1
|
Tartarotti B, Rastl N, Sommer F. Zooplankton communities in mountain reservoirs of the Eastern Alps. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 967:178764. [PMID: 39954475 DOI: 10.1016/j.scitotenv.2025.178764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 02/04/2025] [Accepted: 02/04/2025] [Indexed: 02/17/2025]
Abstract
Due to global changes, ski lift operators are increasingly dependent on artificial snow. The snowmaking process requires large amounts of water, leading to the construction of mountain reservoirs throughout the Alps. While these reservoirs can have a negative impact on the mountain ecosystem and landscape structure, they also provide a potential new habitat for aquatic organisms such as zooplankton. In addition to the harsh conditions in alpine regions, species inhabiting these water bodies must also cope with fluctuations in water levels. Our study aimed to identify the zooplankton species inhabiting mountain reservoirs, to determine whether these communities show similarities to those of natural alpine lakes, and to identify the ecological factors related to their abundance. Samples were collected from eleven reservoirs located in the Eastern Alps twice during the ice-free period. Depth profiles were obtained for temperature, dissolved oxygen, electrical conductivity and pH, and samples were taken for water chemistry, chlorophyll a, bacteria, ciliates and zooplankton. The results show that all reservoirs contained zooplankton (22 taxa in total, 1-11 taxa per reservoir, 7 taxa on average). The species composition was similar to that of nearby natural lakes. Furthermore, reservoirs located in close proximity displayed similarities in zooplankton composition. A wide range of abundance was observed (summer: 0.09-168.74 Ind per litre; autumn: 0.04-1092.78 Ind per litre), which was significantly related to environmental factors, including elevation, DOC, chlorophyll a, pH, K+, total phosphorus, and Ca2+. While rotifers were numerically dominant in the reservoirs, the zooplankton biomass was dominated by crustaceans. Our data suggest that local factors have a greater effect than regional factors on these rapidly changing systems. The findings contribute to our understanding of the distribution of zooplankton in remote regions, despite the artificial nature of these systems.
Collapse
Affiliation(s)
| | - Nikolai Rastl
- Department of Ecology, University of Innsbruck, Innsbruck, Austria
| | - Fabian Sommer
- Department of Ecology, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
2
|
Guislain ALN, Nejstgaard JC, Köhler J, Sperfeld E, Mischke U, Skjelbred B, Grossart H, Lyche Solheim A, Gessner MO, Berger SA. Cell size explains shift in phytoplankton community structure following storm-induced changes in light and nutrients. Ecology 2025; 106:e70043. [PMID: 40065660 PMCID: PMC11894364 DOI: 10.1002/ecy.70043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 11/11/2024] [Accepted: 12/13/2024] [Indexed: 03/14/2025]
Abstract
Understanding the mechanisms driving community structure and dynamics is crucial in the face of escalating climate change, including increasing incidences of extreme weather. Cell size is a master trait of small organisms that is subject to a trade-off between resistance to grazing and competition for resources, and thus holds potential to explain and predict community dynamics in response to disturbances. Here, we aimed at determining whether cell size can explain shifts in phytoplankton communities following changes in nutrient and light conditions resulting from storm-induced inputs of nutrients and colored dissolved organic matter (cDOM) to deep clearwater lakes. To ensure realistic environmental conditions, we used a crossed gradient design to conduct a large-scale enclosure experiment over 6 weeks. Cell size explained phytoplankton community structure when light availability declined as a result of cDOM supply. Initially unimodal, with small-celled species accounting for up to 60% of the total community biovolume, the cell-size distribution gradually shifted toward large-celled species as light levels declined following cDOM addition. Neither nutrients nor mesozooplankton affected the shift in cell-size distribution. These results suggest a distinct competitive advantage of larger over smaller species at reduced light levels following cDOM inputs during storm events. Importantly, the clustering of species in two distinct size classes implies that interspecific size differences matter as much as cell size per se to understand community dynamics. Given that shifts in cell-size distribution have strong implications for food-web structure and biogeochemical cycles, our results point to the importance of analyzing cell-size distributions of small organisms as an essential element to forecast community and ecosystem dynamics in response to environmental change.
Collapse
Affiliation(s)
- Alexis L. N. Guislain
- Department of Plankton and Microbial EcologyLeibniz Institute of Freshwater Ecology and Inland Fisheries (IGB)StechlinGermany
- Berlin‐Brandenburg Institute of Advanced Biodiversity Research (BBIB)BerlinGermany
| | - Jens C. Nejstgaard
- Department of Plankton and Microbial EcologyLeibniz Institute of Freshwater Ecology and Inland Fisheries (IGB)StechlinGermany
- Berlin‐Brandenburg Institute of Advanced Biodiversity Research (BBIB)BerlinGermany
| | - Jan Köhler
- Department of Community and Ecosystems EcologyLeibniz Institute of Freshwater Ecology and Inland Fisheries (IGB)BerlinGermany
| | - Erik Sperfeld
- Department of Plankton and Microbial EcologyLeibniz Institute of Freshwater Ecology and Inland Fisheries (IGB)StechlinGermany
- Animal EcologyZoological Institute and Museum, University of GreifswaldGreifswaldGermany
- Present address:
Section IV 2.5 Trace Analysis, Artificial Ponds and Streams, German Environment Agency (UBA)BerlinGermany
| | - Ute Mischke
- Department of Ecohydrology and BiogeochemistryLeibniz Institute of Freshwater Ecology and Inland Fisheries (IGB)BerlinGermany
- Present address:
Bavarian Environment Agency, Ecology of Lakes and RiversWielenbachGermany
| | | | - Hans‐Peter Grossart
- Department of Plankton and Microbial EcologyLeibniz Institute of Freshwater Ecology and Inland Fisheries (IGB)StechlinGermany
- Berlin‐Brandenburg Institute of Advanced Biodiversity Research (BBIB)BerlinGermany
- Department of Biochemistry and BiologyPotsdam UniversityPotsdamGermany
| | | | - Mark O. Gessner
- Department of Plankton and Microbial EcologyLeibniz Institute of Freshwater Ecology and Inland Fisheries (IGB)StechlinGermany
- Berlin‐Brandenburg Institute of Advanced Biodiversity Research (BBIB)BerlinGermany
- Department of EcologyBerlin Institute of Technology (TU Berlin)BerlinGermany
| | - Stella A. Berger
- Department of Plankton and Microbial EcologyLeibniz Institute of Freshwater Ecology and Inland Fisheries (IGB)StechlinGermany
- Berlin‐Brandenburg Institute of Advanced Biodiversity Research (BBIB)BerlinGermany
| |
Collapse
|
3
|
Heinrichs AL, Hardorp OJ, Hillebrand H, Schott T, Striebel M. Direct and indirect cumulative effects of temperature, nutrients, and light on phytoplankton growth. Ecol Evol 2024; 14:e70073. [PMID: 39091334 PMCID: PMC11289788 DOI: 10.1002/ece3.70073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/10/2024] [Accepted: 07/08/2024] [Indexed: 08/04/2024] Open
Abstract
Temperature and resource availability are pivotal factors influencing phytoplankton community structures. Numerous prior studies demonstrated their significant influence on phytoplankton stoichiometry, cell size, and growth rates. The growth rate, serving as a reflection of an organism's success within its environment, is linked to stoichiometry and cell size. Consequently, alterations in abiotic conditions affecting cell size or stoichiometry also exert indirect effects on growth. However, such results have their limitations, as most studies used a limited number of factors and factor levels which gives us limited insights into how phytoplankton respond to environmental conditions, directly and indirectly. Here, we tested for the generality of patterns found in other studies, using a combined multiple-factor gradient design and two single species with different size characteristics. We used a structural equation model (SEM) that allowed us to investigate the direct cumulative effects of temperature and resource availability (i.e., light, N and P) on phytoplankton growth, as well as their indirect effects on growth through changes in cell size and cell stoichiometry. Our results mostly support the results reported in previous research thus some effects can be identified as dominant effects. We identified rising temperature as the dominant driver for cell size reduction and increase in growth, and nutrient availability (i.e., N and P) as dominant factor for changes in cellular stoichiometry. However, indirect effects of temperature and resources (i.e., light and nutrients) on species' growth rates through cell size and cell stoichiometry differed across the two species suggesting different strategies to acclimate to its environment.
Collapse
Affiliation(s)
- Anna Lena Heinrichs
- Institute for Chemistry and Biology of the Marine Environment (ICBM)Carl‐von‐Ossietzky University of Oldenburg, School of Mathematics and ScienceOldenburgGermany
| | - Onja Johannes Hardorp
- Institute for Chemistry and Biology of the Marine Environment (ICBM)Carl‐von‐Ossietzky University of Oldenburg, School of Mathematics and ScienceOldenburgGermany
| | - Helmut Hillebrand
- Institute for Chemistry and Biology of the Marine Environment (ICBM)Carl‐von‐Ossietzky University of Oldenburg, School of Mathematics and ScienceOldenburgGermany
- Helmholtz Institute for Functional Marine Biodiversity (HIFMB)Carl‐von‐Ossietzky University of OldenburgOldenburgGermany
- Alfred Wegener Institute, Helmholtz‐Centre for Polar and Marine Research [AWI]BremerhavenGermany
| | - Toni Schott
- Institute for Chemistry and Biology of the Marine Environment (ICBM)Carl‐von‐Ossietzky University of Oldenburg, School of Mathematics and ScienceOldenburgGermany
| | - Maren Striebel
- Institute for Chemistry and Biology of the Marine Environment (ICBM)Carl‐von‐Ossietzky University of Oldenburg, School of Mathematics and ScienceOldenburgGermany
| |
Collapse
|
4
|
Orizar IDS, Repetti SI, Lewandowska AM. Phytoplankton stoichiometry along the salinity gradient under limited nutrient and light supply. JOURNAL OF PLANKTON RESEARCH 2024; 46:387-397. [PMID: 39091691 PMCID: PMC11290246 DOI: 10.1093/plankt/fbae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/28/2024] [Indexed: 08/04/2024]
Abstract
Ongoing climate warming alters precipitation and water column stability, leading to salinity and nutrient supply changes in the euphotic zone of many coastal ecosystems and semi-enclosed seas. Changing salinity and nutrient conditions affect phytoplankton physiology by altering elemental ratios of carbon (C), nitrogen (N) and phosphorus (P). This study aimed to understand how salinity stress and resource acquisition affect phytoplankton stoichiometry. We incubated a phytoplankton polyculture composed of 10 species under different light, inorganic nutrient ratio and salinity levels. At the end of the incubation period, we measured particulate elemental composition (C, N and P), chlorophyll a and species abundances. The phytoplankton polyculture, dominated by Phaeodactylum tricornutum, accumulated more particulate organic carbon (POC) with increasing salinity. The low POC and low particulate C:N and C:P ratios toward 0 psu suggest that the hypoosmotic conditions highly affected primary production. The relative abundance of different species varied with salinity, and some species grew faster under low nutrient supply. Still, the dominant diatom regulated the overall POC of the polyculture, following the classic concept of the foundation species.
Collapse
Affiliation(s)
- Iris D S Orizar
- Tvärminne Zoological Station, Faculty of Biological and Environmental Sciences, University of Helsinki, J.A. Palmenin 260, 10900 Hanko, Finland
| | - Sonja I Repetti
- Tvärminne Zoological Station, Faculty of Biological and Environmental Sciences, University of Helsinki, J.A. Palmenin 260, 10900 Hanko, Finland
| | - Aleksandra M Lewandowska
- Tvärminne Zoological Station, Faculty of Biological and Environmental Sciences, University of Helsinki, J.A. Palmenin 260, 10900 Hanko, Finland
| |
Collapse
|
5
|
Yan K, Guo F, Kainz MJ, Li F, Gao W, Bunn SE, Zhang Y. The importance of omega-3 polyunsaturated fatty acids as high-quality food in freshwater ecosystems with implications of global change. Biol Rev Camb Philos Soc 2024; 99:200-218. [PMID: 37724488 DOI: 10.1111/brv.13017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 09/03/2023] [Accepted: 09/08/2023] [Indexed: 09/20/2023]
Abstract
Traditionally, trophic ecology research on aquatic ecosystems has focused more on the quantity of dietary energy flow within food webs rather than food quality and its effects on organisms at various trophic levels. Recent studies emphasize that food quality is central to consumer growth and reproduction, and the importance of food quality for aquatic ecosystems has become increasingly well recognized. It is timely to synthesise these findings and identify potential future research directions. We conducted a systematic review of omega-3 polyunsaturated fatty acids (ω3-PUFAs) as a crucial component of high-quality food sources in freshwater ecosystems to evaluate their impact on a variety of consumers, and explore the effects of global change on these high-quality food sources and their transfer to higher trophic consumers within and across ecosystems. In freshwater ecosystems, algae rich in ω3 long-chain PUFAs, such as diatoms, dinoflagellates and cryptophytes, represent important high-quality food sources for consumers, whereas cyanobacteria, green algae, terrestrial vascular plants and macrophytes low in ω3 long-chain PUFAs are low-quality food sources. High-quality ω3-PUFA-containing food sources usually lead to increased growth and reproduction of aquatic consumers, e.g. benthic invertebrates, zooplankton and fish, and also provide ω3 long-chain PUFAs to riparian terrestrial consumers via emergent aquatic insects. Consumers feeding on high-quality ω3-PUFA-containing foods in turn represent high-quality food for their own predators. However, the ω3-PUFA content of food sources is sensitive to global environmental changes. Warming, eutrophication, increased light intensity (e.g. from loss of riparian shading), and pollutants potentially inhibit the synthesis of algal ω3-PUFAs while at the same time promoting the growth of lower-quality foods, such as cyanobacteria and green algae. These factors combined could lead to a significant reduction in the availability of ω3-PUFAs for consumers and constrain their overall fitness. Although the effect of individual environmental factors on high-quality ω3-PUFA-containing food sources has been investigated, multiple environmental factors (e.g. climate change, human activities, pollution) will act in combination and any synergistic effects on aquatic food webs remain unclear. Identifying the sources and fate of ω3-PUFAs within and across ecosystems could represent an important approach to understand the impact of multiple environmental factors on trophic relationships and the implications for populations of freshwater and riparian consumers. Maintaining the availability of high-quality ω3-PUFA-containing food sources may also be key to mitigating freshwater biodiversity loss due to global change.
Collapse
Affiliation(s)
- Keheng Yan
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Fen Guo
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Martin J Kainz
- WasserCluster Lunz - Biologische Station, Lunz am See, 3293, Austria
- Danube University Krems, Research Lab for Aquatic Ecosystems and Health, Krems, 3500, Austria
| | - Feilong Li
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Wei Gao
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Stuart E Bunn
- Australian Rivers Institute, Griffith University, Nathan, Queensland, Australia
| | - Yuan Zhang
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
6
|
Jin H, Van de Waal DB, van Leeuwen CHA, Lamers LPM, Declerck SAJ, Amorim AL, Bakker ES. Restoring gradual land-water transitions in a shallow lake improved phytoplankton quantity and quality with cascading effects on zooplankton production. WATER RESEARCH 2023; 235:119915. [PMID: 36996752 DOI: 10.1016/j.watres.2023.119915] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/18/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Land-water transition areas play a significant role in the functioning of aquatic ecosystems. However, anthropogenic pressures are posing severe threats on land-water transition areas, which leads to degradation of the ecological integrity of many lakes worldwide. Enhancing habitat complexity and heterogeneity by restoring land-water transition areas in lake systems is deemed a suitable method to restore lakes bottom-up by stimulating lower trophic levels. Stimulating productivity of lower trophic levels (phytoplankton, zooplankton) generates important food sources for declining higher trophic levels (fish, birds). Here, we study ecosystem restoration project Marker Wadden in Lake Markermeer, The Netherlands. This project involved the construction of a 700-ha archipelago of five islands in a degrading shallow lake, aiming to create additional sheltered land-water transition areas to stimulate food web development from its base by improving phytoplankton quantity and quality. We found that phytoplankton quantity (chlorophyll-a concentration) and quality (inversed carbon:nutrient ratio) in the shallow waters inside the Marker Wadden archipelago were significantly improved, likely due to higher nutrient availabilities, while light availability remained sufficient, compared to the surrounding lake. Higher phytoplankton quantity and quality was positively correlated with zooplankton biomass, which was higher inside the archipelago than in the surrounding lake due to improved trophic transfer efficiency between phytoplankton and zooplankton. We conclude that creating new land-water transition areas can be used to increase light and nutrient availabilities and thereby enhancing primary productivity, which in turn can stimulate higher trophic levels in degrading aquatic ecosystems.
Collapse
Affiliation(s)
- Hui Jin
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, Wageningen 6708PB, the Netherlands.
| | - Dedmer B Van de Waal
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, Wageningen 6708PB, the Netherlands; Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Sciencepark 904, Amsterdam 1098 XH, The Netherlands
| | - Casper H A van Leeuwen
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, Wageningen 6708PB, the Netherlands
| | - Leon P M Lamers
- Aquatic Ecology and Environmental Biology, Institute for Water and Wetland Research, Radboud University, PO Box 9010, GL Nijmegen 6500, The Netherlands
| | - Steven A J Declerck
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, Wageningen 6708PB, the Netherlands
| | - Ana Luisa Amorim
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, Wageningen 6708PB, the Netherlands; AQUON- Wateronderzoek en Advies. Voorschoterweg 18h, AB Leiden 2324, The Netherlands
| | - Elisabeth S Bakker
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, Wageningen 6708PB, the Netherlands; Wildlife Ecology and Conservation Group, Wageningen University (WUR), Droevendaalsesteeg 2, Wageningen 6708PB, The Netherlands
| |
Collapse
|
7
|
Lal DM, Sreekanth GB, Soman C, Sharma A, Abidi ZJ. Delineating the food web structure in an Indian estuary during tropical winter employing stable isotope signatures and mixing model. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:49412-49434. [PMID: 36773262 DOI: 10.1007/s11356-023-25549-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 01/21/2023] [Indexed: 02/12/2023]
Abstract
The food and feeding links and sources in an impacted tropical estuary situated along India's western coast, the Ulhas River Estuary (URE) was analyzed employing the stable carbon and nitrogen isotopic signatures (δ13C and δ15N). Three basal carbon sources, such as mangrove leaves, particulate organic matter (phytoplankton), and detritus, were analyzed together with eight consumer groups from various trophic guilds. The δ13C varied from - 19.67 to - 24.61‰, whereas δ15N ranged from 6.31 to 15.39‰ from the primary consumer to the top predator species. The stable isotope mixing model developed for URE revealed a phytoplankton based pelagic food chain and detritus based benthic food chain in URE. The fairly larger value of SEA (Standard Ellipse Area) in the URE suggest a much broader food web structure and high trophic diversity in the ecosystem. Higher influence of detritus on the assimilated diet of majority of consumers and evidences of nitrogen enrichment in the basal sources such as detritus and particulate organic matter by anthropogenic activities in URE point towards nitrogen pollution and subsequent trophic disturbance in this tropical estuarine ecosystem.
Collapse
Affiliation(s)
- Dhanya Mohan Lal
- ICAR- Central Institute of Fisheries Education, Versova, Mumbai, 400061, India
| | | | - Chitra Soman
- ICAR- Central Institute of Fisheries Education, Versova, Mumbai, 400061, India
| | - Anupam Sharma
- Birbal Sahni Institute of Paleosciences, 53 University Road, Lucknow, 226007, India
| | - Zeba Jaffer Abidi
- ICAR- Central Institute of Fisheries Education, Versova, Mumbai, 400061, India
| |
Collapse
|
8
|
Kwon YS, La HS, Kang HW, Park J. A regional-scale approach for modeling primary production and biogenic silica export in the Southern Ocean. ENVIRONMENTAL RESEARCH 2023; 217:114811. [PMID: 36414105 DOI: 10.1016/j.envres.2022.114811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 11/09/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
Persistent uncertainties in the representations of net primary production (NPP) and silicate in the Southern Ocean have been noted in recent assessments ofthe ocean biogeochemical components of Earth system models (ESMs). Consequently, more mechanistic studies at the regional scale are required. To reduce these uncertainties, we applied a one-dimensional (1D) marine ecosystem model to different bioregions in the Southern Ocean: the Polar Frontal Zone in the Pacific sector, the seasonal sea ice zone in the northwestern Ross Sea, and the inner shelf of Terra Nova Bay. To make the existing ecosystem model applicable to the Southern Ocean, we modified the phytoplankton physiology (stoichiometry depending on species) and the silicate cycle (dissolution rate of biogenic silica (BSi) depending on latitude) in the model. We quantified and compared seasonal variations in several limitation factors of NPP, namely, iron, irradiance, silicate and temperature, in the three regions. The simulation results showed that dissolved iron plays the most significant role in determining the magnitude of NPP and the phytoplankton community structure during summer. Additionally, the modified model successfully reproduced the vertical flux of BSi and particulate organic carbon (POC). The POC export efficiency was high in the inner shelf zone, which had high levels of iron concentration, NPP, and Phaeocystis biomass. In contrast, BSi export occurred most efficiently in the Polar Frontal Zone, where diatoms are dominant, the BSi dissolution rate is low, and NPP is extremely low. Our results from the integrated mechanistic framework at the regional scale demonstrate which specific processes should be urgently included in ESMs for better representation of the biogeochemical dynamics in the Southern Ocean.
Collapse
Affiliation(s)
- Young Shin Kwon
- Korea Institute of Ocean Science and Technology, Busan, Republic of Korea; Korea Polar Research Institute, Incheon, Republic of Korea
| | - Hyoung Sul La
- Korea Polar Research Institute, Incheon, Republic of Korea; University of Science and Technology, Daejeon, Republic of Korea.
| | - Hyoun-Woo Kang
- Korea Institute of Ocean Science and Technology, Busan, Republic of Korea
| | - Jisoo Park
- Korea Polar Research Institute, Incheon, Republic of Korea
| |
Collapse
|
9
|
Sentis A, Haegeman B, Montoya JM. Stoichiometric constraints modulate temperature and nutrient effects on biomass distribution and community stability. OIKOS 2022; 2022:oik.08601. [PMID: 36644620 PMCID: PMC7614052 DOI: 10.1111/oik.08601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2021] [Indexed: 01/18/2023]
Abstract
Temperature and nutrients are two of the most important drivers of global change. Both can modify the elemental composition (i.e. stoichiometry) of primary producers and consumers. Yet their combined effect on the stoichiometry, dynamics and stability of ecological communities remains largely unexplored. To fill this gap, we extended the Rosenzweig-MacArthur consumer-resource model by including thermal dependencies, nutrient dynamics and stoichiometric constraints on both the primary producer and the consumer. We found that stoichiometric and nutrient conservation constraints dampen the paradox of enrichment and increased persistence at high nutrient levels. Nevertheless, stoichiometric constraints also reduced consumer persistence at extreme temperatures. Finally, we also found that stoichiometric constraints and nutrient dynamics can strongly influence biomass distribution across trophic levels by modulating consumer assimilation efficiency and resource growth rates along the environmental gradients. In the Rosenzweig-MacArthur model, consumer biomass exceeded resource biomass for most parameter values whereas, in the stoichiometric model, consumer biomass was strongly reduced and sometimes lower than resource biomass. Our findings highlight the importance of accounting for stoichiometric constraints as they can mediate the temperature and nutrient impact on the dynamics and functioning of ecological communities.
Collapse
Affiliation(s)
- Arnaud Sentis
- Theoretical and Experimental Ecology Station, CNRS, Moulis, France
| | - Bart Haegeman
- Theoretical and Experimental Ecology Station, CNRS, Moulis, France
| | - José M Montoya
- Theoretical and Experimental Ecology Station, CNRS, Moulis, France
| |
Collapse
|
10
|
Su Y, Du Y, Xing P. The Light-to-Nutrient Ratio in Alpine Lakes: Different Scenarios of Bacterial Nutrient Limitation and Community Structure in Lakes Above and Below the Treeline. MICROBIAL ECOLOGY 2022; 83:837-849. [PMID: 34363516 DOI: 10.1007/s00248-021-01834-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
The light-to-nutrient hypothesis proposes that under high light-to-nutrient conditions, bacteria tend to be limited by phosphorus (P), while under relatively low light-to-nutrient conditions, bacteria are likely driven towards carbon (C) limitation. Exploring whether this light-to-nutrient hypothesis is fitting for alpine lakes has profound implications for predicting the impacts of climatic and environmental changes on the structures and processes of aquatic ecosystems in climate-sensitive regions. We investigated the environmental conditions and bacterioplankton community compositions of 15 high-elevation lakes (7 above and 8 below treeline). High light-to-nutrient conditions (denoted by the reciprocal value of the attenuation coefficient (1/K) to total phosphorus (TP)), high chlorophyll a (Chl a) concentrations, low TP concentrations and low ratios of the dissolved organic carbon concentration to the dissolved total nitrogen concentration (DOC:DTN) were detected in above-treeline lakes. Significant positive correlations between the bacterioplankton community compositions with 1/K:TP ratios and Chl a concentrations indicated that not only high light energy but also nutrient competition between phytoplankton and bacteria could induce P limitation for bacteria. In contrast, low light-to-nutrient conditions and high allochthonous DOC input in below-treeline lakes lessen P limitation and C limitation. The most abundant genus, Polynucleobacter, was significantly enriched, and more diverse oligotypes of Polynucleobacter operational taxonomic units were identified in the below-treeline lakes, indicating the divergence of niche adaptations among Polynucleobacter oligotypes. The discrepancies in the light-to-P ratio and the components of organic matter between the above-treeline and below-treeline lakes have important implications for the nutrient limitation of bacterioplankton and their community compositions.
Collapse
Affiliation(s)
- Yaling Su
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, No. 73 East Beijing Road, Nanjing, 210008, China
| | - Yingxun Du
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, No. 73 East Beijing Road, Nanjing, 210008, China
| | - Peng Xing
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, No. 73 East Beijing Road, Nanjing, 210008, China.
| |
Collapse
|
11
|
Machado-Silva F, Neres-Lima V, Oliveira AF, Moulton TP. Forest cover controls the nitrogen and carbon stable isotopes of rivers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:152784. [PMID: 34995604 DOI: 10.1016/j.scitotenv.2021.152784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/07/2021] [Accepted: 12/26/2021] [Indexed: 06/14/2023]
Abstract
Deforestation affects the ecological integrity of rivers and streams, threatening biodiversity and ecosystem services worldwide. However, few studies have strictly analyzed the effect of the functional responses of tropical streams to changes in forest cover since deforested basins are usually also influenced by confounding anthropogenic inputs. Here we address tropical streams and test whether the stable isotopic ratios of nitrogen (N, δ15N) and carbon (C, δ13C) and the ratio of C:N of ecosystem components vary along a forest cover gradient. We also assess the ecological integrity of streams by in situ measurements using physical features commonly used in stream quality assessments. The results showed that the δ15N of most aquatic components, δ13C of particulate matter and omnivorous fish, and C:N of particulate matter and algae vary significantly with forest cover, indicating the role of terrestrial vegetation in regulating stream biogeochemistry. The dual stable isotope analysis satisfactorily indicated the changes in terrestrial-aquatic connections regarding both N and C cycles, thus showing the role of algae and particulate matter in influencing stream fauna through food web transfers. Our results support the use of stable isotopes to monitor watershed deforestation and highlight the need for reassessment of the effects of anthropogenic inputs on δ15N increase in globally distributed inland waters since the loss of forest is a significant cause in itself.
Collapse
Affiliation(s)
- Fausto Machado-Silva
- Programa de Pós-Graduação em Ecologia e Evolução, IBRAG, Universidade do Estado do Rio de Janeiro, 20550-900 Rio de Janeiro, Brazil; Program in Geosciences - Environmental Geochemistry, Fluminense Federal University, 24020-141 Niteroi, Brazil.
| | - Vinicius Neres-Lima
- Programa de Pós-Graduação em Ecologia e Evolução, IBRAG, Universidade do Estado do Rio de Janeiro, 20550-900 Rio de Janeiro, Brazil; Departmento de Ecologia, IBRAG, Universidade do Estado do Rio de Janeiro, 20550-900 Rio de Janeiro, Brazil
| | | | - Timothy Peter Moulton
- Programa de Pós-Graduação em Ecologia e Evolução, IBRAG, Universidade do Estado do Rio de Janeiro, 20550-900 Rio de Janeiro, Brazil; Departmento de Ecologia, IBRAG, Universidade do Estado do Rio de Janeiro, 20550-900 Rio de Janeiro, Brazil
| |
Collapse
|
12
|
Casey JR, Boiteau RM, Engqvist MKM, Finkel ZV, Li G, Liefer J, Müller CL, Muñoz N, Follows MJ. Basin-scale biogeography of marine phytoplankton reflects cellular-scale optimization of metabolism and physiology. SCIENCE ADVANCES 2022; 8:eabl4930. [PMID: 35061539 PMCID: PMC8782455 DOI: 10.1126/sciadv.abl4930] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
Extensive microdiversity within Prochlorococcus, the most abundant marine cyanobacterium, occurs at scales from a single droplet of seawater to ocean basins. To interpret the structuring role of variations in genetic potential, as well as metabolic and physiological acclimation, we developed a mechanistic constraint-based modeling framework that incorporates the full suite of genes, proteins, metabolic reactions, pigments, and biochemical compositions of 69 sequenced isolates spanning the Prochlorococcus pangenome. Optimizing each strain to the local, observed physical and chemical environment along an Atlantic Ocean transect, we predicted variations in strain-specific patterns of growth rate, metabolic configuration, and physiological state, defining subtle niche subspaces directly attributable to differences in their encoded metabolic potential. Predicted growth rates covaried with observed ecotype abundances, affirming their significance as a measure of fitness and inferring a nonlinear density dependence of mortality. Our study demonstrates the potential to interpret global-scale ecosystem organization in terms of cellular-scale processes.
Collapse
Affiliation(s)
- John R. Casey
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- School of Ocean and Earth Science and Technology, University of Hawai‘i at Ma¯noa, Honolulu, HI, USA
| | - Rene M. Boiteau
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, USA
| | - Martin K. M. Engqvist
- Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden
| | - Zoe V. Finkel
- Department of Oceanography, Dalhousie University, Halifax, NS, Canada
| | - Gang Li
- Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden
| | - Justin Liefer
- Department of Biology, Mount Allison University, Sackville, NB, Canada
| | | | - Nathalie Muñoz
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratories, Richland, WA, USA
| | - Michael J. Follows
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
13
|
Ferlian O, Lintzel EM, Bruelheide H, Guerra CA, Heklau H, Jurburg S, Kühn P, Martinez-Medina A, Unsicker SB, Eisenhauer N, Schädler M. Nutrient status not secondary metabolites drives herbivory and pathogen infestation across differently mycorrhized tree monocultures and mixtures. Basic Appl Ecol 2021; 55:110-123. [PMID: 34493930 PMCID: PMC7611625 DOI: 10.1016/j.baae.2020.09.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Research on tree diversity and antagonists often neglects plant complementarity. We studied species richness/mycorrhizal type effects on leaf herbivory/pathogens. Mycorrhizal type had different effects on herbivory and pathogen infestation. Elemental not metabolite concentrations determined leaf damage.ld.
Research aimed at understanding the mechanisms underlying the relationship between tree diversity and antagonist infestation is often neglecting resource-use complementarity among plant species. We investigated the effects of tree species identity, species richness, and mycorrhizal type on leaf herbivory and pathogen infestation. We used a tree sapling experiment manipulating the two most common mycorrhizal types, arbuscular mycorrhiza and ectomycorrhiza, via respective tree species in monocultures and two-species mixtures. We visually assessed leaf herbivory and pathogen infestation rates, and measured concentrations of a suite of plant metabolites (amino acids, sugars, and phenolics), leaf elemental concentrations (carbon, nitrogen, and phosphorus), and tree biomass. Tree species and mycorrhizal richness had no significant effect on herbivory and pathogen infestation, whereas species identity and mycorrhizal type had. Damage rates were higher in arbuscular mycorrhizal (AM) than in ectomycorrhizal (EM) trees. Our structural equation model (SEM) indicated that elemental, but not metabolite concentrations, determined herbivory and pathogen infestation, suggesting that the investigated chemical defence strategies may not have been involved in the effects found in our study with tree saplings. Other chemical and physical defence strategies as well as species identity as its determinant may have played a more crucial role in the studied saplings. Furthermore, the SEM indicated a direct positive effect of AM trees on herbivory rates, suggesting that other dominant mechanisms, not considered here, were involved as well. We found differences in the attribution of elemental concentrations between the two rates. This points to the fact that herbivory and pathogen infestation are driven by distinct mechanisms. Our study highlights the importance of biotic contexts for understanding the mechanisms underlying the effects of biodiversity on tree-antagonist interactions.
Collapse
Affiliation(s)
- Olga Ferlian
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany.,Institute of Biology, Leipzig University, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Esther-Marie Lintzel
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany.,Institute of Biology, Leipzig University, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Helge Bruelheide
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Am Kirchtor 1, 06108 Halle (Saale), Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Carlos A Guerra
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany.,Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Am Kirchtor 1, 06108 Halle (Saale), Germany
| | - Heike Heklau
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Am Kirchtor 1, 06108 Halle (Saale), Germany
| | - Stephanie Jurburg
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany.,Institute of Biology, Leipzig University, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Paul Kühn
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Am Kirchtor 1, 06108 Halle (Saale), Germany
| | - Ainhoa Martinez-Medina
- Plant-Microorganism Interaction Unit, Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Calle Cordel de Merinas, 40, 37008 Salamanca, Spain
| | - Sybille B Unsicker
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany.,Institute of Biology, Leipzig University, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Martin Schädler
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany.,Department of Community Ecology, Helmholtz Centre for Environmental Research - UFZ, Theodor-Lieser-Str. 4, 06120 Halle (Saale), Germany
| |
Collapse
|
14
|
Rao Q, Su H, Ruan L, Deng X, Wang L, Rao X, Liu J, Xia W, Xu P, Shen H, Chen J, Xie P. Stoichiometric and physiological mechanisms that link hub traits of submerged macrophytes with ecosystem structure and functioning. WATER RESEARCH 2021; 202:117392. [PMID: 34243052 DOI: 10.1016/j.watres.2021.117392] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Eutrophication strongly influences plant stoichiometric characteristics and physiological status by altering nutrient and light availability in the water column. However, the mechanisms linking plant functional traits with ecosystem structure and functioning to clarify the decline of submerged macrophytes have not been fully elucidated to date. Therefore, based on a field investigation of 26 macrophytic shallow lakes on the Yangtze Plain, we first constructed a plant trait network at the whole-plant level to determine the hub traits of submerged macrophytes that play central regulatory roles in plant phenotype. Our results suggested that organ (leaf, stem, and root) phosphorus (P), starch, and total nonstructural carbohydrate (TNC) contents were hub traits. Organ starch and TNC were consistent with those in the experiment-based network obtained from a three-month manipulation experiment. Next, the mechanisms underlying the relationships between the hub traits and vital aspects of ecological performance were carefully investigated using field investigation data. Specifically, stoichiometric homeostasis of P (HP), starch, and TNC were positively associated with dominance and biomass at the species level, and community biomass at the community level. Additionally, structural equation modeling clarified not only a hypothesized pathway from eutrophication to water clarity and community TNC, but also combined effects of community TNC and HP on community biomass. That is, ecosystems dominated by more homeostatic communities tended to have more carbon (C)-rich compounds in relatively oligotrophic conditions, which promoted the primary production of macrophytes. Eutrophication was determined to affect community structure by inhibiting the predominance of more homeostatic species and the production of carbohydrates. Finally, reduced community biomass and increased nutrient contents and nutrient:C ratios in plants induced by eutrophication implied a decrease in the C sink in biomass and may potentially lead to an enhancement of litter decomposition rates and nutrient cycling rates. By adjusting plant responses to eutrophication, stoichiometric and physiological mechanisms linking plant traits with ecosystem structure have important implications for understanding ecosystem processes, and these results may contribute to practical management to achieve the restoration of submerged macrophytes and ecosystem services.
Collapse
Affiliation(s)
- Qingyang Rao
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haojie Su
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; School of Ecology and Environmental Science, Institute for Ecological Research and Pollution Control of Plateau Lakes, Yunnan University, Kunming 650091, China; Department of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Linwei Ruan
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Xuwei Deng
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Lantian Wang
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Rao
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiarui Liu
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Wulai Xia
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengke Xu
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Hong Shen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jun Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Ping Xie
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; School of Ecology and Environmental Science, Institute for Ecological Research and Pollution Control of Plateau Lakes, Yunnan University, Kunming 650091, China.
| |
Collapse
|
15
|
Williamson CJ, Turpin-Jelfs T, Nicholes MJ, Yallop ML, Anesio AM, Tranter M. Macro-Nutrient Stoichiometry of Glacier Algae From the Southwestern Margin of the Greenland Ice Sheet. FRONTIERS IN PLANT SCIENCE 2021; 12:673614. [PMID: 34262580 PMCID: PMC8273243 DOI: 10.3389/fpls.2021.673614] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/23/2021] [Indexed: 06/13/2023]
Abstract
Glacier algae residing within the surface ice of glaciers and ice sheets play globally significant roles in biogeochemical cycling, albedo feedbacks, and melt of the world's cryosphere. Here, we present an assessment of the macro-nutrient stoichiometry of glacier algal assemblages from the southwestern Greenland Ice Sheet (GrIS) margin, where widespread glacier algal blooms proliferate during summer melt seasons. Samples taken during the mid-2019 ablation season revealed overall lower cellular carbon (C), nitrogen (N), and phosphorus (P) content than predicted by standard microalgal cellular content:biovolume relationships, and elevated C:N and C:P ratios in all cases, with an overall estimated C:N:P of 1,997:73:1. We interpret lower cellular macro-nutrient content and elevated C:N and C:P ratios to reflect adaptation of glacier algal assemblages to their characteristic oligotrophic surface ice environment. Such lower macro-nutrient requirements would aid the proliferation of blooms across the nutrient poor cryosphere in a warming world. Up-scaling of our observations indicated the potential for glacier algal assemblages to accumulate ∼ 29 kg C km2 and ∼ 1.2 kg N km2 within our marginal surface ice location by the mid-ablation period (early August), confirming previous modeling estimates. While the long-term fate of glacier algal autochthonous production within surface ice remains unconstrained, data presented here provide insight into the possible quality of dissolved organic matter that may be released by assemblages into the surface ice environment.
Collapse
Affiliation(s)
- Christopher J. Williamson
- Bristol Glaciology Centre, School of Geographical Sciences, University of Bristol, Bristol, United Kingdom
| | - Thomas Turpin-Jelfs
- Bristol Glaciology Centre, School of Geographical Sciences, University of Bristol, Bristol, United Kingdom
| | - Miranda J. Nicholes
- Bristol Glaciology Centre, School of Geographical Sciences, University of Bristol, Bristol, United Kingdom
| | - Marian L. Yallop
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | | | - Martyn Tranter
- Bristol Glaciology Centre, School of Geographical Sciences, University of Bristol, Bristol, United Kingdom
- Department of Environmental Science, Aarhus University, Aarhus, Denmark
| |
Collapse
|
16
|
Müller B, Steinsberger T, Stöckli A, Wüest A. Increasing Carbon-to-Phosphorus Ratio (C:P) from Seston as a Prime Indicator for the Initiation of Lake Reoligotrophication. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:6459-6466. [PMID: 33797885 DOI: 10.1021/acs.est.0c08526] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Decline in total phosphorus (TP) during lake reoligotrophication does not apparently immediately influence carbon assimilation or deep-water oxygen levels. Traditional monitoring and interpretation do not typically consider the amount of organic carbon exported from the productive zone into the hypolimnion as a measure of net ecosystem production. This research investigated the carbon-to-phosphorus ratios of suspended particles in the epilimnion, (C:P)epi, as indicators of changing productivity. We report sestonic C:P ratios, phytoplankton biomass, and hypolimnetic oxygen depletion rates in Lake Hallwil, a lake whose recovery from eutrophic conditions has been documented in 35 years of historic water-monitoring data. This study also interpreted long-term (C:P)epi ratios from reoligotrophication occurring in four other lakes. Lake Hallwil exhibited three distinct phases. (i) The (C:P)epi ratio remained low when TP concentrations did not limit production. (ii) (C:P)epi increased steadily when phytoplankton began optimizing the declining P and biomass remained stable. (iii) Below a critical TP threshold of ∼15 to ∼20 mg P m-3, (C:P)epi remained high and the biomass eventually declined. This analysis showed that the (C:P)epi ratio indicates the reduction of productivity prior to classic indicators such as deep-water oxygen depletion.
Collapse
Affiliation(s)
- Beat Müller
- Surface Waters-Research and Management, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum 6047, Switzerland
| | - Thomas Steinsberger
- Surface Waters-Research and Management, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum 6047, Switzerland
| | - Arno Stöckli
- Department of Civil Engineering, Transportation and Environment, Canton Argovia, Entfelderstrasse 22, Aarau 5001, Switzerland
| | - Alfred Wüest
- Surface Waters-Research and Management, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum 6047, Switzerland
- Physics of Aquatic Systems Laboratory, Margaretha Kamprad Chair, ENAC-IEE- APHYS, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| |
Collapse
|
17
|
Brahney J, Bothwell ML, Capito L, Gray CA, Null SE, Menounos B, Curtis PJ. Glacier recession alters stream water quality characteristics facilitating bloom formation in the benthic diatom Didymosphenia geminata. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 764:142856. [PMID: 33092829 DOI: 10.1016/j.scitotenv.2020.142856] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/17/2020] [Accepted: 10/02/2020] [Indexed: 06/11/2023]
Abstract
Glaciers provide cold, turbid runoff to many mountain streams in the late summer and buffer against years with low snowfall. The input of glacial meltwater to streams maintains unique habitats and support a diversity of stream flora and fauna. In western Canada, glaciers are anticipated to retreat by 60-80% by the end of the century, and this retreat will invoke widespread changes in mountain ecosystems. We used a space-for-time substitution along a gradient of glacierization in western Canada to develop insights into changes that may occur in glaciated regions over the coming decades. Here we report on observed changes in physical (temperature, turbidity), and chemical (dissolved and total nutrients) characteristics of mountain streams and the associated shifts in their diatom communities during de-glacierization. Shifts in habitat characteristics across gradients include changes in nutrient concentrations, light penetration, temperatures, and flow, all of which have led to distinct changes in diatom community composition. Importantly, glacial-fed rivers were 3-5 °C cooler than rivers without glacial contributions. Declines in glacial meltwater contribution to streams resulted in shifts in the timing of nutrient fluxes and lower concentrations of total phosphorus (TP), soluble reactive phosphorus (SRP), and higher dissolved inorganic nitrogen (DIN) and light penetration. The above set of conditions were linked to the overgrowth of the benthic diatom Didymosphenia geminata. These changes in stream condition and D. geminata colony development primarily occurred in streams with marginal (2-5%) to no glacier cover. Our data support a hypothesis that climate-induced changes in river hydrochemistry and physical condition lead to a phenological mismatch that favors D. geminata bloom development.
Collapse
Affiliation(s)
- J Brahney
- Department of Watershed Sciences, Utah State University, Logan, UT 84322, United States of America.
| | - M L Bothwell
- Department of Fisheries and Oceans, Pacific Biological Station, Nanaimo, BC V9T 6N7, Canada
| | - L Capito
- Department of Watershed Sciences, Utah State University, Logan, UT 84322, United States of America
| | - C A Gray
- Department of Wildland Resources, Utah State University, Logan, UT 84322, United States of America
| | - S E Null
- Department of Watershed Sciences, Utah State University, Logan, UT 84322, United States of America
| | - B Menounos
- Geography Program and Natural Resources and Environmental Studies Institute, University of Northern British Columbia, Prince George, BC V6T 1Z9, Canada
| | - P J Curtis
- Department of Earth, Environmental, and Geographic Sciences, University of British Columbia, Okanagan, BC V1V 1V7, Canada
| |
Collapse
|
18
|
Price TL, Harper J, Francoeur SN, Halvorson HM, Kuehn KA. Brown meets green: light and nutrients alter detritivore assimilation of microbial nutrients from leaf litter. Ecology 2021; 102:e03358. [PMID: 33811660 DOI: 10.1002/ecy.3358] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/27/2021] [Accepted: 03/15/2021] [Indexed: 11/06/2022]
Abstract
In aquatic detrital-based food webs, research suggests that autotroph-heterotroph microbial interactions exert bottom-up controls on energy and nutrient transfer. To address this emerging topic, we investigated microbial responses to nutrient and light treatments during Liriodendron tulipifera litter decomposition and fed litter to the caddisfly larvae Pycnopsyche sp. We measured litter-associated algal, fungal, and bacterial biomass and production. Microbes were also labeled with 14 C and 33 P to trace distinct microbial carbon (C) and phosphorus (P) supporting Pycnopsyche assimilation and incorporation (growth). Litter-associated algal and fungal production rates additively increased with higher nutrient and light availability. Incorporation of microbial P did not differ across diets, except for higher incorporation efficiency of slower-turnover P on low-nutrient, shaded litter. On average, Pycnopsyche assimilated fungal C more efficiently than bacterial or algal C, and Pycnopsyche incorporated bacterial C more efficiently than algal or fungal C. Due to high litter fungal biomass, fungi supported 89.6-93.1% of Pycnopsyche C growth, compared to 0.2% to 3.6% supported by bacteria or algae. Overall, Pycnopsyche incorporated the most C in high nutrient and shaded litter. Our findings affirm others' regarding autotroph-heterotroph microbial interactions and extend into the trophic transfer of microbial energy and nutrients through detrital food webs.
Collapse
Affiliation(s)
- Taylor L Price
- School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, Mississippi, 39406, USA.,Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, Minnesota, 55108, USA
| | - Jennifer Harper
- Department of Biology, Eastern Michigan University, Ypsilanti, Michigan, 48197, USA.,Department of Biological Sciences, Bowling Green State University, Bowling Green, Ohio, 43403, USA
| | - Steven N Francoeur
- Department of Biology, Eastern Michigan University, Ypsilanti, Michigan, 48197, USA
| | - Halvor M Halvorson
- School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, Mississippi, 39406, USA.,Department of Biology, University of Central Arkansas, Conway, Arkansas, 72035, USA
| | - Kevin A Kuehn
- School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, Mississippi, 39406, USA
| |
Collapse
|
19
|
Rao Q, Su H, Deng X, Xia W, Wang L, Cui W, Ruan L, Chen J, Xie P. Carbon, Nitrogen, and Phosphorus Allocation Strategy Among Organs in Submerged Macrophytes Is Altered by Eutrophication. FRONTIERS IN PLANT SCIENCE 2020; 11:524450. [PMID: 33193470 PMCID: PMC7604295 DOI: 10.3389/fpls.2020.524450] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 09/22/2020] [Indexed: 05/22/2023]
Abstract
The allocation of limiting elements among plant organs is an important aspect of the adaptation of plants to their ambient environment. Although eutrophication can extremely alter light and nutrient availability, little is known about nutrient partitioning among organs of submerged macrophytes in response to eutrophication. Here, we analyzed the stoichiometric scaling of carbon (C), nitrogen (N), and phosphorus (P) concentrations among organs (leaf, stem, and root) of 327 individuals of seven common submerged macrophytes (three growth forms), sampled from 26 Yangtze plain lakes whose nutrient levels differed. Scaling exponents of stem nutrients to leaf (or root) nutrients varied among the growth forms. With increasing water total N (WTN) concentration, the scaling exponents of stem C to leaf (or root) C increased from <1 to >1, however, those of stem P to root P showed the opposite trend. These results indicated that, as plant nutrient content increased, plants growing in low WTN concentration accumulated leaf C (or stem P) at a faster rate, whereas those in high WTN concentration showed a faster increase in their stem C (or root P). Additionally, the scaling exponents of stem N to leaf (or root) N and stem P to leaf P were consistently large than 1, but decreased with a greater WTN concentration. This suggested that plants invested more N and P into stem than leaf tissues, with a higher investment of N in stem than root tissues, but eutrophication would decrease the allocation of N and P to stem. Such shifts in plant nutrient allocation strategies from low to high WTN concentration may be attributed to changed light and nutrient availability. In summary, eutrophication would alter nutrient allocation strategies of submerged macrophytes, which may influence their community structures by enhancing the competitive ability of some species in the process of eutrophication.
Collapse
Affiliation(s)
- Qingyang Rao
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haojie Su
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- Department of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Xuwei Deng
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Wulai Xia
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lantian Wang
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenjian Cui
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Linwei Ruan
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Jun Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Ping Xie
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
20
|
Olson CR, Solomon CT, Jones SE. Shifting limitation of primary production: experimental support for a new model in lake ecosystems. Ecol Lett 2020; 23:1800-1808. [PMID: 32945617 PMCID: PMC7756323 DOI: 10.1111/ele.13606] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/20/2020] [Accepted: 08/13/2020] [Indexed: 01/07/2023]
Abstract
The limits on primary production vary in complex ways across space and time. Strong tests of clear conceptual models have been instrumental in understanding these patterns in both terrestrial and aquatic ecosystems. Here we present the first experimental test of a new model describing how shifts from nutrient to light limitation control primary productivity in lake ecosystems as hydrological inputs of nutrients and organic matter vary. We found support for two key predictions of the model: that gross primary production (GPP) follows a hump-shaped relationship with increasing dissolved organic carbon (DOC) concentrations; and that the maximum GPP, and the critical DOC concentration at which the hump occurs, are determined by the stoichiometry and chromophoricity of the hydrological inputs. Our results advance fundamental understanding of the limits on aquatic primary production, and have important applications given ongoing anthropogenic alterations of the nutrient and organic matter inputs to surface waters.
Collapse
Affiliation(s)
- Carly R Olson
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, 46556, USA
| | | | - Stuart E Jones
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, 46556, USA
| |
Collapse
|
21
|
Schenone L, Balseiro EG, Bastidas Navarro M, Modenutti BE. Modelling the consequence of glacier retreat on mixotrophic nanoflagellate bacterivory: a Bayesian approach. OIKOS 2020. [DOI: 10.1111/oik.07170] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Luca Schenone
- Laboratorio de Limnología, INIBIOMA (CONICET‐UNCo), Quintral 1250 San Carlos de Bariloche (8400) Río Negro Argentina
| | - Esteban G. Balseiro
- Laboratorio de Limnología, INIBIOMA (CONICET‐UNCo), Quintral 1250 San Carlos de Bariloche (8400) Río Negro Argentina
| | - Marcela Bastidas Navarro
- Laboratorio de Limnología, INIBIOMA (CONICET‐UNCo), Quintral 1250 San Carlos de Bariloche (8400) Río Negro Argentina
| | - Beatriz E. Modenutti
- Laboratorio de Limnología, INIBIOMA (CONICET‐UNCo), Quintral 1250 San Carlos de Bariloche (8400) Río Negro Argentina
| |
Collapse
|
22
|
Evangelista C, Diaz Pauli B, Vøllestad LA, Edeline E. Stoichiometric consequences of size-selective mortality: An experimental test using the Japanese medaka (Oryzias latipes). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 724:138193. [PMID: 32247139 DOI: 10.1016/j.scitotenv.2020.138193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
The determinants of intraspecific stoichiometric variation remain difficult to elucidate due to their multiple origins (e.g. genetic vs. environmental) and potential interactive effects. We evaluated whether two size-selected lines of medaka (Oryzias latipes) with contrasted life-history strategies (small- and large-breeder lines with slow growth and early maturity vs. fast growth and late maturity) differed in their organismal stoichiometry (percentage and ratios of carbon [C], nitrogen [N] and phosphorus [P]) in a mesocosm experiment. We also tested how size-selection interacted with environmental conditions (i.e. two levels of fish density and light intensity), body condition and sex. Results showed that large-breeder fish were significantly N-enriched compared to small-breeders, while the two size-selected lines did not differ in body P composition. Size-selection interacted with density - high density only affected small-breeders leading to decreasing %C and C: N - and with sex - large-breeder females had higher %C and C:N values than large-breeder males. Finally, C:P and N:P ratios increased with body condition due to decreasing %P. Overall, our results show that the ecological consequences of size-selective mortality extend to organismal stoichiometry and may, from there, change nutrient cycling and ecosystem functioning.
Collapse
Affiliation(s)
- Charlotte Evangelista
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway.
| | - Beatriz Diaz Pauli
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Leif Asbjørn Vøllestad
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Eric Edeline
- Sorbonne Université, Université Paris Diderot, UPEC, CNRS, INRAE, IRD, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES-Paris), F-75252 Paris, France.; ESE, Ecology and Ecosystem Health, INRAE, Agrocampus-Ouest, Rennes, France
| |
Collapse
|
23
|
Song M, Wang Y, Bao G, Wang H, Yin Y, Li X, Zhang C. Effects of Stellera chamaejasme removal on the nutrient stoichiometry of S. chamaejasme-dominated grasslands in the Qinghai-Tibetan plateau. PeerJ 2020; 8:e9239. [PMID: 32612880 PMCID: PMC7319027 DOI: 10.7717/peerj.9239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 05/05/2020] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Stoichiometric relations drive powerful constraints in several fundamental ecosystem processes. However, limited studies have been conducted on the ecological stoichiometry of plants after the change of community composition induced by Stellera chamaejasme removal in alpine grassland in the Qinghai-Tibetan Plateau. METHODS We investigated the effects of S. chamaejasme removal on ecological stoichiometry by estimating the C:N:P stoichiometry in species, functional group and community levels of the ecosystem. The interactions between different species, functional groups and correlation with soil nutrient, responding to S. chamaejasme removal were also analyzed. RESULTS For the plants that became dominant after S. chamaejasme removal (SR), N content decreased and their C:N increased. S. chamaejasme removal significantly affected the nutrient stoichiometry of different functional groups. Specifically, Gramineae in the SR sites had decreased N content and N:P, and increased C:N; however, forbs had increased N content, C:P and N:P and decreased P content and C:N. At the community level, N content was lower and C:N higher in SR communities compared to CK. The N content of the plant community was positively correlated with soil total N content. S. chamaejasme removal could change the nutrient balance from species level, to functional group level, and to community level. Thus, supplementary measures might be cooperated with S. chamaejasme removal for the recovery of S. chamaejasme-dominated degraded grassland. These results provide insight into the role of S. chamaejasme in ecological protection and conservation, and the conclusions from this study could be used to develop effective and sustainable measures for S. chamaejasme control in the Qinghai-Tibetan Plateau.
Collapse
Affiliation(s)
- Meiling Song
- Qinghai Academy of Animal and Veterinary Sciences, State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, China
| | - Yuqin Wang
- Qinghai Academy of Animal and Veterinary Sciences, State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, China
| | - Gensheng Bao
- Qinghai Academy of Animal and Veterinary Sciences, State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, China
| | - Hongsheng Wang
- Qinghai Academy of Animal and Veterinary Sciences, State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, China
| | - Yali Yin
- Qinghai Academy of Animal and Veterinary Sciences, State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, China
| | - Xiuzhang Li
- Qinghai Academy of Animal and Veterinary Sciences, State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, China
- State Key Laboratory of Grassland Agro-Ecosystems, SKLGAE, Lanzhou University, Lanzhou, Gansu, China
| | - Chunping Zhang
- Qinghai Academy of Animal and Veterinary Sciences, State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, China
| |
Collapse
|
24
|
Burpee BT, Saros JE. Cross-ecosystem nutrient subsidies in Arctic and alpine lakes: implications of global change for remote lakes. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:1166-1189. [PMID: 32159183 DOI: 10.1039/c9em00528e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Environmental change is continuing to affect the flow of nutrients, material and organisms across ecosystem boundaries. These cross-system flows are termed ecosystem subsidies. Here, we synthesize current knowledge of cross-ecosystem nutrient subsidies between remote lakes and their surrounding terrain, cryosphere, and atmosphere. Remote Arctic and alpine lakes are ideal systems to study the effects of cross ecosystem subsidies because (a) they are positioned in locations experiencing rapid environmental changes, (b) they are ecologically sensitive to even small subsidy changes, (c) they have easily defined ecosystem boundaries, and (d) a variety of standard methods exist that allow for quantification of lake subsidies and their impacts on ecological communities and ecosystem functions. We highlight similarities and differences between Arctic and alpine systems and identify current knowledge gaps to be addressed with future work. It is important to understand the dynamics of nutrient and material flows between lakes and their environments in order to improve our ability to predict ecosystem responses to continued environmental change.
Collapse
Affiliation(s)
- Benjamin T Burpee
- Climate Change Institute and School of Biology and Ecology, University of Maine, Orono, ME, USA.
| | | |
Collapse
|
25
|
Diaz Pauli B, Edeline E, Evangelista C. Ecosystem consequences of multi-trait response to environmental changes in Japanese medaka, Oryzias latipes. CONSERVATION PHYSIOLOGY 2020; 8:coaa011. [PMID: 32274061 PMCID: PMC7125048 DOI: 10.1093/conphys/coaa011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 01/21/2020] [Accepted: 02/02/2020] [Indexed: 06/01/2023]
Abstract
Intraspecific trait variation has large effects on the ecosystem and is greatly affected by human activities. To date, most studies focused on single-trait analyses, while considering multiple traits is expected to better predict how an individual interacts with its environment. Here, we used a mesocosm experiment with fish Oryzias latipes to test whether individual growth, boldness and functional traits (feeding rate and stoichiometric traits) formed one functional pace-of-life syndrome (POLS). We then tested the effects of among-individual mean and variance of fish functional POLSs within mesocosms on invertebrate community (e.g. zoobenthos and zooplankton abundances) and ecosystem processes (e.g. ecosystem metabolism, algae stock, nutrient concentrations). Stoichiometric traits correlated with somatic growth and behaviours, forming two independent functional POLS (i.e. two major covariance axes). Mean values of the first syndrome were sex- and environment-dependent and were associated with (i) long-term (10 generations; 4 years) selection for small or large body size resulting in contrasting life histories and (ii) short-term (6 weeks) effects of experimental treatments on resource availability (through manipulation of light intensity and interspecific competition). Specifically, females and individuals from populations selected for a small body size presented fast functional POLS with faster growth rate, higher carbon body content and lower boldness. Individuals exposed to low resources (low light and high competition) displayed a slow functional POLS. Higher mesocosm mean and variance values in the second functional POLS (i.e. high feeding rate, high carbon:nitrogen body ratio, low ammonium excretion rate) were associated to decreased prey abundances, but did not affect any of the ecosystem processes. We highlighted the presence of functional multi-trait covariation in medaka, which were affected by sex, long-term selection history and short-term environmental conditions, that ultimately had cascading ecological consequences. We stressed the need for applying this approach to better predict ecosystem response to anthropogenic global changes.
Collapse
Affiliation(s)
- Beatriz Diaz Pauli
- Department of Biosciences, Centre for Ecological and Evolutionary Syntheses (CEES), University of Oslo, Blindernveien 31, N-0316 Oslo, Norway
| | - Eric Edeline
- ESE Ecology and Ecosystem Health, INRAE, Agocampus Ouest, 65 rue de Saint-Brieuc 35042 Rennes, France
| | - Charlotte Evangelista
- Department of Biosciences, Centre for Ecological and Evolutionary Syntheses (CEES), University of Oslo, Blindernveien 31, N-0316 Oslo, Norway
| |
Collapse
|
26
|
Yuan LL, Jones JR. Rethinking phosphorus-chlorophyll relationships in lakes. LIMNOLOGY AND OCEANOGRAPHY 2020; 9999:1-11. [PMID: 32461704 PMCID: PMC7252496 DOI: 10.1002/lno.11422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 01/06/2020] [Indexed: 06/01/2023]
Abstract
The empirical relationship between total phosphorus and chlorophyll has guided lake management decisions for decades, but imprecision in this relationship in individual lakes limits the utility of these models. Many environmental factors that potentially affect the total phosphorus-chlorophyll relationship have been studied, but here we hypothesize that imprecision can be reduced by considering differences in the proportions of phosphorus bound to three different "compartments" in the water column: phosphorus bound in phytoplankton, phosphorus bound to suspended sediment that is not associated with phytoplankton, and dissolved phosphorus. We specify a hierarchical Bayesian network model that estimates phosphorus associated with each compartment using field measurements of chlorophyll, total suspended solids, and total phosphorus collected from reservoirs in Missouri, USA. We then demonstrate that accounting for these different compartments yields accurate predictions of total phosphorus in individual lakes. Results from this model also yield insights into the mechanisms by which lake morphometric and watershed characteristics affect observed relationships between total phosphorus and chlorophyll.
Collapse
Affiliation(s)
- Lester L. Yuan
- Office of Water, U.S. Environmental Protection Agency, 1200 Pennsylvania Ave, NW, Mail code 4304T, Washington, DC 20460
| | - John R. Jones
- School of Natural Resources, University of Missouri, Columbia, Columbia, MO 65211
| |
Collapse
|
27
|
El-Nahhal Y, Safi M, Safi J. Salinity profile in coastal non-agricultural land in Gaza. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:8783-8796. [PMID: 31912391 DOI: 10.1007/s11356-019-07514-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 12/23/2019] [Indexed: 06/10/2023]
Abstract
The objectives of this study were to characterize the electric conductivity (EC), total dissolved salts (TDS), highly soluble salts (HSS), less soluble salts (LSS), cations (Na+, K+, Ca++ and Mg++) and anions (Cl-, NO-3, SO--4, PO---4) profiles in non-agricultural coastal land in Gaza Strip and to evaluate the effect of trees in salinity. Six locations were selected randomly in coastal zone in Gaza Strip and used for soil profile digging. Soil samples were collected from different layers between 0 and 150 cm depth, air dried and kept in plastic bags at lab temperature. Ten grams of soil were mixed with 25 mL distilled water and kept under shaking for 24 h, then EC, pH and TDS were determined. Then additional 25 ml distilled water was added to each bottle and kept for additional 24 h of shaking. EC and TDS were determined again. Then the soil filtrates were collected by centrifugation and used to determine cations and anions. Results showed that concentrations of TDS, HSS and LSS were higher at the top soil layer than at deeper soil layers. Concentrations of cations and anions have similar trends to TDS, HSS and LSS. Behavior of cations and anions in the soil profiles under trees were different from those in open field. Comparing between the data of soil profiles under trees (site 2 and 5) and those in the open field (sites 1, 3, 4 and 6) showed slight effects on availability of cations and anions. Strong correlations were found between cations and anions in soil profiles under trees, and week correlations were found in soil profile in open field. In conclusion the coastal soil profiles are characterized with elevated levels of TDS, HSS and LSS in the top soil layers. Accumulations of salts were more pronounced in top soil layers. These properties suggest high potential damage to the ecosystem.
Collapse
Affiliation(s)
- Yasser El-Nahhal
- The Environmental Protection and Research Institue (EPRI), Gaza, Palestine.
- The Islamic University of Gaza, Gaza Strip, Palestine.
| | - Mohamed Safi
- The Environmental Protection and Research Institue (EPRI), Gaza, Palestine
| | - Jamal Safi
- The Environmental Protection and Research Institue (EPRI), Gaza, Palestine
- Al-Azhar University-Gaza, Gaza Strip, Palestine
| |
Collapse
|
28
|
Biogeography of Macrophyte Elemental Composition: Spatiotemporal Modification of Species-Level Traits. Ecosystems 2020. [DOI: 10.1007/s10021-020-00484-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
29
|
Weisse T, Moser M. Light affects picocyanobacterial grazing and growth response of the mixotrophic flagellate Poterioochromonas malhamensis. J Microbiol 2020; 58:268-278. [PMID: 31989545 DOI: 10.1007/s12275-020-9567-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/19/2019] [Accepted: 12/19/2019] [Indexed: 11/28/2022]
Abstract
We measured the grazing and growth response of the mixotrophic chrysomonad flagellate Poterioochromonas malhamensis on four closely related picocyanobacterial strains isolated from subalpine lakes in central Europe. The picocyanobacteria represented different pigment types (phycoerythrin-rich, PE, and phycocyanin-rich, PC) and phylogenetic clusters. The grazing experiments were conducted with laboratory cultures acclimated to 10 µmol photon/m2/sec (low light, LL) and 100 µmol photon/m2/sec (moderate light, ML), either in the dark or at four different irradiances ranging from low (6 µmol photon/m2/sec) to high (1,500 µmol photon/m2/sec) light intensity. Poterioochromonas malhamensis preferred the larger, green PC-rich picocyanobacteria to the smaller, red PE-rich picocyanobacterial, and heterotrophic bacteria. The feeding and growth rates of P. malhamensis were sensitive to the actual light conditions during the experiments; the flagellate performed relatively better in the dark and at LL conditions than at high light intensity. In summary, our results found strain-specific ingestion and growth rates of the flagellate; an effect of the preculturing conditions, and, unexpectedly, a direct adverse effect of high light levels. We conclude that this flagellate may avoid exposure to high surface light intensities commonly encountered in temperate lakes during the summer.
Collapse
Affiliation(s)
- Thomas Weisse
- University of Innsbruck, Research Department for Limnology, Mondseestr. 9, A-5310, Mondsee, Austria.
| | - Michael Moser
- University of Innsbruck, Research Department for Limnology, Mondseestr. 9, A-5310, Mondsee, Austria
| |
Collapse
|
30
|
Ren Z, Martyniuk N, Oleksy IA, Swain A, Hotaling S. Ecological Stoichiometry of the Mountain Cryosphere. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00360] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
31
|
Zhou L, Declerck SAJ. Herbivore consumers face different challenges along opposite sides of the stoichiometric knife-edge. Ecol Lett 2019; 22:2018-2027. [PMID: 31512359 PMCID: PMC6900088 DOI: 10.1111/ele.13386] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/01/2019] [Accepted: 08/14/2019] [Indexed: 02/06/2023]
Abstract
Anthropogenic activities have reshaped the relative supply rates of essential elements to organisms. Recent studies suggested that consumer performance is strongly reduced by food that is either very high or very low in relative phosphorus content. However, the generality of such 'stoichiometric knife-edge' and its underlying mechanisms are poorly understood. We studied the response of a planktonic rotifer to a 10-fold food carbon : phosphorus (C : P) gradient and confirmed the existence of the stoichiometric knife-edge. Interestingly, we observed a complete homeostatic breakdown associated with strong growth reductions at high food C : P. In contrast, at low food C : P, animals maintained homeostasis despite pronounced performance reductions. Our results suggest that the mechanisms underlying adverse effects of stoichiometric imbalance are determined by both the identity of elements that are limiting and those that are present in excess. Negative effects of excess P reveal an additional way of how eutrophication may affect consumers.
Collapse
Affiliation(s)
- Libin Zhou
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, the Netherlands
| | - Steven A J Declerck
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, the Netherlands
| |
Collapse
|
32
|
Goode AG, Fields DM, Archer SD, Martínez Martínez J. Physiological responses of Oxyrrhis marina to a diet of virally infected Emiliania huxleyi. PeerJ 2019; 7:e6722. [PMID: 31041150 PMCID: PMC6476294 DOI: 10.7717/peerj.6722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 03/05/2019] [Indexed: 11/29/2022] Open
Abstract
The coccolithophore Emiliania huxleyi forms some of the largest phytoplankton blooms in the ocean. The rapid demise of these blooms has been linked to viral infections. E. huxleyi abundance, distribution, and nutritional status make them an important food source for the heterotrophic protists which are classified as microzooplankton in marine food webs. In this study we investigated the fate of E. huxleyi (CCMP 374) infected with virus strain EhV-86 in a simple predator-prey interaction. The ingestion rates of Oxyrrhis marina were significantly lower (between 26.9 and 50.4%) when fed virus-infected E. huxleyi cells compared to non-infected cells. Despite the lower ingestion rates, O. marina showed significantly higher growth rates (between 30 and 91.3%) when fed infected E. huxleyi cells, suggesting higher nutritional value and/or greater assimilation of infected E. huxleyi cells. No significant differences were found in O. marina cell volumes or fatty acids profiles. These results show that virally infected E. huxleyi support higher growth rates of single celled heterotrophs and in addition to the “viral shunt” hypothesis, viral infections may also divert more carbon to mesozooplankton grazers.
Collapse
Affiliation(s)
- Andrew G Goode
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States of America.,School of Marine Sciences, University of Maine, Orono, ME, United States of America
| | - David M Fields
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States of America
| | - Stephen D Archer
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States of America
| | | |
Collapse
|
33
|
Waibel A, Peter H, Sommaruga R. Importance of mixotrophic flagellates during the ice-free season in lakes located along an elevational gradient. AQUATIC SCIENCES 2019; 81:45. [PMID: 31057304 PMCID: PMC6469636 DOI: 10.1007/s00027-019-0643-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 04/13/2019] [Indexed: 06/09/2023]
Abstract
Mixotrophy seems to be widespread among phytoplankton, but whether this strategy is more relevant in oligotrophic lakes remains unclear. Here, we tested the hypothesis that the relative abundance of mixotrophic flagellates in lakes increases along an elevational gradient paralleling increasingly oligotrophic conditions. For this purpose, 12 lakes located between 575 and 2796 m above sea level were sampled in summer and fall to include two different seasonal windows in phytoplankton dynamics and environmental conditions. The degree of mixotrophy in phytoplankton was estimated in tracer experiments using fluorescently-labeled bacteria and done with composite samples collected in the euphotic zone and in samples obtained from the chlorophyll-a maximum. The results indicated the existence of a positive trend particularly in summer in the relative abundance of mixotrophic flagellates with elevation, however, this trend was not linear, and exceptions along the elevational gradient were found. Changes in the relative abundance of mixotrophic flagellates were related with significant changes in water transparency, DOC and phosphorus concentrations, as well as in bacterial and flagellate abundance. Overall, our results reveal that the harsh growth conditions found in oligotrophic high mountain lakes favor a mixotrophic trophic strategy among phytoplankton.
Collapse
Affiliation(s)
- Anna Waibel
- Department of Ecology, Lake and Glacier Research Group, University of Innsbruck, Technikerstr. 25, 6020 Innsbruck, Austria
| | - Hannes Peter
- Department of Ecology, Lake and Glacier Research Group, University of Innsbruck, Technikerstr. 25, 6020 Innsbruck, Austria
- Present Address: Stream Biofilm and Ecosystem Research Laboratory, Ecole Polytechnique Federale de Lausanne, 1015 Lausanne, Switzerland
| | - Ruben Sommaruga
- Department of Ecology, Lake and Glacier Research Group, University of Innsbruck, Technikerstr. 25, 6020 Innsbruck, Austria
| |
Collapse
|
34
|
Yuan LL, Jones JR. A Bayesian network model for estimating stoichiometric ratios of lake seston components. INLAND WATERS : JOURNAL OF THE INTERNATIONAL SOCIETY OF LIMNOLOGY 2019; 9:61-72. [PMID: 32280450 PMCID: PMC7147758 DOI: 10.1080/20442041.2019.1582957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 01/28/2019] [Accepted: 02/05/2019] [Indexed: 05/09/2023]
Abstract
The elemental composition of seston provide insights into the functioning of lake food webs and how nutrients cycle through the environment. Here, we describe a Bayesian network model that simultaneously estimates relationships between dissolved and particulate nutrients, suspended volatile and non-volatile sediments, and algal chlorophyll. The model provides direct estimates of the phosphorus and nitrogen content of phytoplankton, suspended non-living organic matter, and suspended inorganic sediment. We apply this model to data collected from reservoirs in Missouri, USA to test the validity of our assumed relationships. The results indicate that, on average among all samples, the ratio of nitrogen to phosphorus (N:P) in phytoplankton and non-living organic matter in these reservoirs were similar, although under nutrient replete conditions, N:P in phytoplankton decreased. Phosphorus content of inorganic sediment was lower than in phytoplankton and non-living organic matter. The analysis also provided a means of tracking changes in the composition of whole seston over time. In addition to informing questions regarding seston stoichiometry, this modeling approach may inform efforts to manage lake eutrophication because it can improve traditional models of relationships between nutrients and chlorophyll in lakes.
Collapse
Affiliation(s)
- Lester L. Yuan
- Office of Water, U.S. Environmental Protection Agency, Washington, DC 20460, Mail code 4304T
| | - John R. Jones
- School of Natural Resources, University of Missouri, Columbia, Columbia, MO 65211
| |
Collapse
|
35
|
Crucian Carp (Carassius carassius) Strongly Affect C/N/P Stoichiometry of Suspended Particulate Matter in Shallow Warm Water Eutrophic Lakes. WATER 2019. [DOI: 10.3390/w11030524] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Crucian carp (Carassius carassius) is a key fish species in most Chinese subtropical and tropical shallow lakes. Through sediment feeding, crucian carp could greatly change water turbidity and nutrient levels, as well as the abundance of herbivorous consumers, which may have important influences on seston element stoichiometry. However, so far, experimental studies on this topic are lacking. We conducted a 36-day mesocosm experiment to explore the effects of crucian carp on water physicochemical and biological properties, and C/N/P ratios in suspended particulate matter (SPM) under eutrophic conditions. Our results provided three major findings: (1) Crucian carp resuspended sediments and along with them, reduced light penetration and lower light/total phosphorus (TP) ratios. (2) Crucian carp reduced biomasses of both zooplankton and macrozoobenthos, whereas their effect on phytoplankton was weak, potentially because of resuspension-induced light limitation. (3) Both C/P and N/P ratios in SPM were significant lower in mesocosms with crucian carp than in fish-free controls, which may be attributed to the high contribution of P-rich sediments and low light to nutrient supply caused by fish-induced resuspension. Our results suggest that besides planktivorous fish, benthivore (e.g., crucian carp) in warm shallow waters could also affect pelagic C/N/P stoichiometry via sediment feeding, which may further influence energy transfer efficiency in lake food chain.
Collapse
|
36
|
Veach AM, Griffiths NA. Testing the light:nutrient hypothesis: Insights into biofilm structure and function using metatranscriptomics. Mol Ecol 2019; 27:2909-2912. [PMID: 29998558 DOI: 10.1111/mec.14733] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 05/18/2018] [Indexed: 01/17/2023]
Abstract
Aquatic biofilms are hotspots of biogeochemical activity due to concentrated microbial biomass (Battin, Kaplan, Newbold, & Hansen, ). However, biofilms are often considered a single entity when their role in biogeochemical transformations is assessed, even though these biofilms harbour functionally diverse microbial communities (Battin, Besemer, Bengtsson, Romani, & Packmann, ; Veach, Stegen, Brown, Dodds, & Jumpponen, ). Often overlooked are the biotic interactions among biofilm components that can affect ecosystem-scale processes such as primary production and nutrient cycling. These interactions are likely to be especially important under resource limitation. Light is a primary resource mediating algal photosynthesis and both phototrophic and heterotrophic production due to bacterial reliance on C-rich algal exudates (Cole, ). However, current understanding of function-structure linkages in streams has yet to unravel the relative degree of these microbial feedbacks under resource availability gradients. In this issue of Molecular Ecology, Bengtsson, Wagner, Schwab, Urich, and Battin () studied stream biofilm responses to light availability to understand its impact across three domains of life. By integrating biogeochemical rate estimation and metatranscriptomics within a microcosm experiment, they were able to link primary production and nutrient uptake rates to algal and bacterial metabolic processes and specify what taxa contributed to gene expression. Under low light, diatoms and cyanobacteria upregulated photosynthetic machinery and diatom-specific chloroplast rRNA suggesting heightened transcriptional activity under light limitation to maintain phototrophic energy demands. Under high light, heterotrophic bacteria upregulated mRNAs related to phosphorous (P) metabolism while biofilm P uptake increased indicating high bacterial-specific P demand when algal biomass was high. Together, these results indicate that biogeochemical function is mediated by complex microbial interactions across trophic levels.
Collapse
Affiliation(s)
- Allison M Veach
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - Natalie A Griffiths
- Climate Change Science Institute and Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| |
Collapse
|
37
|
Hodapp D, Hillebrand H, Striebel M. “Unifying” the Concept of Resource Use Efficiency in Ecology. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2018.00233] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
38
|
Scharler UM, Ayers MJ. Stoichiometric multitrophic networks reveal significance of land-sea interaction to ecosystem function in a subtropical nutrient-poor bight, South Africa. PLoS One 2019; 14:e0210295. [PMID: 30615659 PMCID: PMC6322777 DOI: 10.1371/journal.pone.0210295] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 12/18/2018] [Indexed: 11/29/2022] Open
Abstract
Nearshore marine ecosystems can benefit from their interaction with adjacent ecosystems, especially if they alleviate nutrient limitations in nutrient poor areas. This was the case in our oligo- to mesotrophic study area, the KwaZulu-Natal Bight on the South African subtropical east coast, which is bordered by the Agulhas current. We built stoichiometric, multitrophic ecosystem networks depicting biomass and material flows of carbon, nitrogen and phosphorus in three subsystems of the bight. The networks were analysed to investigate whether the southern, middle and northern bight function similarly in terms of their productivity, transfer efficiency between trophic levels, material cycling, and nutrient limitations. The middle region of the bight was clearly influenced by nutrient additions from the Thukela River, as it had the highest ecosystem productivity, lower transfer efficiencies and degree of cycling. Most nodes in the networks were limited by phosphorus, followed by nitrogen. The middle region adjacent to the Thukela River showed a lower proportion of P limitation especially in summer. Interestingly, there was a clear distinction in sensitivities to nutrient limitations between lower and higher trophic level organisms. This is a reflection of their discrepant nutrient turnover times that are either higher, or lower, than that of the systems, and which might provide a balance to the system through this antagonistic influence. Furthermore, by tracking the stoichiometry through entire food webs it appeared how important the role of lower trophic level organisms was to regulate stoichiometry to more suitable ratios for higher trophic level requirements. Although we gained good insight into the behaviour of the three subsystems in the KZN Bight and the role of terrestrial influence on their functioning, a merged approach of incorporating data on metabolic constraints derived from experiments could further improve the representativeness of multitrophic stoichiometric ecosystem networks.
Collapse
Affiliation(s)
- Ursula M. Scharler
- School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
- * E-mail:
| | - Morag J. Ayers
- School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
39
|
Deininger A, Jonsson A, Karlsson J, Bergström AK. Pelagic food webs of humic lakes show low short-term response to forest harvesting. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2019; 29:e01813. [PMID: 30312509 DOI: 10.1002/eap.1813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 08/04/2018] [Accepted: 09/05/2018] [Indexed: 06/08/2023]
Abstract
Forest harvest in the boreal zone can increase the input of terrestrial materials such as dissolved organic carbon (DOC) and nitrate (NO3- ) into nearby aquatic ecosystems, with potential effects on phytoplankton growth through enhanced nutrient (i.e., positive) or reduced light availability (i.e., negative), which may affect ecosystem productivity and consumer resource use. Here, we conducted forest clear-cutting experiments in the catchments of four small, humic, and nitrogen-limited unproductive boreal lakes (two controls and two clear-cut, 18% and 44% of area cut) with one reference and two impact years. Our aim was to assess the effects of forest clear-cutting on pelagic biomass production and consumer resource use. We found that pelagic biomass production did not change after two years of forest clear-cutting: Pelagic primary and bacterial production (PP, BP), PP:BP ratio, chl a, and seston carbon (seston C) were unaffected by clear-cutting; neither did tree harvest affect seston stoichiometry (i.e., N:phosphorus [P], C:P) nor induce changes in zooplankton resource use, biomass, or community composition. In conclusion, our findings suggest that pelagic food webs of humic lakes (DOC > 15 mg/L) might be resilient to a moderate form of forest clear-cutting, at least two years after tree removal, before mechanical site preparation (e.g., mounding, plowing) and when leaving buffer strips along lakes and incoming streams. Thus, pelagic food web responses to forest clear-cutting might not be universal, but could depend on factors such as the time scale, share of catchment logged, and the forest practices involved, including the application of buffer strips and site preparation.
Collapse
Affiliation(s)
- A Deininger
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
- Norwegian Institute for Water Research (NIVA), Oslo, Norway
- Department of Natural Sciences, University of Agder, Kristiansand, Norway
| | - A Jonsson
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
| | - J Karlsson
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
| | - A-K Bergström
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
| |
Collapse
|
40
|
Fitch A, Orland C, Willer D, Emilson EJS, Tanentzap AJ. Feasting on terrestrial organic matter: Dining in a dark lake changes microbial decomposition. GLOBAL CHANGE BIOLOGY 2018; 24:5110-5122. [PMID: 29998600 PMCID: PMC6220883 DOI: 10.1111/gcb.14391] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/30/2018] [Accepted: 06/22/2018] [Indexed: 06/08/2023]
Abstract
Boreal lakes are major components of the global carbon cycle, partly because of sediment-bound heterotrophic microorganisms that decompose within-lake and terrestrially derived organic matter (t-OM). The ability for sediment bacteria to break down and alter t-OM may depend on environmental characteristics and community composition. However, the connection between these two potential drivers of decomposition is poorly understood. We tested how bacterial activity changed along experimental gradients in the quality and quantity of t-OM inputs into littoral sediments of two small boreal lakes, a dark and a clear lake, and measured the abundance of operational taxonomic units and functional genes to identify mechanisms underlying bacterial responses. We found that bacterial production (BP) decreased across lakes with aromatic dissolved organic matter (DOM) in sediment pore water, but the process underlying this pattern differed between lakes. Bacteria in the dark lake invested in the energetically costly production of extracellular enzymes as aromatic DOM increased in availability in the sediments. By contrast, bacteria in the clear lake may have lacked the nutrients and/or genetic potential to degrade aromatic DOM and instead mineralized photo-degraded OM into CO2 . The two lakes differed in community composition, with concentrations of dissolved organic carbon and pH differentiating microbial assemblages. Furthermore, functional genes relating to t-OM degradation were relatively higher in the dark lake. Our results suggest that future changes in t-OM inputs to lake sediments will have different effects on carbon cycling depending on the potential for photo-degradation of OM and composition of resident bacterial communities.
Collapse
Affiliation(s)
- Amelia Fitch
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
| | - Chloe Orland
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
| | - David Willer
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
| | - Erik J. S. Emilson
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
- Natural Resources Canada, Great Lakes Forestry CentreSault Ste. MarieOntario
| | | |
Collapse
|
41
|
Reyserhove L, Samaey G, Muylaert K, Coppé V, Van Colen W, Decaestecker E. A historical perspective of nutrient change impact on an infectious disease in Daphnia. Ecology 2018; 98:2784-2798. [PMID: 28845593 DOI: 10.1002/ecy.1994] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 06/18/2017] [Accepted: 07/10/2017] [Indexed: 01/01/2023]
Abstract
Changes in food quality can play a substantial role in the vulnerability of hosts to infectious diseases. In this study, we focused on the genetic differentiation of the water flea Daphnia magna towards food of different quality (by manipulating C:N:P ratios) and its impact on the interaction with a virulent infectious disease, "White Fat Cell Disease (WFCD)". Via a resurrection ecology approach, we isolated two Daphnia subpopulations from different depths in a sediment core, which were exposed to parasites and a nutrient ratio gradient in a common garden experiment. Our results showed a genetic basis for sensitivity towards food deprivation. Both fecundity and host survival was differently affected when fed with low-quality food. This strongly impacted the way both subpopulations interacted with this parasite. A historical reconstruction of nutrient changes in a sediment core reflected an increase in organic material and phosphorus concentration (more eutrophic conditions) over time in the studied pond. These results enable us to relate patterns of genetic differentiation in sensitivity towards food deprivation to an increasing level of eutrophication of the subpopulations, which ultimately impacts parasite virulence effects. This finding was confirmed via a dynamic energy budgets (DEB), in which energy was partitioned for the host and the parasite. The model was tailored to our study by integrating (1) increased growth and a fecundity shift in the host upon parasitism and (2) differences of food assimilation in the subpopulations showing that a reduced nutrient assimilation resulted in increased parasite virulence. The combination of our experiment with the DEB model shows that it is important to consider genetic diversity when studying the impact of nutritional stress on species interactions, especially in the context of changing environments and emerging infectious diseases.
Collapse
Affiliation(s)
- Lien Reyserhove
- KU Leuven, Interdisciplinary Research Facility Life Sciences, KULAK, Campus Kortrijk, Etienne Sabbelaan 53, Kortrijk, B-8500, Belgium
| | - Giovanni Samaey
- Department of Computer Science, KU Leuven, Celestijnenlaan 200A, Leuven, B-3001, Belgium
| | - Koenraad Muylaert
- KU Leuven, Interdisciplinary Research Facility Life Sciences, KULAK, Campus Kortrijk, Etienne Sabbelaan 53, Kortrijk, B-8500, Belgium
| | - Vincent Coppé
- Department of Computer Science, KU Leuven, Celestijnenlaan 200A, Leuven, B-3001, Belgium
| | - Willem Van Colen
- KU Leuven, Interdisciplinary Research Facility Life Sciences, KULAK, Campus Kortrijk, Etienne Sabbelaan 53, Kortrijk, B-8500, Belgium
| | - Ellen Decaestecker
- KU Leuven, Interdisciplinary Research Facility Life Sciences, KULAK, Campus Kortrijk, Etienne Sabbelaan 53, Kortrijk, B-8500, Belgium
| |
Collapse
|
42
|
Verbeek L, Gall A, Hillebrand H, Striebel M. Warming and oligotrophication cause shifts in freshwater phytoplankton communities. GLOBAL CHANGE BIOLOGY 2018; 24:4532-4543. [PMID: 29856108 DOI: 10.1111/gcb.14337] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 05/02/2018] [Accepted: 05/11/2018] [Indexed: 05/06/2023]
Abstract
While there is a lot of data on interactive effects of eutrophication and warming, to date, we lack data to generate reliable predictions concerning possible effects of nutrient decrease and temperature increase on community composition and functional responses. In recent years, a wide-ranging trend of nutrient decrease (re-oligotrophication) was reported for freshwater systems. Small lakes and ponds, in particular, show rapid responses to anthropogenic pressures and became model systems to investigate single as well as synergistic effects of warming and fertilization in situ and in experiments. Therefore, we set up an experiment to investigate the single as well as the interactive effects of nutrient reduction and gradual temperature increase on a natural freshwater phytoplankton community, using an experimental indoor mesocosm setup. Biomass production initially increased with warming but decreased with nutrient depletion. If nutrient supply was constant, biomass increased further, especially under warming conditions. Under low nutrient supply, we found a sharp transition from initially positive effects of warming to negative effects when resources became scarce. Warming reduced phytoplankton richness and evenness, whereas nutrient reduction at ambient temperature had positive effects on diversity. Our results indicate that temperature effects on freshwater systems will be altered by nutrient availability. These interactive effects of energy increase and resource decrease have major impacts on biodiversity and ecosystem function and thus need to be considered in environmental management plans.
Collapse
Affiliation(s)
- Laura Verbeek
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Wilhelmshaven, Germany
| | - Andrea Gall
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Wilhelmshaven, Germany
| | - Helmut Hillebrand
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Wilhelmshaven, Germany
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Oldenburg, Germany
| | - Maren Striebel
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Wilhelmshaven, Germany
| |
Collapse
|
43
|
Do grazers respond to or control food quality? Cross-scale analysis of algivorous fish in littoral Lake Tanganyika. Oecologia 2018; 188:889-900. [DOI: 10.1007/s00442-018-4240-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 07/27/2018] [Indexed: 11/26/2022]
|
44
|
Creed IF, Bergström AK, Trick CG, Grimm NB, Hessen DO, Karlsson J, Kidd KA, Kritzberg E, McKnight DM, Freeman EC, Senar OE, Andersson A, Ask J, Berggren M, Cherif M, Giesler R, Hotchkiss ER, Kortelainen P, Palta MM, Vrede T, Weyhenmeyer GA. Global change-driven effects on dissolved organic matter composition: Implications for food webs of northern lakes. GLOBAL CHANGE BIOLOGY 2018; 24:3692-3714. [PMID: 29543363 DOI: 10.1111/gcb.14129] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/05/2018] [Indexed: 05/21/2023]
Abstract
Northern ecosystems are experiencing some of the most dramatic impacts of global change on Earth. Rising temperatures, hydrological intensification, changes in atmospheric acid deposition and associated acidification recovery, and changes in vegetative cover are resulting in fundamental changes in terrestrial-aquatic biogeochemical linkages. The effects of global change are readily observed in alterations in the supply of dissolved organic matter (DOM)-the messenger between terrestrial and lake ecosystems-with potentially profound effects on the structure and function of lakes. Northern terrestrial ecosystems contain substantial stores of organic matter and filter or funnel DOM, affecting the timing and magnitude of DOM delivery to surface waters. This terrestrial DOM is processed in streams, rivers, and lakes, ultimately shifting its composition, stoichiometry, and bioavailability. Here, we explore the potential consequences of these global change-driven effects for lake food webs at northern latitudes. Notably, we provide evidence that increased allochthonous DOM supply to lakes is overwhelming increased autochthonous DOM supply that potentially results from earlier ice-out and a longer growing season. Furthermore, we assess the potential implications of this shift for the nutritional quality of autotrophs in terms of their stoichiometry, fatty acid composition, toxin production, and methylmercury concentration, and therefore, contaminant transfer through the food web. We conclude that global change in northern regions leads not only to reduced primary productivity but also to nutritionally poorer lake food webs, with discernible consequences for the trophic web to fish and humans.
Collapse
Affiliation(s)
- Irena F Creed
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - Charles G Trick
- Interfaculty Program on Public Health & Department of Biology, Western University, London, ON, Canada
| | - Nancy B Grimm
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Dag O Hessen
- Section for Aquatic Biology and Toxicology, University of Oslo, Oslo, Norway
| | - Jan Karlsson
- Climate Impacts Research Centre, Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
| | - Karen A Kidd
- Department of Biology and Canadian Rivers Institute, University of New Brunswick, Saint John, NB, Canada
| | | | | | - Erika C Freeman
- Department of Geography, Western University, London, ON, Canada
| | - Oscar E Senar
- Department of Geography, Western University, London, ON, Canada
| | - Agneta Andersson
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
| | - Jenny Ask
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
| | - Martin Berggren
- Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden
| | - Mehdi Cherif
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
| | - Reiner Giesler
- Climate Impacts Research Centre, Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
| | - Erin R Hotchkiss
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | | | - Monica M Palta
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Tobias Vrede
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Gesa A Weyhenmeyer
- Department of Ecology and Genetics, Limnology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
45
|
Bengtsson MM, Wagner K, Schwab C, Urich T, Battin TJ. Light availability impacts structure and function of phototrophic stream biofilms across domains and trophic levels. Mol Ecol 2018; 27:2913-2925. [PMID: 29679511 PMCID: PMC6055792 DOI: 10.1111/mec.14696] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/15/2018] [Accepted: 02/09/2018] [Indexed: 01/08/2023]
Abstract
Phototrophic biofilms are ubiquitous in freshwater and marine environments where they are critical for biogeochemical cycling, food webs and in industrial applications. In streams, phototrophic biofilms dominate benthic microbial life and harbour an immense prokaryotic and eukaryotic microbial biodiversity with biotic interactions across domains and trophic levels. Here, we examine how community structure and function of these biofilms respond to varying light availability, as the crucial energy source for phototrophic biofilms. Using metatranscriptomics, we found that under light limitation‐dominant phototrophs, including diatoms and cyanobacteria, displayed a remarkable plasticity in their photosynthetic machinery manifested as higher abundance of messenger RNAs (mRNAs) involved in photosynthesis and chloroplast ribosomal RNA. Under higher light availability, bacterial mRNAs involved in phosphorus metabolism, mainly from Betaproteobacteria and Cyanobacteria, increased, likely compensating for nutrient depletion in thick biofilms with high biomass. Consumers, including diverse ciliates, displayed community shifts indicating preferential grazing on algae instead of bacteria under higher light. For the first time, we show that the functional integrity of stream biofilms under variable light availability is maintained by structure–function adaptations on several trophic levels. Our findings shed new light on complex biofilms, or “microbial jungles”, where in analogy to forests, diverse and multitrophic level communities lend stability to ecosystem functioning. This multitrophic level perspective, coupling metatranscriptomics to process measurements, could advance understanding of microbial‐driven ecosystems beyond biofilms, including planktonic and soil environments. https://doi.org/10.1111/mec.14733
Collapse
Affiliation(s)
- Mia M Bengtsson
- Institute of Microbiology, University of Greifswald, Greifswald, Germany.,Department of Limnology and Oceanography, University of Vienna, Vienna, Austria
| | - Karoline Wagner
- Department of Limnology and Oceanography, University of Vienna, Vienna, Austria
| | - Clarissa Schwab
- Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Tim Urich
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Tom J Battin
- Stream Biofilm and Ecosystem Research Laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), ENAC, Lausanne, Switzerland
| |
Collapse
|
46
|
Villar-Argaiz M, Medina-Sánchez JM, Biddanda BA, Carrillo P. Predominant Non-additive Effects of Multiple Stressors on Autotroph C:N:P Ratios Propagate in Freshwater and Marine Food Webs. Front Microbiol 2018; 9:69. [PMID: 29441051 PMCID: PMC5797581 DOI: 10.3389/fmicb.2018.00069] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 01/11/2018] [Indexed: 01/19/2023] Open
Abstract
A continuing challenge for scientists is to understand how multiple interactive stressor factors affect biological interactions, and subsequently, ecosystems–in ways not easily predicted by single factor studies. In this review, we have compiled and analyzed available research on how multiple stressor pairs composed of temperature (T), light (L), ultraviolet radiation (UVR), nutrients (Nut), carbon dioxide (CO2), dissolved organic carbon (DOC), and salinity (S) impact the stoichiometry of autotrophs which in turn shapes the nature of their ecological interactions within lower trophic levels in streams, lakes and oceans. Our analysis from 66 studies with 320 observations of 11 stressor pairs, demonstrated that non-additive responses predominate across aquatic ecosystems and their net interactive effect depends on the stressor pair at play. Across systems, there was a prevalence of antagonism in freshwater (60–67% vs. 47% in marine systems) compared to marine systems where synergism was more common (49% vs. 33–40% in freshwaters). While the lack of data impeded comparisons among all of the paired stressors, we found pronounced system differences for the L × Nut interactions. For this interaction, our data for C:P and N:P is consistent with the initial hypothesis that the interaction was primarily synergistic in the oceans, but not for C:N. Our study found a wide range of variability in the net effects of the interactions in freshwater systems, with some observations supporting antagonism, and others synergism. Our results suggest that the nature of the stressor pairs interactions on C:N:P ratios regulates the “continuum” commensalistic-competitive-predatory relationship between algae and bacteria and the food chain efficiency at the algae-herbivore interface. Overall, the scarce number of studies with even more fewer replications in each study that are available for freshwater systems have prevented a more detailed, insightful analysis. Our findings highlighting the preponderance of antagonistic and synergistic effects of stressor interactions in aquatic ecosystems—effects that play key roles in the functioning of feedback loops in the biosphere—also stress the need for further studies evaluating the interactive effects of multiple stressors in a rapidly changing world facing a confluence of tipping points.
Collapse
Affiliation(s)
- Manuel Villar-Argaiz
- Departamento de Ecología, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Juan M Medina-Sánchez
- Departamento de Ecología, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Bopaiah A Biddanda
- Annis Water Resources Institute, Grand Valley State University, Muskegon, MI, United States
| | | |
Collapse
|
47
|
Vlah MJ, Holtgrieve GW, Sadro S. Low Levels of Allochthony in Consumers Across Three High-Elevation Lake Types. Ecosystems 2017. [DOI: 10.1007/s10021-017-0206-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
48
|
They NH, Amado AM, Cotner JB. Redfield Ratios in Inland Waters: Higher Biological Control of C:N:P Ratios in Tropical Semi-arid High Water Residence Time Lakes. Front Microbiol 2017; 8:1505. [PMID: 28848518 PMCID: PMC5551281 DOI: 10.3389/fmicb.2017.01505] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 07/27/2017] [Indexed: 11/29/2022] Open
Abstract
The canonical Redfield C:N:P ratio for algal biomass is often not achieved in inland waters due to higher C and N content and more variability when compared to the oceans. This has been attributed to much lower residence times and higher contributions of the watershed to the total organic matter pool of continental ecosystems. In this study we examined the effect of water residence times in low latitude lakes (in a gradient from humid to a semi-arid region) on seston elemental ratios in different size fractions. We used lake water specific conductivity as a proxy for residence time in a region of Eastern Brazil where there is a strong precipitation gradient. The C:P ratios decreased in the seston and bacterial size-fractions and increased in the dissolved fraction with increasing water retention time, suggesting uptake of N and P from the dissolved pool. Bacterial abundance, production and respiration increased in response to increased residence time and intracellular nutrient availability in agreement with the growth rate hypothesis. Our results reinforce the role of microorganisms in shaping the chemical environment in aquatic systems particularly at long water residence times and highlights the importance of this factor in influencing ecological stoichiometry in all aquatic ecosystems.
Collapse
Affiliation(s)
- Ng H. They
- Graduate Program in Ecology, Limnology Laboratory, Department of Oceanography and Limnology, Universidade Federal do Rio Grande do NorteNatal, Brazil
| | - André M. Amado
- Graduate Program in Ecology, Limnology Laboratory, Department of Oceanography and Limnology, Universidade Federal do Rio Grande do NorteNatal, Brazil
- Department of Biology, Universidade Federal de Juiz de ForaJuiz de Fora, Brazil
| | - James B. Cotner
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. PaulMN, United States
| |
Collapse
|
49
|
Deininger A, Faithfull CL, Bergström AK. Nitrogen effects on the pelagic food web are modified by dissolved organic carbon. Oecologia 2017; 184:901-916. [PMID: 28756491 PMCID: PMC5563339 DOI: 10.1007/s00442-017-3921-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 07/15/2017] [Indexed: 11/25/2022]
Abstract
Global environmental change has altered the nitrogen (N) cycle and enhanced terrestrial dissolved organic carbon (DOC) loadings to northern boreal lakes. However, it is still unclear how enhanced N availability affects pelagic food web efficiency (FWE) and crustacean zooplankton growth in N limited boreal lakes. Here, we performed in situ mesocosm experiments in six unproductive boreal Swedish lakes, paired across a DOC gradient, with one lake in each pair fertilized with N (2011: reference year; 2012, 2013: impact years). We assessed how zooplankton growth and FWE were affected by changes in pelagic energy mobilization (PEM), food chain length (phytoplankton versus bacterial production based food chain, i.e. PP:BP), and food quality (seston stoichiometry) in response to N fertilization. Although PP, PEM and PP:BP increased in low and medium DOC lakes after N fertilization, consumer growth and FWE were reduced, especially at low DOC—potentially due to reduced phytoplankton food quality [increased C: phosphorus (P); N:P]. At high DOC, N fertilization caused modest increases in PP and PEM, with marginal changes in PP:BP and phytoplankton food quality, which, combined, led to a slight increase in zooplankton growth and FWE. Consequently, at low DOC (<12 mg L−1), increased N availability lowers FWE due to mismatches in food quality demand and supply, whereas at high DOC this mismatch does not occur, and zooplankton production and FWE may increase. We conclude that the lake DOC level is critical for predicting the effects of enhanced inorganic N availability on pelagic productivity in boreal lakes.
Collapse
Affiliation(s)
- A Deininger
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden.
| | - C L Faithfull
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
| | - A-K Bergström
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
| |
Collapse
|
50
|
Evans-White MA, Halvorson HM. Comparing the Ecological Stoichiometry in Green and Brown Food Webs - A Review and Meta-analysis of Freshwater Food Webs. Front Microbiol 2017; 8:1184. [PMID: 28706509 PMCID: PMC5489555 DOI: 10.3389/fmicb.2017.01184] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 06/12/2017] [Indexed: 11/13/2022] Open
Abstract
The framework of ecological stoichiometry was developed primarily within the context of "green" autotroph-based food webs. While stoichiometric principles also apply in "brown" detritus-based systems, these systems have been historically understudied and differ from green ones in several important aspects including carbon (C) quality and the nutrient [nitrogen (N) and phosphorus (P)] contents of food resources for consumers. In this paper, we review work over the last decade that has advanced the application of ecological stoichiometry from green to brown food webs, focusing on freshwater ecosystems. We first review three focal areas where green and brown food webs differ: (1) bottom-up controls by light and nutrient availability, (2) stoichiometric constraints on consumer growth and nutritional regulation, and (3) patterns in consumer-driven nutrient dynamics. Our review highlights the need for further study of how light and nutrient availability affect autotroph-heterotroph interactions on detritus and the subsequent effects on consumer feeding and growth. To complement this conceptual review, we formally quantified differences in stoichiometric principles between green and brown food webs using a meta-analysis across feeding studies of freshwater benthic invertebrates. From 257 datasets collated across 46 publications and several unpublished studies, we compared effect sizes (Pearson's r) of resource N:C and P:C on growth, consumption, excretion, and egestion between herbivorous and detritivorous consumers. The meta-analysis revealed that both herbivore and detritivore growth are limited by resource N:C and P:C contents, but effect sizes only among detritivores were significantly above zero. Consumption effect sizes were negative among herbivores but positive for detritivores in the case of both N:C and P:C, indicating distinct compensatory feeding responses across resource stoichiometry gradients. Herbivore P excretion rates responded significantly positively to resource P:C, whereas detritivore N and P excretion did not respond; detritivore N and P egestion responded positively to resource N:C and P:C, respectively. Our meta-analysis highlights resource N and P contents as broadly limiting in brown and green benthic food webs, but indicates contrasting mechanisms of limitation owing to differing consumer regulation. We suggest that green and brown food webs share fundamental stoichiometric principles, while identifying specific differences toward applying ecological stoichiometry across ecosystems.
Collapse
Affiliation(s)
| | - Halvor M. Halvorson
- Department of Biological Sciences, University of Southern Mississippi, HattiesburgMS, United States
| |
Collapse
|