1
|
Ripoll L, von Zastrow M, Blythe EE. Intersection of GPCR trafficking and cAMP signaling at endomembranes. J Cell Biol 2025; 224:e202409027. [PMID: 40131202 PMCID: PMC11934914 DOI: 10.1083/jcb.202409027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 02/11/2025] [Accepted: 03/13/2025] [Indexed: 03/26/2025] Open
Abstract
GPCRs comprise the largest family of signaling receptors and control essentially every physiological process. Many biochemical reactions underlying GPCR signaling are now elucidated to atomic resolution in cell-free preparations, but how elemental signaling reactions are organized in intact cells remains less clear. Significant progress has been made toward bridging this knowledge gap by leveraging new tools and methodologies enabling the experimental detection, localization, and manipulation of defined signaling reactions in living cells. Here, we chronicle advances at this rapidly moving frontier of molecular and cell biology, focusing on GPCR-initiated signaling through the classical cAMP pathway as an example. We begin with a brief review of established concepts. We then discuss the still-evolving understanding that ligand-induced GPCR signaling occurs from endomembranes as well as the plasmalemma, and that this enables cells to flexibly sculpt downstream signaling responses in both space and time. Finally, we note some key limitations of the present understanding and propose some promising directions for future investigation.
Collapse
Affiliation(s)
- Léa Ripoll
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Mark von Zastrow
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Quantitative Biology Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Emily E. Blythe
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
2
|
Sherpa RT, Moshal KS, Agarwal SR, Ostrom RS, Harvey RD. Role of protein kinase A and A kinase anchoring proteins in buffering and compartmentation of cAMP signalling in human airway smooth muscle cells. Br J Pharmacol 2024; 181:2622-2635. [PMID: 38613158 PMCID: PMC11219259 DOI: 10.1111/bph.16357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/24/2024] [Accepted: 02/12/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND AND PURPOSE In human airway smooth muscle (hASM) cells, not all receptors stimulating cAMP production elicit the same effects. This can only be explained if cAMP movement throughout the cell is restricted, yet the mechanisms involved are not fully understood. Phosphodiesterases (PDEs) contribute to compartmentation of many cAMP responses, but PDE activity alone is predicted to be insufficient if cAMP is otherwise freely diffusible. We tested the hypothesis that buffering of cAMP by protein kinase A (PKA) associated with A kinase anchoring proteins (AKAPs) slows cAMP diffusion and that this contributes to receptor-mediated, compartmentalized responses. EXPERIMENTAL APPROACH Raster image correlation spectroscopy (RICS) was used to measure intracellular cAMP diffusion coefficients and evaluate the contribution of PKA-AKAP interactions. Western blotting and immunocytochemistry were used to identify the AKAPs involved. RNA interference was used to down-regulate AKAP expression and determine its effects on cAMP diffusion. Compartmentalized cAMP responses were measured using fluorescence resonance energy transfer (FRET) based biosensors. KEY RESULTS Cyclic AMP movement was significantly slower than that of free-diffusion in hASM cells, and disrupting PKA-AKAP interactions significantly increased the diffusion coefficient. PKA associated with the outer mitochondrial membrane appears to play a prominent role in this effect. Consistent with this idea, knocking down expression of D-AKAP2, the primary mitochondrial AKAP, increased cAMP diffusion and disrupted compartmentation of receptor-mediated responses. CONCLUSION AND IMPLICATIONS Our results confirm that AKAP-anchored PKA contributes to the buffering of cAMP and is consequential in the compartmentation of cAMP responses in hASM cells.
Collapse
Affiliation(s)
- Rinzhin T Sherpa
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Karni S Moshal
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Shailesh R Agarwal
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Rennolds S Ostrom
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California, USA
| | - Robert D Harvey
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| |
Collapse
|
3
|
Lin TY, Mai QN, Zhang H, Wilson E, Chien HC, Yee SW, Giacomini KM, Olgin JE, Irannejad R. Cardiac contraction and relaxation are regulated by distinct subcellular cAMP pools. Nat Chem Biol 2024; 20:62-73. [PMID: 37474759 PMCID: PMC10746541 DOI: 10.1038/s41589-023-01381-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 06/08/2023] [Indexed: 07/22/2023]
Abstract
Cells interpret a variety of signals through G-protein-coupled receptors (GPCRs) and stimulate the generation of second messengers such as cyclic adenosine monophosphate (cAMP). A long-standing puzzle is deciphering how GPCRs elicit different physiological responses despite generating similar levels of cAMP. We previously showed that some GPCRs generate cAMP from both the plasma membrane and the Golgi apparatus. Here we demonstrate that cardiomyocytes distinguish between subcellular cAMP inputs to elicit different physiological outputs. We show that generating cAMP from the Golgi leads to the regulation of a specific protein kinase A (PKA) target that increases the rate of cardiomyocyte relaxation. In contrast, cAMP generation from the plasma membrane activates a different PKA target that increases contractile force. We further validated the physiological consequences of these observations in intact zebrafish and mice. Thus, we demonstrate that the same GPCR acting through the same second messenger regulates cardiac contraction and relaxation dependent on its subcellular location.
Collapse
Affiliation(s)
- Ting-Yu Lin
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Quynh N Mai
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Hao Zhang
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
- Department of Medicine, Division of Cardiology, University of California San Francisco, San Francisco, CA, USA
| | - Emily Wilson
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
- Department of Medicine, Division of Cardiology, University of California San Francisco, San Francisco, CA, USA
| | - Huan-Chieh Chien
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, California, CA, USA
| | - Sook Wah Yee
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, California, CA, USA
| | - Kathleen M Giacomini
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, California, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Jeffrey E Olgin
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
- Department of Medicine, Division of Cardiology, University of California San Francisco, San Francisco, CA, USA
| | - Roshanak Irannejad
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA.
- Department of Biochemistry & Biophysics, University of California, San Francisco, CA, USA.
| |
Collapse
|
4
|
Parsons EC, Hoffmann R, Baillie GS. Revisiting the roles of cAMP signalling in the progression of prostate cancer. Biochem J 2023; 480:1599-1614. [PMID: 37830741 PMCID: PMC10586777 DOI: 10.1042/bcj20230297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/29/2023] [Accepted: 10/05/2023] [Indexed: 10/14/2023]
Abstract
Prostate cancer is one of the most common cancers in men and one of the top causes of death in men worldwide. Development and function of both normal prostate cells and early-stage prostate cancer cells are dependent on the cross-talk between androgen signalling systems and a variety of other transduction pathways which drive differentiation of these cells towards castration-resistance. One such signalling pathway is the ubiquitous cAMP signalling axis which functions to activate spatially restricted pools of cAMP effectors such as protein kinase A (PKA). The importance of both PKA and cAMP in the development of prostate cancer, and their interactions with the androgen receptor, were the focus of a review by Merkle and Hoffmann in 2010. In this updated review, we revisit this topic with analysis of current PKA-related prostate cancer literature and introduce novel information on the relevance of another cAMP effector, the exchange protein directly activated by cAMP (EPAC).
Collapse
Affiliation(s)
- Emma C. Parsons
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Bearsden, Glasgow G61 1QH, U.K
| | - Ralf Hoffmann
- Oncology, Philips Research Eindhoven, High Tech Campus 34, 5656 AE Eindhoven, The Netherlands
- School of Cardiovascular & Metabolic Health, University of Glasgow, University Avenue, Glasgow G12 8QQ, U.K
| | - George S. Baillie
- School of Cardiovascular & Metabolic Health, University of Glasgow, University Avenue, Glasgow G12 8QQ, U.K
| |
Collapse
|
5
|
Iannucci LF, D'Erchia AM, Picardi E, Bettio D, Conca F, Surdo NC, Di Benedetto G, Musso D, Arrigoni C, Lolicato M, Vismara M, Grisan F, Salviati L, Milanesi L, Pesole G, Lefkimmiatis K. Cyclic AMP induces reversible EPAC1 condensates that regulate histone transcription. Nat Commun 2023; 14:5521. [PMID: 37684224 PMCID: PMC10491619 DOI: 10.1038/s41467-023-41088-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
The second messenger cyclic AMP regulates many nuclear processes including transcription, pre-mRNA splicing and mitosis. While most functions are attributed to protein kinase A, accumulating evidence suggests that not all nuclear cyclic AMP-dependent effects are mediated by this kinase, implying that other effectors may be involved. Here we explore the nuclear roles of Exchange Protein Activated by cyclic AMP 1. We find that it enters the nucleus where forms reversible biomolecular condensates in response to cyclic AMP. This phenomenon depends on intrinsically disordered regions present at its amino-terminus and is independent of protein kinase A. Finally, we demonstrate that nuclear Exchange Protein Activated by cyclic AMP 1 condensates assemble at genomic loci on chromosome 6 in the proximity of Histone Locus Bodies and promote the transcription of a histone gene cluster. Collectively, our data reveal an unexpected mechanism through which cyclic AMP contributes to nuclear spatial compartmentalization and promotes the transcription of specific genes.
Collapse
Affiliation(s)
- Liliana Felicia Iannucci
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Veneto Institute of Molecular Medicine, 35129, Padova, Italy
| | - Anna Maria D'Erchia
- Department of Biosciences, Biotechnologies and Environment, University of Bari "Aldo Moro", Bari, Italy
| | - Ernesto Picardi
- Department of Biosciences, Biotechnologies and Environment, University of Bari "Aldo Moro", Bari, Italy
| | - Daniela Bettio
- Clinical Genetics Unit, Department of Women's and Children's Health, University of Padova, Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Filippo Conca
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Veneto Institute of Molecular Medicine, 35129, Padova, Italy
| | - Nicoletta Concetta Surdo
- Veneto Institute of Molecular Medicine, 35129, Padova, Italy
- Institute of Neuroscience (IN-CNR), National Research Council of Italy, Padova, Italy
| | - Giulietta Di Benedetto
- Veneto Institute of Molecular Medicine, 35129, Padova, Italy
- Institute of Neuroscience (IN-CNR), National Research Council of Italy, Padova, Italy
| | - Deborah Musso
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | | | - Marco Lolicato
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Mauro Vismara
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Veneto Institute of Molecular Medicine, 35129, Padova, Italy
| | | | - Leonardo Salviati
- Clinical Genetics Unit, Department of Women's and Children's Health, University of Padova, Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Luciano Milanesi
- Institute of Biomedical Technologies, National Research Council of Italy, Milan, Italy
| | - Graziano Pesole
- Department of Biosciences, Biotechnologies and Environment, University of Bari "Aldo Moro", Bari, Italy
| | - Konstantinos Lefkimmiatis
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.
- Veneto Institute of Molecular Medicine, 35129, Padova, Italy.
- Institute of Neuroscience (IN-CNR), National Research Council of Italy, Padova, Italy.
| |
Collapse
|
6
|
Dunn P, Annamdevula NS, Leavesley SJ, Rich TC, Phan AV. A two-dimensional finite element model of intercellular cAMP signaling through gap junction channels. J Biomech 2023; 152:111588. [PMID: 37094384 PMCID: PMC10173664 DOI: 10.1016/j.jbiomech.2023.111588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 04/02/2023] [Accepted: 04/11/2023] [Indexed: 04/26/2023]
Abstract
While cyclic adenosine monophosphate (cAMP) is typically considered an intracellular signal, it has been shown to spread between adjacent cells through connexin-based gap junction channels, promoting gap junctional intercellular communication (GJIC). Gap junction-mediated signaling is critical for the coordinated function of many tissues, and have been linked with cardiovascular disease, neurogenerative disease, and cancers. In particular, it plays a complex role in tumor suppression or promotion. This work introduces a two-dimensional finite element model that can describe intercellular cAMP signaling in the presence of gap junctions on membrane interfaces. The model was utilized to simulate cAMP transfer through one and two gap junction channels on the interface of a cluster of two pulmonary microvascular endothelial cells. The simulation results were found to generally agree with what has been observed in the literature in terms of GJIC. The research outcomes suggest that the proposed model can be employed to evaluate the permeability properties of a gap junction channel if its cAMP volumetric flow rate can be experimentally measured.
Collapse
Affiliation(s)
- P Dunn
- Department of Mechanical, Aerospace and Biomedical Engineering, University of South Alabama, Mobile, AL 36688, USA
| | - N S Annamdevula
- Center for Lung Biology & Department of Pharmacology University of South Alabama, Mobile, AL 36688, USA
| | - S J Leavesley
- Center for Lung Biology & Department of Pharmacology University of South Alabama, Mobile, AL 36688, USA; Department of Chemical and Biomolecular Engineering, University of South Alabama, Mobile, AL 36688, USA
| | - T C Rich
- Center for Lung Biology & Department of Pharmacology University of South Alabama, Mobile, AL 36688, USA
| | - A-V Phan
- Department of Mechanical, Aerospace and Biomedical Engineering, University of South Alabama, Mobile, AL 36688, USA.
| |
Collapse
|
7
|
Bhadra A, Scruggs AK, Leavesley SJ, Annamdevula N, George AH, Britain AL, Francis CM, Knighten JM, Rich TC, Bauer NN. Extracellular vesicle-induced cyclic AMP signaling. Cell Signal 2022; 95:110348. [PMID: 35504529 PMCID: PMC10676271 DOI: 10.1016/j.cellsig.2022.110348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 11/25/2022]
Abstract
Second messenger signaling is required for cellular processes. We previously reported that extracellular vesicles (EVs) from stimulated cultured endothelial cells contain the biochemical second messenger, cAMP. In the current study, we sought to determine whether cAMP-enriched EVs induce second messenger signaling pathways in naïve recipient cells. Our results indicate that cAMP-enriched EVs increase cAMP content sufficient to stimulate PKA activity. The implications of our work are that EVs represent a novel intercellular mechanism for second messenger, specifically cAMP, signaling.
Collapse
Affiliation(s)
- Aritra Bhadra
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL, United States of America; Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - April K Scruggs
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL, United States of America; Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Silas J Leavesley
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL, United States of America; Department of Chemical and Biomolecular Engineering, College of Engineering, University of South Alabama, Mobile, AL, United States of America; Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Naga Annamdevula
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL, United States of America; Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - April H George
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Andrea L Britain
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL, United States of America; Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Christopher M Francis
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL, United States of America; Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Jennifer M Knighten
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL, United States of America; Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Thomas C Rich
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL, United States of America; Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL, United States of America
| | - Natalie N Bauer
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL, United States of America; Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL, United States of America.
| |
Collapse
|
8
|
Computational investigation of the dynamic control of cAMP signaling by PDE4 isoform types. Biophys J 2022; 121:2693-2711. [PMID: 35717559 DOI: 10.1016/j.bpj.2022.06.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 05/03/2022] [Accepted: 06/14/2022] [Indexed: 11/24/2022] Open
Abstract
Cyclic adenosine monophosphate (cAMP) is a generic signaling molecule that, through precise control of its signaling dynamics, exerts distinct cellular effects. Consequently, aberrant cAMP signaling can have detrimental effects. Phosphodiesterase 4 (PDE4) enzymes profoundly control cAMP signaling and comprise different isoform types of which the enzymatic activity is modulated by differential feedback mechanisms. Because these feedback dynamics are non-linear and occur coincidentally, their effects are difficult to examine experimentally, but can be well simulated computationally. Through understanding the role of PDE4 isoform types in regulating cAMP signaling, PDE4-targeted therapeutic strategies can be better specified. Here, we established a computational model to study how feedback mechanisms on different PDE4 isoform types lead to dynamic, isoform-specific control of cAMP signaling. Ordinary differential equations describing cAMP dynamics were implemented in the VirtualCell (VCell) environment. Simulations indicated that long PDE4 isoforms exert the most profound control on oscillatory cAMP signaling, as opposed to the PDE4-mediated control of single cAMP input pulses. Moreover, elevating cAMP levels or decreasing PDE4 levels revealed different effects on downstream signaling. Together these results underline that cAMP signaling is distinctly regulated by different PDE4 isoform types and that this isoform-specificity should be considered in both computational and experimental follow-up studies to better define PDE4 enzymes as therapeutic targets in diseases in which cAMP signaling is aberrant.
Collapse
|
9
|
A multiscale model of the regulation of aquaporin 2 recycling. NPJ Syst Biol Appl 2022; 8:16. [PMID: 35534498 PMCID: PMC9085758 DOI: 10.1038/s41540-022-00223-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 03/24/2022] [Indexed: 11/08/2022] Open
Abstract
The response of cells to their environment is driven by a variety of proteins and messenger molecules. In eukaryotes, their distribution and location in the cell are regulated by the vesicular transport system. The transport of aquaporin 2 between membrane and storage region is a crucial part of the water reabsorption in renal principal cells, and its malfunction can lead to Diabetes insipidus. To understand the regulation of this system, we aggregated pathways and mechanisms from literature and derived three models in a hypothesis-driven approach. Furthermore, we combined the models to a single system to gain insight into key regulatory mechanisms of Aquaporin 2 recycling. To achieve this, we developed a multiscale computational framework for the modeling and simulation of cellular systems. The analysis of the system rationalizes that the compartmentalization of cAMP in renal principal cells is a result of the protein kinase A signalosome and can only occur if specific cellular components are observed in conjunction. Endocytotic and exocytotic processes are inherently connected and can be regulated by the same protein kinase A signal.
Collapse
|
10
|
Puri NM, Romano GR, Lin TY, Mai QN, Irannejad R. The organic cation Transporter 2 regulates dopamine D1 receptor signaling at the Golgi apparatus. eLife 2022; 11:75468. [PMID: 35467530 PMCID: PMC9098220 DOI: 10.7554/elife.75468] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
Dopamine is a key catecholamine in the brain and kidney, where it is involved in a number of physiological functions such as locomotion, cognition, emotion, endocrine regulation, and renal function. As a membrane-impermeant hormone and neurotransmitter, dopamine is thought to signal by binding and activating dopamine receptors, members of the G protein coupled receptor (GPCR) family, only on the plasma membrane. Here, using novel nanobody-based biosensors, we demonstrate for the first time that the dopamine D1 receptor (D1DR), the primary mediator of dopaminergic signaling in the brain and kidney, not only functions on the plasma membrane but becomes activated at the Golgi apparatus in the presence of its ligand. We present evidence that activation of the Golgi pool of D1DR is dependent on organic cation transporter 2 (OCT2), a dopamine transporter, providing an explanation for how the membrane-impermeant dopamine accesses subcellular pools of D1DR. We further demonstrate that dopamine activates Golgi-D1DR in murine striatal medium spiny neurons, and this activity depends on OCT2 function. We also introduce a new approach to selectively interrogate compartmentalized D1DR signaling by inhibiting Gαs coupling using a nanobody-based chemical recruitment system. Using this strategy, we show that Golgi-localized D1DRs regulate cAMP production and mediate local protein kinase A activation. Together, our data suggest that spatially compartmentalized signaling hubs are previously unappreciated regulatory aspects of D1DR signaling. Our data provide further evidence for the role of transporters in regulating subcellular GPCR activity.
Collapse
Affiliation(s)
- Natasha M Puri
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| | - Giovanna R Romano
- Biochemistry Department, Weill Cornell Medicine, New York, United States
| | - Ting-Yu Lin
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
| | - Quynh N Mai
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
| | - Roshanak Irannejad
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
11
|
Warren R, Rich T, Leavesley S, Phan AV. A three-dimensional finite element model of cAMP signals. FORCES IN MECHANICS 2021; 4. [PMID: 35072121 PMCID: PMC8773462 DOI: 10.1016/j.finmec.2021.100041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- R. Warren
- Department of Mechanical, Aerospace and Biomedical Engineering, University of South Alabama, Mobile, AL 36688, USA
| | - T.C. Rich
- Center for Lung Biology & Department of Pharmacology, University of South Alabama, Mobile, AL 36688, USA
| | - S.J. Leavesley
- Center for Lung Biology & Department of Pharmacology, University of South Alabama, Mobile, AL 36688, USA
- Department of Chemical and Biomolecular Engineering, University of South Alabama, Mobile, AL 36688, USA
| | - A.-V. Phan
- Department of Mechanical, Aerospace and Biomedical Engineering, University of South Alabama, Mobile, AL 36688, USA
- Corresponding author. (A.-V. Phan)
| |
Collapse
|
12
|
Harvey RD, Clancy CE. Mechanisms of cAMP compartmentation in cardiac myocytes: experimental and computational approaches to understanding. J Physiol 2021; 599:4527-4544. [PMID: 34510451 DOI: 10.1113/jp280801] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/07/2021] [Indexed: 01/04/2023] Open
Abstract
The small diffusible second messenger 3',5'-cyclic adenosine monophosphate (cAMP) is found in virtually every cell in our bodies, where it mediates responses to a variety of different G protein coupled receptors (GPCRs). In the heart, cAMP plays a critical role in regulating many different aspects of cardiac myocyte function, including gene transcription, cell metabolism, and excitation-contraction coupling. Yet, not all GPCRs that stimulate cAMP production elicit the same responses. Subcellular compartmentation of cAMP is essential to explain how different receptors can utilize the same diffusible second messenger to elicit unique functional responses. However, the mechanisms contributing to this behaviour and its significance in producing physiological and pathological responses are incompletely understood. Mathematical modelling has played an essential role in gaining insight into these questions. This review discusses what we currently know about cAMP compartmentation in cardiac myocytes and questions that are yet to be answered.
Collapse
Affiliation(s)
- Robert D Harvey
- Department of Pharmacology, University of Nevada, Reno, NV, 89557, USA
| | - Colleen E Clancy
- Department of Physiology and Membrane Biology, University of California-Davis, Davis, CA, 95616, USA
| |
Collapse
|
13
|
Sherpa RT, Fiore C, Moshal KS, Wadsworth A, Rudokas MW, Agarwal SR, Harvey RD. Mitochondrial A-kinase anchoring proteins in cardiac ventricular myocytes. Physiol Rep 2021; 9:e15015. [PMID: 34514737 PMCID: PMC8436057 DOI: 10.14814/phy2.15015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 12/30/2022] Open
Abstract
Compartmentation of cAMP signaling is a critical factor for maintaining the integrity of receptor-specific responses in cardiac myocytes. This phenomenon relies on various factors limiting cAMP diffusion. Our previous work in adult rat ventricular myocytes (ARVMs) indicates that PKA regulatory subunits anchored to the outer membrane of mitochondria play a key role in buffering the movement of cytosolic cAMP. PKA can be targeted to discrete subcellular locations through the interaction of both type I and type II regulatory subunits with A-kinase anchoring proteins (AKAPs). The purpose of this study is to identify which AKAPs and PKA regulatory subunit isoforms are associated with mitochondria in ARVMs. Quantitative PCR data demonstrate that mRNA for dual specific AKAP1 and 2 (D-AKAP1 & D-AKAP2), acyl-CoA-binding domain-containing 3 (ACBD3), optic atrophy 1 (OPA1) are most abundant, while Rab32, WAVE-1, and sphingosine kinase type 1 interacting protein (SPHKAP) were barely detectable. Biochemical and immunocytochemical analysis suggests that D-AKAP1, D-AKAP2, and ACBD3 are the predominant mitochondrial AKAPs exposed to the cytosolic compartment in these cells. Furthermore, we show that both type I and type II regulatory subunits of PKA are associated with mitochondria. Taken together, these data suggest that D-AKAP1, D-AKAP2, and ACBD3 may be responsible for tethering both type I and type II PKA regulatory subunits to the outer mitochondrial membrane in ARVMs. In addition to regulating PKA-dependent mitochondrial function, these AKAPs may play an important role by buffering the movement of cAMP necessary for compartmentation.
Collapse
Affiliation(s)
| | - Chase Fiore
- Department of PharmacologyUniversity of NevadaRenoNevadaUSA
| | | | - Adam Wadsworth
- Department of PharmacologyUniversity of NevadaRenoNevadaUSA
| | | | | | | |
Collapse
|
14
|
McCabe KJ, Rangamani P. Computational modeling approaches to cAMP/PKA signaling in cardiomyocytes. J Mol Cell Cardiol 2021; 154:32-40. [PMID: 33548239 DOI: 10.1016/j.yjmcc.2021.01.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/11/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022]
Abstract
The cAMP/PKA pathway is a fundamental regulator of excitation-contraction coupling in cardiomyocytes. Activation of cAMP has a variety of downstream effects on cardiac function including enhanced contraction, accelerated relaxation, adaptive stress response, mitochondrial regulation, and gene transcription. Experimental advances have shed light on the compartmentation of cAMP and PKA, which allow for control over the varied targets of these second messengers and is disrupted in heart failure conditions. Computational modeling is an important tool for understanding the spatial and temporal complexities of this system. In this review article, we outline the advances in computational modeling that have allowed for deeper understanding of cAMP/PKA dynamics in the cardiomyocyte in health and disease, and explore new modeling frameworks that may bring us closer to a more complete understanding of this system. We outline various compartmental and spatial signaling models that have been used to understand how β-adrenergic signaling pathways function in a variety of simulation conditions. We also discuss newer subcellular models of cardiovascular function that may be used as templates for the next phase of computational study of cAMP and PKA in the heart, and outline open challenges which are important to consider in future models.
Collapse
Affiliation(s)
- Kimberly J McCabe
- Simula Research Laboratory, Department of Computational Physiology, PO Box 134, 1325 Lysaker, Norway.
| | - Padmini Rangamani
- University of California San Diego, Department of Mechanical and Aerospace Engineering, 9500 Gilman Drive MC 0411, La Jolla, CA 92093, United States of America
| |
Collapse
|
15
|
Abstract
The field of cAMP signaling is witnessing exciting developments with the recognition that cAMP is compartmentalized and that spatial regulation of cAMP is critical for faithful signal coding. This realization has changed our understanding of cAMP signaling from a model in which cAMP connects a receptor at the plasma membrane to an intracellular effector in a linear pathway to a model in which cAMP signals propagate within a complex network of alternative branches and the specific functional outcome strictly depends on local regulation of cAMP levels and on selective activation of a limited number of branches within the network. In this review, we cover some of the early studies and summarize more recent evidence supporting the model of compartmentalized cAMP signaling, and we discuss how this knowledge is starting to provide original mechanistic insight into cell physiology and a novel framework for the identification of disease mechanisms that potentially opens new avenues for therapeutic interventions. SIGNIFICANCE STATEMENT: cAMP mediates the intracellular response to multiple hormones and neurotransmitters. Signal fidelity and accurate coordination of a plethora of different cellular functions is achieved via organization of multiprotein signalosomes and cAMP compartmentalization in subcellular nanodomains. Defining the organization and regulation of subcellular cAMP nanocompartments is necessary if we want to understand the complex functional ramifications of pharmacological treatments that target G protein-coupled receptors and for generating a blueprint that can be used to develop precision medicine interventions.
Collapse
Affiliation(s)
- Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Anna Zerio
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Miguel J Lobo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
16
|
Tenner B, Getz M, Ross B, Ohadi D, Bohrer CH, Greenwald E, Mehta S, Xiao J, Rangamani P, Zhang J. Spatially compartmentalized phase regulation of a Ca 2+-cAMP-PKA oscillatory circuit. eLife 2020; 9:e55013. [PMID: 33201801 PMCID: PMC7671691 DOI: 10.7554/elife.55013] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 10/07/2020] [Indexed: 01/31/2023] Open
Abstract
Signaling networks are spatiotemporally organized to sense diverse inputs, process information, and carry out specific cellular tasks. In β cells, Ca2+, cyclic adenosine monophosphate (cAMP), and Protein Kinase A (PKA) exist in an oscillatory circuit characterized by a high degree of feedback. Here, we describe a mode of regulation within this circuit involving a spatial dependence of the relative phase between cAMP, PKA, and Ca2+. We show that in mouse MIN6 β cells, nanodomain clustering of Ca2+-sensitive adenylyl cyclases (ACs) drives oscillations of local cAMP levels to be precisely in-phase with Ca2+ oscillations, whereas Ca2+-sensitive phosphodiesterases maintain out-of-phase oscillations outside of the nanodomain. Disruption of this precise phase relationship perturbs Ca2+ oscillations, suggesting the relative phase within an oscillatory circuit can encode specific functional information. This work unveils a novel mechanism of cAMP compartmentation utilized for localized tuning of an oscillatory circuit and has broad implications for the spatiotemporal regulation of signaling networks.
Collapse
Affiliation(s)
- Brian Tenner
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Pharmacology, University of California, San DiegoLa JollaUnited States
| | - Michael Getz
- Chemical Engineering Graduate Program, University of California, San DiegoLa JollaUnited States
| | - Brian Ross
- Department of Pharmacology, University of California, San DiegoLa JollaUnited States
| | - Donya Ohadi
- Department of Mechanical and Aerospace Engineering, University of California, San DiegoLa JollaUnited States
| | - Christopher H Bohrer
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Eric Greenwald
- Department of Pharmacology, University of California, San DiegoLa JollaUnited States
| | - Sohum Mehta
- Department of Pharmacology, University of California, San DiegoLa JollaUnited States
| | - Jie Xiao
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Padmini Rangamani
- Chemical Engineering Graduate Program, University of California, San DiegoLa JollaUnited States
- Department of Mechanical and Aerospace Engineering, University of California, San DiegoLa JollaUnited States
| | - Jin Zhang
- Department of Pharmacology, University of California, San DiegoLa JollaUnited States
- Department of Chemistry and Biochemistry, University of California, San DiegoLa JollaUnited States
| |
Collapse
|
17
|
Zhang JZ, Lu TW, Stolerman LM, Tenner B, Yang JR, Zhang JF, Falcke M, Rangamani P, Taylor SS, Mehta S, Zhang J. Phase Separation of a PKA Regulatory Subunit Controls cAMP Compartmentation and Oncogenic Signaling. Cell 2020; 182:1531-1544.e15. [PMID: 32846158 PMCID: PMC7502557 DOI: 10.1016/j.cell.2020.07.043] [Citation(s) in RCA: 203] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 03/30/2020] [Accepted: 07/30/2020] [Indexed: 12/25/2022]
Abstract
The fidelity of intracellular signaling hinges on the organization of dynamic activity architectures. Spatial compartmentation was first proposed over 30 years ago to explain how diverse G protein-coupled receptors achieve specificity despite converging on a ubiquitous messenger, cyclic adenosine monophosphate (cAMP). However, the mechanisms responsible for spatially constraining this diffusible messenger remain elusive. Here, we reveal that the type I regulatory subunit of cAMP-dependent protein kinase (PKA), RIα, undergoes liquid-liquid phase separation (LLPS) as a function of cAMP signaling to form biomolecular condensates enriched in cAMP and PKA activity, critical for effective cAMP compartmentation. We further show that a PKA fusion oncoprotein associated with an atypical liver cancer potently blocks RIα LLPS and induces aberrant cAMP signaling. Loss of RIα LLPS in normal cells increases cell proliferation and induces cell transformation. Our work reveals LLPS as a principal organizer of signaling compartments and highlights the pathological consequences of dysregulating this activity architecture.
Collapse
Affiliation(s)
- Jason Z Zhang
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Tsan-Wen Lu
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Lucas M Stolerman
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Brian Tenner
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jessica R Yang
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jin-Fan Zhang
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Martin Falcke
- Mathematical Cell Physiology, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany; Department of Physics, Humboldt University, 12489 Berlin, Germany
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Susan S Taylor
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA; Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sohum Mehta
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jin Zhang
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA; Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
18
|
Carotenuto AR, Lunghi L, Piccolo V, Babaei M, Dayal K, Pugno N, Zingales M, Deseri L, Fraldi M. Mechanobiology predicts raft formations triggered by ligand-receptor activity across the cell membrane. JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS 2020; 141:103974. [PMID: 32461703 PMCID: PMC7243794 DOI: 10.1016/j.jmps.2020.103974] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/11/2020] [Accepted: 04/13/2020] [Indexed: 05/05/2023]
Abstract
Clustering of ligand-binding receptors of different types on thickened isles of the cell membrane, namely lipid rafts, is an experimentally observed phenomenon. Although its influence on cell's response is deeply investigated, the role of the coupling between mechanical processes and multiphysics involving the active receptors and the surrounding lipid membrane during ligand-binding has not yet been understood. Specifically, the focus of this work is on G-protein-coupled receptors (GPCRs), the widest group of transmembrane proteins in animals, which regulate specific cell processes through chemical signalling pathways involving a synergistic balance between the cyclic Adenosine Monophosphate (cAMP) produced by active GPCRs in the intracellular environment and its efflux, mediated by the Multidrug Resistance Proteins (MRPs) transporters. This paper develops a multiphysics approach based on the interplay among energetics, multiscale geometrical changes and mass balance of species, i.e. active GPCRs and MRPs, including diffusion and kinetics of binding and unbinding. Because the obtained energy depends upon both the kinematics and the changes of species densities, balance of mass and of linear momentum are coupled and govern the space-time evolution of the cell membrane. The mechanobiology involving remodelling and change of lipid ordering of the cell membrane allows to predict dynamics of transporters and active receptors -in full agreement with experimentally observed cAMP levels- and how the latter trigger rafts formation and cluster on such sites. Within the current scientific debate on Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2) and on the basis of the ascertained fact that lipid rafts often serve as an entry port for viruses, it is felt that approaches accounting for strong coupling among mechanobiological aspects could even turn helpful in better understanding membrane-mediated phenomena such as COVID-19 virus-cell interaction.
Collapse
Affiliation(s)
- Angelo R. Carotenuto
- Department of Structures for Engineering and Architecture, University of Napoli “Federico II”, Italy
| | - Laura Lunghi
- Smiling International School, formerly at the Department of Life Sciences and Biotech., University of Ferrara, Italy
| | - Valentina Piccolo
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Italy
| | - Mahnoush Babaei
- Department of Civil and Environmental Engineering, Department of Mechanical Engineering, Carnegie Mellon, USA
| | - Kaushik Dayal
- Department of Civil and Environmental Engineering, Department of Mechanical Engineering, Carnegie Mellon, USA
| | - Nicola Pugno
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Italy
- Laboratory of Bio-inspired, Bionic, Nano, Meta Materials & Mechanics, Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano, 77, Trento 38123, Italy
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Massimiliano Zingales
- Dipartimento di Ingegneria, Universitàdi Palermo, viale delle Scienze ed.8, 90128 Palermo, Italy
| | - Luca Deseri
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Italy
- Department of Civil and Environmental Engineering, Department of Mechanical Engineering, Carnegie Mellon, USA
- Department of Mechanical Engineering and Material Sciences, SSoE, University of Pittsburgh USA
- Department of Nanomedicine, The Houston Methodist Research Institute, USA
| | - Massimiliano Fraldi
- Department of Structures for Engineering and Architecture, University of Napoli “Federico II”, Italy
| |
Collapse
|
19
|
Schmidt M, Cattani-Cavalieri I, Nuñez FJ, Ostrom RS. Phosphodiesterase isoforms and cAMP compartments in the development of new therapies for obstructive pulmonary diseases. Curr Opin Pharmacol 2020; 51:34-42. [PMID: 32622335 PMCID: PMC7529846 DOI: 10.1016/j.coph.2020.05.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/17/2020] [Accepted: 05/22/2020] [Indexed: 12/20/2022]
Abstract
The second messenger molecule 3'5'-cyclic adenosine monophosphate (cAMP) imparts several beneficial effects in lung diseases such as asthma, chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF). While cAMP is bronchodilatory in asthma and COPD, it also displays anti-fibrotic properties that limit fibrosis. Phosphodiesterases (PDEs) metabolize cAMP and thus regulate cAMP signaling. While some existing therapies inhibit PDEs, there are only broad family specific inhibitors. The understanding of cAMP signaling compartments, some centered around lipid rafts/caveolae, has led to interest in defining how specific PDE isoforms maintain these signaling microdomains. The possible altered expression of PDEs, and thus abnormal cAMP signaling, in obstructive lung diseases has been poorly explored. We propose that inhibition of specific PDE isoforms can improve therapy of obstructive lung diseases by amplifying specific cAMP signals in discreet microdomains.
Collapse
Affiliation(s)
- Martina Schmidt
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands; University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, GRIAC, Groningen, The Netherlands
| | - Isabella Cattani-Cavalieri
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands; University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, GRIAC, Groningen, The Netherlands; Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Francisco J Nuñez
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, USA
| | - Rennolds S Ostrom
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, USA.
| |
Collapse
|
20
|
Bers DM, Xiang YK, Zaccolo M. Whole-Cell cAMP and PKA Activity are Epiphenomena, Nanodomain Signaling Matters. Physiology (Bethesda) 2020; 34:240-249. [PMID: 31165682 DOI: 10.1152/physiol.00002.2019] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Novel targeted fluorescent biosensors provide key insights into very local nanodomains of cAMP and PKA activity, and how they respond differently to β-adrenergic activation in cardiac myocytes. This unique spatiotemporal detail in living cells is not available with biochemical measurements of total cellular cAMP and PKA, and provides unique physiological insights.
Collapse
Affiliation(s)
- Donald M Bers
- Department of Pharmacology, University of California , Davis, California
| | - Yang K Xiang
- Department of Pharmacology, University of California , Davis, California
| | - Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics, University of Oxford , Oxford , United Kingdom
| |
Collapse
|
21
|
Stone N, Shettlesworth S, Rich TC, Leavesley SJ, Phan AV. A two-dimensional finite element model of cyclic adenosine monophosphate (cAMP) intracellular signaling. SN APPLIED SCIENCES 2019; 1. [PMID: 33615142 DOI: 10.1007/s42452-019-1757-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
In this work, we present a two-dimensional finite element analysis (FEA) model that describes fundamental intracellular signals of cyclic adenosine monophosphate (cAMP) in a general fashion. The model was subsequently solved numerically and the results were displayed in forms of time-course plots of cAMP concentration at a cellular location or color-filled contour maps of cAMP signal distribution within the cell at specific time points. Basic intracellular cAMP signaling was described in this model so it can be numerically validated by verifying its numerical results against available analytical solutions and against results obtained from other numerical techniques reported in the literature. This is the first important step before the model can be expanded in future work. Model simulations demonstrate that under certain conditions, sustained cAMP concentrations can be formed within endothelial cells (ECs), similar to those observed in rat pulmonary microvascular ECs. Spatial and temporal cAMP dynamic simulations indicated that the proposed FEA model is an effective tool for the study of the kinetics and spatial spread of second messenger signaling and can be expanded to simulate second messenger signals in the pulmonary vasculature.
Collapse
Affiliation(s)
- N Stone
- William B. Burnsed, Jr. Department of Mechanical Engineering, University of South Alabama, Mobile, AL 36688, USA
| | - S Shettlesworth
- William B. Burnsed, Jr. Department of Mechanical Engineering, University of South Alabama, Mobile, AL 36688, USA
| | - T C Rich
- Center for Lung Biology & Department of Pharmacology, University of South Alabama, Mobile, AL 36688, USA
| | - S J Leavesley
- Department of Chemical and Biomolecular Engineering & Department of Pharmacology, University of South Alabama, Mobile, AL 36688, USA
| | - A-V Phan
- William B. Burnsed, Jr. Department of Mechanical Engineering, University of South Alabama, Mobile, AL 36688, USA
| |
Collapse
|
22
|
Greenwald EC, Mehta S, Zhang J. Genetically Encoded Fluorescent Biosensors Illuminate the Spatiotemporal Regulation of Signaling Networks. Chem Rev 2018; 118:11707-11794. [PMID: 30550275 PMCID: PMC7462118 DOI: 10.1021/acs.chemrev.8b00333] [Citation(s) in RCA: 353] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cellular signaling networks are the foundation which determines the fate and function of cells as they respond to various cues and stimuli. The discovery of fluorescent proteins over 25 years ago enabled the development of a diverse array of genetically encodable fluorescent biosensors that are capable of measuring the spatiotemporal dynamics of signal transduction pathways in live cells. In an effort to encapsulate the breadth over which fluorescent biosensors have expanded, we endeavored to assemble a comprehensive list of published engineered biosensors, and we discuss many of the molecular designs utilized in their development. Then, we review how the high temporal and spatial resolution afforded by fluorescent biosensors has aided our understanding of the spatiotemporal regulation of signaling networks at the cellular and subcellular level. Finally, we highlight some emerging areas of research in both biosensor design and applications that are on the forefront of biosensor development.
Collapse
Affiliation(s)
- Eric C Greenwald
- University of California , San Diego, 9500 Gilman Drive, BRFII , La Jolla , CA 92093-0702 , United States
| | - Sohum Mehta
- University of California , San Diego, 9500 Gilman Drive, BRFII , La Jolla , CA 92093-0702 , United States
| | - Jin Zhang
- University of California , San Diego, 9500 Gilman Drive, BRFII , La Jolla , CA 92093-0702 , United States
| |
Collapse
|
23
|
Vinogradova TM, Kobrinsky E, Lakatta EG. Dual Activation of Phosphodiesterases 3 and 4 Regulates Basal Spontaneous Beating Rate of Cardiac Pacemaker Cells: Role of Compartmentalization? Front Physiol 2018; 9:1301. [PMID: 30356755 PMCID: PMC6189467 DOI: 10.3389/fphys.2018.01301] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 08/29/2018] [Indexed: 12/17/2022] Open
Abstract
Spontaneous firing of sinoatrial (SA) node cells (SANCs) is regulated by cyclic adenosine monophosphate (cAMP)-mediated, protein kinase A (PKA)-dependent (cAMP/PKA) local subsarcolemmal Ca2+ releases (LCRs) from ryanodine receptors (RyR). The LCRs occur during diastolic depolarization (DD) and activate an inward Na+/Ca2+ exchange current that accelerates the DD rate prompting the next action potential (AP). Basal phosphodiesterases (PDEs) activation degrades cAMP, reduces basal cAMP/PKA-dependent phosphorylation, and suppresses normal spontaneous firing of SANCs. The cAMP-degrading PDE1, PDE3, and PDE4 represent major PDE activities in rabbit SANC, and PDE inhibition by 3-isobutyl-1-methylxanthine (IBMX) increases spontaneous firing of SANC by ∼50%. Though inhibition of single PDE1–PDE4 only moderately increases spontaneous SANC firing, dual PDE3 + PDE4 inhibition produces a synergistic effect hastening the spontaneous SANC beating rate by ∼50%. Here, we describe the expression and distribution of different PDE subtypes within rabbit SANCs, several specific targets (L-type Ca2+ channels and phospholamban) regulated by basal concurrent PDE3 + PDE4 activation, and critical importance of RyR Ca2+ releases for PDE-dependent regulation of spontaneous SANC firing. Colocalization of PDE3 and PDE4 beneath sarcolemma or in striated patterns inside SANCs strongly suggests that PDE-dependent regulation of cAMP/PKA signaling might be executed at the local level; this idea, however, requires further verification.
Collapse
Affiliation(s)
- Tatiana M Vinogradova
- Laboratory of Cardiovascular Science, Intramural Research Program, NIA, NIH, Baltimore, MD, United States
| | - Evgeny Kobrinsky
- Laboratory of Cardiovascular Science, Intramural Research Program, NIA, NIH, Baltimore, MD, United States
| | - Edward G Lakatta
- Laboratory of Cardiovascular Science, Intramural Research Program, NIA, NIH, Baltimore, MD, United States
| |
Collapse
|
24
|
Filadi R, Basso E, Lefkimmiatis K, Pozzan T. Beyond Intracellular Signaling: The Ins and Outs of Second Messengers Microdomains. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 981:279-322. [PMID: 29594866 DOI: 10.1007/978-3-319-55858-5_12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A typical characteristic of eukaryotic cells compared to prokaryotes is represented by the spatial heterogeneity of the different structural and functional components: for example, most of the genetic material is surrounded by a highly specific membrane structure (the nuclear membrane), continuous with, yet largely different from, the endoplasmic reticulum (ER); oxidative phosphorylation is carried out by organelles enclosed by a double membrane, the mitochondria; in addition, distinct domains, enriched in specific proteins, are present in the plasma membrane (PM) of most cells. Less obvious, but now generally accepted, is the notion that even the concentration of small molecules such as second messengers (Ca2+ and cAMP in particular) can be highly heterogeneous within cells. In the case of most organelles, the differences in the luminal levels of second messengers depend either on the existence on their membrane of proteins that allow the accumulation/release of the second messenger (e.g., in the case of Ca2+, pumps, exchangers or channels), or on the synthesis and degradation of the specific molecule within the lumen (the autonomous intramitochondrial cAMP system). It needs stressing that the existence of a surrounding membrane does not necessarily imply the existence of a gradient between the cytosol and the organelle lumen. For example, the nuclear membrane is highly permeable to both Ca2+ and cAMP (nuclear pores are permeable to solutes up to 50 kDa) and differences in [Ca2+] or [cAMP] between cytoplasm and nucleoplasm are not seen in steady state and only very transiently during cell activation. A similar situation has been observed, as far as Ca2+ is concerned, in peroxisomes.
Collapse
Affiliation(s)
- Riccardo Filadi
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Emy Basso
- Institute of Neuroscience, Padova Section, National Research Council, Padova, Italy
| | - Konstantinos Lefkimmiatis
- Institute of Neuroscience, Padova Section, National Research Council, Padova, Italy
- Venetian Institute of Molecular Medicine, Padova, Italy
| | - Tullio Pozzan
- Department of Biomedical Sciences, University of Padova, Padova, Italy.
- Institute of Neuroscience, Padova Section, National Research Council, Padova, Italy.
- Venetian Institute of Molecular Medicine, Padova, Italy.
| |
Collapse
|
25
|
Phosphatases control PKA-dependent functional microdomains at the outer mitochondrial membrane. Proc Natl Acad Sci U S A 2018; 115:E6497-E6506. [PMID: 29941564 PMCID: PMC6048485 DOI: 10.1073/pnas.1806318115] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The selective phosphorylation of spatially distinct PKA targets is key for the pleiotropy of the cAMP cascade. This characteristic of the pathway is currently attributed to the ability of phosphodiesterases or adenylate cyclases to create subcellular sites (microdomains) where the concentration of cAMP is distinct from that of the surrounding areas. The role of phosphatases in this process has not been tested. Here we show that limited access of phosphatases to the PKA targets present at the outer mitochondrial membrane generates distinct microdomains of PKA phosphorylated proteins despite there being no differences in the local cAMP levels. These results describe an alternative mechanism capable of generating functional cAMP/PKA-dependent microdomains and may be extrapolated to the compartmentalization of other kinase-dependent events. Evidence supporting the heterogeneity in cAMP and PKA signaling is rapidly accumulating and has been largely attributed to the localization or activity of adenylate cyclases, phosphodiesterases, and A-kinase–anchoring proteins in different cellular subcompartments. However, little attention has been paid to the possibility that, despite homogeneous cAMP levels, a major heterogeneity in cAMP/PKA signaling could be generated by the spatial distribution of the final terminators of this cascade, i.e., the phosphatases. Using FRET-based sensors to monitor cAMP and PKA-dependent phosphorylation in the cytosol and outer mitochondrial membrane (OMM) of primary rat cardiomyocytes, we demonstrate that comparable cAMP increases in these two compartments evoke higher levels of PKA-dependent phosphorylation in the OMM. This difference is most evident for small, physiological increases of cAMP levels and with both OMM-located probes and endogenous OMM proteins. We demonstrate that this disparity depends on differences in the rates of phosphatase-dependent dephosphorylation of PKA targets in the two compartments. Furthermore, we show that the activity of soluble phosphatases attenuates PKA-driven activation of the cAMP response element-binding protein while concurrently enhancing PKA-dependent mitochondrial elongation. We conclude that phosphatases can sculpt functionally distinct cAMP/PKA domains even in the absence of gradients or microdomains of this messenger. We present a model that accounts for these unexpected results in which the degree of PKA-dependent phosphorylation is dictated by both the subcellular distribution of the phosphatases and the different accessibility of membrane-bound and soluble phosphorylated substrates to the cytosolic enzymes.
Collapse
|
26
|
Bhogal NK, Hasan A, Gorelik J. The Development of Compartmentation of cAMP Signaling in Cardiomyocytes: The Role of T-Tubules and Caveolae Microdomains. J Cardiovasc Dev Dis 2018; 5:jcdd5020025. [PMID: 29751502 PMCID: PMC6023514 DOI: 10.3390/jcdd5020025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/18/2018] [Accepted: 04/28/2018] [Indexed: 12/26/2022] Open
Abstract
3′-5′-cyclic adenosine monophosphate (cAMP) is a signaling messenger produced in response to the stimulation of cellular receptors, and has a myriad of functional applications depending on the cell type. In the heart, cAMP is responsible for regulating the contraction rate and force; however, cAMP is also involved in multiple other functions. Compartmentation of cAMP production may explain the specificity of signaling following a stimulus. In particular, transverse tubules (T-tubules) and caveolae have been found to be critical structural components for the spatial confinement of cAMP in cardiomyocytes, as exemplified by beta-adrenergic receptor (β-ARs) signaling. Pathological alterations in cardiomyocyte microdomain architecture led to a disruption in compartmentation of the cAMP signal. In this review, we discuss the difference between atrial and ventricular cardiomyocytes in respect to microdomain organization, and the pathological changes of atrial and ventricular cAMP signaling in response to myocyte dedifferentiation. In addition, we review the role of localized phosphodiesterase (PDE) activity in constraining the cAMP signal. Finally, we discuss microdomain biogenesis and maturation of cAMP signaling with the help of induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). Understanding these mechanisms may help to overcome the detrimental effects of pathological structural remodeling.
Collapse
Affiliation(s)
- Navneet K Bhogal
- Department of Cardiovascular Sciences, National Heart and Lung Institute, Imperial College London, London W12 0NN, UK.
| | - Alveera Hasan
- Department of Cardiovascular Sciences, National Heart and Lung Institute, Imperial College London, London W12 0NN, UK.
| | - Julia Gorelik
- Department of Cardiovascular Sciences, National Heart and Lung Institute, Imperial College London, London W12 0NN, UK.
| |
Collapse
|
27
|
Agarwal SR, Gratwohl J, Cozad M, Yang PC, Clancy CE, Harvey RD. Compartmentalized cAMP Signaling Associated With Lipid Raft and Non-raft Membrane Domains in Adult Ventricular Myocytes. Front Pharmacol 2018; 9:332. [PMID: 29740315 PMCID: PMC5925456 DOI: 10.3389/fphar.2018.00332] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/21/2018] [Indexed: 11/23/2022] Open
Abstract
Aim: Confining cAMP production to discrete subcellular locations makes it possible for this ubiquitous second messenger to elicit unique functional responses. Yet, factors that determine how and where the production of this diffusible signaling molecule occurs are incompletely understood. The fluid mosaic model originally proposed that signal transduction occurs through random interactions between proteins diffusing freely throughout the plasma membrane. However, it is now known that the movement of membrane proteins is restricted, suggesting that the plasma membrane is segregated into distinct microdomains where different signaling proteins can be concentrated. In this study, we examined what role lipid raft and non-raft membrane domains play in compartmentation of cAMP signaling in adult ventricular myocytes. Methods and Results: The freely diffusible fluorescence resonance energy transfer-based biosensor Epac2-camps was used to measure global cytosolic cAMP responses, while versions of the probe targeted to lipid raft (Epac2-MyrPalm) and non-raft (Epac2-CAAX) domains were used to monitor local cAMP production near the plasma membrane. We found that β-adrenergic receptors, which are expressed in lipid raft and non-raft domains, produce cAMP responses near the plasma membrane that are distinctly different from those produced by E-type prostaglandin receptors, which are expressed exclusively in non-raft domains. We also found that there are differences in basal cAMP levels associated with lipid raft and non-raft domains, and that this can be explained by differences in basal adenylyl cyclase activity associated with each of these membrane environments. In addition, we found evidence that phosphodiesterases 2, 3, and 4 work together in regulating cAMP activity associated with both lipid raft and non-raft domains, while phosphodiesterase 3 plays a more prominent role in the bulk cytoplasmic compartment. Conclusion: These results suggest that different membrane domains contribute to the formation of distinct pools of cAMP under basal conditions as well as following receptor stimulation in adult ventricular myocytes.
Collapse
Affiliation(s)
- Shailesh R Agarwal
- Department of Pharmacology, University of Nevada, Reno, Reno, NV, United States
| | - Jackson Gratwohl
- Department of Pharmacology, University of Nevada, Reno, Reno, NV, United States
| | - Mia Cozad
- Department of Pharmacology, University of Nevada, Reno, Reno, NV, United States
| | - Pei-Chi Yang
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
| | - Colleen E Clancy
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
| | - Robert D Harvey
- Department of Pharmacology, University of Nevada, Reno, Reno, NV, United States
| |
Collapse
|
28
|
Johnstone TB, Agarwal SR, Harvey RD, Ostrom RS. cAMP Signaling Compartmentation: Adenylyl Cyclases as Anchors of Dynamic Signaling Complexes. Mol Pharmacol 2018; 93:270-276. [PMID: 29217670 PMCID: PMC5820540 DOI: 10.1124/mol.117.110825] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/04/2017] [Indexed: 11/22/2022] Open
Abstract
It is widely accepted that cAMP signaling is compartmentalized within cells. However, our knowledge of how receptors, cAMP signaling enzymes, effectors, and other key proteins form specific signaling complexes to regulate specific cell responses is limited. The multicomponent nature of these systems and the spatiotemporal dynamics involved as proteins interact and move within a cell make cAMP responses highly complex. Adenylyl cyclases, the enzymatic source of cAMP production, are key starting points for understanding cAMP compartments and defining the functional signaling complexes. Three basic elements are required to form a signaling compartment. First, a localized signal is generated by a G protein-coupled receptor paired to one or more of the nine different transmembrane adenylyl cyclase isoforms that generate the cAMP signal in the cytosol. The diffusion of cAMP is subsequently limited by several factors, including expression of any number of phosphodiesterases (of which there are 24 genes plus spice variants). Finally, signal response elements are differentially localized to respond to cAMP produced within each locale. A-kinase-anchoring proteins, of which there are 43 different isoforms, facilitate this by targeting protein kinase A to specific substrates. Thousands of potential combinations of these three elements are possible in any given cell type, making the characterization of cAMP signaling compartments daunting. This review will focus on what is known about how cells organize cAMP signaling components as well as identify the unknowns. We make an argument for adenylyl cyclases being central to the formation and maintenance of these signaling complexes.
Collapse
Affiliation(s)
- Timothy B Johnstone
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (T.B.J., R.S.O.); and Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno Nevada (S.R.A., R.D.H.)
| | - Shailesh R Agarwal
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (T.B.J., R.S.O.); and Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno Nevada (S.R.A., R.D.H.)
| | - Robert D Harvey
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (T.B.J., R.S.O.); and Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno Nevada (S.R.A., R.D.H.)
| | - Rennolds S Ostrom
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (T.B.J., R.S.O.); and Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno Nevada (S.R.A., R.D.H.)
| |
Collapse
|
29
|
Phosphodiesterase Diversity and Signal Processing Within cAMP Signaling Networks. ADVANCES IN NEUROBIOLOGY 2018; 17:3-14. [PMID: 28956327 DOI: 10.1007/978-3-319-58811-7_1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A large number of neuromodulators activate G-protein coupled receptors (GPCRs) and mediate their cellular actions via the regulation of intracellular cAMP, the small highly diffusible second messenger. In fact, in the same neuron several different GPCRs can regulate cAMP with seemingly identical timecourses that give rise to distinct signaling outcomes, suggesting that cAMP does not have equivalent access to all its downstream effectors and may exist within defined intracellular pools or domains. cAMP compartmentalization is the process that allows the neuron to differentially interpret these various intracellular cAMP signals into cellular response. The molecular mechanisms that give rise to cAMP compartmentalization are not fully understood, but it is thought that phosphodiesterases (PDEs), the enzymes that degrade cAMP, significantly contribute to this process. PDEs, as the sole mechanism of signal termination for cAMP, hold great promise as therapeutic targets for pathologies that are due to the dysregulation of intracellular cAMP signaling. Due to their diverse catalytic activity, regulation and localization each PDE subtype expressed in a given neuron may have a distinct role on downstream signaling.
Collapse
|
30
|
Pavlaki N, Nikolaev VO. Imaging of PDE2- and PDE3-Mediated cGMP-to-cAMP Cross-Talk in Cardiomyocytes. J Cardiovasc Dev Dis 2018; 5:jcdd5010004. [PMID: 29367582 PMCID: PMC5872352 DOI: 10.3390/jcdd5010004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 01/16/2018] [Accepted: 01/17/2018] [Indexed: 12/13/2022] Open
Abstract
Cyclic nucleotides 3′,5′-cyclic adenosine monophosphate (cAMP) and 3′,5′-cyclic guanosine monophosphate (cGMP) are important second messengers that regulate cardiovascular function and disease by acting in discrete subcellular microdomains. Signaling compartmentation at these locations is often regulated by phosphodiesterases (PDEs). Some PDEs are also involved in the cross-talk between the two second messengers. The purpose of this review is to summarize and highlight recent findings about the role of PDE2 and PDE3 in cardiomyocyte cyclic nucleotide compartmentation and visualization of this process using live cell imaging techniques.
Collapse
Affiliation(s)
- Nikoleta Pavlaki
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany.
| | - Viacheslav O Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany.
| |
Collapse
|
31
|
Musheshe N, Schmidt M, Zaccolo M. cAMP: From Long-Range Second Messenger to Nanodomain Signalling. Trends Pharmacol Sci 2017; 39:209-222. [PMID: 29289379 DOI: 10.1016/j.tips.2017.11.006] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/14/2017] [Accepted: 11/17/2017] [Indexed: 12/21/2022]
Abstract
How cAMP generates hormone-specific effects has been debated for many decades. Fluorescence resonance energy transfer (FRET)-based sensors for cAMP allow real-time imaging of the second messenger in intact cells with high spatiotemporal resolution. This technology has made it possible to directly demonstrate that cAMP signals are compartmentalised. The details of such signal compartmentalisation are still being uncovered, and recent findings reveal a previously unsuspected submicroscopic heterogeneity of intracellular cAMP. A model is emerging where specificity depends on compartmentalisation and where the physiologically relevant signals are those that occur within confined nanodomains, rather than bulk changes in cytosolic cAMP. These findings subvert the classical notion of cAMP signalling and provide a new framework for the development of targeted therapeutic approaches.
Collapse
Affiliation(s)
- Nshunge Musheshe
- Department of Molecular Pharmacology, University of Groningen, The Netherlands; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Martina Schmidt
- Department of Molecular Pharmacology, University of Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD, GRIAC, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
32
|
Maiellaro I, Lohse MJ, Kittel RJ, Calebiro D. cAMP Signals in Drosophila Motor Neurons Are Confined to Single Synaptic Boutons. Cell Rep 2017; 17:1238-1246. [PMID: 27783939 PMCID: PMC5098120 DOI: 10.1016/j.celrep.2016.09.090] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 08/29/2016] [Accepted: 09/27/2016] [Indexed: 11/03/2022] Open
Abstract
The second messenger cyclic AMP (cAMP) plays an important role in synaptic plasticity. Although there is evidence for local control of synaptic transmission and plasticity, it is less clear whether a similar spatial confinement of cAMP signaling exists. Here, we suggest a possible biophysical basis for the site-specific regulation of synaptic plasticity by cAMP, a highly diffusible small molecule that transforms the physiology of synapses in a local and specific manner. By exploiting the octopaminergic system of Drosophila, which mediates structural synaptic plasticity via a cAMP-dependent pathway, we demonstrate the existence of local cAMP signaling compartments of micrometer dimensions within single motor neurons. In addition, we provide evidence that heterogeneous octopamine receptor localization, coupled with local differences in phosphodiesterase activity, underlies the observed differences in cAMP signaling in the axon, cell body, and boutons. Boutons, axon, and cell body are independent cAMP signaling compartments Receptors and PDEs are responsible for the compartmentalization of cAMP cAMP does not propagate from the bouton to the cell body Local cAMP increases provides a basis for site-specific control of synaptic plasticity
Collapse
Affiliation(s)
- Isabella Maiellaro
- Institute of Pharmacology and Toxicology and Rudolf Virchow Center, University of Würzburg, Versbacher Strasse 9, 97078 Würzburg, Germany.
| | - Martin J Lohse
- Institute of Pharmacology and Toxicology and Rudolf Virchow Center, University of Würzburg, Versbacher Strasse 9, 97078 Würzburg, Germany
| | - Robert J Kittel
- Department of Neurophysiology, Institute of Physiology, University of Würzburg, Röntgenring 9, 97070 Würzburg, Germany.
| | - Davide Calebiro
- Institute of Pharmacology and Toxicology and Rudolf Virchow Center, University of Würzburg, Versbacher Strasse 9, 97078 Würzburg, Germany.
| |
Collapse
|
33
|
Agarwal SR, Miyashiro K, Latt H, Ostrom RS, Harvey RD. Compartmentalized cAMP responses to prostaglandin EP 2 receptor activation in human airway smooth muscle cells. Br J Pharmacol 2017; 174:2784-2796. [PMID: 28603838 DOI: 10.1111/bph.13904] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/25/2017] [Accepted: 06/05/2017] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND PURPOSE Previous studies indicate that prostaglandin EP2 receptors selectively couple to AC2 in non-lipid raft domains of airway smooth muscle (ASM) cells, where they regulate specific cAMP-dependent responses. The goal of the present study was to identify the cellular microdomains where EP2 receptors stimulate cAMP production. EXPERIMENTAL APPROACH FRET-based cAMP biosensors were targeted to different subcellular locations of primary human ASM cells. The Epac2-camps biosensor, which expresses throughout the cell, was used to measure bulk cytoplasmic responses. Epac2-MyrPalm and Epac2-CAAX were used to measure responses associated with lipid raft and non-raft regions of the plasma membrane respectively. Epac2-NLS was used to monitor responses at the nucleus. KEY RESULTS Activation of AC with forskolin or β2 -adrenoceptors with isoprenaline increased cAMP in all subcellular locations. Activation of EP2 receptors with butaprost produced cAMP responses that were most readily detected by the non-raft and nuclear sensors, but only weakly detected by the cytosolic sensor and not detected at all by the lipid raft sensor. Exposure to rolipram, a PDE4 inhibitor, unmasked the ability of EP2 receptors to increase cAMP levels associated with lipid raft domains. Overexpression of AC2 selectively increased EP2 receptor-stimulated production of cAMP in non-raft membrane domains. CONCLUSIONS AND IMPLICATIONS EP2 receptor activation of AC2 leads to cAMP production in non-raft and nuclear compartments of human ASMs, while β2 adrenoceptor signalling is broadly detected across microdomains. The activity of PDE4 appears to play a role in maintaining the integrity of compartmentalized EP2 receptor responses in these cells.
Collapse
Affiliation(s)
- Shailesh R Agarwal
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Kathryn Miyashiro
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Htun Latt
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Rennolds S Ostrom
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, USA
| | - Robert D Harvey
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| |
Collapse
|
34
|
Zhao CY, Greenstein JL, Winslow RL. Mechanisms of the cyclic nucleotide cross-talk signaling network in cardiac L-type calcium channel regulation. J Mol Cell Cardiol 2017; 106:29-44. [PMID: 28365422 PMCID: PMC5508987 DOI: 10.1016/j.yjmcc.2017.01.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/16/2016] [Accepted: 01/20/2017] [Indexed: 10/19/2022]
Abstract
Regulation of L-type Calcium (Ca2+) Channel (LCC) gating is critical to shaping the cardiac action potential (AP) and triggering the initiation of excitation-contraction (EC) coupling in cardiac myocytes. The cyclic nucleotide (cN) cross-talk signaling network, which encompasses the β-adrenergic and the Nitric Oxide (NO)/cGMP/Protein Kinase G (PKG) pathways and their interaction (cross-talk) through distinctively-regulated phosphodiesterase isoenzymes (PDEs), regulates LCC current via Protein Kinase A- (PKA) and PKG-mediated phosphorylation. Due to the tightly-coupled and intertwined biochemical reactions involved, it remains to be clarified how LCC gating is regulated by the signaling network from receptor to end target. In addition, the large number of EC coupling-related phosphorylation targets of PKA and PKG makes it difficult to quantify and isolate changes in L-type Ca2+ current (ICaL) responses regulated by the signaling network. We have developed a multi-scale, biophysically-detailed computational model of LCC regulation by the cN signaling network that is supported by experimental data. LCCs are modeled with functionally distinct PKA- and PKG-phosphorylation dependent gating modes. The model exhibits experimentally observed single channel characteristics, as well as whole-cell LCC currents upon activation of the cross-talk signaling network. Simulations show 1) redistribution of LCC gating modes explains changes in whole-cell current under various stimulation scenarios of the cN cross-talk network; 2) NO regulation occurs via potentiation of a gating mode characterized by prolonged closed times; and 3) due to compensatory actions of cross-talk and antagonizing functions of PKA- and PKG-mediated phosphorylation of LCCs, the effects of individual inhibitions of PDEs 2, 3, and 4 on ICaL are most pronounced at low levels of β-adrenergic stimulation. Simulations also delineate the contribution of the following two mechanisms to overall LCC regulation, which have otherwise been challenging to distinguish: 1) regulation of PKA and PKG activation via cN cross-talk (Mechanism 1); and 2) LCC interaction with activated PKA and PKG (Mechanism 2). These results provide insights into how cN signals transduced via the cN cross-talk signaling network are integrated via LCC regulation in the heart.
Collapse
Affiliation(s)
- Claire Y Zhao
- Department of Biomedical Engineering and the Institute for Computational Medicine, The Johns Hopkins University School of Medicine and Whiting School of Engineering, 3400 N Charles Street, Baltimore, MD, 21218, USA.
| | - Joseph L Greenstein
- Department of Biomedical Engineering and the Institute for Computational Medicine, The Johns Hopkins University School of Medicine and Whiting School of Engineering, 3400 N Charles Street, Baltimore, MD, 21218, USA.
| | - Raimond L Winslow
- Department of Biomedical Engineering and the Institute for Computational Medicine, The Johns Hopkins University School of Medicine and Whiting School of Engineering, 3400 N Charles Street, Baltimore, MD, 21218, USA.
| |
Collapse
|
35
|
Lohse C, Bock A, Maiellaro I, Hannawacker A, Schad LR, Lohse MJ, Bauer WR. Experimental and mathematical analysis of cAMP nanodomains. PLoS One 2017; 12:e0174856. [PMID: 28406920 PMCID: PMC5391016 DOI: 10.1371/journal.pone.0174856] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 03/16/2017] [Indexed: 12/13/2022] Open
Abstract
In their role as second messengers, cyclic nucleotides such as cAMP have a variety of intracellular effects. These complex tasks demand a highly organized orchestration of spatially and temporally confined cAMP action which should be best achieved by compartmentalization of the latter. A great body of evidence suggests that cAMP compartments may be established and maintained by cAMP degrading enzymes, e.g. phosphodiesterases (PDEs). However, the molecular and biophysical details of how PDEs can orchestrate cAMP gradients are entirely unclear. In this paper, using fusion proteins of cAMP FRET-sensors and PDEs in living cells, we provide direct experimental evidence that the cAMP concentration in the vicinity of an individual PDE molecule is below the detection limit of our FRET sensors (<100nM). This cAMP gradient persists in crude cytosol preparations. We developed mathematical models based on diffusion-reaction equations which describe the creation of nanocompartments around a single PDE molecule and more complex spatial PDE arrangements. The analytically solvable equations derived here explicitly determine how the capability of a single PDE, or PDE complexes, to create a nanocompartment depend on the cAMP degradation rate, the diffusive mobility of cAMP, and geometrical and topological parameters. We apply these generic models to our experimental data and determine the diffusive mobility and degradation rate of cAMP. The results obtained for these parameters differ by far from data in literature for free soluble cAMP interacting with PDE. Hence, restricted cAMP diffusion in the vincinity of PDE is necessary to create cAMP nanocompartments in cells.
Collapse
Affiliation(s)
- Christian Lohse
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
- Computer Assisted Clinical Medicine, University of Heidelberg, Heidelberg, Germany
| | - Andreas Bock
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
| | - Isabella Maiellaro
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
| | - Annette Hannawacker
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
| | - Lothar R. Schad
- Computer Assisted Clinical Medicine, University of Heidelberg, Heidelberg, Germany
| | - Martin J. Lohse
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
- Comprehensive Heart Failure Center, University of Würzburg, Würzburg, Germany
- * E-mail:
| | - Wolfgang R. Bauer
- Comprehensive Heart Failure Center, University of Würzburg, Würzburg, Germany
- Department of Medicine I, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
36
|
|
37
|
Mo GCH, Ross B, Hertel F, Manna P, Yang X, Greenwald E, Booth C, Plummer AM, Tenner B, Chen Z, Wang Y, Kennedy EJ, Cole PA, Fleming KG, Palmer A, Jimenez R, Xiao J, Dedecker P, Zhang J. Genetically encoded biosensors for visualizing live-cell biochemical activity at super-resolution. Nat Methods 2017; 14:427-434. [PMID: 28288122 PMCID: PMC5388356 DOI: 10.1038/nmeth.4221] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 02/06/2017] [Indexed: 12/17/2022]
Abstract
Compartmentalized biochemical activities are essential to all cellular processes, but there is no generalizable method to visualize dynamic protein activities in living cells at a resolution commensurate with their compartmentalization. Here we introduce a new class of fluorescent biosensors that detect biochemical activities in living cells at a resolution up to three-fold better than the diffraction limit. Utilizing specific, binding-induced changes in protein fluorescence dynamics, these biosensors translate kinase activities or protein-protein interactions into changes in fluorescence fluctuations, which are quantifiable through stochastic optical fluctuation imaging. A Protein Kinase A (PKA) biosensor allowed us to resolve minute PKA activity microdomains on the plasma membrane of living cells and uncover the role of clustered anchoring proteins in organizing these activity microdomains. Together, these findings suggest that biochemical activities of the cell are spatially organized into an activity architecture, whose structural and functional characteristics can be revealed by these new biosensors.
Collapse
Affiliation(s)
- Gary C H Mo
- Department of Pharmacology, University of California San Diego, La Jolla, California, USA
| | - Brian Ross
- Department of Pharmacology, University of California San Diego, La Jolla, California, USA.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Fabian Hertel
- Department of Pharmacology, University of California San Diego, La Jolla, California, USA
| | - Premashis Manna
- JILA, University of Colorado and NIST, Boulder, Colorado, USA.,Department of Chemistry and Biochemistry, University of Colorado, Boulder, Boulder, Colorado, USA
| | - Xinxing Yang
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Eric Greenwald
- Department of Pharmacology, University of California San Diego, La Jolla, California, USA
| | - Chris Booth
- Department of Pharmacology, University of California San Diego, La Jolla, California, USA
| | - Ashlee M Plummer
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Brian Tenner
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Zan Chen
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yuxiao Wang
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, Georgia, USA
| | - Eileen J Kennedy
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, Georgia, USA
| | - Philip A Cole
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Karen G Fleming
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Amy Palmer
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Boulder, Colorado, USA.,BioFrontiers Institute, University of Colorado, Boulder, Boulder, Colorado, USA
| | - Ralph Jimenez
- JILA, University of Colorado and NIST, Boulder, Colorado, USA.,Department of Chemistry and Biochemistry, University of Colorado, Boulder, Boulder, Colorado, USA
| | - Jie Xiao
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Jin Zhang
- Department of Pharmacology, University of California San Diego, La Jolla, California, USA.,Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
38
|
Bedioune I, Bobin P, Leroy J, Fischmeister R, Vandecasteele G. Cyclic Nucleotide Phosphodiesterases and Compartmentation in Normal and Diseased Heart. MICRODOMAINS IN THE CARDIOVASCULAR SYSTEM 2017. [DOI: 10.1007/978-3-319-54579-0_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
39
|
Pendin D, Greotti E, Lefkimmiatis K, Pozzan T. Exploring cells with targeted biosensors. J Gen Physiol 2016; 149:1-36. [PMID: 28028123 PMCID: PMC5217087 DOI: 10.1085/jgp.201611654] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 10/26/2016] [Accepted: 12/01/2016] [Indexed: 01/10/2023] Open
Abstract
Cellular signaling networks are composed of multiple pathways, often interconnected, that form complex networks with great potential for cross-talk. Signal decoding depends on the nature of the message as well as its amplitude, temporal pattern, and spatial distribution. In addition, the existence of membrane-bound organelles, which are both targets and generators of messages, add further complexity to the system. The availability of sensors that can localize to specific compartments in live cells and monitor their targets with high spatial and temporal resolution is thus crucial for a better understanding of cell pathophysiology. For this reason, over the last four decades, a variety of strategies have been developed, not only to generate novel and more sensitive probes for ions, metabolites, and enzymatic activity, but also to selectively deliver these sensors to specific intracellular compartments. In this review, we summarize the principles that have been used to target organic or protein sensors to different cellular compartments and their application to cellular signaling.
Collapse
Affiliation(s)
- Diana Pendin
- Neuroscience Institute, National Research Council, Padua Section, 35121 Padua, Italy.,Department of Biomedical Sciences, University of Padua, 35121 Padua, Italy
| | - Elisa Greotti
- Neuroscience Institute, National Research Council, Padua Section, 35121 Padua, Italy.,Department of Biomedical Sciences, University of Padua, 35121 Padua, Italy
| | - Konstantinos Lefkimmiatis
- Neuroscience Institute, National Research Council, Padua Section, 35121 Padua, Italy.,Venetian Institute of Molecular Medicine, 35129 Padua, Italy
| | - Tullio Pozzan
- Neuroscience Institute, National Research Council, Padua Section, 35121 Padua, Italy.,Venetian Institute of Molecular Medicine, 35129 Padua, Italy.,Department of Biomedical Sciences, University of Padua, 35121 Padua, Italy
| |
Collapse
|
40
|
Yang PC, Boras BW, Jeng MT, Docken SS, Lewis TJ, McCulloch AD, Harvey RD, Clancy CE. A Computational Modeling and Simulation Approach to Investigate Mechanisms of Subcellular cAMP Compartmentation. PLoS Comput Biol 2016; 12:e1005005. [PMID: 27409243 PMCID: PMC4943723 DOI: 10.1371/journal.pcbi.1005005] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/26/2016] [Indexed: 11/18/2022] Open
Abstract
Subcellular compartmentation of the ubiquitous second messenger cAMP has been widely proposed as a mechanism to explain unique receptor-dependent functional responses. How exactly compartmentation is achieved, however, has remained a mystery for more than 40 years. In this study, we developed computational and mathematical models to represent a subcellular sarcomeric space in a cardiac myocyte with varying detail. We then used these models to predict the contributions of various mechanisms that establish subcellular cAMP microdomains. We used the models to test the hypothesis that phosphodiesterases act as functional barriers to diffusion, creating discrete cAMP signaling domains. We also used the models to predict the effect of a range of experimentally measured diffusion rates on cAMP compartmentation. Finally, we modeled the anatomical structures in a cardiac myocyte diad, to predict the effects of anatomical diffusion barriers on cAMP compartmentation. When we incorporated experimentally informed model parameters to reconstruct an in silico subcellular sarcomeric space with spatially distinct cAMP production sites linked to caveloar domains, the models predict that under realistic conditions phosphodiesterases alone were insufficient to generate significant cAMP gradients. This prediction persisted even when combined with slow cAMP diffusion. When we additionally considered the effects of anatomic barriers to diffusion that are expected in the cardiac myocyte dyadic space, cAMP compartmentation did occur, but only when diffusion was slow. Our model simulations suggest that additional mechanisms likely contribute to cAMP gradients occurring in submicroscopic domains. The difference between the physiological and pathological effects resulting from the production of cAMP may be a function of appropriate compartmentation of cAMP signaling. Therefore, understanding the contribution of factors that are responsible for coordinating the spatial and temporal distribution of cAMP at the subcellular level could be important for developing new strategies for the prevention or treatment of unfavorable responses associated with different disease states. Subcellular compartmentation of the ubiquitous second messenger cAMP has been widely proposed as a mechanism to explain how this one signaling molecule produces unique receptor-dependent functional responses. But, how exactly compartmentation occurs, is unknown. This is because there has been no way to measure the regulation and movement of cAMP in cells with intact subcellular structures. In this study, we applied novel computational approaches to predict whether PDE activity alone or in conjunction with restricted diffusion is sufficient to produce cAMP gradients in submicroscopic signaling domains. We also used the models to test the effect of a range of experimentally measured diffusion rates on cAMP compartmentation. Our simulations suggest that PDE activity alone is not sufficient to explain compartmentation, but if diffusion of cAMP is limited by potential factors such as molecular crowding, PKA buffering, and anatomical barriers, then compartmentation is predicted to occur.
Collapse
Affiliation(s)
- Pei-Chi Yang
- Department of Pharmacology, University of California Davis, Davis, California, United States of America
| | - Britton W. Boras
- Department of Biomedical Engineering, University of California San Diego, La Jolla, California, United States of America
| | - Mao-Tsuen Jeng
- Department of Pharmacology, University of California Davis, Davis, California, United States of America
| | - Steffen S. Docken
- Department of Pharmacology, University of California Davis, Davis, California, United States of America
- Department of Mathematics, University of California Davis, Davis, California, United States of America
| | - Timothy J. Lewis
- Department of Mathematics, University of California Davis, Davis, California, United States of America
- * E-mail: (TJL); (ADM); (RDH); (CEC)
| | - Andrew D. McCulloch
- Department of Biomedical Engineering, University of California San Diego, La Jolla, California, United States of America
- * E-mail: (TJL); (ADM); (RDH); (CEC)
| | - Robert D. Harvey
- Department of Pharmacology, Center for Molecular Medicine, School of Medicine, University of Nevada Reno, Reno, Nevada, United States of America
- * E-mail: (TJL); (ADM); (RDH); (CEC)
| | - Colleen E. Clancy
- Department of Pharmacology, University of California Davis, Davis, California, United States of America
- * E-mail: (TJL); (ADM); (RDH); (CEC)
| |
Collapse
|
41
|
A Computational Modeling and Simulation Approach to Investigate Mechanisms of Subcellular cAMP Compartmentation. PLoS Comput Biol 2016. [DOI: 10.1371/journal.pcbi.1005005 pcompbiol-d-16-00287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
42
|
Richards M, Lomas O, Jalink K, Ford KL, Vaughan-Jones RD, Lefkimmiatis K, Swietach P. Intracellular tortuosity underlies slow cAMP diffusion in adult ventricular myocytes. Cardiovasc Res 2016; 110:395-407. [PMID: 27089919 PMCID: PMC4872880 DOI: 10.1093/cvr/cvw080] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 04/11/2016] [Indexed: 12/20/2022] Open
Abstract
Aims 3′,5′-Cyclic adenosine monophosphate (cAMP) signals in the heart are often confined to concentration microdomains shaped by cAMP diffusion and enzymatic degradation. While the importance of phosphodiesterases (degradative enzymes) in sculpting cAMP microdomains is well established in cardiomyocytes, less is known about cAMP diffusivity (DcAMP) and factors affecting it. Many earlier studies have reported fast diffusivity, which argues against sharply defined microdomains. Methods and results [cAMP] dynamics in the cytoplasm of adult rat ventricular myocytes were imaged using a fourth generation genetically encoded FRET-based sensor. The [cAMP]-response to the addition and removal of isoproterenol (β-adrenoceptor agonist) quantified the rates of cAMP synthesis and degradation. To obtain a read out of DcAMP, a stable [cAMP] gradient was generated using a microfluidic device which delivered agonist to one half of the myocyte only. After accounting for phosphodiesterase activity, DcAMP was calculated to be 32 µm2/s; an order of magnitude lower than in water. Diffusivity was independent of the amount of cAMP produced. Saturating cAMP-binding sites with the analogue 6-Bnz-cAMP did not accelerate DcAMP, arguing against a role of buffering in restricting cAMP mobility. cAMP diffused at a comparable rate to chemically unrelated but similar sized molecules, arguing for a common physical cause of restricted diffusivity. Lower mitochondrial density and order in neonatal cardiac myocytes allowed for faster diffusion, demonstrating the importance of mitochondria as physical barriers to cAMP mobility. Conclusion In adult cardiac myocytes, tortuosity due to physical barriers, notably mitochondria, restricts cAMP diffusion to levels that are more compatible with microdomain signalling.
Collapse
Affiliation(s)
- Mark Richards
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Parks Road, Oxford OX1 3PT, UK
| | - Oliver Lomas
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Parks Road, Oxford OX1 3PT, UK
| | - Kees Jalink
- Division of Cell Biology, Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands
| | - Kerrie L Ford
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Parks Road, Oxford OX1 3PT, UK
| | - Richard D Vaughan-Jones
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Parks Road, Oxford OX1 3PT, UK
| | - Konstantinos Lefkimmiatis
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Parks Road, Oxford OX1 3PT, UK BHF Centre of Research Excellence, Oxford
| | - Pawel Swietach
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Parks Road, Oxford OX1 3PT, UK
| |
Collapse
|
43
|
Zhao CY, Greenstein JL, Winslow RL. Roles of phosphodiesterases in the regulation of the cardiac cyclic nucleotide cross-talk signaling network. J Mol Cell Cardiol 2016; 91:215-27. [PMID: 26773602 PMCID: PMC4764497 DOI: 10.1016/j.yjmcc.2016.01.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 12/12/2015] [Accepted: 01/04/2016] [Indexed: 12/27/2022]
Abstract
The balanced signaling between the two cyclic nucleotides (cNs) cAMP and cGMP plays a critical role in regulating cardiac contractility. Their degradation is controlled by distinctly regulated phosphodiesterase isoenzymes (PDEs), which in turn are also regulated by these cNs. As a result, PDEs facilitate communication between the β-adrenergic and Nitric Oxide (NO)/cGMP/Protein Kinase G (PKG) signaling pathways, which regulate the synthesis of cAMP and cGMP respectively. The phenomena in which the cAMP and cGMP pathways influence the dynamics of each other are collectively referred to as cN cross-talk. However, the cross-talk response and the individual roles of each PDE isoenzyme in shaping this response remain to be fully characterized. We have developed a computational model of the cN cross-talk network that mechanistically integrates the β-adrenergic and NO/cGMP/PKG pathways via regulation of PDEs by both cNs. The individual model components and the integrated network model replicate experimentally observed activation-response relationships and temporal dynamics. The model predicts that, due to compensatory interactions between PDEs, NO stimulation in the presence of sub-maximal β-adrenergic stimulation results in an increase in cytosolic cAMP accumulation and corresponding increases in PKA-I and PKA-II activation; however, the potentiation is small in magnitude compared to that of NO activation of the NO/cGMP/PKG pathway. In a reciprocal manner, β-adrenergic stimulation in the presence of sub-maximal NO stimulation results in modest cGMP elevation and corresponding increase in PKG activation. In addition, we demonstrate that PDE2 hydrolyzes increasing amounts of cAMP with increasing levels of β-adrenergic stimulation, and hydrolyzes increasing amounts of cGMP with decreasing levels of NO stimulation. Finally, we show that PDE2 compensates for inhibition of PDE5 both in terms of cGMP and cAMP dynamics, leading to cGMP elevation and increased PKG activation, while maintaining whole-cell β-adrenergic responses similar to that prior to PDE5 inhibition. By defining and quantifying reactions comprising cN cross-talk, the model characterizes the cross-talk response and reveals the underlying mechanisms of PDEs in this non-linear, tightly-coupled reaction system.
Collapse
Affiliation(s)
- Claire Y Zhao
- Department of Biomedical Engineering and the Institute for Computational Medicine, The Johns Hopkins University School of Medicine and Whiting School of Engineering, 3400 N Charles Street, Baltimore, MD 21218, USA.
| | - Joseph L Greenstein
- Department of Biomedical Engineering and the Institute for Computational Medicine, The Johns Hopkins University School of Medicine and Whiting School of Engineering, 3400 N Charles Street, Baltimore, MD 21218, USA.
| | - Raimond L Winslow
- Department of Biomedical Engineering and the Institute for Computational Medicine, The Johns Hopkins University School of Medicine and Whiting School of Engineering, 3400 N Charles Street, Baltimore, MD 21218, USA.
| |
Collapse
|
44
|
Agarwal SR, Clancy CE, Harvey RD. Mechanisms Restricting Diffusion of Intracellular cAMP. Sci Rep 2016; 6:19577. [PMID: 26795432 PMCID: PMC4726171 DOI: 10.1038/srep19577] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 12/11/2015] [Indexed: 01/11/2023] Open
Abstract
Although numerous receptors stimulate cAMP production in a wide array of cells, many elicit distinct, highly localized responses, implying that the subcellular distribution of cAMP is not uniform. One often used explanation is that phosphodiesterases, which breakdown cAMP, act as functional barriers limiting diffusion. However, several studies refute the notion that this is sufficient, suggesting that phosphodiesterase-independent movement of cAMP must occur at rates slower than free diffusion. But, until now this has never been demonstrated. Using Raster Image Correlation Spectroscopy (RICS), we measured the diffusion coefficient of a fluorescently-labeled cAMP derivative (φ450-cAMP) as well as other fluorescent molecules in order to investigate the role that molecular size, cell morphology, and buffering by protein kinase A (PKA) play in restricting cAMP mobility in different cell types. Our results demonstrate that cytosolic movement of cAMP is indeed much slower than the rate of free diffusion and that interactions with PKA, especially type II PKA associated with mitochondria, play a significant role. These findings have important implications with respect to cAMP signaling in all cells.
Collapse
Affiliation(s)
- Shailesh R Agarwal
- Department of Pharmacology University of Nevada School of Medicine Reno, NV 89557
| | - Colleen E Clancy
- Department of Pharmacology University of California, Davis Davis, CA 95616
| | - Robert D Harvey
- Department of Pharmacology University of Nevada School of Medicine Reno, NV 89557
| |
Collapse
|
45
|
Neves-Zaph SR, Song RS. Development of computational models of cAMP signaling. Methods Mol Biol 2015; 1294:203-17. [PMID: 25783888 DOI: 10.1007/978-1-4939-2537-7_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Despite the growing evidence defining the cAMP signaling network as a master regulator of cellular function in a number of tissues, regulatory feedback loops, signal compartmentalization, as well as cross-talk with other signaling pathways make understanding the emergent properties of cAMP cellular action a daunting task. Dynamical models of signaling that combine quantitative rigor with molecular details can contribute valuable mechanistic insight into the complexity of intracellular cAMP signaling by complementing and guiding experimental efforts. In this chapter, we review the development of cAMP computational models. We describe how features of the cAMP network can be represented and review the types of experimental data useful in modeling cAMP signaling. We also compile a list of published cAMP models that can aid in the development of novel dynamical models of cAMP signaling.
Collapse
Affiliation(s)
- Susana R Neves-Zaph
- Department of Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA,
| | | |
Collapse
|
46
|
Zhao CY, Greenstein JL, Winslow RL. Interaction between phosphodiesterases in the regulation of the cardiac β-adrenergic pathway. J Mol Cell Cardiol 2015; 88:29-38. [PMID: 26388264 PMCID: PMC4641241 DOI: 10.1016/j.yjmcc.2015.09.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 08/20/2015] [Accepted: 09/17/2015] [Indexed: 12/21/2022]
Abstract
In cardiac myocytes, the second messenger cAMP is synthesized within the β-adrenergic signaling pathway upon sympathetic activation. It activates Protein Kinase A (PKA) mediated phosphorylation of multiple target proteins that are functionally critical to cardiac contractility. The dynamics of cAMP are also controlled indirectly by cGMP-mediated regulation of phosphodiesterase isoenzymes (PDEs). The nature of the interactions between cGMP and the PDEs, as well as between PDE isoforms, and how these ultimately transduce the cGMP signal to regulate cAMP remains unclear. To better understand this, we have developed mechanistically detailed models of PDEs 1-4, the primary cAMP-hydrolyzing PDEs in cardiac myocytes, and integrated them into a model of the β-adrenergic signaling pathway. The PDE models are based on experimental studies performed on purified PDEs which have demonstrated that cAMP and cGMP bind competitively to the cyclic nucleotide (cN)-binding domains of PDEs 1, 2, and 3, while PDE4 regulation occurs via PKA-mediated phosphorylation. Individual PDE models reproduce experimentally measured cAMP hydrolysis rates with dose-dependent cGMP regulation. The fully integrated model replicates experimentally observed whole-cell cAMP activation-response relationships and temporal dynamics upon varying degrees of β-adrenergic stimulation in cardiac myocytes. Simulations reveal that as a result of network interactions, reduction in the level of one PDE is partially compensated for by increased activation of others. PDE2 and PDE4 exert the strongest compensatory roles among all PDEs. In addition, PDE2 competes with other PDEs to bind and hydrolyze cAMP and is a strong regulator of PDE interactions. Finally, an increasing level of cGMP gradually out-competes cAMP for the catalytic sites of PDEs 1, 2, and 3, suppresses their cAMP hydrolysis rates, and results in amplified cAMP signaling. These results provide insights into how PDEs transduce cGMP signals to regulate cAMP and how PDE interactions affect cardiac β-adrenergic response.
Collapse
MESH Headings
- Animals
- Binding Sites
- Binding, Competitive
- Cyclic AMP/metabolism
- Cyclic AMP-Dependent Protein Kinases/genetics
- Cyclic AMP-Dependent Protein Kinases/metabolism
- Cyclic GMP/metabolism
- Cyclic Nucleotide Phosphodiesterases, Type 1/genetics
- Cyclic Nucleotide Phosphodiesterases, Type 1/metabolism
- Cyclic Nucleotide Phosphodiesterases, Type 2/genetics
- Cyclic Nucleotide Phosphodiesterases, Type 2/metabolism
- Cyclic Nucleotide Phosphodiesterases, Type 3/genetics
- Cyclic Nucleotide Phosphodiesterases, Type 3/metabolism
- Cyclic Nucleotide Phosphodiesterases, Type 4/genetics
- Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism
- Feedback, Physiological
- Gene Expression Regulation
- Humans
- Mice
- Models, Cardiovascular
- Myocardial Contraction/physiology
- Myocardium/metabolism
- Myocytes, Cardiac/cytology
- Myocytes, Cardiac/metabolism
- Phosphorylation
- Protein Binding
- Signal Transduction
Collapse
Affiliation(s)
- Claire Y Zhao
- Department of Biomedical Engineering and the Institute for Computational Medicine, The Johns Hopkins University School of Medicine and Whiting School of Engineering, 3400 N Charles Street, Baltimore, MD 21218, USA.
| | - Joseph L Greenstein
- Department of Biomedical Engineering and the Institute for Computational Medicine, The Johns Hopkins University School of Medicine and Whiting School of Engineering, 3400 N Charles Street, Baltimore, MD 21218, USA.
| | - Raimond L Winslow
- Department of Biomedical Engineering and the Institute for Computational Medicine, The Johns Hopkins University School of Medicine and Whiting School of Engineering, 3400 N Charles Street, Baltimore, MD 21218, USA.
| |
Collapse
|
47
|
Huang YMM, Huber G, McCammon JA. Electrostatic steering enhances the rate of cAMP binding to phosphodiesterase: Brownian dynamics modeling. Protein Sci 2015; 24:1884-9. [PMID: 26346301 DOI: 10.1002/pro.2794] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 08/20/2015] [Accepted: 08/24/2015] [Indexed: 01/18/2023]
Abstract
Signaling in cells often involves co-localization of the signaling molecules. Most experimental evidence has shown that intracellular compartmentalization restricts the range of action of the second messenger, 3'-5'-cyclic adenosine monophosphate (cAMP), which is degraded by phosphodiesterases (PDEs). The objective of this study is to understand the details of molecular encounter that may play a role in efficient operation of the cAMP signaling apparatus. The results from electrostatic potential calculations and Brownian dynamics simulations suggest that positive potential of the active site from PDE enhances capture of diffusing cAMP molecules. This electrostatic steering between cAMP and the active site of a PDE plays a major role in the enzyme-substrate encounter, an effect that may be of significance in sequestering cAMP released from a nearby binding site or in attracting more freely diffusing cAMP molecules.
Collapse
Affiliation(s)
- Yu-ming M Huang
- Department of Pharmacology, University of California, San Diego, La Jolla, California, 92093
| | - Gary Huber
- Howard Hughes Medical Institute, University of California, San Diego, La Jolla, California, 92093
| | - J Andrew McCammon
- Department of Pharmacology, University of California, San Diego, La Jolla, California, 92093.,Howard Hughes Medical Institute, University of California, San Diego, La Jolla, California, 92093.,Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, 92093
| |
Collapse
|
48
|
Xin W, Feinstein WP, Britain AL, Ochoa CD, Zhu B, Richter W, Leavesley SJ, Rich TC. Estimating the magnitude of near-membrane PDE4 activity in living cells. Am J Physiol Cell Physiol 2015. [PMID: 26201952 DOI: 10.1152/ajpcell.00090.2015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Recent studies have demonstrated that functionally discrete pools of phosphodiesterase (PDE) activity regulate distinct cellular functions. While the importance of localized pools of enzyme activity has become apparent, few studies have estimated enzyme activity within discrete subcellular compartments. Here we present an approach to estimate near-membrane PDE activity. First, total PDE activity is measured using traditional PDE activity assays. Second, known cAMP concentrations are dialyzed into single cells and the spatial spread of cAMP is monitored using cyclic nucleotide-gated channels. Third, mathematical models are used to estimate the spatial distribution of PDE activity within cells. Using this three-tiered approach, we observed two pharmacologically distinct pools of PDE activity, a rolipram-sensitive pool and an 8-methoxymethyl IBMX (8MM-IBMX)-sensitive pool. We observed that the rolipram-sensitive PDE (PDE4) was primarily responsible for cAMP hydrolysis near the plasma membrane. Finally, we observed that PDE4 was capable of blunting cAMP levels near the plasma membrane even when 100 μM cAMP were introduced into the cell via a patch pipette. Two compartment models predict that PDE activity near the plasma membrane, near cyclic nucleotide-gated channels, was significantly lower than total cellular PDE activity and that a slow spatial spread of cAMP allowed PDE activity to effectively hydrolyze near-membrane cAMP. These results imply that cAMP levels near the plasma membrane are distinct from those in other subcellular compartments; PDE activity is not uniform within cells; and localized pools of AC and PDE activities are responsible for controlling cAMP levels within distinct subcellular compartments.
Collapse
Affiliation(s)
- Wenkuan Xin
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina
| | - Wei P Feinstein
- High Performance Computing, Louisiana State University, Baton Rouge, Louisiana
| | - Andrea L Britain
- Department of Pharmacology, University of South Alabama, Mobile, Alabama; and Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - Cristhiaan D Ochoa
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Bing Zhu
- Mitchell Cancer Institute, Mobile, Alabama
| | - Wito Richter
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama; Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - Silas J Leavesley
- Department of Chemical and Biomolecular Engineering, University of South Alabama, Mobile, Alabama; Department of Pharmacology, University of South Alabama, Mobile, Alabama; and Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - Thomas C Rich
- Department of Pharmacology, University of South Alabama, Mobile, Alabama; and Center for Lung Biology, University of South Alabama, Mobile, Alabama
| |
Collapse
|
49
|
Filadi R, Pozzan T. Generation and functions of second messengers microdomains. Cell Calcium 2015; 58:405-14. [PMID: 25861743 DOI: 10.1016/j.ceca.2015.03.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 03/17/2015] [Accepted: 03/18/2015] [Indexed: 01/09/2023]
Abstract
A compelling example of the mechanisms by which the cells can organize and decipher complex and different functional activities is the convergence of a multitude of stimuli into signalling cascades, involving only few intracellular second messengers. The possibility of restricting these signalling events in distinct microdomains allows a fine and selective tuning of very different tasks. In this review, we will discuss the mechanisms that control the formation and the spatial distribution of Ca(2+) and cAMP microdomains, providing some examples of their functional consequences.
Collapse
Affiliation(s)
- Riccardo Filadi
- Department of Biomedical Sciences, University of Padova, Italy
| | - Tullio Pozzan
- Department of Biomedical Sciences, University of Padova, Italy; CNR Institute of Neuroscience, Padova Section, Padova, Italy; Venetian Institute of Molecular Medicine (VIMM), Padova, Italy.
| |
Collapse
|
50
|
Balycheva M, Faggian G, Glukhov AV, Gorelik J. Microdomain-specific localization of functional ion channels in cardiomyocytes: an emerging concept of local regulation and remodelling. Biophys Rev 2015; 7:43-62. [PMID: 28509981 PMCID: PMC5425752 DOI: 10.1007/s12551-014-0159-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 12/18/2014] [Indexed: 12/26/2022] Open
Abstract
Cardiac excitation involves the generation of action potential by individual cells and the subsequent conduction of the action potential from cell to cell through intercellular gap junctions. Excitation of the cellular membrane results in opening of the voltage-gated L-type calcium ion (Ca2+) channels, thereby allowing a small amount of Ca2+ to enter the cell, which in turn triggers the release of a much greater amount of Ca2+ from the sarcoplasmic reticulum, the intracellular Ca2+ store, and gives rise to the systolic Ca2+ transient and contraction. These processes are highly regulated by the autonomic nervous system, which ensures the acute and reliable contractile function of the heart and the short-term modulation of this function upon changes in heart rate or workload. It has recently become evident that discrete clusters of different ion channels and regulatory receptors are present in the sarcolemma, where they form an interacting network and work together as a part of a macro-molecular signalling complex which in turn allows the specificity, reliability and accuracy of the autonomic modulation of the excitation-contraction processes by a variety of neurohormonal pathways. Disruption in subcellular targeting of ion channels and associated signalling proteins may contribute to the pathophysiology of a variety of cardiac diseases, including heart failure and certain arrhythmias. Recent methodological advances have made it possible to routinely image the topography of live cardiomyocytes, allowing the study of clustering functional ion channels and receptors as well as their coupling within a specific microdomain. In this review we highlight the emerging understanding of the functionality of distinct subcellular microdomains in cardiac myocytes (e.g. T-tubules, lipid rafts/caveolae, costameres and intercalated discs) and their functional role in the accumulation and regulation of different subcellular populations of sodium, Ca2+ and potassium ion channels and their contributions to cellular signalling and cardiac pathology.
Collapse
Affiliation(s)
- Marina Balycheva
- Department of Cardiovascular Sciences, National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, 4th Floor National Heart and Lung Institute, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK
- Cardiosurgery Department, University of Verona School of Medicine, Verona, Italy
| | - Giuseppe Faggian
- Cardiosurgery Department, University of Verona School of Medicine, Verona, Italy
| | - Alexey V Glukhov
- Department of Cardiovascular Sciences, National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, 4th Floor National Heart and Lung Institute, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK.
| | - Julia Gorelik
- Department of Cardiovascular Sciences, National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, 4th Floor National Heart and Lung Institute, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|