1
|
Kim JW, Tung HC, Yang B, Pant R, Guan X, Feng Y, Xie W. Heme-thiolate monooxygenase cytochrome P450 1B1, an old dog with many new tricks. Pharmacol Rev 2025; 77:100045. [PMID: 40054133 DOI: 10.1016/j.pharmr.2025.100045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 01/25/2025] [Accepted: 01/30/2025] [Indexed: 05/12/2025] Open
Abstract
Cytochrome P450 CYP1B1 is a heme-thiolate monooxygenase traditionally recognized for its xenobiotic functions and extrahepatic expressions. Recent studies have suggested that CYP1B1 is also expressed in hepatic stellate cells, immune cells, endothelial cells, and fibroblasts within the tumor microenvironment, as well as tumor cells themselves. CYP1B1 is responsible for the metabolism of a wide range of substrates, including xenobiotics such as drugs, environmental chemicals, and endobiotics such as steroids, retinol, and fatty acids. Consequently, CYP1B1 and its associated exogenous and endogenous metabolites have been critically implicated in the pathogenesis of many diseases. Understanding the mode of action of CYP1B1 in different pathophysiological conditions and developing pharmacological inhibitors that allow for systemic or cell type-specific modulation of CYP1B1 may pave the way for novel therapeutic opportunities. This review highlights the significant role of CYP1B1 in maintaining physiological homeostasis and provides a comprehensive discussion of recent advancements in our understanding of CYP1B1's involvement in the pathogenesis of diseases such as fibrosis, cancer, glaucoma, and metabolic disorders. Finally, the review emphasizes the therapeutic potential of targeting CYP1B1 for drug development, particularly in the treatment and prevention of cancers and liver fibrosis. SIGNIFICANCE STATEMENT: CYP1B1 plays a critical role in various physiological processes. Dysregulation or genetic mutations of the gene encoding this enzyme can lead to health complications and may increase the risk of diseases such as cancer and liver fibrosis. In this review, we summarize recent preclinical and clinical evidence that underscores the potential of CYP1B1 as a therapeutic target.
Collapse
Affiliation(s)
- Jong-Won Kim
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Hung-Chun Tung
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Bin Yang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Rajat Pant
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Xiuchen Guan
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China
| | - Ye Feng
- Department of Endocrinology and Metabolic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wen Xie
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
2
|
Tsai M, Sun J, Alexandre C, Shapiro M, Franchet A, Li Y, Gould AP, Vincent JP, Stockinger B, Diny NL. Drosophila AHR limits tumor growth and stem cell proliferation in the intestine. Wellcome Open Res 2025; 10:38. [PMID: 40212817 PMCID: PMC11982807 DOI: 10.12688/wellcomeopenres.23515.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2025] [Indexed: 04/29/2025] Open
Abstract
Background The aryl hydrocarbon receptor (AHR) plays important roles in intestinal homeostasis, limiting tumour growth and promoting differentiation in the intestinal epithelium. Spineless, the Drosophila homolog of AHR, has only been studied in the context of development but not in the adult intestine. Methods The role of Spineless in the Drosophila midgut was studied by overexpression or inactivation of Spineless in infection and tumour models and RNA sequencing of sorted midgut progenitor cells. Results We show that spineless is upregulated in the adult intestinal epithelium after infection with Pseudomonas entomophila ( P. e.). Spineless inactivation increased stem cell proliferation following infection-induced injury. Spineless overexpression limited intestinal stem cell proliferation and reduced survival after infection. In two tumour models, using either Notch RNAi or constitutively active Yorkie, Spineless suppressed tumour growth and doubled the lifespan of tumour-bearing flies. At the transcriptional level it reversed the gene expression changes induced in Yorkie tumours, counteracting cell proliferation and altered metabolism. Conclusions These findings demonstrate a new role for Spineless in the adult Drosophila midgut and highlight the evolutionarily conserved functions of AHR/Spineless in the control of proliferation and differentiation of the intestinal epithelium.
Collapse
Affiliation(s)
- Minghua Tsai
- The Francis Crick Institute, London, England, NW1 1AT, UK
| | - Jiawei Sun
- The Francis Crick Institute, London, England, NW1 1AT, UK
| | | | | | | | - Ying Li
- The Francis Crick Institute, London, England, NW1 1AT, UK
| | - Alex P. Gould
- The Francis Crick Institute, London, England, NW1 1AT, UK
| | | | | | - Nicola Laura Diny
- The Francis Crick Institute, London, England, NW1 1AT, UK
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, North Rhine-Westphalia, 53127, Germany
| |
Collapse
|
3
|
Molina PA, Edell CJ, Dunaway LS, Kellum CE, Muir RQ, Jennings MS, Colson JC, De Miguel C, Rhoads MK, Buzzelli AA, Harrington LE, Meza-Perez S, Randall TD, Botta D, Müller DN, Pollock DM, Maynard CL, Pollock JS. Aryl Hydrocarbon Receptor Activation Promotes Effector CD4+ T Cell Homeostasis and Restrains Salt-Sensitive Hypertension. FUNCTION 2025; 6:zqaf001. [PMID: 39779302 PMCID: PMC11931625 DOI: 10.1093/function/zqaf001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 12/18/2024] [Accepted: 01/06/2025] [Indexed: 01/11/2025] Open
Abstract
Excess dietary salt and salt-sensitivity contribute to cardiovascular disease. Distinct T cell phenotypic responses to high salt and hypertension, as well as influences from environmental cues, are not well understood. The aryl hydrocarbon receptor (AhR) is activated by dietary ligands, promoting T cell and systemic homeostasis. We hypothesized that activating AhR supports CD4+ homeostatic functions, such as cytokine production and mobilization, in response to high salt intake while mitigating salt-sensitive hypertension. In the intestinal mucosa, we demonstrate that a high-salt diet (HSD) is a key driving factor, independent of hypertension, in diminishing interleukin 17A (IL-17A) production by CD4+ T (Th17) cells without disrupting circulating cytokines associated with Th17 function. Previous studies suggest that hypertensive patients and individuals on a HSD are deficient in AhR ligands or agonistic metabolites. We found that activating AhR augments Th17 cells during experimental salt-sensitive hypertension. Further, we demonstrate that activating AhR in vitro contributes to sustaining Th17 cells in the setting of excess salt. Using photoconvertible Kikume Green-Red mice, we also revealed that HSD drives CD4+ T cell mobilization. Next, we found that excess salt augments T cell mobilization markers, validating HSD-driven T cell migration. Also, we found that activating AhR mitigates HSD-induced T cell migration markers. Using telemetry in a model of experimental salt-sensitivity, we found that activating AhR prevents the development of salt-sensitive hypertension. Collectively, stimulating AhR through dietary ligands facilitates immunologic and systemic functions amid excess salt intake and restrains the development of salt-sensitive hypertension.
Collapse
Affiliation(s)
- Patrick A Molina
- Cardio-Renal Physiology and Medicine Section, Division of Nephrology,
Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Claudia J Edell
- Cardio-Renal Physiology and Medicine Section, Division of Nephrology,
Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Luke S Dunaway
- Cardio-Renal Physiology and Medicine Section, Division of Nephrology,
Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Cailin E Kellum
- Cardio-Renal Physiology and Medicine Section, Division of Nephrology,
Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Rachel Q Muir
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Melissa S Jennings
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Jackson C Colson
- Cardio-Renal Physiology and Medicine Section, Division of Nephrology,
Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Carmen De Miguel
- Cardio-Renal Physiology and Medicine Section, Division of Nephrology,
Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Megan K Rhoads
- Cardio-Renal Physiology and Medicine Section, Division of Nephrology,
Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Ashlyn A Buzzelli
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Laurie E Harrington
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Selene Meza-Perez
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Troy D Randall
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Davide Botta
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35223, USA
- Immunology Institute, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Dominik N Müller
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Str. 10
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Lindenberger Weg 80, Berlin 13092, Germany
| | - David M Pollock
- Cardio-Renal Physiology and Medicine Section, Division of Nephrology,
Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Craig L Maynard
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Jennifer S Pollock
- Cardio-Renal Physiology and Medicine Section, Division of Nephrology,
Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| |
Collapse
|
4
|
Barreira-Silva P, Lian Y, Kaufmann SHE, Moura-Alves P. The role of the AHR in host-pathogen interactions. Nat Rev Immunol 2025; 25:178-194. [PMID: 39415055 DOI: 10.1038/s41577-024-01088-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2024] [Indexed: 10/18/2024]
Abstract
Host-microorganism encounters take place in many different ways and with different types of outcomes. Three major types of microorganisms need to be distinguished: (1) pathogens that cause harm to the host and must be controlled; (2) environmental microorganisms that can be ignored but must be controlled at higher abundance; and (3) symbiotic microbiota that require support by the host. Recent evidence indicates that the aryl hydrocarbon receptor (AHR) senses and initiates signalling and gene expression in response to a plethora of microorganisms and infectious conditions. It was originally identified as a receptor that binds xenobiotics. However, it was subsequently found to have a critical role in numerous biological processes, including immunity and inflammation and was recently classified as a pattern recognition receptor. Here we review the role of the AHR in host-pathogen interactions, focusing on AHR sensing of different microbial classes, the ligands involved, responses elicited and disease outcomes. Moreover, we explore the therapeutic potential of targeting the AHR in the context of infection.
Collapse
Affiliation(s)
- Palmira Barreira-Silva
- IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Yilong Lian
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Stefan H E Kaufmann
- Max Planck Institute for Infection Biology, Berlin, Germany
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Hagler Institute for Advanced Study, Texas A&M University, College Station, TX, USA
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Pedro Moura-Alves
- IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
5
|
Wuputra K, Hsu WH, Ku CC, Yang YH, Kuo KK, Yu FJ, Yu HS, Nagata K, Wu DC, Kuo CH, Yokoyama KK. The AHR-NRF2-JDP2 gene battery: Ligand-induced AHR transcriptional activation. Biochem Pharmacol 2025; 233:116761. [PMID: 39855429 DOI: 10.1016/j.bcp.2025.116761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/18/2024] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
Aryl hydrocarbon receptor (AHR) and nuclear factor-erythroid 2-related factor 2 (NRF2) can regulate a series of genes encoding the detoxifying phase I and II enzymes, via a signaling crosstalk known as the "AHR-NRF2 gene battery". The chromatin transcriptional regulator Jun dimerization protein 2 (JDP2) plays a central role in thetranscription of AHR gene in response to the phase I enzyme ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin. It forms a transcriptional complex with AHR-AHR nuclear translocator (ARNT) and NRF2-small musculoaponeurotic fibrosarcoma proteins (sMAF), which are then recruited to the respective cis-elements, such as dioxin response elements and antioxidant response elements, respectively, in the AHR promoter. Here, we present a revised description of the AHR-NRF2 gene battery as the AHR-NRF2-JDP2 gene battery for transactivating the AHR promoter by phase I enzyme ligands. The chromatin regulator JDP2 was found to be involved in the movement of AHR-NRF2 complexes from the dioxin response element to the antioxidant response element in the AHR promoter, during its activation in a spatiotemporal manner. This new epigenetic and chromatin remodeling role of AHR-NRF2-JDP2 axis is useful for identifying new therapeutic targets for various diseases, including immunological response, detoxification, development, and cancer-related diseases.
Collapse
Affiliation(s)
- Kenly Wuputra
- Cell Therapy Research Center, Department of Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Regenerative Medicine and Cell Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Wen-Hung Hsu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Gangshan Hospital, Kaohsiung 820, Taiwan; Department of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Chia-Chen Ku
- Cell Therapy Research Center, Department of Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Regenerative Medicine and Cell Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Ya-Han Yang
- Division of General Surgery, E-DA Dachang Hospital, Kaohsiung 80706, Taiwan.
| | - Kung-Kai Kuo
- Division of General Surgery, E-DA Dachang Hospital, Kaohsiung 80706, Taiwan.
| | - Fang-Jung Yu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Gangshan Hospital, Kaohsiung 820, Taiwan; Department of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan.
| | - Hsin-Su Yu
- Emeritus Professor in College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| | - Kyosuke Nagata
- Professor, Insitutte of Medicine, University of Tsukuba, Tsukuba 3058577, Japan.
| | - Deng-Chyang Wu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Gangshan Hospital, Kaohsiung 820, Taiwan; Department of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Chao-Hung Kuo
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Gangshan Hospital, Kaohsiung 820, Taiwan; Department of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Superintendant in Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan.
| | - Kazunari K Yokoyama
- Cell Therapy Research Center, Department of Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Regenerative Medicine and Cell Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| |
Collapse
|
6
|
Rodrigo‐Muñoz JM, Naharro‐González S, Callejas S, Relaño‐Ruperez C, Torroja C, Benguria A, Lorente‐Sorolla C, Gil‐Martínez M, García de Castro Z, Cañas JA, Valverde‐Monge M, Bernaola J, Pinillos‐Robles EJ, Betancor D, Fernández‐Nieto M, Dopazo A, Sánchez‐Cabo F, Sánchez‐Pernaute O, Rodríguez‐Nieto MJ, Sastre J, del Pozo V. Single-cell RNA sequencing of human blood eosinophils reveals plasticity and absence of canonical cell subsets. Allergy 2025; 80:570-574. [PMID: 38934897 PMCID: PMC11804299 DOI: 10.1111/all.16213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/04/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024]
Affiliation(s)
- José Manuel Rodrigo‐Muñoz
- Immunoallergy LaboratoryInstituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS‐FJD, UAM)MadridSpain
- CIBER de Enfermedades Respiratorias (CIBERES)MadridSpain
| | - Sara Naharro‐González
- Immunoallergy LaboratoryInstituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS‐FJD, UAM)MadridSpain
| | - Sergio Callejas
- Genomics UnitCentro Nacional de Investigaciones Cardiovasculares (CNIC)MadridSpain
| | - Carlos Relaño‐Ruperez
- Bioinformatics UnitCentro Nacional de Investigaciones Cardiovasculares (CNIC)MadridSpain
| | - Carlos Torroja
- Bioinformatics UnitCentro Nacional de Investigaciones Cardiovasculares (CNIC)MadridSpain
| | - Alberto Benguria
- Genomics UnitCentro Nacional de Investigaciones Cardiovasculares (CNIC)MadridSpain
| | - Clara Lorente‐Sorolla
- Immunoallergy LaboratoryInstituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS‐FJD, UAM)MadridSpain
| | - Marta Gil‐Martínez
- Immunoallergy LaboratoryInstituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS‐FJD, UAM)MadridSpain
- CIBER de Enfermedades Respiratorias (CIBERES)MadridSpain
| | - Zahara García de Castro
- Immunoallergy LaboratoryInstituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS‐FJD, UAM)MadridSpain
| | - José Antonio Cañas
- Immunoallergy LaboratoryInstituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS‐FJD, UAM)MadridSpain
- CIBER de Enfermedades Respiratorias (CIBERES)MadridSpain
| | - Marcela Valverde‐Monge
- CIBER de Enfermedades Respiratorias (CIBERES)MadridSpain
- Allergy DepartmentHospital Universitario Fundación Jiménez DíazMadridSpain
| | - Jaime Bernaola
- Allergy DepartmentHospital Universitario Fundación Jiménez DíazMadridSpain
| | | | - Diana Betancor
- CIBER de Enfermedades Respiratorias (CIBERES)MadridSpain
- Allergy DepartmentHospital Universitario Fundación Jiménez DíazMadridSpain
| | | | - Ana Dopazo
- Genomics UnitCentro Nacional de Investigaciones Cardiovasculares (CNIC)MadridSpain
- CIBER de Enfermedades Cardiovasculares (CIBERCV)Instituto de Salud Carlos III (ISCIII)MadridSpain
| | - Fátima Sánchez‐Cabo
- Bioinformatics UnitCentro Nacional de Investigaciones Cardiovasculares (CNIC)MadridSpain
| | | | - María Jesús Rodríguez‐Nieto
- Pulmonology UnitHospital Universitario Fundación Jiménez DíazMadridSpain
- Hospital Universitario General de VillalbaMadridSpain
| | - Joaquín Sastre
- CIBER de Enfermedades Respiratorias (CIBERES)MadridSpain
- Allergy DepartmentHospital Universitario Fundación Jiménez DíazMadridSpain
| | - Victoria del Pozo
- Immunoallergy LaboratoryInstituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS‐FJD, UAM)MadridSpain
- CIBER de Enfermedades Respiratorias (CIBERES)MadridSpain
- Universidad Autónoma de MadridMadridSpain
| |
Collapse
|
7
|
Li YT, Takaki E, Ouchi Y, Tamai K. Guided monocyte fate to FRβ/CD163 + S1 macrophage antagonises atopic dermatitis via fibroblastic matrices in mouse hypodermis. Cell Mol Life Sci 2024; 82:14. [PMID: 39720957 DOI: 10.1007/s00018-024-05543-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/21/2024] [Accepted: 12/06/2024] [Indexed: 12/26/2024]
Abstract
Macrophages are versatile myeloid leukocytes with flexible cellular states to perform diverse tissue functions beyond immunity. This plasticity is however often hijacked by diseases to promote pathology. Scanning kinetics of macrophage states by single-cell transcriptomics and flow cytometry, we observed atopic dermatitis drastically exhausted a resident subtype S1. Characterized by FRβ/CD163 expression, S1 exhibited strong efferocytosis and chemoattracted monocytes and eosinophils. Here we have delineated mechanisms regulating monocyte decision to acquire S1 identity in skin. During M-CSF driven macrophage differentiation in healthy skin, FRβ was expressed via intrinsic control of STAT6 and ALK5 activities, and did not require heterotypic cellular crosstalk. In contrast, CD163 expression required exposure to fibroblastic secretion. This process depended on SHP1 activity and involved STAT5 inactivation. Suppressed STAT5 activity caused CD163 expression and rendered macrophage insensitive to further induction by fibroblasts. Parsing coculture experiments with in silico ligand expression, we identified laminin-α2 and type-V collagen secreted by hypodermal fibroblasts as CD163-driving factors. S1 identity loss in AD followed a stepwise cascade: reduced laminins availability first dampened CD163 expression, IL4 and TGFβ subsequently acted on CD163lo/- cells to downregulate FRβ. In AD skin, we showed that imitating this fibroblast-macrophage crosstalk with exogenous laminin-211 encouraged monocyte differentiation to S1 macrophages, fostered homeostatic commitment of extravasated eosinophils, and alleviated dermatitis. Hence, we demonstrated that reinforcing a steady-state cue from hypodermal fibroblasts could override maladaptive pressure on macrophage and restored tissue homeostasis.
Collapse
MESH Headings
- Dermatitis, Atopic/metabolism
- Dermatitis, Atopic/pathology
- Receptors, Cell Surface/metabolism
- Antigens, Differentiation, Myelomonocytic/metabolism
- Animals
- Antigens, CD/metabolism
- Antigens, CD/genetics
- Fibroblasts/metabolism
- Fibroblasts/pathology
- Macrophages/metabolism
- Monocytes/metabolism
- Mice
- Cell Differentiation
- STAT6 Transcription Factor/metabolism
- Skin/metabolism
- Skin/pathology
- Receptor, Transforming Growth Factor-beta Type I/metabolism
- Receptor, Transforming Growth Factor-beta Type I/genetics
- Mice, Inbred C57BL
- Macrophage Colony-Stimulating Factor/metabolism
- Eosinophils/metabolism
- Laminin/metabolism
Collapse
Affiliation(s)
- Yu-Tung Li
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan.
| | | | - Yuya Ouchi
- StemRIM Inc., Ibaraki, Osaka, 567-0085, Japan
| | - Katsuto Tamai
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
8
|
Arnold IC, Munitz A. Spatial adaptation of eosinophils and their emerging roles in homeostasis, infection and disease. Nat Rev Immunol 2024; 24:858-877. [PMID: 38982311 DOI: 10.1038/s41577-024-01048-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2024] [Indexed: 07/11/2024]
Abstract
Eosinophils are bone marrow-derived granulocytes that are traditionally associated with type 2 immune responses, such as those that occur during parasite infections and allergy. Emerging evidence demonstrates the remarkable functional plasticity of this elusive cell type and its pleiotropic functions in diverse settings. Eosinophils broadly contribute to tissue homeostasis, host defence and immune regulation, predominantly at mucosal sites. The scope of their activities primarily reflects the breadth of their portfolio of secreted mediators, which range from cytotoxic cationic proteins and reactive oxygen species to multiple cytokines, chemokines and lipid mediators. Here, we comprehensively review basic eosinophil biology that is directly related to their activities in homeostasis, protective immunity, regeneration and cancer. We examine how dysregulation of these functions contributes to the physiopathology of a broad range of inflammatory diseases. Furthermore, we discuss recent findings regarding the tissue compartmentalization and adaptation of eosinophils, shedding light on the factors that likely drive their functional diversification within tissues.
Collapse
Affiliation(s)
- Isabelle C Arnold
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland.
| | - Ariel Munitz
- Department of Clinical Microbiology and Immunology, Faculty of Medical and Health Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel.
| |
Collapse
|
9
|
Chhiba KD, Kuang FL. Advancing toward a unified eosinophil signature from transcriptional profiling. J Leukoc Biol 2024; 116:1324-1333. [PMID: 39213186 PMCID: PMC11602342 DOI: 10.1093/jleuko/qiae188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024] Open
Abstract
Eosinophils are granulocytes that can accumulate in increased numbers in tissues and/or peripheral blood in disease. Phenotyping of eosinophils in health and disease has the potential to improve the precision of diagnosis and choice of therapies for eosinophilic-associated diseases. Transcriptional profiling of eosinophils has been plagued by cell fragility and difficulty isolating high-quality RNA. With several technological advances, single-cell RNA sequencing has become possible with eosinophils, at least from mice, while bulk RNA sequencing and microarrays have been performed in both murine and human samples. Anticipating more eosinophil transcriptional profiles in the coming years, we provide a summary of prior studies conducted on mouse and human eosinophils in blood and tissue, with a discussion of the advantages and potential pitfalls of various approaches. Common technical standards in studying eosinophil biology would help advance the field and make cross-study comparisons possible. Knowledge gaps and opportunities include identifying a minimal set of genes that define the eosinophil lineage, comparative studies between active disease and remission vs. homeostasis or development, especially in humans, and a comprehensive comparison between murine and human eosinophils at the transcriptional level. Characterizing such transcriptional patterns will be important to understanding the complex and diverse roles of eosinophils in both health and disease.
Collapse
Affiliation(s)
- Krishan D. Chhiba
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, 240 East Huron Street, Chicago, IL 60611, United States
| | - Fei Li Kuang
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, 240 East Huron Street, Chicago, IL 60611, United States
| |
Collapse
|
10
|
Gazzinelli-Guimaraes PH, Jones SM, Voehringer D, Mayer-Barber KD, Samarasinghe AE. Eosinophils as modulators of host defense during parasitic, fungal, bacterial, and viral infections. J Leukoc Biol 2024; 116:1301-1323. [PMID: 39136237 DOI: 10.1093/jleuko/qiae173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/25/2024] [Indexed: 11/28/2024] Open
Abstract
Eosinophils, traditionally associated as central innate effector cells with type 2 immunity during allergic and helminth parasitic diseases, have recently been revealed to have important roles in tissue homeostasis as well as host defense in a broader variety of infectious diseases. In a dedicated session at the 2023 biennial conference of the International Eosinophil Society titled "Eosinophils in Host Defense," the multifaceted roles eosinophils play against diverse pathogens, ranging from parasites to fungi, bacteria, and viruses, were presented. In this review, the session speakers offer a comprehensive summary of recent discoveries across pathogen classes, positioning eosinophils as pivotal leukocytes in both host defense and pathology. By unraveling the intricacies of eosinophil engagement in host resistance, this exploration may provide valuable insights not only to understand specific underpinnings of eosinophil functions related to each class of pathogens but also to develop novel therapeutics effective against a broad spectrum of infectious diseases.
Collapse
Affiliation(s)
- Pedro H Gazzinelli-Guimaraes
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington School of Medicine and Health Sciences, 2300 I Street NW, Washington, DC 20037, United States
| | - Shelby M Jones
- Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, United States
| | - David Voehringer
- Department of Infection Biology, Universitätsklinikum Erlangen, Wasserturmstrasse 3-5, 91054 Erlangen, Germany
- FAU Profile Center Immunomedicine (FAU I-MED), Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Katrin D Mayer-Barber
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 33 North Drive, Bethesda, MD 20892, United States
| | - Amali E Samarasinghe
- Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Children's Foundation Research Institute, 50 N Dunlap Street, Memphis, TN 38103, United States
| |
Collapse
|
11
|
Ota A, Iguchi T, Nitta S, Muro R, Mino N, Tsukasaki M, Penninger JM, Nitta T, Takayanagi H. Synchronized development of thymic eosinophils and thymocytes. Int Immunol 2024; 36:617-628. [PMID: 38916145 PMCID: PMC11562637 DOI: 10.1093/intimm/dxae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/23/2024] [Indexed: 06/26/2024] Open
Abstract
The thymus is an organ required for T cell development and is also an eosinophil-rich organ; however, the nature and function of thymic eosinophils remain unclear. Here, we characterized the gene expression and differentiation mechanism of thymic eosinophils in mice. Thymic eosinophils showed a distinct gene expression profile compared with other organ-resident eosinophils. The number of thymic eosinophils was controlled by medullary thymic epithelial cells (mTECs). In Rag-deficient mice, the unique gene expression signature of thymic eosinophils was lost but restored by pre-T cell receptor signalling, which induces CD4+ CD8+ thymocyte differentiation, indicating that T cell differentiation beyond the CD4- CD8- stage is necessary and sufficient for the induction of thymic eosinophils. These results demonstrate that thymic eosinophils are quantitatively and qualitatively regulated by mTECs and developing thymocytes, respectively, suggesting that thymic eosinophils are a distinct, thymus-specific cell subset, induced by interactions with thymic cells.
Collapse
Affiliation(s)
- Ayami Ota
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Takahiro Iguchi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Sachiko Nitta
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Ryunosuke Muro
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Nanami Mino
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Masayuki Tsukasaki
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria
- Department of Medical Genetics, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Innovative Organoid Research, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Eric Kandel Institute, Department of Laboratory Medicine, Medical University Vienna, Vienna, Austria
| | - Takeshi Nitta
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
- Division of Molecular Pathology, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba 278-0022, Japan
| | - Hiroshi Takayanagi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
12
|
Hahn ME, Sherr DH. The enigmatic AHRR: beyond aryl hydrocarbon receptor repression. J Leukoc Biol 2024; 116:915-918. [PMID: 39030724 PMCID: PMC11531999 DOI: 10.1093/jleuko/qiae163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/25/2024] [Accepted: 07/18/2024] [Indexed: 07/21/2024] Open
Abstract
Discussion on the many roles of AHR Repressor (AHRR) in intestinal immune homeostasis
Collapse
Affiliation(s)
- Mark E Hahn
- Biology Department, MS-32, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - David H Sherr
- Department of Environmental Health, Housman R-408, Boston University School of Public Health, 72 E. Concord St, Boston, MA 02118, USA
| |
Collapse
|
13
|
Dunn JLM, Szep A, Gonzalez Galan E, Zhang S, Marlman J, Caldwell JM, Troutman TD, Rothenberg ME. Eosinophil specialization is regulated by exposure to the esophageal epithelial microenvironment. J Leukoc Biol 2024; 116:1007-1020. [PMID: 38723185 PMCID: PMC11531809 DOI: 10.1093/jleuko/qiae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/18/2024] [Accepted: 04/01/2024] [Indexed: 08/31/2024] Open
Abstract
Distinct subsets of eosinophils are reported in inflammatory and healthy tissues, yet the functions of uniquely specialized eosinophils and the signals that elicit them, particularly in eosinophilic esophagitis, are not well understood. Herein, we report an ex vivo system wherein freshly isolated human eosinophils were cocultured with esophageal epithelial cells and disease-relevant proinflammatory (IL-13) or profibrotic (TGF-β) cytokines. Compared with untreated cocultures, IL-13 increased expression of CD69 on eosinophils, whereas TGF-β increased expression of CD81, CD62L, and CD25. Eosinophils from IL-13-treated cocultures demonstrated increased secretion of GRO-α, IL-8, and macrophage colony-stimulating factor and also generated increased extracellular peroxidase activity following activation. Eosinophils from TGF-β-treated cocultures secreted increased IL-6 and exhibited increased chemotactic response to CCL11 compared with eosinophils from untreated or IL-13-treated coculture conditions. When eosinophils from TGF-β-treated cocultures were cultured with fibroblasts, they upregulated SERPINE1 expression and fibronectin secretion by fibroblasts compared with eosinophils that were cultured with granulocyte macrophage colony-stimulating factor alone. Translational studies revealed that CD62L was heterogeneously expressed by eosinophils in patient biopsy specimens. Our results demonstrate that disease-relevant proinflammatory and profibrotic signals present in the esophagus of patients with eosinophilic esophagitis cause distinct profiles of eosinophil activation and gene expression.
Collapse
Affiliation(s)
- Julia L M Dunn
- Division of Allergy & Immunology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, United States
| | - Andrea Szep
- Division of Allergy & Immunology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, United States
| | - Emily Gonzalez Galan
- Division of Allergy & Immunology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, United States
| | - Simin Zhang
- Department of Rheumatology, Allergy and Immunology, University of Cincinnati, 3230 Eden Avenue, Cincinnati, OH 45267, United States
| | - Justin Marlman
- Division of Allergy & Immunology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, United States
| | - Julie M Caldwell
- Division of Allergy & Immunology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, United States
| | - Ty D Troutman
- Division of Allergy & Immunology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, United States
| | - Marc E Rothenberg
- Division of Allergy & Immunology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, United States
| |
Collapse
|
14
|
Stockinger B, Diaz OE, Wincent E. The influence of AHR on immune and tissue biology. EMBO Mol Med 2024; 16:2290-2298. [PMID: 39242971 PMCID: PMC11473696 DOI: 10.1038/s44321-024-00135-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/09/2024] Open
Abstract
The aryl hydrocarbon receptor is a ligand dependent transcription factor which functions as an environmental sensor. Originally discovered as the sensor for man made pollutants such as 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) it has recently gained prominence as an important mediator for environmental triggers via the diet or microbiota which influences many physiological functions in different cell types and tissues across the body. Notably AHR activity contributes to prevent excessive inflammation following tissue damage in barrier organs such as skin, lung or gut which has received wide attention in the past decade. In this review we will focus on emerging common AHR functions across cell types and tissues and discuss ongoing issues that confound the understanding of AHR physiology. Furthermore, we will discuss the need for deeper molecular understanding of the functional activity of AHR in different contexts with respect to development of potential therapeutic applications.
Collapse
Affiliation(s)
| | - Oscar E Diaz
- The Francis Crick Institute, London, United Kingdom
| | - Emma Wincent
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
15
|
Schworer SA, Olbrich CL, Larsen LD, Howard E, Liu L, Koyama K, Spencer LA. Notch 2 signaling contributes to intestinal eosinophil adaptations in steady state and tissue burden following oral allergen challenge. J Leukoc Biol 2024; 116:379-391. [PMID: 38789100 PMCID: PMC11271981 DOI: 10.1093/jleuko/qiae122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/02/2024] [Accepted: 04/21/2024] [Indexed: 05/26/2024] Open
Abstract
Eosinophils not only function as inflammatory effectors in allergic diseases, but also contribute to tissue homeostasis in steady state. Emerging data are revealing tissue eosinophils to be adaptive cells, imprinted by their local tissue microenvironment and exhibiting distinct functional phenotypes that may contribute to their homeostatic vs. inflammatory capacities. However, signaling pathways that regulate eosinophil tissue adaptations remain elusive. Notch signaling is an evolutionarily conserved pathway that mediates differential cell fate programming of both pre- and postmitotic immune cells. This study investigated a role for notch receptor 2 signaling in regulating eosinophil functions and tissue phenotype in both humans and mice. Notch 2 receptors were constitutively expressed and active in human blood eosinophils. Pharmacologic neutralization of notch 2 in ex vivo stimulated human eosinophils altered their activated transcriptome and prevented their cytokine-mediated survival. Genetic ablation of eosinophil-expressed notch 2 in mice diminished steady-state intestine-specific eosinophil adaptations and impaired their tissue retention in a food allergic response. In contrast, notch 2 had no effect on eosinophil phenotype or tissue inflammation within the context of allergic airways inflammation, suggesting that notch 2-dependent regulation of eosinophil phenotype and function is specific to the gut. These data reveal notch 2 signaling as a cell-intrinsic mechanism that contributes to eosinophil survival, function, and intestine-specific adaptations. The notch 2 pathway may represent a viable strategy to reprogram eosinophil functional phenotypes in gastrointestinal eosinophil-associated diseases.
Collapse
Affiliation(s)
- Stephen A Schworer
- Division of Allergy and Inflammation, Department of Medicine, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215, United States
- Division of Rheumatology, Allergy, and Immunology, Department of Medicine, Marsico Lung Institute, 125 Mason Farm Road, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Courtney L Olbrich
- Division of Allergy and Inflammation, Department of Medicine, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215, United States
- Section of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, and Mucosal Inflammation Program, 12700 E. 19th Ave, University of Colorado School of Medicine, Aurora, CO 80045, United States
- Gastrointestinal Eosinophilic Diseases Program, Digestive Health Institute, 13123 E. 16th Ave, Children's Hospital Colorado, Aurora, CO 80045, United States
| | - Leigha D Larsen
- Section of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, and Mucosal Inflammation Program, 12700 E. 19th Ave, University of Colorado School of Medicine, Aurora, CO 80045, United States
- Gastrointestinal Eosinophilic Diseases Program, Digestive Health Institute, 13123 E. 16th Ave, Children's Hospital Colorado, Aurora, CO 80045, United States
| | - Emily Howard
- Division of Allergy and Inflammation, Department of Medicine, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215, United States
| | - Linying Liu
- Division of Allergy and Inflammation, Department of Medicine, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215, United States
| | - Kenya Koyama
- Division of Allergy and Inflammation, Department of Medicine, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215, United States
- Department of Respiratory Medicine and Clinical Immunology, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Shimotsugagun, Tochigi 321-0293, Japan
| | - Lisa A Spencer
- Division of Allergy and Inflammation, Department of Medicine, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215, United States
- Section of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, and Mucosal Inflammation Program, 12700 E. 19th Ave, University of Colorado School of Medicine, Aurora, CO 80045, United States
- Gastrointestinal Eosinophilic Diseases Program, Digestive Health Institute, 13123 E. 16th Ave, Children's Hospital Colorado, Aurora, CO 80045, United States
| |
Collapse
|
16
|
Weighardt H, Shapiro M, Mayer M, Förster I, Stockinger B, Diny NL. The AHR repressor limits expression of antimicrobial genes but not AHR-dependent genes in intestinal eosinophils. J Leukoc Biol 2024; 116:369-378. [PMID: 38701199 PMCID: PMC11271977 DOI: 10.1093/jleuko/qiae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 05/05/2024] Open
Abstract
Intestinal eosinophils express the aryl hydrocarbon receptor (AHR), an environmental sensor and ligand-activated transcription factor that responds to dietary or environmental ligands. AHR regulates tissue adaptation, survival, adhesion, and immune functions in intestinal eosinophils. The AHR repressor (AHRR) is itself induced by AHR and believed to limit AHR activity in a negative feedback loop. We analyzed gene expression in intestinal eosinophils from wild-type and AHRR knockout mice and found that AHRR did not suppress most AHR-dependent genes. Instead, AHRR limited the expression of a distinct small set of genes involved in the innate immune response. These included S100 proteins, antimicrobial proteins, and alpha-defensins. Using bone marrow-derived eosinophils, we found that AHRR knockout eosinophils released more reactive oxygen species upon stimulation. This work shows that the paradigm of AHRR as a repressor of AHR transcriptional activity does not apply to intestinal eosinophils. Rather, AHRR limits the expression of innate immune response and antimicrobial genes, possibly to maintain an anti-inflammatory phenotype in eosinophils when exposed to microbial signals in the intestinal environment.
Collapse
Affiliation(s)
- Heike Weighardt
- Immunology and Environment, Life and Medical Sciences Institute, University of Bonn, Carl-Troll-Straße 31, 53115 Bonn, Germany
| | - Michael Shapiro
- AhR Immunity Lab, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, United Kingdom
| | - Michelle Mayer
- Immunology and Environment, Life and Medical Sciences Institute, University of Bonn, Carl-Troll-Straße 31, 53115 Bonn, Germany
| | - Irmgard Förster
- Immunology and Environment, Life and Medical Sciences Institute, University of Bonn, Carl-Troll-Straße 31, 53115 Bonn, Germany
| | - Brigitta Stockinger
- AhR Immunity Lab, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, United Kingdom
| | - Nicola Laura Diny
- AhR Immunity Lab, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, United Kingdom
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| |
Collapse
|
17
|
Bowen JL, Keck K, Baruah S, Nguyen KH, Thurman AL, Pezzulo AA, Klesney-Tait J. Eosinophil expression of triggering receptor expressed on myeloid cells 1 (TREM-1) restricts type 2 lung inflammation. J Leukoc Biol 2024; 116:409-423. [PMID: 38547428 DOI: 10.1093/jleuko/qiae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/20/2024] [Accepted: 02/16/2024] [Indexed: 07/27/2024] Open
Abstract
Asthma affects 25 million Americans, and recent advances in treatment are effective for only a portion of severe asthma patients. TREM-1, an innate receptor that canonically amplifies inflammatory signaling in neutrophils and monocytes, plays a central role in regulating lung inflammation. It is unknown how TREM-1 contributes to allergic asthma pathology. Utilizing a murine model of asthma, flow cytometry revealed TREM-1+ eosinophils in the lung tissue and airway during allergic airway inflammation. TREM-1 expression was restricted to recruited, inflammatory eosinophils. Expression was induced on bone marrow-derived eosinophils by incubation with interleukin 33, lipopolysaccharide, or granulocyte-macrophage colony-stimulating factor. Compared to TREM-1- airway eosinophils, TREM-1+ eosinophils were enriched for proinflammatory gene sets, including migration, respiratory burst, and cytokine production. Unexpectedly, eosinophil-specific ablation of TREM-1 exacerbated airway interleukin (IL) 5 production, airway MUC5AC production, and lung tissue eosinophil accumulation. Further investigation of transcriptional data revealed apoptosis and superoxide generation-related gene sets were enriched in TREM-1+ eosinophils. Consistent with these findings, annexin V and caspase-3/7 staining demonstrated higher rates of apoptosis among TREM-1+ eosinophils compared to TREM-1- eosinophils in the inflammatory airway. In vitro, Trem1/3-/- bone marrow-derived eosinophils consumed less oxygen than wild-type in response to phorbol myristate acetate, suggesting that TREM-1 promotes superoxide generation in eosinophils. These data reveal protein-level expression of TREM-1 by eosinophils, define a population of TREM-1+ inflammatory eosinophils, and demonstrate that eosinophil TREM-1 restricts key features of type 2 lung inflammation.
Collapse
Affiliation(s)
- Jayden L Bowen
- Department of Internal Medicine, University of Iowa Carver College of Medicine, 200 Hawkins Drive, Iowa City, IA 52242, USA
- Medical Scientist Training Program, University of Iowa Carver College of Medicine, 375 Newton Road, Iowa City, IA 52242, USA
- Interdisciplinary Graduate Program in Immunology, University of Iowa Carver College of Medicine, 501 Newton Rd, Iowa City, IA 52242, USA
| | - Kathy Keck
- Department of Internal Medicine, University of Iowa Carver College of Medicine, 200 Hawkins Drive, Iowa City, IA 52242, USA
| | - Sankar Baruah
- Department of Internal Medicine, University of Iowa Carver College of Medicine, 200 Hawkins Drive, Iowa City, IA 52242, USA
- Protein and Crystallography Facility, University of Iowa Carver College of Medicine, 51 Newton Rd, Iowa City, IA 52242, USA
| | - Kathy H Nguyen
- Department of Internal Medicine, University of Iowa Carver College of Medicine, 200 Hawkins Drive, Iowa City, IA 52242, USA
- Medical Scientist Training Program, University of Iowa Carver College of Medicine, 375 Newton Road, Iowa City, IA 52242, USA
| | - Andrew L Thurman
- Department of Internal Medicine, University of Iowa Carver College of Medicine, 200 Hawkins Drive, Iowa City, IA 52242, USA
| | - Alejandro A Pezzulo
- Department of Internal Medicine, University of Iowa Carver College of Medicine, 200 Hawkins Drive, Iowa City, IA 52242, USA
| | - Julia Klesney-Tait
- Department of Internal Medicine, University of Iowa Carver College of Medicine, 200 Hawkins Drive, Iowa City, IA 52242, USA
| |
Collapse
|
18
|
Ackerman SJ, Stacy NI. Considerations on the evolutionary biology and functions of eosinophils: what the "haeckel"? J Leukoc Biol 2024; 116:247-259. [PMID: 38736141 PMCID: PMC11288384 DOI: 10.1093/jleuko/qiae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/27/2024] [Accepted: 04/17/2024] [Indexed: 05/14/2024] Open
Abstract
The origins and evolution of the eosinophilic leukocyte have received only scattered attention since Paul Ehrlich first named this granulocyte. Studies suggest that myeloperoxidase, expressed by granulocytes, and eosinophil peroxidase diverged some 60 to 70 million years ago, but invertebrate to vertebrate evolution of the eosinophil lineage is unknown. Vertebrate eosinophils have been characterized extensively in representative species at light microscopic, ultrastructural, genetic, and biochemical levels. Understanding of eosinophil function continues to expand and includes to date regulation of "Local Immunity And/Or Remodeling/Repair" (the so-called LIAR hypothesis), modulation of innate and adaptive immune responses, maintenance of tissue and metabolic homeostasis, and, under pathologic conditions, inducers of tissue damage, repair, remodeling, and fibrosis. This contrasts with their classically considered primary roles in host defense against parasites and other pathogens, as well as involvement in T-helper 2 inflammatory and immune responses. The eosinophils' early appearance during evolution and continued retention within the innate immune system across taxa illustrate their importance during evolutionary biology. However, successful pregnancies in eosinophil-depleted humans/primates treated with biologics, host immune responses to parasites in eosinophil-deficient mice, and the absence of significant developmental or functional abnormalities in eosinophil-deficient mouse strains under laboratory conditions raise questions of the continuing selective advantages of the eosinophil lineage in mammals and humans. The objectives of this review are to provide an overview on evolutionary origins of eosinophils across the animal kingdom, discuss some of their main functions in the context of potential evolutionary relevance, and highlight the need for further research on eosinophil functions and functional evolution.
Collapse
Affiliation(s)
- Steven J Ackerman
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, MBRB2074, MC669, 900 S. Ashland Ave, Chicago, IL 60607, United States
| | - Nicole I Stacy
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, 2015 SW 16th Ave, Gainesville, FL 32610, United States
| |
Collapse
|
19
|
Graelmann FJ, Gondorf F, Majlesain Y, Niemann B, Klepac K, Gosejacob D, Gottschalk M, Mayer M, Iriady I, Hatzfeld P, Lindenberg SK, Wunderling K, Thiele C, Abdullah Z, He W, Hiller K, Händler K, Beyer MD, Ulas T, Pfeifer A, Esser C, Weighardt H, Förster I, Reverte-Salisa L. Differential cell type-specific function of the aryl hydrocarbon receptor and its repressor in diet-induced obesity and fibrosis. Mol Metab 2024; 85:101963. [PMID: 38821174 PMCID: PMC11214421 DOI: 10.1016/j.molmet.2024.101963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/02/2024] [Accepted: 05/25/2024] [Indexed: 06/02/2024] Open
Abstract
OBJECTIVE The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor regulating xenobiotic responses as well as physiological metabolism. Dietary AhR ligands activate the AhR signaling axis, whereas AhR activation is negatively regulated by the AhR repressor (AhRR). While AhR-deficient mice are known to be resistant to diet-induced obesity (DIO), the influence of the AhRR on DIO has not been assessed so far. METHODS In this study, we analyzed AhRR-/- mice and mice with a conditional deletion of either AhRR or AhR in myeloid cells under conditions of DIO and after supplementation of dietary AhR ligands. Moreover, macrophage metabolism was assessed using Seahorse Mito Stress Test and ROS assays as well as transcriptomic analysis. RESULTS We demonstrate that global AhRR deficiency leads to a robust, but not as profound protection from DIO and hepatosteatosis as AhR deficiency. Under conditions of DIO, AhRR-/- mice did not accumulate TCA cycle intermediates in the circulation in contrast to wild-type (WT) mice, indicating protection from metabolic dysfunction. This effect could be mimicked by dietary supplementation of AhR ligands in WT mice. Because of the predominant expression of the AhRR in myeloid cells, AhRR-deficient macrophages were analyzed for changes in metabolism and showed major metabolic alterations regarding oxidative phosphorylation and mitochondrial activity. Unbiased transcriptomic analysis revealed increased expression of genes involved in de novo lipogenesis and mitochondrial biogenesis. Mice with a genetic deficiency of the AhRR in myeloid cells did not show alterations in weight gain after high fat diet (HFD) but demonstrated ameliorated liver damage compared to control mice. Further, deficiency of the AhR in myeloid cells also did not affect weight gain but led to enhanced liver damage and adipose tissue fibrosis compared to controls. CONCLUSIONS AhRR-deficient mice are resistant to diet-induced metabolic syndrome. Although conditional ablation of either the AhR or AhRR in myeloid cells did not recapitulate the phenotype of the global knockout, our findings suggest that enhanced AhR signaling in myeloid cells deficient for AhRR protects from diet-induced liver damage and fibrosis, whereas myeloid cell-specific AhR deficiency is detrimental.
Collapse
Affiliation(s)
- Frederike J Graelmann
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Germany
| | - Fabian Gondorf
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Germany
| | - Yasmin Majlesain
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Germany
| | - Birte Niemann
- Institute of Pharmacology and Toxicology, University Hospital Bonn, University of Bonn, Germany
| | - Katarina Klepac
- Institute of Pharmacology and Toxicology, University Hospital Bonn, University of Bonn, Germany
| | - Dominic Gosejacob
- Institute of Pharmacology and Toxicology, University Hospital Bonn, University of Bonn, Germany
| | - Marlene Gottschalk
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Germany
| | - Michelle Mayer
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Germany
| | - Irina Iriady
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Germany
| | - Philip Hatzfeld
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Germany
| | - Sophie K Lindenberg
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Germany
| | - Klaus Wunderling
- Biochemistry & Cell Biology of Lipids, Life and Medical Sciences (LIMES) Institute, University of Bonn, Germany
| | - Christoph Thiele
- Biochemistry & Cell Biology of Lipids, Life and Medical Sciences (LIMES) Institute, University of Bonn, Germany
| | - Zeinab Abdullah
- Institute of Molecular Medicine and Experimental Immunology, University Hospital Bonn, University of Bonn, Germany
| | - Wei He
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Karsten Hiller
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Kristian Händler
- PRECISE Platform for Single cell Genomics and Epigenomics at the German Center for Neurodegenerative Diseases and the University of Bonn and West German Genome Center, Bonn, Germany; Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, Germany; Institute of Human Genetics, Universitätsklinikum Schleswig-Holstein, University of Lübeck and University of Kiel, 23562 Lübeck, Germany
| | - Marc D Beyer
- PRECISE Platform for Single cell Genomics and Epigenomics at the German Center for Neurodegenerative Diseases and the University of Bonn and West German Genome Center, Bonn, Germany; Immunogenomics & Neurodegeneration, German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Thomas Ulas
- PRECISE Platform for Single cell Genomics and Epigenomics at the German Center for Neurodegenerative Diseases and the University of Bonn and West German Genome Center, Bonn, Germany; Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, Germany
| | - Alexander Pfeifer
- Institute of Pharmacology and Toxicology, University Hospital Bonn, University of Bonn, Germany
| | - Charlotte Esser
- IUF-Leibniz Research Institute for Environmental Medicine gGmbH, Düsseldorf, Germany
| | - Heike Weighardt
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Germany; IUF-Leibniz Research Institute for Environmental Medicine gGmbH, Düsseldorf, Germany
| | - Irmgard Förster
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Germany.
| | - Laia Reverte-Salisa
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Germany.
| |
Collapse
|
20
|
Heine S, Alessandrini F, Grosch J, Graß C, Heldner A, Schnautz B, Grosch J, Buters J, Slusarenko BO, Krappmann D, Fallarino F, Ohnmacht C, Schmidt-Weber CB, Blank S. Activation of the aryl hydrocarbon receptor improves allergen-specific immunotherapy of murine allergic airway inflammation: a novel adjuvant option? Front Immunol 2024; 15:1397072. [PMID: 38915403 PMCID: PMC11194380 DOI: 10.3389/fimmu.2024.1397072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/29/2024] [Indexed: 06/26/2024] Open
Abstract
Background Allergen-specific immunotherapy (AIT) is able to restore immune tolerance to allergens in allergic patients. However, some patients do not or only poorly respond to current treatment protocols. Therefore, there is a need for deeper mechanistic insights and further improvement of treatment strategies. The relevance of the aryl hydrocarbon receptor (AhR), a ligand-dependent transcription factor, has been investigated in several inflammatory diseases, including allergic asthma. However, its potential role in AIT still needs to be addressed. Methods A murine model of AIT in ovalbumin-induced allergic airway inflammation was performed in AhR-deficient (AhR-/-) and wild-type mice. Furthermore, AIT was combined with the application of the high-affinity AhR agonist 10-chloro-7H-benzimidazo[2,1-a]benzo[de]iso-quinolin-7-one (10-Cl-BBQ) as an adjuvant to investigate the effects of AhR activation on therapeutic outcome. Results Although AhR-/- mice suffer stronger allergic responses than wild-type mice, experimental AIT is comparably effective in both. Nevertheless, combining AIT with the administration of 10-Cl-BBQ improved therapeutic effects by an AhR-dependent mechanism, resulting in decreased cell counts in the bronchoalveolar fluid, decreased pulmonary Th2 and Th17 cell levels, and lower sIgE levels. Conclusion This study demonstrates that the success of AIT is not dependent on the AhR. However, targeting the AhR during AIT can help to dampen inflammation and improve tolerogenic vaccination. Therefore, AhR ligands might represent promising candidates as immunomodulators to enhance the efficacy of AIT.
Collapse
Affiliation(s)
- Sonja Heine
- Center of Allergy and Environment (ZAUM), Technical University of Munich, School of Medicine and Health & Helmholtz Munich, German Research Center for Environmental Health, Member of the German Center of Lung Research (DZL), Member of the Immunology and Inflammation Initiative of the Helmholtz Association, Munich, Germany
| | - Francesca Alessandrini
- Center of Allergy and Environment (ZAUM), Technical University of Munich, School of Medicine and Health & Helmholtz Munich, German Research Center for Environmental Health, Member of the German Center of Lung Research (DZL), Member of the Immunology and Inflammation Initiative of the Helmholtz Association, Munich, Germany
| | - Johannes Grosch
- Center of Allergy and Environment (ZAUM), Technical University of Munich, School of Medicine and Health & Helmholtz Munich, German Research Center for Environmental Health, Member of the German Center of Lung Research (DZL), Member of the Immunology and Inflammation Initiative of the Helmholtz Association, Munich, Germany
| | - Carina Graß
- Research Unit Signaling and Translation, Group Signaling and Immunity, Molecular Targets and Therapeutic Center, Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany
| | - Alexander Heldner
- Center of Allergy and Environment (ZAUM), Technical University of Munich, School of Medicine and Health & Helmholtz Munich, German Research Center for Environmental Health, Member of the German Center of Lung Research (DZL), Member of the Immunology and Inflammation Initiative of the Helmholtz Association, Munich, Germany
| | - Benjamin Schnautz
- Center of Allergy and Environment (ZAUM), Technical University of Munich, School of Medicine and Health & Helmholtz Munich, German Research Center for Environmental Health, Member of the German Center of Lung Research (DZL), Member of the Immunology and Inflammation Initiative of the Helmholtz Association, Munich, Germany
| | - Johanna Grosch
- Center of Allergy and Environment (ZAUM), Technical University of Munich, School of Medicine and Health & Helmholtz Munich, German Research Center for Environmental Health, Member of the German Center of Lung Research (DZL), Member of the Immunology and Inflammation Initiative of the Helmholtz Association, Munich, Germany
| | - Jeroen Buters
- Center of Allergy and Environment (ZAUM), Technical University of Munich, School of Medicine and Health & Helmholtz Munich, German Research Center for Environmental Health, Member of the German Center of Lung Research (DZL), Member of the Immunology and Inflammation Initiative of the Helmholtz Association, Munich, Germany
| | - Benjamin O. Slusarenko
- Center of Allergy and Environment (ZAUM), Technical University of Munich, School of Medicine and Health & Helmholtz Munich, German Research Center for Environmental Health, Member of the German Center of Lung Research (DZL), Member of the Immunology and Inflammation Initiative of the Helmholtz Association, Munich, Germany
| | - Daniel Krappmann
- Research Unit Signaling and Translation, Group Signaling and Immunity, Molecular Targets and Therapeutic Center, Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany
| | | | - Caspar Ohnmacht
- Center of Allergy and Environment (ZAUM), Technical University of Munich, School of Medicine and Health & Helmholtz Munich, German Research Center for Environmental Health, Member of the German Center of Lung Research (DZL), Member of the Immunology and Inflammation Initiative of the Helmholtz Association, Munich, Germany
| | - Carsten B. Schmidt-Weber
- Center of Allergy and Environment (ZAUM), Technical University of Munich, School of Medicine and Health & Helmholtz Munich, German Research Center for Environmental Health, Member of the German Center of Lung Research (DZL), Member of the Immunology and Inflammation Initiative of the Helmholtz Association, Munich, Germany
| | - Simon Blank
- Center of Allergy and Environment (ZAUM), Technical University of Munich, School of Medicine and Health & Helmholtz Munich, German Research Center for Environmental Health, Member of the German Center of Lung Research (DZL), Member of the Immunology and Inflammation Initiative of the Helmholtz Association, Munich, Germany
| |
Collapse
|
21
|
Kim HJ, Jang J, Na K, Lee EH, Gu HJ, Lim YH, Joo SA, Baek SE, Roh JY, Maeng HJ, Kim YH, Lee YJ, Oh BC, Jung Y. TLR7-dependent eosinophil degranulation links psoriatic skin inflammation to small intestinal inflammatory changes in mice. Exp Mol Med 2024; 56:1164-1177. [PMID: 38689088 PMCID: PMC11148187 DOI: 10.1038/s12276-024-01225-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/26/2024] [Accepted: 02/13/2024] [Indexed: 05/02/2024] Open
Abstract
Recent evidence of gut microbiota dysbiosis in the context of psoriasis and the increased cooccurrence of inflammatory bowel disease and psoriasis suggest a close relationship between skin and gut immune responses. Using a mouse model of psoriasis induced by the Toll-like receptor (TLR) 7 ligand imiquimod, we found that psoriatic dermatitis was accompanied by inflammatory changes in the small intestine associated with eosinophil degranulation, which impaired intestinal barrier integrity. Inflammatory responses in the skin and small intestine were increased in mice prone to eosinophil degranulation. Caco-2 human intestinal epithelial cells were treated with media containing eosinophil granule proteins and exhibited signs of inflammation and damage. Imiquimod-induced skin and intestinal changes were attenuated in eosinophil-deficient mice, and this attenuation was counteracted by the transfer of eosinophils. Imiquimod levels and the distribution of eosinophils were positively correlated in the intestine. TLR7-deficient mice did not exhibit intestinal eosinophil degranulation but did exhibit attenuated inflammation in the skin and small intestine following imiquimod administration. These results suggest that TLR7-dependent bidirectional skin-to-gut communication occurs in psoriatic inflammation and that inflammatory changes in the intestine can accelerate psoriasis.
Collapse
Affiliation(s)
- Hee Joo Kim
- Department of Dermatology, Gachon Gil Medical Center, College of Medicine, Gachon University, Incheon, 21565, Korea
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, Korea
| | - Jinsun Jang
- Department of Health Science and Technology, Gachon Advanced Institute for Health Science & Technology, Gachon University, Incheon, 21999, Korea
| | - Kunhee Na
- Department of Health Science and Technology, Gachon Advanced Institute for Health Science & Technology, Gachon University, Incheon, 21999, Korea
| | - Eun-Hui Lee
- Department of Microbiology, College of Medicine, Gachon University, Incheon, 21999, Korea
| | - Hyeon-Jung Gu
- Department of Health Science and Technology, Gachon Advanced Institute for Health Science & Technology, Gachon University, Incheon, 21999, Korea
| | - Yoon Hee Lim
- Department of Microbiology, College of Medicine, Gachon University, Incheon, 21999, Korea
| | - Seul-A Joo
- College of Pharmacy, Gachon University, Incheon, 21936, Korea
| | - Seung Eun Baek
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, 50612, Korea
| | - Joo-Young Roh
- Department of Dermatology, Gachon Gil Medical Center, College of Medicine, Gachon University, Incheon, 21565, Korea
- Department of Dermatology, Ewha Womans University Medical Center, College of Medicine, Ewha Womans University, Seoul, 07804, Korea
| | - Han-Joo Maeng
- College of Pharmacy, Gachon University, Incheon, 21936, Korea
| | - Yun Hak Kim
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, 50612, Korea
- Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan, 50612, Korea
| | - Young-Jae Lee
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, Korea
- Department of Health Science and Technology, Gachon Advanced Institute for Health Science & Technology, Gachon University, Incheon, 21999, Korea
- Department of Biochemistry, College of Medicine, Gachon University, Incheon, 21999, Korea
| | - Byung-Chul Oh
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, Korea
- Department of Health Science and Technology, Gachon Advanced Institute for Health Science & Technology, Gachon University, Incheon, 21999, Korea
- Department of Physiology, College of Medicine, Gachon University, Incheon, 21999, Korea
| | - YunJae Jung
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, Korea.
- Department of Health Science and Technology, Gachon Advanced Institute for Health Science & Technology, Gachon University, Incheon, 21999, Korea.
- Department of Microbiology, College of Medicine, Gachon University, Incheon, 21999, Korea.
| |
Collapse
|
22
|
I Kutyavin V, Korn LL, Medzhitov R. Nutrient-derived signals regulate eosinophil adaptation to the small intestine. Proc Natl Acad Sci U S A 2024; 121:e2316446121. [PMID: 38271336 PMCID: PMC10835075 DOI: 10.1073/pnas.2316446121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/05/2023] [Indexed: 01/27/2024] Open
Abstract
Eosinophils are well recognized as effector cells of type 2 immunity, yet they also accumulate in many tissues under homeostatic conditions. However, the processes that govern homeostatic eosinophil accumulation and tissue-specific adaptation, and their functional significance, remain poorly defined. Here, we investigated how eosinophils adapt to the small intestine (SI) microenvironment and the local signals that regulate this process. We observed that eosinophils gradually migrate along the crypt-villus axis, giving rise to a villus-resident subpopulation with a distinct transcriptional signature. Retinoic acid signaling was specifically required for maintenance of this subpopulation, while IL-5 was largely dispensable outside of its canonical role in eosinophil production. Surprisingly, we found that a high-protein diet suppressed the accumulation of villus-resident eosinophils. Purified amino acids were sufficient for this effect, which was a consequence of accelerated eosinophil turnover within the tissue microenvironment and was not due to altered development in the bone marrow. Our study provides insight into the process of eosinophil adaptation to the SI, highlighting its reliance on nutrient-derived signals.
Collapse
Affiliation(s)
- Vassily I Kutyavin
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510
| | - Lisa L Korn
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510
- Department of Medicine (Rheumatology), Yale University School of Medicine, New Haven, CT 06510
| | - Ruslan Medzhitov
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510
- HHMI, Yale University School of Medicine, New Haven, CT 06510
| |
Collapse
|
23
|
Hu YQ, Zhang JZ. Unbalanced Aryl Hydrocarbon Receptor Expression in Peripheral and Lesional T Cell Subsets of Atopic Dermatitis. Clin Cosmet Investig Dermatol 2023; 16:3661-3671. [PMID: 38144156 PMCID: PMC10749169 DOI: 10.2147/ccid.s430915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 11/07/2023] [Indexed: 12/26/2023]
Abstract
Background and Objective The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor, which is involved in the pathogenesis of a variety of skin diseases such as atopic dermatitis (AD). In this study, we aimed to study the AhR-expressing cells in T helper 17 (Th17), T helper 22 (Th22), regulatory T cells (Treg) and B cells in peripheral blood and in AD skin lesions. Methods Twenty AD patients defined according to the Chinese criteria of atopic dermatitis and eighteen healthy subjects were included in our study. The AhR-expressing Th17, Th22, Treg and total B cells in peripheral blood were measured by flow cytometry. The AhR+ Th17 cells and AhR+ Th22 cells in AD skin lesions were measured by immunofluorescence. The mRNA of AhR, interleukin (IL)-22, IL-17A, IL-10, Foxp3, RORγT and TGF-β in peripheral blood mononuclear cells (PBMCs) was measured by real-time quantitative polymerase chain reaction. Results The expression of AhR in peripheral CD4+ T cells, Th22 cells, Treg cells and total B cells was significantly increased in AD. AhR+IL-17A+ and AhR+IL-22+ lymphocytes were also increased in AD skin lesions. The mRNA levels of AhR, IL-22 and IL-17A in PBMCs in AD patients were significantly higher. AhR mRNA levels in PBMCs positively correlated with peripheral basophil count, peripheral eosinophil count and mRNA levels of IL-22. Conclusion AhR was highly expressed in subpopulations of CD4+ T cells in peripheral blood and skin lesions of AD, suggesting that AhR might contribute to the pathogenesis of AD.
Collapse
Affiliation(s)
- Yu-Qing Hu
- Department of Dermatology, Peking University People’s Hospital, Beijing, 100044, People’s Republic of China
| | - Jian-Zhong Zhang
- Department of Dermatology, Peking University People’s Hospital, Beijing, 100044, People’s Republic of China
| |
Collapse
|
24
|
Maradana MR, Marzook NB, Diaz OE, Mkandawire T, Diny NL, Li Y, Liebert A, Shah K, Tolaini M, Kváč M, Stockinger B, Sateriale A. Dietary environmental factors shape the immune defense against Cryptosporidium infection. Cell Host Microbe 2023; 31:2038-2050.e4. [PMID: 38052207 DOI: 10.1016/j.chom.2023.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/05/2023] [Accepted: 11/09/2023] [Indexed: 12/07/2023]
Abstract
Cryptosporidium is a leading cause of diarrheal-related deaths in children, especially in resource-poor settings. It also targets the immunocompromised, chronically infecting people living with HIV and primary immunodeficiencies. There is no vaccine or effective treatment. Although it is known from human cases and animal models that CD4+ T cells play a role in curbing Cryptosporidium, the role of CD8+ T cells remains to be defined. Using a Cryptosporidium tyzzeri mouse model, we show that gut-resident CD8+ intraepithelial lymphocytes (IELs) confer resistance to parasite growth. CD8+ IELs express and depend on the ligand-dependent transcription factor aryl hydrocarbon receptor (AHR). AHR deficiency reduces CD8+ IELs, decreases their cytotoxicity, and worsens infection. Transfer of CD8+ IELs rescues severely immunodeficient mice from death following Cryptosporidium challenge. Finally, dietary supplementation of the AHR pro-ligand indole-3-carbinol in newborn mice promotes resistance to infection. Therefore, common dietary metabolites augment the host immune response to cryptosporidiosis, protecting against disease.
Collapse
Affiliation(s)
| | | | - Oscar E Diaz
- AhR Immunity Lab, The Francis Crick Institute, London, UK
| | | | | | - Ying Li
- AhR Immunity Lab, The Francis Crick Institute, London, UK
| | - Anke Liebert
- AhR Immunity Lab, The Francis Crick Institute, London, UK
| | - Kathleen Shah
- AhR Immunity Lab, The Francis Crick Institute, London, UK
| | - Mauro Tolaini
- AhR Immunity Lab, The Francis Crick Institute, London, UK
| | - Martin Kváč
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | | | - Adam Sateriale
- Cryptosporidiosis Lab, The Francis Crick Institute, London, UK.
| |
Collapse
|
25
|
Larsen MC, Rondelli CM, Almeldin A, Song YS, N’Jai A, Alexander DL, Forsberg EC, Sheibani N, Jefcoate CR. AhR and CYP1B1 Control Oxygen Effects on Bone Marrow Progenitor Cells: The Enrichment of Multiple Olfactory Receptors as Potential Microbiome Sensors. Int J Mol Sci 2023; 24:16884. [PMID: 38069208 PMCID: PMC10706615 DOI: 10.3390/ijms242316884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Polycyclic aromatic hydrocarbon (PAH) pollutants and microbiome products converge on the aryl hydrocarbon receptor (AhR) to redirect selective rapid adherence of isolated bone marrow (BM) cells. In young adult mice, Cyp1b1-deficiency and AhR activation by PAH, particularly when prolonged by Cyp1a1 deletion, produce matching gene stimulations in these BM cells. Vascular expression of Cyp1b1 lowers reactive oxygen species (ROS), suppressing NF-κB/RelA signaling. PAH and allelic selectivity support a non-canonical AhR participation, possibly through RelA. Genes stimulated by Cyp1b1 deficiency were further resolved according to the effects of Cyp1b1 and Cyp1a1 dual deletions (DKO). The adherent BM cells show a cluster of novel stimulations, including select developmental markers; multiple re-purposed olfactory receptors (OLFR); and α-Defensin, a microbial disruptor. Each one connects to an enhanced specific expression of the catalytic RNA Pol2 A subunit, among 12 different subunits. Mesenchymal progenitor BMS2 cells retain these features. Cyp1b1-deficiency removes lymphocytes from adherent assemblies as BM-derived mesenchymal stromal cells (BM-MSC) expand. Cyp1b1 effects were cell-type specific. In vivo, BM-MSC Cyp1b1 expression mediated PAH suppression of lymphocyte progenitors. In vitro, OP9-MSC sustained these progenitors, while Csf1 induced monocyte progenitor expansion to macrophages. Targeted Cyp1b1 deletion (Cdh5-Cre; Cyp1b1fl/fl) established endothelium control of ROS that directs AhR-mediated suppression of B cell progenitors. Monocyte Cyp1b1 deletion (Lyz2-Cre; Cyp1b1fl/fl) selectively attenuated M1 polarization of expanded macrophages, but did not enhance effects on basal M2 polarization. Thus, specific sources of Cyp1b1 link to AhR and to an OLFR network to provide BM inflammatory modulation via diverse microbiome products.
Collapse
Affiliation(s)
- Michele C. Larsen
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (M.C.L.); (A.A.)
| | | | - Ahmed Almeldin
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (M.C.L.); (A.A.)
| | - Yong-Seok Song
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA;
| | - Alhaji N’Jai
- Department of Pathobiological Sciences, University of Wisconsin, Madison, WI 53706, USA;
| | - David L. Alexander
- Institute for the Biology of Stem Cells, University of California, Santa Cruz, CA 95064, USA; (D.L.A.); (E.C.F.)
| | - E. Camilla Forsberg
- Institute for the Biology of Stem Cells, University of California, Santa Cruz, CA 95064, USA; (D.L.A.); (E.C.F.)
| | - Nader Sheibani
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (M.C.L.); (A.A.)
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA;
| | - Colin R. Jefcoate
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (M.C.L.); (A.A.)
| |
Collapse
|
26
|
Li Y, Liu S, Zhou K, Wang Y, Chen Y, Hu W, Li S, Li H, Wang Y, Wang Q, He D, Xu H. Neuromedin U programs eosinophils to promote mucosal immunity of the small intestine. Science 2023; 381:1189-1196. [PMID: 37708282 DOI: 10.1126/science.ade4177] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 08/18/2023] [Indexed: 09/16/2023]
Abstract
Eosinophils are granulocytes that play an essential role in type 2 immunity and regulate multiple homeostatic processes in the small intestine (SI). However, the signals that regulate eosinophil activity in the SI at steady state remain poorly understood. Through transcriptome profiling of eosinophils from various mouse tissues, we found that a subset of SI eosinophils expressed neuromedin U (NMU) receptor 1 (NMUR1). Fate-mapping analyses showed that NMUR1 expression in SI eosinophils was programmed by the local microenvironment and further enhanced by inflammation. Genetic perturbation and eosinophil-organoid coculture experiments revealed that NMU-mediated eosinophil activation promotes goblet cell differentiation. Thus, NMU regulates epithelial cell differentiation and barrier immunity by stimulating NMUR1-expressing eosinophils in the SI, which highlights the importance of neuroimmune-epithelial cross-talk in maintaining tissue homeostasis.
Collapse
Affiliation(s)
- Yu Li
- School of Medicine, Zhejiang University, Hangzhou 310058, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China
- Laboratory of Systems Immunology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Shaorui Liu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China
- Laboratory of Systems Immunology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Kewen Zhou
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China
- Laboratory of Systems Immunology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Yinsheng Wang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China
- Laboratory of Systems Immunology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Yan Chen
- Center for Inflammatory Bowel Diseases, Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China
| | - Wen Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, China
| | - Shuyan Li
- Department of Nursing, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China
| | - Hui Li
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China
- Laboratory of Systems Immunology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Yan Wang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China
- Laboratory of Systems Immunology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Qiuying Wang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China
- Laboratory of Systems Immunology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Danyang He
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China
| | - Heping Xu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China
- Laboratory of Systems Immunology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| |
Collapse
|
27
|
Major J, Crotta S, Finsterbusch K, Chakravarty P, Shah K, Frederico B, D'Antuono R, Green M, Meader L, Suarez-Bonnet A, Priestnall S, Stockinger B, Wack A. Endothelial AHR activity prevents lung barrier disruption in viral infection. Nature 2023; 621:813-820. [PMID: 37587341 PMCID: PMC7615136 DOI: 10.1038/s41586-023-06287-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 06/06/2023] [Indexed: 08/18/2023]
Abstract
Disruption of the lung endothelial-epithelial cell barrier following respiratory virus infection causes cell and fluid accumulation in the air spaces and compromises vital gas exchange function1. Endothelial dysfunction can exacerbate tissue damage2,3, yet it is unclear whether the lung endothelium promotes host resistance against viral pathogens. Here we show that the environmental sensor aryl hydrocarbon receptor (AHR) is highly active in lung endothelial cells and protects against influenza-induced lung vascular leakage. Loss of AHR in endothelia exacerbates lung damage and promotes the infiltration of red blood cells and leukocytes into alveolar air spaces. Moreover, barrier protection is compromised and host susceptibility to secondary bacterial infections is increased when endothelial AHR is missing. AHR engages tissue-protective transcriptional networks in endothelia, including the vasoactive apelin-APJ peptide system4, to prevent a dysplastic and apoptotic response in airway epithelial cells. Finally, we show that protective AHR signalling in lung endothelial cells is dampened by the infection itself. Maintenance of protective AHR function requires a diet enriched in naturally occurring AHR ligands, which activate disease tolerance pathways in lung endothelia to prevent tissue damage. Our findings demonstrate the importance of endothelial function in lung barrier immunity. We identify a gut-lung axis that affects lung damage following encounters with viral pathogens, linking dietary composition and intake to host fitness and inter-individual variations in disease outcome.
Collapse
Affiliation(s)
- Jack Major
- Immunoregulation Laboratory, Francis Crick Institute, London, UK.
- Laboratory of Epithelial Barrier Immunity, New York University Langone Health, New York, NY, USA.
| | - Stefania Crotta
- Immunoregulation Laboratory, Francis Crick Institute, London, UK
| | | | | | - Kathleen Shah
- AhRimmunity Laboratory, Francis Crick Institute, London, UK
- Immunology Research Unit, GSK, Stevenage, UK
| | - Bruno Frederico
- Immunobiology Laboratory, Francis Crick Institute, London, UK
- Early Oncology, R&D, AstraZeneca, Cambridge, UK
| | | | - Mary Green
- Experimental Histopathology, Francis Crick Institute, London, UK
| | - Lucy Meader
- Experimental Histopathology, Francis Crick Institute, London, UK
| | - Alejandro Suarez-Bonnet
- Experimental Histopathology, Francis Crick Institute, London, UK
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hertfordshire, UK
| | - Simon Priestnall
- Experimental Histopathology, Francis Crick Institute, London, UK
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hertfordshire, UK
| | | | - Andreas Wack
- Immunoregulation Laboratory, Francis Crick Institute, London, UK.
| |
Collapse
|
28
|
Radtke D, Voehringer D. Granulocyte development, tissue recruitment, and function during allergic inflammation. Eur J Immunol 2023; 53:e2249977. [PMID: 36929502 DOI: 10.1002/eji.202249977] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/14/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023]
Abstract
Granulocytes provide a fast innate response to pathogens and allergens. In allergy and anti-helminth immunity, epithelial cells of damaged barriers release alarmins like IL-25, IL-33, and thymic stromal lymphopoietin (TSLP) but also chemokines like CXCL1 or CCL11 to promote cell recruitment and inflammation. In addition, mast cells positioned at barrier tissue sites also quickly release mediators upon specifically sensing antigens through IgE bound to FcεR1 on their surface. Released mediators induce the recruitment of different granulocytes in a timely ordered manner. First, neutrophils extravasate from the blood vasculature to the side of alarmin release and promote a potent inflammatory response. Alarmins and activated mast cells further promote activation of ILC2s and recruitment of basophils and eosinophils, which inhibit neutrophil recruitment and enhance tissue type 2 immunity. In addition to their potent pro-inflammatory effector functions, granulocytes can also contribute to termination and resolution of inflammation. Here, we summarize the development and tissue recruitment of granulocyte subsets, and describe general effector functions and aspects of their increasingly appreciated role in limiting tissue damage. We further discuss targeting approaches for therapeutic interventions in allergic disorders.
Collapse
Affiliation(s)
- Daniel Radtke
- Department of Infection Biology, Universitätsklinikum Erlangen and Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - David Voehringer
- Department of Infection Biology, Universitätsklinikum Erlangen and Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
29
|
Gurtner A, Crepaz D, Arnold IC. Emerging functions of tissue-resident eosinophils. J Exp Med 2023; 220:e20221435. [PMID: 37326974 PMCID: PMC10276195 DOI: 10.1084/jem.20221435] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/12/2023] [Accepted: 05/25/2023] [Indexed: 06/17/2023] Open
Abstract
Eosinophils are typically considered tissue-damaging effector cells in type 2 immune-related diseases. However, they are also increasingly recognized as important modulators of various homeostatic processes, suggesting they retain the ability to adapt their function to different tissue contexts. In this review, we discuss recent progress in our understanding of eosinophil activities within tissues, with particular emphasis on the gastrointestinal tract, where a large population of these cells resides under non-inflammatory conditions. We further examine evidence of their transcriptional and functional heterogeneity and highlight environmental signals emerging as key regulators of their activities, beyond classical type 2 cytokines.
Collapse
Affiliation(s)
- Alessandra Gurtner
- Institute of Experimental Immunology, University of Zürich , Zürich, Switzerland
| | - Daniel Crepaz
- Institute of Experimental Immunology, University of Zürich , Zürich, Switzerland
| | - Isabelle C Arnold
- Institute of Experimental Immunology, University of Zürich , Zürich, Switzerland
| |
Collapse
|
30
|
Pinto CJG, Ávila-Gálvez MÁ, Lian Y, Moura-Alves P, Nunes Dos Santos C. Targeting the aryl hydrocarbon receptor by gut phenolic metabolites: A strategy towards gut inflammation. Redox Biol 2023; 61:102622. [PMID: 36812782 PMCID: PMC9958510 DOI: 10.1016/j.redox.2023.102622] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
The Aryl Hydrocarbon Receptor (AHR) is a ligand-dependent transcription factor able to control complex transcriptional processes in several cell types, which has been correlated with various diseases, including inflammatory bowel diseases (IBD). Numerous studies have described different compounds as ligands of this receptor, like xenobiotics, natural compounds, and several host-derived metabolites. Dietary (poly)phenols have been studied regarding their pleiotropic activities (e.g., neuroprotective and anti-inflammatory), but their AHR modulatory capabilities have also been considered. However, dietary (poly)phenols are submitted to extensive metabolism in the gut (e.g., gut microbiota). Thus, the resulting gut phenolic metabolites could be key players modulating AHR since they are the ones that reach the cells and may exert effects on the AHR throughout the gut and other organs. This review aims at a comprehensive search for the most abundant gut phenolic metabolites detected and quantified in humans to understand how many have been described as AHR modulators and what could be their impact on inflammatory gut processes. Even though several phenolic compounds have been studied regarding their anti-inflammatory capacities, only 1 gut phenolic metabolite, described as AHR modulator, has been evaluated on intestinal inflammatory models. Searching for AHR ligands could be a novel strategy against IBD.
Collapse
Affiliation(s)
- Catarina J G Pinto
- iNOVA4Health, NOVA Medical School
- Faculdade de Ciências Médicas, NMS
- FCM, Universidade Nova de Lisboa, Lisboa, Portugal; IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; I3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - María Ángeles Ávila-Gálvez
- iNOVA4Health, NOVA Medical School
- Faculdade de Ciências Médicas, NMS
- FCM, Universidade Nova de Lisboa, Lisboa, Portugal; iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, Portugal
| | - Yilong Lian
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, OX3 7DQ, Oxford, United Kingdom
| | - Pedro Moura-Alves
- IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; I3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, OX3 7DQ, Oxford, United Kingdom.
| | - Cláudia Nunes Dos Santos
- iNOVA4Health, NOVA Medical School
- Faculdade de Ciências Médicas, NMS
- FCM, Universidade Nova de Lisboa, Lisboa, Portugal; iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, Portugal.
| |
Collapse
|
31
|
Kabat AM, Pearce EL, Pearce EJ. Metabolism in type 2 immune responses. Immunity 2023; 56:723-741. [PMID: 37044062 PMCID: PMC10938369 DOI: 10.1016/j.immuni.2023.03.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/11/2023] [Accepted: 03/15/2023] [Indexed: 04/14/2023]
Abstract
The immune response is tailored to the environment in which it takes place. Immune cells sense and adapt to changes in their surroundings, and it is now appreciated that in addition to cytokines made by stromal and epithelial cells, metabolic cues provide key adaptation signals. Changes in immune cell activation states are linked to changes in cellular metabolism that support function. Furthermore, metabolites themselves can signal between as well as within cells. Here, we discuss recent progress in our understanding of how metabolic regulation relates to type 2 immunity firstly by considering specifics of metabolism within type 2 immune cells and secondly by stressing how type 2 immune cells are integrated more broadly into the metabolism of the organism as a whole.
Collapse
Affiliation(s)
- Agnieszka M Kabat
- Bloomberg Kimmel Institute, and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Erika L Pearce
- Bloomberg Kimmel Institute, and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21287, USA
| | - Edward J Pearce
- Bloomberg Kimmel Institute, and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21287, USA.
| |
Collapse
|
32
|
Maier AM, Huth K, Alessandrini F, Schnautz B, Arifovic A, Riols F, Haid M, Koegler A, Sameith K, Schmidt-Weber CB, Esser-von-Bieren J, Ohnmacht C. The aryl hydrocarbon receptor regulates lipid mediator production in alveolar macrophages. Front Immunol 2023; 14:1157373. [PMID: 37081886 PMCID: PMC10110899 DOI: 10.3389/fimmu.2023.1157373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/23/2023] [Indexed: 04/22/2023] Open
Abstract
Allergic inflammation of the airways such as allergic asthma is a major health problem with growing incidence world-wide. One cardinal feature in severe type 2-dominated airway inflammation is the release of lipid mediators of the eicosanoid family that can either promote or dampen allergic inflammation. Macrophages are key producers of prostaglandins and leukotrienes which play diverse roles in allergic airway inflammation and thus require tight control. Using RNA- and ATAC-sequencing, liquid chromatography coupled to mass spectrometry (LC-MS/MS), enzyme immunoassays (EIA), gene expression analysis and in vivo models, we show that the aryl hydrocarbon receptor (AhR) contributes to this control via transcriptional regulation of lipid mediator synthesis enzymes in bone marrow-derived as well as in primary alveolar macrophages. In the absence or inhibition of AhR activity, multiple genes of both the prostaglandin and the leukotriene pathway were downregulated, resulting in lower synthesis of prostanoids, such as prostaglandin E2 (PGE2), and cysteinyl leukotrienes, e.g., Leukotriene C4 (LTC4). These AhR-dependent genes include PTGS1 encoding for the enzyme cyclooxygenase 1 (COX1) and ALOX5 encoding for the arachidonate 5-lipoxygenase (5-LO) both of which major upstream regulators of the prostanoid and leukotriene pathway, respectively. This regulation is independent of the activation stimulus and partially also detectable in unstimulated macrophages suggesting an important role of basal AhR activity for eicosanoid production in steady state macrophages. Lastly, we demonstrate that AhR deficiency in hematopoietic but not epithelial cells aggravates house dust mite induced allergic airway inflammation. These results suggest an essential role for AhR-dependent eicosanoid regulation in macrophages during homeostasis and inflammation.
Collapse
Affiliation(s)
- Ann-Marie Maier
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Research Center for Environmental Health, Neuherberg, Germany
| | - Karsten Huth
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Research Center for Environmental Health, Neuherberg, Germany
| | - Francesca Alessandrini
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Research Center for Environmental Health, Neuherberg, Germany
| | - Benjamin Schnautz
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Research Center for Environmental Health, Neuherberg, Germany
| | - Anela Arifovic
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Research Center for Environmental Health, Neuherberg, Germany
| | - Fabien Riols
- Metabolomics and Proteomics Core, Helmholtz Center Munich, Research Center for Environmental Health, Neuherberg, Germany
| | - Mark Haid
- Metabolomics and Proteomics Core, Helmholtz Center Munich, Research Center for Environmental Health, Neuherberg, Germany
| | - Anja Koegler
- DRESDEN-concept Genome Center, Technology Platform at the Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Katrin Sameith
- DRESDEN-concept Genome Center, Technology Platform at the Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Carsten B. Schmidt-Weber
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Research Center for Environmental Health, Neuherberg, Germany
- Member of the German Center of Lung Research (DZL), Partner Site Munich, Munich, Germany
| | - Julia Esser-von-Bieren
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Research Center for Environmental Health, Neuherberg, Germany
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Caspar Ohnmacht
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Research Center for Environmental Health, Neuherberg, Germany
- *Correspondence: Caspar Ohnmacht,
| |
Collapse
|
33
|
The Relationship between Eosinophil Density in the Colonic Mucosa and Eosinophil Blood Count in Children: A Cross-Sectional Study. CHILDREN (BASEL, SWITZERLAND) 2022; 10:children10010006. [PMID: 36670557 PMCID: PMC9856578 DOI: 10.3390/children10010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/11/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Eosinophils are found in the mucosa of the healthy gastrointestinal tract, but they also often accompany gastrointestinal diseases. We hypothesized that a positive correlation exists between blood eosinophil count and colonic eosinophil mucosal density in children. Electronic health records regarding 181 colonoscopies, performed with biopsy in the years 2019-2022, were screened for information on blood and colonic eosinophil count, age, sex, diagnoses, weight, height, white blood cell (WBC) count, serum C-reactive protein (CRP), and total IgE concentration. The median age (IQR) of the 107 included children (109 colonoscopies) was 12.4 years (8.1-15.5); 32 presented with blood eosinophilia (29.3%). The median eosinophil density/high-power field in the colonic mucosa was 22.5 (9-31). We found a weak correlation between colonic mucosal eosinophil density and blood eosinophil count (r = 0.295, 95% CI 0.108-0.462, p = 0.0018). This association was more pronounced in patients with elevated CRP (r = 0.529, 95% CI 0.167-0.766, p = 0.0054) and older than 12.4 years (r = 0.448, 95% CI 0.197-0.644, p = 0.00068). Peripheral blood eosinophilia might hint at increased mucosal colonic eosinophil density, especially in older children and in the presence of systemic inflammation. However, it seems unlikely that blood and colonic eosinophilia are strongly linked in younger children. Studies in adults are warranted.
Collapse
|
34
|
Pesticides and Their Impairing Effects on Epithelial Barrier Integrity, Dysbiosis, Disruption of the AhR Signaling Pathway and Development of Immune-Mediated Inflammatory Diseases. Int J Mol Sci 2022; 23:ijms232012402. [PMID: 36293259 PMCID: PMC9604036 DOI: 10.3390/ijms232012402] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/04/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
The environmental and occupational risk we confront from agricultural chemicals increases as their presence in natural habitats rises to hazardous levels, building a major part of the exposome. This is of particular concern in low- and middle-income countries, such as Brazil, known as a leading producer of agricultural commodities and consumer of pesticides. As long as public policies continue to encourage the indiscriminate use of pesticides and governments continue to support this strategy instead of endorsing sustainable agricultural alternatives, the environmental burden that damages epithelial barriers will continue to grow. Chronic exposure to environmental contaminants in early life can affect crucial barrier tissue, such as skin epithelium, airways, and intestine, causing increased permeability, leaking, dysbiosis, and inflammation, with serious implications for metabolism and homeostasis. This vicious cycle of exposure to environmental factors and the consequent damage to the epithelial barrier has been associated with an increase in immune-mediated chronic inflammatory diseases. Understanding how the harmful effects of pesticides on the epithelial barrier impact cellular interactions mediated by endogenous sensors that coordinate a successful immune system represents a crucial challenge. In line with the epithelial barrier hypothesis, this narrative review reports the available evidence on the effects of pesticides on epithelial barrier integrity, dysbiosis, AhR signaling, and the consequent development of immune-mediated inflammatory diseases.
Collapse
|
35
|
Wang WL, Kasamatsu J, Joshita S, Gilfillan S, Di Luccia B, Panda SK, Kim DH, Desai P, Bando JK, Huang SCC, Yomogida K, Hoshino H, Fukushima M, Jacobsen EA, Van Dyken SJ, Ruedl C, Cella M, Colonna M. The aryl hydrocarbon receptor instructs the immunomodulatory profile of a subset of Clec4a4 + eosinophils unique to the small intestine. Proc Natl Acad Sci U S A 2022; 119:e2204557119. [PMID: 35653568 PMCID: PMC9191779 DOI: 10.1073/pnas.2204557119] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/10/2022] [Indexed: 11/18/2022] Open
Abstract
C-type lectin domain family 4, member a4 (Clec4a4) is a C-type lectin inhibitory receptor specific for glycans thought to be exclusively expressed on murine CD8α− conventional dendritic cells. Using newly generated Clec4a4-mCherry knock-in mice, we identify a subset of Clec4a4-expressing eosinophils uniquely localized in the small intestine lamina propria. Clec4a4+ eosinophils evinced an immunomodulatory signature, whereas Clec4a4− eosinophils manifested a proinflammatory profile. Clec4a4+ eosinophils expressed high levels of aryl hydrocarbon receptor (Ahr), which drove the expression of Clec4a4 as well as other immunomodulatory features, such as PD-L1. The abundance of Clec4a4+ eosinophils was dependent on dietary AHR ligands, increased with aging, and declined in inflammatory conditions. Mice lacking AHR in eosinophils expanded innate lymphoid cells of type 2 and cleared Nippostrongylus brasiliensis infection more effectively than did wild-type mice. These results highlight the heterogeneity of eosinophils in response to tissue cues and identify a unique AHR-dependent subset of eosinophils in the small intestine with an immunomodulatory profile.
Collapse
Affiliation(s)
- Wei-Le Wang
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, St. Louis, MO 63110
| | - Jun Kasamatsu
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, St. Louis, MO 63110
- Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, 980-8575 Sendai, Japan
| | - Satoru Joshita
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, St. Louis, MO 63110
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, 390-8621 Matsumoto, Japan
| | - Susan Gilfillan
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, St. Louis, MO 63110
| | - Blanda Di Luccia
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, St. Louis, MO 63110
| | - Santosh K. Panda
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, St. Louis, MO 63110
| | - Do-Hyun Kim
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, St. Louis, MO 63110
| | - Pritesh Desai
- Department of Medicine, Washington University School of Medicine in Saint Louis, St. Louis, MO 63110
| | - Jennifer K. Bando
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, St. Louis, MO 63110
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305
| | - Stanley Ching-Cheng Huang
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, St. Louis, MO 63110
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Kentaro Yomogida
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, St. Louis, MO 63110
| | - Hitomi Hoshino
- Department of Tumor Pathology, Faculty of Medical Sciences, University of Fukui, 910-1193 Eiheiji, Japan
| | - Mana Fukushima
- Department of Tumor Pathology, Faculty of Medical Sciences, University of Fukui, 910-1193 Eiheiji, Japan
| | - Elizabeth A. Jacobsen
- Division of Allergy, Asthma and Clinical Immunology, Mayo Clinic Arizona, Scottsdale, AZ 85259
| | - Steven J. Van Dyken
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, St. Louis, MO 63110
| | - Christiane Ruedl
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore
| | - Marina Cella
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, St. Louis, MO 63110
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, St. Louis, MO 63110
| |
Collapse
|
36
|
Arnold IC. Adapting to their new home: Eosinophils remodel the gut architecture. J Exp Med 2022; 219:e20220146. [PMID: 35315912 PMCID: PMC8943835 DOI: 10.1084/jem.20220146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this issue of JEM, Diny et al. (2022. J. Exp. Med.https://doi.org/10.1084/jem.20210970) identify the aryl hydrocarbon receptor (AHR) as a key orchestrator of eosinophil tissue adaptation in the small intestine, controlling their lifespan, degranulation, and tissue-remodeling activities.
Collapse
|