1
|
Elsheikh A, Driggers CM, Truong HH, Yang Z, Allen J, Henriksen NM, Walczewska-Szewc K, Shyng SL. AI-based discovery and cryoEM structural elucidation of a K ATP channel pharmacochaperone. eLife 2025; 13:RP103159. [PMID: 40135739 PMCID: PMC11942174 DOI: 10.7554/elife.103159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025] Open
Abstract
Pancreatic KATP channel trafficking defects underlie congenital hyperinsulinism (CHI) cases unresponsive to the KATP channel opener diazoxide, the mainstay medical therapy for CHI. Current clinically used KATP channel inhibitors have been shown to act as pharmacochaperones and restore surface expression of trafficking mutants; however, their therapeutic utility for KATP trafficking-impaired CHI is hindered by high affinity binding, which limits functional recovery of rescued channels. Recent structural studies of KATP channels employing cryo-electron microscopy (cryoEM) have revealed a promiscuous pocket where several known KATP pharmacochaperones bind. The structural knowledge provides a framework for discovering KATP channel pharmacochaperones with desired reversible inhibitory effects to permit functional recovery of rescued channels. Using an AI-based virtual screening technology AtomNet followed by functional validation, we identified a novel compound, termed Aekatperone, which exhibits chaperoning effects on KATP channel trafficking mutations. Aekatperone reversibly inhibits KATP channel activity with a half-maximal inhibitory concentration (IC50) ~9 μM. Mutant channels rescued to the cell surface by Aekatperone showed functional recovery upon washout of the compound. CryoEM structure of KATP bound to Aekatperone revealed distinct binding features compared to known high affinity inhibitor pharmacochaperones. Our findings unveil a KATP pharmacochaperone enabling functional recovery of rescued channels as a promising therapeutic for CHI caused by KATP trafficking defects.
Collapse
Affiliation(s)
- Assmaa Elsheikh
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science UniversityPortlandUnited States
- Department of Medical Biochemistry, College of Medicine, Tanta UniversityTantaEgypt
| | - Camden M Driggers
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science UniversityPortlandUnited States
| | | | - Zhongying Yang
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science UniversityPortlandUnited States
| | - John Allen
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science UniversityPortlandUnited States
| | | | - Katarzyna Walczewska-Szewc
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in ToruńToruńPoland
| | - Show-Ling Shyng
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science UniversityPortlandUnited States
| |
Collapse
|
2
|
Tao E, Corry B. Drugs exhibit diverse binding modes and access routes in the Nav1.5 cardiac sodium channel pore. J Gen Physiol 2025; 157:e202413658. [PMID: 39774837 PMCID: PMC11706274 DOI: 10.1085/jgp.202413658] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/05/2024] [Accepted: 12/07/2024] [Indexed: 01/11/2025] Open
Abstract
Small molecule inhibitors of the sodium channel are common pharmacological agents used to treat a variety of cardiac and nervous system pathologies. They act on the channel via binding within the pore to directly block the sodium conduction pathway and/or modulate the channel to favor a non-conductive state. Despite their abundant clinical use, we lack specific knowledge of their protein-drug interactions and the subtle variations between different compound structures. This study investigates the binding and accessibility of nine different compounds in the pore cavity of the Nav1.5 sodium channel using enhanced sampling simulations. We find that most compounds share a common location of pore binding-near the mouth of the DII-III fenestration-associated with the high number of aromatic residues in this region. In contrast, some other compounds prefer binding within the lateral fenestrations where they compete with lipids, rather than binding in the central cavity. Overall, our simulation results suggest that the drug binding within the pore is highly promiscuous, with most drugs having multiple low-affinity binding sites. Access to the pore interior via two out of four of the hydrophobic fenestrations is favorable for the majority of compounds. Our results indicate that the polyspecific and diffuse binding of inhibitors in the pore contributes to the varied nature of their inhibitory effects and can be exploited for future drug discovery and optimization.
Collapse
Affiliation(s)
- Elaine Tao
- Division of Biomedical Science and Biochemistry, Research School of Biology, Australian National University, Canberra, Australia
| | - Ben Corry
- Division of Biomedical Science and Biochemistry, Research School of Biology, Australian National University, Canberra, Australia
| |
Collapse
|
3
|
Madheswaran K, Srinivedha CV, George R, V R HK, Padmanabhan K. Deciphering the Enigma: Lignocaine Resistance After Scorpion Envenomation. Cureus 2025; 17:e81128. [PMID: 40276405 PMCID: PMC12019894 DOI: 10.7759/cureus.81128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2025] [Indexed: 04/26/2025] Open
Abstract
Lignocaine, an amide-type local anesthetic (LA), is routinely used in dentistry. Resistance to lignocaine is rare, and it can occur due to various reasons, such as genetic mutations or variations in the local environment where it is injected. One reason might be scorpion envenomation. We report a case of a 39-year-old female patient with a chief complaint of a gradual reduction in mouth opening for the past five years, with a history of scorpion bite. The patient had a scorpion bite 18 years back. She started developing symptoms of oral submucous fibrosis five years ago. The patient exhibited resistance to lignocaine, after which alternate agents were tried. We found that ropivacaine was effective as a LA, enabling airway management via cricothyrotomy and subsequent nasal intubation, following which bilateral fibrotomy, bilateral coronoidectomy, and bilateral nasolabial flap reconstruction were performed. The resistance to lignocaine is due to modifications in the sodium channels. Scorpion venom affects the local environment surrounding the nerve and has systemic effects as well. As an alternative to lignocaine, bupivacaine and ropivacaine can be tested for sensitivity. In patients with a recent history of scorpion bites, there is a higher chance of resistance to lignocaine. Therefore, evaluating the patients with a history of scorpion bites for resistance to lignocaine before any procedure is mandatory.
Collapse
Affiliation(s)
- Karthiga Madheswaran
- Department of Oral and Maxillofacial Surgery, Indira Gandhi Institute of Dental Sciences, Sri Balaji Vidyapeeth, Puducherry, IND
| | - C V Srinivedha
- Department of Dentistry, Sri Balaji Vidyapeeth, Puducherry, IND
| | - Rinku George
- Department of Oral and Maxillofacial Surgery, Indira Gandhi Institute of Dental Sciences, Sri Balaji Vidyapeeth, Puducherry, IND
| | - Hemanth Kumar V R
- Department of Anesthesiology and Critical Care, Mahatma Gandhi Medical College and Research Institute, Puducherry, IND
| | - Karthikeyan Padmanabhan
- Department of Otolaryngology - Head and Neck Surgery, Mahatma Gandhi Medical College and Research Institute, Puducherry, IND
| |
Collapse
|
4
|
ElSheikh A, Driggers CM, Truong HH, Yang Z, Allen J, Henriksen N, Walczewska-Szewc K, Shyng SL. AI-Based Discovery and CryoEM Structural Elucidation of a K ATP Channel Pharmacochaperone. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.09.05.611490. [PMID: 39282384 PMCID: PMC11398524 DOI: 10.1101/2024.09.05.611490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Pancreatic KATP channel trafficking defects underlie congenital hyperinsulinism (CHI) cases unresponsive to the KATP channel opener diazoxide, the mainstay medical therapy for CHI. Current clinically used KATP channel inhibitors have been shown to act as pharmacochaperones and restore surface expression of trafficking mutants; however, their therapeutic utility for KATP trafficking impaired CHI is hindered by high-affinity binding, which limits functional recovery of rescued channels. Recent structural studies of KATP channels employing cryo-electron microscopy (cryoEM) have revealed a promiscuous pocket where several known KATP pharmacochaperones bind. The structural knowledge provides a framework for discovering KATP channel pharmacochaperones with desired reversible inhibitory effects to permit functional recovery of rescued channels. Using an AI-based virtual screening technology AtomNet® followed by functional validation, we identified a novel compound, termed Aekatperone, which exhibits chaperoning effects on KATP channel trafficking mutations. Aekatperone reversibly inhibits KATP channel activity with a half-maximal inhibitory concentration (IC50) ~ 9 μM. Mutant channels rescued to the cell surface by Aekatperone showed functional recovery upon washout of the compound. CryoEM structure of KATP bound to Aekatperone revealed distinct binding features compared to known high affinity inhibitor pharmacochaperones. Our findings unveil a KATP pharmacochaperone enabling functional recovery of rescued channels as a promising therapeutic for CHI caused by KATP trafficking defects.
Collapse
Affiliation(s)
- Assmaa ElSheikh
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Medical Biochemistry, College of Medicine, Tanta University, Tanta, Egypt
| | - Camden M. Driggers
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Ha H. Truong
- Atomwise Inc., 250 Sutter St., Suite 650, San Francisco, CA, USA
| | - Zhongying Yang
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - John Allen
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Niel Henriksen
- Atomwise Inc., 250 Sutter St., Suite 650, San Francisco, CA, USA
| | - Katarzyna Walczewska-Szewc
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, ul. Grudziądzka 5, 87-100 Toruń, Poland
| | - Show-Ling Shyng
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
5
|
Dzhumaniiazova I, Filatova TS, Shamshura A, Abramochkin DV, Shiels HA. Seasonal remodelling of the fish heart alters sensitivity to petrochemical pollutant, 3-methylphenanthrene. Comp Biochem Physiol C Toxicol Pharmacol 2025; 288:110082. [PMID: 39581288 DOI: 10.1016/j.cbpc.2024.110082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/08/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
Exploitation of offshore oil reserves, heightened traffic in marine transportation routes, and the release of petrochemicals from the thawing of permafrost and glaciers is increasing the bioavailability of polycyclic aromatic hydrocarbons (PAHs) to aquatic organisms. This availability may also change with the seasons as temperature changes accessibility of Arctic transport routes and the degree of land- and ice-melt and thus run-off into coastal ecosystems. Seasonal temperature change also remodels the ion channels in the heart of fish to facilitated preserved cardiac function across a range of temperatures. How this seasonal cardiac remodelling impacts vulnerability to pollutants is currently unknown. In this study we accessed the electrical activity of navaga cod (Eleginus nawaga) ventricular cardiomyocytes under the dual influence of seasonal change and varying concentrations of a pervasive PAH pollutant, 3-methylphenanthrene (3-MP). We used whole-cell patch-clamp to elucidate the effect of various doses of 3-MP on action potential (AP) parameters and the main ion currents (IKr, IK1, INa, ICa) in ventricular cardiomyocytes isolated from navaga cod in winter and summer at the White Sea, close to the Russian Arctic circle. Navaga cod ventricular cardiomyocytes were particularly vulnerable to 3-MP during the winter season. Exposure to 300 nM 3-MP resulted in significant changes in AP duration in winter-acclimatized fish, whereas no such changes were observed in summer-acclimatized fish. The IKr current was the most sensitive to 3-MP, with a winter IC50 of 49.7 nM and a summer IC50 of 53 μM. The INa current also exhibited seasonal shifts in sensitivity to 3-MP, with IC50 values of 2.39 μM in winter-acclimatized fish and 7.73 μM in summer-acclimatized fish. No significant differences were observed in the effect of 3-MP on the peak ICa current, although 3 μM of 3-MP caused a pronounced decrease in charge transferred by ICa (e.g. QCa) in both seasons. The IK1 current was insensitive to 3-MP in both winter and summer fish. These findings highlight how remodelling of the fish heart with changing season alters the potency of PAH pollution. This paper lays the groundwork for future research on the molecular mechanisms that drive the altered seasonal potency of pollutants in navaga cod and other species.
Collapse
Affiliation(s)
- Irina Dzhumaniiazova
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye Gory, 1, 12, Moscow, Russia
| | - Tatiana S Filatova
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye Gory, 1, 12, Moscow, Russia; Laboratory of Cardiac Electrophysiology, Chazov National Medical Research Center for Cardiology, Moscow, Russia
| | - Artem Shamshura
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye Gory, 1, 12, Moscow, Russia
| | - Denis V Abramochkin
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye Gory, 1, 12, Moscow, Russia; Department of Physiology, Pirogov Russian National Research Medical University, Ostrovityanova str., 1, Moscow, Russia
| | - Holly A Shiels
- Faculty of Biology, Medicine, and Health, Core Technology Facility, 46 Grafton Street, University of Manchester, Manchester M13 9NT, UK.
| |
Collapse
|
6
|
Tikhonov DB, Korkosh VS, Zhorov BS. 3D-aligned tetrameric ion channels with universal residue labels for comparative structural analysis. Biophys J 2025; 124:458-470. [PMID: 39696821 PMCID: PMC11788486 DOI: 10.1016/j.bpj.2024.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/19/2024] [Accepted: 12/16/2024] [Indexed: 12/20/2024] Open
Abstract
Despite their large functional diversity and poor sequence similarity, tetrameric and pseudotetrameric potassium, sodium, calcium, and cyclic-nucleotide gated channels, as well as two-pore channels, transient receptor potential channels, and ionotropic glutamate receptor channels, share a common folding pattern of the transmembrane (TM) helices in the pore domain. In each subunit or repeat, two TM helices connected by a membrane-reentering P-loop contribute a quarter to the pore domain. The P-loop includes a membrane-descending helix, P1, which is structurally the most conserved element of these channels, and residues that contribute to the selectivity-filter region at the constriction of the ion-permeating pathway. In 24-TM channels, the pore domain is surrounded by four voltage-sensing domains, each with conserved folding of four TM helices. Hundreds of atomic-scale structures of these channels, referred to as "P-loop channels," have been obtained through x-ray crystallography or cryoelectron microscopy. The number of experimental structures of P-loop channels deposited in the PDB is rapidly increasing. AlphaFold3, RoseTTAFold, and other computational tools can be used to generate three-dimensional (3D) models of P-loop channels that lack experimental structures. While comparative structural analysis of P-loop channels is desirable, it is hindered by variations in residue numbers and 3D orientations of the channels. To address this problem, we have developed a universal residue-labeling scheme for TM helices and P-loops. We further created a database of P-loop ion channels, PLIC: www.plic3da.com, which currently includes over 400 3D-aligned structures with relabeled residues. We use this database to compare multiple 3D structures of channels from different subfamilies. The comparison, which for the first time employs statistical methods, highlights conserved and variable elements in the channels' folding, reveals irregularities, and identifies outliers that warrant further analysis.
Collapse
Affiliation(s)
- Denis B Tikhonov
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry Russian Academy of Sciences, St. Petersburg, Russia.
| | - Vyacheslav S Korkosh
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry Russian Academy of Sciences, St. Petersburg, Russia
| | - Boris S Zhorov
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry Russian Academy of Sciences, St. Petersburg, Russia; Department of Biochemistry and Biomedical Sciences, Master University, Hamilton, Ontario, Canada.
| |
Collapse
|
7
|
Foti Randazzese S, Toscano F, Gambadauro A, La Rocca M, Altavilla G, Carlino M, Caminiti L, Ruggeri P, Manti S. Neuromodulators in Acute and Chronic Cough in Children: An Update from the Literature. Int J Mol Sci 2024; 25:11229. [PMID: 39457010 PMCID: PMC11508565 DOI: 10.3390/ijms252011229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Cough is one of the most common reasons leading to pediatric consultations, negatively impacting the quality of life of patients and caregivers. It is defined as a sudden and forceful expulsion of air from the lungs through the mouth, typically triggered by irritation or the stimulation of sensory nerves in the respiratory tract. This reflex is controlled by a neural pathway that includes sensory receptors, afferent nerves, the brainstem's cough center, efferent nerves, and the muscles involved in coughing. Based on its duration, cough in children may be classified as acute, lasting less than four weeks, and chronic, persisting for more than four weeks. Neuromodulators have shown promise in reducing the frequency and severity of cough by modulating the neural pathways involved in the cough reflex, although they require careful monitoring and patient selection to optimize the outcomes. This review aims to examine the rationale for using neuromodulators in the management of cough in children.
Collapse
Affiliation(s)
- Simone Foti Randazzese
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 1, 98124 Messina, Italy; (S.F.R.); (F.T.); (M.L.R.); (G.A.); (L.C.)
| | - Fabio Toscano
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 1, 98124 Messina, Italy; (S.F.R.); (F.T.); (M.L.R.); (G.A.); (L.C.)
| | - Antonella Gambadauro
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 1, 98124 Messina, Italy; (S.F.R.); (F.T.); (M.L.R.); (G.A.); (L.C.)
| | - Mariarosaria La Rocca
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 1, 98124 Messina, Italy; (S.F.R.); (F.T.); (M.L.R.); (G.A.); (L.C.)
| | - Giulia Altavilla
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 1, 98124 Messina, Italy; (S.F.R.); (F.T.); (M.L.R.); (G.A.); (L.C.)
| | - Mariagrazia Carlino
- Pediatric Unit, Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy;
| | - Lucia Caminiti
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 1, 98124 Messina, Italy; (S.F.R.); (F.T.); (M.L.R.); (G.A.); (L.C.)
| | - Paolo Ruggeri
- Pulmonology Unit, Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Via Consolare Valeria, 1, 98124 Messina, Italy;
| | - Sara Manti
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 1, 98124 Messina, Italy; (S.F.R.); (F.T.); (M.L.R.); (G.A.); (L.C.)
| |
Collapse
|
8
|
Abate SM, Mergia G, Basu B, Gezahegn M, Ayinie A. Efficacy and safety of ketamine wound infiltration for postoperative pain management: a systematic review, meta-analysis, and trial sequential analysis. Ann Med Surg (Lond) 2024; 86:6046-6061. [PMID: 39359791 PMCID: PMC11444560 DOI: 10.1097/ms9.0000000000002291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/09/2024] [Indexed: 10/04/2024] Open
Abstract
Background Postoperative pain has a huge impact on the patients, families, healthcare practitioners, and healthcare delivery. Pain management with opioid-based analgesics and blind techniques have certain limitations, and ultrasound-based regional analgesia necessitates resources and experience, but ketamine wound infiltration is innovative with few side effects. However, its effectiveness is still uncertain. Methods A thorough search was carried out across various databases including PubMed/Medline, Cochrane, ScienceDirect, CINAHL, and LILACS, with no limitations on date or language. Only randomized trials comparing the effectiveness of ketamine wound infiltration for managing postoperative pain were considered for inclusion. Two authors independently conducted data extraction, and the quality of evidence was assessed using GRADEpro software. Trial sequential analysis (TSA) was utilized to ascertain the conclusiveness of the findings. Results The review showed that the first analgesic request was higher in the control group as compared to ketamine standard mean difference (SMD)=1.68 (95% CI: 0.95-2.41). The TSA revealed that the cumulative Z-curve crosses both alpha-spending boundaries and reaches the required information size threshold, revealing strong power for current evidence. However, the quality of evidence was moderate. Conclusion Despite available evidence, the provision of a firm conclusion is less optimal with current evidence as the included studies were unpowered with low to very low quality of evidence.
Collapse
Affiliation(s)
- Semagn M. Abate
- Department of Anesthesiology, College of Health Sciences and Medicine, Wollo University, Dessie
| | - Getachew Mergia
- Department of Obstetrics and Gynecology, College of Health Sciences and Medicine, Dilla University
| | - Bivash Basu
- Department of Anesthesiology, College of Health Sciences and Medicine, Dilla University
| | - Mussie Gezahegn
- Department of Anesthesiology, College of Health Sciences and Medicine, Dilla University
| | - Animut Ayinie
- Departemnt of Surgery, College of Health Sciences and Medicine, Dilla University, Dilla Ethiopia
| |
Collapse
|
9
|
Lee J, Davis J, Ralston B, Marcinkowski B, Chinn M, Burnette M. Suspected local anesthetic resistance after intrathecal, perineural, intraarticular and subcutaneous injections: a case report. AME Case Rep 2024; 8:103. [PMID: 39380859 PMCID: PMC11459387 DOI: 10.21037/acr-24-17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/30/2024] [Indexed: 10/10/2024]
Abstract
Background Local anesthetic (LA) resistance is an exceedingly rare phenomenon. Incidence is unknown given the rarity of disease. Often, inadequate response to LA can be attributed to many factors including suboptimal dosing, maldistribution, or poor procedural technique. However, in the absence of these technical factors, true LA resistance can be attributed to mutations in the voltage gated sodium channel and is strongly associated with hypermobility conditions such as Ehlers Danlos and muscular dystrophies such as Emery-Dreifuss. There have also been reports describing LA resistance after scorpion bites, although the underlying mechanism for this type of resistance is unknown. We aim to present a case of suspected LA resistance in the setting of multiple failed LA delivery. Case Description In this case report, we describe a patient with suspected LA resistance after failed intrathecal, perineural, intraarticular and subcutaneous delivery of LA. Our patient was unresponsive to three different LAs at varying doses. Conclusions Patients with failure to achieve adequate anesthesia with more than one route of LA administration should be evaluated for LA resistance. A thorough medical history and physical examination, along with a focus on identifying prior LA failure such as with dental procedures, and physical examination findings suggestive of connective tissue disorders may help establish the diagnosis with confirmatory genetic testing.
Collapse
Affiliation(s)
- Jessica Lee
- George Washington School of Medicine and Health Sciences, Washington, DC, USA
| | - Jevaughn Davis
- Department of Anesthesiology and Critical Care, George Washington School of Medicine and Health Sciences, Washington, DC, USA
| | - Bradford Ralston
- Department of Anesthesiology and Critical Care, George Washington School of Medicine and Health Sciences, Washington, DC, USA
| | - Bridget Marcinkowski
- Department of Internal Medicine, George Washington School of Medicine and Health Sciences, Washington, DC, USA
| | - Moshe Chinn
- Department of Anesthesiology and Critical Care, George Washington School of Medicine and Health Sciences, Washington, DC, USA
| | - Michelle Burnette
- Department of Anesthesiology and Critical Care, George Washington School of Medicine and Health Sciences, Washington, DC, USA
| |
Collapse
|
10
|
Krogman WL, Woodard T, McKay RSF. Anesthetic Mechanisms: Synergistic Interactions With Lipid Rafts and Voltage-Gated Sodium Channels. Anesth Analg 2024; 139:92-106. [PMID: 37968836 DOI: 10.1213/ane.0000000000006738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Despite successfully utilizing anesthetics for over 150 years, the mechanism of action remains relatively unknown. Recent studies have shown promising results, but due to the complex interactions between anesthetics and their targets, there remains a clear need for further mechanistic research. We know that lipophilicity is directly connected to anesthetic potency since lipid solubility relates to anesthetic partition into the membrane. However, clinically relevant concentrations of anesthetics do not significantly affect lipid bilayers but continue to influence various molecular targets. Lipid rafts are derived from liquid-ordered phases of the plasma membrane that contain increased concentrations of cholesterol and sphingomyelin and act as staging platforms for membrane proteins, including ion channels. Although anesthetics do not perturb membranes at clinically relevant concentrations, they have recently been shown to target lipid rafts. In this review, we summarize current research on how different types of anesthetics-local, inhalational, and intravenous-bind and affect both lipid rafts and voltage-gated sodium channels, one of their major targets, and how those effects synergize to cause anesthesia and analgesia. Local anesthetics block voltage-gated sodium channel pores while also disrupting lipid packing in ordered membranes. Inhalational anesthetics bind to the channel pore and the voltage-sensing domain while causing an increase in the number, size, and diameter of lipid rafts. Intravenous anesthetics bind to the channel primarily at the voltage-sensing domain and the selectivity filter, while causing lipid raft perturbation. These changes in lipid nanodomain structure possibly give proteins access to substrates that have translocated as a result of these structural alterations, resulting in lipid-driven anesthesia. Overall, anesthetics can impact channel activity either through direct interaction with the channel, indirectly through the lipid raft, or both. Together, these result in decreased sodium ion flux into the cell, disrupting action potentials and producing anesthetic effects. However, more research is needed to elucidate the indirect mechanisms associated with channel disruption through the lipid raft, as not much is known about anionic lipid products and their influence over voltage-gated sodium channels. Anesthetics' effect on S-palmitoylation, a promising mechanism for direct and indirect influence over voltage-gated sodium channels, is another auspicious avenue of research. Understanding the mechanisms of different types of anesthetics will allow anesthesiologists greater flexibility and more specificity when treating patients.
Collapse
Affiliation(s)
- William L Krogman
- From the Department of Anesthesiology, University of Kansas School of Medicine - Wichita, Wichita, Kansas
| | | | | |
Collapse
|
11
|
Hoffmann CM, Butler CS, Pingree MJ, Moeschler SM, Mauck WD, D'Souza RS. Is Response to a Pre-implant Diagnostic Peripheral Nerve Block Associated With Efficacy After Peripheral Nerve Stimulation Implantation? A Ten-Year Enterprise-Wide Analysis. Neuromodulation 2024; 27:873-880. [PMID: 37943242 DOI: 10.1016/j.neurom.2023.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/11/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023]
Abstract
OBJECTIVES This study aimed to assess whether patient response to targeted diagnostic peripheral nerve block before peripheral nerve stimulator (PNS) device implantation is associated with efficacy after PNS implantation. MATERIALS AND METHODS The electronic medical records from the Mayo Clinic Enterprise (three quarternary care medical centers and additional satellite medical centers) were reviewed to identify patients who underwent PNS implantation between January 2014 and January 2023. A primary outcome of interest was to assess whether administration of a preimplant diagnostic peripheral nerve block predicted pain relief at three months and six months after temporary and permanent PNS implantation. Another primary outcome was to investigate whether there was an association between the pain relief from a preimplant diagnostic peripheral nerve block and pain relief after three and six months after temporary or permanent PNS therapy. Linear regression analysis was conducted for outcomes of interest. RESULTS Of 193 eligible patients who underwent PNS therapy, a total of 173 patients were included in the final analysis and were stratified into either the temporary PNS cohort (n = 112) or the permanent PNS cohort (n = 61). Overall, 77.5% of all patients (134/173) underwent a preimplant diagnostic peripheral nerve block and reported a mean percentage relief of 70.1 ± 27.0 from the diagnostic block. Of patients in the temporary PNS cohort, there was no difference in postimplant percentage pain relief between patients who received a diagnostic block (n = 93) and control patients (n = 19) at three months (35.4 ± 36.0 vs 49.8 ± 36.1, respectively; β -14.45, 95% CI -32.98 to 4.07, p = 0.125) or at six months (23.3 ± 30.8 vs 45.7 ± 40.0, respectively; β -22.39, 95% CI -46.86 to 2.08, p = 0.072). Of patients in the permanent PNS cohort, there was no difference in postimplant percentage pain relief between patients who received a diagnostic block (n = 41) and control patients (n = 20) at three months (42.4 ± 34.3 vs 43.2 ± 42.4, respectively; β -0.79, 95% CI -23.56 to 21.99, p = 0.945) or at six months (44.3 ± 35.0 vs 38.8 ± 40.9, respectively; β 5.42, 95% CI -20.04 to 30.88, p = 0.669). Pain relief from preimplant diagnostic blocks was associated with postimplant pain relief from temporary PNS at three months (β 0.33, 95% CI 0.04-0.61, p = 0.025). However, pain relief from preimplant diagnostic blocks did not predict postimplant pain relief from temporary PNS at six months, or permanent PNS at three months and six months. CONCLUSIONS Administration of a diagnostic block is not associated with superior pain relief at three or six months after PNS implantation to that of an approach without diagnostic block. Pain relief from a diagnostic block may potentially predict short-term pain relief after temporary PNS therapy, although future prospective studies are warranted to evaluate the prognostic utility of diagnostic blocks.
Collapse
Affiliation(s)
- Chelsey M Hoffmann
- Mayo Clinic School of Health Science, Mayo Clinic Physician Assistant Program, Rochester, MN, USA
| | - Casey S Butler
- Department of Anesthesiology and Perioperative Medicine, Division of Pain Medicine, Mayo Clinic, Rochester, MN, USA
| | - Matthew J Pingree
- Department of Anesthesiology and Perioperative Medicine, Division of Pain Medicine, Mayo Clinic, Rochester, MN, USA
| | - Susan M Moeschler
- Department of Anesthesiology and Perioperative Medicine, Division of Pain Medicine, Mayo Clinic, Rochester, MN, USA
| | - William D Mauck
- Department of Anesthesiology and Perioperative Medicine, Division of Pain Medicine, Mayo Clinic, Rochester, MN, USA
| | - Ryan S D'Souza
- Department of Anesthesiology and Perioperative Medicine, Division of Pain Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
12
|
Montazerlotfelahi H, Haj Mohamad Ebrahim Ketabforoush A, Tavakol M, Ashrafi M, Dehghani M, Mostafavi K, Mardi S, Tajfirooz S. Safety and efficacy of levetiracetam and carbamazepine monotherapy in the management of pediatric focal epilepsy: a randomized clinical trial. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5233-5240. [PMID: 38265679 DOI: 10.1007/s00210-024-02954-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/12/2024] [Indexed: 01/25/2024]
Abstract
Due to the limited number of studies in children with focal epilepsy and the importance of choosing the most suitable drug to control seizures in children, the administration of the most effective medication with the most negligible adverse events is vital. This study aimed to evaluate the effectiveness and adverse events of carbamazepine vs. levetiracetam monotherapy in children with focal seizures. A monocentric, randomized, controlled, double-blind, parallel-group clinical trial was designed. This study was approved by the Iranian Registry of Clinical Trials (registration number: IRCT20170216032603N2) on June 19, 2020, and conducted at the neurology department of Imam Ali Hospital, Karaj, Iran, from February 2020 to March 2021. This study assessed 120 patients with recently diagnosed focal seizures aged 2 to 14. Patients were randomly divided into two groups, who received carbamazepine (CBZ) 15 to 20 mg/kg and levetiracetam (LEV) 20 to 40 mg/kg daily, respectively. Patients were evaluated for improvement and complications at weeks 4, 12, and 24. Out of 120 patients included in the study, six patients were excluded due to various complications of CBZ. The mean number of seizures at the end of the fourth, twelfth, and twenty-fourth weeks were 1.09 ± 0.75, 0.62 ± 0.27, and 0.39 ± 0.12 in the carbamazepine group and 1.11 ± 0.63, 0.52 ± 0.21, and 0.37 ± 0.11 in the LEV group, respectively (P > 0.05). Similarly, the number of seizure-free patients was 34, 44, and 48 in the CBZ group compared to 41, 50, and 54 in the LEV group, respectively (P > 0.05). On the other hand, the frequency of somnolence, dermatologic complications, and agitation was considerably higher in the CBZ group (P < 0.05). Although both medicines were equally effective in seizure control, CBZ was associated with considerably more adverse events and less patient compliance. Physicians should be aware of this difference to prevent unwanted consequences.
Collapse
Affiliation(s)
- Hadi Montazerlotfelahi
- Department of Pediatric Neurology, Faculty of Medicine, Imam Ali Hospital, Alborz University of Medical Sciences, Karaj, Iran
| | | | - Marzieh Tavakol
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mahmoudreza Ashrafi
- Department of Pediatric Neurology, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdieh Dehghani
- Department of Oral and Maxillofacial, Faculty of Dentistry, Tehran Medical Sciences of Islamic Azad University, Tehran, Iran
| | - Keihan Mostafavi
- Department of the Pediatrics, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shayan Mardi
- Student Research Committee, Arak University of Medical Sciences, Arak, Iran
| | - Sanaz Tajfirooz
- Department of the Pediatrics, Faculty of Medicine, Imam Ali Hospital, Alborz University of Medical Sciences, Vali-Asr St., Shora Ave, Karaj, Iran.
| |
Collapse
|
13
|
Alexa AL, Sargarovschi S, Ionescu D. Neutrophils and Anesthetic Drugs: Implications in Onco-Anesthesia. Int J Mol Sci 2024; 25:4033. [PMID: 38612841 PMCID: PMC11012681 DOI: 10.3390/ijms25074033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/24/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Apart from being a significant line of defense in the host defense system, neutrophils have many immunological functions. Although there are not many publications that accurately present the functions of neutrophils in relation to oncological pathology, their activity and implications have been studied a lot recently. This review aims to extensively describe neutrophils functions'; their clinical implications, especially in tumor pathology; the value of clinical markers related to neutrophils; and the implications of neutrophils in onco-anesthesia. This review also aims to describe current evidence on the influence of anesthetic drugs on neutrophils' functions and their potential influence on perioperative outcomes.
Collapse
Affiliation(s)
- Alexandru Leonard Alexa
- Department of Anesthesia and Intensive Care I, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (S.S.); (D.I.)
- Association for Research in Anesthesia and Intensive Care (ACATI), 400162 Cluj-Napoca, Romania
- Onco-Anaesthesia Research Group, ESAIC, 1000 Brussels, Belgium
| | - Sergiu Sargarovschi
- Department of Anesthesia and Intensive Care I, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (S.S.); (D.I.)
- Association for Research in Anesthesia and Intensive Care (ACATI), 400162 Cluj-Napoca, Romania
| | - Daniela Ionescu
- Department of Anesthesia and Intensive Care I, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (S.S.); (D.I.)
- Association for Research in Anesthesia and Intensive Care (ACATI), 400162 Cluj-Napoca, Romania
- Onco-Anaesthesia Research Group, ESAIC, 1000 Brussels, Belgium
- Outcome Research Consortium, Cleveland, OH 44195, USA
| |
Collapse
|
14
|
Sikiric P, Boban Blagaic A, Strbe S, Beketic Oreskovic L, Oreskovic I, Sikiric S, Staresinic M, Sever M, Kokot A, Jurjevic I, Matek D, Coric L, Krezic I, Tvrdeic A, Luetic K, Batelja Vuletic L, Pavic P, Mestrovic T, Sjekavica I, Skrtic A, Seiwerth S. The Stable Gastric Pentadecapeptide BPC 157 Pleiotropic Beneficial Activity and Its Possible Relations with Neurotransmitter Activity. Pharmaceuticals (Basel) 2024; 17:461. [PMID: 38675421 PMCID: PMC11053547 DOI: 10.3390/ph17040461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/24/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
We highlight the particular aspects of the stable gastric pentadecapeptide BPC 157 pleiotropic beneficial activity (not destroyed in human gastric juice, native and stable in human gastric juice, as a cytoprotection mediator holds a response specifically related to preventing or recovering damage as such) and its possible relations with neurotransmitter activity. We attempt to resolve the shortage of the pleiotropic beneficial effects of BPC 157, given the general standard neurotransmitter criteria, in classic terms. We substitute the lack of direct conclusive evidence (i.e., production within the neuron or present in it as a precursor molecule, released eliciting a response on the receptor on the target cells on neurons and being removed from the site of action once its signaling role is complete). This can be a network of interconnected evidence, previously envisaged in the implementation of the cytoprotection effects, consistent beneficial particular evidence that BPC 157 therapy counteracts dopamine, serotonin, glutamate, GABA, adrenalin/noradrenalin, acetylcholine, and NO-system disturbances. This specifically includes counteraction of those disturbances related to their receptors, both blockade and over-activity, destruction, depletion, tolerance, sensitization, and channel disturbances counteraction. Likewise, BPC 157 activates particular receptors (i.e., VGEF and growth hormone). Furthermore, close BPC 157/NO-system relations with the gasotransmitters crossing the cell membrane and acting directly on molecules inside the cell may envisage particular interactions with receptors on the plasma membrane of their target cells. Finally, there is nerve-muscle relation in various muscle disturbance counteractions, and nerve-nerve relation in various encephalopathies counteraction, which is also exemplified specifically by the BPC 157 therapy application.
Collapse
Affiliation(s)
- Predrag Sikiric
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
| | - Alenka Boban Blagaic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
| | - Sanja Strbe
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
| | - Lidija Beketic Oreskovic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
| | - Ivana Oreskovic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
| | - Suncana Sikiric
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Mario Staresinic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
- Department of Surgery, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Marko Sever
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
- Department of Surgery, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Antonio Kokot
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
- Department of Anatomy and Neuroscience, School of Medicine, J.J. Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Ivana Jurjevic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
| | - Danijel Matek
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
| | - Luka Coric
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
| | - Ivan Krezic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
| | - Ante Tvrdeic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
| | - Kresimir Luetic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
| | - Lovorka Batelja Vuletic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Predrag Pavic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
- Department of Surgery, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Tomislav Mestrovic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
- Department of Anatomy and Neuroscience, School of Medicine, J.J. Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Ivica Sjekavica
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
- Department of Diagnostic and Interventional Radiology, Sestre Milosrdnice University Hospital Center, 10000 Zagreb, Croatia
| | - Anita Skrtic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Sven Seiwerth
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
15
|
Bai Y, Xu H, Wang H, Fan Y, Li X, Li Y, Fan L, Zhang Y, Qi L, Li Y. Highly Efficient Loading of Procaine on Water-Soluble Carbon Dots toward Long-Acting Anesthesia. J Phys Chem B 2024; 128:1700-1710. [PMID: 38334803 DOI: 10.1021/acs.jpcb.3c07411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Safe and efficient local anesthetic delivery carriers are crucial for long-term anesthesia and analgesics in clinical treatment. But currently, most of the local anesthetic carriers still have some disadvantages such as low drug-loading capacity, drug leakage, and potential side effects. Here, we report red-emissive carbon dots (Cys-CDs) synthesized by choosing cysteine and citric acid as precursors, which contain a large and intact sp2-domain with rich hydrophilic groups around the edge. The special structure of Cys-CDs is conducive to the efficient loading of procaine (PrC) via strong π-π stacking interactions. Based on the strong noncovalent interactions between them, the PrC loaded on Cys-CDs achieved slow release in vitro and had a long-lasting nerve blocking effect in vivo, which is 4-fold more than that of free PrC. More importantly, PrC/Cys-CDs do not cause any toxicity and inflammation during treatment owing to slow release of PrC and good water solubility of Cys-CDs, thus demonstrating the potential clinical application of CDs in long-lasting analgesia.
Collapse
Affiliation(s)
- Yiqi Bai
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry and Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing 100875, China
| | - Huimin Xu
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry and Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing 100875, China
| | - Haoyu Wang
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry and Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing 100875, China
| | - Yixiao Fan
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry and Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing 100875, China
| | - Xiaohong Li
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry and Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing 100875, China
| | - Yunchao Li
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry and Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing 100875, China
| | - Louzhen Fan
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry and Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing 100875, China
| | - Yang Zhang
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry and Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing 100875, China
| | - Ling Qi
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yong Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
16
|
Llanos MA, Enrique N, Esteban-López V, Scioli-Montoto S, Sánchez-Benito D, Ruiz ME, Milesi V, López DE, Talevi A, Martín P, Gavernet L. A Combined Ligand- and Structure-Based Virtual Screening To Identify Novel NaV1.2 Blockers: In Vitro Patch Clamp Validation and In Vivo Anticonvulsant Activity. J Chem Inf Model 2023; 63:7083-7096. [PMID: 37917937 DOI: 10.1021/acs.jcim.3c00645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Epilepsy is a neurological disorder characterized by recurrent seizures that arise from abnormal electrical activity in the brain. Voltage-gated sodium channels (NaVs), responsible for the initiation and propagation of action potentials in neurons, play a critical role in the pathogenesis of epilepsy. This study sought to discover potential anticonvulsant compounds that interact with NaVs, specifically, the brain subtype hNaV1.2. A ligand-based QSAR model and a docking model were constructed, validated, and applied in a parallel virtual screening over the DrugBank database. Montelukast, Novobiocin, and Cinnarizine were selected for in vitro testing, using the patch-clamp technique, and all of them proved to inhibit hNaV1.2 channels heterologously expressed in HEK293 cells. Two hits were evaluated in the GASH/Sal model of audiogenic seizures and demonstrated promising activity, reducing the severity of sound-induced seizures at the doses tested. The combination of ligand- and structure-based models presents a valuable approach for identifying potential NaV inhibitors. These findings may provide a basis for further research into the development of new antiseizure drugs for the treatment of epilepsy.
Collapse
Affiliation(s)
- Manuel A Llanos
- Laboratory of Bioactive Compounds Research and Development (LIDeB), Department of Biological Sciences, Faculty of Exact Sciences, National University of La Plata (UNLP), La Plata B1900ADU, Argentina
| | - Nicolás Enrique
- Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), UNLP, CONICET, asociado CIC PBA, La Plata B1900BJW, Buenos Aires, Argentina
| | - Vega Esteban-López
- Institute for Neuroscience of Castilla y León (INCyL), University of Salamanca, Salamanca 37008, Spain
- Institute for Biomedical Research of Salamanca (IBSAL), Salamanca 37007, Spain
| | - Sebastian Scioli-Montoto
- Laboratory of Bioactive Compounds Research and Development (LIDeB), Department of Biological Sciences, Faculty of Exact Sciences, National University of La Plata (UNLP), La Plata B1900ADU, Argentina
| | - David Sánchez-Benito
- Institute for Neuroscience of Castilla y León (INCyL), University of Salamanca, Salamanca 37008, Spain
- Institute for Biomedical Research of Salamanca (IBSAL), Salamanca 37007, Spain
| | - María E Ruiz
- Laboratory of Bioactive Compounds Research and Development (LIDeB), Department of Biological Sciences, Faculty of Exact Sciences, National University of La Plata (UNLP), La Plata B1900ADU, Argentina
| | - Veronica Milesi
- Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), UNLP, CONICET, asociado CIC PBA, La Plata B1900BJW, Buenos Aires, Argentina
| | - Dolores E López
- Institute for Neuroscience of Castilla y León (INCyL), University of Salamanca, Salamanca 37008, Spain
- Institute for Biomedical Research of Salamanca (IBSAL), Salamanca 37007, Spain
| | - Alan Talevi
- Laboratory of Bioactive Compounds Research and Development (LIDeB), Department of Biological Sciences, Faculty of Exact Sciences, National University of La Plata (UNLP), La Plata B1900ADU, Argentina
| | - Pedro Martín
- Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), UNLP, CONICET, asociado CIC PBA, La Plata B1900BJW, Buenos Aires, Argentina
| | - Luciana Gavernet
- Laboratory of Bioactive Compounds Research and Development (LIDeB), Department of Biological Sciences, Faculty of Exact Sciences, National University of La Plata (UNLP), La Plata B1900ADU, Argentina
| |
Collapse
|
17
|
Tikhonov DB, Zhorov BS. Mechanisms of dihydropyridine agonists and antagonists in view of cryo-EM structures of calcium and sodium channels. J Gen Physiol 2023; 155:e202313418. [PMID: 37728574 PMCID: PMC10510735 DOI: 10.1085/jgp.202313418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/04/2023] [Accepted: 08/30/2023] [Indexed: 09/21/2023] Open
Abstract
Opposite effects of 1,4-dihydropyridine (DHP) agonists and antagonists on the L-type calcium channels are a challenging problem. Cryo-EM structures visualized DHPs between the pore-lining helices S6III and S6IV in agreement with published mutational data. However, the channel conformations in the presence of DHP agonists and antagonists are virtually the same, and the mechanisms of the ligands' action remain unclear. We docked the DHP agonist S-Bay k 8644 and antagonist R-Bay k 8644 in Cav1.1 channel models with or without π-bulges in helices S6III and S6IV. Cryo-EM structures of the DHP-bound Cav1.1 channel show a π-bulge in helix S6III but not in S6IV. The antagonist's hydrophobic group fits into the hydrophobic pocket formed by residues in S6IV. The agonists' polar NO2 group is too small to fill up the pocket. A water molecule could sterically fit into the void space, but its contacts with isoleucine in helix S6IV (motif INLF) would be unfavorable. In a model with π-bulged S6IV, this isoleucine turns away from the DHP molecule and its position is occupied by the asparagine from the same motif INLF. The asparagine provides favorable contacts for the water molecule at the agonist's NO2 group but unfavorable contacts for the antagonist's methoxy group. In our models, the DHP antagonist stabilizes entirely α-helical S6IV. In contrast, the DHP agonist stabilizes π-bulged helix S6IV whose C-terminal part turned and rearranged the activation-gate region. This would stabilize the open channel. Thus, agonists, but not antagonists, would promote channel opening by stabilizing π-bulged helix S6IV.
Collapse
Affiliation(s)
- Denis B. Tikhonov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint Petersburg, Russia
| | - Boris S. Zhorov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint Petersburg, Russia
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| |
Collapse
|
18
|
Patel N, B Urolagin S, Haq MA, Patel C, Bhatt R, Girdhar G, Sinha S, Haque M, Kumar S. Anesthetic Effect of 2% Amitriptyline Versus 2% Lidocaine: A Comparative Evaluation. Cureus 2023; 15:e43405. [PMID: 37581201 PMCID: PMC10423460 DOI: 10.7759/cureus.43405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2023] [Indexed: 08/16/2023] Open
Abstract
Introduction A common dental problem is the fear of pain during needle prick for giving local anesthesia (LA). The needle prick pain during dental procedures often varies with sex and age. Perception of pain depends on various factors, which can be psychological and biological. This perception of pain may change the behavior of patients toward dental treatments. Traditionally, lidocaine gel formulation was utilized before the parenteral dosage form. The lidocaine gel formulation is considered the drug of choice for LA in dental surgery. Currently, amitriptyline has been utilized in dental practice because of its beneficial pharmacology. Hence, the present study has been undertaken to compare the anesthetic ability of amitriptyline as an intraoral topical anesthetic agent with lidocaine gel. Methods This study was a comparative clinical study between two medications' anesthetic properties. This study included 120 patients indicated for bilateral orthodontics (the subdivision of dentistry that emphasizes identifying necessary interventions for the malocclusion of teeth) procedures. All the subjects were divided into amitriptyline and lidocaine groups. Both anesthetic gels were applied at separate sites before the injection of LA. The time of the onset of anesthesia was noted and analyzed. Patients were selected on the basis of inclusion and exclusion criteria. Individuals aged 18 to 30 years who were systemically healthy and orthodontically indicated for bilateral premolar extraction were included in this study. Again, patients with a history of neurological disorders and allergies to amitriptyline and lidocaine were excluded from the current study. Results Significant differences emerged between groups at five and 10 minutes, with amitriptyline-induced partial numbness (36.7% and 6.7%). At 40 and 45 minutes, both groups showed varied partial and complete numbness, with amitriptyline leading to partial recovery (23.3% and 73.3% complete numbness, 23.3% partial recovery) and lidocaine resulting in partial recovery (81.7%). When comparing the visual analog scale (VAS) scores, both groups exhibited a similar simultaneous effect at 15 minutes. Nonetheless, amitriptyline displayed significantly lower scores at 25 and 35 minutes (p < 0.001) in comparison to lidocaine. Similar observations were made when controlling for pain intensity. Conclusion It was concluded that amitriptyline holds both anesthetic and analgesic properties. Nevertheless, this study was unable to generalize the study findings because of the small sample size and being a single-center study. However, the VAS scores of anesthetic and analgesic pharmacodynamics properties of amitriptyline were statistically significantly lower than lidocaine, particularly at 25 and 35 minutes. Additionally, amitriptyline-induced anesthetic and analgesic pharmacology, especially pharmacokinetics properties, depends on the location and pattern of pain.
Collapse
Affiliation(s)
- Nirav Patel
- Department of Oral and Maxillofacial Surgery, Goenka Research Institute of Dental Science, Gandhinagar, IND
| | - Sarvesh B Urolagin
- Department of Oral and Maxillofacial Surgery, Subbaiah Institute of Dental Sciences, Shimoga, IND
| | - Md Ahsanul Haq
- Department of Biostatistics, Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, BGD
| | - Chhaya Patel
- Department of Pedodontics and Preventive Dentistry, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Rohan Bhatt
- Department of Pediatric Dentistry, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Gaurav Girdhar
- Department of Periodontology and Implantology, Karnavati University, Gandhinagar, IND
| | - Susmita Sinha
- Department of Physiology, Khulna City Medical College and Hospital, Khulna, BGD
| | - Mainul Haque
- Karnavati Scientific Research Center, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
- Department of Pharmacology and Therapeutics, National Defence University of Malaysia, Kuala Lumpur, MYS
| | - Santosh Kumar
- Department of Periodontology and Implantology, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
| |
Collapse
|
19
|
Finol-Urdaneta RK, Zhorov BS, Baden DG, Adams DJ. Brevetoxin versus Brevenal Modulation of Human Nav1 Channels. Mar Drugs 2023; 21:396. [PMID: 37504927 PMCID: PMC10382042 DOI: 10.3390/md21070396] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/29/2023] Open
Abstract
Brevetoxins (PbTx) and brevenal are marine ladder-frame polyethers. PbTx binds to and activates voltage-gated sodium (Nav) channels in native tissues, whereas brevenal antagonizes these actions. However, the effects of PbTx and brevenal on recombinant Nav channel function have not been systematically analyzed. In this study, the PbTx-3 and brevenal modulation of tissue-representative Nav channel subtypes Nav1.2, Nav1.4, Nav1.5, and Nav1.7 were examined using automated patch-clamp. While PbTx-3 and brevenal elicit concentration-dependent and subtype-specific modulatory effects, PbTx-3 is >1000-fold more potent than brevenal. Consistent with effects observed in native tissues, Nav1.2 and Nav1.4 channels were PbTx-3- and brevenal-sensitive, whereas Nav1.5 and Nav1.7 appeared resistant. Interestingly, the incorporation of brevenal in the intracellular solution caused Nav channels to become less sensitive to PbTx-3 actions. Furthermore, we generated a computational model of PbTx-2 bound to the lipid-exposed side of the interface between domains I and IV of Nav1.2. Our results are consistent with competitive antagonism between brevetoxins and brevenal, setting a basis for future mutational analyses of Nav channels' interaction with brevetoxins and brevenal. Our findings provide valuable insights into the functional modulation of Nav channels by brevetoxins and brevenal, which may have implications for the development of new Nav channel modulators with potential therapeutic applications.
Collapse
Affiliation(s)
- Rocio K Finol-Urdaneta
- Illawarra Health & Medical Research Institute (IHMRI), Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Boris S Zhorov
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 Saint Petersburg, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Daniel G Baden
- Center for Marine Science, University of North Carolina Wilmington MARBIONC, Wilmington, NC 28409, USA
| | - David J Adams
- Illawarra Health & Medical Research Institute (IHMRI), Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
20
|
Tang L, Qin F, Gong D, Dong Y, Pan L, Zhou C, Yin Q, Song X, Ling R, Huang J, Fan Q, Yi W, Wu F, Wu X, Zhang W, Yang J, Wang JY. Long-term sciatic nerve block led by a supramolecular arrangement of self-delivery local anesthetic nano systems. Chem Commun (Camb) 2023. [PMID: 37326382 DOI: 10.1039/d3cc02269b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Classical local anesthetics are unsuitable to treat regional pain lasting several days due to their limited duration and systemic toxicity. Self-delivery nano systems without excipients were designed for long-term sensory blocks. 1a self-assembled into different vehicles with different fractions of intermolecular π-π stacking, transported itself into nerve cells, and released single molecules slowly to achieve long-term duration for rats' sciatic nerve block for 11.6 h in water, 12.1 h in water with CO2 and 3.4 h in NS (normal saline). After the counter ions were changed to SO42-, 1e can self-assemble into vesicles and prolong the duration to 43.2 h, which was much longer than the 3.8 h led by (s)-bupivacaine hydrocloride (0.75%). This was mainly caused by the enhancement of self-release and counter ion exchange inside nerve cells, which were affected by the gemini surfactant structure, pKa of the counter ions and π-π stacking interactions.
Collapse
Affiliation(s)
- Lei Tang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China.
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Feng Qin
- West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Deying Gong
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China.
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Yu Dong
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu, 611130, P. R. China
| | - LiLi Pan
- West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Changcui Zhou
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China.
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Qinqin Yin
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China.
| | - Xinghai Song
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China.
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Rui Ling
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China.
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Junlong Huang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China.
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Qin Fan
- West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Wenhao Yi
- West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Fengbo Wu
- West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Xiaoai Wu
- West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Weiyi Zhang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China.
| | - Jun Yang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China.
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Ji-Yu Wang
- Department of Chemistry, Xihua University, Chengdu, P. R. China.
| |
Collapse
|
21
|
Zheng K, Han M, Kang F, Yang C, Li J. A comparative study on the effect of dopamine vs phenylephrine in improving the cutaneous analgesic effect of mexiletine in rats. Perioper Med (Lond) 2023; 12:26. [PMID: 37312135 PMCID: PMC10262512 DOI: 10.1186/s13741-023-00314-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 05/22/2023] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND The present study aimed to compare the effects of the combined administration of two adjuvants, dopamine and phenylephrine, on the cutaneous analgesic effect and duration of mexiletine in rats. METHODS Nociceptive blockage was evaluated by the inhibition of response to skin pinpricks in rats via the cutaneous trunci muscle reflex (CTMR). After subcutaneous injection, the analgesic activities of mexiletine in the absence and presence of either dopamine or phenylephrine were assessed. Each injection was standardized into 0.6 ml with a mixture of drugs and saline. RESULTS Subcutaneous injections of mexiletine successfully induced dose-dependent cutaneous analgesia in rats. The results revealed that rats injected with 1.8 μmol mexiletine exhibited 43.75% blockage (%MPE), while rats injected with 6.0 μmol mexiletine showed 100% blockage. Co-application of mexiletine (1.8 or 6.0 μmol) with dopamine (0.06, 0.60, or 6.00 μmol) elicited full sensory block (%MPE). Sensory blockage ranged from 81.25% to 95.83% in rats injected with mexiletine (1.8 μmol) and phenylephrine (0.0059 or 0.0295 μmol), and complete subcutaneous analgesia was observed in rats injected with mexiletine (1.8 μmol) and a higher concentration of phenylephrine (0.1473 μmol). Furthermore, mexiletine at 6.0 μmol completely blocked nociception when combined with any concentration of phenylephrine, while 0.1473 μmol phenylephrine alone exhibited 35.417% subcutaneous analgesia. The combined application of dopamine (0.06/0.6/6 μmol) and mexiletine (1.8/6 μmol) resulted in increased %MPE, complete block time, full recovery time, and AUCs compared to the combined application of phenylephrine (0.0059 and 0.1473 μmol) and mexiletine (1.8/6 μmol) (p < 0.001). CONCLUSION Dopamine is superior to phenylephrine in improving sensory blockage and enhancing the duration of nociceptive blockage by mexiletine.
Collapse
Affiliation(s)
- Kesong Zheng
- Department of Anesthesiology, Division of Life Sciences and Medicine, the First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230036, Anhui, China
| | - Mingming Han
- Department of Anesthesiology, Division of Life Sciences and Medicine, the First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230036, Anhui, China
| | - Fang Kang
- Department of Anesthesiology, Division of Life Sciences and Medicine, the First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230036, Anhui, China
| | - Chengwei Yang
- Department of Anesthesiology, Division of Life Sciences and Medicine, the First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230036, Anhui, China
| | - Juan Li
- Department of Anesthesiology, Division of Life Sciences and Medicine, the First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230036, Anhui, China.
| |
Collapse
|
22
|
Stutzman MJ, Gao X, Kim M, Ye D, Zhou W, Tester DJ, Giudicessi JR, Shannon K, Ackerman MJ. Functional characterization and identification of a therapeutic for a novel SCN5A-F1760C variant causing type 3 long QT syndrome refractory to all guideline-directed therapies. Heart Rhythm 2023; 20:709-717. [PMID: 36731785 DOI: 10.1016/j.hrthm.2023.01.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 02/01/2023]
Abstract
BACKGROUND Pathogenic variants in the SCN5A-encoded Nav1.5 sodium channel cause type 3 long QT syndrome (LQT3). We present the case of an infant with severe LQT3 who was refractory to multiple pharmacologic therapies as well as bilateral stellate ganglionectomy. The patient's novel variant, p.F1760C-SCN5A, involves a critical residue of the Nav1.5's local anesthetic binding domain. OBJECTIVE The purpose of this study was to characterize functionally the p.F1760C-SCN5A variant using TSA-201 and patient-specific induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). METHODS Whole-cell patch clamp was used to assess p.F1760C-SCN5A associated sodium currents with/without lidocaine (Lido), flecainide, and phenytoin (PHT) in TSA-201 cells. p.F1760C-SCN5A and CRISPR-Cas9 variant-corrected isogenic control (IC) iPSC-CMs were generated. FluoVolt voltage dye was used to measure the action potential duration (APD) with/without mexiletine or PHT. RESULTS V1/2 of inactivation was right-shifted significantly in F1760C cells (-72.2 ± 0.7 mV) compared to wild-type (WT) cells (-86.3 ± 0.9 mV; P <.0001) resulting in a marked increase in window current. F1760C increased sodium late current 2-fold from 0.18% ± 0.04% of peak in WT to 0.49% ± 0.07% of peak in F1760C (P = .0005). Baseline APD to 90% repolarization (APD90) was increased markedly in F1760C iPSC-CMs (601 ± 4 ms) compared to IC iPSC-CMs (423 ± 15 ms; P <.0001). However, 4-hour treatment with 10 μM mexiletine failed to shorten APD90, and treatment with 5μM PHT significantly decreased APD90 of F1760C iPSC-CMs (453 ± 6 ms; P <.0001). CONCLUSION PHT rescued electrophysiological phenotype and APD of a novel p.F1760C-SCN5A variant. The antiepileptic drug PHT may be an effective alternative therapeutic for the treatment of LQT3, especially for variants that disrupt the Lido/mexiletine binding site.
Collapse
Affiliation(s)
- Marissa J Stutzman
- Department of Cardiovascular Medicine, Division of Heart Rhythm Services, Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo Clinic, Rochester, Minnesota; Department of Pediatric and Adolescent Medicine, Division of Pediatric Cardiology, Mayo Clinic, Rochester, Minnesota; Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, Minnesota
| | - Xiaozhi Gao
- Department of Cardiovascular Medicine, Division of Heart Rhythm Services, Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo Clinic, Rochester, Minnesota; Department of Pediatric and Adolescent Medicine, Division of Pediatric Cardiology, Mayo Clinic, Rochester, Minnesota; Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, Minnesota
| | - Maengjo Kim
- Department of Cardiovascular Medicine, Division of Heart Rhythm Services, Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo Clinic, Rochester, Minnesota; Department of Pediatric and Adolescent Medicine, Division of Pediatric Cardiology, Mayo Clinic, Rochester, Minnesota; Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, Minnesota
| | - Dan Ye
- Department of Cardiovascular Medicine, Division of Heart Rhythm Services, Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo Clinic, Rochester, Minnesota; Department of Pediatric and Adolescent Medicine, Division of Pediatric Cardiology, Mayo Clinic, Rochester, Minnesota; Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, Minnesota
| | - Wei Zhou
- Department of Cardiovascular Medicine, Division of Heart Rhythm Services, Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo Clinic, Rochester, Minnesota; Department of Pediatric and Adolescent Medicine, Division of Pediatric Cardiology, Mayo Clinic, Rochester, Minnesota; Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, Minnesota
| | - David J Tester
- Department of Cardiovascular Medicine, Division of Heart Rhythm Services, Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo Clinic, Rochester, Minnesota; Department of Pediatric and Adolescent Medicine, Division of Pediatric Cardiology, Mayo Clinic, Rochester, Minnesota; Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, Minnesota
| | - John R Giudicessi
- Department of Cardiovascular Medicine, Division of Heart Rhythm Services, Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo Clinic, Rochester, Minnesota; Department of Pediatric and Adolescent Medicine, Division of Pediatric Cardiology, Mayo Clinic, Rochester, Minnesota; Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, Minnesota
| | - Kevin Shannon
- Department of Pediatrics, David Geffen UCLA School of Medicine, Los Angeles, California
| | - Michael J Ackerman
- Department of Cardiovascular Medicine, Division of Heart Rhythm Services, Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo Clinic, Rochester, Minnesota; Department of Pediatric and Adolescent Medicine, Division of Pediatric Cardiology, Mayo Clinic, Rochester, Minnesota; Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
23
|
Chen C, Zhu F, Liu F, Yao Y, Ma Z, Luo S. Human Bone Marrow Mesenchymal Stem Cells-Derived Exosomal miRNA-21-5p Inhibits Lidocaine-Induced Apoptosis in SH-SY5Y Neuroblastoma Cells. IRANIAN JOURNAL OF PUBLIC HEALTH 2023; 52:756-765. [PMID: 37551179 PMCID: PMC10404314 DOI: 10.18502/ijph.v52i4.12446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/09/2023] [Indexed: 08/09/2023]
Abstract
Background Local anesthetic lidocaine is one of the most common pain therapies, but high concentration of lidocaine induced neurotoxicity and its mechanism is unclear. Exosomal microRNAs (miRNAs) is implicated in neuronal diseases, but its role in lidocaine induced neurotoxicity remains to be elucidated. Methods All the experiments were performed at Huzhou Key Laboratory of Molecular Medicine, Huzhou City, Jiangsu Province, China in 2022. Lidocaine was used to induce apoptosis of SH-SY5Y cells. Exosomes isolated from bone marrow mesenchymal stem cells (BMSC-exos) were used to co-treat SH-SY5Y cells with lidocaine. Cell apoptosis was measured using a flow cytometer. PKH-67 Dye was used for exosome uptake assay. miR-21-5p mimics/inhibitors, or negative controls were transfected with Lipo2000 to study its effect on lid-induced injury. Interactions between miR-21-5p and PDCD4 was analyzed by luciferase reporter assay. Results Administration of BMSC-exo protected SH-SY5Y cells against lidocaine induced apoptosis. Suppressing miR-21-5p dramatically enhanced PDCD4, but miR-21-5p overexpression sharply down-regulated PDCD4. Mechanism study showed that miR-21-5p bound to 3'-UTR of PDCD4 to inhibit it. Suppressing miR-21-5p reversed the effect of BMSC-exo on Lid-induced injury. Results also indicate that miR-21-5p regulated lidocaine-induced injury through targeting PDCD4. Conclusion BMSC-exos protected SH-SY5Y cells against lidocaine induced apoptosis through miR-21-5p by targeting PDCD4, which may develop new strategy in the management of lidocaine-induced neurotoxicity.
Collapse
Affiliation(s)
- Chao Chen
- Department of Anesthesia, Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Huzhou 313000, Zhejiang, China
| | - Feiyu Zhu
- Department of Anesthesia, Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Huzhou 313000, Zhejiang, China
| | - Feifan Liu
- Department of Anesthesia, Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Huzhou 313000, Zhejiang, China
| | - Yufeng Yao
- Department of Anesthesia, Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Huzhou 313000, Zhejiang, China
| | - Zhihong Ma
- Huzhou Key Laboratory of Molecular Medicine, Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Huzhou 313000, Zhejiang, China
| | - Shanhong Luo
- Department of Anesthesia, Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Huzhou 313000, Zhejiang, China
| |
Collapse
|
24
|
Allergy to Local Anesthetics is a Rarity: Review of Diagnostics and Strategies for Clinical Management. Clin Rev Allergy Immunol 2023; 64:193-205. [PMID: 35482282 DOI: 10.1007/s12016-022-08937-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2022] [Indexed: 11/03/2022]
Abstract
Local anesthetics (LA) are commonly used in procedures and in topical agents for pain management. With the increasing use of LA drugs, the management of LA reactions is more frequently encountered in the office and in operating rooms. True allergic reactions involving IgE-mediated reactions and anaphylaxis are rare; they have only been identified in case reports and account for less than 1% of adverse LA reactions. Most reactions are non-allergic or are a result of hypersensitivity to other culprits such as preservatives, excipients, or other exposures. LA reactions that are misclassified as true allergies can lead to unnecessary avoidance of LA drugs or delays in surgical procedures that require their use. A detailed history of prior LA reactions is the first and most crucial step for understanding the nature of the reaction. Reactions that are suspicious for an immediate hypersensitivity reaction can be evaluated with skin prick and intradermal testing with subsequent graded challenge. Reactions that are suspicious for a delayed hypersensitivity reaction can be evaluated with patch testing.
Collapse
|
25
|
Zheng Y, Deschênes I. Protein 14-3-3 Influences the Response of the Cardiac Sodium Channel Na v1.5 to Antiarrhythmic Drugs. J Pharmacol Exp Ther 2023; 384:417-428. [PMID: 36460339 PMCID: PMC9976794 DOI: 10.1124/jpet.122.001407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
The cardiac sodium channel Nav1.5 is a key contributor to the cardiac action potential, and dysregulations in Nav1.5 can lead to cardiac arrhythmias. Nav1.5 is a target of numerous antiarrhythmic drugs (AADs). Previous studies identified the protein 14-3-3 as a regulator of Nav1.5 biophysical coupling. Inhibition of 14-3-3 can remove the Nav1.5 functional coupling and has been shown to inhibit the dominant-negative effect of Brugada syndrome mutations. However, it is unknown whether the coupling regulation is involved with AADs' modulation of Nav1.5. Indeed, AADs could reveal important structural and functional information about Nav1.5 coupling. Here, we investigated the modulation of Nav1.5 by four classic AADs, quinidine, lidocaine, mexiletine, and flecainide, in the presence of 14-3-3 inhibition. The experiments were carried out by high-throughput patch-clamp experiments in an HEK293 Nav1.5 stable cell line. We found that 14-3-3 inhibition can enhance acute block by quinidine, whereas the block by other drugs was not affected. We also saw changes in the use- and dose-dependency of quinidine, lidocaine, and mexiletine when inhibiting 14-3-3. Inhibiting 14-3-3 also shifted the channel activation toward hyperpolarized voltages in the presence of the four drugs studied and slowed the recovery of inactivation in the presence of quinidine. Our results demonstrated that the protein 14-3-3 and Nav1.5 coupling could impact the effects of AADs. Therefore, 14-3-3 and Nav1.5 coupling are new mechanisms to consider in the development of drugs targeting Nav1.5. SIGNIFICANCE STATEMENT: The cardiac sodium channel Nav1.5 is a target of commonly used antiarrhythmic drugs, and Nav1.5 function is regulated by the protein 14-3-3. The present study demonstrated that the regulation of Nav1.5 by 14-3-3 influences Nav1.5's response to antiarrhythmic drugs. This study provides detailed information about how 14-3-3 differentially regulated Nav1.5 functions under the influence of different drug subtypes. These findings will guide future molecular studies investigating Nav1.5 and antiarrhythmic drugs outcomes.
Collapse
Affiliation(s)
- Yang Zheng
- Department of Physiology and Cell Biology, Frick Center for Heart Failure and Arrhythmias, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio (Y.Z., I.D.) and Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio (Y.Z.)
| | - Isabelle Deschênes
- Department of Physiology and Cell Biology, Frick Center for Heart Failure and Arrhythmias, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio (Y.Z., I.D.) and Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio (Y.Z.)
| |
Collapse
|
26
|
Biros E, Birosova E, Moran CS. Mechanistic considerations for adenosine-lidocaine-magnesium (ALM) in controlling coagulopathy. Trends Pharmacol Sci 2023; 44:324-334. [PMID: 36805364 DOI: 10.1016/j.tips.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/21/2023]
Abstract
Adenosine-lidocaine-magnesium (ALM) mixture is a cardioplegic agent that improves survivability in rodent, but not swine, models of noncompressible torso hemorrhage (NCTH). However, despite protection from comorbid coagulopathy being the one common effect reported in both NCTH models, the underlying prothrombotic mechanism for ALM has not been elucidated in either. Here, we undertook a component-based approach focusing on individual drugs in the mixture to elaborate on the protective mechanism against coagulopathy within the frames of adenosine signaling and metabolic pathways. Additionally, the translational potential of small and large animal models of NCTH for human survival is critically appraised, owing to substantial quantitative/qualitative differences between humans and rodents, particularly regarding the genetics of G protein-coupled receptors (GPCRs) interacting with ALM's constituents.
Collapse
Affiliation(s)
- Erik Biros
- College of Medicine and Dentistry, James Cook University, Townsville, Australia.
| | - Eva Birosova
- College of Medicine and Dentistry, James Cook University, Townsville, Australia
| | - Corey S Moran
- College of Medicine and Dentistry, James Cook University, Townsville, Australia; School of Dentistry, The University of Queensland, Herston, Brisbane, Australia
| |
Collapse
|
27
|
Tang L, Qin F, Gong D, Pan L, Zhou C, Ling R, Shen W, Fan Q, Yi W, Wu F, Wu X, Zhang W, Yang J. Behaviors of self-delivery lidocaine nano systems affected by intermolecular interaction. Chem Commun (Camb) 2023; 59:1653-1656. [PMID: 36688632 DOI: 10.1039/d2cc06519c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Lidocaine salts self-assembled into different nano systems in water at a clinical dosage (2%, 0.2 mL) without excipient addition, and led to different sensory block durations and acute systemic toxicities, which were affected by the self-delivery and self-release behaviors of the salts in vivo. These differences were mainly caused by intermolecular π-π stacking under different conditions, which was proved by the unique supramolecular arrangement of gourd-shaped Janus particles. π-π stacking in lidocaine nano systems can be enhanced by carbon dioxide addition or the exchange of counter ions from Br- to Cl-. Without π-π stacking, nano systems self-assembled by lidocaine hydrobromide achieved 7.8 h sensory block by intradermal administration on rats, which is much longer than the efficacy of classical local anesthetics and more suitable for postoperative treatment.
Collapse
Affiliation(s)
- Lei Tang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China. .,Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Feng Qin
- West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Deying Gong
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China. .,Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - LiLi Pan
- West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Changcui Zhou
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China. .,Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Rui Ling
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China. .,Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Wenxue Shen
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China. .,Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Qin Fan
- West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Wenhao Yi
- West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Fengbo Wu
- West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Xiaoai Wu
- West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Weiyi Zhang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China. .,Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Jun Yang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China. .,Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| |
Collapse
|
28
|
Han S, Vance J, Jones S, DeCata J, Tran K, Cummings J, Wang S. Voltage sensor dynamics of a bacterial voltage-gated sodium channel NavAb reveal three conformational states. J Biol Chem 2023; 299:102967. [PMID: 36736429 PMCID: PMC9986516 DOI: 10.1016/j.jbc.2023.102967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
High-resolution structures of voltage-gated sodium channels (Nav) were first obtained from a prokaryotic ortholog NavAb, which provided important mechanistic insights into Na+ selectivity and voltage gating. Unlike eukaryotic Navs, the NavAb channel is formed by four identical subunits, but its ion selectivity and pharmacological profiles are very similar to eukaryotic Navs. Recently, the structures of the NavAb voltage sensor at resting and activated states were obtained by cryo-EM, but its intermediate states and transition dynamics remain unclear. In the present work, we used liposome flux assays to show that purified NavAb proteins were functional to conduct both H+ and Na+ and were blocked by the local anesthetic lidocaine. Additionally, we examined the real-time conformational dynamics of the NavAb voltage sensor using single-molecule FRET. Our single-molecule FRET measurements on the tandem NavAb channel labeled with Cy3/5 FRET fluorophore pair revealed spontaneous transitions of the NavAb S4 segment among three conformational states, which fitted well with the kinetic model developed for the S4 segment of the human voltage-gated proton channel hHv1. Interestingly, even under strong activating voltage, the NavAb S4 segment seems to adopt a conformational distribution similar to that of the hHv1 S4 segment at a deep resting state. The conformational behaviors of the NavAb voltage sensor under different voltages need to be further examined to understand the mechanisms of voltage sensing and gating in the canonical voltage-gated ion channel superfamily.
Collapse
Affiliation(s)
- Shuo Han
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Joshua Vance
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Samuel Jones
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Jenna DeCata
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Kimberly Tran
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - John Cummings
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Shizhen Wang
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri, USA.
| |
Collapse
|
29
|
Korkosh VS, Tikhonov DB. Analysis of residue-residue interactions in the structures of ASIC1a suggests possible gating mechanisms. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2023; 52:111-119. [PMID: 36690863 DOI: 10.1007/s00249-023-01628-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/25/2023]
Abstract
The gating mechanism of acid-sensitive ion channels (ASICs) remains unclear, despite the availability of atomic-scale structures in various functional states. The collapse of the acidic pocket and structural changes in the low-palm region are assumed to trigger activation. For the acidic pocket, protonation of some residues can minimize repulsion in the collapsed conformation. The relationship between low-palm rearrangements and gating is unknown. In this work, we performed a Monte Carlo energy optimization of known ASIC1a structures and determined the residue-residue interactions in different functional states. For rearrangements in the acidic pocket, our results are consistent with previously proposed mechanisms, although significant complexity was revealed for the residue-residue interactions. The data support the proposal of a gating mechanism in the low-palm region, in which residues E80 and E417 share a proton to activate the channel.
Collapse
Affiliation(s)
- Vyacheslav S Korkosh
- Sechenov Institute of Evolutionary Physiology and Biochemistry, St. Petersburg, Russia
| | - Denis B Tikhonov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, St. Petersburg, Russia.
| |
Collapse
|
30
|
Sigler W, Oliveira A. Molecular basis of the different effects of procainamide and N-acetylprocainamide on the maximum upstroke velocity and half-decay time of the cardiac action potential in guinea pig papillary muscle. Braz J Med Biol Res 2023; 56:e12073. [PMID: 36722655 PMCID: PMC9883003 DOI: 10.1590/1414-431x2023e12073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/14/2022] [Indexed: 01/31/2023] Open
Abstract
Procainamide (PA) and its in vivo metabolite, N-acetylprocainamide (NAPA), display some pharmacological differences. Although it is agreed that PA is a class IA antiarrhythmic, it has been reported that NAPA is a pure class III antiarrhythmic that affects only the repolarizing phase of the cardiac action potential. This last concept, observed exclusively in dogs, gained wide acceptance, appearing in classic pharmacology textbooks. However, evidence in species such as mice and rats indicates that NAPA can affect cardiac Na+ channels, which is unexpected for a pure class III antiarrhythmic drug. To further clarify this issue, the effects of PA (used as a reference drug) and NAPA on the maximum upstroke velocity (Vmax) and half-decay time (HDT) of the cardiac action potential were examined in the isolated right papillaris magnus of the guinea pig heart. Both PA and NAPA affected Vmax at lower concentrations than required to affect HDT, and NAPA had weaker effects on both variables. Thus, NAPA displayed typical class IA antiarrhythmic behavior. Therefore, the concept that NAPA is a pure class III antiarrhythmic drug is more species-dependent than previously envisioned. In addition, we demonstrated that the differential pharmacology of PA and NAPA is explainable, in molecular terms, by steric hindrance of the effects of NAPA and the greater number of potent aromatic-aromatic and cation π interactions with Na+ or K+ cardiac channels for PA.
Collapse
Affiliation(s)
- W. Sigler
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brasil
- Faculdade de Ciências Farmacêuticas e Bioquímicas, Faculdades Oswaldo Cruz, São Paulo, SP, Brasil
| | - A.C. Oliveira
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brasil
| |
Collapse
|
31
|
Wang P, Wang G, Tang H, Feng S, Tan L, Zhang P, Wei G, Wang C. Preparation of Ropivacaine Encapsulated by Zeolite Imidazole Framework Microspheres as Sustained-Release System and Efficacy Evaluation. Chemistry 2023; 29:e202203458. [PMID: 36700555 DOI: 10.1002/chem.202203458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/21/2023] [Accepted: 01/25/2023] [Indexed: 01/27/2023]
Abstract
The management of persistent postoperative pain still remains a clinical challenge currently. Although ropivacaine (RVC) is widely used for postoperative analgesia as a local anesthetic, the short half-life makes it difficult to achieve the desired duration of analgesia. Herein, a RVC sustained-release microspheres encapsulated by zeolite imidazole framework-8 (RVC@ZIF-8) was synthesized for the first time, which prolonged the sustained-release of RVC and decreased the resulting drug toxicity. RVC can continuously release in vitro for at least 96 h with high drug loading of 30.6 % and RVC@ZIF-8 had excellent biocompatibility and low cytotoxicity. In sciatic nerve block model, the sensory block time of RVC@ZIF-8 was significantly prolonged compared with RVC, achieving more than 72 h post injection and no inflammation or lesion were found. Based on high drug loading, ideal sustained-release and superior biological safety, RVC@ZIF-8 will be a novel delivery material for local anesthetic with potential application.
Collapse
Affiliation(s)
- Peng Wang
- School of Chemistry, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China.,School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
| | - Guangyu Wang
- School of Chemistry, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China.,School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
| | - Hongwen Tang
- School of Chemistry, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China.,School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
| | - Siwen Feng
- School of Chemistry, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China.,School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
| | - Lichuan Tan
- School of Chemistry, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China.,School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
| | - Pu Zhang
- NMPA Key Laboratory for Quality Monitoring of Narcotic Drugs and Psychotropic Substances, Chongqing institute for Food and Drug Control, Chongqing, 401121, P. R. China
| | - Guihua Wei
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
| | - Cuijuan Wang
- School of Chemistry, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China.,School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
| |
Collapse
|
32
|
De Bellis M, Boccanegra B, Cerchiara AG, Imbrici P, De Luca A. Blockers of Skeletal Muscle Na v1.4 Channels: From Therapy of Myotonic Syndrome to Molecular Determinants of Pharmacological Action and Back. Int J Mol Sci 2023; 24:ijms24010857. [PMID: 36614292 PMCID: PMC9821513 DOI: 10.3390/ijms24010857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023] Open
Abstract
The voltage-gated sodium channels represent an important target for drug discovery since a large number of physiological processes are regulated by these channels. In several excitability disorders, including epilepsy, cardiac arrhythmias, chronic pain, and non-dystrophic myotonia, blockers of voltage-gated sodium channels are clinically used. Myotonia is a skeletal muscle condition characterized by the over-excitability of the sarcolemma, resulting in delayed relaxation after contraction and muscle stiffness. The therapeutic management of this disorder relies on mexiletine and other sodium channel blockers, which are not selective for the Nav1.4 skeletal muscle sodium channel isoform. Hence, the importance of deepening the knowledge of molecular requirements for developing more potent and use-dependent drugs acting on Nav1.4. Here, we review the available treatment options for non-dystrophic myotonia and the structure-activity relationship studies performed in our laboratory with a focus on new compounds with potential antimyotonic activity.
Collapse
|
33
|
Zhorov BS. Molecular Modeling of Cardiac Sodium Channel with Mexiletine. MEMBRANES 2022; 12:1252. [PMID: 36557159 PMCID: PMC9786191 DOI: 10.3390/membranes12121252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 05/15/2023]
Abstract
A sodium channel blocker mexiletine (MEX) is used to treat chronic pain, myotonia and some arrhythmias. Mutations in the pore domain (PD) of voltage-gated sodium channels differently affect tonic block (TB) and use-dependent block (UDB) by MEX. Previous studies identified several MEX-sensing residues in the hNav1.5 channel and demonstrated that the channel block by MEX increases with activation of the voltage-sensing domain III (VSDIII), whereas MEX stabilizes the activated state of VSDIII. Structural rationales for these observations are unclear. Here, Monte Carlo (MC) energy minimizations were used to dock MEX and its more potent analog, Thio-Me2, into the hNav1.5 cryo-EM structure with activated VSDs and presumably inactivated PD. Computations yielded two ensembles of ligand binding poses in close contacts with known MEX-sensing residues in helices S6III, S6IV and P1IV. In both ensembles, the ligand NH3 group approached the cation-attractive site between backbone carbonyls at the outer-pore bottom, while the aromatic ring protruded ether into the inner pore (putative UDB pose) or into the III/IV fenestration (putative TB pose). In silico deactivation of VSDIII shifted helices S4-S5III, S5III, S6III and S6IV and tightened the TB site. In a model with activated VSDIII and three resting VSDs, MC-minimized energy profile of MEX pulled from the TB site towards lipids shows a deep local minimum due to interactions with 11 residues in S5III, P1III, S6III and S6IV. The minimum may correspond to an interim binding site for MEX in the hydrophobic path to the TB site along the lipid-exposed sides of repeats III and IV where 15 polar and aromatic residues would attract cationic blockers. The study explains numerous experimental data and suggests the mechanism of allosteric modification of the MEX binding site by VSDIII.
Collapse
Affiliation(s)
- Boris S. Zhorov
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada;
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 St. Petersburg, Russia
- Almazov National Medical Research Centre, 197341 St. Petersburg, Russia
| |
Collapse
|
34
|
Epilepsy-Induced High Affinity Blockade of the Cardiac Sodium Current INa by Lamotrigine; A Potential for Acquired Arrythmias. Pharmaceuticals (Basel) 2022; 15:ph15101208. [PMID: 36297320 PMCID: PMC9609666 DOI: 10.3390/ph15101208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/30/2022] Open
Abstract
Lamotrigine is widely prescribed to treat bipolar neurological disorder and epilepsy. It exerts its antiepileptic action by blocking voltage-gated sodium channels in neurons. Recently, the US Food and Drug Administration issued a warning on the use of Lamotrigine after observations of conduction anomalies and Brugada syndrome patterns on the electrocardiograms of epileptic patients treated with the drug. Brugada syndrome and conduction disturbance are both associated with alterations of the cardiac sodium current (INa) kinetics and amplitude. In this study, we used the patch clamp technique on cardiomyocytes from epileptic rats to test the hypothesis that Lamotrigine also blocks INa in the heart. We found that Lamotrigine inhibited 60% of INa peak amplitude and reduced cardiac excitability in epileptic rats but had little effect in sham animals. Moreover, Lamotrigine inhibited 67% of INaL and, more importantly, prolonged the action potential refractory period in epileptic animals. Our results suggest that enhanced affinity of Lamotrigine for INa may in part explain the clinical phenotypes observed in epileptic patients.
Collapse
|
35
|
Jahanfar F, Sadofsky L, Morice A, D’Amico M. Nebivolol as a Potent TRPM8 Channel Blocker: A Drug-Screening Approach through Automated Patch Clamping and Ligand-Based Virtual Screening. MEMBRANES 2022; 12:954. [PMID: 36295712 PMCID: PMC9609861 DOI: 10.3390/membranes12100954] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 09/19/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
Transient Receptor Potential Melastatin 8 (TRPM8) from the melastatin TRP channel subfamily is a non-selective Ca2+-permeable ion channel with multimodal gating which can be activated by low temperatures and cooling compounds, such as menthol and icilin. Different conditions such as neuropathic pain, cancer, overactive bladder syndrome, migraine, and chronic cough have been linked to the TRPM8 mode of action. Despite the several potent natural and synthetic inhibitors of TRPM8 that have been identified, none of them have been approved for clinical use. The aim of this study was to discover novel blocking TRPM8 agents using automated patch clamp electrophysiology combined with a ligand-based virtual screening based on the SwissSimilarity platform. Among the compounds we have tested, nebivolol and carvedilol exhibited the greatest inhibitory effect, with an IC50 of 0.97 ± 0.15 µM and 9.1 ± 0.6 µM, respectively. This study therefore provides possible candidates for future drug repurposing and suggests promising lead compounds for further optimization as inhibitors of the TRPM8 ion channel.
Collapse
Affiliation(s)
- Farhad Jahanfar
- Di.V.A.L. Toscana S.r.l., Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Laura Sadofsky
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Hull HU6 7RX, UK
| | - Alyn Morice
- Respiratory Research Group, Hull York Medical School, Castle Hill Hospital, Cottingham HU16 5JQ, UK
| | - Massimo D’Amico
- Di.V.A.L. Toscana S.r.l., Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
36
|
Pellegrino M, Ricci E, Ceraldi R, Nigro A, Bonofiglio D, Lanzino M, Morelli C. From HDAC to Voltage-Gated Ion Channels: What's Next? The Long Road of Antiepileptic Drugs Repositioning in Cancer. Cancers (Basel) 2022; 14:cancers14184401. [PMID: 36139561 PMCID: PMC9497059 DOI: 10.3390/cancers14184401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Although in the last decades the clinical outcome of cancer patients considerably improved, the major drawbacks still associated with chemotherapy are the unwanted side effects and the development of drug resistance. Therefore, a continuous effort in trying to discover new tumor markers, possibly of diagnostic, prognostic and therapeutic value, is being made. This review is aimed at highlighting the anti-tumor activity that several antiepileptic drugs (AEDs) exert in breast, prostate and other types of cancers, mainly focusing on their ability to block the voltage-gated Na+ and Ca++ channels, as well as to inhibit the activity of histone deacetylases (HDACs), all well-documented tumor markers and/or molecular targets. The existence of additional AEDs molecular targets is highly suspected. Therefore, the repurposing of already available drugs as adjuvants in cancer treatment would have several advantages, such as reductions in dose-related toxicity CVs will be sent in a separate mail to the indicated address of combined treatments, lower production costs, and faster approval for clinical use. Abstract Cancer is a major health burden worldwide. Although the plethora of molecular targets identified in the last decades and the deriving developed treatments, which significantly improved patients’ outcome, the occurrence of resistance to therapies remains the major cause of relapse and mortality. Thus, efforts in identifying new markers to be exploited as molecular targets in cancer therapy are needed. This review will first give a glance on the diagnostic and therapeutic significance of histone deacetylase (HDAC) and voltage gated ion channels (VGICs) in cancer. Nevertheless, HDAC and VGICs have also been reported as molecular targets through which antiepileptic drugs (AEDs) seem to exert their anticancer activity. This should be claimed as a great advantage. Indeed, due to the slowness of drug approval procedures, the attempt to turn to off-label use of already approved medicines would be highly preferable. Therefore, an updated and accurate overview of both preclinical and clinical data of commonly prescribed AEDs (mainly valproic acid, lamotrigine, carbamazepine, phenytoin and gabapentin) in breast, prostate, brain and other cancers will follow. Finally, a glance at the emerging attempt to administer AEDs by means of opportunely designed drug delivery systems (DDSs), so to limit toxicity and improve bioavailability, is also given.
Collapse
Affiliation(s)
| | | | | | | | | | - Marilena Lanzino
- Correspondence: (M.L.); (C.M.); Tel.: +39-0984-496206 (M.L.); +39-0984-496211 (C.M.)
| | - Catia Morelli
- Correspondence: (M.L.); (C.M.); Tel.: +39-0984-496206 (M.L.); +39-0984-496211 (C.M.)
| |
Collapse
|
37
|
Abate SM, Mergia G, Nega S, Basu B, Tadesse M. Efficacy and safety of wound infiltration modalities for postoperative pain management after cesarean section: a systematic review and network meta-analysis protocol. Syst Rev 2022; 11:194. [PMID: 36071535 PMCID: PMC9450460 DOI: 10.1186/s13643-022-02068-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 08/30/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Postoperative pain after a cesarean section has negative consequences for the mother during the postoperative period. Over the years, various postoperative pain management strategies have been used following cesarean section. Opioid-based analgesics and landmark approaches have negative side effects, while ultrasound-based regional analgesia necessitates resources and experience, but various wound infiltration adjuvants are innovative with few side effects and are simple to use. The efficacy and safety of each adjuvant, however, are unknown and require further investigation. OBJECTIVE This network meta-analysis is intended to provide the most effective wound infiltration drugs for postoperative management after cesarean section. METHOD A comprehensive search will be conducted in PubMed/MEDLINE, Cochrane Library, Science Direct, CINHAL, and LILACS without date and language restrictions. All randomized trials comparing the effectiveness of wound infiltration drugs for postoperative pain management after cesarean section will be included. Data extraction will be conducted independently by two authors. The quality of studies will be evaluated using the Cochrane risk of bias tool, and the overall quality of the evidence will be determined by GRADEpro software. DISCUSSION The rate of postoperative acute and chronic pain is very high which has a huge impact on the mother, family, healthcare practitioners, and healthcare delivery. It is a basic human right to give every patient with postoperative pain treatment that is realistic in terms of resources, technique, cost, and adverse event profile. SYSTEMATIC REVIEW REGISTRATION PROSPERO CRD42021268774.
Collapse
Affiliation(s)
- Semagn Mekonnen Abate
- Department of Anesthesiology, College of Health Sciences and Medicine, Dilla University, Dilla, Ethiopia.
| | - Getachew Mergia
- Departemnt of Obstetrics and Gynecology, College of Health Sciences and Medicine, Dilla University, Dilla, Ethiopia
| | - Solomon Nega
- Departemnt of Internal Medicine, College of Health Sciences and Medicine, Dilla University, Dilla, Ethiopia
| | - Bivash Basu
- Department of Anesthesiology, College of Health Sciences and Medicine, Dilla University, Dilla, Ethiopia
| | - Moges Tadesse
- School of Public Health, College of Health Sciences and Medicine, Dilla University, Dilla, Ethiopia
| |
Collapse
|
38
|
Zhorov BS, Dong K. Pyrethroids in an AlphaFold2 Model of the Insect Sodium Channel. INSECTS 2022; 13:745. [PMID: 36005370 PMCID: PMC9409284 DOI: 10.3390/insects13080745] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 05/13/2023]
Abstract
Pyrethroid insecticides stabilize the open state of insect sodium channels. Previous mutational, electrophysiological, and computational analyses led to the development of homology models predicting two pyrethroid receptor sites, PyR1 and PyR2. Many of the naturally occurring sodium channel mutations, which confer knockdown resistance (kdr) to pyrethroids, are located within or close to these receptor sites, indicating that these mutations impair pyrethroid binding. However, the mechanism of the state-dependent action of pyrethroids and the mechanisms by which kdr mutations beyond the receptor sites confer resistance remain unclear. Recent advances in protein structure prediction using the AlphaFold2 (AF2) neural network allowed us to generate a new model of the mosquito sodium channel AaNav1-1, with the activated voltage-sensing domains (VSMs) and the presumably inactivated pore domain (PM). We further employed Monte Carlo energy minimizations to open PM and deactivate VSM-I and VSM-II to generate additional models. The docking of a Type II pyrethroid deltamethrin in the models predicted its interactions with many known pyrethroid-sensing residues in the PyR1 and PyR2 sites and revealed ligand-channel interactions that stabilized the open PM and activated VSMs. Our study confirms the predicted two pyrethroid receptor sites, explains the state-dependent action of pyrethroids, and proposes the mechanisms of the allosteric effects of various kdr mutations on pyrethroid action. The AF2-based models may assist in the structure-based design of new insecticides.
Collapse
Affiliation(s)
- Boris S. Zhorov
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
- Sechenov Institute of Evolutionary Physiology & Biochemistry, Russian Academy of Sciences, Saint Petersburg 194223, Russia
- Almazov National Medical Research Centre, Saint Petersburg 197341, Russia
| | - Ke Dong
- Department of Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
39
|
Insights into the Cardiotoxic Effects of Veratrum Lobelianum Alkaloids: Pilot Study. Toxins (Basel) 2022; 14:toxins14070490. [PMID: 35878228 PMCID: PMC9315652 DOI: 10.3390/toxins14070490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 11/26/2022] Open
Abstract
Jervine, protoveratrine A (proA), and protoveratrine B (proB) are Veratrum alkaloids that are presented in some remedies obtained from Veratrum lobelianum, such as Veratrum aqua. This paper reports on a single-center pilot cardiotoxic mechanism study of jervine, proA, and proB in case series. The molecular aspects were studied via molecular dynamic simulation, molecular docking with cardiac sodium channel NaV1.5, and machine learning-based structure–activity relationship modeling. HPLC-MS/MS method in combination with clinical events were used to analyze Veratrum alkaloid cardiotoxicity in patients. Jervine demonstrates the highest docking score (−10.8 kcal/mol), logP value (4.188), and pKa value (9.64) compared with proA and proB. Also, this compound is characterized by the lowest calculated IC50. In general, all three analyzed alkaloids show the affinity to NaV1.5 that highly likely results in cardiotoxic action. The clinical data of seven cases of intoxication by Veratrum aqua confirms the results of molecular modeling. Patients exhibited nausea, muscle weakness, bradycardia, and arterial hypotension. The association between alkaloid concentrations in blood and urine and severity of patient condition is described. These experiments, while primary, confirmed that jervine, proA, and proB contribute to cardiotoxicity by NaV1.5 inhibition.
Collapse
|
40
|
Mazola Y, Márquez Montesinos JCE, Ramírez D, Zúñiga L, Decher N, Ravens U, Yarov-Yarovoy V, González W. Common Structural Pattern for Flecainide Binding in Atrial-Selective K v1.5 and Na v1.5 Channels: A Computational Approach. Pharmaceutics 2022; 14:1356. [PMID: 35890252 PMCID: PMC9318806 DOI: 10.3390/pharmaceutics14071356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 02/04/2023] Open
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia. Its treatment includes antiarrhythmic drugs (AADs) to modulate the function of cardiac ion channels. However, AADs have been limited by proarrhythmic effects, non-cardiovascular toxicities as well as often modest antiarrhythmic efficacy. Theoretical models showed that a combined blockade of Nav1.5 (and its current, INa) and Kv1.5 (and its current, IKur) ion channels yield a synergistic anti-arrhythmic effect without alterations in ventricles. We focused on Kv1.5 and Nav1.5 to search for structural similarities in their binding site (BS) for flecainide (a common blocker and widely prescribed AAD) as a first step for prospective rational multi-target directed ligand (MTDL) design strategies. We present a computational workflow for a flecainide BS comparison in a flecainide-Kv1.5 docking model and a solved structure of the flecainide-Nav1.5 complex. The workflow includes docking, molecular dynamics, BS characterization and pattern matching. We identified a common structural pattern in flecainide BS for these channels. The latter belongs to the central cavity and consists of a hydrophobic patch and a polar region, involving residues from the S6 helix and P-loop. Since the rational MTDL design for AF is still incipient, our findings could advance multi-target atrial-selective strategies for AF treatment.
Collapse
Affiliation(s)
- Yuliet Mazola
- Center for Bioinformatics, Simulation and Modeling (CBSM), Universidad de Talca, Talca 3460000, Chile; (Y.M.); (J.C.E.M.M.)
| | - José C. E. Márquez Montesinos
- Center for Bioinformatics, Simulation and Modeling (CBSM), Universidad de Talca, Talca 3460000, Chile; (Y.M.); (J.C.E.M.M.)
| | - David Ramírez
- Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4030000, Chile;
| | - Leandro Zúñiga
- Escuela de Medicina, Centro de Investigaciones Médicas, Universidad de Talca, Talca 3460000, Chile;
| | - Niels Decher
- Institute for Physiology and Pathophysiology, Vegetative Physiology, Philipps-University of Marburg, 35043 Marburg, Germany;
| | - Ursula Ravens
- Institut für Experimentelle Kardiovaskuläre Medizin, Universitäts-Herzzentrum Freiburg Bad Krotzingen, 79110 Freiburg im Breisgau, Germany;
| | - Vladimir Yarov-Yarovoy
- Department of Physiology and Membrane Biology, University of California, Davis, CA 95616, USA;
| | - Wendy González
- Center for Bioinformatics, Simulation and Modeling (CBSM), Universidad de Talca, Talca 3460000, Chile; (Y.M.); (J.C.E.M.M.)
- Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Talca 3530000, Chile
| |
Collapse
|
41
|
Yuan M, Na X, Liu J, Zhang Y, Wei Y, Ma G. Preparation, characterization and in vivo efficacy evaluation of ropivacaine O/W emulsion by premix membrane emulsification. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
42
|
Körner J, Albani S, Sudha Bhagavath Eswaran V, Roehl AB, Rossetti G, Lampert A. Sodium Channels and Local Anesthetics-Old Friends With New Perspectives. Front Pharmacol 2022; 13:837088. [PMID: 35418860 PMCID: PMC8996304 DOI: 10.3389/fphar.2022.837088] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/16/2022] [Indexed: 12/11/2022] Open
Abstract
The long history of local anesthetics (LAs) starts out in the late 19th century when the content of coca plant leaves was discovered to alleviate pain. Soon after, cocaine was established and headed off to an infamous career as a substance causing addiction. Today, LAs and related substances-in modified form-are indispensable in our clinical everyday life for pain relief during and after minor and major surgery, and dental practices. In this review, we elucidate on the interaction of modern LAs with their main target, the voltage-gated sodium channel (Navs), in the light of the recently published channel structures. Knowledge of the 3D interaction sites of the drug with the protein will allow to mechanistically substantiate the comprehensive data available on LA gating modification. In the 1970s it was suggested that LAs can enter the channel pore from the lipid phase, which was quite prospective at that time. Today we know from cryo-electron microscopy structures and mutagenesis experiments, that indeed Navs have side fenestrations facing the membrane, which are likely the entrance for LAs to induce tonic block. In this review, we will focus on the effects of LA binding on fast inactivation and use-dependent inhibition in the light of the proposed new allosteric mechanism of fast inactivation. We will elaborate on subtype and species specificity and provide insights into modelling approaches that will help identify the exact molecular binding orientation, access pathways and pharmacokinetics. With this comprehensive overview, we will provide new perspectives in the use of the drug, both clinically and as a tool for basic ion channel research.
Collapse
Affiliation(s)
- Jannis Körner
- Institute of Physiology, Aachen, Germany.,Clinic of Anesthesiology, Medical Faculty, Uniklinik RWTH Aachen, Aachen, Germany
| | - Simone Albani
- Institute for Neuroscience and Medicine (INM-9/IAS-5), Forschungszentrum Jülich, Jülich, Germany.,Faculty of Mathematics, Computer Science and Natural Sciences, RWTH Aachen, Aachen, Germany
| | | | - Anna B Roehl
- Clinic of Anesthesiology, Medical Faculty, Uniklinik RWTH Aachen, Aachen, Germany
| | - Giulia Rossetti
- Institute for Neuroscience and Medicine (INM-9/IAS-5), Forschungszentrum Jülich, Jülich, Germany.,Jülich Supercomputing Center (JSC), Forschungszentrum Jülich, Aachen, Germany.,Department of Neurology, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | | |
Collapse
|
43
|
Cowan LM, Strege PR, Rusinova R, Andersen OS, Farrugia G, Beyder A. Capsaicin as an amphipathic modulator of Na V1.5 mechanosensitivity. Channels (Austin) 2022; 16:9-26. [PMID: 35412435 PMCID: PMC9009938 DOI: 10.1080/19336950.2022.2026015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
SCN5A-encoded NaV1.5 is a voltage-gated Na+ channel that drives the electrical excitability of cardiac myocytes and contributes to slow waves of the human gastrointestinal smooth muscle cells. NaV1.5 is mechanosensitive: mechanical force modulates several facets of NaV1.5’s voltage-gated function, and some NaV1.5 channelopathies are associated with abnormal NaV1.5 mechanosensitivity (MS). A class of membrane-active drugs, known as amphiphiles, therapeutically target NaV1.5’s voltage-gated function and produce off-target effects including alteration of MS. Amphiphiles may provide a novel option for therapeutic modulation of NaV1.5’s mechanosensitive operation. To more selectively target NaV1.5 MS, we searched for a membrane-partitioning amphipathic agent that would inhibit MS with minimal closed-state inhibition of voltage-gated currents. Among the amphiphiles tested, we selected capsaicin for further study. We used two methods to assess the effects of capsaicin on NaV1.5 MS: (1) membrane suction in cell-attached macroscopic patches and (2) fluid shear stress on whole cells. We tested the effect of capsaicin on NaV1.5 MS by examining macro-patch and whole-cell Na+ current parameters with and without force. Capsaicin abolished the pressure- and shear-mediated peak current increase and acceleration; and the mechanosensitive shifts in the voltage-dependence of activation (shear) and inactivation (pressure and shear). Exploring the recovery from inactivation and use-dependent entry into inactivation, we found divergent stimulus-dependent effects that could potentiate or mitigate the effect of capsaicin, suggesting that mechanical stimuli may differentially modulate NaV1.5 MS. We conclude that selective modulation of NaV1.5 MS makes capsaicin a promising candidate for therapeutic interventions targeting MS.
Collapse
Affiliation(s)
- Luke M Cowan
- Division of Gastroenterology and Hepatology, Enteric Neuroscience Program (ENSP), Mayo Clinic, Rochester, MN, USA.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Mn, USA
| | - Peter R Strege
- Division of Gastroenterology and Hepatology, Enteric Neuroscience Program (ENSP), Mayo Clinic, Rochester, MN, USA.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Mn, USA
| | - Radda Rusinova
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, USA
| | - Olaf S Andersen
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, USA
| | - Gianrico Farrugia
- Division of Gastroenterology and Hepatology, Enteric Neuroscience Program (ENSP), Mayo Clinic, Rochester, MN, USA.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Mn, USA
| | - Arthur Beyder
- Division of Gastroenterology and Hepatology, Enteric Neuroscience Program (ENSP), Mayo Clinic, Rochester, MN, USA.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Mn, USA
| |
Collapse
|
44
|
Valdés-Jiménez A, Jiménez-González D, Kiper AK, Rinné S, Decher N, González W, Reyes-Parada M, Núñez-Vivanco G. A New Strategy for Multitarget Drug Discovery/Repositioning Through the Identification of Similar 3D Amino Acid Patterns Among Proteins Structures: The Case of Tafluprost and its Effects on Cardiac Ion Channels. Front Pharmacol 2022; 13:855792. [PMID: 35370665 PMCID: PMC8971525 DOI: 10.3389/fphar.2022.855792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 02/21/2022] [Indexed: 01/01/2023] Open
Abstract
The identification of similar three-dimensional (3D) amino acid patterns among different proteins might be helpful to explain the polypharmacological profile of many currently used drugs. Also, it would be a reasonable first step for the design of novel multitarget compounds. Most of the current computational tools employed for this aim are limited to the comparisons among known binding sites, and do not consider several additional important 3D patterns such as allosteric sites or other conserved motifs. In the present work, we introduce Geomfinder2.0, which is a new and improved version of our previously described algorithm for the deep exploration and discovery of similar and druggable 3D patterns. As compared with the original version, substantial improvements that have been incorporated to our software allow: (i) to compare quaternary structures, (ii) to deal with a list of pairs of structures, (iii) to know how druggable is the zone where similar 3D patterns are detected and (iv) to significantly reduce the execution time. Thus, the new algorithm achieves up to 353x speedup as compared to the previous sequential version, allowing the exploration of a significant number of quaternary structures in a reasonable time. In order to illustrate the potential of the updated Geomfinder version, we show a case of use in which similar 3D patterns were detected in the cardiac ions channels NaV1.5 and TASK-1. These channels are quite different in terms of structure, sequence and function and both have been regarded as important targets for drugs aimed at treating atrial fibrillation. Finally, we describe the in vitro effects of tafluprost (a drug currently used to treat glaucoma, which was identified as a novel putative ligand of NaV1.5 and TASK-1) upon both ion channels’ activity and discuss its possible repositioning as a novel antiarrhythmic drug.
Collapse
Affiliation(s)
- Alejandro Valdés-Jiménez
- Center for Bioinformatics, Simulations and Modelling, Faculty of Engineering, University of Talca, Talca, Chile
- Computer Architecture Department, Universitat Politécnica de Catalunya, Barcelona, Spain
| | - Daniel Jiménez-González
- Computer Architecture Department, Universitat Politécnica de Catalunya, Barcelona, Spain
- Barcelona Supercomputing Center, Barcelona, Spain
| | - Aytug K. Kiper
- Institute for Physiology and Pathophysiology, Philipps-University Marburg, Marburg, Germany
| | - Susanne Rinné
- Institute for Physiology and Pathophysiology, Philipps-University Marburg, Marburg, Germany
| | - Niels Decher
- Institute for Physiology and Pathophysiology, Philipps-University Marburg, Marburg, Germany
| | - Wendy González
- Center for Bioinformatics, Simulations and Modelling, Faculty of Engineering, University of Talca, Talca, Chile
- Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Universidad de Talca, Talca, Chile
- *Correspondence: Wendy González, ; Miguel Reyes-Parada, ; Gabriel Núñez-Vivanco,
| | - Miguel Reyes-Parada
- Centro de Investigación Biomédica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile, Santiago, Chile
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile
- *Correspondence: Wendy González, ; Miguel Reyes-Parada, ; Gabriel Núñez-Vivanco,
| | - Gabriel Núñez-Vivanco
- Departamento de Ciencias Naturales y Tecnología, Universidad de Aysén, Coyhaique, Chile
- *Correspondence: Wendy González, ; Miguel Reyes-Parada, ; Gabriel Núñez-Vivanco,
| |
Collapse
|
45
|
Tikhonov DB, Zhorov BS. P-Loop Channels: Experimental Structures, and Physics-Based and Neural Networks-Based Models. MEMBRANES 2022; 12:membranes12020229. [PMID: 35207150 PMCID: PMC8876033 DOI: 10.3390/membranes12020229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/09/2022] [Accepted: 02/09/2022] [Indexed: 01/27/2023]
Abstract
The superfamily of P-loop channels includes potassium, sodium, and calcium channels, as well as TRP channels and ionotropic glutamate receptors. A rapidly increasing number of crystal and cryo-EM structures have revealed conserved and variable elements of the channel structures. Intriguing differences are seen in transmembrane helices of channels, which may include π-helical bulges. The bulges reorient residues in the helices and thus strongly affect their intersegment contacts and patterns of ligand-sensing residues. Comparison of the experimental structures suggests that some π-bulges are dynamic: they may appear and disappear upon channel gating and ligand binding. The AlphaFold2 models represent a recent breakthrough in the computational prediction of protein structures. We compared some crystal and cryo-EM structures of P-loop channels with respective AlphaFold2 models. Folding of the regions, which are resolved experimentally, is generally similar to that predicted in the AlphaFold2 models. The models also reproduce some subtle but significant differences between various P-loop channels. However, patterns of π-bulges do not necessarily coincide in the experimental and AlphaFold2 structures. Given the importance of dynamic π-bulges, further studies involving experimental and theoretical approaches are necessary to understand the cause of the discrepancy.
Collapse
|
46
|
Labau JIR, Alsaloum M, Estacion M, Tanaka B, Dib-Hajj FB, Lauria G, Smeets HJM, Faber CG, Dib-Hajj S, Waxman SG. Lacosamide Inhibition of Na V1.7 Channels Depends on its Interaction With the Voltage Sensor Domain and the Channel Pore. Front Pharmacol 2022; 12:791740. [PMID: 34992539 PMCID: PMC8724789 DOI: 10.3389/fphar.2021.791740] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/02/2021] [Indexed: 12/14/2022] Open
Abstract
Lacosamide, developed as an anti-epileptic drug, has been used for the treatment of pain. Unlike typical anticonvulsants and local anesthetics which enhance fast-inactivation and bind within the pore of sodium channels, lacosamide enhances slow-inactivation of these channels, suggesting different binding mechanisms and mode of action. It has been reported that lacosamide's effect on NaV1.5 is sensitive to a mutation in the local anesthetic binding site, and that it binds with slow kinetics to the fast-inactivated state of NaV1.7. We recently showed that the NaV1.7-W1538R mutation in the voltage-sensing domain 4 completely abolishes NaV1.7 inhibition by clinically-achievable concentration of lacosamide. Our molecular docking analysis suggests a role for W1538 and pore residues as high affinity binding sites for lacosamide. Aryl sulfonamide sodium channel blockers are also sensitive to substitutions of the W1538 residue but not of pore residues. To elucidate the mechanism by which lacosamide exerts its effects, we used voltage-clamp recordings and show that lacosamide requires an intact local anesthetic binding site to inhibit NaV1.7 channels. Additionally, the W1538R mutation does not abrogate local anesthetic lidocaine-induced blockade. We also show that the naturally occurring arginine in NaV1.3 (NaV1.3-R1560), which corresponds to NaV1.7-W1538R, is not sufficient to explain the resistance of NaV1.3 to clinically-relevant concentrations of lacosamide. However, the NaV1.7-W1538R mutation conferred sensitivity to the NaV1.3-selective aryl-sulfonamide blocker ICA-121431. Together, the W1538 residue and an intact local anesthetic site are required for lacosamide's block of NaV1.7 at a clinically-achievable concentration. Moreover, the contribution of W1538 to lacosamide inhibitory effects appears to be isoform-specific.
Collapse
Affiliation(s)
- Julie I R Labau
- Department of Neurology, Yale University School of Medicine, New Haven, CT, United States.,Center for Neuroscience and Regeneration Research, Yale University, West Haven, CT, United States.,Rehabilitation Research Center, Veteran Affairs Connecticut Healthcare System, West Haven, CT, United States.,Department of Toxicogenomics, Clinical Genomics, Maastricht University Medical Centre+, Maastricht, Netherlands.,School of Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Matthew Alsaloum
- Department of Neurology, Yale University School of Medicine, New Haven, CT, United States.,Center for Neuroscience and Regeneration Research, Yale University, West Haven, CT, United States.,Rehabilitation Research Center, Veteran Affairs Connecticut Healthcare System, West Haven, CT, United States.,Yale Medical Scientist Training Program, Yale School of Medicine, New Haven, CT, United States.,Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, United States
| | - Mark Estacion
- Department of Neurology, Yale University School of Medicine, New Haven, CT, United States.,Center for Neuroscience and Regeneration Research, Yale University, West Haven, CT, United States.,Rehabilitation Research Center, Veteran Affairs Connecticut Healthcare System, West Haven, CT, United States
| | - Brian Tanaka
- Department of Neurology, Yale University School of Medicine, New Haven, CT, United States.,Center for Neuroscience and Regeneration Research, Yale University, West Haven, CT, United States.,Rehabilitation Research Center, Veteran Affairs Connecticut Healthcare System, West Haven, CT, United States
| | - Fadia B Dib-Hajj
- Department of Neurology, Yale University School of Medicine, New Haven, CT, United States.,Center for Neuroscience and Regeneration Research, Yale University, West Haven, CT, United States.,Rehabilitation Research Center, Veteran Affairs Connecticut Healthcare System, West Haven, CT, United States
| | - Giuseppe Lauria
- Neuroalgology Unit, IRCCS Foundation, "Carlo Besta" Neurological Institute, Milan, Italy.,Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Hubert J M Smeets
- Department of Toxicogenomics, Clinical Genomics, Maastricht University Medical Centre+, Maastricht, Netherlands.,School of Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Catharina G Faber
- Department of Neurology, School of Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, Netherlands
| | - Sulayman Dib-Hajj
- Department of Neurology, Yale University School of Medicine, New Haven, CT, United States.,Center for Neuroscience and Regeneration Research, Yale University, West Haven, CT, United States.,Rehabilitation Research Center, Veteran Affairs Connecticut Healthcare System, West Haven, CT, United States
| | - Stephen G Waxman
- Department of Neurology, Yale University School of Medicine, New Haven, CT, United States.,Center for Neuroscience and Regeneration Research, Yale University, West Haven, CT, United States.,Rehabilitation Research Center, Veteran Affairs Connecticut Healthcare System, West Haven, CT, United States
| |
Collapse
|
47
|
Lagoutte-Renosi J, Allemand F, Ramseyer C, Yesylevskyy S, Davani S. Molecular modeling in cardiovascular pharmacology: Current state of the art and perspectives. Drug Discov Today 2021; 27:985-1007. [PMID: 34863931 DOI: 10.1016/j.drudis.2021.11.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 11/02/2021] [Accepted: 11/25/2021] [Indexed: 01/10/2023]
Abstract
Molecular modeling in pharmacology is a promising emerging tool for exploring drug interactions with cellular components. Recent advances in molecular simulations, big data analysis, and artificial intelligence (AI) have opened new opportunities for rationalizing drug interactions with their pharmacological targets. Despite the obvious utility and increasing impact of computational approaches, their development is not progressing at the same speed in different fields of pharmacology. Here, we review current in silico techniques used in cardiovascular diseases (CVDs), cardiological drug discovery, and assessment of cardiotoxicity. In silico techniques are paving the way to a new era in cardiovascular medicine, but their use somewhat lags behind that in other fields.
Collapse
Affiliation(s)
- Jennifer Lagoutte-Renosi
- EA 3920 Université Bourgogne Franche-Comté, 25000 Besançon, France; Laboratoire de Pharmacologie Clinique et Toxicologie-CHU de Besançon, 25000 Besançon, France
| | - Florentin Allemand
- EA 3920 Université Bourgogne Franche-Comté, 25000 Besançon, France; Laboratoire Chrono Environnement UMR CNRS 6249, Université de Bourgogne Franche-Comté, 16 route de Gray, 25000 Besançon, France
| | - Christophe Ramseyer
- Laboratoire Chrono Environnement UMR CNRS 6249, Université de Bourgogne Franche-Comté, 16 route de Gray, 25000 Besançon, France
| | - Semen Yesylevskyy
- Laboratoire Chrono Environnement UMR CNRS 6249, Université de Bourgogne Franche-Comté, 16 route de Gray, 25000 Besançon, France; Department of Physics of Biological Systems, Institute of Physics of The National Academy of Sciences of Ukraine, Nauky Sve. 46, Kyiv, Ukraine; Receptor.ai inc, 16192 Coastal Highway, Lewes, DE, USA
| | - Siamak Davani
- EA 3920 Université Bourgogne Franche-Comté, 25000 Besançon, France; Laboratoire de Pharmacologie Clinique et Toxicologie-CHU de Besançon, 25000 Besançon, France.
| |
Collapse
|
48
|
Korkosh VS, Zaytseva AK, Kostareva AA, Zhorov BS. Intersegment Contacts of Potentially Damaging Variants of Cardiac Sodium Channel. Front Pharmacol 2021; 12:756415. [PMID: 34803699 PMCID: PMC8600069 DOI: 10.3389/fphar.2021.756415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/18/2021] [Indexed: 11/30/2022] Open
Abstract
Over 1,500 missense variants of sodium channel hNav1.5, which are reported in the ClinVar database, are associated with cardiac diseases. For most of the variants, the clinical significance is uncertain (VUS), not provided (NP), or has conflicting interpretations of pathogenicity (CIP). Reclassifying these variants as pathogenic/likely pathogenic (P/LP) variants is important for diagnosing genotyped patients. In our earlier work, several bioinformatics tools and paralogue annotation method consensually predicted that 74 VUS/NP/CIP variants of 54 wild type residues (set w54) are potentially damaging variants (PDVs). Atomic mechanisms underlying dysfunction of the PDVs are unknown. Here we employed a recent cryo-EM structure of the hNav1.5 channel with likely inactivated pore domain (PD) and activated voltage-sensing domains (VSDs), and ad hoc models of the closed and open PD and resting VSDs to explore intersegment contacts of w54 residues. We found that 44 residues from set w54 contact 84 residues with 118 disease missense variants. These include 104 VUS/NP/CIP variants, most of which are associated with the loss-of-function Brugada syndrome (BrS1) or gain-of-function long QT syndrome (LQT3). Matrix representation of the PDVs and their contact variants facilitated recognition of coupled mutations associated with the same disease. In particular, BrS1-associated coupled mutations, which disturb the P-loops region with the selectivity filter slow inactivation gate, would cause the channel dysfunction. Other likely causes of the channel dysfunction include coupled BrS1-associated variants within VSDs that would destabilize their activated states and coupled LQT3-associated variants, which would stabilize the open PD or activated VSDs. Our study proposes mechanisms of channel dysfunction for scores of BrS1- and LQT3-associated variants, confirms status for 82% of PDVs, and suggests damaging status for their contact variants, which are currently categorized as VUS/NP/CIP variants.
Collapse
Affiliation(s)
- Vyacheslav S Korkosh
- Almazov National Medical Research Centre, St. Petersburg, Russia.,Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Anastasia K Zaytseva
- Almazov National Medical Research Centre, St. Petersburg, Russia.,Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Anna A Kostareva
- Almazov National Medical Research Centre, St. Petersburg, Russia.,Department of Women's and Children's Health, Karolinska Institute, Solna, Sweden
| | - Boris S Zhorov
- Almazov National Medical Research Centre, St. Petersburg, Russia.,Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia.,Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
49
|
Gabriel TS, Hansen UP, Urban M, Drexler N, Winterstein T, Rauh O, Thiel G, Kast SM, Schroeder I. Asymmetric Interplay Between K + and Blocker and Atomistic Parameters From Physiological Experiments Quantify K + Channel Blocker Release. Front Physiol 2021; 12:737834. [PMID: 34777005 PMCID: PMC8586521 DOI: 10.3389/fphys.2021.737834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/04/2021] [Indexed: 11/23/2022] Open
Abstract
Modulating the activity of ion channels by blockers yields information on both the mode of drug action and on the biophysics of ion transport. Here we investigate the interplay between ions in the selectivity filter (SF) of K+ channels and the release kinetics of the blocker tetrapropylammonium in the model channel KcvNTS. A quantitative expression calculates blocker release rate constants directly from voltage-dependent ion occupation probabilities in the SF. The latter are obtained by a kinetic model of single-channel currents recorded in the absence of the blocker. The resulting model contains only two adjustable parameters of ion-blocker interaction and holds for both symmetric and asymmetric ionic conditions. This data-derived model is corroborated by 3D reference interaction site model (3D RISM) calculations on several model systems, which show that the K+ occupation probability is unaffected by the blocker, a direct consequence of the strength of the ion-carbonyl attraction in the SF, independent of the specific protein background. Hence, KcvNTS channel blocker release kinetics can be reduced to a small number of system-specific parameters. The pore-independent asymmetric interplay between K+ and blocker ions potentially allows for generalizing these results to similar potassium channels.
Collapse
Affiliation(s)
- Tobias S Gabriel
- Plant Membrane Biophysics, Technische Universität Darmstadt, Darmstadt, Germany
| | - Ulf-Peter Hansen
- Department of Structural Biology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Martin Urban
- Physikalische Chemie III, Technische Universita̋t Dortmund, Dortmund, Germany
| | - Nils Drexler
- Institute of Physiology II, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany
| | - Tobias Winterstein
- Plant Membrane Biophysics, Technische Universität Darmstadt, Darmstadt, Germany
| | - Oliver Rauh
- Plant Membrane Biophysics, Technische Universität Darmstadt, Darmstadt, Germany
| | - Gerhard Thiel
- Plant Membrane Biophysics, Technische Universität Darmstadt, Darmstadt, Germany
| | - Stefan M Kast
- Physikalische Chemie III, Technische Universita̋t Dortmund, Dortmund, Germany
| | - Indra Schroeder
- Plant Membrane Biophysics, Technische Universität Darmstadt, Darmstadt, Germany.,Institute of Physiology II, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
50
|
Preparation of novel ropivacaine hydrochloride-loaded PLGA microspheres based on post-loading mode and efficacy evaluation. Colloids Surf B Biointerfaces 2021; 210:112215. [PMID: 34839050 DOI: 10.1016/j.colsurfb.2021.112215] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/31/2021] [Accepted: 11/09/2021] [Indexed: 01/08/2023]
Abstract
Low encapsulation efficiency of the drug usually exist in hydrophilic drug which was embedded by hydrophobic materials directly in traditional method. In order to solve this problem, a novel preparation strategy which called "post-loading mode" was innovatively designed in this study: ropivacaine hydrochloride (ROP), a hydrophilic drug used in the field of anesthesia and analgesia, was encapsulated into the pre-prepared porous Poly (lactic-co-glycolic acid) (PLGA) microspheres; the porous PLGA microspheres (PLGA-Ms) with self-healing characteristic were used to obtain ROP-PLGA-Ms (with particle size around were 38 µm), in which drug loading (DL) was 8.72%. A rat sciatic nerve block model was established to evaluate the efficacy of ROP-PLGA-Ms. Exparel®, a bupivacaine liposome suspension approved by the FDA, was defined as reference agents in this study. The results showed that the injection of ROP, Exparel®, and ROP-PLGA-Ms were injected to the peripheral sciatic nerve could lead to motor dysfunction and sensory nerve block unanimously, and the onset time was less than 10 min for all cases. In addition, in comparison with ROP injection and Exparel®, the nerve block time of ROP-PLGA-Ms was significantly prolonged (P < 0.05). Effective analgesia duration of ROP-PLGA-Ms was about 5 h, 2.5 and 1.7 folds longer than that of ROP injection and Exparel®, respectively. The rats in each group could recover eventually within 8 h after administration. H&E showed that no inflammatory reaction was observed at the injection location. Analysis of blood biochemistry showed an insignificant difference between the microsphere experimental group and the negative group, which further indicated the safety of microsphere bioformulation.
Collapse
|