1
|
Islam MS. Ryanodine Receptors in Islet Cell Function: Calcium Signaling, Hormone Secretion, and Diabetes. Cells 2025; 14:690. [PMID: 40422193 DOI: 10.3390/cells14100690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 04/29/2025] [Accepted: 05/09/2025] [Indexed: 05/28/2025] Open
Abstract
Ryanodine receptors (RyRs) are large intracellular Ca2+ release channels primarily found in muscle and nerve cells and also present at low levels in pancreatic islet endocrine cells. This review examines the role of RyRs in islet cell function, focusing on calcium signaling and hormone secretion, while addressing the ongoing debate regarding their significance due to their limited expression. We explore conflicting experimental results and their potential causes, synthesizing current knowledge on RyR isoforms in islet cells, particularly in beta and delta cells. The review discusses how RyR-mediated calcium-induced calcium release enhances, rather than drives, glucose-stimulated insulin secretion. We examine the phosphorylation-dependent regulation of beta-cell RyRs, the concept of "leaky ryanodine receptors", and the roles of RyRs in endoplasmic reticulum stress, apoptosis, store-operated calcium entry, and beta-cell electrical activity. The relationship between RyR dysfunction and the development of impaired insulin secretion in diabetes is assessed, noting their limited role in human diabetes pathogenesis given the disease's polygenic nature. We highlight the established role of RyR-mediated CICR in the mechanism of action of common type 2 diabetes treatments, such as glucagon-like peptide-1, which enhances insulin secretion. By integrating findings from electrophysiological, molecular, and clinical studies, this review provides a balanced perspective on RyRs in islet cell physiology and pathology, emphasizing their significance in both normal insulin secretion and current diabetes therapies.
Collapse
Affiliation(s)
- Md Shahidul Islam
- Karolinska Institutet, Department of Clinical Sciences and Education, Södersjukhuset, Research Center, 5th Floor, SE-118 83 Stockholm, Sweden
- Department of Internal Medicine, Uppsala University Hospital, SE-751 85 Uppsala, Sweden
| |
Collapse
|
2
|
Acreman S, Ma J, Denwood G, Gao R, Tarasov A, Rorsman P, Zhang Q. The endoplasmic reticulum plays a key role in α-cell intracellular Ca 2+ dynamics and glucose-regulated glucagon secretion in mouse islets. iScience 2024; 27:109665. [PMID: 38646167 PMCID: PMC11033163 DOI: 10.1016/j.isci.2024.109665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 02/13/2024] [Accepted: 04/02/2024] [Indexed: 04/23/2024] Open
Abstract
Glucagon is secreted by pancreatic α-cells to counteract hypoglycaemia. How glucose regulates glucagon secretion remains unclear. Here, using mouse islets, we studied the role of transmembrane and endoplasmic reticulum (ER) Ca2+ on intrinsic α-cell glucagon secretion. Blocking isradipine-sensitive L-type voltage-gated Ca2+ (Cav) channels abolished α-cell electrical activity but had little impact on its cytosolic Ca2+ oscillations or low-glucose-stimulated glucagon secretion. In contrast, depleting ER Ca2+ with cyclopiazonic acid or blocking ER Ca2+-releasing ryanodine receptors abolished α-cell glucose sensitivity and low-glucose-stimulated glucagon secretion. ER Ca2+ mobilization in α-cells is regulated by intracellular ATP and likely to be coupled to Ca2+ influx through P/Q-type Cav channels. ω-Agatoxin IVA blocked α-cell ER Ca2+ release and cell exocytosis, but had no additive effect on glucagon secretion when combined with ryanodine. We conclude that glucose regulates glucagon secretion through the control of ER Ca2+ mobilization, a mechanism that can be independent of α-cell electrical activity.
Collapse
Affiliation(s)
- Samuel Acreman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK
- Institute of Neuroscience and Physiology, Department of Physiology, Metabolic Research Unit, Sahlgrenska Academy, University of Gothenburg, Box 430, S-405 30 Gothenburg, Sweden
| | - Jinfang Ma
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Geoffrey Denwood
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK
| | - Rui Gao
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK
| | - Andrei Tarasov
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK
- Institute of Neuroscience and Physiology, Department of Physiology, Metabolic Research Unit, Sahlgrenska Academy, University of Gothenburg, Box 430, S-405 30 Gothenburg, Sweden
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - Quan Zhang
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
3
|
Mahapatra C, Kumar R. Biophysical Mechanisms of Vaginal Smooth Muscle Contraction: The Role of the Membrane Potential and Ion Channels. PATHOPHYSIOLOGY 2024; 31:225-243. [PMID: 38804298 PMCID: PMC11130850 DOI: 10.3390/pathophysiology31020018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024] Open
Abstract
The vagina is an essential component of the female reproductive system and is responsible for providing female sexual satisfaction. Vaginal smooth muscle contraction plays a crucial role in various physiological processes, including sexual arousal, childbirth, and urinary continence. In pathophysiological conditions, such as pelvic floor disorders, aberrations in vaginal smooth muscle function can lead to urinary incontinence and pelvic organ prolapse. A set of cellular and sub-cellular physiological mechanisms regulates the contractile properties of the vaginal smooth muscle cells. Calcium influx is a crucial determinant of smooth muscle contraction, facilitated through voltage-dependent calcium channels and calcium release from intracellular stores. Comprehensive reviews on smooth muscle biophysics are relatively scarce within the scientific literature, likely due to the complexity and specialized nature of the topic. The objective of this review is to provide a comprehensive description of alterations in the cellular physiology of vaginal smooth muscle contraction. The benefit associated with this particular approach is that conducting a comprehensive examination of the cellular mechanisms underlying contractile activation will enable the creation of more targeted therapeutic agents to control vaginal contraction disorders.
Collapse
Affiliation(s)
- Chitaranjan Mahapatra
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94158, USA
- Paris Saclay Institute of Neuroscience, 91440 Saclay, France
| | - Ravinder Kumar
- Department of Pathology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
4
|
Jia BZ, Qi Y, Wong-Campos JD, Megason SG, Cohen AE. A bioelectrical phase transition patterns the first vertebrate heartbeats. Nature 2023; 622:149-155. [PMID: 37758945 DOI: 10.1038/s41586-023-06561-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 08/22/2023] [Indexed: 09/29/2023]
Abstract
A regular heartbeat is essential to vertebrate life. In the mature heart, this function is driven by an anatomically localized pacemaker. By contrast, pacemaking capability is broadly distributed in the early embryonic heart1-3, raising the question of how tissue-scale activity is first established and then maintained during embryonic development. The initial transition of the heart from silent to beating has never been characterized at the timescale of individual electrical events, and the structure in space and time of the early heartbeats remains poorly understood. Using all-optical electrophysiology, we captured the very first heartbeat of a zebrafish and analysed the development of cardiac excitability and conduction around this singular event. The first few beats appeared suddenly, had irregular interbeat intervals, propagated coherently across the primordial heart and emanated from loci that varied between animals and over time. The bioelectrical dynamics were well described by a noisy saddle-node on invariant circle bifurcation with action potential upstroke driven by CaV1.2. Our work shows how gradual and largely asynchronous development of single-cell bioelectrical properties produces a stereotyped and robust tissue-scale transition from quiescence to coordinated beating.
Collapse
Affiliation(s)
- Bill Z Jia
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Department of Systems Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Systems, Synthetic and Quantitative Biology PhD Program, Harvard University, Cambridge, MA, USA
| | - Yitong Qi
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - J David Wong-Campos
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Sean G Megason
- Department of Systems Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| | - Adam E Cohen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Department of Physics, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
5
|
Phillips B, Clark J, Martineau É, Rungta RL. Orai, RyR, and IP 3R channels cooperatively regulate calcium signaling in brain mid-capillary pericytes. Commun Biol 2023; 6:493. [PMID: 37149720 PMCID: PMC10164186 DOI: 10.1038/s42003-023-04858-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 04/21/2023] [Indexed: 05/08/2023] Open
Abstract
Pericytes are multifunctional cells of the vasculature that are vital to brain homeostasis, yet many of their fundamental physiological properties, such as Ca2+ signaling pathways, remain unexplored. We performed pharmacological and ion substitution experiments to investigate the mechanisms underlying pericyte Ca2+ signaling in acute cortical brain slices of PDGFRβ-Cre::GCaMP6f mice. We report that mid-capillary pericyte Ca2+ signalling differs from ensheathing type pericytes in that it is largely independent of L- and T-type voltage-gated calcium channels. Instead, Ca2+ signals in mid-capillary pericytes were inhibited by multiple Orai channel blockers, which also inhibited Ca2+ entry triggered by endoplasmic reticulum (ER) store depletion. An investigation into store release pathways indicated that Ca2+ transients in mid-capillary pericytes occur through a combination of IP3R and RyR activation, and that Orai store-operated calcium entry (SOCE) is required to sustain and amplify intracellular Ca2+ increases evoked by the GqGPCR agonist endothelin-1. These results suggest that Ca2+ influx via Orai channels reciprocally regulates IP3R and RyR release pathways in the ER, which together generate spontaneous Ca2+ transients and amplify Gq-coupled Ca2+ elevations in mid-capillary pericytes. Thus, SOCE is a major regulator of pericyte Ca2+ and a target for manipulating their function in health and disease.
Collapse
Affiliation(s)
- Braxton Phillips
- Department of Neuroscience, Université de Montréal, Montréal, QC, Canada
- Department of Stomatology, Faculty of Dental Medicine, Université de Montréal, Montréal, QC, H3C3J7, Canada
- Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage, Université de Montréal, Montréal, QC, Canada
| | - Jenna Clark
- Department of Neuroscience, Université de Montréal, Montréal, QC, Canada
- Department of Stomatology, Faculty of Dental Medicine, Université de Montréal, Montréal, QC, H3C3J7, Canada
- Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage, Université de Montréal, Montréal, QC, Canada
| | - Éric Martineau
- Department of Stomatology, Faculty of Dental Medicine, Université de Montréal, Montréal, QC, H3C3J7, Canada
- Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage, Université de Montréal, Montréal, QC, Canada
| | - Ravi L Rungta
- Department of Stomatology, Faculty of Dental Medicine, Université de Montréal, Montréal, QC, H3C3J7, Canada.
- Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
6
|
Rakotondramanana DA, Razafindrakoto ZR, Donno D, Tombozara N, Nalimanana NR, Andrianajara C, Beccaro GL, Ramanitrahasimbola D, Nicoletti M. Bio-guided isolation of androsta-1,4-dien-3,16-dione as a vasodilator active principle from the inflorescence of Ravenala madagascariensis Sonn. (Strelitziaceae). Nat Prod Res 2023; 37:809-818. [PMID: 35724374 DOI: 10.1080/14786419.2022.2089668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Androsta-1,4-dien-3,16-dione was isolated for the first time from the plant kingdom of the ethanolic extract of the Ravenala madagascariensis' inflorescence by the bio-guided method. Its structure was elucidated by NMR and MS spectroscopic data analysis. The vascular effects of ethanol extracts, fractions and androsta-1,4-dien-3,16-dione were assessed on the phenylephrine pre-contracted isolated rat aorta. The isolated compound exerted the most potent vaso-relaxing effect (EC50 = 109.32 ± 15.82 µM) than the ethanol extract and fractions. The pharmacological mechanism of its vaso-relaxing action was analysed on isolated rat aorta using free-endothelial vascular tissue, specific contracting reagents (CaCl2 and KCl), antagonist (propranolol), enzyme inhibitors (L-NAME, methylene blue) and channel blocker (glibenclamide). Its vaso-relaxing activity could be due, at least partly, to the non-specific inhibition of the calcic influx.
Collapse
Affiliation(s)
| | | | - Dario Donno
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, Turin, Italy
| | - Nantenaina Tombozara
- Applied Pharmacognosy Laboratory, Institut Malgache de Recherches Appliquées, Antananarivo, Madagascar
| | - Nina Robertina Nalimanana
- Applied Pharmacognosy Laboratory, Institut Malgache de Recherches Appliquées, Antananarivo, Madagascar
| | - Charles Andrianajara
- Applied Pharmacognosy Laboratory, Institut Malgache de Recherches Appliquées, Antananarivo, Madagascar
| | - Gabriele Loris Beccaro
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, Turin, Italy
| | - David Ramanitrahasimbola
- Pharmacy Department, Faculty of Medicine, University of Antananarivo, Antananarivo, Madagascar.,Applied Pharmacognosy Laboratory, Institut Malgache de Recherches Appliquées, Antananarivo, Madagascar
| | - Marcello Nicoletti
- Department of Environmental Biology, Sapienza University of Roma, Rome, Italy
| |
Collapse
|
7
|
Emodin activates BK channel in vascular smooth muscle cells and relaxes the interlobar renal artery of rat. Biomed Pharmacother 2022; 153:113452. [DOI: 10.1016/j.biopha.2022.113452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 11/22/2022] Open
|
8
|
Abstract
Junctophilins (JPHs) comprise a family of structural proteins that connect the plasma membrane to intracellular organelles such as the endo/sarcoplasmic reticulum. Tethering of these membrane structures results in the formation of highly organized subcellular junctions that play important signaling roles in all excitable cell types. There are four JPH isoforms, expressed primarily in muscle and neuronal cell types. Each JPH protein consists of 6 'membrane occupation and recognition nexus' (MORN) motifs, a joining region connecting these to another set of 2 MORN motifs, a putative alpha-helical region, a divergent region exhibiting low homology between JPH isoforms, and a carboxy-terminal transmembrane region anchoring into the ER/SR membrane. JPH isoforms play essential roles in developing and maintaining subcellular membrane junctions. Conversely, inherited mutations in JPH2 cause hypertrophic or dilated cardiomyopathy, while trinucleotide expansions in the JPH3 gene cause Huntington Disease-Like 2. Loss of JPH1 protein levels can cause skeletal myopathy, while loss of cardiac JPH2 levels causes heart failure and atrial fibrillation, among other disease. This review will provide a comprehensive overview of the JPH gene family, phylogeny, and evolutionary analysis of JPH genes and other MORN domain proteins. JPH biogenesis, membrane tethering, and binding partners will be discussed, as well as functional roles of JPH isoforms in excitable cells. Finally, potential roles of JPH isoform deficits in human disease pathogenesis will be reviewed.
Collapse
Affiliation(s)
- Stephan E Lehnart
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center Göttingen, University Medical Center Göttingen, Department of Cardiology and Pneumology, Georg-August University Göttingen, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Germany
| | - Xander H T Wehrens
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas, United States; Departments of Molecular Physiology and Biophysics, Medicine (Cardiology), Pediatrics (Cardiology), Neuroscience, and Center for Space Medicine, Baylor College of Medicine, Houston, Texas, United States
| |
Collapse
|
9
|
Piggott CA, Jin Y. Junctophilins: Key Membrane Tethers in Muscles and Neurons. Front Mol Neurosci 2021; 14:709390. [PMID: 34305529 PMCID: PMC8295595 DOI: 10.3389/fnmol.2021.709390] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 06/15/2021] [Indexed: 12/26/2022] Open
Abstract
Contacts between the endoplasmic reticulum (ER) and plasma membrane (PM) contain specialized tethering proteins that bind both ER and PM membranes. In excitable cells, ER–PM contacts play an important role in calcium signaling and transferring lipids. Junctophilins are a conserved family of ER–PM tethering proteins. They are predominantly expressed in muscles and neurons and known to simultaneously bind both ER- and PM-localized ion channels. Since their discovery two decades ago, functional studies using junctophilin-deficient animals have provided a deep understanding of their roles in muscles and neurons, including excitation-contraction coupling, store-operated calcium entry (SOCE), and afterhyperpolarization (AHP). In this review, we highlight key findings from mouse, fly, and worm that support evolutionary conservation of junctophilins.
Collapse
Affiliation(s)
- Christopher A Piggott
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, San Diego, CA, United States
| | - Yishi Jin
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
10
|
Protasi F, Pietrangelo L, Boncompagni S. Improper Remodeling of Organelles Deputed to Ca 2+ Handling and Aerobic ATP Production Underlies Muscle Dysfunction in Ageing. Int J Mol Sci 2021; 22:6195. [PMID: 34201319 PMCID: PMC8228829 DOI: 10.3390/ijms22126195] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 12/28/2022] Open
Abstract
Proper skeletal muscle function is controlled by intracellular Ca2+ concentration and by efficient production of energy (ATP), which, in turn, depend on: (a) the release and re-uptake of Ca2+ from sarcoplasmic-reticulum (SR) during excitation-contraction (EC) coupling, which controls the contraction and relaxation of sarcomeres; (b) the uptake of Ca2+ into the mitochondrial matrix, which stimulates aerobic ATP production; and finally (c) the entry of Ca2+ from the extracellular space via store-operated Ca2+ entry (SOCE), a mechanism that is important to limit/delay muscle fatigue. Abnormalities in Ca2+ handling underlie many physio-pathological conditions, including dysfunction in ageing. The specific focus of this review is to discuss the importance of the proper architecture of organelles and membrane systems involved in the mechanisms introduced above for the correct skeletal muscle function. We reviewed the existing literature about EC coupling, mitochondrial Ca2+ uptake, SOCE and about the structural membranes and organelles deputed to those functions and finally, we summarized the data collected in different, but complementary, projects studying changes caused by denervation and ageing to the structure and positioning of those organelles: a. denervation of muscle fibers-an event that contributes, to some degree, to muscle loss in ageing (known as sarcopenia)-causes misplacement and damage: (i) of membrane structures involved in EC coupling (calcium release units, CRUs) and (ii) of the mitochondrial network; b. sedentary ageing causes partial disarray/damage of CRUs and of calcium entry units (CEUs, structures involved in SOCE) and loss/misplacement of mitochondria; c. functional electrical stimulation (FES) and regular exercise promote the rescue/maintenance of the proper architecture of CRUs, CEUs, and of mitochondria in both denervation and ageing. All these structural changes were accompanied by related functional changes, i.e., loss/decay in function caused by denervation and ageing, and improved function following FES or exercise. These data suggest that the integrity and proper disposition of intracellular organelles deputed to Ca2+ handling and aerobic generation of ATP is challenged by inactivity (or reduced activity); modifications in the architecture of these intracellular membrane systems may contribute to muscle dysfunction in ageing and sarcopenia.
Collapse
Affiliation(s)
- Feliciano Protasi
- CAST, Center for Advanced Studies and Technology, University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy; (L.P.); (S.B.)
- DMSI, Department of Medicine and Aging Sciences, University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy
| | - Laura Pietrangelo
- CAST, Center for Advanced Studies and Technology, University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy; (L.P.); (S.B.)
- DMSI, Department of Medicine and Aging Sciences, University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy
| | - Simona Boncompagni
- CAST, Center for Advanced Studies and Technology, University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy; (L.P.); (S.B.)
- DNICS, Department of Neuroscience and Clinical Sciences, University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy
| |
Collapse
|
11
|
Lipkin AM, Cunniff MM, Spratt PWE, Lemke SM, Bender KJ. Functional Microstructure of Ca V-Mediated Calcium Signaling in the Axon Initial Segment. J Neurosci 2021; 41:3764-3776. [PMID: 33731449 PMCID: PMC8084313 DOI: 10.1523/jneurosci.2843-20.2021] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/15/2021] [Accepted: 03/09/2021] [Indexed: 01/12/2023] Open
Abstract
The axon initial segment (AIS) is a specialized neuronal compartment in which synaptic input is converted into action potential (AP) output. This process is supported by a diverse complement of sodium, potassium, and calcium channels (CaV). Different classes of sodium and potassium channels are scaffolded at specific sites within the AIS, conferring unique functions, but how calcium channels are functionally distributed within the AIS is unclear. Here, we use conventional two-photon laser scanning and diffraction-limited, high-speed spot two-photon imaging to resolve AP-evoked calcium dynamics in the AIS with high spatiotemporal resolution. In mouse layer 5 prefrontal pyramidal neurons, calcium influx was mediated by a mix of CaV2 and CaV3 channels that differentially localized to discrete regions. CaV3 functionally localized to produce nanodomain hotspots of calcium influx that coupled to ryanodine-sensitive stores, whereas CaV2 localized to non-hotspot regions. Thus, different pools of CaVs appear to play distinct roles in AIS function.SIGNIFICANCE STATEMENT The axon initial segment (AIS) is the site where synaptic input is transformed into action potential (AP) output. It achieves this function through a diverse complement of sodium, potassium, and calcium channels (CaV). While the localization and function of sodium channels and potassium channels at the AIS is well described, less is known about the functional distribution of CaVs. We used high-speed two-photon imaging to understand activity-dependent calcium dynamics in the AIS of mouse neocortical pyramidal neurons. Surprisingly, we found that calcium influx occurred in two distinct domains: CaV3 generates hotspot regions of calcium influx coupled to calcium stores, whereas CaV2 channels underlie diffuse calcium influx between hotspots. Therefore, different CaV classes localize to distinct AIS subdomains, possibly regulating distinct cellular processes.
Collapse
Affiliation(s)
- Anna M Lipkin
- Neuroscience Graduate Program, University of California, San Francisco, California 94158
| | - Margaret M Cunniff
- Neuroscience Graduate Program, University of California, San Francisco, California 94158
| | - Perry W E Spratt
- Neuroscience Graduate Program, University of California, San Francisco, California 94158
| | - Stefan M Lemke
- Neuroscience Graduate Program, University of California, San Francisco, California 94158
| | - Kevin J Bender
- Neuroscience Graduate Program, University of California, San Francisco, California 94158
- Department of Neurology, Kavli Institute for Fundamental Neuroscience, Weill Institute for Neurosciences, University of California, San Francisco, California 94158
| |
Collapse
|
12
|
Li XQ, Zheng YM, Reyes-García J, Wang YX. Diversity of ryanodine receptor 1-mediated Ca 2+ signaling in systemic and pulmonary artery smooth muscle cells. Life Sci 2021; 270:119016. [PMID: 33515564 DOI: 10.1016/j.lfs.2021.119016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 12/26/2020] [Accepted: 01/03/2021] [Indexed: 11/26/2022]
Abstract
AIMS Ryanodine receptor-1 (RyR1) is essential for skeletal muscle cell functions. However, its roles in vascular smooth muscle cells (SMCs) are well recognized. This study aims to determine the potential physiological importance and difference in systemic and pulmonary artery SMCs (SASMCs and PASMCs). METHODS Local and global Ca2+ release were measured using a laser scanning confocal microscope and wide-field fluorescence microscope; membrane currents were recorded using a patch clamp recording; muscle contraction was determined using an organ bath system; RyR protein expression was assessed using immunofluorescence staining. Homozygous and heterozygous RyR1 gene knockout (RyR1-/- and RyR1+/-) mice were used to determine its specific functions. KEY FINDINGS Ca2+ sparks were more prominently decreased in RyR1-/- ASMCs than in PASMCs. Caffeine induced a smaller increase in [Ca2+]i in both RyR1+/+ and RyR1-/- ASMCs than in PASMCs. High K+ produced a reduced [Ca2+]i increase in RyR1-/- PASMCs and ASMCs as well as a reduced contraction in RyR1+/- pulmonary artery and aortic tissues. ATP elicited a smaller increase in [Ca2+]i in RyR1-/- ASMCs and PASMCs with a greater inhibition in ASMCs. Norepinephrine-elicited muscle contraction was reduced in RyR1+/- aortic and pulmonary arteries. IP3 dialysis-induced Ca2+ release was much smaller in RyR1+/- ASMCs and PASMCs. Hypoxia-induced large Ca2+ and contractile responses were inhibited in RyR1+/- PASMCs. However, hypoxic exposure did not evoke a notable increase in [Ca2+]i in ASMCs. SIGNIFICANCE Our findings for the first time provide clear genetic evidence for the functional importance and difference of RyR1 in systemic and pulmonary artery SMCs.
Collapse
Affiliation(s)
- Xiao-Qiang Li
- Albany Medical College, Department of Molecular & Cellular Physiology (MC-8), 47 New Scotland Avenue, Albany, NY 12208, United States of America
| | - Yun-Min Zheng
- Albany Medical College, Department of Molecular & Cellular Physiology (MC-8), 47 New Scotland Avenue, Albany, NY 12208, United States of America
| | - Jorge Reyes-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, México
| | - Yong-Xiao Wang
- Albany Medical College, Department of Molecular & Cellular Physiology (MC-8), 47 New Scotland Avenue, Albany, NY 12208, United States of America.
| |
Collapse
|
13
|
Maietta V, Reyes-García J, Yadav VR, Zheng YM, Peng X, Wang YX. Cellular and Molecular Processes in Pulmonary Hypertension. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1304:21-38. [PMID: 34019261 DOI: 10.1007/978-3-030-68748-9_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pulmonary hypertension (PH) is a progressive lung disease characterized by persistent pulmonary vasoconstriction. Another well-recognized characteristic of PH is the muscularization of peripheral pulmonary arteries. This pulmonary vasoremodeling manifests in medial hypertrophy/hyperplasia of smooth muscle cells (SMCs) with possible neointimal formation. The underlying molecular processes for these two major vascular responses remain not fully understood. On the other hand, a series of very recent studies have shown that the increased reactive oxygen species (ROS) seems to be an important player in mediating pulmonary vasoconstriction and vasoremodeling, thereby leading to PH. Mitochondria are a primary site for ROS production in pulmonary artery (PA) SMCs, which subsequently activate NADPH oxidase to induce further ROS generation, i.e., ROS-induced ROS generation. ROS control the activity of multiple ion channels to induce intracellular Ca2+ release and extracellular Ca2+ influx (ROS-induced Ca2+ release and influx) to cause PH. ROS and Ca2+ signaling may synergistically trigger an inflammatory cascade to implicate in PH. Accordingly, this paper explores the important roles of ROS, Ca2+, and inflammatory signaling in the development of PH, including their reciprocal interactions, key molecules, and possible therapeutic targets.
Collapse
Affiliation(s)
- Vic Maietta
- Department of Molecular & Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Jorge Reyes-García
- Department of Molecular & Cellular Physiology, Albany Medical College, Albany, NY, USA.,Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Vishal R Yadav
- Department of Molecular & Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Yun-Min Zheng
- Department of Molecular & Cellular Physiology, Albany Medical College, Albany, NY, USA.
| | - Xu Peng
- Department of Medical Physiology, College of Medicine, Texas A&M University, College Station, TX, USA.
| | - Yong-Xiao Wang
- Department of Molecular & Cellular Physiology, Albany Medical College, Albany, NY, USA.
| |
Collapse
|
14
|
Igniting Ca 2+ sparks with TRPML1. Proc Natl Acad Sci U S A 2020; 117:32836-32838. [PMID: 33262276 DOI: 10.1073/pnas.2022896117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
15
|
Multiscale imaging of basal cell dynamics in the functionally mature mammary gland. Proc Natl Acad Sci U S A 2020; 117:26822-26832. [PMID: 33033227 DOI: 10.1073/pnas.2016905117] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The mammary epithelium is indispensable for the continued survival of more than 5,000 mammalian species. For some, the volume of milk ejected in a single day exceeds their entire blood volume. Here, we unveil the spatiotemporal properties of physiological signals that orchestrate the ejection of milk from alveolar units and its passage along the mammary ductal network. Using quantitative, multidimensional imaging of mammary cell ensembles from GCaMP6 transgenic mice, we reveal how stimulus evoked Ca2+ oscillations couple to contractions in basal epithelial cells. Moreover, we show that Ca2+-dependent contractions generate the requisite force to physically deform the innermost layer of luminal cells, compelling them to discharge the fluid that they produced and housed. Through the collective action of thousands of these biological positive-displacement pumps, each linked to a contractile ductal network, milk begins its passage toward the dependent neonate, seconds after the command.
Collapse
|
16
|
Abstract
Vascular smooth muscle cells (VSMCs) of small peripheral arteries contribute to blood pressure control by adapting their contractile state. These adaptations depend on the VSMC cytosolic Ca2+ concentration, regulated by complex local elementary Ca2+ signaling pathways. Ca2+ sparks represent local, transient, rapid calcium release events from a cluster of ryanodine receptors (RyRs) in the sarcoplasmic reticulum. In arterial SMCs, Ca2+ sparks activate nearby calcium-dependent potassium channels, cause membrane hyperpolarization and thus decrease the global intracellular [Ca2+] to oppose vasoconstriction. Arterial SMC Cav1.2 L-type channels regulate intracellular calcium stores content, which in turn modulates calcium efflux through RyRs. Cav3.2 T-type channels contribute to a minor extend to Ca2+ spark generation in certain types of arteries. Their localization within cell membrane caveolae is essential. We summarize present data on local elementary calcium signaling (Ca2+ sparks) in arterial SMCs with focus on RyR isoforms, large-conductance calcium-dependent potassium (BKCa) channels, and cell membrane-bound calcium channels (Cav1.2 and Cav3.2), particularly in caveolar microdomains.
Collapse
Affiliation(s)
- Gang Fan
- Charité - Universitätsmedizin Berlin, Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | - Yingqiu Cui
- Charité - Universitätsmedizin Berlin, Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | - Maik Gollasch
- Charité - Universitätsmedizin Berlin, Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
| | - Mario Kassmann
- Charité - Universitätsmedizin Berlin, Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
| |
Collapse
|
17
|
Sarcoplasmic reticulum and calcium signaling in muscle cells: Homeostasis and disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 350:197-264. [PMID: 32138900 DOI: 10.1016/bs.ircmb.2019.12.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The sarco/endoplasmic reticulum is an extensive, dynamic and heterogeneous membranous network that fulfills multiple homeostatic functions. Among them, it compartmentalizes, stores and releases calcium within the intracellular space. In the case of muscle cells, calcium released from the sarco/endoplasmic reticulum in the vicinity of the contractile machinery induces cell contraction. Furthermore, sarco/endoplasmic reticulum-derived calcium also regulates gene transcription in the nucleus, energy metabolism in mitochondria and cytosolic signaling pathways. These diverse and overlapping processes require a highly complex fine-tuning that the sarco/endoplasmic reticulum provides by means of its numerous tubules and cisternae, specialized domains and contacts with other organelles. The sarco/endoplasmic reticulum also possesses a rich calcium-handling machinery, functionally coupled to both contraction-inducing stimuli and the contractile apparatus. Such is the importance of the sarco/endoplasmic reticulum for muscle cell physiology, that alterations in its structure, function or its calcium-handling machinery are intimately associated with the development of cardiometabolic diseases. Cardiac hypertrophy, insulin resistance and arterial hypertension are age-related pathologies with a common mechanism at the muscle cell level: the accumulation of damaged proteins at the sarco/endoplasmic reticulum induces a stress response condition termed endoplasmic reticulum stress, which impairs proper organelle function, ultimately leading to pathogenesis.
Collapse
|
18
|
Ottolini M, Hong K, Sonkusare SK. Calcium signals that determine vascular resistance. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2019; 11:e1448. [PMID: 30884210 PMCID: PMC6688910 DOI: 10.1002/wsbm.1448] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 02/07/2019] [Accepted: 02/14/2019] [Indexed: 12/19/2022]
Abstract
Small arteries in the body control vascular resistance, and therefore, blood pressure and blood flow. Endothelial and smooth muscle cells in the arterial walls respond to various stimuli by altering the vascular resistance on a moment to moment basis. Smooth muscle cells can directly influence arterial diameter by contracting or relaxing, whereas endothelial cells that line the inner walls of the arteries modulate the contractile state of surrounding smooth muscle cells. Cytosolic calcium is a key driver of endothelial and smooth muscle cell functions. Cytosolic calcium can be increased either by calcium release from intracellular stores through IP3 or ryanodine receptors, or the influx of extracellular calcium through ion channels at the cell membrane. Depending on the cell type, spatial localization, source of a calcium signal, and the calcium-sensitive target activated, a particular calcium signal can dilate or constrict the arteries. Calcium signals in the vasculature can be classified into several types based on their source, kinetics, and spatial and temporal properties. The calcium signaling mechanisms in smooth muscle and endothelial cells have been extensively studied in the native or freshly isolated cells, therefore, this review is limited to the discussions of studies in native or freshly isolated cells. This article is categorized under: Biological Mechanisms > Cell Signaling Laboratory Methods and Technologies > Imaging Models of Systems Properties and Processes > Mechanistic Models.
Collapse
Affiliation(s)
- Matteo Ottolini
- Robert M. Berne Cardiovascular Research Center, University of Virginia-School of Medicine, Charlottesville, VA, 22908, USA
- Department of Pharmacology, University of Virginia-School of Medicine, Charlottesville, VA, 22908, USA
| | - Kwangseok Hong
- Robert M. Berne Cardiovascular Research Center, University of Virginia-School of Medicine, Charlottesville, VA, 22908, USA
- Department of Physical Education, Chung-Ang University, Seoul, 06974, South Korea
| | - Swapnil K. Sonkusare
- Robert M. Berne Cardiovascular Research Center, University of Virginia-School of Medicine, Charlottesville, VA, 22908, USA
- Department of Pharmacology, University of Virginia-School of Medicine, Charlottesville, VA, 22908, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia-School of Medicine, Charlottesville, VA, 22908, USA
| |
Collapse
|
19
|
Reyes-García J, Flores-Soto E, Carbajal-García A, Sommer B, Montaño LM. Maintenance of intracellular Ca2+ basal concentration in airway smooth muscle (Review). Int J Mol Med 2018; 42:2998-3008. [PMID: 30280184 PMCID: PMC6202086 DOI: 10.3892/ijmm.2018.3910] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 09/18/2018] [Indexed: 01/07/2023] Open
Abstract
In airway smooth muscle, the intracellular basal Ca2+ concentration [b(Ca2+)i] must be tightly regulated by several mechanisms in order to maintain a proper airway patency. The b[Ca2+]i is efficiently regulated by sarcoplasmic reticulum Ca2+-ATPase 2b, plasma membrane Ca2+-ATPase 1 or 4 and by the Na+/Ca2+ exchanger. Membranal Ca2+ channels, including the L-type voltage dependent Ca2+ channel (L-VDCC), T-type voltage dependent Ca2+ channel (T-VDCC) and transient receptor potential canonical 3 (TRPC3), appear to be constitutively active under basal conditions via the action of different signaling pathways, and are responsible for Ca2+ influx to maintain b[Ca2+]i. The two types of voltage-dependent Ca2+ channels (L- and T-type) are modulated by phosphorylation processes mediated by mitogen-activated protein kinase kinase (MEK) and extracellular-signal-regulated kinase 1 and 2 (ERK1/2). The MEK/ERK signaling pathway can be activated by G-protein-coupled receptors through the αq subunit when the endogenous ligand (i.e., acetylcholine, histamine, leukotrienes, etc.) is present under basal conditions. It may also be stimulated when receptor tyrosine kinases are occupied by the appropriate ligand (cytokines, growth factors, etc.). ERK1/2 phosphorylates L-VDCC on Ser496 of the β2 subunit and Ser1928 of the α1 subunit, decreasing or increasing the channel activity, respectively, and enabling it to switch between an open and closed state. T-VDCC is also probably phosphorylated by ERK1/2, although further research is required to identify the phosphorylation sites. TRPC3 is directly activated by diacylglycerol produced by phospholipase C (PLCβ or γ). Constitutive inositol 1,4,5-trisphosphate production induces the release of Ca2+ from the sarcoplasmic reticulum through inositol triphosphate receptor 1. This ion induces Ca2+-induced Ca2+ release through the ryanodine receptor 2 (designated as Ca2+ ‘sparks’). Therefore, several Ca2+ handling mechanisms are finely tuned to regulate basal intracellular Ca2+ concentrations. It is conceivable that alterations in any of these processes may render airway smooth muscle susceptible to develop hyperresponsiveness that is observed in ailments such as asthma.
Collapse
Affiliation(s)
- Jorge Reyes-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | - Edgar Flores-Soto
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | - Abril Carbajal-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | - Bettina Sommer
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias, Ciudad de México 14080, México
| | - Luis M Montaño
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| |
Collapse
|
20
|
Tomek J, Tomková M, Zhou X, Bub G, Rodriguez B. Modulation of Cardiac Alternans by Altered Sarcoplasmic Reticulum Calcium Release: A Simulation Study. Front Physiol 2018; 9:1306. [PMID: 30283355 PMCID: PMC6156530 DOI: 10.3389/fphys.2018.01306] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 08/29/2018] [Indexed: 11/29/2022] Open
Abstract
Background: Cardiac alternans is an important precursor to arrhythmia, facilitating formation of conduction block, and re-entry. Diseased hearts were observed to be particularly vulnerable to alternans, mainly in heart failure or after myocardial infarction. Alternans is typically linked to oscillation of calcium cycling, particularly in the sarcoplasmic reticulum (SR). While the role of SR calcium reuptake in alternans is well established, the role of altered calcium release by ryanodine receptors has not yet been studied extensively. At the same time, there is strong evidence that calcium release is abnormal in heart failure and other heart diseases, suggesting that these changes might play a pro-alternans role. Aims: To demonstrate how changes to intracellular calcium release dynamics and magnitude affect alternans vulnerability. Methods: We used the state-of-the-art Heijman–Rudy and O’Hara–Rudy computer models of ventricular myocyte, given their detailed representation of calcium handling and their previous utility in alternans research. We modified the models to obtain precise control over SR release dynamics and magnitude, allowing for the evaluation of these properties in alternans formation and suppression. Results: Shorter time to peak SR release and shorter release duration decrease alternans vulnerability by improved refilling of releasable calcium within junctional SR; conversely, slow release promotes alternans. Modulating the total amount of calcium released, we show that sufficiently increased calcium release may surprisingly prevent alternans via a mechanism linked to the functional depletion of junctional SR during release. We show that this mechanism underlies differences between “eye-type” and “fork-type” alternans, which were observed in human in vivo and in silico. We also provide a detailed explanation of alternans formation in the given computer models, termed “sarcoplasmic reticulum calcium cycling refractoriness.” The mechanism relies on the steep SR load–release relationship, combined with relatively limited rate of junctional SR refilling. Conclusion: Both altered dynamics and magnitude of SR calcium release modulate alternans vulnerability. In particular, slow dynamics of SR release, such as those observed in heart failure, promote alternans. Therefore, acceleration of intracellular calcium release, e.g., via synchronization of calcium sparks, may inhibit alternans in failing hearts and reduce arrhythmia occurrence.
Collapse
Affiliation(s)
- Jakub Tomek
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Markéta Tomková
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Xin Zhou
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Gil Bub
- Department of Physiology, McGill University, Montreal, QC, Canada
| | - Blanca Rodriguez
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
21
|
Gheibi S, Jeddi S, Kashfi K, Ghasemi A. Regulation of vascular tone homeostasis by NO and H 2S: Implications in hypertension. Biochem Pharmacol 2018; 149:42-59. [PMID: 29330066 PMCID: PMC5866223 DOI: 10.1016/j.bcp.2018.01.017] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 01/05/2018] [Indexed: 02/09/2023]
Abstract
Nitric oxide (NO) and hydrogen sulfide (H2S) are two gasotransmitters that are produced in the vasculature and contribute to the regulation of vascular tone. NO and H2S are synthesized in both vascular smooth muscle and endothelial cells; NO functions primarily through the sGC/cGMP pathway, and H2S mainly through activation of the ATP-dependent potassium channels; both leading to relaxation of vascular smooth muscle cells. A deficit in the NO/H2S homeostasis is involved in the pathogenesis of various cardiovascular diseases, especially hypertension. It is now becoming increasingly clear that there are important interactions between NO and H2S and that have a profound impact on vascular tone and this may provide insights into the new therapeutic interventions. The aim of this review is to provide a better understanding of individual and interactive roles of NO and H2S in vascular biology. Overall, available data indicate that both NO and H2S contribute to vascular (patho)physiology and in regulating blood pressure. In addition, boosting NO and H2S using various dietary sources or donors could be a hopeful therapeutic strategy in the management of hypertension.
Collapse
Affiliation(s)
- Sevda Gheibi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurophysiology Research Center and Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Jeddi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, NY, USA
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
22
|
Du X, Gomez CM. Spinocerebellar [corrected] Ataxia Type 6: Molecular Mechanisms and Calcium Channel Genetics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1049:147-173. [PMID: 29427102 DOI: 10.1007/978-3-319-71779-1_7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Spinocerebellar ataxia (SCA) type 6 is an autosomal dominant disease affecting cerebellar degeneration. Clinically, it is characterized by pure cerebellar dysfunction, slowly progressive unsteadiness of gait and stance, slurred speech, and abnormal eye movements with late onset. Pathological findings of SCA6 include a diffuse loss of Purkinje cells, predominantly in the cerebellar vermis. Genetically, SCA6 is caused by expansion of a trinucleotide CAG repeat in the last exon of longest isoform CACNA1A gene on chromosome 19p13.1-p13.2. Normal alleles have 4-18 repeats, while alleles causing disease contain 19-33 repeats. Due to presence of a novel internal ribosomal entry site (IRES) with the mRNA, CACNA1A encodes two structurally unrelated proteins with distinct functions within an overlapping open reading frame (ORF) of the same mRNA: (1) α1A subunit of P/Q-type voltage gated calcium channel; (2) α1ACT, a newly recognized transcription factor, with polyglutamine repeat at C-terminal end. Understanding the function of α1ACT in physiological and pathological conditions may elucidate the pathogenesis of SCA6. More importantly, the IRES, as the translational control element of α1ACT, provides a potential therapeutic target for the treatment of SCA6.
Collapse
Affiliation(s)
- Xiaofei Du
- Department of Neurology, The University of Chicago, Chicago, 60637, IL, USA
| | | |
Collapse
|
23
|
Shen CP, Romero M, Brunelle A, Wolfe C, Dobyns A, Francis M, Taylor MS, Puglisi JL, Longo LD, Zhang L, Wilson CG, Wilson SM. Long-term high-altitude hypoxia influences pulmonary arterial L-type calcium channel-mediated Ca 2+ signals and contraction in fetal and adult sheep. Am J Physiol Regul Integr Comp Physiol 2017; 314:R433-R446. [PMID: 29167165 DOI: 10.1152/ajpregu.00154.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Long-term hypoxia (LTH) has a profound effect on pulmonary arterial vasoconstriction in the fetus and adult. Dysregulation in Ca2+ signaling is important during the development of LTH-induced pulmonary hypertension. In the present study, we tested the hypothesis that L-type Ca2+ channels (CaL), which are voltage dependent and found in smooth, skeletal, and cardiac muscle, are important in the adaptation of pulmonary arterial contractions in postnatal maturation and in response to LTH. Pulmonary arteries were isolated from fetal or adult sheep maintained at low or high altitude (3,801 m) for >100 days. The effects were measured using an L-type Ca2+ channel opener FPL 64176 (FPL) in the presence or absence of an inhibitor, Nifedipine (NIF) on arterial contractions, intracellular Ca2+ oscillations, and ryanodine receptor-driven Ca2+ sparks. FPL induced pulmonary arterial contractions in all groups were sensitive to NIF. However, when compared with 125 mM K+, FPL contractions were greater in fetuses than in adults. FPL reduced Ca2+ oscillations in myocytes of adult but not fetal arteries, independently of altitude. The FPL effects on Ca2+ oscillations were reversed by NIF in myocytes of hypoxic but not normoxic adults. FPL failed to enhance Ca2+ spark frequency and had little impact on spatiotemporal firing characteristics. These data suggest that CaL-dependent contractions are largely uncoupled from intracellular Ca2+ oscillations and the development of Ca2+ sparks. This raises questions regarding the coupling of pulmonary arterial contractility to membrane depolarization, attendant CaL facilitation, and the related associations with the activation of Ca2+ oscillations and Ca2+ sparks.
Collapse
Affiliation(s)
- Christine P Shen
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine , Loma Linda, California
| | - Monica Romero
- Advanced Imaging and Microscopy Core, Loma Linda University School of Medicine , Loma Linda, California
| | - Alexander Brunelle
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine , Loma Linda, California
| | - Craig Wolfe
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine , Loma Linda, California
| | - Abigail Dobyns
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine , Loma Linda, California
| | - Michael Francis
- Department of Physiology, University of South Alabama College of Medicine , Mobile, Alabama
| | - Mark S Taylor
- Department of Physiology, University of South Alabama College of Medicine , Mobile, Alabama
| | - Jose L Puglisi
- Department of Biostatistics, California Northstate University School of Medicine , Elk Grove, California
| | - Lawrence D Longo
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine , Loma Linda, California
| | - Lubo Zhang
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine , Loma Linda, California
| | - Christopher G Wilson
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine , Loma Linda, California
| | - Sean M Wilson
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine , Loma Linda, California
| |
Collapse
|
24
|
Gupta S, Majawadia A, Manchanda R. A computational model of intracellular calcium oscillations in urinary bladder smooth muscle cells. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2017:2692-2695. [PMID: 29060454 DOI: 10.1109/embc.2017.8037412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
This paper presents a computational model for calcium (Ca2+) oscillations in detrusor smooth muscle (DSM) cells. The proposed model simulates the temporal profile of oscillations by incorporating various cellular and subcellular components. The cellular components include calcium influx via membrane and the plasma membrane calcium ATPase (PMCA) pump. The subcellular components include ryanodine receptors (RyRs), inositol 1, 4, 5 trisphosphate receptors (IP3Rs) and the sarco/endoplasmic reticulum calcium ATPase (SERCA) pump. The use of both cellular and subcellular components provides a better estimation of the origin and factors affecting these oscillations. Moreover, our work correlates these computational findings with associated physiology of the smooth muscle cell that aids our understanding of intracellular calcium oscillations and its inception in DSM. A deeper insight into calcium signalling in DSM cells is expected to provide a firmer basis for understanding the mechanical contractile activity.
Collapse
|
25
|
Layhadi JA, Fountain SJ. Influence of ER leak on resting cytoplasmic Ca 2+ and receptor-mediated Ca 2+ signalling in human macrophage. Biochem Biophys Res Commun 2017; 487:633-639. [PMID: 28435065 DOI: 10.1016/j.bbrc.2017.04.106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 04/19/2017] [Indexed: 01/26/2023]
Abstract
Mechanisms controlling endoplasmic reticulum (ER) Ca2+ homeostasis are important regulators of resting cytoplasmic Ca2+ concentration ([Ca2+]cyto) and receptor-mediated Ca2+ signalling. Here we investigate channels responsible for ER Ca2+ leak in THP-1 macrophage and human primary macrophage. In the absence of extracellular Ca2+ we employ ionomycin action at the plasma membrane to stimulate ER Ca2+ leak. Under these conditions ionomycin elevates [Ca2+]cyto revealing a Ca2+ leak response which is abolished by thapsigargin. IP3 receptors (Xestospongin C, 2-APB), ryanodine receptors (dantrolene), and translocon (anisomycin) inhibition facilitated ER Ca2+ leak in model macrophage, with translocon inhibition also reducing resting [Ca2+]cyto. In primary macrophage, translocon inhibition blocks Ca2+ leak but does not influence resting [Ca2+]cyto. We identify a role for translocon-mediated ER Ca2+ leak in receptor-mediated Ca2+ signalling in both model and primary human macrophage, whereby the Ca2+ response to ADP (P2Y receptor agonist) is augmented following anisomycin treatment. In conclusion, we demonstrate a role of ER Ca2+ leak via the translocon in controlling resting cytoplasmic Ca2+ in model macrophage and receptor-mediated Ca2+ signalling in model macrophage and primary macrophage.
Collapse
Affiliation(s)
- Janice A Layhadi
- School of Biological Sciences, Biomedical Research Centre, University of East Anglia, Norwich Research Park, NR4 7TJ, UK
| | - Samuel J Fountain
- School of Biological Sciences, Biomedical Research Centre, University of East Anglia, Norwich Research Park, NR4 7TJ, UK.
| |
Collapse
|
26
|
Tykocki NR, Boerman EM, Jackson WF. Smooth Muscle Ion Channels and Regulation of Vascular Tone in Resistance Arteries and Arterioles. Compr Physiol 2017; 7:485-581. [PMID: 28333380 DOI: 10.1002/cphy.c160011] [Citation(s) in RCA: 241] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Vascular tone of resistance arteries and arterioles determines peripheral vascular resistance, contributing to the regulation of blood pressure and blood flow to, and within the body's tissues and organs. Ion channels in the plasma membrane and endoplasmic reticulum of vascular smooth muscle cells (SMCs) in these blood vessels importantly contribute to the regulation of intracellular Ca2+ concentration, the primary determinant of SMC contractile activity and vascular tone. Ion channels provide the main source of activator Ca2+ that determines vascular tone, and strongly contribute to setting and regulating membrane potential, which, in turn, regulates the open-state-probability of voltage gated Ca2+ channels (VGCCs), the primary source of Ca2+ in resistance artery and arteriolar SMCs. Ion channel function is also modulated by vasoconstrictors and vasodilators, contributing to all aspects of the regulation of vascular tone. This review will focus on the physiology of VGCCs, voltage-gated K+ (KV) channels, large-conductance Ca2+-activated K+ (BKCa) channels, strong-inward-rectifier K+ (KIR) channels, ATP-sensitive K+ (KATP) channels, ryanodine receptors (RyRs), inositol 1,4,5-trisphosphate receptors (IP3Rs), and a variety of transient receptor potential (TRP) channels that contribute to pressure-induced myogenic tone in resistance arteries and arterioles, the modulation of the function of these ion channels by vasoconstrictors and vasodilators, their role in the functional regulation of tissue blood flow and their dysfunction in diseases such as hypertension, obesity, and diabetes. © 2017 American Physiological Society. Compr Physiol 7:485-581, 2017.
Collapse
Affiliation(s)
- Nathan R Tykocki
- Department of Pharmacology, University of Vermont, Burlington, Vermont, USA
| | - Erika M Boerman
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, USA
| | - William F Jackson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
27
|
Ghosh D, Syed AU, Prada MP, Nystoriak MA, Santana LF, Nieves-Cintrón M, Navedo MF. Calcium Channels in Vascular Smooth Muscle. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 78:49-87. [PMID: 28212803 DOI: 10.1016/bs.apha.2016.08.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Calcium (Ca2+) plays a central role in excitation, contraction, transcription, and proliferation of vascular smooth muscle cells (VSMs). Precise regulation of intracellular Ca2+ concentration ([Ca2+]i) is crucial for proper physiological VSM function. Studies over the last several decades have revealed that VSMs express a variety of Ca2+-permeable channels that orchestrate a dynamic, yet finely tuned regulation of [Ca2+]i. In this review, we discuss the major Ca2+-permeable channels expressed in VSM and their contribution to vascular physiology and pathology.
Collapse
Affiliation(s)
- D Ghosh
- University of California, Davis, CA, United States
| | - A U Syed
- University of California, Davis, CA, United States
| | - M P Prada
- University of California, Davis, CA, United States
| | - M A Nystoriak
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, United States
| | - L F Santana
- University of California, Davis, CA, United States
| | | | - M F Navedo
- University of California, Davis, CA, United States.
| |
Collapse
|
28
|
Zhang CH, Wang P, Liu DH, Chen CP, Zhao W, Chen X, Chen C, He WQ, Qiao YN, Tao T, Sun J, Peng YJ, Lu P, Zheng K, Craige SM, Lifshitz LM, Keaney JF, Fogarty KE, ZhuGe R, Zhu MS. The molecular basis of the genesis of basal tone in internal anal sphincter. Nat Commun 2016; 7:11358. [PMID: 27101932 PMCID: PMC4844698 DOI: 10.1038/ncomms11358] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 03/16/2016] [Indexed: 02/06/2023] Open
Abstract
Smooth muscle sphincters exhibit basal tone and control passage of contents through organs such as the gastrointestinal tract; loss of this tone leads to disorders such as faecal incontinence. However, the molecular mechanisms underlying this tone remain unknown. Here, we show that deletion of myosin light-chain kinases (MLCK) in the smooth muscle cells from internal anal sphincter (IAS-SMCs) abolishes basal tone, impairing defecation. Pharmacological regulation of ryanodine receptors (RyRs), L-type voltage-dependent Ca2+ channels (VDCCs) or TMEM16A Ca2+-activated Cl− channels significantly changes global cytosolic Ca2+ concentration ([Ca2+]i) and the tone. TMEM16A deletion in IAS-SMCs abolishes the effects of modulators for TMEM16A or VDCCs on a RyR-mediated rise in global [Ca2+]i and impairs the tone and defecation. Hence, MLCK activation in IAS-SMCs caused by a global rise in [Ca2+]i via a RyR-TMEM16A-VDCC signalling module sets the basal tone. Targeting this module may lead to new treatments for diseases like faecal incontinence. The molecular basis of the basal tone generated by internal anal sphincters (IAS) is largely unknown. Here, the authors show that the tone arises from a global rise in intracellular Ca2+ in smooth muscle cells via a Ryanodine receptor-TMEM16A-L-type Ca2+ channel-MLC kinase pathway, suggesting a potential therapy for IAS motility disorders.
Collapse
Affiliation(s)
- Cheng-Hai Zhang
- State Key Laboratory of Pharmaceutical Biotechnology and Model Animal Research Center and MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing 210061, China.,Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Pei Wang
- State Key Laboratory of Pharmaceutical Biotechnology and Model Animal Research Center and MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing 210061, China
| | - Dong-Hai Liu
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Cai-Ping Chen
- State Key Laboratory of Pharmaceutical Biotechnology and Model Animal Research Center and MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing 210061, China
| | - Wei Zhao
- State Key Laboratory of Pharmaceutical Biotechnology and Model Animal Research Center and MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing 210061, China
| | - Xin Chen
- State Key Laboratory of Pharmaceutical Biotechnology and Model Animal Research Center and MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing 210061, China
| | - Chen Chen
- State Key Laboratory of Pharmaceutical Biotechnology and Model Animal Research Center and MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing 210061, China
| | - Wei-Qi He
- State Key Laboratory of Pharmaceutical Biotechnology and Model Animal Research Center and MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing 210061, China.,CAM-SU Genomic Resource Center, Soochow University, Suzhou 215123, China
| | - Yan-Ning Qiao
- State Key Laboratory of Pharmaceutical Biotechnology and Model Animal Research Center and MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing 210061, China
| | - Tao Tao
- State Key Laboratory of Pharmaceutical Biotechnology and Model Animal Research Center and MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing 210061, China
| | - Jie Sun
- State Key Laboratory of Pharmaceutical Biotechnology and Model Animal Research Center and MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing 210061, China
| | - Ya-Jing Peng
- State Key Laboratory of Pharmaceutical Biotechnology and Model Animal Research Center and MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing 210061, China
| | - Ping Lu
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Kaizhi Zheng
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Siobhan M Craige
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | - Lawrence M Lifshitz
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - John F Keaney
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | - Kevin E Fogarty
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Ronghua ZhuGe
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Min-Sheng Zhu
- State Key Laboratory of Pharmaceutical Biotechnology and Model Animal Research Center and MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing 210061, China.,Innovation Center for Cardiovascular Disorders, Beijing 100029, China
| |
Collapse
|
29
|
Parajuli SP, Zheng YM, Levin R, Wang YX. Big-conductance Ca 2+-activated K + channels in physiological and pathophysiological urinary bladder smooth muscle cells. Channels (Austin) 2016; 10:355-364. [PMID: 27101440 DOI: 10.1080/19336950.2016.1180488] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Contraction and relaxation of urinary bladder smooth muscle cells (UBSMCs) represent the important physiological functions of the bladder. Contractile responses in UBSMCs are regulated by a number of ion channels including big-conductance Ca2+- activated K+ (BK) channels. Great progress has been made in studies of BK channels in UBSMCs. The intent of this review is to summarize recent exciting findings with respect to the functional interactions of BK channels with muscarinic receptors, ryanodine receptors (RyRs) and inositol triphosphate receptors (IP3Rs) as well as their functional importance under normal and pathophysiological conditions. BK channels are highly expressed in UBSMCs. Activation of muscarinic M3 receptors inhibits the BK channel activity, facilitates opening of voltage-dependent Ca2+ (CaV) channels, and thereby enhances excitability and contractility of UBSMCs. Signaling molecules and regulatory mechanisms involving RyRs and IP3Rs have a significant effect on functions of BK channels and thereby regulate cellular responses in UBSMCs under normal and pathophysiological conditions including overactive bladders. Moreover, BK channels may represent a novel target for the treatment of bladder dysfunctions.
Collapse
Affiliation(s)
- Shankar P Parajuli
- a Center for Cardiovascular Sciences, Albany Medical College , Albany , NY , USA
| | - Yun-Min Zheng
- a Center for Cardiovascular Sciences, Albany Medical College , Albany , NY , USA
| | - Robert Levin
- b Stratton VA Medical Center , Albany , NY , USA
| | - Yong-Xiao Wang
- a Center for Cardiovascular Sciences, Albany Medical College , Albany , NY , USA
| |
Collapse
|
30
|
Brozovich FV, Nicholson CJ, Degen CV, Gao YZ, Aggarwal M, Morgan KG. Mechanisms of Vascular Smooth Muscle Contraction and the Basis for Pharmacologic Treatment of Smooth Muscle Disorders. Pharmacol Rev 2016; 68:476-532. [PMID: 27037223 PMCID: PMC4819215 DOI: 10.1124/pr.115.010652] [Citation(s) in RCA: 344] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The smooth muscle cell directly drives the contraction of the vascular wall and hence regulates the size of the blood vessel lumen. We review here the current understanding of the molecular mechanisms by which agonists, therapeutics, and diseases regulate contractility of the vascular smooth muscle cell and we place this within the context of whole body function. We also discuss the implications for personalized medicine and highlight specific potential target molecules that may provide opportunities for the future development of new therapeutics to regulate vascular function.
Collapse
Affiliation(s)
- F V Brozovich
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - C J Nicholson
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - C V Degen
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - Yuan Z Gao
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - M Aggarwal
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - K G Morgan
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| |
Collapse
|
31
|
Ríos E, Figueroa L, Manno C, Kraeva N, Riazi S. The couplonopathies: A comparative approach to a class of diseases of skeletal and cardiac muscle. ACTA ACUST UNITED AC 2016; 145:459-74. [PMID: 26009541 PMCID: PMC4442791 DOI: 10.1085/jgp.201411321] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A novel category of diseases of striated muscle is proposed, the couplonopathies, as those that affect components of the couplon and thereby alter its operation. Couplons are the functional units of intracellular calcium release in excitation–contraction coupling. They comprise dihydropyridine receptors, ryanodine receptors (Ca2+ release channels), and a growing list of ancillary proteins whose alteration may lead to disease. Within a generally similar plan, the couplons of skeletal and cardiac muscle show, in a few places, marked structural divergence associated with critical differences in the mechanisms whereby they fulfill their signaling role. Most important among these are the presence of a mechanical or allosteric communication between voltage sensors and Ca2+ release channels, exclusive to the skeletal couplon, and the smaller capacity of the Ca stores in cardiac muscle, which results in greater swings of store concentration during physiological function. Consideration of these structural and functional differences affords insights into the pathogenesis of several couplonopathies. The exclusive mechanical connection of the skeletal couplon explains differences in pathogenesis between malignant hyperthermia (MH) and catecholaminergic polymorphic ventricular tachycardia (CPVT), conditions most commonly caused by mutations in homologous regions of the skeletal and cardiac Ca2+ release channels. Based on mechanistic considerations applicable to both couplons, we identify the plasmalemma as a site of secondary modifications, typically an increase in store-operated calcium entry, that are relevant in MH pathogenesis. Similar considerations help explain the different consequences that mutations in triadin and calsequestrin have in these two tissues. As more information is gathered on the composition of cardiac and skeletal couplons, this comparative and mechanistic approach to couplonopathies should be useful to understand pathogenesis, clarify diagnosis, and propose tissue-specific drug development.
Collapse
Affiliation(s)
- Eduardo Ríos
- Section of Cellular Signaling, Department of Molecular Biophysics and Physiology, Rush University, Chicago, IL 60612
| | - Lourdes Figueroa
- Section of Cellular Signaling, Department of Molecular Biophysics and Physiology, Rush University, Chicago, IL 60612
| | - Carlo Manno
- Section of Cellular Signaling, Department of Molecular Biophysics and Physiology, Rush University, Chicago, IL 60612
| | - Natalia Kraeva
- Malignant Hyperthermia Investigation Unit, University Health Network, Toronto General Hospital, Toronto, Ontario M5G 2C4, Canada
| | - Sheila Riazi
- Malignant Hyperthermia Investigation Unit, University Health Network, Toronto General Hospital, Toronto, Ontario M5G 2C4, Canada
| |
Collapse
|
32
|
Vrecl M, Babnik M, Sepčić K, Žužek MC, Maček P, Diacci U, Frangež R. Effect of the ostreolysin A/pleurotolysin B pore-forming complex on intracellular Ca2+ activity in the vascular smooth muscle cell line A10. Toxicol In Vitro 2015; 29:2015-21. [PMID: 26320834 DOI: 10.1016/j.tiv.2015.08.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 08/14/2015] [Accepted: 08/26/2015] [Indexed: 02/01/2023]
Abstract
Ostreolysin A/pleurotolysin B (OlyA/PlyB) is a binary pore-forming protein complex that produces a rapid cardiorespiratory arrest. Increased tonus of the coronary vascular wall produced by OlyA/PlyB may lead to ischemia, arrhythmias, the hypoxic injury of cardiomyocytes and cardiotoxicity. We evaluated the effects of OlyA/PlyB in cultured vascular smooth muscle A10 cells. Fluorometric measurements using the Ca(2+) indicator Fluo-4 AM and Fura-2 AM revealed that nanomolar concentrations of OlyA/PlyB increased the intracellular Ca(2+) activity [Ca(2+)]i in A10 cells. This effect was absent in a Ca(2+)-free medium, indicating that OlyA/PlyB-induced [Ca(2+)]i increase was dependent on Ca(2+) influx into cells. The increase in [Ca(2+)]i by OlyA/PlyB was partially prevented by: i) the calcium channel blockers verapamil and La(3+), ii) the inhibitor of the sodium-calcium exchanger (NCX) benzamil, and iii) the iso-osmotic replacement of NaCl by sucrose. The pre-treatment of cells with the Ca(2+)-ATPase inhibitor thapsigargin reduced the [Ca(2+)]i increase evoked by OlyA/PlyB, whereas the plasma membrane depolarization with high K(+) in the medium did not prevent OlyA/PlyB-induced [Ca(2+)]i. In summary, our data could suggest that the OlyA/PlyB-induced increase in [Ca(2+)]i is due to an influx of Ca(2+) through a variety of co-existing plasma membrane Ca(2+)-permeable channels, Ca(2+) entry through non-selective ion permeable pores formed de novo by OlyA/PlyB in the plasma membrane and calcium-induced intracellular Ca(2+) release, altogether leading to disturbed Ca(2+) homeostasis in A10 cells.
Collapse
Affiliation(s)
- Milka Vrecl
- Veterinary Faculty, Institute of Anatomy, Histology and Embryology, Gerbičeva 60, SI-1000 Ljubljana, Slovenia
| | - Monika Babnik
- Institute of Physiology, Pharmacology and Toxicology, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| | - Kristina Sepčić
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Monika C Žužek
- Institute of Physiology, Pharmacology and Toxicology, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| | - Peter Maček
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Uroš Diacci
- Institute of Physiology, Pharmacology and Toxicology, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| | - Robert Frangež
- Institute of Physiology, Pharmacology and Toxicology, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia.
| |
Collapse
|
33
|
Abstract
The ability of cells to sense and respond to physical forces has been recognized for decades, but researchers are only beginning to appreciate the fundamental importance of mechanical signals in biology. At the larger scale, there has been increased interest in the collective organization of cells and their ability to produce complex, "emergent" behaviors. Often, these complex behaviors result in tissue-level control mechanisms that manifest as biological oscillators, such as observed in fireflies, heartbeats, and circadian rhythms. In many cases, these complex, collective behaviors are controlled--at least in part--by physical forces imposed on the tissue or created by the cells. Here, we use mathematical simulations to show that two complementary mechanobiological oscillators are sufficient to control fluid transport in the lymphatic system: Ca(2+)-mediated contractions can be triggered by vessel stretch, whereas nitric oxide produced in response to the resulting fluid shear stress causes the lymphatic vessel to relax locally. Our model predicts that the Ca(2+) and NO levels alternate spatiotemporally, establishing complementary feedback loops, and that the resulting phasic contractions drive lymph flow. We show that this mechanism is self-regulating and robust over a range of fluid pressure environments, allowing the lymphatic vessels to provide pumping when needed but remain open when flow can be driven by tissue pressure or gravity. Our simulations accurately reproduce the responses to pressure challenges and signaling pathway manipulations observed experimentally, providing an integrated conceptual framework for lymphatic function.
Collapse
|
34
|
Fernández-Velasco M, Ruiz-Hurtado G, Gómez AM, Rueda A. Ca(2+) handling alterations and vascular dysfunction in diabetes. Cell Calcium 2014; 56:397-407. [PMID: 25218935 DOI: 10.1016/j.ceca.2014.08.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 07/30/2014] [Accepted: 08/07/2014] [Indexed: 12/12/2022]
Abstract
More than 65% of patients with diabetes mellitus die from cardiovascular disease or stroke. Hyperglycemia, due to either reduced insulin secretion or reduced insulin sensitivity, is the hallmark feature of diabetes mellitus. Vascular dysfunction is a distinctive phenotype found in both types of diabetes and could be responsible for the high incidence of stroke, heart attack, and organ damage in diabetic patients. In addition to well-documented endothelial dysfunction, Ca(2+) handling alterations in vascular smooth muscle cells (VSMCs) play a key role in the development and progression of vascular complications in diabetes. VSMCs provide not only structural integrity to the vessels but also control myogenic arterial tone and systemic blood pressure through global and local Ca(2+) signaling. The Ca(2+) signalosome of VSMCs is integrated by an extensive number of Ca(2+) handling proteins (i.e. channels, pumps, exchangers) and related signal transduction components, whose function is modulated by endothelial effectors. This review summarizes recent findings concerning alterations in endothelium and VSMC Ca(2+) signaling proteins that may contribute to the vascular dysfunction found in the diabetic condition.
Collapse
Affiliation(s)
| | - Gema Ruiz-Hurtado
- Unidad de Hipertensión, Instituto de Investigación imas12, Hospital 12 de Octubre, Madrid, Spain; Instituto Pluridisciplinar, Facultad de Farmacia, Universidad Complutense de Madrid, Spain
| | - Ana M Gómez
- Inserm, UMR S769, Faculté de Pharmacie, Université Paris Sud, Labex LERMIT, DHU TORINO, Châtenay-Malabry, France
| | - Angélica Rueda
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, México City, Mexico.
| |
Collapse
|
35
|
Padilla J, López RM, López P, Castillo MC, Querejeta E, Ruiz A, Castillo EF. Inhibition of PKC-dependent extracellular Ca2+ entry contributes to the depression of contractile activity in long-term pressure-overloaded endothelium-denuded rat aortas. Braz J Med Biol Res 2014; 47:789-98. [PMID: 25098618 PMCID: PMC4143207 DOI: 10.1590/1414-431x20143073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 05/22/2014] [Indexed: 11/22/2022] Open
Abstract
We examined the contractile responsiveness of rat thoracic aortas under pressure
overload after long-term suprarenal abdominal aortic coarctation (lt-Srac).
Endothelium-dependent angiotensin II (ANG II) type 2 receptor
(AT2R)-mediated depression of contractions to ANG II has been reported in
short-term (1 week) pressure-overloaded rat aortas. Contractility was evaluated in
the aortic rings of rats subjected to lt-Srac or sham surgery (Sham) for 8 weeks. ANG
I and II levels and AT2R protein expression in the aortas of lt-Srac and
Sham rats were also evaluated. lt-Srac attenuated the contractions of ANG II and
phenylephrine in the aortas in an endothelium-independent manner. However, lt-Srac
did not influence the transient contractions induced in endothelium-denuded aortic
rings by ANG II, phenylephrine, or caffeine in Ca2+-free medium or the
subsequent tonic constrictions induced by the addition of Ca2+ in the
absence of agonists. Thus, the contractions induced by Ca2+ release from
intracellular stores and Ca2+ influx through stored-operated channels were
not inhibited in the aortas of lt-Srac rats. Potassium-elicited contractions in
endothelium-denuded aortic rings of lt-Srac rats remained unaltered compared with
control tissues. Consequently, the contractile depression observed in aortic tissues
of lt-Srac rats cannot be explained by direct inhibition of voltage-operated
Ca2+ channels. Interestingly,
12-O-tetradecanoylphorbol-13-acetate-induced contractions in
endothelium-denuded aortic rings of lt-Srac rats were depressed in the presence but
not in the absence of extracellular Ca2+. Neither levels of angiotensins
nor of AT2R were modified in the aortas after lt-Srac. The results suggest
that, in rat thoracic aortas, lt-Srac selectively inhibited protein kinase C-mediated
activation of contraction that is dependent on extracellular Ca2+
entry.
Collapse
Affiliation(s)
- J Padilla
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México, DF, México
| | - R M López
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México, DF, México
| | - P López
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México, DF, México
| | - M C Castillo
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México, DF, México
| | - E Querejeta
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México, DF, México
| | - A Ruiz
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México, DF, México
| | - E F Castillo
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México, DF, México
| |
Collapse
|
36
|
Navedo MF, Amberg GC. Local regulation of L-type Ca²⁺ channel sparklets in arterial smooth muscle. Microcirculation 2013; 20:290-8. [PMID: 23116449 DOI: 10.1111/micc.12021] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 10/26/2012] [Indexed: 12/16/2022]
Abstract
This review addresses the latest advances in our understanding of the regulation of a novel Ca²⁺ signal called L-type Ca²⁺ channel sparklets in arterial smooth muscle. L-type Ca²⁺ channel sparklets are elementary Ca²⁺ influx events produced by the opening of a single or a small cluster of L-type Ca²⁺ channels. These Ca²⁺ signals were first visualized in the vasculature in arterial smooth muscle cells. In these cells, L-type Ca²⁺ channel sparklets display two functionally distinct gating modalities that regulate local and global [Ca²⁺](i). The activity of L-type Ca²⁺ channel sparklets varies regionally within a cell depending on the dynamic activity of a cohort of protein kinases and phosphatases recruited to L-type Ca²⁺ channels in the arterial smooth muscle sarcolemma in a complex coordinated by the scaffolding molecule AKAP150. We also described a mechanism whereby clusters of L-type Ca²⁺ channels gate cooperatively to amplify intracellular Ca²⁺ signals with likely pathological consequences.
Collapse
Affiliation(s)
- Manuel F Navedo
- Department of Pharmacology, University of California, Davis, California, USA.
| | | |
Collapse
|
37
|
Suzuki Y, Yamamura H, Ohya S, Imaizumi Y. Caveolin-1 facilitates the direct coupling between large conductance Ca2+-activated K+ (BKCa) and Cav1.2 Ca2+ channels and their clustering to regulate membrane excitability in vascular myocytes. J Biol Chem 2013; 288:36750-61. [PMID: 24202214 DOI: 10.1074/jbc.m113.511485] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
L-type voltage-dependent Ca(2+) channels (LVDCC) and large conductance Ca(2+)-activated K(+) channels (BKCa) are the major factors defining membrane excitability in vascular smooth muscle cells (VSMCs). The Ca(2+) release from sarcoplasmic reticulum through ryanodine receptor significantly contributes to BKCa activation in VSMCs. In this study direct coupling between LVDCC (Cav1.2) and BKCa and the role of caveoline-1 on their interaction in mouse mesenteric artery SMCs were examined. The direct activation of BKCa by Ca(2+) influx through coupling LVDCC was demonstrated by patch clamp recordings in freshly isolated VSMCs. Using total internal reflection fluorescence microscopy, it was found that a large part of yellow fluorescent protein-tagged BKCa co-localized with the cyan fluorescent protein-tagged Cav1.2 expressed in the plasma membrane of primary cultured mouse VSMCs and that the two molecules often exhibited FRET. It is notable that each BKα subunit of a tetramer in BKCa can directly interact with Cav1.2 and promotes Cav1.2 cluster in the molecular complex. Furthermore, caveolin-1 deficiency in knock-out (KO) mice significantly reduced not only the direct coupling between BKCa and Cav1.2 but also the functional coupling between BKCa and ryanodine receptor in VSMCs. The measurement of single cell shortening by 40 mm K(+) revealed enhanced contractility in VSMCs from KO mice than wild type. Taken together, caveolin-1 facilitates the accumulation/clustering of BKCa-LVDCC complex in caveolae, which effectively regulates spatiotemporal Ca(2+) dynamics including the negative feedback, to control the arterial excitability and contractility.
Collapse
Affiliation(s)
- Yoshiaki Suzuki
- From the Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan and
| | | | | | | |
Collapse
|
38
|
Hadley SR, Blood Q, Rubalcava M, Waskel E, Lumbard B, Le P, Longo LD, Buchholz JN, Wilson SM. Maternal high-altitude hypoxia and suppression of ryanodine receptor-mediated Ca2+ sparks in fetal sheep pulmonary arterial myocytes. Am J Physiol Lung Cell Mol Physiol 2012; 303:L799-813. [PMID: 22962012 DOI: 10.1152/ajplung.00009.2012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Ca(2+) sparks are fundamental Ca(2+) signaling events arising from ryanodine receptor (RyR) activation, events that relate to contractile and dilatory events in the pulmonary vasculature. Recent studies demonstrate that long-term hypoxia (LTH) can affect pulmonary arterial reactivity in fetal, newborn, and adult animals. Because RyRs are important to pulmonary vascular reactivity and reactivity changes with ontogeny and LTH we tested the hypothesis that RyR-generated Ca(2+) signals are more active before birth and that LTH suppresses these responses. We examined these hypotheses by performing confocal imaging of myocytes in living arteries and by performing wire myography studies. Pulmonary arteries (PA) were isolated from fetal, newborn, or adult sheep that lived at low altitude or from those that were acclimatized to 3,801 m for > 100 days. Confocal imaging demonstrated preservation of the distance between the sarcoplasmic reticulum, nucleus, and plasma membrane in PA myocytes. Maturation increased global Ca(2+) waves and Ca(2+) spark activity, with sparks becoming larger, wider, and slower. LTH preferentially depressed Ca(2+) spark activity in immature pulmonary arterial myocytes, and these sparks were smaller, wider, and slower. LTH also suppressed caffeine-elicited contraction in fetal PA but augmented contraction in the newborn and adult. The influence of both ontogeny and LTH on RyR-dependent cell excitability shed new light on the therapeutic potential of these channels for the treatment of pulmonary vascular disease in newborns as well as adults.
Collapse
Affiliation(s)
- Scott R Hadley
- Center for Perinatal Biology, Loma Linda University, California 92350, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Hai A, Spira ME. On-chip electroporation, membrane repair dynamics and transient in-cell recordings by arrays of gold mushroom-shaped microelectrodes. LAB ON A CHIP 2012; 12:2865-73. [PMID: 22678065 DOI: 10.1039/c2lc40091j] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
This study demonstrates the use of on-chip gold mushroom-shaped microelectrodes (gMμEs) to generate localized electropores in the plasma membrane of adhering cultured neurons and to electrophysiologically monitor the ensuing membrane repair dynamics. Delivery of an alternating voltage pulse (0.5-1 V, 100 Hz, 300 ms) through an extracellularly positioned micrometer-sized gMμE electroporates the patch of plasma membrane facing the microelectrode. The repair dynamics of the electropores were analyzed by continuous monitoring of the neuron transmembrane potential, input resistance (R(in)) and action potential (AP) amplitude with an intracellular microelectrode and a number of neighbouring extracellular gMμEs. Electroporation by a gMμE is associated with local elevation of the free intracellular calcium concentration ([Ca(2+)](i)) around the gMμE. The membrane repair kinetics proceeds as an exponential process interrupted by abrupt recovery steps. These abrupt events are consistent with the "membrane patch model" of membrane repair in which patches of intracellular membrane fuse with the plasma membrane at the site of injury. Membrane electroporation by a single gMμE generates a neuron-gMμE configuration that permits recordings of attenuated intracellular action potentials. We conclude that the use of on-chip cultured neurons via a gMμE configuration provides a unique neuroelectronic interface that enables the selection of individual cells for electroporation, generates a confined electroporated membrane patch, monitors membrane repair dynamics and records attenuated intracellular action potentials.
Collapse
Affiliation(s)
- Aviad Hai
- Department of Neurobiology the Life Sciences Institute, and the Harvey M. Kruger Family center for Nanoscience and Nanotechnology. The Hebrew University of Jerusalem, Jerusalem, Israel
| | | |
Collapse
|
40
|
Westcott EB, Goodwin EL, Segal SS, Jackson WF. Function and expression of ryanodine receptors and inositol 1,4,5-trisphosphate receptors in smooth muscle cells of murine feed arteries and arterioles. J Physiol 2012; 590:1849-69. [PMID: 22331418 DOI: 10.1113/jphysiol.2011.222083] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We tested the hypothesis that vasomotor control is differentially regulated between feed arteries and downstream arterioles from the cremaster muscle of C57BL/6 mice. In isolated pressurized arteries, confocal Ca(2+) imaging of smooth muscle cells (SMCs) revealed Ca(2+) sparks and Ca(2+) waves. Ryanodine receptor (RyR) antagonists (ryanodine and tetracaine) inhibited both sparks and waves but increased global Ca(2+) and myogenic tone. In arterioles, SMCs exhibited only Ca(2+) waves that were insensitive to ryanodine or tetracaine. Pharmacological interventions indicated that RyRs are functionally coupled to large-conductance, Ca(2+)-activated K(+) channels (BK(Ca)) in SMCs of arteries, whereas BK(Ca) appear functionally coupled to voltage-gated Ca2+ channels in SMCs of arterioles. Inositol 1,4,5-trisphosphate receptor (IP3R) antagonists (xestospongin D or 2-aminoethoxydiphenyl borate) or a phospholipase C inhibitor (U73122) attenuated Ca(2+) waves, global Ca(2+) and myogenic tone in arteries and arterioles but had no effect on arterial sparks. Real-time PCR of isolated SMCs revealed RyR2 as the most abundant isoform transcript; arteries expressed twice the RyR2 but only 65% the RyR3 of arterioles and neither vessel expressed RyR1. Immunofluorescent localisation of RyR protein indicated bright, clustered staining of arterial SMCs in contrast to diffuse staining in arteriolar SMCs. Expression of IP(3)R transcripts and protein immunofluorescence were similar in SMCs of both vessels with IP(3)R1>>IP(3)R2>IP(3)R3. Despite similar expression of IP(3)Rs and dependence of Ca(2+) waves on IP(3)Rs, these data illustrate pronounced regional heterogeneity in function and expression of RyRs between SMCs of the same vascular resistance network. We conclude that vasomotor control is differentially regulated in feed arteries vs. downstream arterioles.
Collapse
Affiliation(s)
- Erika B Westcott
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | |
Collapse
|
41
|
Hristov KL, Chen M, Soder RP, Parajuli SP, Cheng Q, Kellett WF, Petkov GV. KV2.1 and electrically silent KV channel subunits control excitability and contractility of guinea pig detrusor smooth muscle. Am J Physiol Cell Physiol 2012; 302:C360-72. [PMID: 21998137 PMCID: PMC3328844 DOI: 10.1152/ajpcell.00303.2010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 10/11/2011] [Indexed: 11/22/2022]
Abstract
Voltage-gated K(+) (K(V)) channels are implicated in detrusor smooth muscle (DSM) function. However, little is known about the functional role of the heterotetrameric K(V) channels in DSM. In this report, we provide molecular, electrophysiological, and functional evidence for the presence of K(V)2.1 and electrically silent K(V) channel subunits in guinea pig DSM. Stromatoxin-1 (ScTx1), a selective inhibitor of the homotetrameric K(V)2.1, K(V)2.2, and K(V)4.2 as well as the heterotetrameric K(V)2.1/6.3 and K(V)2.1/9.3 channels, was used to examine the role of these K(V) channels in DSM function. RT-PCR indicated mRNA expression of K(V)2.1, K(V)6.2-6.3, K(V)8.2, and K(V)9.1-9.3 subunits in isolated DSM cells. K(V)2.1 protein expression was confirmed by Western blot and immunocytochemistry. Perforated whole cell patch-clamp experiments revealed that ScTx1 (100 nM) inhibited the amplitude of the K(V) current in freshly isolated DSM cells. ScTx1 (100 nM) did not significantly change the steady-state activation and inactivation curves for K(V) current. However, ScTx1 (100 nM) decreased the activation time-constant of the K(V) current at positive voltages. Although our patch-clamp data could not exclude the presence of the homotetrameric K(V)2.1 channels, the biophysical characteristics of the ScTx1-sensitive current were consistent with the presence of heterotetrameric K(V)2.1/silent K(V) channels. Current-clamp recordings showed that ScTx1 (100 nM) did not change the DSM cell resting membrane potential. ScTx1 (100 nM) increased the spontaneous phasic contraction amplitude, muscle force, and muscle tone as well as the amplitude of the electrical field stimulation-induced contractions of isolated DSM strips. Collectively, our data revealed that K(V)2.1-containing channels are important physiological regulators of guinea pig DSM excitability and contractility.
Collapse
Affiliation(s)
- Kiril L Hristov
- Department of Pharmaceutical and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
The autosomal dominant spinocerebellar ataxias (SCA) are a genetically heterogeneous group of neurodegenerative disorders characterized by progressive motor incoordination, in some cases with ataxia alone and in others in association with additional progressive neurological deficits. Spinocerebellar ataxia type 6 (SCA6) is the prototype of a pure cerebellar ataxia, associated with a severe form of progressive ataxia and cerebellar dysfunction. SCA6, originally classified as such by Zhuchenko et al. (1997), is caused by a CAG repeat expansion in the CACNA1A gene which encodes the α1A subunit of the P/Q-type voltage-gated calcium channel. SCA6 is one of ten polyglutamine-encoding CAG nucleotide repeat expansion disorders comprising other neurodegenerative disorders such as Huntington's disease. The present review describes clinical, genetic, and pathological manifestations associated with this illness. Currently, there is no treatment for this neurodegenerative disease. Successful therapeutic strategies must target a valid pathological mechanism; thus, understanding the underlying mechanisms of disease is crucial to finding a proper treatment. Hence, this chapter will discuss as well the molecular mechanisms possibly associated with SCA6 pathology and their implication for the development of future treatment.
Collapse
Affiliation(s)
- Ana Solodkin
- Department of Neurology, University of Chicago Medical Center, Chicago, IL 606337, USA.
| | | |
Collapse
|
43
|
Takeda Y, Nystoriak MA, Nieves-Cintrón M, Santana LF, Navedo MF. Relationship between Ca2+ sparklets and sarcoplasmic reticulum Ca2+ load and release in rat cerebral arterial smooth muscle. Am J Physiol Heart Circ Physiol 2011; 301:H2285-94. [PMID: 21984539 PMCID: PMC3233819 DOI: 10.1152/ajpheart.00488.2011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 09/30/2011] [Indexed: 11/22/2022]
Abstract
Ca(+) sparklets are subcellular Ca(2+) signals produced by the opening of sarcolemmal L-type Ca(2+) channels. Ca(2+) sparklet activity varies within the sarcolemma of arterial myocytes. In this study, we examined the relationship between Ca(2+) sparklet activity and sarcoplasmic reticulum (SR) Ca(2+) accumulation and release in cerebral arterial myocytes. Our data indicate that the SR is a vast organelle with multiple regions near the sarcolemma of these cells. Ca(2+) sparklet sites were located at or <0.2 μm from SR-sarcolemmal junctions. We found that while Ca(2+) sparklets increase the rate of SR Ca(2+) refilling in arterial myocytes, their activity did not induce regional variations in SR Ca(2+) content or Ca(2+) spark activity. In arterial myocytes, L-type Ca(2+) channel activity was independent of SR Ca(2+) load. This ruled out a potential feedback mechanism whereby SR Ca(2+) load regulates the activity of these channels. Together, our data suggest a model in which Ca(2+) sparklets contribute Ca(2+) influx into a cytosolic Ca(2+) pool from which sarco(endo)plasmic reticulum Ca(2+)-ATPase pumps Ca(2+) into the SR, indirectly regulating SR function.
Collapse
Affiliation(s)
- Yukari Takeda
- Department of Physiology and Biophysics, University of Washington, Seattle, 98195, USA
| | | | | | | | | |
Collapse
|
44
|
Hill-Eubanks DC, Werner ME, Heppner TJ, Nelson MT. Calcium signaling in smooth muscle. Cold Spring Harb Perspect Biol 2011; 3:a004549. [PMID: 21709182 DOI: 10.1101/cshperspect.a004549] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Changes in intracellular Ca(2+) are central to the function of smooth muscle, which lines the walls of all hollow organs. These changes take a variety of forms, from sustained, cell-wide increases to temporally varying, localized changes. The nature of the Ca(2+) signal is a reflection of the source of Ca(2+) (extracellular or intracellular) and the molecular entity responsible for generating it. Depending on the specific channel involved and the detection technology employed, extracellular Ca(2+) entry may be detected optically as graded elevations in intracellular Ca(2+), junctional Ca(2+) transients, Ca(2+) flashes, or Ca(2+) sparklets, whereas release of Ca(2+) from intracellular stores may manifest as Ca(2+) sparks, Ca(2+) puffs, or Ca(2+) waves. These diverse Ca(2+) signals collectively regulate a variety of functions. Some functions, such as contractility, are unique to smooth muscle; others are common to other excitable cells (e.g., modulation of membrane potential) and nonexcitable cells (e.g., regulation of gene expression).
Collapse
Affiliation(s)
- David C Hill-Eubanks
- Department of Pharmacology, College of Medicine, University of Vermont, Burlington, Vermont 05405, USA
| | | | | | | |
Collapse
|
45
|
Krishnamoorthy G, Regehr K, Berge S, Scherer EQ, Wangemann P. Calcium sparks in the intact gerbil spiral modiolar artery. BMC PHYSIOLOGY 2011; 11:15. [PMID: 21871098 PMCID: PMC3170618 DOI: 10.1186/1472-6793-11-15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 08/26/2011] [Indexed: 11/18/2022]
Abstract
Background Calcium sparks are ryanodine receptor mediated transient calcium signals that have been shown to hyperpolarize the membrane potential by activating large conductance calcium activated potassium (BK) channels in vascular smooth muscle cells. Along with voltage-dependent calcium channels, they form a signaling unit that has a vasodilatory influence on vascular diameter and regulation of myogenic tone. The existence and role of calcium sparks has hitherto been unexplored in the spiral modiolar artery, the end artery that controls blood flow to the cochlea. The goal of the present study was to determine the presence and properties of calcium sparks in the intact gerbil spiral modiolar artery. Results Calcium sparks were recorded from smooth muscle cells of intact arteries loaded with fluo-4 AM. Calcium sparks occurred with a frequency of 2.6 Hz, a rise time of 17 ms and a time to half-decay of 20 ms. Ryanodine reduced spark frequency within 3 min from 2.6 to 0.6 Hz. Caffeine (1 mM) increased spark frequency from 2.3 to 3.3 Hz and prolonged rise and half-decay times from 17 to 19 ms and from 20 to 23 ms, respectively. Elevation of potassium (3.6 to 37.5 mM), presumably via depolarization, increased spark frequency from 2.4 to 3.2 Hz. Neither ryanodine nor depolarization changed rise or decay times. Conclusions This is the first characterization of calcium sparks in smooth muscle cells of the spiral modiolar artery. The results suggest that calcium sparks may regulate the diameter of the spiral modiolar artery and cochlear blood flow.
Collapse
|
46
|
LI YM, JI GJ. Evolution in Research of Ryanodine Receptors and Its Subtype 2 Regulators*. PROG BIOCHEM BIOPHYS 2011. [DOI: 10.3724/sp.j.1206.2010.00518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
47
|
Westcott EB, Jackson WF. Heterogeneous function of ryanodine receptors, but not IP3 receptors, in hamster cremaster muscle feed arteries and arterioles. Am J Physiol Heart Circ Physiol 2011; 300:H1616-30. [PMID: 21357503 DOI: 10.1152/ajpheart.00728.2010] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The roles played by ryanodine receptors (RyRs) and inositol 1,4,5-trisphosphate receptors (IP₃Rs) in vascular smooth muscle in the microcirculation remain unclear. Therefore, the function of both RyRs and IP₃Rs in Ca(²+) signals and myogenic tone in hamster cremaster muscle feed arteries and downstream arterioles were assessed using confocal imaging and pressure myography. Feed artery vascular smooth muscle displayed Ca(²+) sparks and Ca(²+) waves, which were inhibited by the RyR antagonists ryanodine (10 μM) or tetracaine (100 μM). Despite the inhibition of sparks and waves, ryanodine or tetracaine increased global intracellular Ca(²+) and constricted the arteries. The blockade of IP₃Rs with xestospongin D (5 μM) or 2-aminoethoxydiphenyl borate (100 μM) or the inhibition of phospholipase C using U-73122 (10 μM) also attenuated Ca(2+) waves without affecting Ca(²+) sparks. Importantly, the IP₃Rs and phospholipase C antagonists decreased global intracellular Ca(2+) and dilated the arteries. In contrast, cremaster arterioles displayed only Ca(²+) waves: Ca(²+) sparks were not observed, and neither ryanodine (10-50 μM) nor tetracaine (100 μM) affected either Ca(²+) signals or arteriolar tone despite the presence of functional RyRs as assessed by responses to the RyR agonist caffeine (10 mM). As in feed arteries, arteriolar Ca(²+) waves were attenuated by xestospongin D (5 μM), 2-aminoethoxydiphenyl borate (100 μM), and U-73122 (10 μM), accompanied by decreased global intracellular Ca(²+) and vasodilation. These findings highlight the contrasting roles played by RyRs and IP₃Rs in Ca(²+) signals and myogenic tone in feed arteries and demonstrate important differences in the function of RyRs between feed arteries and downstream arterioles.
Collapse
Affiliation(s)
- Erika B Westcott
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA.
| | | |
Collapse
|
48
|
Vaithianathan T, Narayanan D, Asuncion-Chin MT, Jeyakumar LH, Liu J, Fleischer S, Jaggar JH, Dopico AM. Subtype identification and functional characterization of ryanodine receptors in rat cerebral artery myocytes. Am J Physiol Cell Physiol 2010; 299:C264-78. [PMID: 20445169 PMCID: PMC2928634 DOI: 10.1152/ajpcell.00318.2009] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Accepted: 05/04/2010] [Indexed: 11/22/2022]
Abstract
Ryanodine receptors (RyRs) regulate contractility in resistance-size cerebral artery smooth muscle, yet their molecular identity, subcellular location, and phenotype in this tissue remain unknown. Following rat resistance-size cerebral artery myocyte sarcoplasmic reticulum (SR) purification and incorporation into POPE-POPS-POPC (5:3:2; wt/wt) bilayers, unitary conductances of 110 +/- 8, 334 +/- 15, and 441 +/- 27 pS in symmetric 300 mM Cs(+) were usually detected. The most frequent (34/40 bilayers) conductance (334 pS) decreased to
Collapse
Affiliation(s)
- Thirumalini Vaithianathan
- Department Pharmacology, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Ca(2+) release induced by cADP-ribose is mediated by FKBP12.6 proteins in mouse bladder smooth muscle. Cell Calcium 2010; 47:449-57. [PMID: 20451249 DOI: 10.1016/j.ceca.2010.03.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 03/22/2010] [Accepted: 03/26/2010] [Indexed: 12/17/2022]
Abstract
We examined the role and molecular mechanism of cADPR action on Ca(2+) spark properties in mouse bladder smooth muscle. Dialysis of cADPR with patch pipettes increased frequency and amplitude of spontaneous transient out currents (STOCs) to 6.1+/-0.87 currents/min from 1.2+/-0.36 currents/min (control) and to 179.8+/-48.7pA from 36.4+/-22.6pA (control), respectively, in wildtype (WT) cells, and the effects of cADPR on STOCs were significantly blocked by JVT-591, a RYR2 stabilizer. In contrast, no significant changes were observed in FKBP12.6 null cells. Further studies indicated that Ca(2+) spark properties were altered by cADPR in WT but not FKBP12.6 null cells, namely, Ca(2+) spark frequency was increased by about 3.4-fold, peak Ca(2+) (F/F0) increased to 1.72+/-0.57 from 1.56+/-0.13, size increased to 2.86+/-0.26 microM from 1.92+/-0.14 microM, rise time and half-time decay were prolonged 1.6-fold and 2.3-fold, respectively, in WT cells. Furthermore, in the presence of thapsigargin cADPR still altered Ca(2+) spark properties, and cADPR increased F/F0 without affecting Ca(2+) spark decay time in voltage clamping cells. Dissociation studies demonstrated that application of cADPR resulted in significant removal of FKBP12.6 proteins from sarcoplasmic reticulum (SR) microsomes, and that treatment of the RyR2 immunoprecipitation complexes with cADPR or FK506 disrupted the interaction between RyR2 and FKBP12.6. Finally, cADPR altered SR Ca(2+) load in WT myocytes but not in FKBP12.6-null myocytes. Taken together, these results suggest that Ca(2+) release induced by cADPR is mediated by FKBP12.6 proteins in mouse bladder smooth muscle.
Collapse
|
50
|
Abstract
The sarcoplasmic reticulum (SR) of smooth muscles presents many intriguing facets and questions concerning its roles, especially as these change with development, disease, and modulation of physiological activity. The SR's function was originally perceived to be synthetic and then that of a Ca store for the contractile proteins, acting as a Ca amplification mechanism as it does in striated muscles. Gradually, as investigators have struggled to find a convincing role for Ca-induced Ca release in many smooth muscles, a role in controlling excitability has emerged. This is the Ca spark/spontaneous transient outward current coupling mechanism which reduces excitability and limits contraction. Release of SR Ca occurs in response to inositol 1,4,5-trisphosphate, Ca, and nicotinic acid adenine dinucleotide phosphate, and depletion of SR Ca can initiate Ca entry, the mechanism of which is being investigated but seems to involve Stim and Orai as found in nonexcitable cells. The contribution of the elemental Ca signals from the SR, sparks and puffs, to global Ca signals, i.e., Ca waves and oscillations, is becoming clearer but is far from established. The dynamics of SR Ca release and uptake mechanisms are reviewed along with the control of luminal Ca. We review the growing list of the SR's functions that still includes Ca storage, contraction, and relaxation but has been expanded to encompass Ca homeostasis, generating local and global Ca signals, and contributing to cellular microdomains and signaling in other organelles, including mitochondria, lysosomes, and the nucleus. For an integrated approach, a review of aspects of the SR in health and disease and during development and aging are also included. While the sheer versatility of smooth muscle makes it foolish to have a "one model fits all" approach to this subject, we have tried to synthesize conclusions wherever possible.
Collapse
Affiliation(s)
- Susan Wray
- Department of Physiology, School of Biomedical Sciences, University of Liverpool, Liverpool, Merseyside L69 3BX, United Kingdom.
| | | |
Collapse
|