1
|
Zhai P, Jiang Y, Hu Z, Guo Y, Zhang H. m6A reader YTHDC1 mediates MAFF nuclear export to induce VMP1 transcription and alleviate I/R-induced oxidative stress injury in hepatocytes. Cell Signal 2025; 131:111719. [PMID: 40054588 DOI: 10.1016/j.cellsig.2025.111719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/20/2025] [Accepted: 03/04/2025] [Indexed: 03/15/2025]
Abstract
Hepatic ischemia/reperfusion (I/R) injury occurs after liver resection surgery, trauma, shock, and transplantation. This study aimed to identify and characterize the role of the YTH domain-containing protein 1 (YTHDC1)/MAFF/vacuole membrane protein 1 (VMP1) axis in hepatic I/R injury. YTHDC1, MAFF, and VMP1 were significantly overexpressed in the hepatic tissues of mice with I/R and hepatocytes exposed to hypoxia-reoxygenation (H/R). Knockdown of MAFF exacerbated oxidative stress and inflammatory injury in mice induced with hepatic I/R, which were reversed by overexpression of VMP1. Similarly, I/R-associated injury mitigated by YTHDC1 overexpression was reversed by MAFF knockdown. Mechanistically, YTHDC1 mediated the nuclear export and stability of MAFF mRNA and promoted MAFF translation. Collectively, the findings establish that YTHDC1-mediated m6A-dependent MAFF expression determines hepatocyte oxidative stress via VMP1, providing valuable insights into the potential mechanisms underlying hepatic I/R injury and offering potential therapeutic strategies for its treatment.
Collapse
Affiliation(s)
- Peng Zhai
- Department of General Surgery, The Fifth People's Hospital of Huai'an (Huai'an Hospital Affiliated to Yangzhou University), Huai'an 223000, Jiangsu, PR China.
| | - Yongjun Jiang
- Department of General Surgery, The Fifth People's Hospital of Huai'an (Huai'an Hospital Affiliated to Yangzhou University), Huai'an 223000, Jiangsu, PR China
| | - Zhifeng Hu
- Department of General Surgery, The Fifth People's Hospital of Huai'an (Huai'an Hospital Affiliated to Yangzhou University), Huai'an 223000, Jiangsu, PR China
| | - Yunhu Guo
- Department of General Surgery, The Fifth People's Hospital of Huai'an (Huai'an Hospital Affiliated to Yangzhou University), Huai'an 223000, Jiangsu, PR China
| | - Huaguo Zhang
- Department of General Surgery, The Fifth People's Hospital of Huai'an (Huai'an Hospital Affiliated to Yangzhou University), Huai'an 223000, Jiangsu, PR China.
| |
Collapse
|
2
|
Liao P, Zhou Y, Qiu Y, Hu R, Li H, Sun H, Li Y. Metal-modulated T cell antitumor immunity and emerging metalloimmunotherapy. Cancer Metastasis Rev 2025; 44:49. [PMID: 40301229 DOI: 10.1007/s10555-025-10266-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 04/19/2025] [Indexed: 05/01/2025]
Abstract
In recent years, increasing evidence has shown that metals play important roles in both innate and adaptive immunity. An emerging concept of metalloimmunotherapy has been proposed, which may accelerate the development of immunotherapy for cancers. Here, we discuss how metals affect T cell function through different signaling pathways. Metals impact the fate of T cells, including their activation, proliferation, cytotoxicity, and differentiation. Most importantly, metals also participate in mitochondrial operation by regulating energy production and reactive oxygen species homeostasis in T cells. We also identified the metal-based mutual effects between tumor cells and T cells in the tumor microenvironment. Overall, the antitumor effect of T cells can be improved by targeting metal metabolism and metalloimmunotherapy, which will be a step forward in the treatment of cancers.
Collapse
Affiliation(s)
- Peiyun Liao
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ying Zhou
- Department of Chemistry, CAS-HKU Joint Laboratory of Metallomics On Health and Environment, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Yingqi Qiu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Rong Hu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Hongyan Li
- Department of Chemistry, CAS-HKU Joint Laboratory of Metallomics On Health and Environment, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Hongzhe Sun
- Department of Chemistry, CAS-HKU Joint Laboratory of Metallomics On Health and Environment, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| | - Yuhua Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.
- Guangdong Engineering Research Center of Precision Immune Cell Therapy Technology, Zhujiang Hospital, No. 253, Gongye Road, Guangzhou, China.
| |
Collapse
|
3
|
Zhang Y, Liu H, Liu D, Zhang H, Ma Y, Li N, Zhang C, Xue M, Wang F, Jia X, Zhang H, Tang K, Xu X, Wang S, Wei Y, Yang X, Zuo J, Chen L, Jin B, Zhang Y. Hantaan virus infection induces human mucosal-associated invariant T cell pyroptosis through IRE1α pathway. Commun Biol 2025; 8:538. [PMID: 40169922 PMCID: PMC11961572 DOI: 10.1038/s42003-025-07979-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 03/21/2025] [Indexed: 04/03/2025] Open
Abstract
Hantaan virus (HTNV) triggers an epidemic of hemorrhagic fever with renal syndrome (HFRS), which is predominantly prevalent in Asia. Mucosal-associated invariant T (MAIT) cells, categorized as innate-like T lymphocytes, perform crucial functions in the innate host defense mechanism during virus infection. We previously showed that MAIT cells played antiviral roles in vitro. But marked reduction of MAIT cells was present in the peripheral blood of HFRS patients. Till now, the role of MAIT cells in vivo and the mechanisms of HTNV-induced the MAIT cell deficiency have not yet been fully explored. In this study, by combining the clinical samples, MAIT deficiency mice and in vitro infected MAIT cell models, we find that pyroptosis was the main reason of MAIT cell loss in the peripheral blood of HFRS patients. The molecular mechanisms are related to the overload of calcium in the endoplasmic reticulum (ER) of MAIT cells, which subsequently induces inosital-requiring enzyme-1α (IRE1α)-mediated ER-stress and following pyroptosis. ER-stress inhibitor can reverse the pyroptosis of MAIT cells during HTNV infection. In conclusion, this study firstly reveals the underlying molecular mechanisms for the deficiency of MAIT cells during HTNV infection, and suggests a potential way to stabilize the MAIT cells population in HFRS.
Collapse
Affiliation(s)
- Yusi Zhang
- Department of Immunology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| | - He Liu
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Dalu Liu
- Department of Radiation Medicine and Protection, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China
| | - Huiyuan Zhang
- Department of Immunology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Ying Ma
- Department of Immunology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Na Li
- Department of Transfusion Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Chunmei Zhang
- Department of Immunology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Manling Xue
- Department of Immunology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | | | | | - Hui Zhang
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Kang Tang
- Department of Immunology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Xiaoyue Xu
- Department of Immunology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
- Department of Immunology, School of Basic Medical Sciences, Yan'an university, Yan'an, 716000, China
| | - Shijia Wang
- Department of Immunology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
- Department of Immunology, School of Basic Medical Sciences, Yan'an university, Yan'an, 716000, China
| | - Yiwen Wei
- Department of Immunology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
- Department of Pathogenic Biology, School of Basic Medical Sciences, Yan'an university, Yan'an, 716000, China
| | - Xiaojing Yang
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
- School of Life Sciences, Yan'an university, Yan'an, 716000, China
| | - Jiajia Zuo
- Department of Immunology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
- Department of Immunology, School of Basic Medical Sciences, Yan'an university, Yan'an, 716000, China
| | - Lihua Chen
- Department of Immunology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Boquan Jin
- Department of Immunology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Yun Zhang
- Department of Immunology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
4
|
Li X, Liu L, Lou H, Dong X, Hao S, Sun Z, Dou Z, Li H, Zhao W, Sun X, Liu X, Zhang Y, Yang B. Cardiomyocyte-specific long noncoding RNA Trdn-as induces mitochondrial calcium overload by promoting the m 6A modification of calsequestrin 2 in diabetic cardiomyopathy. Front Med 2025; 19:329-346. [PMID: 39821729 DOI: 10.1007/s11684-024-1102-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 07/26/2024] [Indexed: 01/19/2025]
Abstract
Diabetic cardiomyopathy (DCM) is a medical condition characterized by cardiac remodeling and dysfunction in individuals with diabetes mellitus. Sarcoplasmic reticulum (SR) and mitochondrial Ca2+ overload in cardiomyocytes have been recognized as biological hallmarks in DCM; however, the specific factors underlying these abnormalities remain largely unknown. In this study, we aimed to investigate the role of a cardiac-specific long noncoding RNA, D830005E20Rik (Trdn-as), in DCM. Our results revealed the remarkably upregulation of Trdn-as in the hearts of the DCM mice and cardiomyocytes treated with high glucose (HG). Knocking down Trdn-as in cardiac tissues significantly improved cardiac dysfunction and remodeling in the DCM mice. Conversely, Trdn-as overexpression resulted in cardiac damage resembling that observed in the DCM mice. At the cellular level, Trdn-as induced Ca2+ overload in the SR and mitochondria, leading to mitochondrial dysfunction. RNA-seq and bioinformatics analyses identified calsequestrin 2 (Casq2), a primary calcium-binding protein in the junctional SR, as a potential target of Trdn-as. Further investigations revealed that Trdn-as facilitated the recruitment of METTL14 to the Casq2 mRNA, thereby enhancing the m6A modification of Casq2. This modification increased the stability of Casq2 mRNA and subsequently led to increased protein expression. When Casq2 was knocked down, the promoting effects of Trdn-as on Ca2+ overload and mitochondrial damage were mitigated. These findings provide valuable insights into the pathogenesis of DCM and suggest Trdn-as as a potential therapeutic target for this condition.
Collapse
Affiliation(s)
- Xiaohan Li
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150081, China
- Department of Pharmacology (SKLFZCD, State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin, 150081, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, 150081, China
| | - Ling Liu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150081, China
- Department of Pharmacology (SKLFZCD, State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin, 150081, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, 150081, China
| | - Han Lou
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150081, China
- Department of Pharmacology (SKLFZCD, State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin, 150081, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, 150081, China
| | - Xinxin Dong
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150081, China
- Department of Pharmacology (SKLFZCD, State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin, 150081, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, 150081, China
| | - Shengxin Hao
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150081, China
- Department of Pharmacology (SKLFZCD, State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin, 150081, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, 150081, China
| | - Zeqi Sun
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150081, China
- Department of Pharmacology (SKLFZCD, State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin, 150081, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, 150081, China
| | - Zijia Dou
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150081, China
- Department of Pharmacology (SKLFZCD, State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin, 150081, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, 150081, China
| | - Huimin Li
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150081, China
- Department of Pharmacology (SKLFZCD, State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin, 150081, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, 150081, China
| | - Wenjie Zhao
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150081, China
- Department of Pharmacology (SKLFZCD, State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin, 150081, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, 150081, China
| | - Xiuxiu Sun
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150081, China
- Department of Pharmacology (SKLFZCD, State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin, 150081, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, 150081, China
| | - Xin Liu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150081, China
- Department of Pharmacology (SKLFZCD, State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin, 150081, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, 150081, China
| | - Yong Zhang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150081, China.
- Department of Pharmacology (SKLFZCD, State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin, 150081, China.
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, 150081, China.
| | - Baofeng Yang
- Department of Pharmacology (SKLFZCD, State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin, 150081, China.
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, 150081, China.
| |
Collapse
|
5
|
Ma Y, Wang Y, Zhao X, Jin G, Xu J, Li Z, Yin N, Gao Z, Xia B, Peng M. TMEM41B is an endoplasmic reticulum Ca 2+ release channel maintaining naive T cell quiescence and responsiveness. Cell Discov 2025; 11:18. [PMID: 40038246 DOI: 10.1038/s41421-024-00766-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 12/26/2024] [Indexed: 03/06/2025] Open
Abstract
In mammalian cells, endoplasmic reticulum (ER) passively releases Ca2+ under steady state, but channels involved remain elusive. Here, we report that TMEM41B, an ER-resident membrane protein critical for autophagy, lipid metabolism, and viral infection, functions as an ER Ca2+ release channel. Biochemically, purified recombinant TMEM41B forms a concentration-dependent Ca2+ channel in single-channel electrophysiology assays. Cellularly, TMEM41B deficiency causes ER Ca2+ overload, while overexpression of TMEM41B depletes ER Ca2+. Immunologically, ER Ca2+ overload leads to upregulation of IL-2 and IL-7 receptors in naive T cells, which in turn increases basal signaling of JAK-STAT, AKT-mTOR, and MAPK pathways. This dysregulation drives TMEM41B-deficient naive T cells into a metabolically activated yet immunologically naive state. ER Ca2+ overload also downregulates CD5, lowering the activation threshold of TMEM41B-deficient T cells and leading to heightened T cell responses during infections. In summary, we identify TMEM41B as a concentration-dependent ER Ca2+ release channel, revealing an unexpected role of ER Ca2+ in naive T cell quiescence and responsiveness.
Collapse
Affiliation(s)
- Yuying Ma
- State Key Laboratory of Molecular Oncology, Institute for Immunology, Beijing Key Laboratory for Immunological Research on Chronic Diseases, School of Basic Medical Sciences, Tsinghua University, Beijing, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Yi Wang
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaocui Zhao
- State Key Laboratory of Molecular Oncology, Institute for Immunology, Beijing Key Laboratory for Immunological Research on Chronic Diseases, School of Basic Medical Sciences, Tsinghua University, Beijing, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Gang Jin
- State Key Laboratory of Molecular Oncology, Institute for Immunology, Beijing Key Laboratory for Immunological Research on Chronic Diseases, School of Basic Medical Sciences, Tsinghua University, Beijing, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Jing Xu
- State Key Laboratory of Molecular Oncology, Institute for Immunology, Beijing Key Laboratory for Immunological Research on Chronic Diseases, School of Basic Medical Sciences, Tsinghua University, Beijing, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Zhuoyang Li
- State Key Laboratory of Molecular Oncology, Institute for Immunology, Beijing Key Laboratory for Immunological Research on Chronic Diseases, School of Basic Medical Sciences, Tsinghua University, Beijing, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Na Yin
- State Key Laboratory of Molecular Oncology, Institute for Immunology, Beijing Key Laboratory for Immunological Research on Chronic Diseases, School of Basic Medical Sciences, Tsinghua University, Beijing, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Zhaobing Gao
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Bingqing Xia
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Min Peng
- State Key Laboratory of Molecular Oncology, Institute for Immunology, Beijing Key Laboratory for Immunological Research on Chronic Diseases, School of Basic Medical Sciences, Tsinghua University, Beijing, China.
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
| |
Collapse
|
6
|
Jeong S, Doo M, Sung K, Kim YJ, Lee JH, Ha JH. Aruncus Dioicus Var. Kamtschaticus Extract Prevents Ocular Endoplasmic Reticulum Stress, Inflammation, and Oxidative Stress In Vitro. J Med Food 2025; 28:281-293. [PMID: 39973273 DOI: 10.1089/jmf.2024.k.0240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025] Open
Abstract
The aim of this study was to determine the anti-inflammatory and anti-endoplasmic reticulum (ER) stress effects of Aruncus dioicus var. kamtschaticus (ADK) extract on ARPE-19 cells. Pretreatment with ADK effectively mitigated thapsigargin (Tg)-induced increases in vascular endothelial growth factor protein secretion and intracellular calcium levels. Furthermore, pretreatment with ADK suppressed ocular ER stress-related protein expression in a dose-dependent manner, inhibited the loss of tight junctions, and suppressed interleukin-6 gene expression. Moreover, ADK pretreatment significantly prevented lipopolysaccharide-inducible proinflammatory cytokine gene expression at the transcription level and the phosphorylation of proteins involved in the mitogen-activated protein kinase-nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) axis at the posttranslational level. Additionally, ADK extract enhanced antioxidant activity, as evidenced by increased heme oxygenase-1 protein expression and increased 2,2-diphenyl-1-picrylhydrazyl radical scavenging and ferric-reducing antioxidant power. In conclusion, ADK extract effectively protected ARPE-19 cells from ocular ER stress, inflammation, and oxidative stress, demonstrating its potential as a nutraceutical intervention for ocular diseases.
Collapse
Affiliation(s)
- Sunyoung Jeong
- Bioanalytical and Pharmacokinetic Research Group, Korea Institute of Toxicology, Daejeon, Korea
- Department of Human and Environmental Toxicology, University of Science and Technology, Daejeon, Korea
| | - Miae Doo
- Department of Food and Nutrition, Kunsan National University, Gunsan, Korea
| | - Kihun Sung
- Department of Food Science and Nutrition, Dankook University, Cheonan, Korea
| | - Young Jun Kim
- Department of Food and Biotechnology, Korea University, Sejong, Korea
| | - Jong-Hwa Lee
- Bioanalytical and Pharmacokinetic Research Group, Korea Institute of Toxicology, Daejeon, Korea
- Department of Human and Environmental Toxicology, University of Science and Technology, Daejeon, Korea
| | - Jung-Heun Ha
- Department of Food Science and Nutrition, Dankook University, Cheonan, Korea
- Research Center for Industrialization of Natural Neutralization, Dankook University, Yongin, Korea
| |
Collapse
|
7
|
Zhang Y, Ma K, Fang X, Zhang Y, Miao R, Guan H, Tian J. Targeting ion homeostasis in metabolic diseases: Molecular mechanisms and targeted therapies. Pharmacol Res 2025; 212:107579. [PMID: 39756557 DOI: 10.1016/j.phrs.2025.107579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/13/2024] [Accepted: 01/01/2025] [Indexed: 01/07/2025]
Abstract
The incidence of metabolic diseases-hypertension, diabetes, obesity, metabolic dysfunction-associated steatotic liver disease (MASLD), and atherosclerosis-is increasing annually, imposing a significant burden on both human health and the social economy. The occurrence and development of these diseases are closely related to the disruption of ion homeostasis, which is crucial for maintaining cellular functions and metabolic equilibrium. However, the specific mechanism of ion homeostasis in metabolic diseases is still unclear. This article reviews the role of ion homeostasis in the pathogenesis of metabolic diseases and assesses its potential as a therapeutic target. Furthermore, the article explores pharmacological strategies that target ion channels and transporters, including existing drugs and emerging drugs under development. Lastly, the article discusses the development direction of future therapeutic strategies, including the possibility of gene therapy targeting specific ion channels and personalized therapy using novel biomarkers. In summary, targeting ion homeostasis provides a new perspective and potential therapeutic approach for the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Yanjiao Zhang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Kaile Ma
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xinyi Fang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Graduate College, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yuxin Zhang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Runyu Miao
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Graduate College, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Huifang Guan
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Jiaxing Tian
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
8
|
Niu X, Chen S, Wang X, Wen J, Liu X, Yong Y, Yu Z, Ma X, Abd El-Aty AM, Ju X. Butyrolactone-I from Marine Fungal Metabolites Mitigates Heat-Stress-Induced Apoptosis in IPEC-J2 Cells and Mice Through the ROS/PERK/CHOP Signaling Pathway. Mar Drugs 2024; 22:564. [PMID: 39728139 DOI: 10.3390/md22120564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/12/2024] [Accepted: 12/12/2024] [Indexed: 12/28/2024] Open
Abstract
Heat stress poses a significant challenge to animal husbandry, contributing to oxidative stress, intestinal mucosal injury, and apoptosis, which severely impact animal health, growth, and production efficiency. The development of safe, sustainable, and naturally derived solutions to mitigate these effects is critical for advancing sustainable agricultural practices. Butyrolactone-I (BTL-I), a bioactive compound derived from deep-sea fungi (Aspergillus), shows promise as a functional feed additive to combat heat stress in animals. This study explored the protective effects of BTL-I against heat-stress-induced oxidative stress and apoptosis in IPEC-J2 cells and mice. Our findings demonstrated that BTL-I effectively inhibited the heat-stress-induced upregulation of HSP70 and HSP90, alleviating intestinal heat stress. Both in vitro and in vivo experiments revealed that heat stress increased intestinal cell apoptosis, with a significant upregulation of Bax/Bcl-2 expression, while BTL-I pretreatment significantly reduced apoptosis-related protein levels, showcasing its protective effects. Furthermore, BTL-I suppressed oxidative stress markers (ROS and MDA) while enhancing antioxidant activity (SOD levels). BTL-I also reduced the expression of p-PERK, p-eIF2α, ATF4, and CHOP, mitigating oxidative and endoplasmic reticulum stress in intestinal cells. In conclusion, BTL-I demonstrates the potential to improve animal resilience to heat stress, supporting sustainable livestock production systems. Its application as a natural, eco-friendly feed additive will contribute to the development of sustainable agricultural practices.
Collapse
Affiliation(s)
- Xueting Niu
- Marine Medical Research and Development Centre, Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Shengwei Chen
- Marine Medical Research and Development Centre, Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xinchen Wang
- Marine Medical Research and Development Centre, Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jiaying Wen
- Marine Medical Research and Development Centre, Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xiaoxi Liu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yanhong Yong
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhichao Yu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xingbing Ma
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum 25240, Turkey
| | - Xianghong Ju
- Marine Medical Research and Development Centre, Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
9
|
Li A, Chu S, Yuan M, Zhang J, Liu H, Zhu Y, Xu J, Jiang X, Xue W. Near-infrared-II photocharging nanozyme for enhanced tumor immunotherapy. J Colloid Interface Sci 2024; 676:783-794. [PMID: 39067214 DOI: 10.1016/j.jcis.2024.07.172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/26/2024] [Accepted: 07/21/2024] [Indexed: 07/30/2024]
Abstract
In tumor therapy, copper (Cu)-based nanozymes with peroxidase-like activity play a crucial role in converting hydrogen peroxide into hydroxyl radicals (OH). This process induces immunogenic cell death, which in turn activates the body's immune response, enhancing the efficacy of tumor immunotherapy. Nonetheless, the efficiency of this reaction is curtailed due to the oxidation of Cu(I) to Cu(II), leading to the self-depletion of the nanozyme's activity and an insufficient yield of OH for effective immunotherapeutic activation. To surmount this challenge, our research introduces a photocharging self-doped semiconductor nanozyme, copper sulfide (Cu9S8). The photocharging effect enables the nanozyme to convert internal Cu(II) back to Cu(I) through charge transfer induced by near-infrared (NIR)-II photothermal energy, thereby effectively maintaining the enzyme-like activity of the nanozyme. Additionally, Cu9S8 is enhanced with a calcium sulfide (CaS) coating. This coating reacts in the acidic microenvironment of tumors to generate hydrogen sulfide (H2S) gas, which in turn suppresses the catalase activity inherent in tumor cells, ensuring a plentiful supply of H2O2 for the nanozyme's operation. This dual strategy of amplifying enzyme-like activity and substrate availability culminates in the generation of ample OH within tumor cells, leading to significant immunogenic cell death and thereby realizing potent immunotherapy.
Collapse
Affiliation(s)
- Anshuo Li
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Heavy Metal Deep-Remediation in Water and Resource Reuse Key Lab of Hebei, Yanshan University, Qinhuangdao 066004, China; Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200011, China
| | - Shuzhen Chu
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Heavy Metal Deep-Remediation in Water and Resource Reuse Key Lab of Hebei, Yanshan University, Qinhuangdao 066004, China
| | - Meng Yuan
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Heavy Metal Deep-Remediation in Water and Resource Reuse Key Lab of Hebei, Yanshan University, Qinhuangdao 066004, China
| | - Jinhui Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Heavy Metal Deep-Remediation in Water and Resource Reuse Key Lab of Hebei, Yanshan University, Qinhuangdao 066004, China
| | - Hengrui Liu
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Heavy Metal Deep-Remediation in Water and Resource Reuse Key Lab of Hebei, Yanshan University, Qinhuangdao 066004, China
| | - Yuhui Zhu
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200011, China
| | - Jingyi Xu
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200011, China
| | - Xinquan Jiang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200011, China.
| | - Weili Xue
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Heavy Metal Deep-Remediation in Water and Resource Reuse Key Lab of Hebei, Yanshan University, Qinhuangdao 066004, China.
| |
Collapse
|
10
|
Chen J, Tai M, Chen J, Ni J, Yi H, Chen L, Wang D, Wen C, Li J, Shen X, You Y. Panax ginseng extract prevents UVB-induced skin photodamage by modulating VMP1-mediated ER stress. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:156010. [PMID: 39232284 DOI: 10.1016/j.phymed.2024.156010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/14/2024] [Accepted: 08/29/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND The endoplasmic reticulum (ER) stress is a crucial toxic signaling event triggered by chronic exposure to Ultraviolet B radiation (UVB), which significantly exacerbate photodamage responses in the irradiated skin. Therefore, the identification of agents capable of inhibiting ER stress could serve as a promising therapeutic strategy for addressing the unmet clinical needs in the treatment of UVB-induced photodamage. METHODS A UVB-irradiated mouse model was used and topical administration of Panax ginseng extract was carried out for a duration of 9 weeks. Vitamin E was used as a positive control. After 9 weeks of administration, the skin appearance, epidermal hyperplasia, infiltration of inflammatory cells, apoptosis, and collagen content were measured. The keratinocytes were irradiated with 6 mJ/cm2 UVB to establish an in vitro model. The levels of ER stress and apoptosis were investigated both in vivo and in vitro using qRT-PCR, immunoblotting, and immunofluorescence. RESULTS Among the 14 extracts derived from 13 distinct plant species that were screened, Panax ginseng, Prunus mume, and Camellia japonica showed inhibitory effect on UVB-induced ER stress. Notably, Panax ginseng effectively inhibits collagen degradation and apoptosis in both irradiated keratinocytes and Balb/C mice skin. Furthermore, the silencing of VMP1 significantly impeded the cellular protective effect of Panax ginseng extract on UVB-irradiated keratinocytes, indicating that Panax ginseng exerts its protective effects through targeted promotion of VMP1. CONCLUSION Our data suggest that Panax ginseng extract possess a therapeutical effect on UVB radiation-induced photodamage by promoting VMP1-mediated inhibition of ER stress.
Collapse
Affiliation(s)
- Jieli Chen
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Meiling Tai
- R&D Center, Infinitus (China) Company Ltd, Guangzhou, China
| | - Jiawen Chen
- MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, China
| | - Jiahui Ni
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Hang Yi
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Luo Chen
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Dong Wang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Cailing Wen
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Jiaying Li
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Xiaoyan Shen
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China; R&D Center, Infinitus (China) Company Ltd, Guangzhou, China; MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, China.
| | - Yan You
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China; MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, China.
| |
Collapse
|
11
|
Sun X, Xia R, Wang Y, Wang F, Liu Z, Xue G, Zhang G. Neuromedin S regulates goat ovarian granulosa cell proliferation and steroidogenesis via endoplasmic reticulum Ca 2+-YAP1-ATF4-c-Jun pathway. J Cell Physiol 2024; 239:e31368. [PMID: 38982727 DOI: 10.1002/jcp.31368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 07/11/2024]
Abstract
Neuromedin S (NMS) plays key roles in reproductive regulation, while its function and mechanism in follicular development remain unclear. The current study aims to investigate the specific role and mechanisms of NMS and its receptors in regulating the proliferation and steroidogenesis of ovarian granulosa cells (GCs). Phenotypically, a certain concentration of NMS addition promoted the proliferation and estrogen production of goat GCs, accompanied by an increase in the G1/S cell population and upregulation of the expression levels of cyclin D1, cyclin dependent kinase 6, steroidogenic acute regulatory protein, cytochrome P450, family 11, subfamily A, polypeptide 1, 3beta-hydroxysteroid dehydrogenase, and cytochrome P450, family 11, subfamily A, polypeptide 1, while the effects of NMS treatment were effectively hindered by knockdown of neuromedin U receptor type 2 (NMUR2). Mechanistically, activation of NMUR2 with NMS maintained endoplasmic reticulum (ER) calcium (Ca2+) homeostasis by triggering the PLCG1-IP3R pathway, which helped preserve ER morphology, sustained an appropriate level of endoplasmic reticulum unfolded protein response (UPRer), and suppressed the nuclear translocation of activating transcription factor 4. Moreover, NMS maintained intracellular Ca2+ homeostasis to activate the calmodulin 1-large tumor suppressor kinase 1 pathway, ultimately orchestrating the regulation of goat GC proliferation and estrogen production through the Yes1 associated transcriptional regulator-ATF4-c-Jun pathway. Crucially, the effects of NMS were mitigated by concurrent knockdown of the NMUR2 gene. Collectively, these data suggest that activation of NMUR2 by NMS enhances cell proliferation and estrogen production in goat GCs through modulating the ER and intracellular Ca2+ homeostasis, leading to activation of the YAP1-ATF4-c-Jun pathway. These findings offer valuable insights into the regulatory mechanisms involved in follicular growth and development, providing a novel perspective for future research.
Collapse
Affiliation(s)
- Xuan Sun
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, China
| | - Rongxin Xia
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yifei Wang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Feng Wang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, China
| | - Zhipeng Liu
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, China
| | - Gang Xue
- Animal Husbandry and Veterinary Station of Haimen District, Nantong City, China
| | - Guomin Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
12
|
Wang Q, Yin X, Huang X, Zhang L, Lu H. Impact of mitochondrial dysfunction on the antitumor effects of immune cells. Front Immunol 2024; 15:1428596. [PMID: 39464876 PMCID: PMC11502362 DOI: 10.3389/fimmu.2024.1428596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/24/2024] [Indexed: 10/29/2024] Open
Abstract
Mitochondrial dysfunction, a hallmark of immune cell failure, affects the antitumor effects of immune cells through metabolic reprogramming, fission, fusion, biogenesis, and immune checkpoint signal transduction of mitochondria. According to researchers, restoring damaged mitochondrial function can enhance the efficacy of immune cells. Nevertheless, the mechanism of mitochondrial dysfunction in immune cells in patients with cancer is unclear. In this review, we recapitulate the impact of mitochondrial dysfunction on the antitumor effects of T cells, natural killer cells, dendritic cells, and tumor-associated macrophage and propose that targeting mitochondria can provide new strategies for antitumor therapy.
Collapse
Affiliation(s)
- Quan Wang
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiangzhi Yin
- Department of Orthopaedics, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaotong Huang
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lu Zhang
- Department of Radiation Oncology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Haijun Lu
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
13
|
Ma L, Wang X, Wu Y, Zhang Y, Yuan X, Mao J, Li Q, Gong S. Controlled release of manganese and magnesium ions by microsphere-encapsulated hydrogel enhances cancer immunotherapy. J Control Release 2024; 372:682-698. [PMID: 38950681 DOI: 10.1016/j.jconrel.2024.06.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/03/2024]
Abstract
Despite the considerable potential of immune checkpoint blockade (ICB) therapy in treating various cancer types, it faces several challenges, of which the constrained objective response rate and relatively short duration of response observed in patients with cancer are the most important. This study introduces an injectable temperature-sensitive hydrogel, Pluronic F-127 (PF-127)@MnCl2/ alginate microspheres (ALG-MS)@MgCl2, that enhances the therapeutic efficacy of programmed cell death-ligand 1 (PD-L1) in cancer cells. The hydrogel material used in this study facilitated the rapid release of a significant amount of manganese ions (Mn2+) and the gradual and sustained release of magnesium ions (Mg2+) within the tumor microenvironment. This staged release profile promotes an immune microenvironment conducive to the cytotoxicity of CD8+ T cells and natural killer cells, thereby enhancing the efficacy of ICB therapy. Furthermore, the PF-127@MnCl2/ALG-MS@MgCl2 composite hydrogel exhibits the ability to convert drug-resistant tumor ("cold tumor") with a low PD-L1 response to a "hot tumor" with a high PD-L1 response. In summary, the PF-127@MnCl2/ALG-MS@MgCl2 hydrogel manipulates the immune microenvironment through the precise discharge of Mg2+ and Mn2+, thus, augmenting the efficacy of ICB therapy.
Collapse
Affiliation(s)
- Li Ma
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Xiangyao Wang
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, PR China
| | - Yaxin Wu
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, PR China
| | - Yuxiao Zhang
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, PR China
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Jing Mao
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, PR China.
| | - Qilin Li
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, PR China.
| | - Shiqiang Gong
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, PR China.
| |
Collapse
|
14
|
Tong J, Wang Q, Gao Z, Liu Y, Lu C. VMP1: a multifaceted regulator of cellular homeostasis with implications in disease pathology. Front Cell Dev Biol 2024; 12:1436420. [PMID: 39100095 PMCID: PMC11294092 DOI: 10.3389/fcell.2024.1436420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/08/2024] [Indexed: 08/06/2024] Open
Abstract
Vacuole membrane protein 1 (VMP1) is an integral membrane protein that plays a pivotal role in cellular processes, particularly in the regulation of autophagy. Autophagy, a self-degradative mechanism, is essential for maintaining cellular homeostasis by degradation and recycling damaged organelles and proteins. VMP1 involved in the autophagic processes include the formation of autophagosomes and the subsequent fusion with lysosomes. Moreover, VMP1 modulates endoplasmic reticulum (ER) calcium levels, which is significant for various cellular functions, including protein folding and cellular signaling. Recent studies have also linked VMP1 to the cellular response against viral infections and lipid droplet (LD). Dysregulation of VMP1 has been observed in several pathological conditions, including neurodegenerative diseases such as Parkinson's disease (PD), pancreatitis, hepatitis, and tumorogenesis, underscoring its potential as a therapeutic target. This review aims to provide an overview of VMP1's multifaceted roles and its implications in disease pathology.
Collapse
Affiliation(s)
- Jia Tong
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
- Henan Key Laboratory of Biological Psychiatry (Xinxiang Medical University), The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
- Henan International Joint Laboratory for Non-Invasive Neural Modulation, Department of Physiology and Pathology, School of Basic Medical Science, Xinxiang Medical University, Xinxiang, Henan, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, Henan, China
| | - Qianqian Wang
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, Henan, China
| | - Ziyan Gao
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yang Liu
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, Henan, China
| | - Chengbiao Lu
- Henan International Joint Laboratory for Non-Invasive Neural Modulation, Department of Physiology and Pathology, School of Basic Medical Science, Xinxiang Medical University, Xinxiang, Henan, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
15
|
Liu B, Luo L, Shi Z, Ju H, Yu L, Li G, Cui J. Research Progress of Porcine Reproductive and Respiratory Syndrome Virus NSP2 Protein. Viruses 2023; 15:2310. [PMID: 38140551 PMCID: PMC10747760 DOI: 10.3390/v15122310] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is globally prevalent and seriously harms the economic efficiency of pig farming. Because of its immunosuppression and high incidence of mutant recombination, PRRSV poses a great challenge for disease prevention and control. Nonstructural protein 2 (NSP2) is the most variable functional protein in the PRRSV genome and can generate NSP2N and NSP2TF variants due to programmed ribosomal frameshifts. These variants are broad and complex in function and play key roles in numerous aspects of viral protein maturation, viral particle assembly, regulation of immunity, autophagy, apoptosis, cell cycle and cell morphology. In this paper, we review the structural composition, programmed ribosomal frameshift and biological properties of NSP2 to facilitate basic research on PRRSV and to provide theoretical support for disease prevention and control and therapeutic drug development.
Collapse
Affiliation(s)
- Benjin Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150038, China; (B.L.); (L.L.); (Z.S.)
| | - Lingzhi Luo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150038, China; (B.L.); (L.L.); (Z.S.)
| | - Ziqi Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150038, China; (B.L.); (L.L.); (Z.S.)
| | - Houbin Ju
- Shanghai Animal Disease Prevention and Control Center, Shanghai 201103, China;
| | - Lingxue Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China;
| | - Guoxin Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China;
| | - Jin Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150038, China; (B.L.); (L.L.); (Z.S.)
| |
Collapse
|
16
|
Wang Y, Kinoshita T. The role of lipid scramblases in regulating lipid distributions at cellular membranes. Biochem Soc Trans 2023; 51:1857-1869. [PMID: 37767549 DOI: 10.1042/bst20221455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/12/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023]
Abstract
Glycerophospholipids, sphingolipids and cholesterol assemble into lipid bilayers that form the scaffold of cellular membranes, in which proteins are embedded. Membrane composition and membrane protein profiles differ between plasma and intracellular membranes and between the two leaflets of a membrane. Lipid distributions between two leaflets are mediated by lipid translocases, including flippases and scramblases. Flippases use ATP to catalyze the inward movement of specific lipids between leaflets. In contrast, bidirectional flip-flop movements of lipids across the membrane are mediated by scramblases in an ATP-independent manner. Scramblases have been implicated in disrupting the lipid asymmetry of the plasma membrane, protein glycosylation, autophagosome biogenesis, lipoprotein secretion, lipid droplet formation and communications between organelles. Although scramblases in plasma membranes were identified over 10 years ago, most progress about scramblases localized in intracellular membranes has been made in the last few years. Herein, we review the role of scramblases in regulating lipid distributions in cellular membranes, focusing primarily on intracellular membrane-localized scramblases.
Collapse
Affiliation(s)
- Yicheng Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China
| | - Taroh Kinoshita
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
17
|
Escrig-Larena JI, Delgado-Pulido S, Mittelbrunn M. Mitochondria during T cell aging. Semin Immunol 2023; 69:101808. [PMID: 37473558 DOI: 10.1016/j.smim.2023.101808] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 07/22/2023]
Abstract
Mitochondrial dysfunction is a hallmark of aging that contributes to inflammaging. It is characterized by alterations of the mitochondrial DNA, reduced respiratory capacity, decreased mitochondrial membrane potential and increased reactive oxygen species production. These primary alterations disrupt other interconnected and important mitochondrial-related processes such as metabolism, mitochondrial dynamics and biogenesis, mitophagy, calcium homeostasis or apoptosis. In this review, we gather the current knowledge about the different mitochondrial processes which are altered during aging, with special focus on their contribution to age-associated T cell dysfunction and inflammaging.
Collapse
Affiliation(s)
- Jose Ignacio Escrig-Larena
- Consejo Superior de Investigaciones Científicas (CSIC), Centro de Biología Molcular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Sandra Delgado-Pulido
- Departamento de Biología Molecular, Facultad de Ciencias (UAM), Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - María Mittelbrunn
- Consejo Superior de Investigaciones Científicas (CSIC), Centro de Biología Molcular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid (UAM), Madrid, Spain.
| |
Collapse
|
18
|
Groenendyk J, Michalak M. Interplay between calcium and endoplasmic reticulum stress. Cell Calcium 2023; 113:102753. [PMID: 37209448 DOI: 10.1016/j.ceca.2023.102753] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 05/22/2023]
Abstract
Cellular homeostasis is crucial for the healthy functioning of the organism. Disruption of cellular homeostasis activates endoplasmic reticulum (ER) stress coping responses including the unfolded protein response (UPR). There are three ER resident stress sensors responsible for UPR activation - IRE1α, PERK and ATF6. Ca2+ signaling plays an important role in stress responses including the UPR and the ER is the main Ca2+ storage organelle and a source of Ca2+ for cell signaling. The ER contains many proteins involved in Ca2+ import/export/ storage, Ca2+ movement between different cellular organelles and ER Ca2+ stores refilling. Here we focus on selected aspects of ER Ca2+ homeostasis and its role in activation of the ER stress coping responses.
Collapse
Affiliation(s)
- Jody Groenendyk
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|