1
|
Sabir MS, Hossain MS, Pollard L, Huizing M, Gahl WA, Platt FM, Malicdan MCV. Lack of significant ganglioside changes in Slc17a5 heterozygous mice: Relevance to FSASD and Parkinson's disease. Biochem Biophys Rep 2025; 42:101979. [PMID: 40144541 PMCID: PMC11937675 DOI: 10.1016/j.bbrep.2025.101979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/26/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
Large population-based studies of Parkinson's disease (PD) have identified susceptibility genes, including SLC17A5. Biallelic mutations in SLC17A5, encoding the lysosomal sialic acid transporter sialin, cause the rare neurodegenerative disease, free sialic acid storage disorder (FSASD). To explore a potential biochemical link between FSASD and PD, we investigated ganglioside concentrations in a novel mouse model harboring the Slc17a5 p.Arg39Cys (p.R39C) variant. Our analysis revealed no significant alterations in ganglioside concentrations in heterozygous p.R39C mice, warranting further studies into other potential links between PD and sialin defects.
Collapse
Affiliation(s)
- Marya S. Sabir
- UDP Translational Laboratory, NIH Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- NIH Oxford-Cambridge Scholars Program, University of Oxford, Oxford, UK
| | - Mahin S. Hossain
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Laura Pollard
- Biochemical Genetics Laboratory, Greenwood Genetic Center, Greenwood, SC, USA
| | - Marjan Huizing
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - William A. Gahl
- UDP Translational Laboratory, NIH Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - May Christine V. Malicdan
- UDP Translational Laboratory, NIH Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
2
|
Sabir MS, Makarious MB, Huizing M, Gahl WA, Platt FM, Malicdan MCV. Comprehensive analysis of SLC17A5 variants in large European cohorts reveals no association with Parkinson's disease risk. Parkinsonism Relat Disord 2025; 134:107790. [PMID: 40088783 DOI: 10.1016/j.parkreldis.2025.107790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/13/2025] [Accepted: 03/10/2025] [Indexed: 03/17/2025]
Abstract
BACKGROUND Parkinson's disease (PD) is a neurodegenerative disorder characterized by dopaminergic neuron loss and α-synuclein aggregation. Aging is the primary risk factor, with both rare and common genetic variants playing a role. Previous studies have implicated lysosomal storage disorder (LSD)-related genes, including SLC17A5, in PD susceptibility. OBJECTIVE This study aimed to investigate the association of SLC17A5 variants, including rare and common variants and the FSASD-associated p.Arg39Cys missense variant, with PD risk in large European ancestry cohorts. METHODS Rare variant burden analyses were performed at minor allele frequency (MAF) thresholds of ≤1 % and ≤0.1 % in 7,184 PD cases and 51,650 controls using whole-genome and whole-exome sequencing data. Association testing of the p.Arg39Cys variant was conducted across five cohorts, encompassing both Finnish and non-Finnish Europeans. Common variant associations were examined using summary statistics from the largest European GWAS of PD. RESULTS No significant association was observed between rare SLC17A5 variants and PD at either MAF threshold. The p.Arg39Cys variant, though enriched in Finnish Europeans, showed no significant association with PD across several cohorts. Similarly, common SLC17A5 variants (MAF ≥1%) were not associated with PD risk. CONCLUSION Our findings do not support a role for SLC17A5 variants in PD susceptibility. While lysosomal dysfunction is central to PD pathogenesis, its contribution appears pathway-specific, with SLC17A5 unlikely to influence risk. Larger, multiethnic studies and functional analyses are needed to further investigate sialic acid metabolism in PD and related disorders.
Collapse
Affiliation(s)
- Marya S Sabir
- UDP Translational Laboratory, NIH Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA; NIH Oxford-Cambridge Scholars Program, University of Oxford, Oxford, UK
| | - Mary B Makarious
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA; DataTecnica LLC, Washington, DC, USA
| | - Marjan Huizing
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - William A Gahl
- UDP Translational Laboratory, NIH Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA; Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Frances M Platt
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - May Christine V Malicdan
- UDP Translational Laboratory, NIH Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA; Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
3
|
Sabir MS, Wolfe L, Adams DR, Ciccone C, Porter FD, Gahl WA, Huizing M, Platt FM, Malicdan MCV. Changes in glycosphingolipid levels in plasma and cerebrospinal fluid of individuals with Lysosomal Free Sialic Acid Storage Disorder. RARE (AMSTERDAM, NETHERLANDS) 2025; 3:100065. [PMID: 39991440 PMCID: PMC11845233 DOI: 10.1016/j.rare.2025.100065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Lysosomal free sialic acid storage disorder (FSASD) is a rare, multisystem disease caused by biallelic pathogenic variants in SLC17A5, encoding the lysosomal transmembrane sialic acid exporter, sialin. Defective sialin function leads to sialic acid accumulation in lysosomes, contributing to neurodegeneration. While glycosphingolipid (GSL) metabolism is altered in other lysosomal storage disorders, its role in FSASD remains poorly understood, especially due to the restricted availability of biospecimens. This study investigated GSL levels in FSASD plasma and cerebrospinal fluid (CSF) using two normal-phase high-performance liquid chromatography assays. In plasma, GM1a was significantly elevated, while GM2 was decreased, with no significant alterations in other GSL species. In CSF, total GSLs, GM1a, GM3, GD3, GD1a, and GD1b were significantly elevated compared to comparison samples. These results reveal dysregulated GSL metabolism and suggest the potential of gangliosides as biomarkers. Further research is warranted to elucidate the biological implications of these alterations and their contributions to FSASD pathogenesis.
Collapse
Affiliation(s)
- Marya S. Sabir
- NIH Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- NIH Oxford-Cambridge Scholars Program, University of Oxford, Oxford, UK
| | - Lynne Wolfe
- NIH Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - David R. Adams
- NIH Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Carla Ciccone
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Forbes D. Porter
- Section on Molecular Dysmorphology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - William A. Gahl
- NIH Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marjan Huizing
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - May Christine V. Malicdan
- NIH Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
4
|
Elitt CM, Volpe JJ. Degenerative Disorders of the Newborn. VOLPE'S NEUROLOGY OF THE NEWBORN 2025:967-1007.e17. [DOI: 10.1016/b978-0-443-10513-5.00033-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
5
|
Shinawi M, Wegner DJ, Paul AJ, Buchser W, Schmidt R, Sharma J, Sardiello M, Sisco K, Manwaring L, Reynolds M, Fulton R, Fronick C, Shaver A, Huang TY, Carroll A, Roessler K, Halpern AL, Dickson PI, Wambach JA. Atypical free sialic acid storage disorder associated with tissue specific mosaicism of SLC17A5. Mol Genet Metab 2025; 144:109004. [PMID: 39742826 DOI: 10.1016/j.ymgme.2024.109004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/03/2024] [Accepted: 12/10/2024] [Indexed: 01/04/2025]
Abstract
Free sialic acid storage disorder (FSASD) is a rare autosomal recessive lysosomal storage disease caused by pathogenic SLC17A5 variants with variable disease severity. We performed a multidisciplinary evaluation of an adolescent female with suspected lysosomal storage disease and conducted comprehensive studies to uncover the molecular etiology. The proband exhibited intellectual disability, a storage disease gestalt, and mildly elevated urine free sialic acid levels. Skin electron micrographs showed prominent cytoplasmic vacuolation. Clinical exome and genome sequencing identified a maternally-inherited SLC17A5 variant: c.533delC;p.Thr178Asnfs*34. RNASeq of proband skin fibroblasts revealed exon 3 skipping, which was not detected in RNA from proband blood or parental fibroblasts. Targeted deep sequencing of proband fibroblast DNA revealed a 184 bp deletion in ∼15 % of reads, encompassing the 3' end of exon 3. Illumina Complete Long Read sequencing confirmed the deletion was in the paternally-inherited allele and found in a mosaic state in proband fibroblasts and muscle but not in blood or buccal cells. Functional studies, including SLC17A5 knockout cells and transient transfections of mutated SLC17A5 demonstrated pathogenicity of the identified variants. We report an adolescent female with atypical FSASD with tissue-specific mosaicism for an intragenic deletion in SLC17A5, explaining the atypical clinical course, mild biochemical abnormalities, and long diagnostic process.
Collapse
Affiliation(s)
- Marwan Shinawi
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Daniel J Wegner
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Alexander J Paul
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States of America
| | - William Buchser
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Robert Schmidt
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Jaiprakash Sharma
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Marco Sardiello
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Kathleen Sisco
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Linda Manwaring
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Margaret Reynolds
- Department of Ophthalmology, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Robert Fulton
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Catrina Fronick
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Andrew Shaver
- Illumina Inc, San Diego, CA, United States of America
| | - Tina Y Huang
- Illumina Inc, San Diego, CA, United States of America
| | | | | | | | - Patricia I Dickson
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States of America.
| | - Jennifer A Wambach
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States of America
| |
Collapse
|
6
|
Mansikkala T, Kangas SM, Miinalainen I, Angervaniva P, Darin N, Blomqvist M, Hinttala R, Huttula M, Uusimaa J, Patanen M. Soft X-ray spectromicroscopy of human fibroblasts with impaired sialin function. RSC Adv 2024; 14:28797-28806. [PMID: 39257666 PMCID: PMC11385984 DOI: 10.1039/d4ra05520a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 08/27/2024] [Indexed: 09/12/2024] Open
Abstract
Salla disease (SD) is a lysosomal storage disease where free sialic acid (SA) accumulates in lysosomes due to the impaired function of a membrane protein, sialin. Synchrotron radiation-based scanning transmission soft X-ray spectromicroscopy (STXM) was used to analyze both SD patients' fibroblasts and normal human dermal fibroblasts (NHDF) from healthy controls. Both cell lines were also cultured with N-acetyl-d-mannosamine monohydrate (ManNAc) to see if it increased SA concentration in the cells. The STXM technique was chosen to simultaneously observe the morphological and chemical changes in cells. It was observed that free SA did not remain in the lysosomes during the sample processing, leaving empty vacuoles to the fibroblasts. The total cytosol and entire cell spectra, however, showed systematic differences between the SD and NHDF samples, indicating changes in the relative macromolecular concentrations of the cells. The NHDF cell lines contained a higher relative protein concentration compared to the SD cell lines, and the addition of ManNAc increased the relative protein concentration in both cell lines. In this study, two sample preparation methods were compared, resin-embedded thin sections and cells grown directly on sample analysis grids. While the samples grown on the grids exhibited clean, well-resolved spectra not masked by embedding resin, the low penetration depth of soft X-rays hindered the analysis to only the thin region of the microfilaments away from the thick nucleus.
Collapse
Affiliation(s)
- Tuomas Mansikkala
- Nano and Molecular Systems Research Unit, 90014 University of Oulu PO Box 3000 Finland
- Biocenter Oulu, 90014 University of Oulu PO Box 5000 Finland
| | - Salla M Kangas
- Research Unit of Clinical Medicine and Medical Research Center, Oulu University Hospital and University of Oulu 90014 Oulu Finland
| | | | - Pia Angervaniva
- Research Unit of Clinical Medicine and Medical Research Center, Oulu University Hospital and University of Oulu 90014 Oulu Finland
| | - Niklas Darin
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg 40530 Gothenburg Sweden
| | - Maria Blomqvist
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Sweden and Department of Clinical Chemistry, Sahlgrenska University Hospital 41345 Gothenburg Sweden
| | - Reetta Hinttala
- Biocenter Oulu, 90014 University of Oulu PO Box 5000 Finland
- Research Unit of Clinical Medicine and Medical Research Center, Oulu University Hospital and University of Oulu 90014 Oulu Finland
| | - Marko Huttula
- Nano and Molecular Systems Research Unit, 90014 University of Oulu PO Box 3000 Finland
| | - Johanna Uusimaa
- Research Unit of Clinical Medicine and Medical Research Center, Oulu University Hospital and University of Oulu 90014 Oulu Finland
- Department of Paediatrics and Adolescent Medicine, Paediatric Neurology Unit, Oulu University Hospital 90029 Oulu Finland
| | - Minna Patanen
- Nano and Molecular Systems Research Unit, 90014 University of Oulu PO Box 3000 Finland
- Biocenter Oulu, 90014 University of Oulu PO Box 5000 Finland
| |
Collapse
|
7
|
Cai R, Scott O, Ye G, Le T, Saran E, Kwon W, Inpanathan S, Sayed BA, Botelho RJ, Saric A, Uderhardt S, Freeman SA. Pressure sensing of lysosomes enables control of TFEB responses in macrophages. Nat Cell Biol 2024; 26:1247-1260. [PMID: 38997458 DOI: 10.1038/s41556-024-01459-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 06/11/2024] [Indexed: 07/14/2024]
Abstract
Polymers are endocytosed and hydrolysed by lysosomal enzymes to generate transportable solutes. While the transport of diverse organic solutes across the plasma membrane is well studied, their necessary ongoing efflux from the endocytic fluid into the cytosol is poorly appreciated by comparison. Myeloid cells that employ specialized types of endocytosis, that is, phagocytosis and macropinocytosis, are highly dependent on such transport pathways to prevent the build-up of hydrostatic pressure that otherwise offsets lysosomal dynamics including vesiculation, tubulation and fission. Without undergoing rupture, we found that lysosomes incurring this pressure owing to defects in solute efflux, are unable to retain luminal Na+, which collapses its gradient with the cytosol. This cation 'leak' is mediated by pressure-sensitive channels resident to lysosomes and leads to the inhibition of mTORC1, which is normally activated by Na+-coupled amino acid transporters driven by the Na+ gradient. As a consequence, the transcription factors TFEB/TFE3 are made active in macrophages with distended lysosomes. In addition to their role in lysosomal biogenesis, TFEB/TFE3 activation causes the release of MCP-1/CCL2. In catabolically stressed tissues, defects in efflux of solutes from the endocytic pathway leads to increased monocyte recruitment. Here we propose that macrophages respond to a pressure-sensing pathway on lysosomes to orchestrate lysosomal biogenesis as well as myeloid cell recruitment.
Collapse
Affiliation(s)
- Ruiqi Cai
- Program in Cell Biology and Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ori Scott
- Program in Cell Biology and Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Gang Ye
- Program in Cell Biology and Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Trieu Le
- Program in Cell Biology and Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ekambir Saran
- Program in Cell Biology and Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Whijin Kwon
- Program in Cell Biology and Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Subothan Inpanathan
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada
- Molecular Science Graduate Program, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Blayne A Sayed
- Program in Cell Biology and Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Roberto J Botelho
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada
- Molecular Science Graduate Program, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Amra Saric
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- Program in Neurosciences and Mental Health, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Stefan Uderhardt
- Department of Internal Medicine, Rheumatology and Immunology, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen, Erlangen, Germany
- Exploratory Research Unit, Optical Imaging Centre Erlangen, Friedrich-Alexander University Erlangen, Erlangen, Germany
| | - Spencer A Freeman
- Program in Cell Biology and Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada.
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
8
|
Walkley SU, Molholm S, Jordan B, Marion RW, Wasserstein M. Using team-based precision medicine to advance understanding of rare genetic brain disorders. J Neurodev Disord 2024; 16:10. [PMID: 38491427 PMCID: PMC10941544 DOI: 10.1186/s11689-024-09518-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/07/2024] [Indexed: 03/18/2024] Open
Abstract
We describe a multidisciplinary teamwork approach known as "Operation IDD Gene Team" developed by the Rose F. Kennedy Intellectual and Developmental Disabilities Research Center (RFK IDDRC) at the Albert Einstein College of Medicine. This initiative brings families affected by rare genetic diseases that cause intellectual and developmental disability together with physicians, basic scientists, and their trainees. At team meetings, family members share their child's medical and personal history, physicians describe the broader clinical consequences of the condition, and scientists provide accessible tutorials focused on the fundamental biology of relevant genes. When appropriate, possible treatment approaches are also discussed. The outcomes of team meetings have been overwhelmingly positive, with families not only expressing deep gratitude, but also becoming empowered to establish foundations dedicated to their child's specific condition. Physicians, and in particular the scientists and their trainees, have gained a deeper understanding of challenges faced by affected families, broadening their perspective on how their research can extend beyond the laboratory. Remarkably, research by the scientists following the Gene Team meetings have often included focus on the actual gene variants exhibited by the participating children. As these investigations progress and newly created foundations expand their efforts, national as well as international collaborations are forged. These developments emphasize the importance of rare diseases as windows into previously unexplored molecular and cellular processes, which can offer fresh insights into both normal function as well as more common diseases. Elucidating the mechanisms of and treatments for rare and ultra-rare diseases thus has benefits for all involved-families, physicians, and scientists and their trainees, as well as the broader medical community. While the RFK IDDRC's Operation IDD Gene Team program has focused on intellectual disabilities affecting children, we believe it has the potential to be applied to rare genetic diseases impacting individuals of any age and encompassing a wide variety of developmental disorders affecting multiple organ systems.
Collapse
Affiliation(s)
- Steven U Walkley
- Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
- Department of Neuroscience, Albert Einstein College of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| | - Sophie Molholm
- Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Neuroscience, Albert Einstein College of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Pediatrics, Albert Einstein College of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Bryen Jordan
- Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Neuroscience, Albert Einstein College of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Robert W Marion
- Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Pediatrics, Albert Einstein College of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Melissa Wasserstein
- Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Pediatrics, Albert Einstein College of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| |
Collapse
|
9
|
Mura E, Parazzini C, Tonduti D. Rare forms of hypomyelination and delayed myelination. HANDBOOK OF CLINICAL NEUROLOGY 2024; 204:225-252. [PMID: 39322381 DOI: 10.1016/b978-0-323-99209-1.00002-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Hypomyelination is defined by the evidence of an unchanged pattern of deficient myelination on two MRIs performed at least 6 months apart in a child older than 1 year. When the temporal criteria are not fulfilled, and the follow-up MRI shows a progression of the myelination even if still not adequate for age, hypomyelination is excluded and the pattern is instead consistent with delayed myelination. This can be mild and nonspecific in some cases, while in other cases there is a severe delay that in the first disease stages could be difficult to differentiate from hypomyelination. In hypomyelinating leukodystrophies, hypomyelination is due to a primary impairment of myelin deposition, such as in Pelizaeus Merzabcher disease. Conversely, myelin lack is secondary, often to primary neuronal disorders, in delayed myelination and some condition with hypomyelination. Overall, the group of inherited white matter disorders with abnormal myelination has expanded significantly during the past 20 years. Many of these disorders have only recently been described, for many of them only a few patients have been reported and this contributes to make challenging the diagnostic process and the interpretation of Next Generation Sequencing results. In this chapter, we review the clinical and radiologic features of rare and lesser known forms of hypomyelination and delayed myelination not mentioned in other chapters of this handbook.
Collapse
Affiliation(s)
- Eleonora Mura
- Unit of Pediatric Neurology, Department of Biomedical and Clinical Sciences, V. Buzzi Children's Hospital, Università degli Studi di Milano, Milan, Italy; C.O.A.L.A (Center for Diagnosis and Treatment of Leukodystrophies), V. Buzzi Children's Hospital, Università degli Studi di Milano, Milan, Italy
| | - Cecilia Parazzini
- C.O.A.L.A (Center for Diagnosis and Treatment of Leukodystrophies), V. Buzzi Children's Hospital, Università degli Studi di Milano, Milan, Italy; Pediatric Radiology and Neuroradiology Department, V. Buzzi Children's Hospital, Milan, Italy
| | - Davide Tonduti
- Unit of Pediatric Neurology, Department of Biomedical and Clinical Sciences, V. Buzzi Children's Hospital, Università degli Studi di Milano, Milan, Italy; C.O.A.L.A (Center for Diagnosis and Treatment of Leukodystrophies), V. Buzzi Children's Hospital, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
10
|
Harb JF, Christensen CL, Kan SH, Rha AK, Andrade-Heckman P, Pollard L, Steet R, Huang JY, Wang RY. Base editing corrects the common Salla disease SLC17A5 c.115C>T variant. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102022. [PMID: 37727271 PMCID: PMC10506058 DOI: 10.1016/j.omtn.2023.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 08/23/2023] [Indexed: 09/21/2023]
Abstract
Free sialic acid storage disorders (FSASDs) result from pathogenic variations in the SLC17A5 gene, which encodes the lysosomal transmembrane protein sialin. Loss or deficiency of sialin impairs FSA transport out of the lysosome, leading to cellular dysfunction and neurological impairment, with the most severe form of FSASD resulting in death during early childhood. There are currently no therapies for FSASDs. Here, we evaluated the efficacy of CRISPR-Cas9-mediated homology directed repair (HDR) and adenine base editing (ABE) targeting the founder variant, SLC17A5 c.115C>T (p.Arg39Cys) in human dermal fibroblasts. We observed minimal correction of the pathogenic variant in HDR samples with a high frequency of undesired insertions/deletions (indels) and significant levels of correction for ABE-treated samples with no detectable indels, supporting previous work showing that CRISPR-Cas9-mediated ABE outperforms HDR. Furthermore, ABE treatment of either homozygous or compound heterozygous SLC17A5 c.115C>T human dermal fibroblasts demonstrated significant FSA reduction, supporting amelioration of disease pathology. Translation of this ABE strategy to mouse embryonic fibroblasts harboring the Slc17a5 c.115C>T variant in homozygosity recapitulated these results. Our study demonstrates the feasibility of base editing as a therapeutic approach for the FSASD variant SLC17A5 c.115C>T and highlights the usefulness of base editing in monogenic diseases where transmembrane protein function is impaired.
Collapse
Affiliation(s)
- Jerry F Harb
- CHOC Children's Research Institute, Orange, CA 92868, USA
| | | | - Shih-Hsin Kan
- CHOC Children's Research Institute, Orange, CA 92868, USA
| | | | | | | | | | | | - Raymond Y Wang
- Division of Metabolic Disorders, Children's Hospital of Orange County Specialists, Orange, CA 92868, USA
- Department of Pediatrics, University of California-Irvine School of Medicine, Irvine, CA 92697, USA
| |
Collapse
|
11
|
Chapleau A, Mirchi A, Tran LT, Poulin C, Bernard G. Longitudinal Characterization of the Clinical Course of Intermediate-Severe Salla Disease. Pediatr Neurol 2023; 148:133-137. [PMID: 37713976 DOI: 10.1016/j.pediatrneurol.2023.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 06/21/2023] [Accepted: 08/13/2023] [Indexed: 09/17/2023]
Abstract
BACKGROUND Biallelic pathogenic variants in SLC17A5 cause three forms of free sialic acid storage disease categorized based on severity from least to most severe: Salla disease, intermediate-severe Salla disease, and infantile free sialic acid storage disease. Intermediate-severe Salla disease is the most recently described form. Here, we report a longitudinal characterization of intermediate-severe Salla disease progression in two sisters carrying the following biallelic variants in SLC17A5: c.406A>G (p.Lys136Glu) and c.819+1G>A. METHODS A retrospective review of medical records was performed. A developmental questionnaire was completed to obtain further clinical information. For functional characterization of the predicted splice site variant, RNA was extracted from patient blood samples and sequenced. RESULTS Disease onset occurred within the first six months of life in both patients. Early childhood development was delayed with achievement of some milestones followed by a developmental plateau in late childhood. After this, both patients began a slow and progressive neurological regression in adolescence. Functional studies confirmed the pathogenicity of the c.819+1G>A variant, resulting in a frameshift and deletion of exon 6. CONCLUSIONS We present a detailed study describing the clinical course of intermediate-severe Salla disease with over 15 to 20 years of evolution and demonstrate the pathogenicity of the c.819+1G>A splice site variant.
Collapse
Affiliation(s)
- Alexandra Chapleau
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montréal, Canada; Department of Neurology and Neurosurgery, McGill University, Montréal, Canada
| | - Amytice Mirchi
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montréal, Canada; Department of Neurology and Neurosurgery, McGill University, Montréal, Canada; Department of Pediatrics, McGill University, Montréal, Canada
| | - Luan T Tran
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montréal, Canada; Department of Neurology and Neurosurgery, McGill University, Montréal, Canada
| | - Chantal Poulin
- Department of Neurology and Neurosurgery, McGill University, Montréal, Canada; Department of Pediatrics, McGill University, Montréal, Canada
| | - Geneviève Bernard
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montréal, Canada; Department of Neurology and Neurosurgery, McGill University, Montréal, Canada; Department of Pediatrics, McGill University, Montréal, Canada; Department of Human Genetics, McGill University, Montréal, Canada; Division of Medical Genetics, Department of Specialized Medicine, McGill University Health Centre, Montréal, Canada.
| |
Collapse
|
12
|
Aulanko I, Rahikkala E, Moilanen J. Psychiatric symptoms in Salla disease. Eur Child Adolesc Psychiatry 2023; 32:2043-2047. [PMID: 35796883 PMCID: PMC10533638 DOI: 10.1007/s00787-022-02031-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 06/20/2022] [Indexed: 11/03/2022]
Abstract
Salla disease (SD) is a rare lysosomal storage disorder characterised by intellectual disability ataxia, athetosis, nystagmus, and central nervous system demyelination. Although the neurological spectrum of SD's clinical phenotype is well defined, psychotic symptoms in SD remain unreported. We reviewed the presence of psychiatric symptoms in patients diagnosed with SD. Medical records of all SD patients at Oulu University Hospital during the years 1982-2015 were systematically reviewed to evaluate the presence of psychiatric symptoms. Psychiatric symptoms were frequently associated with SD (10/24, 42%), and two patients were described as developing psychosis as adolescents. We reported their clinical characteristics in detail and assessed the prevalence of psychiatric symptoms in a cohort of 24 patients. Other psychiatric factors associated with SD were sleeping disorders (8/24, 32%), aggressive behaviour disorders or restlessness (6/24, 25%), and off-label antipsychotic medication (4/24, 17%). This report expands the knowledge of the phenotypic spectrum of SD and demonstrates the importance of recognising the possibility of psychiatric symptoms, including psychosis, in persons with SD.
Collapse
Affiliation(s)
- Ida Aulanko
- PEDEGO Research Unit, University of Oulu, Oulu, Finland.
- Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland.
- Doctoral Programme in Clinical Research, University of Helsinki, Helsinki, Finland.
- Department of Clinical Genetics, Oulu University Hospital, OYS, P.O. Box 23, 90029, Oulu, Finland.
| | - Elisa Rahikkala
- PEDEGO Research Unit, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
- Institute of Biomedicine, University of Turku, Turku, Finland
- Department of Clinical Genetics, Oulu University Hospital, OYS, P.O. Box 23, 90029, Oulu, Finland
| | - Jukka Moilanen
- PEDEGO Research Unit, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
- Department of Clinical Genetics, Oulu University Hospital, OYS, P.O. Box 23, 90029, Oulu, Finland
| |
Collapse
|
13
|
Mao WY, He Y, Zhang L, He QZ, Sun LM, Zhang R. [Free sialic acid storage disorders with fetal hydrops in a neonate]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2023; 25:546-550. [PMID: 37272184 DOI: 10.7499/j.issn.1008-8830.2303041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A boy, aged 3 hours, was admitted due to a prenatal diagnosis of fetal hydrops at 3 hours after resuscitation for birth asphyxia. Prenatal examination at 5 months of gestation showed massive ascites in the fetus, and after birth, the boy had the manifestations of systemic hydroderma, massive ascites, coarse face, and hepatomegaly. Genetic testing revealed heterozygous mutations in the SLC17A5 gene, and there was a significant increase in urinary free sialic acid. Placental pathology showed extensive vacuolization in villous stromal cells, Hofbauer cells, cytotrophoblast cells, and syncytiotrophoblast cells in human placental chorionic villi. The boy was finally diagnosed with free sialic acid storage disorders (FSASDs). This is the first case of FSASDs with the initial symptom of fetal hydrops reported in China. The possibility of FSASDs should be considered for cases with non-immune hydrops fetalis, and examinations such as placental pathology and urinary free sialic acid may help with early diagnosis and clinical decision making.
Collapse
Affiliation(s)
- Wei-Ying Mao
- Department of Neonatology, Children's Hospital of Fudan University/National Children's Medical Center, Shanghai 201102, China
| | - Yue He
- Department of Neonatology, Children's Hospital of Fudan University/National Children's Medical Center, Shanghai 201102, China
| | - Lan Zhang
- Department of Neonatology, Children's Hospital of Fudan University/National Children's Medical Center, Shanghai 201102, China
| | | | | | - Rong Zhang
- Department of Neonatology, Children's Hospital of Fudan University/National Children's Medical Center, Shanghai 201102, China
| |
Collapse
|
14
|
Yousefzadeh N, Jeddi S, Zarkesh M, Kashfi K, Ghasemi A. Altered sialin mRNA gene expression in type 2 diabetic male Wistar rats: implications for nitric oxide deficiency. Sci Rep 2023; 13:4013. [PMID: 36899088 PMCID: PMC10006425 DOI: 10.1038/s41598-023-31240-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Nitrate therapy has been suggested to boost nitric oxide (NO) levels in type 2 diabetes (T2D); however, little is known about nitrate transport across the membranes. This study aimed to assess changes in the mRNA expression of sialin, as a nitrate transporter, in the main tissues of rats with T2D. Rats were divided into two groups (n = 6/group): Control and T2D. A high-fat diet combined with a low dose of streptozotocin (STZ, 30 mg/kg) was used to induce T2D. At month 6, samples from the main tissues of rats were used to measure the mRNA expression of sialin and levels of NO metabolites. Rats with T2D had lower nitrate levels in the soleus muscle (66%), lung (48%), kidney (43%), aorta (30%), adrenal gland (58%), epididymal adipose tissue (eAT) (61%), and heart (37%) and had lower nitrite levels in the pancreas (47%), kidney (42%), aorta (33%), liver (28%), eAT (34%), and heart (32%). The order of sialin gene expression in control rats was: soleus muscle > kidney > pancreas > lung > liver > adrenal gland > brain > eAT > intestine > stomach > aorta > heart. Compared to controls, rats with T2D had higher sialin mRNA expressions in the stomach (2.1), eAT (2.0), adrenal gland (1.7), liver (8.9), and soleus muscle (3.4), and lower sialin expression in the intestine (0.56), pancreas (0.42), and kidney (0.44), all P values < 0.05. These findings indicate altered sialin mRNA expression in the main tissues of male T2D rats and may have implications for future NO-based treatment of T2D.
Collapse
Affiliation(s)
- Nasibeh Yousefzadeh
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, No. 24, Arabi Street, Daneshjoo Blvd, Velenjak, P.O. Box 19395-4763, Tehran, Iran
| | - Sajad Jeddi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, No. 24, Arabi Street, Daneshjoo Blvd, Velenjak, P.O. Box 19395-4763, Tehran, Iran
| | - Maryam Zarkesh
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Khosrow Kashfi
- Department of Molecular, Cellular, and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, USA
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, No. 24, Arabi Street, Daneshjoo Blvd, Velenjak, P.O. Box 19395-4763, Tehran, Iran.
| |
Collapse
|
15
|
Sosicka P, Ng BG, Pepi LE, Shajahan A, Wong M, Scott DA, Matsumoto K, Xia ZJ, Lebrilla CB, Haltiwanger RS, Azadi P, Freeze HH. Origin of cytoplasmic GDP-fucose determines its contribution to glycosylation reactions. J Cell Biol 2022; 221:e202205038. [PMID: 36053214 PMCID: PMC9441714 DOI: 10.1083/jcb.202205038] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/14/2022] [Accepted: 08/16/2022] [Indexed: 11/22/2022] Open
Abstract
Biosynthesis of macromolecules requires precursors such as sugars or amino acids, originating from exogenous/dietary sources, reutilization/salvage of degraded molecules, or de novo synthesis. Since these sources are assumed to contribute to one homogenous pool, their individual contributions are often overlooked. Protein glycosylation uses monosaccharides from all the above sources to produce nucleotide sugars required to assemble hundreds of distinct glycans. Here, we demonstrate that cells identify the origin/heritage of the monosaccharide, fucose, for glycosylation. We measured the contribution of GDP-fucose from each of these sources for glycan synthesis and found that different fucosyltransferases, individual glycoproteins, and linkage-specific fucose residues identify and select different GDP-fucose pools dependent on their heritage. This supports the hypothesis that GDP-fucose exists in multiple, distinct pools, not as a single homogenous pool. The selection is tightly regulated since the overall pool size remains constant. We present novel perspectives on monosaccharide metabolism, which may have a general applicability.
Collapse
Affiliation(s)
- Paulina Sosicka
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Bobby G. Ng
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Lauren E. Pepi
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia
| | - Asif Shajahan
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia
| | - Maurice Wong
- Department of Chemistry, University of California Davis, Davis, CA
| | - David A. Scott
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Kenjiroo Matsumoto
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia
| | - Zhi-Jie Xia
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | | | | | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia
| | - Hudson H. Freeze
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| |
Collapse
|
16
|
Donoghue SE, Heath O, Pitt J, Hong KM, Fuller M, Smith J. Free urinary sialic acid levels may be elevated in patients with pneumococcal sepsis. Clin Chem Lab Med 2022; 60:1855-1858. [PMID: 36000484 DOI: 10.1515/cclm-2022-0473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/16/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Urine free sialic acid (UFSA) is an important diagnostic biomarker for sialuria (GNE variants) and infantile sialic acid storage disease/Salla disease (SLC17A5 variants). Traditionally, UFSA has been measured using specific single-plex methodology in relatively small cohorts of patients with clinical symptoms suggestive of these disorders. The use of multiplex tandem mass spectrometry urine screening (UMSMS) has meant that UFSA can be measured semi-quantitatively in a much larger cohort of patients being investigated for suspected metabolic disorders. We hypothesised that the neuraminidase of Streptococcus pneumoniae may release free sialic acid from endogenous sialylated glycoconjugates and result in increased UFSA levels. METHODS We conducted a retrospective review of clinical records of patients who were identified as having S. pneumoniae infection and who also had UMSMS at the time of their acute infection. RESULTS We identified three cases of increased UFSA detected by UMSMS screening that were secondary to S. pneumoniae sepsis. Additional testing ruled out genetic causes of increased UFSA in the first patient. All three patients had overwhelming sepsis with multiorgan dysfunction which was fatal. Glycosylation abnormalities consistent with the removal of sialic acid were demonstrated in serum transferrin patterns in one patient. CONCLUSIONS We have demonstrated in a retrospective cohort that elevation of UFSA levels have been observed in cases of S. pneumoniae sepsis. This expands our knowledge of UFSA as a biomarker in human disease. This research demonstrates that infection with organisms with neuraminidase activity should be considered in patients with unexplained increases in UFSA.
Collapse
Affiliation(s)
- Sarah E Donoghue
- Department of Metabolic Medicine, The Royal Children's Hospital, Melbourne, VIC, Australia.,Department of Biochemical Genetics, Victorian Clinical Genetics Service, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Oliver Heath
- Department of Metabolic Medicine, The Royal Children's Hospital, Melbourne, VIC, Australia
| | - James Pitt
- Department of Biochemical Genetics, Victorian Clinical Genetics Service, Murdoch Children's Research Institute, Melbourne, VIC, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Kai Mun Hong
- Department of Biochemical Genetics, Victorian Clinical Genetics Service, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Maria Fuller
- Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Joel Smith
- Laboratory Services, Royal Children's Hospital, Melbourne, VIC, Australia.,Department of Pathology, Royal Melbourne Hospital, Melbourne, VIC, Australia
| |
Collapse
|
17
|
Cheng C, Hu ZX, He M, Liu L, Voglmeir J. Recombinant human N-acetylneuraminate lyase as a tool to study clinically relevant mutant variants. Carbohydr Res 2022; 516:108561. [DOI: 10.1016/j.carres.2022.108561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 04/13/2022] [Accepted: 04/17/2022] [Indexed: 11/27/2022]
|
18
|
van Gool R, Tucker-Bartley A, Yang E, Todd N, Guenther F, Goodlett B, Al-Hertani W, Bodamer OA, Upadhyay J. Targeting neurological abnormalities in lysosomal storage diseases. Trends Pharmacol Sci 2021; 43:495-509. [PMID: 34844772 DOI: 10.1016/j.tips.2021.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 01/07/2023]
Abstract
Central nervous system (CNS) abnormalities and corresponding neurological and psychiatric symptoms are frequently observed in lysosomal storage disorders (LSDs). The genetic background of individual LSDs is indeed unique to each illness. However, resulting defective lysosomal function within the CNS can transition normal cellular processes (i.e., autophagy) into aberrant mechanisms, facilitating overlapping downstream consequences including neurocircuitry dysfunction, neurodegeneration as well as sensory, motor, cognitive, and psychological symptoms. Here, the neurological and biobehavioral phenotypes of major classes of LSDs are discussed alongside therapeutic strategies in development that aim to tackle neuropathology among other disease elements. Finally, focused ultrasound blood-brain barrier opening is proposed to enhance therapeutic delivery thereby overcoming the key hurdle of central distribution of disease modifying therapies in LSDs.
Collapse
Affiliation(s)
- Raquel van Gool
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Faculty of Psychology and Neuroscience, Section Neuropsychology & Psychopharmacology, Maastricht University, Maastricht, The Netherlands
| | - Anthony Tucker-Bartley
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Massachusetts General Hospital, Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Boston, MA, USA
| | - Edward Yang
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nicholas Todd
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Frank Guenther
- Department of Speech, Language and Hearing Sciences, Sargent College of Health and Rehabilitation Sciences, Boston University, Boston, MA, USA
| | - Benjamin Goodlett
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Walla Al-Hertani
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Olaf A Bodamer
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jaymin Upadhyay
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA.
| |
Collapse
|
19
|
Zárybnický T, Heikkinen A, Kangas SM, Karikoski M, Martínez-Nieto GA, Salo MH, Uusimaa J, Vuolteenaho R, Hinttala R, Sipilä P, Kuure S. Modeling Rare Human Disorders in Mice: The Finnish Disease Heritage. Cells 2021; 10:cells10113158. [PMID: 34831381 PMCID: PMC8621025 DOI: 10.3390/cells10113158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 12/31/2022] Open
Abstract
The modification of genes in animal models has evidently and comprehensively improved our knowledge on proteins and signaling pathways in human physiology and pathology. In this review, we discuss almost 40 monogenic rare diseases that are enriched in the Finnish population and defined as the Finnish disease heritage (FDH). We will highlight how gene-modified mouse models have greatly facilitated the understanding of the pathological manifestations of these diseases and how some of the diseases still lack proper models. We urge the establishment of subsequent international consortiums to cooperatively plan and carry out future human disease modeling strategies. Detailed information on disease mechanisms brings along broader understanding of the molecular pathways they act along both parallel and transverse to the proteins affected in rare diseases, therefore also aiding understanding of common disease pathologies.
Collapse
Affiliation(s)
- Tomáš Zárybnický
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, P.O. Box 63, 00014 Helsinki, Finland;
| | - Anne Heikkinen
- Biocenter Oulu, University of Oulu, P.O. Box 5000, 90014 Oulu, Finland; (A.H.); (S.M.K.); (M.H.S.); (R.V.)
- Oulu Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. Box 8000, 90014 Oulu, Finland
| | - Salla M. Kangas
- Biocenter Oulu, University of Oulu, P.O. Box 5000, 90014 Oulu, Finland; (A.H.); (S.M.K.); (M.H.S.); (R.V.)
- PEDEGO Research Unit, University of Oulu, P.O. Box 8000, 90014 Oulu, Finland;
- Medical Research Center, Oulu University Hospital, University of Oulu, P.O. Box 5000, 90014 Oulu, Finland
| | - Marika Karikoski
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, 20520 Turku, Finland; (M.K.); (G.A.M.-N.)
| | - Guillermo Antonio Martínez-Nieto
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, 20520 Turku, Finland; (M.K.); (G.A.M.-N.)
- Turku Center for Disease Modelling (TCDM), Institute of Biomedicine, University of Turku, 20520 Turku, Finland
| | - Miia H. Salo
- Biocenter Oulu, University of Oulu, P.O. Box 5000, 90014 Oulu, Finland; (A.H.); (S.M.K.); (M.H.S.); (R.V.)
- PEDEGO Research Unit, University of Oulu, P.O. Box 8000, 90014 Oulu, Finland;
- Medical Research Center, Oulu University Hospital, University of Oulu, P.O. Box 5000, 90014 Oulu, Finland
| | - Johanna Uusimaa
- PEDEGO Research Unit, University of Oulu, P.O. Box 8000, 90014 Oulu, Finland;
- Medical Research Center, Oulu University Hospital, University of Oulu, P.O. Box 5000, 90014 Oulu, Finland
- Clinic for Children and Adolescents, Division of Pediatric Neurology, Oulu University Hospital, P.O. Box 20, 90029 Oulu, Finland
| | - Reetta Vuolteenaho
- Biocenter Oulu, University of Oulu, P.O. Box 5000, 90014 Oulu, Finland; (A.H.); (S.M.K.); (M.H.S.); (R.V.)
| | - Reetta Hinttala
- Biocenter Oulu, University of Oulu, P.O. Box 5000, 90014 Oulu, Finland; (A.H.); (S.M.K.); (M.H.S.); (R.V.)
- PEDEGO Research Unit, University of Oulu, P.O. Box 8000, 90014 Oulu, Finland;
- Medical Research Center, Oulu University Hospital, University of Oulu, P.O. Box 5000, 90014 Oulu, Finland
- Correspondence: (R.H.); (P.S.); (S.K.)
| | - Petra Sipilä
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, 20520 Turku, Finland; (M.K.); (G.A.M.-N.)
- Turku Center for Disease Modelling (TCDM), Institute of Biomedicine, University of Turku, 20520 Turku, Finland
- Correspondence: (R.H.); (P.S.); (S.K.)
| | - Satu Kuure
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, P.O. Box 63, 00014 Helsinki, Finland;
- GM-Unit, Laboratory Animal Center, Helsinki Institute of Life Science, University of Helsinki, 00790 Helsinki, Finland
- Correspondence: (R.H.); (P.S.); (S.K.)
| |
Collapse
|
20
|
Hasnain A, Burnett S, Agatep R, Spriggs E, Chodirker B, Mhanni AAA. Prenatal hydrops fetalis associated with infantile free sialic acid storage disease due to a novel homozygous deletion in the SLC17A5 gene. Cold Spring Harb Mol Case Stud 2021; 7:mcs.a006106. [PMID: 34667062 PMCID: PMC8559617 DOI: 10.1101/mcs.a006106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 08/19/2021] [Indexed: 11/26/2022] Open
Abstract
Nonimmune hydrops fetalis, the excessive accumulation of serous fluid in the subcutaneous tissues and serous cavities of the fetus, has many possible etiologies, providing a diagnostic challenge for the physician. Lysosomal storage diseases have been reported in up to 5%–16% of nonimmune hydrops fetalis pregnancies. Infantile free sialic acid storage disease (ISSD) (OMIM #269920) is a severe form of autosomal recessive sialic acid storage disease. ISSD is caused by mutations in SLC17A5 (OMIM #604322), which encodes sialin, a lysosomal-membrane sialic acid transporter. We describe a case of fetal hydrops due to a novel homozygous deletion in the SLC17A5 gene. Prenatal single-nucleotide polymorphism (SNP) array analysis was performed on amniocytes after the discovery of fetal hydrops at 24 wk gestation revealing no copy-number variants. The SNP array, however, reported several regions of homozygosity (ROHs) including one on Chromosome 6 encompassing the SLC17A5 gene. High levels of urine sialic acid in the newborn were detected. SLC17A5 gene sequencing was initiated with no sequence variants identified; however, the assay failed to amplify exons 8 and 9, prompting an exon-level copy-number analysis that revealed a novel homozygous deletion of exons 8 and 9, inherited from heterozygous carrier parents. ISSD should be considered in the workup of patients with nonimmune hydrops fetalis, and analysis for SLC17A5 deletions should be carried out when variants are not detected by gene sequencing.
Collapse
Affiliation(s)
- Afia Hasnain
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba R3A 1R9, Canada
| | - Sherri Burnett
- Department of Pediatrics and Child Health, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba R3A 1R9, Canada
| | - Ronald Agatep
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba R3A 1R9, Canada
| | - Elizabeth Spriggs
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba R3A 1R9, Canada.,Department of Pediatrics and Child Health, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba R3A 1R9, Canada
| | - Bernard Chodirker
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba R3A 1R9, Canada.,Department of Pediatrics and Child Health, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba R3A 1R9, Canada
| | - Aizeddin Aziz A Mhanni
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba R3A 1R9, Canada.,Department of Pediatrics and Child Health, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba R3A 1R9, Canada
| |
Collapse
|
21
|
Huizing M, Hackbarth ME, Adams DR, Wasserstein M, Patterson MC, Walkley SU, Gahl WA. Free sialic acid storage disorder: Progress and promise. Neurosci Lett 2021; 755:135896. [PMID: 33862140 DOI: 10.1016/j.neulet.2021.135896] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 12/27/2022]
Abstract
Lysosomal free sialic acid storage disorder (FSASD) is an extremely rare, autosomal recessive, neurodegenerative, multisystemic disorder caused by defects in the lysosomal sialic acid membrane exporter SLC17A5 (sialin). SLC17A5 defects cause free sialic acid and some other acidic hexoses to accumulate in lysosomes, resulting in enlarged lysosomes in some cell types and 10-100-fold increased urinary excretion of free sialic acid. Clinical features of FSASD include coarse facial features, organomegaly, and progressive neurodegenerative symptoms with cognitive impairment, cerebellar ataxia and muscular hypotonia. Central hypomyelination with cerebellar atrophy and thinning of the corpus callosum are also prominent disease features. Around 200 FSASD cases are reported worldwide, with the clinical spectrum ranging from a severe infantile onset form, often lethal in early childhood, to a mild, less severe form with subjects living into adulthood, also called Salla disease. The pathobiology of FSASD remains poorly understood and FSASD is likely underdiagnosed. Known patients have experienced a diagnostic delay due to the rarity of the disorder, absence of routine urine sialic acid testing, and non-specific clinical symptoms, including developmental delay, ataxia and infantile hypomyelination. There is no approved therapy for FSASD. We initiated a multidisciplinary collaborative effort involving worldwide academic clinical and scientific FSASD experts, the National Institutes of Health (USA), and the FSASD patient advocacy group (Salla Treatment and Research [S.T.A.R.] Foundation) to overcome the scientific, clinical and financial challenges facing the development of new treatments for FSASD. We aim to collect data that incentivize industry to further develop, obtain approval for, and commercialize FSASD treatments. This review summarizes current aspects of FSASD diagnosis, prevalence, etiology, and disease models, as well as challenges on the path to therapeutic approaches for FSASD.
Collapse
Affiliation(s)
- Marjan Huizing
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, United States.
| | - Mary E Hackbarth
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, United States
| | - David R Adams
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Melissa Wasserstein
- Departments of Pediatrics and Genetics, The Children's Hospital at Montefiore, Bronx, NY, 10467, United States; Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY, 10461, United States
| | - Marc C Patterson
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, United States
| | - Steven U Walkley
- Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY, 10461, United States
| | - William A Gahl
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, United States
| | | |
Collapse
|
22
|
Bhat S, El-Kasaby A, Freissmuth M, Sucic S. Functional and Biochemical Consequences of Disease Variants in Neurotransmitter Transporters: A Special Emphasis on Folding and Trafficking Deficits. Pharmacol Ther 2020; 222:107785. [PMID: 33310157 PMCID: PMC7612411 DOI: 10.1016/j.pharmthera.2020.107785] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/02/2020] [Indexed: 01/30/2023]
Abstract
Neurotransmitters, such as γ-aminobutyric acid, glutamate, acetyl choline, glycine and the monoamines, facilitate the crosstalk within the central nervous system. The designated neurotransmitter transporters (NTTs) both release and take up neurotransmitters to and from the synaptic cleft. NTT dysfunction can lead to severe pathophysiological consequences, e.g. epilepsy, intellectual disability, or Parkinson’s disease. Genetic point mutations in NTTs have recently been associated with the onset of various neurological disorders. Some of these mutations trigger folding defects in the NTT proteins. Correct folding is a prerequisite for the export of NTTs from the endoplasmic reticulum (ER) and the subsequent trafficking to their pertinent site of action, typically at the plasma membrane. Recent studies have uncovered some of the key features in the molecular machinery responsible for transporter protein folding, e.g., the role of heat shock proteins in fine-tuning the ER quality control mechanisms in cells. The therapeutic significance of understanding these events is apparent from the rising number of reports, which directly link different pathological conditions to NTT misfolding. For instance, folding-deficient variants of the human transporters for dopamine or GABA lead to infantile parkinsonism/dystonia and epilepsy, respectively. From a therapeutic point of view, some folding-deficient NTTs are amenable to functional rescue by small molecules, known as chemical and pharmacological chaperones.
Collapse
Affiliation(s)
- Shreyas Bhat
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Ali El-Kasaby
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Michael Freissmuth
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Sonja Sucic
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria.
| |
Collapse
|
23
|
Huizing M, Gahl WA. Inherited disorders of lysosomal membrane transporters. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2020; 1862:183336. [PMID: 32389669 PMCID: PMC7508925 DOI: 10.1016/j.bbamem.2020.183336] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/01/2020] [Accepted: 04/28/2020] [Indexed: 02/07/2023]
Abstract
Disorders caused by defects in lysosomal membrane transporters form a distinct subgroup of lysosomal storage disorders (LSDs). To date, defects in only 10 lysosomal membrane transporters have been associated with inherited disorders. The clinical presentations of these diseases resemble the phenotypes of other LSDs; they are heterogeneous and often present in children with neurodegenerative manifestations. However, for pathomechanistic and therapeutic studies, lysosomal membrane transport defects should be distinguished from LSDs caused by defective hydrolytic enzymes. The involved proteins differ in function, localization, and lysosomal targeting, and the diseases themselves differ in their stored material and therapeutic approaches. We provide an overview of the small group of disorders of lysosomal membrane transporters, emphasizing discovery, pathomechanism, clinical features, diagnostic methods and therapeutic aspects. We discuss common aspects of lysosomal membrane transporter defects that can provide the basis for preclinical research into these disorders.
Collapse
Affiliation(s)
- Marjan Huizing
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - William A Gahl
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
24
|
Tamargo-Gómez I, Fernández ÁF, Mariño G. Pathogenic Single Nucleotide Polymorphisms on Autophagy-Related Genes. Int J Mol Sci 2020; 21:ijms21218196. [PMID: 33147747 PMCID: PMC7672651 DOI: 10.3390/ijms21218196] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 02/06/2023] Open
Abstract
In recent years, the study of single nucleotide polymorphisms (SNPs) has gained increasing importance in biomedical research, as they can either be at the molecular origin of a determined disorder or directly affect the efficiency of a given treatment. In this regard, sequence variations in genes involved in pro-survival cellular pathways are commonly associated with pathologies, as the alteration of these routes compromises cellular homeostasis. This is the case of autophagy, an evolutionarily conserved pathway that counteracts extracellular and intracellular stressors by mediating the turnover of cytosolic components through lysosomal degradation. Accordingly, autophagy dysregulation has been extensively described in a wide range of human pathologies, including cancer, neurodegeneration, or inflammatory alterations. Thus, it is not surprising that pathogenic gene variants in genes encoding crucial effectors of the autophagosome/lysosome axis are increasingly being identified. In this review, we present a comprehensive list of clinically relevant SNPs in autophagy-related genes, highlighting the scope and relevance of autophagy alterations in human disease.
Collapse
Affiliation(s)
- Isaac Tamargo-Gómez
- Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain;
- Departamento de Biología Funcional, Universidad de Oviedo, 33011 Oviedo, Spain
| | - Álvaro F. Fernández
- Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain;
- Departamento de Biología Funcional, Universidad de Oviedo, 33011 Oviedo, Spain
- Correspondence: (Á.F.F.); (G.M.); Tel.: +34-985652416 (G.M.)
| | - Guillermo Mariño
- Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain;
- Departamento de Biología Funcional, Universidad de Oviedo, 33011 Oviedo, Spain
- Correspondence: (Á.F.F.); (G.M.); Tel.: +34-985652416 (G.M.)
| |
Collapse
|
25
|
Abstract
In this review, we focus on the metabolism of mammalian glycan-associated monosaccharides, where the vast majority of our current knowledge comes from research done during the 1960s and 1970s. Most monosaccharides enter the cell using distinct, often tissue specific transporters from the SLC2A family. If not catabolized, these monosaccharides can be activated to donor nucleotide sugars and used for glycan synthesis. Apart from exogenous and dietary sources, all monosaccharides and their associated nucleotide sugars can be synthesized de novo, using mostly glucose to produce all nine nucleotide sugars present in human cells. Today, monosaccharides are used as treatment options for a small number of rare genetic disorders and even some common conditions. Here, we cover therapeutic applications of these sugars and highlight biochemical gaps that must be revisited as we go forward.
Collapse
Affiliation(s)
- Paulina Sosicka
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Bobby G. Ng
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Hudson H. Freeze
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| |
Collapse
|
26
|
Dubois L, Pietrancosta N, Cabaye A, Fanget I, Debacker C, Gilormini PA, Dansette PM, Dairou J, Biot C, Froissart R, Goupil-Lamy A, Bertrand HO, Acher FC, McCort-Tranchepain I, Gasnier B, Anne C. Amino Acids Bearing Aromatic or Heteroaromatic Substituents as a New Class of Ligands for the Lysosomal Sialic Acid Transporter Sialin. J Med Chem 2020; 63:8231-8249. [PMID: 32608236 DOI: 10.1021/acs.jmedchem.9b02119] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Sialin, encoded by the SLC17A5 gene, is a lysosomal sialic acid transporter defective in Salla disease, a rare inherited leukodystrophy. It also enables metabolic incorporation of exogenous sialic acids, leading to autoantibodies against N-glycolylneuraminic acid in humans. Here, we identified a novel class of human sialin ligands by virtual screening and structure-activity relationship studies. The ligand scaffold is characterized by an amino acid backbone with a free carboxylate, an N-linked aromatic or heteroaromatic substituent, and a hydrophobic side chain. The most potent compound, 45 (LSP12-3129), inhibited N-acetylneuraminic acid 1 (Neu5Ac) transport in a non-competitive manner with IC50 ≈ 2.5 μM, a value 400-fold lower than the KM for Neu5Ac. In vitro and molecular docking studies attributed the non-competitive character to selective inhibitor binding to the Neu5Ac site in a cytosol-facing conformation. Moreover, compound 45 rescued the trafficking defect of the pathogenic mutant (R39C) causing Salla disease. This new class of cell-permeant inhibitors provides tools to investigate the physiological roles of sialin and help develop pharmacological chaperones for Salla disease.
Collapse
Affiliation(s)
- Lilian Dubois
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, CNRS, UMR 8601, Université de Paris, F-75006 Paris, France
| | - Nicolas Pietrancosta
- Laboratoire des Biomolécules, LBM, Sorbonne Université, École Normale Supérieure, PSL University, CNRS, F-75005 Paris, France.,Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Sorbonne Université, INSERM, CNRS, F-75005 Paris, France
| | - Alexandre Cabaye
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, CNRS, UMR 8601, Université de Paris, F-75006 Paris, France.,BIOVIA, Dassault Systèmes, F-78140 Velizy-Villacoublay, France
| | - Isabelle Fanget
- SPPIN - Saints-Pères Paris Institute for the Neurosciences, CNRS, Université de Paris, F-75006 Paris, France
| | - Cécile Debacker
- SPPIN - Saints-Pères Paris Institute for the Neurosciences, CNRS, Université de Paris, F-75006 Paris, France
| | - Pierre-André Gilormini
- UMR 8576, UGSF, Unité de Glycobiologie et Fonctionnelle, Université de Lille, CNRS, F-59650 Lille, France
| | - Patrick M Dansette
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, CNRS, UMR 8601, Université de Paris, F-75006 Paris, France
| | - Julien Dairou
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, CNRS, UMR 8601, Université de Paris, F-75006 Paris, France
| | - Christophe Biot
- UMR 8576, UGSF, Unité de Glycobiologie et Fonctionnelle, Université de Lille, CNRS, F-59650 Lille, France
| | - Roseline Froissart
- Service de Biochimie et Biologie Moléculaire Grand Est, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, F-69677 Bron, France
| | | | | | - Francine C Acher
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, CNRS, UMR 8601, Université de Paris, F-75006 Paris, France
| | - Isabelle McCort-Tranchepain
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, CNRS, UMR 8601, Université de Paris, F-75006 Paris, France
| | - Bruno Gasnier
- SPPIN - Saints-Pères Paris Institute for the Neurosciences, CNRS, Université de Paris, F-75006 Paris, France
| | - Christine Anne
- SPPIN - Saints-Pères Paris Institute for the Neurosciences, CNRS, Université de Paris, F-75006 Paris, France
| |
Collapse
|
27
|
Moons SJ, Adema GJ, Derks MT, Boltje TJ, Büll C. Sialic acid glycoengineering using N-acetylmannosamine and sialic acid analogs. Glycobiology 2020; 29:433-445. [PMID: 30913290 DOI: 10.1093/glycob/cwz026] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 03/07/2019] [Accepted: 03/21/2019] [Indexed: 12/16/2022] Open
Abstract
Sialic acids cap the glycans of cell surface glycoproteins and glycolipids. They are involved in a multitude of biological processes and aberrant sialic acid expression is associated with several pathologies. Sialic acids modulate the characteristics and functions of glycoproteins and regulate cell-cell as well as cell-extracellular matrix interactions. Pathogens such as influenza virus use sialic acids to infect host cells and cancer cells exploit sialic acids to escape from the host's immune system. The introduction of unnatural sialic acids with different functionalities into surface glycans enables the study of the broad biological functions of these sugars and presents a therapeutic option to intervene with pathological processes involving sialic acids. Multiple chemically modified sialic acid analogs can be directly utilized by cells for sialoglycan synthesis. Alternatively, analogs of the natural sialic acid precursor sugar N-Acetylmannosamine (ManNAc) can be introduced into the sialic acid biosynthesis pathway resulting in the intracellular conversion into the corresponding sialic acid analog. Both, ManNAc and sialic acid analogs, have been employed successfully for a large variety of glycoengineering applications such as glycan imaging, targeting toxins to tumor cells, inhibiting pathogen binding, or altering immune cell activity. However, there are significant differences between ManNAc and sialic acid analogs with respect to their chemical modification potential and cellular metabolism that should be considered in sialic acid glycoengineering experiments.
Collapse
Affiliation(s)
- Sam J Moons
- Cluster for Molecular Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, Nijmegen, The Netherlands
| | - Gosse J Adema
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 32, Nijmegen, The Netherlands
| | - Max Tgm Derks
- Cluster for Molecular Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, Nijmegen, The Netherlands
| | - Thomas J Boltje
- Cluster for Molecular Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, Nijmegen, The Netherlands
| | - Christian Büll
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 32, Nijmegen, The Netherlands
| |
Collapse
|
28
|
Beaudin M, Matilla-Dueñas A, Soong BW, Pedroso JL, Barsottini OG, Mitoma H, Tsuji S, Schmahmann JD, Manto M, Rouleau GA, Klein C, Dupre N. The Classification of Autosomal Recessive Cerebellar Ataxias: a Consensus Statement from the Society for Research on the Cerebellum and Ataxias Task Force. CEREBELLUM (LONDON, ENGLAND) 2019; 18:1098-1125. [PMID: 31267374 PMCID: PMC6867988 DOI: 10.1007/s12311-019-01052-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
There is currently no accepted classification of autosomal recessive cerebellar ataxias, a group of disorders characterized by important genetic heterogeneity and complex phenotypes. The objective of this task force was to build a consensus on the classification of autosomal recessive ataxias in order to develop a general approach to a patient presenting with ataxia, organize disorders according to clinical presentation, and define this field of research by identifying common pathogenic molecular mechanisms in these disorders. The work of this task force was based on a previously published systematic scoping review of the literature that identified autosomal recessive disorders characterized primarily by cerebellar motor dysfunction and cerebellar degeneration. The task force regrouped 12 international ataxia experts who decided on general orientation and specific issues. We identified 59 disorders that are classified as primary autosomal recessive cerebellar ataxias. For each of these disorders, we present geographical and ethnical specificities along with distinctive clinical and imagery features. These primary recessive ataxias were organized in a clinical and a pathophysiological classification, and we present a general clinical approach to the patient presenting with ataxia. We also identified a list of 48 complex multisystem disorders that are associated with ataxia and should be included in the differential diagnosis of autosomal recessive ataxias. This classification is the result of a consensus among a panel of international experts, and it promotes a unified understanding of autosomal recessive cerebellar disorders for clinicians and researchers.
Collapse
Affiliation(s)
- Marie Beaudin
- Axe Neurosciences, CHU de Québec-Université Laval, Québec, QC, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Antoni Matilla-Dueñas
- Department of Neuroscience, Health Sciences Research Institute Germans Trias i Pujol (IGTP), Universitat Autònoma de Barcelona, Badalona, Barcelona, Spain
| | - Bing-Weng Soong
- Department of Neurology, Shuang Ho Hospital and Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan, Republic of China
- National Yang-Ming University School of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China
| | - Jose Luiz Pedroso
- Ataxia Unit, Department of Neurology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Orlando G Barsottini
- Ataxia Unit, Department of Neurology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Hiroshi Mitoma
- Medical Education Promotion Center, Tokyo Medical University, Tokyo, Japan
| | - Shoji Tsuji
- The University of Tokyo, Tokyo, Japan
- International University of Health and Welfare, Chiba, Japan
| | - Jeremy D Schmahmann
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Mario Manto
- Service de Neurologie, Médiathèque Jean Jacquy, CHU-Charleroi, 6000, Charleroi, Belgium
- Service des Neurosciences, UMons, Mons, Belgium
| | | | | | - Nicolas Dupre
- Axe Neurosciences, CHU de Québec-Université Laval, Québec, QC, Canada.
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada.
| |
Collapse
|
29
|
Leano JB, Batarni S, Eriksen J, Juge N, Pak JE, Kimura-Someya T, Robles-Colmenares Y, Moriyama Y, Stroud RM, Edwards RH. Structures suggest a mechanism for energy coupling by a family of organic anion transporters. PLoS Biol 2019; 17:e3000260. [PMID: 31083648 PMCID: PMC6532931 DOI: 10.1371/journal.pbio.3000260] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 05/23/2019] [Accepted: 04/24/2019] [Indexed: 11/30/2022] Open
Abstract
Members of the solute carrier 17 (SLC17) family use divergent mechanisms to concentrate organic anions. Membrane potential drives uptake of the principal excitatory neurotransmitter glutamate into synaptic vesicles, whereas closely related proteins use proton cotransport to drive efflux from the lysosome. To delineate the divergent features of ionic coupling by the SLC17 family, we determined the structure of Escherichia coli D-galactonate/H+ symporter D-galactonate transporter (DgoT) in 2 states: one open to the cytoplasmic side and the other open to the periplasmic side with substrate bound. The structures suggest a mechanism that couples H+ flux to substrate recognition. A transition in the role of H+ from flux coupling to allostery may confer regulation by trafficking to and from the plasma membrane. The first structures of a family of organic anion transporters reveal an interaction with protons that is conserved from bacterial transporters to the mammalian proteins that transport glutamate into synaptic vesicles.
Collapse
Affiliation(s)
- Jonathan B. Leano
- Department of Biochemistry & Biophysics, University of California San Francisco School of Medicine, San Francisco, California, United States of America
| | - Samir Batarni
- Departments of Neurology and Physiology, University of California San Francisco School of Medicine, San Francisco, California, United States of America
| | - Jacob Eriksen
- Departments of Neurology and Physiology, University of California San Francisco School of Medicine, San Francisco, California, United States of America
| | - Narinobu Juge
- Departments of Neurology and Physiology, University of California San Francisco School of Medicine, San Francisco, California, United States of America
| | - John E. Pak
- Department of Biochemistry & Biophysics, University of California San Francisco School of Medicine, San Francisco, California, United States of America
| | - Tomomi Kimura-Someya
- Departments of Neurology and Physiology, University of California San Francisco School of Medicine, San Francisco, California, United States of America
| | - Yaneth Robles-Colmenares
- Department of Biochemistry & Biophysics, University of California San Francisco School of Medicine, San Francisco, California, United States of America
| | - Yoshinori Moriyama
- Department of Membrane Biochemistry, Advanced Science Research Center, Okayama University, Okayama, Japan
| | - Robert M. Stroud
- Department of Biochemistry & Biophysics, University of California San Francisco School of Medicine, San Francisco, California, United States of America
- * E-mail: (RMS); (RHE)
| | - Robert H. Edwards
- Departments of Neurology and Physiology, University of California San Francisco School of Medicine, San Francisco, California, United States of America
- * E-mail: (RMS); (RHE)
| |
Collapse
|
30
|
Freeman SA, Grinstein S. Resolution of macropinosomes, phagosomes and autolysosomes: Osmotically driven shrinkage enables tubulation and vesiculation. Traffic 2018; 19:965-974. [DOI: 10.1111/tra.12614] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 08/15/2018] [Accepted: 08/16/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Spencer A. Freeman
- Program in Cell Biology; Peter Gilgan Centre for Research and Learning, Hospital for Sick Children; Toronto Ontario Canada
| | - Sergio Grinstein
- Program in Cell Biology; Peter Gilgan Centre for Research and Learning, Hospital for Sick Children; Toronto Ontario Canada
- Keenan Research Centre of the Li Ka Shing Knowledge Institute, St. Michael's Hospital; Toronto Ontario Canada
- Department of Biochemistry; University of Toronto; Toronto Ontario Canada
| |
Collapse
|
31
|
Olszewska DA, Lynch T. Lysosomal Storage Disorders and Parkinson's Disease: New Susceptibility Loci Identified. Mov Disord Clin Pract 2018; 5:404-405. [DOI: 10.1002/mdc3.12625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 03/29/2018] [Accepted: 04/07/2018] [Indexed: 11/08/2022] Open
Affiliation(s)
| | - Tim Lynch
- Dublin Neurological Institute at the Mater Misericordiae University Hospital; Dublin Ireland
| |
Collapse
|
32
|
Li L, Wang H, Hu L, Wu X, Zhao B, Fan Z, Zhang C, Wang J, Wang S. Age associated decrease of sialin in salivary glands. Biotech Histochem 2018; 93:505-511. [DOI: 10.1080/10520295.2018.1463453] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
Affiliation(s)
- L Li
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing
- Department of Stomatology, Affiliated Hospital of ChengDe Medical College, Chengde
| | - H Wang
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing
- Department of Stomatology, Beijing Bo’ai Hospital, China Rehabilitation Research Center, School of Rehabilitation, Capital Medical University, Beijing
| | - L Hu
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing
| | - X Wu
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing
| | - B Zhao
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing
| | - Z Fan
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing
| | - C Zhang
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing
| | - J Wang
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing
- Department of Biochemistry and Molecular Biology, Capital Medical University School of Basic Medical Sciences, Beijing, China
| | - S Wang
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing
- Department of Biochemistry and Molecular Biology, Capital Medical University School of Basic Medical Sciences, Beijing, China
| |
Collapse
|
33
|
Kang E, Kim YM, Heo SH, Jung E, Kim KS, Yoo HJ, Kim EN, Kim CJ, Kim GH, Lee BH. Biochemical and molecular analyses of infantile sialic acid storage disease in a patient with nonimmune hydrops fetalis. Clin Chim Acta 2018; 482:199-202. [PMID: 29654786 DOI: 10.1016/j.cca.2018.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 03/13/2018] [Accepted: 04/10/2018] [Indexed: 10/17/2022]
Abstract
Nonimmune hydrops fetalis is the most severe clinical manifestation of lysosomal storage diseases (LSDs). Around 14 different LSDs have been accounted for as 1-15% of the cause of nonimmune hydrops fetalis. We report a Korean infant affected by an extremely rare but severe form of sialic acid storage disease. The patient presented with nonimmune hydrops fetalis, dysmorphic facial features, hepatosplenomegaly, and dysostosis multiplex and died at 39 days of age due to persistent pulmonary hypertension. LSD was suspected based on the presence of diffuse vacuolation of syncytiotrophoblast, villous stromal cells, and intermediate trophoblast in placental biopsy. Increased excretion of urinary free sialic acid was detected by liquid chromatography-tandem mass spectrometry. The patient was compound heterozygous of the c.908G>A (p.Trp303Ter) and the splicing mutation c.1259+5G>T (IVS9+5 G>T) in the SLC17A5 gene.
Collapse
Affiliation(s)
- Eungu Kang
- Department of Pediatrics, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, South Korea
| | - Yoon-Myung Kim
- Department of Pediatrics, Jeju National University Hospital, Jeju National University School of Medicine, Jeju, South Korea
| | - Sun Hee Heo
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Euiseok Jung
- Department of Pediatrics, Asan Medical Center, Children's Hospital, University of Ulsan College of Medicine, Seoul, South Korea
| | - Ki-Soo Kim
- Department of Pediatrics, Asan Medical Center, Children's Hospital, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hyun Ju Yoo
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Eun Na Kim
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Chong Jai Kim
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Gu-Hwan Kim
- Medical Genetics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, South Korea
| | - Beom Hee Lee
- Department of Pediatrics, Asan Medical Center, Children's Hospital, University of Ulsan College of Medicine, Seoul, South Korea; Medical Genetics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, South Korea.
| |
Collapse
|
34
|
Matsuura R, Hamano SI, Iwamoto T, Shimizu K, Ohashi H. First Patient With Salla Disease Confirmed by Genomic Analysis in Japan. Pediatr Neurol 2018; 81:52-53. [PMID: 29472023 DOI: 10.1016/j.pediatrneurol.2018.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 01/12/2018] [Indexed: 11/19/2022]
Affiliation(s)
- Ryuki Matsuura
- Division of Neurology, Saitama Children's Medical Center, Saitama, Japan; Department of Pediatrics, The Jikei University School of Medicine, Tokyo, Japan.
| | - Shin-Ichiro Hamano
- Division of Neurology, Saitama Children's Medical Center, Saitama, Japan
| | - Takeo Iwamoto
- Core Research Facilities for Basic Science (Molecular Cell Biology), The Jikei University School of Medicine, Tokyo, Japan
| | - Kenji Shimizu
- Division of Medical Genetics, Saitama Children's Medical Center, Saitama, Japan
| | - Hirofumi Ohashi
- Division of Medical Genetics, Saitama Children's Medical Center, Saitama, Japan
| |
Collapse
|
35
|
Elitt CM, Volpe JJ. Degenerative Disorders of the Newborn. VOLPE'S NEUROLOGY OF THE NEWBORN 2018:823-858.e11. [DOI: 10.1016/b978-0-323-42876-7.00029-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
36
|
Barmherzig R, Bullivant G, Cordeiro D, Sinasac DS, Blaser S, Mercimek-Mahmutoglu S. A New Patient With Intermediate Severe Salla Disease With Hypomyelination: A Literature Review for Salla Disease. Pediatr Neurol 2017; 74:87-91.e2. [PMID: 28662915 DOI: 10.1016/j.pediatrneurol.2017.05.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 04/25/2017] [Accepted: 05/24/2017] [Indexed: 11/17/2022]
Abstract
BACKGROUND Likely pathogenic variants in SLC17A5 results in allelic disorders of free sialic acid metabolism including (1) infantile free sialic acid storage disease with severe global developmental delay, coarse facial features, hepatosplenomegaly, and cardiomegaly; (2) intermediate severe Salla disease with moderate to severe global developmental delay, hypotonia, and hypomyelination with or without coarse facial features, and (3) Salla disease with normal appearance, mild cognitive dysfunction, and spasticity. PATIENT DESCRIPTION This five-year-old girl presented with infantile-onset severe global developmental delay, truncal hypotonia, and generalized dystonia following normal development during her first six months of life. Brain magnetic resonance imaging showed marked hypomyelination and a thin corpus callosum at age 19 months, both unchanged on follow-up at age 28 months. Urine free sialic acid was moderately elevated. Cerebrospinal fluid free sialic acid was marginally elevated. Sequencing of SLC17A5 revealed compound heterozygous likely pathogenic variants, namely, a known missense (c.291G>A) variant and a novel truncating (c.819+1G>A) variant, confirming the diagnosis of Salla disease at age 3.5 years. CONCLUSION We report a new patient with intermediate severe Salla disease. Normal or marginally elevated urine or cerebrospinal fluid free sialic acid levels cannot exclude Salla disease. In patients with progressive global developmental delay and hypomyelination on brain magnetic resonance imaging, Salla disease should be included into the differential diagnosis.
Collapse
Affiliation(s)
- Rebecca Barmherzig
- Division of Neurology, Department of Pediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Garrett Bullivant
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Dawn Cordeiro
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - David S Sinasac
- Department of Medical Genetics, Alberta Children's Hospital, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Susan Blaser
- Division of Pediatric Neuroradiology, Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Ontario, Canada; Diagnostic Neuroradiology, Department of Medical Imaging, University of Toronto, Toronto, Ontario Canada
| | - Saadet Mercimek-Mahmutoglu
- Division of Neurology, Department of Pediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada; Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada; Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Pediatrics, University of Toronto, Toronto, Ontario Canada; Institute of Medical Sciences, University of Toronto, Toronto, Ontario Canada.
| |
Collapse
|
37
|
Beaudin M, Klein CJ, Rouleau GA, Dupré N. Systematic review of autosomal recessive ataxias and proposal for a classification. CEREBELLUM & ATAXIAS 2017; 4:3. [PMID: 28250961 PMCID: PMC5324265 DOI: 10.1186/s40673-017-0061-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/17/2017] [Indexed: 01/26/2023]
Abstract
Background The classification of autosomal recessive ataxias represents a significant challenge because of high genetic heterogeneity and complex phenotypes. We conducted a comprehensive systematic review of the literature to examine all recessive ataxias in order to propose a new classification and properly circumscribe this field as new technologies are emerging for comprehensive targeted gene testing. Methods We searched Pubmed and Embase to identify original articles on recessive forms of ataxia in humans for which a causative gene had been identified. Reference lists and public databases, including OMIM and GeneReviews, were also reviewed. We evaluated the clinical descriptions to determine if ataxia was a core feature of the phenotype and assessed the available evidence on the genotype-phenotype association. Included disorders were classified as primary recessive ataxias, as other complex movement or multisystem disorders with prominent ataxia, or as disorders that may occasionally present with ataxia. Results After removal of duplicates, 2354 references were reviewed and assessed for inclusion. A total of 130 articles were completely reviewed and included in this qualitative analysis. The proposed new list of autosomal recessive ataxias includes 45 gene-defined disorders for which ataxia is a core presenting feature. We propose a clinical algorithm based on the associated symptoms. Conclusion We present a new classification for autosomal recessive ataxias that brings awareness to their complex phenotypes while providing a unified categorization of this group of disorders. This review should assist in the development of a consensus nomenclature useful in both clinical and research applications. Electronic supplementary material The online version of this article (doi:10.1186/s40673-017-0061-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marie Beaudin
- Faculty of Medicine, Université Laval, Quebec city, QC G1V 0A6 Canada
| | | | - Guy A Rouleau
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A4 Canada
| | - Nicolas Dupré
- Faculty of Medicine, Université Laval, Quebec city, QC G1V 0A6 Canada.,Department of Neurological Sciences, CHU de Quebec - Université Laval, 1401 18th street, Québec City, QC G1J 1Z4 Canada
| |
Collapse
|
38
|
Tarailo-Graovac M, Drögemöller BI, Wasserman WW, Ross CJD, van den Ouweland AMW, Darin N, Kollberg G, van Karnebeek CDM, Blomqvist M. Identification of a large intronic transposal insertion in SLC17A5 causing sialic acid storage disease. Orphanet J Rare Dis 2017; 12:28. [PMID: 28187749 PMCID: PMC5303239 DOI: 10.1186/s13023-017-0584-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 02/01/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sialic acid storage diseases are neurodegenerative disorders characterized by accumulation of sialic acid in the lysosome. These disorders are caused by mutations in SLC17A5, the gene encoding sialin, a sialic acid transporter located in the lysosomal membrane. The most common form of sialic acid storage disease is the slowly progressive Salla disease, presenting with hypotonia, ataxia, epilepsy, nystagmus and findings of cerebral and cerebellar atrophy. Hypomyelination and corpus callosum hypoplasia are typical as well. We report a 16 year-old boy with an atypically mild clinical phenotype of sialic acid storage disease characterized by psychomotor retardation and a mixture of spasticity and rigidity but no ataxia, and only weak features of hypomyelination and thinning of corpus callosum on MRI of the brain. RESULTS The thiobarbituric acid method showed elevated levels of free sialic acid in urine and fibroblasts, indicating sialic acid storage disease. Initial Sanger sequencing of SLC17A5 coding regions did not show any pathogenic variants, although exon 9 could not be sequenced. Whole exome sequencing followed by RNA and genomic DNA analysis identified a homozygous 6040 bp insertion in intron 9 of SLC17A5 corresponding to a long interspersed element-1 retrotransposon (KF425758.1). This insertion adds two splice sites, both resulting in a frameshift which in turn creates a premature stop codon 4 bp into intron 9. CONCLUSIONS This study describes a novel pathogenic variant in SLC17A5, namely an intronic transposal insertion, in a patient with mild biochemical and clinical phenotypes. The presence of a small fraction of normal transcript may explain the mild phenotype. This case illustrates the importance of including lysosomal sialic acid storage disease in the differential diagnosis of developmental delay with postnatal onset and hypomyelination, as well as intronic regions in the genetic investigation of inborn errors of metabolism.
Collapse
Affiliation(s)
- Maja Tarailo-Graovac
- BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, Canada.,Centre for Molecular Medicine and Therapeutics, Vancouver, Canada
| | - Britt I Drögemöller
- BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, Canada.,Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Wyeth W Wasserman
- BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, Canada.,Centre for Molecular Medicine and Therapeutics, Vancouver, Canada
| | - Colin J D Ross
- BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, Canada.,Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | | | - Niklas Darin
- Department of Pediatrics, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - Gittan Kollberg
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Clara D M van Karnebeek
- BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada. .,Centre for Molecular Medicine and Therapeutics, Vancouver, Canada. .,Department of Pediatrics, University of British Columbia, Vancouver, Canada. .,Department of Pediatrics, Academic Medical Centre, Amsterdam, The Netherlands.
| | - Maria Blomqvist
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
39
|
Abstract
The salivary glands and oral bacteria play an essential role in the conversion process from nitrate (NO3-) and nitrite (NO2-) to nitric oxide (NO) in the human body. NO is, at present, recognized as a multifarious messenger molecule with important vascular and metabolic functions. Besides the endogenous L-arginine pathway, which is catalyzed by complex NO synthases, nitrate in food contributes to the main extrinsic generation of NO through a series of sequential steps (NO3--NO2--NO pathway). Up to 25% of nitrate in circulation is actively taken up by the salivary glands, and as a result, its concentration in saliva can increase 10- to 20-fold. However, the mechanism has not been clearly illustrated until recently, when sialin was identified as an electrogenic 2NO3-/H+transporter in the plasma membrane of salivary acinar cells. Subsequently, the oral bacterial species located at the posterior part of the tongue reduce nitrate to nitrite, as catalyzed by nitrate reductase enzymes. These bacteria use nitrate and nitrite as final electron acceptors in their respiration and meanwhile help the host to convert nitrate to NO as the first step. This review describes the role of salivary glands and oral bacteria in the metabolism of nitrate and in the maintenance of NO homeostasis. The potential therapeutic applications of oral inorganic nitrate and nitrite are also discussed.
Collapse
Affiliation(s)
- X.M. Qu
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Z.F. Wu
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - B.X. Pang
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - L.Y. Jin
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - L.Z. Qin
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - S.L. Wang
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
40
|
Paavola LE, Remes AM, Harila MJ, Varho TT, Korhonen TT, Majamaa K. A 13-year follow-up of Finnish patients with Salla disease. J Neurodev Disord 2015; 7:20. [PMID: 26171070 PMCID: PMC4499899 DOI: 10.1186/s11689-015-9116-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 06/10/2015] [Indexed: 12/03/2022] Open
Abstract
Background Salla disease (SD) is a rare lysosomal storage disorder leading to severe intellectual disability. SD belongs to the Finnish disease heritage, and it is caused by mutations in the SLC17A5 gene. The aim of the study was to investigate the course of neurocognitive features of SD patients in a long-term follow-up. Methods Neuropsychological and neurological investigations were carried out on 24 SD patients, aged 16–65 years, 13 years after a similar examination. Results The survival analysis showed excess mortality among patients with SD after the age of 30 years. The course of the disease was progressive, but follow-up of SD patients revealed that motor skills improved till the age of 20 years, while mental abilities improved in most patients till 40 years of age. Verbal comprehension skills did not diminish during the follow-up, but productive speech deteriorated because of dyspraxia and dysarthria. Motor deficits were marked. Ataxia was prominent in childhood, but it was replaced by athetotic movements during the teens. Spasticity became more obvious with age especially in severely disabled SD patients. Conclusions Younger SD patients performed better in almost every task measuring mental abilities that then seem to remain fairly constant till early sixties. Thus, the results indicate better prognosis in cognitive skills than earlier assumed. There is an apparent decline in motor skills after the age of 20 years. The early neurocognitive development predicts the later course of motor and cognitive development.
Collapse
Affiliation(s)
- Liisa E Paavola
- Department of Neurology, Oulu University Hospital, P.O. Box 20, 90029 Oulu, Finland ; Department of Clinical Medicine, Neurology, University of Oulu, P.O. Box 5000, 90014 Oulu, Finland ; Department of Clinical Neurology, University of Oulu, P.O. Box 5000, 90014 Oulu, Finland ; Neural Ltd, Center of Neuropsychology, Isokatu 16 B 18, 90100 Oulu, Finland
| | - Anne M Remes
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland ; Department of Neurology, Kuopio University Hospital, P.O. Box 1777, 70211 Kuopio, Finland
| | - Marika J Harila
- Neural Ltd, Center of Neuropsychology, Isokatu 16 B 18, 90100 Oulu, Finland
| | - Tarja T Varho
- The Neuropediatric Unit of Turku City Welfare Division, P. O. Box 670, 20101 Turku, Finland
| | - Tapio T Korhonen
- Department of Psychology, University of Turku, Turku, 20014 Finland
| | - Kari Majamaa
- Department of Neurology, Oulu University Hospital, P.O. Box 20, 90029 Oulu, Finland ; Department of Clinical Medicine, Neurology, University of Oulu, P.O. Box 5000, 90014 Oulu, Finland
| |
Collapse
|
41
|
Hult M, Darin N, von Döbeln U, Månsson JE. Epidemiology of lysosomal storage diseases in Sweden. Acta Paediatr 2014; 103:1258-63. [PMID: 25274184 DOI: 10.1111/apa.12807] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 05/21/2014] [Accepted: 09/15/2014] [Indexed: 01/30/2023]
Abstract
AIM There are more than 50 inherited lysosomal storage diseases (LSDs), and this study examined the incidence of clinically diagnosed LSDs in Sweden. METHODS The number of patients diagnosed during 1980-2009 was compiled from the registries of the two Swedish diagnostic laboratories that cover the whole country. RESULTS We identified 433 patients during the 30-year period, with a total incidence of one in every 6100 births and identified fairly constant annual diagnoses during the last 20 years. Krabbe disease was the most common (one in 39 000) followed by Gaucher disease (one in 47 000), metachromatic leukodystrophy and Salla disease. Gaucher disease was more frequent in Sweden than other European countries, due to a founder effect of the mutation (p.L444P) in northern Sweden. Metachromatic leukodystrophy was one of the most common LSDs, in common with other countries. Salla disease, which is very rare elsewhere, was the fourth most common, stemming from a founder mutation in the Salla region of northern Finland brought to Sweden by immigration. CONCLUSION The collective incidence of LSDs in Sweden was essentially equal to other European countries, but with a somewhat different disease pattern. Our findings have implications for diagnostic algorithms and treatment strategies.
Collapse
Affiliation(s)
- Malin Hult
- Division for Metabolic Diseases; Department of Laboratory Medicine; The Karolinska Institute and Centre for Inherited Metabolic Diseases; Karolinska University Hospital; Stockholm Sweden
| | - Niklas Darin
- Department of Pediatrics; Institute of Clinical Sciences; The Sahlgrenska Academy at the University of Gothenburg; Gothenburg Sweden
| | - Ulrika von Döbeln
- Division for Metabolic Diseases; Department of Laboratory Medicine; The Karolinska Institute and Centre for Inherited Metabolic Diseases; Karolinska University Hospital; Stockholm Sweden
| | - Jan-Eric Månsson
- Department of Clinical Chemistry; Institute of Biomedicine; The Sahlgrenska Academy at the University of Gothenburg; Gothenburg Sweden
| |
Collapse
|
42
|
Couce ML, Macías-Vidal J, Castiñeiras DE, Bóveda MD, Fraga JM, Fernández-Marmiesse A, Coll MJ. The early detection of Salla disease through second-tier tests in newborn screening: how to face incidental findings. Eur J Med Genet 2014; 57:527-31. [PMID: 24993898 DOI: 10.1016/j.ejmg.2014.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Accepted: 06/14/2014] [Indexed: 10/25/2022]
Abstract
We describe here a 34 months child, practically asymptomatic which presented with high levels of free sialic acid in urine by biochemical detection in second-tier tests newborn screening and with two disease causing mutations in SLC17A5 gene. SLC17A5 mutation analysis showed p.Tyr306* previously described and the novel mutation p.Leu167Pro. This early onset diagnosis allowed us to perform a fast and accurate genetic counseling to the family, helped to better understanding the natural history of this rare disease and probably it could promote cost reduction in future diagnostic tests in the hypothetic case of starting symptoms without diagnosis established. Moreover, an early diagnosis could save family from a long period of time until achieving a definitive diagnostic and to develop an early symptomatic and supportive management of patient to attenuate, as much as possible, disease complications. But, above all, this case illustrates the huge ethical dilemma which arises from any secondary finding (second tier) in newborn screening.
Collapse
Affiliation(s)
- María L Couce
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases, Department of Pediatrics, Hospital Clinico Universitario de Santiago, Santiago de Compostela, Spain; CIBER de Enfermedades Raras (CIBERER), Barcelona, Spain; IDIS, Santiago de Compostela, Spain.
| | - Judit Macías-Vidal
- CIBER de Enfermedades Raras (CIBERER), Barcelona, Spain; Secció d'Errors Congènits del Metabolisme (IBC), Servei de Bioquímica i Genètica Molecular, Hospital Clínic, Barcelona, Spain; IDIBAPS, Barcelona, Spain
| | - Daisy E Castiñeiras
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases, Department of Pediatrics, Hospital Clinico Universitario de Santiago, Santiago de Compostela, Spain; IDIS, Santiago de Compostela, Spain
| | - María D Bóveda
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases, Department of Pediatrics, Hospital Clinico Universitario de Santiago, Santiago de Compostela, Spain; IDIS, Santiago de Compostela, Spain
| | - José M Fraga
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases, Department of Pediatrics, Hospital Clinico Universitario de Santiago, Santiago de Compostela, Spain; CIBER de Enfermedades Raras (CIBERER), Barcelona, Spain; IDIS, Santiago de Compostela, Spain
| | - Ana Fernández-Marmiesse
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases, Department of Pediatrics, Hospital Clinico Universitario de Santiago, Santiago de Compostela, Spain; IDIS, Santiago de Compostela, Spain
| | - María J Coll
- CIBER de Enfermedades Raras (CIBERER), Barcelona, Spain; Secció d'Errors Congènits del Metabolisme (IBC), Servei de Bioquímica i Genètica Molecular, Hospital Clínic, Barcelona, Spain; IDIBAPS, Barcelona, Spain
| |
Collapse
|
43
|
Lines MA, Rupar CA, Rip JW, Baskin B, Ray PN, Hegele RA, Grynspan D, Michaud J, Geraghty MT. Infantile Sialic Acid Storage Disease: Two Unrelated Inuit Cases Homozygous for a Common Novel SLC17A5 Mutation. JIMD Rep 2013; 12:79-84. [PMID: 23900835 DOI: 10.1007/8904_2013_247] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 06/05/2013] [Accepted: 06/10/2013] [Indexed: 12/13/2022] Open
Abstract
Infantile sialic acid storage disease (ISSD) is a lysosomal storage disease characterized by accumulation of covalently unlinked (free) sialic acid in multiple tissues. ISSD and Salla disease (a predominantly neurological disorder) are allelic disorders caused by recessive mutations of a lysosomal anionic monosaccharide transporter, SLC17A5. While Salla disease is common in Finland due to a founder-effect mutation (p.Arg39Cys), ISSD is comparatively rare in all populations studied.Here, we describe the clinical and molecular features of two unrelated Canadian Inuit neonates with a virtually identical presentation of ISSD. Both individuals presented antenatally with fetal hydrops, dying shortly following delivery. Urinary free sialic acid excretion was markedly increased in the one case in which urine could be obtained for testing; postmortem examination showed a picture of widespread lysosomal storage in both. Both children were homozygous for a novel splice site mutation (NM_012434:c.526-2A>G) resulting in skipping of exon 4 and an ensuing frameshift. Analysis of a further 129 pan-Arctic Inuit controls demonstrated a heterozygous carrier rate of 1/129 (~0.4 %) in our sample. Interestingly, lysosomal enzyme studies showed an unexplained ninefold increase in neuraminidase activity, with lesser elevations in the activities of several other lysosomal enzymes. Our results raise the possibility of a common founder mutation presenting as hydrops in this population. Furthermore, if confirmed in subsequent cases, the marked induction of neuraminidase activity seen here may prove useful in the clinical diagnosis of ISSD.
Collapse
Affiliation(s)
- Matthew A Lines
- Division of Metabolics and Newborn Screening, University of Ottawa, Children's Hospital of Eastern Ontario, 401 Smyth Road, K1H 8L1, Ottawa, ON, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Verhagen JMA, Schrander-Stumpel CTRM, Blezer MMJ, Weber JW, Schrander JJP, Rubio-Gozalbo ME, Bakker JA, Stegmann APA, Vos YJ, Frints SGM. Adducted thumbs: a clinical clue to genetic diagnosis. Eur J Med Genet 2013; 56:153-158. [PMID: 23220544 DOI: 10.1016/j.ejmg.2012.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 11/28/2012] [Indexed: 10/27/2022]
Abstract
Adducted thumbs are an uncommon congenital malformation. It can be an important clinical clue in genetic syndromes, e.g. the L1 syndrome. A retrospective survey was performed including patients with adducted thumbs referred to the Department of Clinical Genetics between 1985 and 2011 by perinatologists, (child) neurologists or paediatricians, in order to evaluate current knowledge on the genetic etiology of adducted thumbs. Twenty-five patients were included in this survey. Additional features were observed in 88% (22/25). In 25% (4/16) of the patients with adducted thumbs and congenital hydrocephalus L1CAM gene mutations were identified. One patient had a mosaic 5p13 duplication. Recommendations are made concerning the evaluation and genetic workup of patients with adducted thumbs.
Collapse
Affiliation(s)
- J M A Verhagen
- Department of Clinical Genetics, Erasmus Medical Center Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
An Unusual Developmental Profile of Salla Disease in a Patient with the SallaFIN Mutation. Case Rep Neurol Med 2012; 2012:615721. [PMID: 23227378 PMCID: PMC3512220 DOI: 10.1155/2012/615721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Accepted: 10/30/2012] [Indexed: 11/28/2022] Open
Abstract
Salla disease (SD) is a disorder caused by defective storage of free sialic acid and results from mutations in the SLC17A5 gene. Early developmental delay of motor functions, and later cognitive skills, is typical. We describe a developmental profile of an unusual homozygous patient, who harboured the SallaFIN (p.R39C) mutation gene. The study involved neurological examination, neuropsychological investigation, and brain imaging. The neurocognitive findings were atypical in comparison with other patients with the SallaFIN mutation. Interestingly, there was no deterioration in the patient's neurological condition during adulthood. Her neurocognitive skills were remarkably higher than those of other patients with a conventional phenotype of SD. Our results suggest that the phenotype of SD is broad. Unidentified genetic or environmental variation might explain the unique SD type of this case.
Collapse
|
46
|
Abstract
Leukodystrophies are a heterogeneous group of inherited disorders that preferentially affect the CNS white matter. They are classified as demyelinating (or classic) or hypomyelinating according to brain MRI characteristics. As these disorders often have a similar clinical presentation according to their age of onset, the initial diagnostic approach is often challenging. This review aims to help clinicians approach these disorders using information from the history (e.g., age of onset), the examination (e.g., presence of macrocrania) and MRI scans in order to reduce the number of possible diagnoses for a given patient and to hopefully lead to a precise (molecular) diagnosis.
Collapse
Affiliation(s)
- Bradley Osterman
- Montreal Children’s Hospital, 2300 Tupper, Room A-506, Montreal, Quebec, H3H 1P3, Canada
| | - Roberta La Piana
- Montreal Neurological Institute, 3801 University Street, Montreal, Quebec, H3A 2B4, Canada
| | - Geneviève Bernard
- Montreal Children’s Hospital, 2300 Tupper, Room A-506, Montreal, Quebec, H3H 1P3, Canada
| |
Collapse
|
47
|
Pietrancosta N, Anne C, Prescher H, Ruivo R, Sagné C, Debacker C, Bertrand HO, Brossmer R, Acher F, Gasnier B. Successful prediction of substrate-binding pocket in SLC17 transporter sialin. J Biol Chem 2012; 287:11489-97. [PMID: 22334707 DOI: 10.1074/jbc.m111.313056] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Secondary active transporters from the SLC17 protein family are required for excitatory and purinergic synaptic transmission, sialic acid metabolism, and renal function, and several members are associated with inherited neurological or metabolic diseases. However, molecular tools to investigate their function or correct their genetic defects are limited or absent. Using structure-activity, homology modeling, molecular docking, and mutagenesis studies, we have located the substrate-binding site of sialin (SLC17A5), a lysosomal sialic acid exporter also recently implicated in exocytotic release of aspartate. Human sialin is defective in two inherited sialic acid storage diseases and is responsible for metabolic incorporation of the dietary nonhuman sialic acid N-glycolylneuraminic acid. We built cytosol-open and lumen-open three-dimensional models of sialin based on weak, but significant, sequence similarity with the glycerol-3-phosphate and fucose permeases from Escherichia coli, respectively. Molecular docking of 31 synthetic sialic acid analogues to both models was consistent with inhibition studies. Narrowing the sialic acid-binding site in the cytosol-open state by two phenylalanine to tyrosine mutations abrogated recognition of the most active analogue without impairing neuraminic acid transport. Moreover, a pilot virtual high-throughput screening of the cytosol-open model could identify a pseudopeptide competitive inhibitor showing >100-fold higher affinity than the natural substrate. This validated model of human sialin and sialin-guided models of other SLC17 transporters should pave the way for the identification of inhibitors, glycoengineering tools, pharmacological chaperones, and fluorescent false neurotransmitters targeted to these proteins.
Collapse
Affiliation(s)
- Nicolas Pietrancosta
- Centre National de la Recherche Scientifique, UMR 8601, Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints-Pères, F-75006 Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Molecular pathogenesis of sialic acid storage diseases: insight gained from four missense mutations and a putative polymorphism of human sialin. Biol Cell 2012; 100:551-9. [DOI: 10.1042/bc20070166] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
49
|
van den Bosch J, Oemardien LF, Srebniak MI, Piraud M, Huijmans JGM, Verheijen FW, Ruijter GJG. Prenatal screening of sialic acid storage disease and confirmation in cultured fibroblasts by LC-MS/MS. J Inherit Metab Dis 2011; 34:1069-73. [PMID: 21617927 PMCID: PMC3173643 DOI: 10.1007/s10545-011-9351-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 05/10/2011] [Accepted: 05/11/2011] [Indexed: 11/30/2022]
Abstract
Sialic acid storage disease (SASD) is an inborn error resulting from defects in the lysosomal membrane protein sialin. The SASD phenotypical spectrum ranges from a severe presentation, infantile sialic acid storage disease (ISSD) which may present as hydrops fetalis, to a relatively mild form, Salla disease. Screening for SASD is performed by determination of free sialic acid (FSA) in urine or amniotic fluid supernatant (AFS). Subsequent diagnosis of SASD is performed by quantification of FSA in cultured fibroblasts and by mutation analysis of the sialin gene, SLC17A5. We describe simple quantitative procedures to determine FSA as well as conjugated sialic acid in AFS, and FSA in cultured fibroblasts, using isotope dilution ((13)C(3)-sialic acid) and multiple reaction monitoring LC-ESI-MS/MS. The whole procedure can be performed in 2-4 h. Reference values in AFS were 0-8.2 μmol/L for 15-25 weeks of gestation and 3.2-12.0 μmol/L for 26-38 weeks of gestation. In AFS samples from five fetuses affected with ISSD FSA was 23.9-58.9 μmol/L demonstrating that this method is able to discriminate ISSD pregnancies from normal ones. The method was also validated for determination of FSA in fibroblast homogenates. FSA in SASD fibroblasts (ISSD; 20-154 nmol/mg protein, intermediate SASD; 12.9-15.1 nmol/mg, Salla disease; 5.9-7.4 nmol/mg) was clearly elevated compared to normal controls (0.3-2.2 nmol/mg). In conclusion, we report simple quantitative procedures to determine FSA in AFS and cultured fibroblasts improving both prenatal diagnostic efficacy for ISSD as well as confirmatory testing in cultured fibroblasts following initial screening in urine or AFS.
Collapse
Affiliation(s)
- Jeroen van den Bosch
- Department Clinical Genetics, Erasmus Medical Center, Dr. Molewaterplein 50, 3015GE Rotterdam, The Netherlands
| | - Linda F. Oemardien
- Department Clinical Genetics, Erasmus Medical Center, Dr. Molewaterplein 50, 3015GE Rotterdam, The Netherlands
| | - Malgorzata I. Srebniak
- Department Clinical Genetics, Erasmus Medical Center, Dr. Molewaterplein 50, 3015GE Rotterdam, The Netherlands
| | - Monique Piraud
- Laboratoire des Maladies Héréditaires du Métabolisme et Dépistage Néonatal, Centre de Biologie Est, Hospices Civils de Lyon, Bron, France
| | - Jan G. M. Huijmans
- Department Clinical Genetics, Erasmus Medical Center, Dr. Molewaterplein 50, 3015GE Rotterdam, The Netherlands
| | - Frans W. Verheijen
- Department Clinical Genetics, Erasmus Medical Center, Dr. Molewaterplein 50, 3015GE Rotterdam, The Netherlands
| | - George J. G. Ruijter
- Department Clinical Genetics, Erasmus Medical Center, Dr. Molewaterplein 50, 3015GE Rotterdam, The Netherlands
| |
Collapse
|
50
|
Miyaji T, Omote H, Moriyama Y. Functional characterization of vesicular excitatory amino acid transport by human sialin. J Neurochem 2011; 119:1-5. [PMID: 21781115 DOI: 10.1111/j.1471-4159.2011.07388.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sialin, the protein coded by SLC17A5, is responsible for membrane potential (Δψ)-driven aspartate and glutamate transport into synaptic vesicles in addition to H+/sialic acid co-transport in lysosomes. Rodent sialin mutants harboring the mutations associated with Salla disease in humans did not transport aspartate and glutamate whereas H+/sialic acid co-transport activity was about one-third of the wild-type protein. In this study, we investigate the effects of various mutations on the transport activities of human sialin. Proteoliposomes containing purified heterologously expressed human sialin exhibited both Δψ-driven aspartate and glutamate transport activity and H+/sialic acid co-transport activity. Aspartate and glutamate transport was not detected in the R39C and K136E mutant forms of SLC17A5 protein associated with Salla disease, whereas H+/sialic acid co-transport activity corresponded to 30-50% of the recombinant wild-type protein. In contrast, SLC17A5 protein harboring the mutations associated with infantile sialic acid storage disease, H183R and Δ268SSLRN272 still showed normal levels of Δψ-driven aspartate and glutamate transport even though H+/sialic acid co-transport activity was absent. Human sialin carrying the G328E mutation that causes both phenotypes, and P334R and G378V mutations that cause infantile sialic acid storage disease showed no transport activity. These results support the idea that people suffering from Salla disease have been defective in aspartergic and glutamatergic neurotransmissions.
Collapse
Affiliation(s)
- Takaaki Miyaji
- Advanced Science Research Center, Okayama University, Okayama, Japan.
| | | | | |
Collapse
|