of Otolaryngology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA; Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Saul Carcamo
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Bioinformatics for Next Generation Sequencing Facility, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eduardo F Farias
- Division of Hematology and Oncology, Department of Medicine and Department of Otolaryngology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dan Hasson
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Bioinformatics for Next Generation Sequencing Facility, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Wei Zheng
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA; Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Dan Sun
- Division of Hematology and Oncology, Department of Medicine and Department of Otolaryngology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA; Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Xin Huang
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA; Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Julie Cheung
- Division of Hematology and Oncology, Department of Medicine and Department of Otolaryngology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ana Rita Nobre
- Division of Hematology and Oncology, Department of Medicine and Department of Otolaryngology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nupura Kale
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Maria Soledad Sosa
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emily Bernstein
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Julio A Aguirre-Ghiso
- Division of Hematology and Oncology, Department of Medicine and Department of Otolaryngology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA; Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, NY, USA; Montefiore Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA; Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA; Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA; Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
31
|
Wieder R. Awakening of Dormant Breast Cancer Cells in the Bone Marrow. Cancers (Basel) 2023; 15:cancers15113021. [PMID: 37296983 DOI: 10.3390/cancers15113021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Up to 40% of patients with breast cancer (BC) have metastatic cells in the bone marrow (BM) at the initial diagnosis of localized disease. Despite definitive systemic adjuvant therapy, these cells survive in the BM microenvironment, enter a dormant state and recur stochastically for more than 20 years. Once they begin to proliferate, recurrent macrometastases are not curable, and patients generally succumb to their disease. Many potential mechanisms for initiating recurrence have been proposed, but no definitive predictive data have been generated. This manuscript reviews the proposed mechanisms that maintain BC cell dormancy in the BM microenvironment and discusses the data supporting specific mechanisms for recurrence. It addresses the well-described mechanisms of secretory senescence, inflammation, aging, adipogenic BM conversion, autophagy, systemic effects of trauma and surgery, sympathetic signaling, transient angiogenic bursts, hypercoagulable states, osteoclast activation, and epigenetic modifications of dormant cells. This review addresses proposed approaches for either eliminating micrometastases or maintaining a dormant state.
Collapse
Affiliation(s)
- Robert Wieder
- Rutgers New Jersey Medical School and the Cancer Institute of New Jersey, 185 South Orange Avenue, MSB F671, Newark, NJ 07103, USA
| |
Collapse
|
32
|
Feigelman G, Simanovich E, Brockmeyer P, Rahat MA. Knocking-Down CD147/EMMPRIN Expression in CT26 Colon Carcinoma Forces the Cells into Cellular and Angiogenic Dormancy That Can Be Reversed by Interactions with Macrophages. Biomedicines 2023; 11:biomedicines11030768. [PMID: 36979746 PMCID: PMC10044868 DOI: 10.3390/biomedicines11030768] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Metastasis in colorectal cancer is responsible for most of the cancer-related deaths. For metastasis to occur, tumor cells must first undergo the epithelial-to-mesenchymal transition (EMT), which is driven by the transcription factors (EMT-TFs) Snail, Slug twist1, or Zeb1, to promote their migration. In the distant organs, tumor cells may become dormant for years, until signals from their microenvironment trigger and promote their outgrowth. Here we asked whether CD147/EMMPRIN controls entry and exit from dormancy in the aggressive and proliferative (i.e., non-dormant) CT26 mouse colon carcinoma cells, in its wild-type form (CT26-WT cells). To this end, we knocked down EMMPRIN expression in CT26 cells (CT26-KD), and compared their EMT and cellular dormancy status (e.g., proliferation, pERK/pP38 ratio, vimentin expression, expression of EMT-TFs and dormancy markers), and angiogenic dormancy (e.g., VEGF and MMP-9 secretion, healing of the wounded bEND3 mouse endothelial cells), to the parental cells (CT26-WT). We show that knocking-down EMMPRIN expression reduced the pERK/pP38 ratio, enhanced the expression of vimentin, the EMT-TFs and the dormancy markers, and reduced the proliferation and angiogenic potential, cumulatively indicating that cells were pushed towards dormancy. When macrophages were co-cultured with both types of CT26 cells, the CT26-WT cells increased their angiogenic potential, but did not change their proliferation, state of EMT, or dormancy, whereas the CT26-KD cells exhibited values mostly similar to those of the co-cultured CT26-WT cells. Addition of recombinant TGFβ or EMMPRIN that simulated the presence of macrophages yielded similar results. Combinations of low concentrations of TGFβ and EMMPRIN had a minimal additive effect only in the CT26-KD cells, suggesting that they work along the same signaling pathway. We conclude that EMMPRIN is important as a gatekeeper that prevents cells from entering a dormant state, and that macrophages can promote an exit from dormancy.
Collapse
Affiliation(s)
- Gabriele Feigelman
- Immunotherapy Laboratory, Carmel Medical Center, Haifa 3436212, Israel
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3109601, Israel
| | - Elina Simanovich
- Immunotherapy Laboratory, Carmel Medical Center, Haifa 3436212, Israel
| | - Phillipp Brockmeyer
- Department of Oral and Maxillofacial Surgery, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Michal A. Rahat
- Immunotherapy Laboratory, Carmel Medical Center, Haifa 3436212, Israel
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3109601, Israel
- Correspondence:
| |
Collapse
|
33
|
Dormancy, stemness, and therapy resistance: interconnected players in cancer evolution. Cancer Metastasis Rev 2023; 42:197-215. [PMID: 36757577 PMCID: PMC10014678 DOI: 10.1007/s10555-023-10092-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/26/2023] [Indexed: 02/10/2023]
Abstract
The biological complexity of cancer represents a tremendous clinical challenge, resulting in the frequent failure of current treatment protocols. In the rapidly evolving scenario of a growing tumor, anticancer treatments impose a drastic perturbation not only to cancer cells but also to the tumor microenvironment, killing a portion of the cells and inducing a massive stress response in the survivors. Consequently, treatments can act as a double-edged sword by inducing a temporary response while laying the ground for therapy resistance and subsequent disease progression. Cancer cell dormancy (or quiescence) is a central theme in tumor evolution, being tightly linked to the tumor's ability to survive cytotoxic challenges, metastasize, and resist immune-mediated attack. Accordingly, quiescent cancer cells (QCCs) have been detected in virtually all the stages of tumor development. In recent years, an increasing number of studies have focused on the characterization of quiescent/therapy resistant cancer cells, unveiling QCCs core transcriptional programs, metabolic plasticity, and mechanisms of immune escape. At the same time, our partial understanding of tumor quiescence reflects the difficulty to identify stable QCCs biomarkers/therapeutic targets and to control cancer dormancy in clinical settings. This review focuses on recent discoveries in the interrelated fields of dormancy, stemness, and therapy resistance, discussing experimental evidences in the frame of a nonlinear dynamics approach, and exploring the possibility that tumor quiescence may represent not only a peril but also a potential therapeutic resource.
Collapse
|
34
|
Preclinical models in head and neck squamous cell carcinoma. Br J Cancer 2023; 128:1819-1827. [PMID: 36765175 PMCID: PMC10147614 DOI: 10.1038/s41416-023-02186-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/19/2023] [Accepted: 01/25/2023] [Indexed: 02/12/2023] Open
Abstract
Head and neck cancer is the sixth most frequent cancer type. Drug resistance and toxicity are common challenges of the existing therapies, making the development of reliable preclinical models essential for the study of the involved molecular mechanisms as well as for eventual intervention approaches that improve the clinical outcome. Preclinical models of head and neck squamous cell carcinoma have been traditionally based on cell lines and murine models. In this review, we will go over the most frequently used preclinical models, from immortalised-cell and primary tumour cultures in monolayer or 3D, to the currently available animal models. We will scrutinise their efficiency in mimicking the molecular and cellular complexity of head and neck squamous cell carcinoma. Finally, the challenges and the opportunities of other envisaged putative approaches, as well as the potential of the preclinical models to further develop personalised therapies will be discussed.
Collapse
|
35
|
Subramanian C, McCallister R, Cohen MS. Multi-genomic analysis of 260 adrenocortical cancer patient tumors identifies novel network BIRC5-hsa-miR-335-5p-PAX8-AS1 strongly associated with poor survival. Surgery 2023; 173:43-51. [PMID: 36202651 DOI: 10.1016/j.surg.2022.08.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/15/2022] [Accepted: 08/09/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Adrenocortical carcinoma is a rare endocrine cancer with poor overall survival. Linking survival outcomes to a common target across multiple genomic datasets incorporating microRNA-long non-coding RNA dysregulation have not been well described. We hypothesized that a multi-database analysis of microRNA-long noncoding RNA-messenger RNA regulatory networks associated with survival will identify novel biomarkers. METHODS Significantly dysregulated genes or microRNA in adrenocortical carcinoma compared to normal adrenal was identified from sequencing data for 260 human adrenocortical carcinomas using GEO2R. The miRnet identified hub microRNA and genes and long noncoding RNA and microRNA associated with survival genes. The R2 generated Kaplan-Meier curves. The database miRTarBase linked genes associated with poor survival and dysregulated microRNA. RESULTS Analysis of genes and microRNAs differentially regulated in >50% of datasets revealed 75 genes and 12 microRNAs were upregulated, and 167 genes and 12 microRNAs were downregulated (bonf. P < .05). Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed cell cycle, P53 signaling, arachidonic acid and innate immune response, and PI3/Akt are altered in adrenocortical carcinoma. A microRNA-target interaction network of differentially regulated microRNAs identified upregulated miRNA107, 103a-3p and 27a-3p, 16-5p, and downregulated 335-5p to have the highest degree of interaction with upregulated (ie, TPX2, CDK1, BIRC5, PRC1, CCNB1, GINS1) and downregulated (ie, RSPO3, NR2F1, TLR4, HOXA5, USP53, SLC16A9) hub genes as well as hub long noncoding RNAs XIST, NEAT1, KCNQ1OT1, and PAX8-AS1. Survival analysis revealed that the hub genes are associated with poor overall survival (P < .05) of adrenocortical carcinoma in the Cancer Genome Atlas data. CONCLUSION A messenger RNA-microRNA-long noncoding RNA network analysis identified the BIRC5-miR335-5p-PAX8-AS1 network as one that was associated with poor overall survival in adrenocortical carcinoma, warranting further validation as a potential therapeutic target.
Collapse
Affiliation(s)
| | | | - Mark S Cohen
- Department of Surgery, Michigan Medicine, Ann Arbor, MI; Department of Pharmacology, University of Michigan, Ann Arbor, MI; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI.
| |
Collapse
|
36
|
Pontis F, Roz L, Fortunato O, Bertolini G. The metastatic niche formation: focus on extracellular vesicle-mediated dialogue between lung cancer cells and the microenvironment. Front Oncol 2023; 13:1116783. [PMID: 37207158 PMCID: PMC10189117 DOI: 10.3389/fonc.2023.1116783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/21/2023] [Indexed: 05/21/2023] Open
Abstract
Lung cancer is the deadliest cancer in the world, with the majority of patients presenting with advanced or metastatic disease at first diagnosis. The lungs are also one of the most common sites of metastasis from lung cancer and other tumors. Understanding the mechanisms that regulate metastasis formation from primary lung cancer and in the lungs is therefore fundamental unmet clinical need. One of the first steps during the establishment of lung cancer metastases includes the formation of the pre-metastatic niche (PMN) at distant organs, which may occur even during the early phases of cancer development. The PMN is established through intricate cross-talk between primary tumor-secreted factors and stromal components at distant sites. Mechanisms controlling primary tumor escape and seeding of distant organs rely on specific properties of tumor cells but are also tightly regulated by interactions with stromal cells at the metastatic niche that finally dictate the success of metastasis establishment. Here, we summarize the mechanisms underlying pre-metastatic niche formation starting from how lung primary tumor cells modulate distant sites through the release of several factors, focusing on Extracellular Vesicles (EVs). In this context, we highlight the role of lung cancer-derived EVs in the modulation of tumor immune escape. Then, we illustrate the complexity of Circulating Tumor Cells (CTCs) that represent the seeds of metastasis and how interactions with stromal and immune cells can help their metastatic dissemination. Finally, we evaluate the contribution of EVs in dictating metastasis development at the PMN through stimulation of proliferation and control of disseminated tumor cell dormancy. Overall, we present an overview of different steps in the lung cancer metastatic cascade, focusing on the EV-mediated interactions between tumor cells and stromal/immune cells.
Collapse
|
37
|
Elkholi IE, Lalonde A, Park M, Côté JF. Breast Cancer Metastatic Dormancy and Relapse: An Enigma of Microenvironment(s). Cancer Res 2022; 82:4497-4510. [PMID: 36214624 PMCID: PMC9755970 DOI: 10.1158/0008-5472.can-22-1902] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/01/2022] [Accepted: 10/04/2022] [Indexed: 01/24/2023]
Abstract
Multiple factors act in concert to define the fate of disseminated tumor cells (DTC) to enter dormancy or develop overt metastases. Here, we review these factors in the context of three stages of the metastatic cascade that impact DTCs. First, cells can be programmed within the primary tumor microenvironment to promote or inhibit dissemination, and the primary tumor can condition a premetastatic niche. Then, cancer cells from the primary tumor spread through hematogenous and lymphatic routes, and the primary tumor sends cues systematically to regulate the fate of DTCs. Finally, DTCs home to their metastatic site, where they are influenced by various organ-specific aspects of the new microenvironment. We discuss these factors in the context of breast cancer, where about one-third of patients develop metastatic relapse. Finally, we discuss how the standard-of-care options for breast cancer might affect the fate of DTCs.
Collapse
Affiliation(s)
- Islam E. Elkholi
- Montreal Clinical Research Institute (IRCM), Montreal, Québec, Canada.,Molecular Biology Programs, Université de Montréal, Montreal, Québec, Canada.,Corresponding Authors: Jean-François Côté, Montreal Clinical Research Institute (IRCM), 110 Avenue des Pins Ouest, Montréal H2W 1R7, Québec, Canada. Phone: 514-987-5647; E-mail: ; and Islam E. Elkholi, Montreal Clinical Research Institute (IRCM), 110 Avenue des Pins Ouest, Montréal (QC) Canada, H2W 1R7. Phone: 514-987-5656; E-mail:
| | - Andréane Lalonde
- Montreal Clinical Research Institute (IRCM), Montreal, Québec, Canada.,Molecular Biology Programs, Université de Montréal, Montreal, Québec, Canada
| | - Morag Park
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, Québec, Canada
| | - Jean-François Côté
- Montreal Clinical Research Institute (IRCM), Montreal, Québec, Canada.,Molecular Biology Programs, Université de Montréal, Montreal, Québec, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, Canada.,Department of Anatomy and Cell Biology, McGill University, Montréal, Québec, Canada.,Corresponding Authors: Jean-François Côté, Montreal Clinical Research Institute (IRCM), 110 Avenue des Pins Ouest, Montréal H2W 1R7, Québec, Canada. Phone: 514-987-5647; E-mail: ; and Islam E. Elkholi, Montreal Clinical Research Institute (IRCM), 110 Avenue des Pins Ouest, Montréal (QC) Canada, H2W 1R7. Phone: 514-987-5656; E-mail:
| |
Collapse
|
38
|
Zhang Z, Butler R, Koestler DC, Bell-Glenn S, Warrier G, Molinaro AM, Christensen BC, Wiencke JK, Kelsey KT, Salas LA. Comparative analysis of the DNA methylation landscape in CD4, CD8, and B memory lineages. Clin Epigenetics 2022; 14:173. [PMID: 36522672 PMCID: PMC9753273 DOI: 10.1186/s13148-022-01399-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND There is considerable evidence that epigenetic mechanisms and DNA methylation are critical drivers of immune cell lineage differentiation and activation. However, there has been limited coordinated investigation of common epigenetic pathways among cell lineages. Further, it remains unclear if long-lived memory cell subtypes differentiate distinctly by cell lineages. RESULTS We used the Illumina EPIC array to investigate the consistency of DNA methylation in B cell, CD4 T, and CD8 T naïve and memory cells states. In the process of naïve to memory activation across the three lineages, we identify considerable shared epigenetic regulation at the DNA level for immune memory generation. Further, in central to effector memory differentiation, our analyses revealed specific CpG dinucleotides and genes in CD4 T and CD8 T cells with DNA methylation changes. Finally, we identified unique DNA methylation patterns in terminally differentiated effector memory (TEMRA) CD8 T cells compared to other CD8 T memory cell subtypes. CONCLUSIONS Our data suggest that epigenetic alterations are widespread and essential in generating human lymphocyte memory. Unique profiles are involved in methylation changes that accompany memory genesis in the three subtypes of lymphocytes.
Collapse
Affiliation(s)
- Ze Zhang
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Rondi Butler
- Department of Epidemiology, Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Devin C Koestler
- Department of Biostatistics and Data Science, University of Kansas Cancer Center, Kansas City, KS, USA
| | - Shelby Bell-Glenn
- Department of Biostatistics and Data Science, University of Kansas Cancer Center, Kansas City, KS, USA
| | - Gayathri Warrier
- Department of Neurosurgery, University of California, San Francisco, San Francisco, CA, USA
| | - Annette M Molinaro
- Department of Neurosurgery, University of California, San Francisco, San Francisco, CA, USA
| | - Brock C Christensen
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - John K Wiencke
- Department of Neurosurgery, University of California, San Francisco, San Francisco, CA, USA
| | - Karl T Kelsey
- Department of Epidemiology, Pathology and Laboratory Medicine, Brown University, Providence, RI, USA.
| | - Lucas A Salas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA.
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA.
| |
Collapse
|
39
|
Sun D, Singh DK, Carcamo S, Filipescu D, Khalil B, Huang X, Miles BA, Westra W, Sproll KC, Hasson D, Bernstein E, Aguirre-Ghiso JA. MacroH2A impedes metastatic growth by enforcing a discrete dormancy program in disseminated cancer cells. SCIENCE ADVANCES 2022; 8:eabo0876. [PMID: 36459552 PMCID: PMC10936054 DOI: 10.1126/sciadv.abo0876] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 10/18/2022] [Indexed: 05/04/2023]
Abstract
MacroH2A variants have been linked to inhibition of metastasis through incompletely understood mechanisms. Here, we reveal that solitary dormant disseminated cancer cells (DCCs) display increased levels of macroH2A variants in head and neck squamous cell carcinoma PDX in vivo models and patient samples compared to proliferating primary or metastatic lesions. We demonstrate that dormancy-inducing transforming growth factor-β2 and p38α/β pathways up-regulate macroH2A expression and that macroH2A variant overexpression is sufficient to induce DCC dormancy and suppress metastasis in vivo. Notably, inducible expression of the macroH2A2 variant in vivo suppresses metastasis via a reversible growth arrest of DCCs. This state does not require the dormancy-regulating transcription factors DEC2 and NR2F1; instead, transcriptomic analysis reveals that macroH2A2 overexpression inhibits cell cycle and oncogenic signaling programs, while up-regulating dormancy and senescence-associated inflammatory cytokines. We conclude that the macroH2A2-enforced dormant phenotype results from tapping into transcriptional programs of both quiescence and senescence to limit metastatic outgrowth.
Collapse
Affiliation(s)
- Dan Sun
- Division of Hematology and Medical Oncology, Department of Medicine and Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Cell Biology, Cancer Dormancy and Tumor Microenvironment Institute, Gruss-Lipper Biophotonics Center, Albert Einstein Cancer Center, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, USA
| | - Deepak K. Singh
- Division of Hematology and Medical Oncology, Department of Medicine and Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Cell Biology, Cancer Dormancy and Tumor Microenvironment Institute, Gruss-Lipper Biophotonics Center, Albert Einstein Cancer Center, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, USA
| | - Saul Carcamo
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Bioinformatics for Next Generation Sequencing (BiNGS) Shared Resource Facility, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dan Filipescu
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bassem Khalil
- Division of Hematology and Medical Oncology, Department of Medicine and Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xin Huang
- Department of Cell Biology, Cancer Dormancy and Tumor Microenvironment Institute, Gruss-Lipper Biophotonics Center, Albert Einstein Cancer Center, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, USA
| | - Brett A. Miles
- Division of Hematology and Medical Oncology, Department of Medicine and Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - William Westra
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Karl Christoph Sproll
- Department of Oral, Maxillofacial and Plastic Facial Surgery, Medical Faculty, University Hospital of the Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Dan Hasson
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Bioinformatics for Next Generation Sequencing (BiNGS) Shared Resource Facility, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emily Bernstein
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Julio A. Aguirre-Ghiso
- Division of Hematology and Medical Oncology, Department of Medicine and Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Cell Biology, Cancer Dormancy and Tumor Microenvironment Institute, Gruss-Lipper Biophotonics Center, Albert Einstein Cancer Center, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
40
|
Integration of CRISPR/Cas9 with artificial intelligence for improved cancer therapeutics. J Transl Med 2022; 20:534. [PMID: 36401282 PMCID: PMC9673220 DOI: 10.1186/s12967-022-03765-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/08/2022] [Indexed: 11/19/2022] Open
Abstract
Gene editing has great potential in treating diseases caused by well-characterized molecular alterations. The introduction of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)–based gene-editing tools has substantially improved the precision and efficiency of gene editing. The CRISPR/Cas9 system offers several advantages over the existing gene-editing approaches, such as its ability to target practically any genomic sequence, enabling the rapid development and deployment of novel CRISPR-mediated knock-out/knock-in methods. CRISPR/Cas9 has been widely used to develop cancer models, validate essential genes as druggable targets, study drug-resistance mechanisms, explore gene non-coding areas, and develop biomarkers. CRISPR gene editing can create more-effective chimeric antigen receptor (CAR)-T cells that are durable, cost-effective, and more readily available. However, further research is needed to define the CRISPR/Cas9 system’s pros and cons, establish best practices, and determine social and ethical implications. This review summarizes recent CRISPR/Cas9 developments, particularly in cancer research and immunotherapy, and the potential of CRISPR/Cas9-based screening in developing cancer precision medicine and engineering models for targeted cancer therapy, highlighting the existing challenges and future directions. Lastly, we highlight the role of artificial intelligence in refining the CRISPR system's on-target and off-target effects, a critical factor for the broader application in cancer therapeutics.
Collapse
|
41
|
Regulation of Metastatic Tumor Dormancy and Emerging Opportunities for Therapeutic Intervention. Int J Mol Sci 2022; 23:ijms232213931. [PMID: 36430404 PMCID: PMC9698240 DOI: 10.3390/ijms232213931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/26/2022] [Accepted: 11/02/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer recurrence and metastasis, following successful treatment, constitutes a critical threat in clinical oncology and are the leading causes of death amongst cancer patients. This phenomenon is largely attributed to metastatic tumor dormancy, a rate-limiting stage during cancer progression, in which disseminated cancer cells remain in a viable, yet not proliferating state for a prolonged period. Dormant cancer cells are characterized by their entry into cell cycle arrest and survival in a quiescence state to adapt to their new microenvironment through the acquisition of mutations and epigenetic modifications, rendering them resistant to anti-cancer treatment and immune surveillance. Under favorable conditions, disseminated dormant tumor cells 're-awake', resume their proliferation and thus colonize distant sites. Due to their rarity, detection of dormant cells using current diagnostic tools is challenging and, thus, therapeutic targets are hard to be identified. Therefore, unraveling the underlying mechanisms required for keeping disseminating tumor cells dormant, along with signals that stimulate their "re-awakening" are crucial for the discovery of novel pharmacological treatments. In this review, we shed light into the main mechanisms that control dormancy induction and escape as well as emerging therapeutic strategies for the eradication of metastatic dormant cells, including dormancy maintenance, direct targeting of dormant cells and re-awakening dormant cells. Studies on the ability of the metastatic cancer cells to cease proliferation and survive in a quiescent state before re-initiating proliferation and colonization years after successful treatment, will pave the way toward developing innovative therapeutic strategies against dormancy-mediated metastatic outgrowth.
Collapse
|
42
|
Ring A, Spataro M, Wicki A, Aceto N. Clinical and Biological Aspects of Disseminated Tumor Cells and Dormancy in Breast Cancer. Front Cell Dev Biol 2022; 10:929893. [PMID: 35837334 PMCID: PMC9274007 DOI: 10.3389/fcell.2022.929893] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/31/2022] [Indexed: 11/25/2022] Open
Abstract
Progress in detection and treatment have drastically improved survival for early breast cancer patients. However, distant recurrence causes high mortality and is typically considered incurable. Cancer dissemination occurs via circulating tumor cells (CTCs) and up to 75% of breast cancer patients could harbor micrometastatses at time of diagnosis, while metastatic recurrence often occurs years to decades after treatment. During clinical latency, disseminated tumor cells (DTCs) can enter a state of cell cycle arrest or dormancy at distant sites, and are likely shielded from immune detection and treatment. While this is a challenge, it can also be seen as an outstanding opportunity to target dormant DTCs on time, before their transformation into lethal macrometastatic lesions. Here, we review and discuss progress made in our understanding of DTC and dormancy biology in breast cancer. Strides in our mechanistic insights of these features has led to the identification of possible targeting strategies, yet, their integration into clinical trial design is still uncertain. Incorporating minimally invasive liquid biopsies and rationally designed adjuvant therapies, targeting both proliferating and dormant tumor cells, may help to address current challenges and improve precision cancer care.
Collapse
Affiliation(s)
- Alexander Ring
- Department of Biology, Institute for Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
- Department of Medical Oncology and Hematology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Maria Spataro
- Department of Biology, Institute for Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Andreas Wicki
- Department of Medical Oncology and Hematology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Nicola Aceto
- Department of Biology, Institute for Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
- *Correspondence: Nicola Aceto,
| |
Collapse
|
43
|
Wu R, Roy AM, Tokumaru Y, Gandhi S, Asaoka M, Oshi M, Yan L, Ishikawa T, Takabe K. NR2F1, a Tumor Dormancy Marker, Is Expressed Predominantly in Cancer-Associated Fibroblasts and Is Associated with Suppressed Breast Cancer Cell Proliferation. Cancers (Basel) 2022; 14:2962. [PMID: 35740627 PMCID: PMC9220877 DOI: 10.3390/cancers14122962] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/03/2022] [Accepted: 06/11/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Tumor dormancy is a crucial mechanism responsible for the late recurrence of breast cancer. Thus, we investigated the clinical relevance of the expression of NR2F1, a known dormancy biomarker. METHODS A total of 6758 transcriptomes of bulk tumors from multiple breast cancer patient cohorts and two single-cell sequence cohorts were analyzed. RESULTS Breast cancer (BC) with high NR2F1 expression enriched TGFβ signaling, multiple metastases, and stem cell-related pathways. Cell proliferation-related gene sets were suppressed, and MKi67 expression was lower in high NR2F1 BC. In tumors with high Nottingham grade, NR2F1 expression was found to be lower. There was no consistent relationship between NR2F1 expression and metastasis or survival. Cancer mutation rates, immune responses, and immune cell infiltrations were lower in high NR2F1 tumors, whereas the infiltration of stromal cells including cancer-associated fibroblasts (CAFs) was higher. NR2F1 was predominantly expressed in CAFs, particularly inflammatory CAFs, rather than in cancer cells, consistently in the two single-cell sequence cohorts. CONCLUSIONS NR2F1 expression in breast cancer is associated with tumor dormancy traits, and it is predominantly expressed in CAFs in the tumor microenvironment.
Collapse
Affiliation(s)
- Rongrong Wu
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo 160-8402, Japan; (M.A.); (T.I.)
| | - Arya Mariam Roy
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (A.M.R.); (S.G.)
| | - Yoshihisa Tokumaru
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, Gifu 501-1193, Japan;
| | - Shipra Gandhi
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (A.M.R.); (S.G.)
| | - Mariko Asaoka
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo 160-8402, Japan; (M.A.); (T.I.)
| | - Masanori Oshi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan;
| | - Li Yan
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - Takashi Ishikawa
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo 160-8402, Japan; (M.A.); (T.I.)
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo 160-8402, Japan; (M.A.); (T.I.)
- Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14263, USA
- Department of Surgery, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
- Department of Breast Surgery, Fukushima Medical University, Fukushima 960-1295, Japan
| |
Collapse
|
44
|
Pathophysiological Heterogeneity of the BBSOA Neurodevelopmental Syndrome. Cells 2022; 11:cells11081260. [PMID: 35455940 PMCID: PMC9024734 DOI: 10.3390/cells11081260] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/17/2022] [Accepted: 03/29/2022] [Indexed: 11/17/2022] Open
Abstract
The formation and maturation of the human brain is regulated by highly coordinated developmental events, such as neural cell proliferation, migration and differentiation. Any impairment of these interconnected multi-factorial processes can affect brain structure and function and lead to distinctive neurodevelopmental disorders. Here, we review the pathophysiology of the Bosch–Boonstra–Schaaf Optic Atrophy Syndrome (BBSOAS; OMIM 615722; ORPHA 401777), a recently described monogenic neurodevelopmental syndrome caused by the haploinsufficiency of NR2F1 gene, a key transcriptional regulator of brain development. Although intellectual disability, developmental delay and visual impairment are arguably the most common symptoms affecting BBSOAS patients, multiple additional features are often reported, including epilepsy, autistic traits and hypotonia. The presence of specific symptoms and their variable level of severity might depend on still poorly characterized genotype–phenotype correlations. We begin with an overview of the several mutations of NR2F1 identified to date, then further focuses on the main pathological features of BBSOAS patients, providing evidence—whenever possible—for the existing genotype–phenotype correlations. On the clinical side, we lay out an up-to-date list of clinical examinations and therapeutic interventions recommended for children with BBSOAS. On the experimental side, we describe state-of-the-art in vivo and in vitro studies aiming at deciphering the role of mouse Nr2f1, in physiological conditions and in pathological contexts, underlying the BBSOAS features. Furthermore, by modeling distinct NR2F1 genetic alterations in terms of dimer formation and nuclear receptor binding efficiencies, we attempt to estimate the total amounts of functional NR2F1 acting in developing brain cells in normal and pathological conditions. Finally, using the NR2F1 gene and BBSOAS as a paradigm of monogenic rare neurodevelopmental disorder, we aim to set the path for future explorations of causative links between impaired brain development and the appearance of symptoms in human neurological syndromes.
Collapse
|
45
|
Zhao G, Zhang T, Liu W, Edderkaoui M, Hu R, Li J, Pandol SJ, Fu X, Han YP. Sequestration of Intestinal Acidic Toxins by Cationic Resin Attenuates Pancreatic Cancer Progression through Promoting Autophagic Flux for YAP Degradation. Cancers (Basel) 2022; 14:1407. [PMID: 35326559 PMCID: PMC8946475 DOI: 10.3390/cancers14061407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 02/01/2023] Open
Abstract
Pancreatic cancer is driven by risk factors such as diabetes and chronic pancreatic injury, which are further associated with gut dysbiosis. Intestinal toxins such as bile acids and bacterial endotoxin (LPS), in excess and persistence, can provoke chronic inflammation and tumorigenesis. Of interest is that many intestinal toxins are negatively charged acidic components in essence, which prompted us to test whether oral administration of cationic resin can deplete intestinal toxins and ameliorate pancreatic cancer. Here, we found that increased plasma levels of endotoxin and bile acids in Pdx1-Cre: LSL-KrasG12D/+ mice were associated with the transformation of the pancreatic ductal carcinoma (PDAC) state. Common bile-duct-ligation or LPS injection impeded autolysosomal flux, leading to Yap accumulation and malignant transformation. Conversely, oral administration of cholestyramine to sequestrate intestinal endotoxin and bile acids resumed autolysosomal flux for Yap degradation and attenuated metastatic incidence. Conversely, chloroquine treatment impaired autolysosomal flux and exacerbated malignance, showing jeopardization of p62/ Sqxtm1 turnover, leading to Yap accumulation, which is also consistent with overexpression of cystatin A (CSTA) in situ with pancreatic cancer cells and metastatic tumor. At cellular levels, chenodeoxycholic acid or LPS treatment activated the ligand-receptor-mediated AKT-mTOR pathway, resulting in autophagy-lysosomal stress for YAP accumulation and cellular dissemination. Thus, this work indicates a potential new strategy for intervention of pancreatic metastasis through sequestration of intestinal acidic toxins by oral administration of cationic resins.
Collapse
Affiliation(s)
- Guangfu Zhao
- The Center for Growth, Metabolism and Aging, College of Life Sciences, Sichuan University, Chengdu 610017, China; (G.Z.); (T.Z.); (W.L.)
| | - Tianci Zhang
- The Center for Growth, Metabolism and Aging, College of Life Sciences, Sichuan University, Chengdu 610017, China; (G.Z.); (T.Z.); (W.L.)
| | - Wei Liu
- The Center for Growth, Metabolism and Aging, College of Life Sciences, Sichuan University, Chengdu 610017, China; (G.Z.); (T.Z.); (W.L.)
| | - Mouad Edderkaoui
- Cedars-Sinai Medical Center, Los Angeles, CA 90001, USA; (M.E.); (S.J.P.)
| | - Richard Hu
- Olive View-UCLA Medical Center, Los Angeles, CA 90001, USA;
| | - Jun Li
- Department of Gastroenterology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu 610083, China;
| | - Stephen J. Pandol
- Cedars-Sinai Medical Center, Los Angeles, CA 90001, USA; (M.E.); (S.J.P.)
| | - Xiangsheng Fu
- Department of Gastroenterology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu 610083, China;
| | - Yuan-Ping Han
- The Center for Growth, Metabolism and Aging, College of Life Sciences, Sichuan University, Chengdu 610017, China; (G.Z.); (T.Z.); (W.L.)
| |
Collapse
|
46
|
Ecology and evolution of dormant metastasis. Trends Cancer 2022; 8:570-582. [DOI: 10.1016/j.trecan.2022.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 12/25/2022]
|
47
|
Borriello L, Coste A, Traub B, Sharma VP, Karagiannis GS, Lin Y, Wang Y, Ye X, Duran CL, Chen X, Friedman M, Sosa MS, Sun D, Dalla E, Singh DK, Oktay MH, Aguirre-Ghiso JA, Condeelis JS, Entenberg D. Primary tumor associated macrophages activate programs of invasion and dormancy in disseminating tumor cells. Nat Commun 2022; 13:626. [PMID: 35110548 PMCID: PMC8811052 DOI: 10.1038/s41467-022-28076-3] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 01/07/2022] [Indexed: 02/07/2023] Open
Abstract
Metastases are initiated by disseminated tumor cells (DTCs) that colonize distant organs. Growing evidence suggests that the microenvironment of the primary tumor primes DTCs for dormant or proliferative fates. However, the manner in which this occurs remains poorly understood. Here, using the Window for High-Resolution Intravital Imaging of the Lung (WHRIL), we study the live lung longitudinally and follow the fate of individual DTCs that spontaneously disseminate from orthotopic breast tumors. We find that spontaneously DTCs have increased levels of retention, increased speed of extravasation, and greater survival after extravasation, compared to experimentally metastasized tumor cells. Detailed analysis reveals that a subset of macrophages within the primary tumor induces a pro-dissemination and pro-dormancy DTC phenotype. Our work provides insight into how specific primary tumor microenvironments prime a subpopulation of cells for expression of proteins associated with dissemination and dormancy.
Collapse
Affiliation(s)
- Lucia Borriello
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Anouchka Coste
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Department of Surgery, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Brian Traub
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Department of Surgery, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Ved P Sharma
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - George S Karagiannis
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Cancer Dormancy and Tumor Microenvironment Institute and, Einstein Cancer Center, Albert Einstein College of Medicine/Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Yu Lin
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Yarong Wang
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Xianjun Ye
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Camille L Duran
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Xiaoming Chen
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Madeline Friedman
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Maria Soledad Sosa
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dan Sun
- Cancer Dormancy and Tumor Microenvironment Institute and, Einstein Cancer Center, Albert Einstein College of Medicine/Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
- Department of Cell Biology, Albert Einstein College of Medicine/Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Erica Dalla
- Division of Hematology and Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Deepak K Singh
- Cancer Dormancy and Tumor Microenvironment Institute and, Einstein Cancer Center, Albert Einstein College of Medicine/Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
- Department of Cell Biology, Albert Einstein College of Medicine/Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Maja H Oktay
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Cancer Dormancy and Tumor Microenvironment Institute and, Einstein Cancer Center, Albert Einstein College of Medicine/Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
- Department of Pathology, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Julio A Aguirre-Ghiso
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Cancer Dormancy and Tumor Microenvironment Institute and, Einstein Cancer Center, Albert Einstein College of Medicine/Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
- Department of Cell Biology, Albert Einstein College of Medicine/Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
| | - John S Condeelis
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Department of Surgery, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Cancer Dormancy and Tumor Microenvironment Institute and, Einstein Cancer Center, Albert Einstein College of Medicine/Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
| | - David Entenberg
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Cancer Dormancy and Tumor Microenvironment Institute and, Einstein Cancer Center, Albert Einstein College of Medicine/Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
- Department of Pathology, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
| |
Collapse
|
48
|
Genomic Insights into Non-steroidal Nuclear Receptors in Prostate and Breast Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1390:227-239. [DOI: 10.1007/978-3-031-11836-4_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|