1
|
Della Marina A, Koutsoulidou A, Natera-de Benito D, Tykocinski LO, Tomazou M, Georgiou K, Laner A, Kölbel H, Nascimento A, Ortez C, Abicht A, Thakur BK, Lochmüller H, Phylactou LA, Ruck T, Schara-Schmidt U, Kale D, Hentschel A, Roos A. Blood biomarker fingerprints in a cohort of patients with CHRNE-related congenital myasthenic syndrome. Acta Neuropathol Commun 2025; 13:29. [PMID: 39948634 PMCID: PMC11823195 DOI: 10.1186/s40478-025-01946-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 02/03/2025] [Indexed: 02/16/2025] Open
Abstract
Mutations in CHRNE encoding the epsilon subunit of acetylcholine receptor result in impaired neuromuscular transmission and congenital myasthenic syndrome (CMS) with variying severity of symptoms. Although the pathophysiology is well-known, blood biomarker signatures enabling a patient-stratification are lacking. This retrospective two-center-study includes 19 recessive CHRNE-patients (AChR deficiency; mean age 14.8 years) from 13 families which were clinically characterized according to disease severity. 15 patients were classified as mildly and 4 patients as moderate to severely affected. Seven known pathogenic and one unreported variant (c.1032 + 2_1032 + 3delinsGT) were identified. Biomarker discovery was carried out on blood samples: proteomics was performed on white blood cells (WBC; n = 12) and on extracellular vesicles (EV) purified from serum samples (n = 7) in addition to amino acid profiling (n = 9) and miRNA screening (n = 18). For miRNA studies, 7 patients with other CMS-subtypes were moreover included. WBC-proteomics unveiled a significant increase of 7 and a decrease of 36 proteins. In silico studies of these proteins indicated affection of secretory granules and the extracellular space. Comparison across patients unveiled increase of two vesicular transport proteins (SCAMP2 and SNX2) in severely affected patients and indeed EV-proteomics revealed increase of 7 and decrease of 13 proteins. Three of these proteins (TARSH, ATRN & PLEC) are known to be important for synaptogenesis and synaptic function. Metabolomics showed decrease of seven amino acids/ amino acid metabolites (aspartic and glutamic acids, phosphoserine, amino adipate, citrulline, ornithine, and 1-methyhistidine). miRNA-profiling showed increase miR - 483 - 3p, miR-365a-3p, miR - 365b - 3p and miR-99a, and decrease of miR-4433b-3p, miR-6873-3p, miR-182-5p and let-7b-5p in CHRNE-patients whereas a comparison with other CMS subtypes showed increase of miR - 205 - 5p, miR - 10b - 5p, miR-125a-5p, miR-499-5p, miR-3120-5p and miR - 483 - 5p and decrease of miR - 1290. Our combined data introduce a molecular fingerprint on protein, metabolic and miRNA level with some of those playing different roles along the neuromuscular axis.
Collapse
Affiliation(s)
- Adela Della Marina
- Department of Pediatric Neurology, Center for Neuromuscular Disorders in Children and Adolescents, University Hospital Essen, University Duisburg-Essen, Essen, Germany.
| | - Andrie Koutsoulidou
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Daniel Natera-de Benito
- Neuromuscular Unit, Department of Neurology, Sant Joan de Deu Hospital, Barcelona, Spain
- Applied Research in Neuromuscular Diseases, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Center for Biomedical Research Network on Rare Diseases (CIBERER), ISCIII, Barcelona, Spain
| | - Lars-Oliver Tykocinski
- Department of Hematology, Oncology and Rheumatology, Internal Medicine V, Medical Faculty, University Hospital Heidelberg, Heidelberg, Germany
| | - Marios Tomazou
- Department of Bioinformatics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Kristia Georgiou
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | | | - Heike Kölbel
- Department of Pediatric Neurology, Center for Neuromuscular Disorders in Children and Adolescents, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Andres Nascimento
- Neuromuscular Unit, Department of Neurology, Sant Joan de Deu Hospital, Barcelona, Spain
- Applied Research in Neuromuscular Diseases, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Center for Biomedical Research Network on Rare Diseases (CIBERER), ISCIII, Barcelona, Spain
| | - Carlos Ortez
- Neuromuscular Unit, Department of Neurology, Sant Joan de Deu Hospital, Barcelona, Spain
- Applied Research in Neuromuscular Diseases, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Center for Biomedical Research Network on Rare Diseases (CIBERER), ISCIII, Barcelona, Spain
| | - Angela Abicht
- Medical Genetics Center, Munich, Germany
- Friedrich-Baur Institute, Ludwig Maximilian University, Munich, Germany
| | - Basant Kumar Thakur
- Cancer Exosome Research Lab, Department of Pediatric Hematology and Oncology, University Hospital Essen, Essen, Germany
| | - Hanns Lochmüller
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada
- Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, Canada
- Brain and Mind Research Institute, University of Ottawa, Ottawa, Canada
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain
| | - Leonidas A Phylactou
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Tobias Ruck
- Department of Neurology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine- University Düsseldorf, Düsseldorf, Germany
- Department of Neurology, BG & Heimer Institute for Muscle Research, University-Hospital Bergmannsheil Bochum, Ruhr-University, Bochum, Germany
| | - Ulrike Schara-Schmidt
- Department of Pediatric Neurology, Center for Neuromuscular Disorders in Children and Adolescents, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Dipali Kale
- Leibniz-Institut für Analytische Wissenschaften -ISAS- e.V, Dortmund, Germany
| | - Andreas Hentschel
- Leibniz-Institut für Analytische Wissenschaften -ISAS- e.V, Dortmund, Germany
| | - Andreas Roos
- Department of Pediatric Neurology, Center for Neuromuscular Disorders in Children and Adolescents, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada
- Department of Neurology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine- University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
2
|
Theuriet J, Masingue M, Behin A, Ferreiro A, Bassez G, Jaubert P, Tarabay O, Fer F, Pegat A, Bouhour F, Svahn J, Petiot P, Jomir L, Chauplannaz G, Cornut-Chauvinc C, Manel V, Salort-Campana E, Attarian S, Fortanier E, Verschueren A, Kouton L, Camdessanché JP, Tard C, Magot A, Péréon Y, Noury JB, Minot-Myhie MC, Perie M, Taithe F, Farhat Y, Millet AL, Cintas P, Solé G, Spinazzi M, Esselin F, Renard D, Sacconi S, Ezaru A, Malfatti E, Mallaret M, Magy L, Diab E, Merle P, Michaud M, Fournier M, Pakleza AN, Chanson JB, Lefeuvre C, Laforet P, Richard P, Sternberg D, Villar-Quiles RN, Stojkovic T, Eymard B. Congenital myasthenic syndromes in adults: clinical features, diagnosis and long-term prognosis. Brain 2024; 147:3849-3862. [PMID: 38696726 PMCID: PMC11531845 DOI: 10.1093/brain/awae124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/05/2024] [Accepted: 03/28/2024] [Indexed: 05/04/2024] Open
Abstract
Congenital myasthenic syndromes (CMS) are clinically and genetically heterogeneous diseases caused by mutations affecting neuromuscular transmission. Even if the first symptoms mainly occur during childhood, adult neurologists must confront this challenging diagnosis and manage these patients throughout their adulthood. However, long-term follow-up data from large cohorts of CMS patients are lacking, and the long-term prognosis of these patients is largely unknown. We report the clinical features, diagnostic difficulties, and long-term prognosis of a French nationwide cohort of 235 adult patients with genetically confirmed CMS followed in 23 specialized neuromuscular centres. Data were retrospectively analysed. Of the 235 patients, 123 were female (52.3%). The diagnosis was made in adulthood in 139 patients, 110 of whom presented their first symptoms before the age of 18. Mean follow-up time between first symptoms and last visit was 34 years [standard deviation (SD) = 15.1]. Pathogenic variants were found in 19 disease-related genes. CHRNE-low expressor variants were the most common (23.8%), followed by variants in DOK7 (18.7%) and RAPSN (14%). Genotypes were clustered into four groups according to the initial presentation: ocular group (CHRNE-LE, CHRND, FCCMS), distal group (SCCMS), limb-girdle group (RAPSN, COLQ, DOK7, GMPPB, GFPT1), and a variable-phenotype group (MUSK, AGRN). The phenotypical features of CMS did not change throughout life. Only four genotypes had a proportion of patients requiring intensive care unit admission that exceeded 20%: RAPSN (54.8%), MUSK (50%), DOK7 (38.6%) and AGRN (25.0%). In RAPSN and MUSK patients most ICU admissions occurred before age 18 years and in DOK7 and AGRN patients at or after 18 years of age. Different patterns of disease course (stability, improvement and progressive worsening) may succeed one another in the same patient throughout life, particularly in AGRN, DOK7 and COLQ. At the last visit, 55% of SCCMS and 36.3% of DOK7 patients required ventilation; 36.3% of DOK7 patients, 25% of GMPPB patients and 20% of GFPT1 patients were wheelchair-bound; most of the patients who were both wheelchair-bound and ventilated were DOK7 patients. Six patients died in this cohort. The positive impact of therapy was striking, even in severely affected patients. In conclusion, even if motor and/or respiratory deterioration could occur in patients with initially moderate disease, particularly in DOK7, SCCMS and GFPT1 patients, the long-term prognosis for most CMS patients was favourable, with neither ventilation nor wheelchair needed at last visit. CHRNE-LE patients did not worsen during adulthood and RAPSN patients, often severely affected in early childhood, subsequently improved.
Collapse
Affiliation(s)
- Julian Theuriet
- Centre de référence des Maladies Neuromusculaires Nord/Est/Ile de France, Institut de Myologie, Hôpital Pitié-Salpêtrière, Assistance Publique des Hôpitaux de Paris, 75013 Paris, France
- Service d’ENMG et de pathologies neuromusculaires, centre de référence des maladies neuromusculaires PACA-Réunion-Rhône-Alpes, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Groupement Est, 69500 Bron, France
- Pathophysiology and Genetics of Neuron and Muscle, CNRS UMR 5261, INSERM U1315, Université Lyon 1, Faculté de Médecine Lyon Est, 69008 Lyon, France
| | - Marion Masingue
- Centre de référence des Maladies Neuromusculaires Nord/Est/Ile de France, Institut de Myologie, Hôpital Pitié-Salpêtrière, Assistance Publique des Hôpitaux de Paris, 75013 Paris, France
- Centre de Recherche en Myologie, GH Pitié-Salpêtrière, Sorbonne Université-Inserm UMRS974, 75013 Paris, France
| | - Anthony Behin
- Centre de référence des Maladies Neuromusculaires Nord/Est/Ile de France, Institut de Myologie, Hôpital Pitié-Salpêtrière, Assistance Publique des Hôpitaux de Paris, 75013 Paris, France
- Centre de Recherche en Myologie, GH Pitié-Salpêtrière, Sorbonne Université-Inserm UMRS974, 75013 Paris, France
| | - Ana Ferreiro
- Centre de référence des Maladies Neuromusculaires Nord/Est/Ile de France, Institut de Myologie, Hôpital Pitié-Salpêtrière, Assistance Publique des Hôpitaux de Paris, 75013 Paris, France
- Centre de Recherche en Myologie, GH Pitié-Salpêtrière, Sorbonne Université-Inserm UMRS974, 75013 Paris, France
- Basic and Translational Myology laboratory, Université Paris Cité, BFA, UMR 8251, CNRS, 75013 Paris, France
| | - Guillaume Bassez
- Centre de référence des Maladies Neuromusculaires Nord/Est/Ile de France, Institut de Myologie, Hôpital Pitié-Salpêtrière, Assistance Publique des Hôpitaux de Paris, 75013 Paris, France
- Centre de Recherche en Myologie, GH Pitié-Salpêtrière, Sorbonne Université-Inserm UMRS974, 75013 Paris, France
| | - Pauline Jaubert
- Centre de référence des Maladies Neuromusculaires Nord/Est/Ile de France, Institut de Myologie, Hôpital Pitié-Salpêtrière, Assistance Publique des Hôpitaux de Paris, 75013 Paris, France
| | - Oriana Tarabay
- Centre de référence des Maladies Neuromusculaires Nord/Est/Ile de France, Institut de Myologie, Hôpital Pitié-Salpêtrière, Assistance Publique des Hôpitaux de Paris, 75013 Paris, France
| | - Frédéric Fer
- Centre de Recherche en Myologie, GH Pitié-Salpêtrière, Sorbonne Université-Inserm UMRS974, 75013 Paris, France
| | - Antoine Pegat
- Service d’ENMG et de pathologies neuromusculaires, centre de référence des maladies neuromusculaires PACA-Réunion-Rhône-Alpes, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Groupement Est, 69500 Bron, France
- Pathophysiology and Genetics of Neuron and Muscle, CNRS UMR 5261, INSERM U1315, Université Lyon 1, Faculté de Médecine Lyon Est, 69008 Lyon, France
| | - Françoise Bouhour
- Service d’ENMG et de pathologies neuromusculaires, centre de référence des maladies neuromusculaires PACA-Réunion-Rhône-Alpes, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Groupement Est, 69500 Bron, France
- Pathophysiology and Genetics of Neuron and Muscle, CNRS UMR 5261, INSERM U1315, Université Lyon 1, Faculté de Médecine Lyon Est, 69008 Lyon, France
| | - Juliette Svahn
- Pathophysiology and Genetics of Neuron and Muscle, CNRS UMR 5261, INSERM U1315, Université Lyon 1, Faculté de Médecine Lyon Est, 69008 Lyon, France
- Service de Neurologie, troubles du mouvement et pathologies neuromusculaires, Hôpital Neurologique Pierre-Wertheimer, Hospices Civils de Lyon, Groupement Est, 69500 Bron, France
| | - Philippe Petiot
- Service d’ENMG et de pathologies neuromusculaires, centre de référence des maladies neuromusculaires PACA-Réunion-Rhône-Alpes, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Groupement Est, 69500 Bron, France
| | - Laurentiu Jomir
- Service d’ENMG et de pathologies neuromusculaires, centre de référence des maladies neuromusculaires PACA-Réunion-Rhône-Alpes, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Groupement Est, 69500 Bron, France
| | - Guy Chauplannaz
- Service d’ENMG et de pathologies neuromusculaires, centre de référence des maladies neuromusculaires PACA-Réunion-Rhône-Alpes, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Groupement Est, 69500 Bron, France
| | - Catherine Cornut-Chauvinc
- Service de Neurologie clinique et fonctionnelle, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, 69310 Pierre-Bénite, France
| | - Véronique Manel
- Service de Médecine Physique et Réadaptation Pédiatrique, L’Escale, Hôpital Femme-Mère-Enfant, Hospices Civils de Lyon, Groupement Est, 69500 Bron, France
| | - Emmanuelle Salort-Campana
- Service de pathologies neuromusculaires, Hôpital de la Timone, Assistance Publique des Hôpitaux de Marseille, 13005 Marseille, France
| | - Shahram Attarian
- Service de pathologies neuromusculaires, Hôpital de la Timone, Assistance Publique des Hôpitaux de Marseille, 13005 Marseille, France
| | - Etienne Fortanier
- Service de pathologies neuromusculaires, Hôpital de la Timone, Assistance Publique des Hôpitaux de Marseille, 13005 Marseille, France
| | - Annie Verschueren
- Service de pathologies neuromusculaires, Hôpital de la Timone, Assistance Publique des Hôpitaux de Marseille, 13005 Marseille, France
| | - Ludivine Kouton
- Service de pathologies neuromusculaires, Hôpital de la Timone, Assistance Publique des Hôpitaux de Marseille, 13005 Marseille, France
| | - Jean-Philippe Camdessanché
- Service de neurologie, centre référent pour les maladies neuromusculaires, Hôpital Nord, CHU de Saint Etienne, 42270 Saint-Etienne, France
| | - Céline Tard
- Service de Neurologie, U1172, Centre de référence des Maladies Neuromusculaires Nord/Est/Ile de France, CHU de Lille, 59000 Lille, France
| | - Armelle Magot
- Centre de référence des Maladies Neuromusculaires AOC, Euro-NMD, Filnemus, Hôtel-Dieu, CHU de Nantes, 44000 Nantes, France
| | - Yann Péréon
- Centre de référence des Maladies Neuromusculaires AOC, Euro-NMD, Filnemus, Hôtel-Dieu, CHU de Nantes, 44000 Nantes, France
| | - Jean-Baptiste Noury
- Inserm, LBAI, UMR1227, Centre de référence des Maladies Neuromusculaires AOC, CHRU de Brest, 29200 Brest, France
| | | | - Maud Perie
- Service de Neurologie, CHU Gabriel Montpied, 63000 Clermont-Ferrand, France
| | - Frederic Taithe
- Service de Neurologie, CHU Gabriel Montpied, 63000 Clermont-Ferrand, France
| | - Yacine Farhat
- Centre de référence des Maladies Neuromusculaires Nord/Est/Ile de France, Institut de Myologie, Hôpital Pitié-Salpêtrière, Assistance Publique des Hôpitaux de Paris, 75013 Paris, France
| | - Anne-Laure Millet
- Centre de référence des Maladies Neuromusculaires Nord/Est/Ile de France, CHU Charles Nicolle, 76000 Rouen, France
| | - Pascal Cintas
- Service de Neurologie, Centre de référence des Maladies Neuromusculaires, CHU de Toulouse Purpan, 31300 Toulouse, France
| | - Guilhem Solé
- Service de Neurologie et des Maladies Neuromusculaires, Centre de référence des Maladies Neuromusculaires AOC, FILNEMUS, EURO-NMD, Hôpital Pellegrin, CHU de Bordeaux, 33000 Bordeaux, France
| | - Marco Spinazzi
- Service de Neurologie, Centre de référence des Maladies Neuromusculaires, CHU d’Angers, 49100 Angers, France
| | - Florence Esselin
- Service de Neurologie, CHU Gui de Chauliac, 34295 Montpellier, France
| | - Dimitri Renard
- Service de Neurologie, Hôpital Caremeau, CHU de Nîmes, 30900 Nîmes, France
| | - Sabrina Sacconi
- Service de Neurologie: Système nerveux périphérique, Muscle et SLA, Hôpital Pasteur 2, CHU de Nice, 06000 Nice, France
| | - Andra Ezaru
- Service de Neurologie: Système nerveux périphérique, Muscle et SLA, Hôpital Pasteur 2, CHU de Nice, 06000 Nice, France
| | - Edoardo Malfatti
- Centre de référence des Maladies Neuromusculaires Nord/Est/Ile de France, Hôpital Henry Mondor, Assistance Publique des Hôpitaux de Paris, Université Paris Est Créteil, INSERM, U955, IMRB, 94000 Créteil, France
| | - Martial Mallaret
- Service de Neurologie, CHU de Grenoble, 38700 La Tronche, France
| | - Laurent Magy
- Service de Neurologie, Centre de référence des Maladies Neuromusculaires, Hôpital Dupuytren, CHU de Limoges, 87000 Limoges, France
| | - Eva Diab
- Service de Neurophysiologie Clinique, CHU Amiens Picardie, 80000, Amiens, France
- Unité de Recherche Chimère UR 7516, Université Picardie Jules Verne, 80000 Amiens, France
| | - Philippe Merle
- Service de Neurophysiologie Clinique, CHU Amiens Picardie, 80000, Amiens, France
| | - Maud Michaud
- Service de Neurologie, Centre de référence des Maladies Neuromusculaires Nord/Est/Ile-de-France, CHU de Nancy, 54000 Nancy, France
| | | | - Aleksandra Nadaj Pakleza
- Service de Neurologie, Centre de référence des maladies neuromusculaires Nord/Est/Ile-de-France, CHU de Strasbourg, 67000 Strasbourg, France
- European Reference Network—Neuromuscular Diseases (ERN EURO-NMD), 75013 Paris, France
| | - Jean-Baptiste Chanson
- Service de Neurologie, Centre de référence des maladies neuromusculaires Nord/Est/Ile-de-France, CHU de Strasbourg, 67000 Strasbourg, France
- European Reference Network—Neuromuscular Diseases (ERN EURO-NMD), 75013 Paris, France
| | - Claire Lefeuvre
- Service de Neurologie, Centre de référence des maladies neuromusculaires Nord/Est/Ile-de-France, Hôpital Raymond-Poincaré, Assistance Publique des Hôpitaux de Paris, 92380 Garches, France
| | - Pascal Laforet
- Service de Neurologie, Centre de référence des maladies neuromusculaires Nord/Est/Ile-de-France, Hôpital Raymond-Poincaré, Assistance Publique des Hôpitaux de Paris, 92380 Garches, France
- FHU PHENIX, Université Versailles, Université Paris-Saclay, 78000 Saint-Quentin-en-Yvelines, France
| | - Pascale Richard
- Service de Biochimie Métabolique et Centre de Génétique, Hôpital Pitié-Salpêtrière, Assistance Publique des Hôpitaux de Paris, 75013 Paris, France
- Unité Fonctionnelle de Cardiogénétique et Myogénétique Moléculaire et cellulaire, Hôpital Pitié-Salpêtrière, Assistance Publique des Hôpitaux de Paris, 75013 Paris, France
| | - Damien Sternberg
- Service de Biochimie Métabolique et Centre de Génétique, Hôpital Pitié-Salpêtrière, Assistance Publique des Hôpitaux de Paris, 75013 Paris, France
| | - Rocio-Nur Villar-Quiles
- Centre de référence des Maladies Neuromusculaires Nord/Est/Ile de France, Institut de Myologie, Hôpital Pitié-Salpêtrière, Assistance Publique des Hôpitaux de Paris, 75013 Paris, France
- Centre de Recherche en Myologie, GH Pitié-Salpêtrière, Sorbonne Université-Inserm UMRS974, 75013 Paris, France
| | - Tanya Stojkovic
- Centre de référence des Maladies Neuromusculaires Nord/Est/Ile de France, Institut de Myologie, Hôpital Pitié-Salpêtrière, Assistance Publique des Hôpitaux de Paris, 75013 Paris, France
- Centre de Recherche en Myologie, GH Pitié-Salpêtrière, Sorbonne Université-Inserm UMRS974, 75013 Paris, France
| | - Bruno Eymard
- Centre de référence des Maladies Neuromusculaires Nord/Est/Ile de France, Institut de Myologie, Hôpital Pitié-Salpêtrière, Assistance Publique des Hôpitaux de Paris, 75013 Paris, France
- Centre de Recherche en Myologie, GH Pitié-Salpêtrière, Sorbonne Université-Inserm UMRS974, 75013 Paris, France
| |
Collapse
|
3
|
Ohno K, Ohkawara B, Shen XM, Selcen D, Engel AG. Clinical and Pathologic Features of Congenital Myasthenic Syndromes Caused by 35 Genes-A Comprehensive Review. Int J Mol Sci 2023; 24:ijms24043730. [PMID: 36835142 PMCID: PMC9961056 DOI: 10.3390/ijms24043730] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Congenital myasthenic syndromes (CMS) are a heterogeneous group of disorders characterized by impaired neuromuscular signal transmission due to germline pathogenic variants in genes expressed at the neuromuscular junction (NMJ). A total of 35 genes have been reported in CMS (AGRN, ALG14, ALG2, CHAT, CHD8, CHRNA1, CHRNB1, CHRND, CHRNE, CHRNG, COL13A1, COLQ, DOK7, DPAGT1, GFPT1, GMPPB, LAMA5, LAMB2, LRP4, MUSK, MYO9A, PLEC, PREPL, PURA, RAPSN, RPH3A, SCN4A, SLC18A3, SLC25A1, SLC5A7, SNAP25, SYT2, TOR1AIP1, UNC13A, VAMP1). The 35 genes can be classified into 14 groups according to the pathomechanical, clinical, and therapeutic features of CMS patients. Measurement of compound muscle action potentials elicited by repetitive nerve stimulation is required to diagnose CMS. Clinical and electrophysiological features are not sufficient to identify a defective molecule, and genetic studies are always required for accurate diagnosis. From a pharmacological point of view, cholinesterase inhibitors are effective in most groups of CMS, but are contraindicated in some groups of CMS. Similarly, ephedrine, salbutamol (albuterol), amifampridine are effective in most but not all groups of CMS. This review extensively covers pathomechanical and clinical features of CMS by citing 442 relevant articles.
Collapse
Affiliation(s)
- Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Correspondence: (K.O.); (A.G.E.)
| | - Bisei Ohkawara
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Xin-Ming Shen
- Department of Neurology and Neuromuscular Research Laboratory, Mayo Clinic, Rochester, MN 55905, USA
| | - Duygu Selcen
- Department of Neurology and Neuromuscular Research Laboratory, Mayo Clinic, Rochester, MN 55905, USA
| | - Andrew G. Engel
- Department of Neurology and Neuromuscular Research Laboratory, Mayo Clinic, Rochester, MN 55905, USA
- Correspondence: (K.O.); (A.G.E.)
| |
Collapse
|
4
|
Chan C, Emery L, Maltese C, Kumar A, Aliu E, Naik S, Paul D. A Novel Homozygous Variant in the CHRNE Gene in 2 Siblings with Congenital Myasthenic Syndrome. Child Neurol Open 2023; 10:2329048X231216432. [PMID: 38034490 PMCID: PMC10685742 DOI: 10.1177/2329048x231216432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/20/2023] [Accepted: 10/16/2023] [Indexed: 12/02/2023] Open
Abstract
Cholinergic receptor nicotinic epsilon (CHRNE) subunit mutations cause postsynaptic type of congenital myasthenic syndrome either as a primary acetylcholine-receptor deficiency or abnormal channel kinetics in the receptor. We report a novel homozygous variant (c.322C > T, p.Pro108Ser) in the epsilon subunit causing primary acetylcholine-receptor deficiency in two siblings. Two siblings presented with fatigable weakness. Both siblings had whole exome sequencing showing a homozygous variant (c.322C > T, p.Pro108Ser) of unknown significance in the epsilon subunit. Electromyography/nerve conduction study with repetitive nerve stimulation on one sibling showed a defect in neuromuscular junction transmission. Pseudoephedrine and fluoxetine for suspected slow-channel congenital myasthenic syndrome yielded no improvement. A trial of pyridostigmine led to clinical improvement. Given the clinical presentation, consanguinity, homozygous genetic variant, and response to pyridostigmine, we rationalize the homozygous variant (c.322C > T, p.Pro108Ser) in cholinergic receptor nicotinic epsilon subunit causes the primary acetylcholine-receptor deficiency congenital myasthenic syndrome.
Collapse
Affiliation(s)
- Cassie Chan
- Department of Neurology, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Lucy Emery
- Penn State Health College of Medicine, Hershey, PA, USA
| | | | - Ashutosh Kumar
- Department of Neurology, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA
- Department of Pediatrics, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Ermal Aliu
- Department of Genetics, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Sunil Naik
- Department of Neurology, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA
- Department of Pediatrics, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Dustin Paul
- Department of Neurology, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA
- Department of Pediatrics, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA
| |
Collapse
|
5
|
Slobodyanyuk M, Banda-Vázquez JA, Thompson MJ, Dean RA, Baenziger JE, Chica RA, daCosta CJB. Origin of acetylcholine antagonism in ELIC, a bacterial pentameric ligand-gated ion channel. Commun Biol 2022; 5:1264. [PMID: 36400839 PMCID: PMC9674596 DOI: 10.1038/s42003-022-04227-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 11/04/2022] [Indexed: 11/20/2022] Open
Abstract
ELIC is a prokaryotic homopentameric ligand-gated ion channel that is homologous to vertebrate nicotinic acetylcholine receptors. Acetylcholine binds to ELIC but fails to activate it, despite bringing about conformational changes indicative of activation. Instead, acetylcholine competitively inhibits agonist-activated ELIC currents. What makes acetylcholine an agonist in an acetylcholine receptor context, and an antagonist in an ELIC context, is not known. Here we use available structures and statistical coupling analysis to identify residues in the ELIC agonist-binding site that contribute to agonism. Substitution of these ELIC residues for their acetylcholine receptor counterparts does not convert acetylcholine into an ELIC agonist, but in some cases reduces the sensitivity of ELIC to acetylcholine antagonism. Acetylcholine antagonism can be abolished by combining two substitutions that together appear to knock out acetylcholine binding. Thus, making the ELIC agonist-binding site more acetylcholine receptor-like, paradoxically reduces the apparent affinity for acetylcholine, demonstrating that residues important for agonist binding in one context can be deleterious in another. These findings reinforce the notion that although agonism originates from local interactions within the agonist-binding site, it is a global property with cryptic contributions from distant residues. Finally, our results highlight an underappreciated mechanism of antagonism, where agonists with appreciable affinity, but negligible efficacy, present as competitive antagonists. A structural and functional study of the prokaryotic ligand-gated ion channel, ELIC, provides insight into the origin of agonism and antagonism at nicotinic acetylcholine receptors.
Collapse
|
6
|
Selvam P, Arunachal G, Danda S, Chapla A, Sivadasan A, Alexander M, Thomas MM, Thomas NJ. Congenital Myasthenic Syndrome: Spectrum of Mutations in an Indian Cohort. J Clin Neuromuscul Dis 2018; 20:14-27. [PMID: 30124556 DOI: 10.1097/cnd.0000000000000222] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVES To investigate the mutational spectrum and genotype-phenotype correlation in Indian patients with congenital myasthenic syndrome (CMS), using next-generation sequencing of 5 genes. METHODS CHRNE, COLQ, DOK7, RAPSN, and GFPT1 were sequenced in 25 affected patients. RESULTS We found clinically significant variants in 18 patients, of which variants in CHRNE were the most common, and 9 were novel. A common pathogenic COLQ variant was also detected in 4 patients with isolated limb-girdle congenital myasthenia. CONCLUSIONS Targeted screening of 5 genes is an effective alternate test for CMS, and an affordable one even in a developing country such as India. In addition, we recommend that patients with isolated limb-girdle congenital myasthenia be screened initially for the common COLQ pathogenic variant. This study throws the first light on the genetic landscape of CMSs in India.
Collapse
Affiliation(s)
- Pavalan Selvam
- Department of Medical Genetics, Christian Medical College, Vellore, India
| | - Gautham Arunachal
- Department of Medical Genetics, Christian Medical College, Vellore, India
| | - Sumita Danda
- Department of Medical Genetics, Christian Medical College, Vellore, India
| | - Aaron Chapla
- Department of Endocrinology, Diabetes and Metabolism, Christian Medical College, Vellore, India
| | - Ajith Sivadasan
- Department of Neurological Sciences, Christian Medical College, Vellore, India
| | - Mathew Alexander
- Department of Neurological Sciences, Christian Medical College, Vellore, India
| | - Maya Mary Thomas
- Department of Neurological Sciences, Christian Medical College, Vellore, India
| | - Nihal J Thomas
- Department of Endocrinology, Diabetes and Metabolism, Christian Medical College, Vellore, India
| |
Collapse
|
7
|
|
8
|
Engel AG. Genetic basis and phenotypic features of congenital myasthenic syndromes. HANDBOOK OF CLINICAL NEUROLOGY 2018; 148:565-589. [PMID: 29478601 DOI: 10.1016/b978-0-444-64076-5.00037-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
The congenital myasthenic syndromes (CMS) are heterogeneous disorders in which the safety margin of neuromuscular transmission is compromised by one or more specific mechanisms. The disease proteins reside in the nerve terminal, the synaptic basal lamina, or in the postsynaptic region, or at multiple sites at the neuromuscular junction as well as in other tissues. Targeted mutation analysis by Sanger or exome sequencing has been facilitated by characteristic phenotypic features of some CMS. No fewer than 20 disease genes have been recognized to date. In one-half of the currently identified probands, the disease stems from mutations in genes encoding subunits of the muscle form of the acetylcholine receptor (CHRNA1, CHRNB, CHRNAD1, and CHRNE). In 10-14% of the probands the disease is caused by mutations in RAPSN, DOK 7, or COLQ, and in 5% by mutations in CHAT. Other less frequently identified disease genes include LAMB2, AGRN, LRP4, MUSK, GFPT1, DPAGT1, ALG2, and ALG 14 as well as SCN4A, PREPL, PLEC1, DNM2, and MTM1. Identification of the genetic basis of each CMS is important not only for genetic counseling and disease prevention but also for therapy, because therapeutic agents that benefit one type of CMS can be harmful in another.
Collapse
Affiliation(s)
- Andrew G Engel
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, MN, United States.
| |
Collapse
|
9
|
Ohno K, Ohkawara B, Ito M. Agrin-LRP4-MuSK signaling as a therapeutic target for myasthenia gravis and other neuromuscular disorders. Expert Opin Ther Targets 2017; 21:949-958. [PMID: 28825343 DOI: 10.1080/14728222.2017.1369960] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Signal transduction at the neuromuscular junction (NMJ) is compromised in a diverse array of diseases including myasthenia gravis, Lambert-Eaton myasthenic syndrome, Isaacs' syndrome, congenital myasthenic syndromes, Fukuyama-type congenital muscular dystrophy, amyotrophic lateral sclerosis, and sarcopenia. Except for sarcopenia, all are orphan diseases. In addition, the NMJ signal transduction is impaired by tetanus, botulinum, curare, α-bungarotoxin, conotoxins, organophosphate, sarin, VX, and soman to name a few. Areas covered: This review covers the agrin-LRP4-MuSK signaling pathway, which drives clustering of acetylcholine receptors (AChRs) and ensures efficient signal transduction at the NMJ. We also address diseases caused by autoantibodies against the NMJ molecules and by germline mutations in genes encoding the NMJ molecules. Expert opinion: Representative small compounds to treat the defective NMJ signal transduction are cholinesterase inhibitors, which exert their effects by increasing the amount of acetylcholine at the synaptic space. Another possible therapeutic strategy to enhance the NMJ signal transduction is to increase the number of AChRs, but no currently available drug has this functionality.
Collapse
Affiliation(s)
- Kinji Ohno
- a Division of Neurogenetics , Nagoya University Graduate School of Medicine , Nagoya , Japan
| | - Bisei Ohkawara
- a Division of Neurogenetics , Nagoya University Graduate School of Medicine , Nagoya , Japan
| | - Mikako Ito
- a Division of Neurogenetics , Nagoya University Graduate School of Medicine , Nagoya , Japan
| |
Collapse
|
10
|
Ardissone A, Moroni I, Bernasconi P, Brugnoni R. Congenital myasthenic syndrome: phenotypic variability in patients harbouring p.T159P mutation in CHRNE gene. ACTA MYOLOGICA : MYOPATHIES AND CARDIOMYOPATHIES : OFFICIAL JOURNAL OF THE MEDITERRANEAN SOCIETY OF MYOLOGY 2017; 36:28-32. [PMID: 28690392 PMCID: PMC5479107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Congenital myasthenic syndromes (CMS) are rare and heterogeneous genetic diseases characterized by compromised neuromuscular transmission and clinical features of fatigable weakness; age at onset, presenting symptoms, distribution of weakness, and response to treatment differ depending on the underlying molecular defect. Mutations in one of the multiple genes, encoding proteins expressed at the neuromuscular junction, are currently known to be associated with subtypes of CMS. The most common CMS syndrome identified is associated with mutation in the CHRNE gene, causing principally muscle nicotinic acetylcholine receptor deficiency, that results in reduced receptor density on the postsynaptic membrane. We describe the clinical, neurophysiological and molecular features of two unrelated CMS Italian families with marked phenotypic variability, carrying the already reported p.T159P mutation in the CHRNE gene. Our report highlights clinical heterogeneity, intrafamily variability in spite of the same genotype and a possible gender effect; it confirms the efficacy and safety of salbutamol in patients who harbor mutations in the epsilon subunit of acetylcholine receptor.
Collapse
Affiliation(s)
- Anna Ardissone
- Child Neurology Unit, Foundation IRCCS Neurological Institute "Carlo Besta, Milan, Italy
| | - Isabella Moroni
- Child Neurology Unit, Foundation IRCCS Neurological Institute "Carlo Besta, Milan, Italy
| | - Pia Bernasconi
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Foundation IRCCS Neurological Institute "Carlo Besta", Milan, Italy
| | - Raffaella Brugnoni
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Foundation IRCCS Neurological Institute "Carlo Besta", Milan, Italy,Address for correspondence: Dr Raffaella Brugnoni, Neurology IV, Neuroimmunology and Neuromuscular Diseases Unit, Foundation IRCCS Neurological Institute "Carlo Besta", via Celoria 11, 20133 Milan, Italy. Tel. +39 02 23944652. Fax +39 02 70633874. E-mail:
| |
Collapse
|
11
|
Ohno K, Ohkawara B, Ito M. Recent advances in congenital myasthenic syndromes. ACTA ACUST UNITED AC 2016. [DOI: 10.1111/cen3.12316] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Kinji Ohno
- Division of Neurogenetics; Center for Neurological Diseases and Cancer; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - Bisei Ohkawara
- Division of Neurogenetics; Center for Neurological Diseases and Cancer; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - Mikako Ito
- Division of Neurogenetics; Center for Neurological Diseases and Cancer; Nagoya University Graduate School of Medicine; Nagoya Japan
| |
Collapse
|
12
|
Mukhtasimova N, daCosta CJB, Sine SM. Improved resolution of single channel dwell times reveals mechanisms of binding, priming, and gating in muscle AChR. J Gen Physiol 2016; 148:43-63. [PMID: 27353445 PMCID: PMC4924934 DOI: 10.1085/jgp.201611584] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 05/27/2016] [Indexed: 11/20/2022] Open
Abstract
The acetylcholine receptor (AChR) from vertebrate skeletal muscle initiates voluntary movement, and its kinetics of activation are crucial for maintaining the safety margin for neuromuscular transmission. Furthermore, the kinetic mechanism of the muscle AChR serves as an archetype for understanding activation mechanisms of related receptors from the Cys-loop superfamily. Here we record currents through single muscle AChR channels with improved temporal resolution approaching half an order of magnitude over our previous best. A range of concentrations of full and partial agonists are used to elicit currents from human wild-type and gain-of-function mutant AChRs. For each agonist-receptor combination, rate constants are estimated from maximum likelihood analysis using a kinetic scheme comprised of agonist binding, priming, and channel gating steps. The kinetic scheme and rate constants are tested by stochastic simulation, followed by incorporation of the experimental step response, sampling rate, background noise, and filter bandwidth. Analyses of the simulated data confirm all rate constants except those for channel gating, which are overestimated because of the established effect of noise on the briefest dwell times. Estimates of the gating rate constants were obtained through iterative simulation followed by kinetic fitting. The results reveal that the agonist association rate constants are independent of agonist occupancy but depend on receptor state, whereas those for agonist dissociation depend on occupancy but not on state. The priming rate and equilibrium constants increase with successive agonist occupancy, and for a full agonist, the forward rate constant increases more than the equilibrium constant; for a partial agonist, the forward rate and equilibrium constants increase equally. The gating rate and equilibrium constants also increase with successive agonist occupancy, but unlike priming, the equilibrium constants increase more than the forward rate constants. As observed for a full and a partial agonist, the gain-of-function mutation affects the relationship between rate and equilibrium constants for priming but not for channel gating. Thus, resolving brief single channel currents distinguishes priming from gating steps and reveals how the corresponding rate and equilibrium constants depend on agonist occupancy.
Collapse
Affiliation(s)
- Nuriya Mukhtasimova
- Receptor Biology Laboratory, Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Corrie J B daCosta
- Receptor Biology Laboratory, Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Steven M Sine
- Receptor Biology Laboratory, Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN 55905 Department of Neurology, Mayo Clinic College of Medicine, Rochester, MN 55905 Department of Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN 55905
| |
Collapse
|
13
|
Engel AG, Shen XM, Selcen D, Sine SM. Congenital myasthenic syndromes: pathogenesis, diagnosis, and treatment. Lancet Neurol 2015; 14:420-34. [PMID: 25792100 PMCID: PMC4520251 DOI: 10.1016/s1474-4422(14)70201-7] [Citation(s) in RCA: 362] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The congenital myasthenic syndromes (CMS) are a diverse group of genetic disorders caused by abnormal signal transmission at the motor endplate, a special synaptic contact between motor axons and each skeletal muscle fibre. Most CMS stem from molecular defects in the muscle nicotinic acetylcholine receptor, but they can also be caused by mutations in presynaptic proteins, mutations in proteins associated with the synaptic basal lamina, defects in endplate development and maintenance, or defects in protein glycosylation. The specific diagnosis of some CMS can sometimes be reached by phenotypic clues pointing to the mutated gene. In the absence of such clues, exome sequencing is a useful technique for finding the disease gene. Greater understanding of the mechanisms of CMS have been obtained from structural and electrophysiological studies of the endplate, and from biochemical studies. Present therapies for the CMS include cholinergic agonists, long-lived open-channel blockers of the acetylcholine receptor ion channel, and adrenergic agonists. Although most CMS are treatable, caution should be exercised as some drugs that are beneficial in one syndrome can be detrimental in another.
Collapse
Affiliation(s)
- Andrew G Engel
- Department of Neurology, Mayo Clinic, Rochester, MN, USA.
| | - Xin-Ming Shen
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Duygu Selcen
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Steven M Sine
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
14
|
Azuma Y, Nakata T, Tanaka M, Shen XM, Ito M, Iwata S, Okuno T, Nomura Y, Ando N, Ishigaki K, Ohkawara B, Masuda A, Natsume J, Kojima S, Sokabe M, Ohno K. Congenital myasthenic syndrome in Japan: ethnically unique mutations in muscle nicotinic acetylcholine receptor subunits. Neuromuscul Disord 2015; 25:60-9. [PMID: 25264167 DOI: 10.1016/j.nmd.2014.09.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 08/09/2014] [Accepted: 09/03/2014] [Indexed: 11/22/2022]
Abstract
Congenital myasthenic syndromes (CMS) are caused by mutations in genes expressed at the neuromuscular junction. Most CMS patients have been reported in Western and Middle Eastern countries, and only four patients with COLQ mutations have been reported in Japan. We here report six mutations in acetylcholine receptor (AChR) subunit genes in five Japanese patients. Five mutations are novel, and one mutation is shared with a European American patient but with a different haplotype. Among the observed mutations, p.Thr284Pro (p.Thr264Pro according to the legacy annotation) in the epsilon subunit causes a slow-channel CMS. Five other mutations in the delta and epsilon subunits are splice site, frameshift, null, or missense mutations causing endplate AChR deficiency. We also found a heteroallelic p.Met465Thr in the beta subunit in another patient. p.Met465Thr, however, was likely to be polymorphism, because single channel recordings showed mild shortening of channel openings without affecting cell surface expression of AChR, and the minor allelic frequency of p.Met465Thr was 5.1% in the Japanese population. Lack of shared mutant alleles between the Japanese and the other patients suggests that most mutations described here are ethnically unique or de novo in each family.
Collapse
Affiliation(s)
- Yoshiteru Azuma
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan; Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomohiko Nakata
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan; Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Motoki Tanaka
- Department of Physiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Xin-Ming Shen
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Mikako Ito
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Satoshi Iwata
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tatsuya Okuno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | - Naoki Ando
- Department of Pediatrics, Nagoya City University Graduate School of Medicine, Nagoya, Japan
| | - Keiko Ishigaki
- Department of Pediatrics, Tokyo Women's Medical University, Tokyo, Japan
| | - Bisei Ohkawara
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akio Masuda
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Jun Natsume
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Seiji Kojima
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahiro Sokabe
- Department of Physiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| |
Collapse
|
15
|
A single mutation in the acetylcholine receptor δ-subunit causes distinct effects in two types of neuromuscular synapses. J Neurosci 2014; 34:10211-8. [PMID: 25080583 DOI: 10.1523/jneurosci.0426-14.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mutations in AChR subunits, expressed as pentamers in neuromuscular junctions (NMJs), cause various types of congenital myasthenic syndromes. In AChR pentamers, the adult ε subunit gradually replaces the embryonic γ subunit as the animal develops. Because of this switch in subunit composition, mutations in specific subunits result in synaptic phenotypes that change with developmental age. However, a mutation in any AChR subunit is considered to affect the NMJs of all muscle fibers equally. Here, we report a zebrafish mutant of the AChR δ subunit that exhibits two distinct NMJ phenotypes specific to two muscle fiber types: slow or fast. Homozygous fish harboring a point mutation in the δ subunit form functional AChRs in slow muscles, whereas receptors in fast muscles are nonfunctional. To test the hypothesis that different subunit compositions in slow and fast muscles underlie distinct phenotypes, we examined the presence of ε/γ subunits in NMJs using specific antibodies. Both wild-type and mutant larvae lacked ε/γ subunits in slow muscle synapses. These findings in zebrafish suggest that some mutations in human congenital myasthenic syndromes may affect slow and fast muscle fibers differently.
Collapse
|
16
|
Schaaf CP. Nicotinic acetylcholine receptors in human genetic disease. Genet Med 2014; 16:649-56. [DOI: 10.1038/gim.2014.9] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 01/13/2014] [Indexed: 01/26/2023] Open
|
17
|
Nayak TK, Purohit PG, Auerbach A. The intrinsic energy of the gating isomerization of a neuromuscular acetylcholine receptor channel. ACTA ACUST UNITED AC 2012; 139:349-58. [PMID: 22547665 PMCID: PMC3343375 DOI: 10.1085/jgp.201110752] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Nicotinic acetylcholine receptor (AChR) channels at neuromuscular synapses rarely open in the absence of agonists, but many different mutations increase the unliganded gating equilibrium constant (E0) to generate AChRs that are active constitutively. We measured E0 for two different sets of mutant combinations and by extrapolation estimated E0 for wild-type AChRs. The estimates were 7.6 and 7.8 × 10−7 in adult-type mouse AChRs (−100 mV at 23°C). The values are in excellent agreement with one obtained previously by using a completely different method (6.5 × 10−7, from monoliganded gating). E0 decreases with depolarization to the same extent as does the diliganded gating equilibrium constant, e-fold with ∼60 mV. We estimate that at −100 mV the intrinsic energy of the unliganded gating isomerization is +8.4 kcal/mol (35 kJ/mol), and that in the absence of a membrane potential, the intrinsic chemical energy of this global conformational change is +9.4 kcal/mol (39 kJ/mol). Na+ and K+ in the extracellular solution have no measureable effect on E0, which suggests that unliganded gating occurs with only water occupying the transmitter binding sites. The results are discussed with regard to the energy changes in receptor activation and the competitive antagonism of ions in agonist binding.
Collapse
Affiliation(s)
- Tapan K Nayak
- Department of Physiology and Biophysics, SUNY at Buffalo, Buffalo, NY 14214, USA
| | | | | |
Collapse
|
18
|
Abstract
The synapse is a localized neurohumoral contact between a neuron and an effector cell and may be considered the quantum of fast intercellular communication. Analogously, the postsynaptic neurotransmitter receptor may be considered the quantum of fast chemical to electrical transduction. Our understanding of postsynaptic receptors began to develop about a hundred years ago with the demonstration that electrical stimulation of the vagus nerve released acetylcholine and slowed the heart beat. During the past 50 years, advances in understanding postsynaptic receptors increased at a rapid pace, owing largely to studies of the acetylcholine receptor (AChR) at the motor endplate. The endplate AChR belongs to a large superfamily of neurotransmitter receptors, called Cys-loop receptors, and has served as an exemplar receptor for probing fundamental structures and mechanisms that underlie fast synaptic transmission in the central and peripheral nervous systems. Recent studies provide an increasingly detailed picture of the structure of the AChR and the symphony of molecular motions that underpin its remarkably fast and efficient chemoelectrical transduction.
Collapse
Affiliation(s)
- Steven M Sine
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA.
| |
Collapse
|
19
|
Palace J, Lashley D, Bailey S, Jayawant S, Carr A, McConville J, Robb S, Beeson D. Clinical features in a series of fast channel congenital myasthenia syndrome. Neuromuscul Disord 2011; 22:112-7. [PMID: 21940170 DOI: 10.1016/j.nmd.2011.08.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 07/29/2011] [Accepted: 08/02/2011] [Indexed: 11/19/2022]
Abstract
Fast channel congenital myasthenic syndromes are rare, but frequently result in severe weakness. We report a case of 12 fast channel patients to highlight clinical features and management difficulties. Patients were diagnosed through genetic screening and identification of mutations shown to cause fast channel syndrome. Data was obtained from clinical notes, history, examination and follow up. Patterns of muscle weakness involved limb, trunk, bulbar, respiratory, facial and extraocular muscles. Patients responded to treatment with anticholinesterase medication and 3,4-diaminopyridine. Fast channel syndrome contrasted with AChR deficiency in the occurrence of severe respiratory crises in infancy and childhood. The death of two children even when on treatment and the family histories of sibling deaths re-inforces the need for accurate genetic diagnosis, optimised pharmacological treatment and additional supportive measures to manage acute respiratory crises. Referral to a specialist paediatric respiratory centre and regular resuscitation training for parents are recommended.
Collapse
|
20
|
A portable site: a binding element for 17β-estradiol can be placed on any subunit of a nicotinic α4β2 receptor. J Neurosci 2011; 31:5045-54. [PMID: 21451042 DOI: 10.1523/jneurosci.4802-10.2011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Endogenous steroids can modulate the activity of transmitter-gated channels by directly interacting with the receptor. 17β-Estradiol potentiates activation of neuronal nicotinic α4β2 receptors by interacting with a 4 aa sequence at the extreme C terminus of the α4 subunit, but it is not known whether potentiation requires that the sequence be placed on a specific subunit (e.g., an α4 subunit that is involved in forming an acetylcholine-binding site). By using concatemers of subunits and chimeric subunits, we have found that the C-terminal domain can be moved from the α4 to the β2 subunit and still result in potentiation. In addition, the sequence can be placed on a subunit that contributes to an acetylcholine-binding site or on the structural subunit. The data indicate that this estradiol-binding element is a discrete sequence and suggest that the effect of 17β-estradiol is mediated by actions on single subunits and that the overall consequences for gating occur because of the summation of independent energetic contributions to overall gating of this receptor.
Collapse
|
21
|
Design and control of acetylcholine receptor conformational change. Proc Natl Acad Sci U S A 2011; 108:4328-33. [PMID: 21368211 DOI: 10.1073/pnas.1016617108] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Allosteric proteins use energy derived from ligand binding to promote a global change in conformation. The "gating" equilibrium constant of acetylcholine receptor-channels (AChRs) is influenced by ligands, mutations, and membrane voltage. We engineered AChRs to have specific values of this constant by combining these perturbations, and then calculated the corresponding values for a reference condition. AChRs were designed to have specific rate and equilibrium constants simply by adding multiple, energetically independent mutations with known effects on gating. Mutations and depolarization (to remove channel block) changed the diliganded gating equilibrium constant only by changing the unliganded gating equilibrium constant (E(0)) and did not alter the energy from ligand binding. All of the tested perturbations were approximately energetically independent. We conclude that naturally occurring mutations mainly adjust E(0) and cause human disease because they generate AChRs that have physiologically inappropriate values of this constant. The results suggest that the energy associated with a structural change of a side chain in the gating isomerization is dissipated locally and is mainly independent of rigid body or normal mode motions of the protein. Gating rate and equilibrium constants are estimated for seven different AChR agonists using a stepwise engineering approach.
Collapse
|
22
|
Mutant human β4 subunit identified in amyotrophic lateral sclerosis patients impairs nicotinic receptor function. Pflugers Arch 2010; 461:225-33. [PMID: 21107856 DOI: 10.1007/s00424-010-0905-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 10/19/2010] [Accepted: 11/08/2010] [Indexed: 10/18/2022]
Abstract
Recently identified mutations in the genes encoding the neuronal nicotinic ACh receptor (nAChR) subunits in patients affected by sporadic amyotrophic lateral sclerosis (sALS) may represent a factor which enhances disease susceptibility, in particular in association with ambient causes such as cigarette smoking. In this work, we characterize the functional properties of nAChRs containing the β4R349C subunit, the mutation most frequently encountered in sALS patients. The mutation was coexpressed with wild-type α3 or α4 subunits or with mutant α4R487Q subunit, which has been detected in one patient together with β4R349C mutation. None of the functional parameters examined showed differences between α4β4 and α4R487Qβ4 nAChRs. By contrast, β4R349C mutation, independent of the companion α subunit, caused the reduction in potency of both ACh and nicotine, decreased the density of whole-cell current evoked by maximal transmitter concentrations, and altered the kinetics of ACh-evoked whole-cell currents. These data confirm that sALS-associated mutations in nicotinic subunits may markedly perturb cholinergic transmission in individuals bearing the mutations.
Collapse
|
23
|
Engel AG, Shen XM, Selcen D, Sine SM. What have we learned from the congenital myasthenic syndromes. J Mol Neurosci 2010; 40:143-53. [PMID: 19688192 PMCID: PMC3050586 DOI: 10.1007/s12031-009-9229-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Accepted: 07/20/2009] [Indexed: 10/20/2022]
Abstract
The congenital myasthenic syndromes have now been traced to an array of molecular targets at the neuromuscular junction encoded by no fewer than 11 disease genes. The disease genes were identified by the candidate gene approach, using clues derived from clinical, electrophysiological, cytochemical, and ultrastructural features. For example, electrophysiologic studies in patients suffering from sudden episodes of apnea pointed to a defect in acetylcholine resynthesis and CHAT as the candidate gene (Ohno et al., Proc Natl Acad Sci USA 98:2017-2022, 2001); refractoriness to anticholinesterase medications and partial or complete absence of acetylcholinesterase (AChE) from the endplates (EPs) has pointed to one of the two genes (COLQ and ACHE ( T )) encoding AChE, though mutations were observed only in COLQ. After a series of patients carrying mutations in a disease gene have been identified, the emerging genotype-phenotype correlations provided clues for targeted mutation analysis in other patients. Mutations in EP-specific proteins also prompted expression studies that proved pathogenicity, highlighted important functional domains of the abnormal proteins, and pointed to rational therapy.
Collapse
Affiliation(s)
- Andrew G Engel
- Department of Neurology and Muscle Research Laboratory, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| | | | | | | |
Collapse
|
24
|
Bartos M, Corradi J, Bouzat C. Structural basis of activation of cys-loop receptors: the extracellular-transmembrane interface as a coupling region. Mol Neurobiol 2009; 40:236-52. [PMID: 19859835 DOI: 10.1007/s12035-009-8084-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Accepted: 09/22/2009] [Indexed: 10/25/2022]
Abstract
Cys-loop receptors mediate rapid transmission throughout the nervous system by converting a chemical signal into an electric one. They are pentameric proteins with an extracellular domain that carries the transmitter binding sites and a transmembrane region that forms the ion pore. Their essential function is to couple the binding of the agonist at the extracellular domain to the opening of the ion pore. How the structural changes elicited by agonist binding are propagated through a distance of 50 A to the gate is therefore central for the understanding of the receptor function. A step forward toward the identification of the structures involved in gating has been given by the recently elucidated high-resolution structures of Cys-loop receptors and related proteins. The extracellular-transmembrane interface has attracted attention because it is a structural transition zone where beta-sheets from the extracellular domain merge with alpha-helices from the transmembrane domain. Within this zone, several regions form a network that relays structural changes from the binding site toward the pore, and therefore, this interface controls the beginning and duration of a synaptic response. In this review, the most recent findings on residues and pairwise interactions underlying channel gating are discussed, the main focus being on the extracellular-transmembrane interface.
Collapse
Affiliation(s)
- Mariana Bartos
- Instituto de Investigaciones Bioquímicas, UNS-CONICET, Bahía Blanca, Argentina
| | | | | |
Collapse
|
25
|
|
26
|
Szarecka A, Xu Y, Tang P. Dynamics of heteropentameric nicotinic acetylcholine receptor: implications of the gating mechanism. Proteins 2007; 68:948-60. [PMID: 17546671 DOI: 10.1002/prot.21462] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The dynamics characteristics of the currently available structure of Torpedo nicotinic acetylcholine receptor (nAChR), including the extracellular, transmembrane, and intracellular domains (ICDs), were analyzed using the Gaussian Network Model (GNM) and Anisotropic Network Model (ANM). We found that a symmetric quaternary twist motion, reported previously in the literature in a homopentameric receptor (Cheng et al. J Mol Biol 2006;355:310-324; Taly et al. Biophys J 2005;88:3954-3965), occurred also in the heteropentameric Torpedo nAChR. We believe, however, that the symmetric twist alone is not sufficient to explain a large body of experimental data indicating asymmetry and subunit nonequivalence during gating. Here we report our results supporting the hypothesis that a combination of symmetric and asymmetric motions opens the gate. We show that the asymmetric motion involves tilting of the TM2 helices. Furthermore, our study reveals three additional aspects of channel dynamics: (1) loop A serves as an allosteric mediator between the ligand binding loops and those at the domain interface, particularly the linker between TM2 and TM3; (2) the ICD can modulate the pore dynamics and thus should not be neglected in gating studies; and (3) the F loops, which are peculiarly longer and poorly-conserved in non-alpha-subunits, have important dynamical implications.
Collapse
Affiliation(s)
- Agnieszka Szarecka
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | |
Collapse
|
27
|
Krzywkowski K, Jensen AA, Connolly CN, Bräuner-Osborne H. Naturally occurring variations in the human 5-HT3A gene profoundly impact 5-HT3 receptor function and expression. Pharmacogenet Genomics 2007; 17:255-66. [PMID: 17496724 DOI: 10.1097/fpc.0b013e3280117269] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The serotonin [5-hydroxytryptamine (5-HT)]-gated ion channel 5-HT3 is involved in the mediation of postoperative and radiotherapy/chemotherapy-induced nausea/emesis and in irritable bowel syndrome. It has also been suggested to play a role in various psychiatric diseases. Five naturally occurring single nucleotide polymorphisms leading to amino acid changes have been identified in the human 5-HT3A gene. METHODS AND RESULTS We investigated the functional effects of these polymorphisms on the 5-HT3A receptor using fluorescence-based cellular assays. Notably, variants A33T, S253N, and M257I displayed 5-HT-induced maximal responses of 3-64% of the wild-type response, whereas R344H and P391R exhibited wild-type-like function. All variants displayed wild-type-like potencies of 5-HT and three 5-HT3 antagonists. Furthermore, all variants displayed Kd values similar to that of the wild-type receptor in a [H]GR65630-binding assay. The surface expression of A33T, M257I, and R344H was reduced 2-4-fold compared with the wild-type, despite similar total expression levels. Finally, coexpression of wild-type 5-HT3A or 5-HT3B subunits with 5-HT3A variants A33T, S253N, or M257I resulted in mixed or heteromeric receptors, characterized by significantly reduced maximal responses to 5-HT compared with the wild-type receptors. CONCLUSIONS Three polymorphisms of the 5-HT3A gene gave rise to functionally impaired receptors whose function could not be rescued by either wild-type 5-HT3A or 5-HT3B. Three of the variant receptors were surface-expressed at reduced levels in spite of total expression levels similar to wild-type, indicating that these variants affect receptor biogenesis and/or trafficking. These severe single nucleotide polymorphism effects hold promise for identification of new 5-HT3A gene-disease causalities.
Collapse
Affiliation(s)
- Karen Krzywkowski
- Faculty of Pharmaceutical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | |
Collapse
|
28
|
Arias HR, Bhumireddy P, Bouzat C. Molecular mechanisms and binding site locations for noncompetitive antagonists of nicotinic acetylcholine receptors. Int J Biochem Cell Biol 2006; 38:1254-76. [PMID: 16520081 DOI: 10.1016/j.biocel.2006.01.006] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2005] [Revised: 01/03/2006] [Accepted: 01/12/2006] [Indexed: 01/16/2023]
Abstract
Nicotinic acetylcholine receptors are pentameric proteins that belong to the Cys-loop receptor superfamily. Their essential mechanism of functioning is to couple neurotransmitter binding, which occurs at the extracellular domain, to the opening of the membrane-spanning cation channel. The function of these receptors can be modulated by structurally different compounds called noncompetitive antagonists. Noncompetitive antagonists may act at least by two different mechanisms: a steric and/or an allosteric mechanism. The simplest idea representing a steric mechanism is that the antagonist molecule physically blocks the ion channel. On the other hand, there exist distinct allosteric mechanisms. For example, noncompetitive antagonists may bind to the receptor and stabilize a nonconducting conformational state (e.g., resting or desensitized state), and/or increase the receptor desensitization rate. Barbiturates, dissociative anesthetics, antidepressants, and neurosteroids have been shown to inhibit nicotinic receptors by allosteric mechanisms and/or by open- and closed-channel blockade. Receptor modulation has proved to be highly complex for most noncompetitive antagonists. Noncompetitive antagonists may act by more than one mechanism and at distinct sites in the same receptor subtype. The binding site location for one particular molecule depends on the conformational state of the receptor. The mechanisms of action and binding affinities of noncompetitive antagonists differ among nicotinic receptor subtypes. Knowledge of the structure of the nicotinic acetylcholine receptor, the location of its noncompetitive antagonist binding sites, and the mechanisms of inhibition will aid the design of new and more efficacious drugs for treatment of neurological diseases.
Collapse
Affiliation(s)
- Hugo R Arias
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, 309 E. Second Street, Pomona, CA 91766-1854, USA.
| | | | | |
Collapse
|
29
|
Cheng X, Lu B, Grant B, Law RJ, McCammon JA. Channel opening motion of alpha7 nicotinic acetylcholine receptor as suggested by normal mode analysis. J Mol Biol 2005; 355:310-24. [PMID: 16307758 DOI: 10.1016/j.jmb.2005.10.039] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2005] [Revised: 10/11/2005] [Accepted: 10/12/2005] [Indexed: 11/22/2022]
Abstract
The gating motion of the human nicotinic acetylcholine receptor (nAChR) alpha7 was investigated with normal mode analysis (NMA) of two homology models. The first model, referred to as model I, was built from both the Lymnaea stagnalis acetylcholine binding protein (AChBP) and the transmembrane (TM) domain of the Torpedo marmorata nAChR. The second model, referred to as model C, was based solely on the recent electron microscopy structure of the T. marmorata nAChR. Despite structural differences, both models exhibit nearly identical patterns of flexibility and correlated motions. In addition, both models show a similar global twisting motion that may represent channel gating. The similar results obtained for the two models indicate that NMA is most sensitive to the contact topology of the structure rather than its finer detail. The major difference between the low-frequency motions sampled for the two models is that a symmetrical pore-breathing motion, favoring channel opening, is present as the second most dominant motion in model I, whilst largely absent from model C. The absence of this mode in model C can be attributed to its less symmetrical architecture. Finally, as a further goal of the present study, an approximate open channel model, consistent with many experimental findings, has been produced.
Collapse
Affiliation(s)
- Xiaolin Cheng
- Center for Theoretical Biological Physics, University of California at San Diego, La Jolla, CA 92093-0365, USA.
| | | | | | | | | |
Collapse
|
30
|
Mukhtasimova N, Free C, Sine SM. Initial coupling of binding to gating mediated by conserved residues in the muscle nicotinic receptor. ACTA ACUST UNITED AC 2005; 126:23-39. [PMID: 15955875 PMCID: PMC2266616 DOI: 10.1085/jgp.200509283] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We examined functional consequences of intrasubunit contacts in the nicotinic receptor alpha subunit using single channel kinetic analysis, site-directed mutagenesis, and structural modeling. At the periphery of the ACh binding site, our structural model shows that side chains of the conserved residues alphaK145, alphaD200, and alphaY190 converge to form putative electrostatic interactions. Structurally conservative mutations of each residue profoundly impair gating of the receptor channel, primarily by slowing the rate of channel opening. The combined mutations alphaD200N and alphaK145Q impair channel gating to the same extent as either single mutation, while alphaK145E counteracts the impaired gating due to alphaD200K, further suggesting electrostatic interaction between these residues. Interpreted in light of the crystal structure of acetylcholine binding protein (AChBP) with bound carbamylcholine (CCh), the results suggest in the absence of ACh, alphaK145 and alphaD200 form a salt bridge associated with the closed state of the channel. When ACh binds, alphaY190 moves toward the center of the binding cleft to stabilize the agonist, and its aromatic hydroxyl group approaches alphaK145, which in turn loosens its contact with alphaD200. The positional changes of alphaK145 and alphaD200 are proposed to initiate the cascade of perturbations that opens the receptor channel: the first perturbation is of beta-strand 7, which harbors alphaK145 and is part of the signature Cys-loop, and the second is of beta-strand 10, which harbors alphaD200 and connects to the M1 domain. Thus, interplay between these three conserved residues relays the initial conformational change from the ACh binding site toward the ion channel.
Collapse
Affiliation(s)
- Nuriya Mukhtasimova
- Receptor Biology Laboratory, Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | | |
Collapse
|
31
|
Lee WY, Sine SM. Invariant aspartic Acid in muscle nicotinic receptor contributes selectively to the kinetics of agonist binding. ACTA ACUST UNITED AC 2005; 124:555-67. [PMID: 15504901 PMCID: PMC2234004 DOI: 10.1085/jgp.200409077] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
We examined functional contributions of interdomain contacts within the nicotinic receptor ligand binding site using single channel kinetic analyses, site-directed mutagenesis, and a homology model of the major extracellular region. At the principal face of the binding site, the invariant αD89 forms a highly conserved interdomain contact near αT148, αW149, and αT150. Patch-clamp recordings show that the mutation αD89N markedly slows acetylcholine (ACh) binding to receptors in the resting closed state, but does not affect rates of channel opening and closing. Neither αT148L, αT150A, nor mutations at both positions substantially affects the kinetics of receptor activation, showing that hydroxyl side chains at these positions are not hydrogen bond donors for the strong acceptor αD89. However substituting a negative charge at αT148, but not at αT150, counteracts the effect of αD89N, demonstrating that a negative charge in the region of interdomain contact confers rapid association of ACh. Interpreted within the structural framework of ACh binding protein and a homology model of the receptor ligand binding site, these results implicate main chain amide groups in the domain harboring αW149 as principal hydrogen bond donors for αD89. The specific effect of αD89N on ACh association suggests that interdomain hydrogen bonding positions αW149 for optimal interaction with ACh.
Collapse
Affiliation(s)
- Won Yong Lee
- Department of Physiology and Biophysics, Mayo Clinic College of Medicine, 200 First St., SW, MSB 1-35, Rochester, MN 55905, USA
| | | |
Collapse
|
32
|
Rayes D, De Rosa MJ, Bartos M, Bouzat C. Molecular Basis of the Differential Sensitivity of Nematode and Mammalian Muscle to the Anthelmintic Agent Levamisole. J Biol Chem 2004; 279:36372-81. [PMID: 15201284 DOI: 10.1074/jbc.m403096200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Levamisole is an anthelmintic agent that exerts its therapeutic effect by acting as a full agonist of the nicotinic receptor (AChR) of nematode muscle. Its action at the mammalian muscle AChR has not been elucidated to date despite its wide use as an anthelmintic in humans and cattle. By single channel and macroscopic current recordings, we investigated the interaction of levamisole with the mammalian muscle AChR. Levamisole activates mammalian AChRs. However, single channel openings are briefer than those activated by acetylcholine (ACh) and do not appear in clusters at high concentrations. The peak current induced by levamisole is about 3% that activated by ACh. Thus, the anthelmintic acts as a weak agonist of the mammalian AChR. Levamisole also produces open channel blockade of the AChR. The apparent affinity for block (190 microm at -70 mV) is similar to that of the nematode AChR, suggesting that differences in channel activation kinetics govern the different sensitivity of nematode and mammalian muscle to anthelmintics. To identify the structural basis of this different sensitivity, we performed mutagenesis targeting residues in the alpha subunit that differ between vertebrates and nematodes. The replacement of the conserved alphaGly-153 with the homologous glutamic acid of nematode AChR significantly increases the efficacy of levamisole to activate channels. Channel activity takes place in clusters having two different kinetic modes. The kinetics of the high open probability mode are almost identical when the agonist is ACh or levamisole. It is concluded that alphaGly-153 is involved in the low efficacy of levamisole to activate mammalian muscle AChRs.
Collapse
Affiliation(s)
- Diego Rayes
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, UNS-CONICET, Camino La Carrindanga, Km 7B-8000FWB Bahía Blanca, Argentina
| | | | | | | |
Collapse
|
33
|
Andreux F, Hantaï D, Eymard B. [Congenital myasthenic syndromes: phenotypic expression and pathophysiological characterisation]. Rev Neurol (Paris) 2004; 160:163-76. [PMID: 15034473 DOI: 10.1016/s0035-3787(04)70887-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Congenital Myasthenic Syndromes (CMS) are a heterogeneous group of diseases caused by genetic defects affecting neuromuscular transmission. The twenty five past Years saw major advances in identifying different types of CMS due to abnormal presynaptic, synaptic, and postsynaptic proteins. CMS diagnosis requires two steps: 1) positive diagnosis supported by myasthenic signs beginning in neonatal period, efficacy of anticholinesterase medications, positive family history, negative tests for anti-acetylcholine receptor (AChR) antibodies, electromyographic studies (decremental response at low frequency, repetitive CMAP after one single stimulation); 2) pathophysiological characterisation of CMS implying specific studies: light and electron microscopic analysis of endplate (EP) morphology, estimation of the number of AChR per EP, acetylcholinesterase (AChE) expression, molecular genetic analysis. Most CMS are postsynaptic due to mutations in the AChR subunits genes that alter the kinetic properties or decrease the expression of AChR. The kinetic mutations increase or decrease the synaptic response to ACh resulting respectively in Slow Channel Syndrome (characterized by a autosomal dominant transmission, repetitive CMAP, refractoriness to anticholinesterase medication) and fast channel, recessively transmitted. AChR deficiency without kinetic abnormalities is caused by recessive mutations in AChR genes (mostly epsilon subunit) or by primary rapsyn deficiency, a post synaptic protein involved in AChR concentration. Recently, mutations in SCN4A sodium channel have been reported in one patient. AChE deficiency is identified on the following data: recessive transmission, presence of repetitive CMAP, refractoriness to cholinesterase inhibitors, slow pupillary response to light and absent expression of the enzyme at EP. This synaptic CMS is caused by mutations in the collagenic tail subunit (ColQ) that anchors the catalytic subunits in the synaptic basal lamina. The most frequent presynaptic CMS is caused by mutations of choline acetyltransferase. Several CMS are still not characterized. Many EP molecules are potential etiological candidates. In these unidentified cases, other methods of investigations are required: linkage analysis, when sufficient number of informative relatives are available, microelectrophysiological studies performed in intercostal or anconeus muscles. Prognosis of CMS, depending on severity and evolution of symptoms, is difficult to assess, and it cannot not be simply derived from mutation identification. Most patients respond favourably to anticholinesterase medications or to 3,4 DAP which is effective not only in presynaptic but also in postsynaptic CMS. Specific therapies for slow channel CMS are quinidine and fluoxetine that normalize the prolonged opening episodes. Clinical benefits derived from the full characterisation of each case include genetic counselling and specific therapy.
Collapse
Affiliation(s)
- F Andreux
- INSERM 582 et Institut de Myologie, Hôpital de la Pitié-Salpêtrière
| | | | | |
Collapse
|
34
|
Webster R, Brydson M, Croxen R, Newsom-Davis J, Vincent A, Beeson D. Mutation in the AChR ion channel gate underlies a fast channel congenital myasthenic syndrome. Neurology 2004; 62:1090-6. [PMID: 15079006 DOI: 10.1212/01.wnl.0000118205.99701.41] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Most congenital myasthenic syndromes (CMS) have postsynaptic defects from mutations within the muscle acetylcholine receptor (AChR). Mutations underlying the slow channel syndrome cause a "gain of function" and usually show dominant inheritance, whereas mutations underlying AChR deficiency or the fast channel syndrome cause a "loss of function" and show recessive inheritance. OBJECTIVE To characterize the disease mechanism underlying an apparently dominantly inherited CMS that responds to IV edrophonium. METHODS DNA from CMS patients was analyzed for mutations by single-strand conformation polymorphism analysis, DNA sequence analysis, and restriction endonuclease digestion. Functional analysis of mutations was by alpha-bungarotoxin binding studies and by patch clamp analysis of mutant AChR expressed in human embryonic kidney cells. RESULTS Analysis of muscle biopsies from father and son in an affected kinship showed normal endplate morphology and AChR number but severely reduced miniature endplate potentials. DNA analysis revealed that each harbors a single missense mutation in the AChR alpha-subunit gene, alphaF256L. Expression studies demonstrate this mutation underlies a fast channel phenotype with fewer and shorter ion channel activations. The major effect of alphaF256L, located within the M2 transmembrane domain, is on channel gating, both reducing the opening and increasing the closure rate. CONCLUSIONS Mutation alphaF256L results in fast channel kinetics. Expression studies suggest a dominant-negative effect within the AChR pentamer, severely compromising receptor function.
Collapse
Affiliation(s)
- R Webster
- Neurosciences Group, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford, UK
| | | | | | | | | | | |
Collapse
|
35
|
Selz KA, Mandell AJ, Shlesinger MF, Arcuragi V, Owens MJ. Designing human m1 muscarinic receptor-targeted hydrophobic eigenmode matched peptides as functional modulators. Biophys J 2004; 86:1308-31. [PMID: 14990463 PMCID: PMC1303971 DOI: 10.1016/s0006-3495(04)74204-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2003] [Accepted: 10/23/2003] [Indexed: 11/24/2022] Open
Abstract
A new proprietary de novo peptide design technique generated ten 15-residue peptides targeting and containing the leading nontransmembrane hydrophobic autocorrelation wavelengths, "modes", of the human m(1) muscarinic cholinergic receptor, m(1)AChR. These modes were also shared by the m(4)AChR subtype (but not the m(2), m(3), or m(5) subtypes) and the three-finger snake toxins that pseudoirreversibly bind m(1)AChR. The linear decomposition of the hydrophobically transformed m(1)AChR amino acid sequence yielded ordered eigenvectors of orthogonal hydrophobic variational patterns. The weighted sum of two eigenvectors formed the peptide design template. Amino acids were iteratively assigned to template positions randomly, within hydrophobic groups. One peptide demonstrated significant functional indirect agonist activity, and five produced significant positive allosteric modulation of atropine-reversible, direct-agonist-induced cellular activation in stably m(1)AChR-transfected Chinese hamster ovary cells, reflected in integrated extracellular acidification responses. The peptide positive allosteric ligands produced left-shifts and peptide concentration-response augmentation in integrated extracellular acidification response asymptotic sigmoidal functions and concentration-response behavior in Hill number indices of positive cooperativity. Peptide mode specificity was suggested by negative crossover experiments with human m(2)ACh and D(2) dopamine receptors. Morlet wavelet transformation of the leading eigenvector-derived, m(1)AChR eigenfunctions locates seven hydrophobic transmembrane segments and suggests possible extracellular loop locations for the peptide-receptor mode-matched, modulatory hydrophobic aggregation sites.
Collapse
Affiliation(s)
- Karen A Selz
- Cielo Institute, Asheville, North Carolina 28804, USA.
| | | | | | | | | |
Collapse
|
36
|
Neurosteroids shift partial agonist activation of GABA(A) receptor channels from low- to high-efficacy gating patterns. J Neurosci 2003. [PMID: 14645489 DOI: 10.1523/jneurosci.23-34-10934.2003] [Citation(s) in RCA: 159] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although GABA activates synaptic (alphabetagamma) GABA(A) receptors with high efficacy, partial agonist activation of alphabetagamma isoforms and GABA activation of the primary extrasynaptic (alphabetadelta) GABA(A) receptors are limited to low-efficacy activity, characterized by minimal desensitization and brief openings. The unusual sensitivity of alphabetadelta receptor channels to neurosteroid modulation prompted investigation of whether this high sensitivity was dependent on the delta subunit or the low-efficacy channel function that it confers. We show that the isoform specificity (alphabetadelta > alphabetagamma) of neurosteroid modulation could be reversed by conditions that reversed isoform-specific activity modes, including the use of beta-alanine to achieve increased efficacy with alphabetadelta receptors and taurine to render alphabetagamma receptors low efficacy. We suggest that neurosteroids preferentially enhance low-efficacy GABA(A) receptor activity independent of subunit composition. Allosteric conversion of partial to full agonism may be a general mechanism for reversibly scaling the efficacy of GABA(A) receptors to endogenous partial agonists.
Collapse
|
37
|
Bianchi MT, Macdonald RL. Neurosteroids shift partial agonist activation of GABA(A) receptor channels from low- to high-efficacy gating patterns. J Neurosci 2003; 23:10934-43. [PMID: 14645489 PMCID: PMC6740972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023] Open
Abstract
Although GABA activates synaptic (alphabetagamma) GABA(A) receptors with high efficacy, partial agonist activation of alphabetagamma isoforms and GABA activation of the primary extrasynaptic (alphabetadelta) GABA(A) receptors are limited to low-efficacy activity, characterized by minimal desensitization and brief openings. The unusual sensitivity of alphabetadelta receptor channels to neurosteroid modulation prompted investigation of whether this high sensitivity was dependent on the delta subunit or the low-efficacy channel function that it confers. We show that the isoform specificity (alphabetadelta > alphabetagamma) of neurosteroid modulation could be reversed by conditions that reversed isoform-specific activity modes, including the use of beta-alanine to achieve increased efficacy with alphabetadelta receptors and taurine to render alphabetagamma receptors low efficacy. We suggest that neurosteroids preferentially enhance low-efficacy GABA(A) receptor activity independent of subunit composition. Allosteric conversion of partial to full agonism may be a general mechanism for reversibly scaling the efficacy of GABA(A) receptors to endogenous partial agonists.
Collapse
Affiliation(s)
- Matt T Bianchi
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan 48104-1687, USA
| | | |
Collapse
|
38
|
Sine SM, Wang HL, Ohno K, Shen XM, Lee WY, Engel AG. Mechanistic Diversity Underlying Fast Channel Congenital Myasthenic Syndromes. Ann N Y Acad Sci 2003; 998:128-37. [PMID: 14592870 DOI: 10.1196/annals.1254.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A host of missense mutations in muscle nicotinic receptor subunits have been identified as the cause of congenital myasthenic syndromes (CMS). Two classes of CMS phenotypes have been identified: slow channel myasthenic syndromes (SCCMSs) and fast channel myasthenic syndromes (FCCMSs). Although both have similar phenotypic consequences, they are physiologic opposites. Expression of the FCCMS phenotype requires the missense mutation to be accompanied by a second mutation, either a null or a missense mutation, in the second allele encoding the same receptor subunit. This seemingly rare scenario has arisen with surprisingly high incidence over the past few years, and analyses of the syndromes have revealed a diverse array of mechanisms underlying the pathology. This review focuses on new mechanisms underlying the FCCMS.
Collapse
Affiliation(s)
- Steven M Sine
- Receptor Biology Laboratory, Department of Physiology and Biophysics, Mayo Medical School, Rochester, Minnesota 55905, USA.
| | | | | | | | | | | |
Collapse
|
39
|
Engel AG, Ohno K, Shen XM, Sine SM. Congenital Myasthenic Syndromes: Multiple Molecular Targets at the Neuromuscular Junction. Ann N Y Acad Sci 2003; 998:138-60. [PMID: 14592871 DOI: 10.1196/annals.1254.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Congenital myasthenic syndromes (CMS) stem from defects in presynaptic, synaptic, and postsynaptic proteins. The presynaptic CMS are associated with defects that curtail the evoked release of acetylcholine (ACh) quanta or ACh resynthesis. Defects in ACh resynthesis have now been traced to mutations in choline acetyltransferase. A synaptic CMS is caused by mutations in the collagenic tail subunit (ColQ) of the endplate species of acetylcholinesterase that prevent the tail subunit from associating with catalytic subunits or from becoming inserted into the synaptic basal lamina. Most postsynaptic CMS are caused by mutations in subunits of the acetylcholine receptor (AChR) that alter the kinetic properties or decrease the expression of AChR. The kinetic mutations increase or decrease the synaptic response to ACh and result in slow- and fast-channel syndromes, respectively. Most low-expressor mutations reside in the AChR epsilon subunit and are partially compensated by residual expression of the fetal-type gamma subunit. In a subset of CMS patients, endplate AChR deficiency is caused by mutations in rapsyn, a molecule that plays a critical role in concentrating AChR in the postsynaptic membrane.
Collapse
Affiliation(s)
- Andrew G Engel
- Neuromuscular Disease Research Laboratory, Department of Neurology, Mayo Clinic, Rochester, Minnesota 55905, USA.
| | | | | | | |
Collapse
|
40
|
Engel AG, Ohno K, Sine SM. Sleuthing molecular targets for neurological diseases at the neuromuscular junction. Nat Rev Neurosci 2003; 4:339-52. [PMID: 12728262 DOI: 10.1038/nrn1101] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Andrew G Engel
- Department of Neurology and Neuromuscular Research Laboratory, Mayo Clinic, Rochester, Minnesota 55905, USA.
| | | | | |
Collapse
|
41
|
Shen XM, Ohno K, Tsujino A, Brengman JM, Gingold M, Sine SM, Engel AG. Mutation causing severe myasthenia reveals functional asymmetry of AChR signature cystine loops in agonist binding and gating. J Clin Invest 2003; 111:497-505. [PMID: 12588888 PMCID: PMC151927 DOI: 10.1172/jci16997] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
We describe a highly disabling congenital myasthenic syndrome (CMS) associated with rapidly decaying, low-amplitude synaptic currents, and trace its cause to a valine to leucine mutation in the signature cystine loop (cys-loop) of the AChR alpha subunit. The recently solved crystal structure of an ACh-binding protein places the cys-loop at the junction between the extracellular ligand-binding and transmembrane domains where it may couple agonist binding to channel gating. We therefore analyzed the kinetics of ACh-induced single-channel currents to identify elementary steps in the receptor activation mechanism altered by the alphaV132L mutation. The analysis reveals that alphaV132L markedly impairs ACh binding to receptors in the resting closed state, decreasing binding affinity for the second binding step 30-fold, but attenuates gating efficiency only about twofold. By contrast, mutation of the equivalent valine residue in the delta subunit impairs channel gating approximately fourfold with little effect on ACh binding, while corresponding mutations in the beta and epsilon subunits are without effect. The unique functional contribution of the alpha subunit cys-loop likely owes to its direct connection via a beta strand to alphaW149 at the center of the ligand-binding domain. The overall findings reveal functional asymmetry between cys-loops of the different AChR subunits in contributing to ACh binding and channel gating.
Collapse
Affiliation(s)
- Xin-Ming Shen
- Department of Neurology and Neuromuscular Research Laboratory, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Congenital myasthenic syndromes (CMS) stem from defects in presynaptic, synaptic basal lamina, and postsynaptic proteins. The presynaptic CMS are associated with defects that curtail the evoked release of acetylcholine (ACh) quanta or ACh resynthesis. Defects in ACh resynthesis have now been traced to mutations in choline acetyltransferase. A basal lamina CMS is caused by mutations in the collagenic tail subunit (ColQ) of the endplate species of acetylcholinesterase that prevent the tail subunit from associating with catalytic subunits or from becoming inserted into the synaptic basal lamina. Most postsynaptic CMS are caused by mutations in subunits of the acetylcholine receptor (AChR) that alter the kinetic properties or decrease the expression of AChR. The kinetic mutations increase or decrease the synaptic response to ACh and result in slow- and fast-channel syndromes, respectively. Most low-expressor mutations reside in the AChR epsilon subunit and are partially compensated by residual expression of the fetal type gamma subunit. In a subset of CMS patients, endplate AChR deficiency is caused by mutations in rapsyn, a molecule that plays a critical role in concentrating AChR in the postsynaptic membrane.
Collapse
Affiliation(s)
- Andrew G Engel
- Department of Neurology and Neuromuscular Research Laboratory, Mayo Clinic, Rochester, Minnesota 55905, USA.
| | | | | |
Collapse
|
43
|
Affiliation(s)
- Kinji Ohno
- Department of Neurology and Neuromuscular Research Laboratory, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | | |
Collapse
|
44
|
Sine SM, Shen XM, Wang HL, Ohno K, Lee WY, Tsujino A, Brengmann J, Bren N, Vajsar J, Engel AG. Naturally occurring mutations at the acetylcholine receptor binding site independently alter ACh binding and channel gating. J Gen Physiol 2002; 120:483-96. [PMID: 12356851 PMCID: PMC2229537 DOI: 10.1085/jgp.20028568] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2002] [Revised: 08/19/2002] [Accepted: 08/20/2002] [Indexed: 11/20/2022] Open
Abstract
By defining functional defects in a congenital myasthenic syndrome (CMS), we show that two mutant residues, located in a binding site region of the acetylcholine receptor (AChR) epsilon subunit, exert opposite effects on ACh binding and suppress channel gating. Single channel kinetic analysis reveals that the first mutation, epsilon N182Y, increases ACh affinity for receptors in the resting closed state, which promotes sequential occupancy of the binding sites and discloses rate constants for ACh occupancy of the nonmutant alphadelta site. Studies of the analogous mutation in the delta subunit, deltaN187Y, disclose rate constants for ACh occupancy of the nonmutant alpha epsilon site. The second CMS mutation, epsilon D175N, reduces ACh affinity for receptors in the resting closed state; occupancy of the mutant site still promotes gating because a large difference in affinity is maintained between closed and open states. epsilon D175N impairs overall gating, however, through an effect independent of ACh occupancy. When mapped on a structural model of the AChR binding site, epsilon N182Y localizes to the interface with the alpha subunit, and epsilon D175 to the entrance of the ACh binding cavity. Both epsilon N182Y and epsilon D175 show state specificity in affecting closed relative to desensitized state affinities, suggesting that the protein chain harboring epsilon N182 and epsilon D175 rearranges in the course of receptor desensitization. The overall results show that key residues at the ACh binding site differentially stabilize the agonist bound to closed, open and desensitized states, and provide a set point for gating of the channel.
Collapse
Affiliation(s)
- Steven M Sine
- Receptor Biology Laboratory, Department of Physiology and Biophysics, and Mayo Foundation, Rochester, MN 55905, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
The past decade saw remarkable advances in defining the molecular and genetic basis of the congenital myasthenic syndromes. These advances would not have been possible without antecedent clinical observations, electrophysiologic analysis, and careful morphologic studies that pointed to candidate genes or proteins. For example, a kinetic abnormality of the acetylcholine receptor (AChR) detected at the single channel level pointed to a kinetic mutation in an AChR subunit; endplate AChR deficiency suggested mutations residing in an AChR subunit or in rapsyn; absence of acetylcholinesterase (AChE) from the endplate predicted mutations in the catalytic or collagen-tailed subunit of this enzyme; and a history of abrupt episodes of apnea associated with a stimulation dependent decrease of endplate potentials and currents implicated proteins concerned with ACh resynthesis or vesicular filling. Discovery of mutations in endplate-specific proteins also prompted expression studies that afforded proof of pathogenicity, provided clues for rational therapy, lead to precise structure function correlations, and highlighted functionally significant residues or molecular domains that previous systematic mutagenesis studies had failed to detect. An overview of the spectrum of the congenital myasthenic syndromes suggests that most are caused by mutations in AChR subunits, and particularly in the epsilon subunit. Future studies will likely uncover new types of CMS that reside in molecules governing quantal release, organization of the synaptic basal lamina, and expression and aggregation of AChR on the postsynaptic junctional folds.
Collapse
Affiliation(s)
- Andrew G Engel
- Department of Neurology and Neuromuscular Research Laboratory, Mayo Clinic, Rochester, MN 55905, USA.
| | | | | |
Collapse
|
46
|
De Rosa MJ, Rayes D, Spitzmaul G, Bouzat C. Nicotinic receptor M3 transmembrane domain: position 8' contributes to channel gating. Mol Pharmacol 2002; 62:406-14. [PMID: 12130694 DOI: 10.1124/mol.62.2.406] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The nicotinic acetylcholine receptor (nAChR) is a pentamer of homologous subunits with composition alpha(2)(beta)(epsilon)(delta) in adult muscle. Each subunit contains four transmembrane domains (M1-M4). Position 8' of the M3 domain is phenylalanine in all heteromeric alpha subunits, whereas it is a hydrophobic nonaromatic residue in non-alpha subunits. Given this peculiar conservation pattern, we studied its contribution to muscle nAChR activation by combining mutagenesis with single-channel kinetic analysis. Construction of nAChRs carrying different numbers of phenylalanine residues at 8' reveals that the mean open time decreases as a function of the number of phenylalanine residues. Thus, all subunits contribute through this position independently and additively to the channel closing rate. The impairment of channel opening increases when the number of phenylalanine residues at 8' increases from two (wild-type nAChR) to five. The gating equilibrium constant of the latter mutant nAChR is 13-fold lower than that of the wild-type nAChR. The replacement of (alpha)F8', (beta)L8', (delta)L8', and (epsilon)V8' by a series of hydrophobic amino acids reveals that the structural bases of the observed kinetic effects are nonequivalent among subunits. In the alpha subunit, hydrophobic amino acids at 8' lead to prolonged channel lifetimes, whereas they lead either to normal kinetics (delta and epsilon subunits) or impaired channel gating (beta subunit) in the non-alpha subunits. The overall results indicate that 8' positions of the M3 domains of all subunits contribute to channel gating.
Collapse
Affiliation(s)
- María José De Rosa
- Instituto de Investigaciones Bioquímicas, Universidad Nacíonal del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas, Bahía Blanca, Argentina
| | | | | | | |
Collapse
|
47
|
Abstract
Congenital myasthenic syndromes (CMS) constitute a heterogenous group of inherited disorders in which neuromuscular transmission is compromised by one or more specific mechanisms. Clinical evidence for the diagnosis of a CMS includes a history of increased fatigable weakness since infancy or early childhood, a decremental EMG response, and the absence of acetylcholine receptor (AChR) antibodies. There has been rapid progress in understanding of the molecular basis of CMS. Mutation analysis of the AChR subunits has revealed numerous disease-associated mutations. These mutations alter the response to acetylcholine. It is decreased in the fast-channel syndromes and in primary AChR deficiency; and it is increased in the slow-channel syndrome due to prolonged open-time of the AChR. Acetylcholinesterase deficiency is associated with mutations in the gene encoding the collagenic tail subunit of the enzyme. Mutations in the gene encoding for choline acetyltransferase causes the CMS associated with episodic apnea.
Collapse
Affiliation(s)
- Joern P Sieb
- Department of Neurology, Max Planck Institute of Psychiatry, Munich, Germany
| | | | | |
Collapse
|
48
|
Venkataramanan L, Sigworth FJ. Applying hidden Markov models to the analysis of single ion channel activity. Biophys J 2002; 82:1930-42. [PMID: 11916851 PMCID: PMC1301989 DOI: 10.1016/s0006-3495(02)75542-2] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Hidden Markov models have recently been used to model single ion channel currents as recorded with the patch clamp technique from cell membranes. The estimation of hidden Markov models parameters using the forward-backward and Baum-Welch algorithms can be performed at signal to noise ratios that are too low for conventional single channel kinetic analysis; however, the application of these algorithms relies on the assumptions that the background noise be white and that the underlying state transitions occur at discrete times. To address these issues, we present an "H-noise" algorithm that accounts for correlated background noise and the randomness of sampling relative to transitions. We also discuss three issues that arise in the practical application of the algorithm in analyzing single channel data. First, we describe a digital inverse filter that removes the effects of the analog antialiasing filter and yields a sharp frequency roll-off. This enhances the performance while reducing the computational intensity of the algorithm. Second, the data may be contaminated with baseline drifts or deterministic interferences such as 60-Hz pickup. We propose an extension of previous results to consider baseline drift. Finally, we describe the extension of the algorithm to multiple data sets.
Collapse
|
49
|
Ibañez-Tallon I, Miwa JM, Wang HL, Adams NC, Crabtree GW, Sine SM, Heintz N. Novel modulation of neuronal nicotinic acetylcholine receptors by association with the endogenous prototoxin lynx1. Neuron 2002; 33:893-903. [PMID: 11906696 DOI: 10.1016/s0896-6273(02)00632-3] [Citation(s) in RCA: 177] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We previously identified lynx1 as a neuronal membrane molecule related to snake alpha-neurotoxins able to modulate nAChRs. Here, we show that lynx1 colocalizes with nAChRs on CNS neurons and physically associates with nAChRs. Single-channel recordings show that lynx1 promotes the largest of three current amplitudes elicited by ACh through alpha(4)beta(2) nAChRs and that lynx1 enhances desensitization. Macroscopic recordings quantify the enhancement of desensitization onset by lynx1 and further show that it slows recovery from desensitization and increases the EC(50). These experiments establish that direct interaction of lynx1 with nAChRs can result in a novel type of functional modulation and suggest that prototoxins may play important roles in vivo by modulating functional properties of their cognate CNS receptors.
Collapse
Affiliation(s)
- Inés Ibañez-Tallon
- Laboratory of Molecular Biology, Howard Hughes Medical Institute, New York, NY 10021, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
The conversion of acetylcholine binding into ion conduction across the membrane is becoming more clearly understood in terms of the structure of the receptor and its transitions. A high-resolution structure of a protein that is homologous to the extracellular domain of the receptor has revealed the binding sites and subunit interfaces in great detail. Although the structures of the membrane and cytoplasmic domains are less well determined, the channel lining and the determinants of selectivity have been mapped. The location and structure of the gates, and the coupling between binding sites and gates, remain to be established.
Collapse
Affiliation(s)
- Arthur Karlin
- Center for Molecular Recognition, Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA.
| |
Collapse
|