1
|
Chuong JN, Ben Nun N, Suresh I, Matthews JC, De T, Avecilla G, Abdul-Rahman F, Brandt N, Ram Y, Gresham D. Template switching during DNA replication is a prevalent source of adaptive gene amplification. eLife 2025; 13:RP98934. [PMID: 39899365 PMCID: PMC11790251 DOI: 10.7554/elife.98934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025] Open
Abstract
Copy number variants (CNVs) are an important source of genetic variation underlying rapid adaptation and genome evolution. Whereas point mutation rates vary with genomic location and local DNA features, the role of genome architecture in the formation and evolutionary dynamics of CNVs is poorly understood. Previously, we found the GAP1 gene in Saccharomyces cerevisiae undergoes frequent amplification and selection in glutamine-limitation. The gene is flanked by two long terminal repeats (LTRs) and proximate to an origin of DNA replication (autonomously replicating sequence, ARS), which likely promote rapid GAP1 CNV formation. To test the role of these genomic elements on CNV-mediated adaptive evolution, we evolved engineered strains lacking either the adjacent LTRs, ARS, or all elements in glutamine-limited chemostats. Using a CNV reporter system and neural network simulation-based inference (nnSBI) we quantified the formation rate and fitness effect of CNVs for each strain. Removal of local DNA elements significantly impacts the fitness effect of GAP1 CNVs and the rate of adaptation. In 177 CNV lineages, across all four strains, between 26% and 80% of all GAP1 CNVs are mediated by Origin Dependent Inverted Repeat Amplification (ODIRA) which results from template switching between the leading and lagging strand during DNA synthesis. In the absence of the local ARS, distal ones mediate CNV formation via ODIRA. In the absence of local LTRs, homologous recombination can mediate gene amplification following de novo retrotransposon events. Our study reveals that template switching during DNA replication is a prevalent source of adaptive CNVs.
Collapse
Affiliation(s)
- Julie N Chuong
- Department of Biology, Center for Genomics and Systems Biology, New York UniversityNew YorkUnited States
| | - Nadav Ben Nun
- School of Zoology, Faculty of Life Sciences, Tel Aviv UniversityTel AvivIsrael
- Edmond J. Safra Center for Bioinformatics, Tel Aviv UniversityTel AvivIsrael
| | - Ina Suresh
- Department of Biology, Center for Genomics and Systems Biology, New York UniversityNew YorkUnited States
| | - Julia Cano Matthews
- Department of Biology, Center for Genomics and Systems Biology, New York UniversityNew YorkUnited States
| | - Titir De
- Department of Biology, Center for Genomics and Systems Biology, New York UniversityNew YorkUnited States
| | - Grace Avecilla
- Department of Natural Sciences, Baruch College CUNYNew YorkUnited States
| | - Farah Abdul-Rahman
- Department of Ecology and Evolutionary Biology, Yale UniversityNew HavenUnited States
- Microbial Sciences Institute, Yale UniversityNew HavenUnited States
| | - Nathan Brandt
- Department of Biological Sciences, North Carolina State UniversityRaleighUnited States
| | - Yoav Ram
- School of Zoology, Faculty of Life Sciences, Tel Aviv UniversityTel AvivIsrael
- Edmond J. Safra Center for Bioinformatics, Tel Aviv UniversityTel AvivIsrael
| | - David Gresham
- Department of Biology, Center for Genomics and Systems Biology, New York UniversityNew YorkUnited States
| |
Collapse
|
2
|
Chuong JN, Nun NB, Suresh I, Matthews JC, De T, Avecilla G, Abdul-Rahman F, Brandt N, Ram Y, Gresham D. Template switching during DNA replication is a prevalent source of adaptive gene amplification. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.03.589936. [PMID: 39464144 PMCID: PMC11507740 DOI: 10.1101/2024.05.03.589936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Copy number variants (CNVs)-gains and losses of genomic sequences-are an important source of genetic variation underlying rapid adaptation and genome evolution. However, despite their central role in evolution little is known about the factors that contribute to the structure, size, formation rate, and fitness effects of adaptive CNVs. Local genomic sequences are likely to be an important determinant of these properties. Whereas it is known that point mutation rates vary with genomic location and local DNA sequence features, the role of genome architecture in the formation, selection, and the resulting evolutionary dynamics of CNVs is poorly understood. Previously, we have found that the GAP1 gene in Saccharomyces cerevisiae undergoes frequent and repeated amplification and selection under long-term experimental evolution in glutamine-limiting conditions. The GAP1 gene has a unique genomic architecture consisting of two flanking long terminal repeats (LTRs) and a proximate origin of DNA replication (autonomously replicating sequence, ARS), which are likely to promote rapid GAP1 CNV formation. To test the role of these genomic elements on CNV-mediated adaptive evolution, we performed experimental evolution in glutamine-limited chemostats using engineered strains lacking either the adjacent LTRs, ARS, or all elements. Using a CNV reporter system and neural network simulation-based inference (nnSBI) we quantified the formation rate and fitness effect of CNVs for each strain. We find that although GAP1 CNVs repeatedly form and sweep to high frequency in strains with modified genome architecture, removal of local DNA elements significantly impacts the rate and fitness effect of CNVs and the rate of adaptation. We performed genome sequence analysis to define the molecular mechanisms of CNV formation for 177 CNV lineages. We find that across all four strain backgrounds, between 26% and 80% of all GAP1 CNVs are mediated by Origin Dependent Inverted Repeat Amplification (ODIRA) which results from template switching between the leading and lagging strand during DNA synthesis. In the absence of the local ARS, a distal ARS can mediate CNV formation via ODIRA. In the absence of local LTRs, homologous recombination mechanisms still mediate gene amplification following de novo insertion of retrotransposon elements at the locus. Our study demonstrates the remarkable plasticity of the genome and reveals that template switching during DNA replication is a frequent source of adaptive CNVs.
Collapse
Affiliation(s)
- Julie N Chuong
- Department of Biology, Center for Genomics and Systems Biology, New York University
| | - Nadav Ben Nun
- School of Zoology, Faculty of Life Sciences, Tel Aviv University
- Edmond J. Safra Center for Bioinformatics, Tel Aviv University
| | - Ina Suresh
- Department of Biology, Center for Genomics and Systems Biology, New York University
| | - Julia Cano Matthews
- Department of Biology, Center for Genomics and Systems Biology, New York University
| | - Titir De
- Department of Biology, Center for Genomics and Systems Biology, New York University
| | | | - Farah Abdul-Rahman
- Department of Ecology and Evolutionary Biology, Yale University
- Microbial Sciences Institute, Yale University
| | - Nathan Brandt
- Department of Biological Sciences, North Carolina State University
| | - Yoav Ram
- School of Zoology, Faculty of Life Sciences, Tel Aviv University
- Edmond J. Safra Center for Bioinformatics, Tel Aviv University
| | - David Gresham
- Department of Biology, Center for Genomics and Systems Biology, New York University
- Correspondence:
| |
Collapse
|
3
|
Villa N, Redaelli S, Farina S, Conconi D, Sala EM, Crosti F, Mariani S, Colombo CM, Dalprà L, Lavitrano M, Bentivegna A, Roversi G. Genomic Complexity and Complex Chromosomal Rearrangements in Genetic Diagnosis: Two Illustrative Cases on Chromosome 7. Genes (Basel) 2023; 14:1700. [PMID: 37761840 PMCID: PMC10530880 DOI: 10.3390/genes14091700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Complex chromosomal rearrangements are rare events compatible with survival, consisting of an imbalance and/or position effect of one or more genes, that contribute to a range of clinical presentations. The investigation and diagnosis of these cases are often difficult. The interpretation of the pattern of pairing and segregation of these chromosomes during meiosis is important for the assessment of the risk and the type of imbalance in the offspring. Here, we investigated two unrelated pediatric carriers of complex rearrangements of chromosome 7. The first case was a 2-year-old girl with a severe phenotype. Conventional cytogenetics evidenced a duplication of part of the short arm of chromosome 7. By array-CGH analysis, we found a complex rearrangement with three discontinuous trisomy regions (7p22.1p21.3, 7p21.3, and 7p21.3p15.3). The second case was a newborn investigated for hypodevelopment and dimorphisms. The karyotype analysis promptly revealed a structurally altered chromosome 7. The array-CGH analysis identified an even more complex rearrangement consisting of a trisomic region at 7q11.23q22 and a tetrasomic region of 4.5 Mb spanning 7q21.3 to q22.1. The mother's karyotype examination revealed a complex rearrangement of chromosome 7: the 7q11.23q22 region was inserted in the short arm at 7p15.3. Finally, array-CGH analysis showed a trisomic region that corresponds to the tetrasomic region of the son. Our work proved that the integration of several technical solutions is often required to appropriately analyze complex chromosomal rearrangements in order to understand their implications and offer appropriate genetic counseling.
Collapse
Affiliation(s)
- Nicoletta Villa
- UC Medical Genetics, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy (G.R.)
| | - Serena Redaelli
- School of Medicine and Surgery, University of Milan-Bicocca, 20900 Monza, Italy
| | - Stefania Farina
- UC Medical Genetics, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy (G.R.)
- School of Medicine and Surgery, University of Milan-Bicocca, 20900 Monza, Italy
| | - Donatella Conconi
- School of Medicine and Surgery, University of Milan-Bicocca, 20900 Monza, Italy
| | - Elena Maria Sala
- UC Medical Genetics, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy (G.R.)
| | - Francesca Crosti
- UC Medical Genetics, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy (G.R.)
| | - Silvana Mariani
- Department of Obstetrics, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| | - Carla Maria Colombo
- Neonatal Intensive Care Unit, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| | - Leda Dalprà
- UC Medical Genetics, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy (G.R.)
- School of Medicine and Surgery, University of Milan-Bicocca, 20900 Monza, Italy
| | | | - Angela Bentivegna
- School of Medicine and Surgery, University of Milan-Bicocca, 20900 Monza, Italy
| | - Gaia Roversi
- UC Medical Genetics, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy (G.R.)
- School of Medicine and Surgery, University of Milan-Bicocca, 20900 Monza, Italy
| |
Collapse
|
4
|
Altamura R, Doshi J, Benenson Y. Rational design and construction of multi-copy biomanufacturing islands in mammalian cells. Nucleic Acids Res 2022; 50:561-578. [PMID: 34893882 PMCID: PMC8754653 DOI: 10.1093/nar/gkab1214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/21/2021] [Accepted: 11/26/2021] [Indexed: 11/14/2022] Open
Abstract
Cell line development is a critical step in the establishment of a biopharmaceutical manufacturing process. Current protocols rely on random transgene integration and amplification. Due to considerable variability in transgene integration profiles, this workflow results in laborious screening campaigns before stable producers can be identified. Alternative approaches for transgene dosage increase and integration are therefore highly desirable. In this study, we present a novel strategy for the rapid design, construction, and genomic integration of engineered multiple-copy gene constructs consisting of up to 10 gene expression cassettes. Key to this strategy is the diversification, at the sequence level, of the individual gene cassettes without altering their protein products. We show a computational workflow for coding and regulatory sequence diversification and optimization followed by experimental assembly of up to nine gene copies and a sentinel reporter on a contiguous scaffold. Transient transfections in CHO cells indicates that protein expression increases with the gene copy number on the scaffold. Further, we stably integrate these cassettes into a pre-validated genomic locus. Altogether, our findings point to the feasibility of engineering a fully mapped multi-copy recombinant protein 'production island' in a mammalian cell line with greatly reduced screening effort, improved stability, and predictable product titers.
Collapse
Affiliation(s)
- Raffaele Altamura
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, Basel, 4058, Switzerland
| | - Jiten Doshi
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, Basel, 4058, Switzerland
| | - Yaakov Benenson
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, Basel, 4058, Switzerland
| |
Collapse
|
5
|
Koczkodaj D, Muzyka-Kasietczuk J, Chocholska S, Podhorecka M. Prognostic significance of isochromosome 17q in hematologic malignancies. Oncotarget 2021; 12:708-718. [PMID: 33868591 PMCID: PMC8021031 DOI: 10.18632/oncotarget.27914] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 02/19/2021] [Indexed: 11/29/2022] Open
Abstract
Isochromosome 17q [i(17q)] with its two identical long arms is formed by duplication of the q arm and loss of the short p arm. The breakpoint in chromosome 17 that allows the formation of this isochromosome is located at 17p11.2, and the ~240 kb region with its large, palindromic, low-copy repeat sequences are present here. The region is highly unstable and susceptible to a variety of genomic alterations which may be induced by or without toxic agents. One molecular consequence of i(17q) development is the obligatory loss of a single TP53 allele of the tumor suppressor P53 protein located at 17p13.1. Isochromosome 17q is involved in cancer development and progression. It occurs in combination with other chromosomal defects (complex cytogenetics), and rarely as a single mutation. The i(17q) rearrangement has been described as the most common chromosomal aberration in primitive neuroectodermal tumors and medulloblastomas. This isochromosome is also detected in different hematological disorders. In this article, we analyze literature data on the presence of i(17q) in proliferative disorders of the hematopoietic system in the context of its role as a prognostic factor of disease progression. The case reports are added to support the presented data. Currently, there are no indications for the use of specific treatment regimens in the subjects with a presence of the isochromosome 17q. Thus, it is of importance to continue studies on the prognostic role of this abnormality and even single cases should be reported as they may be used for further statistical analyses or meta-analyses.
Collapse
Affiliation(s)
- Dorota Koczkodaj
- Department of Cancer Genetics with the Cytogenetic Laboratory, Medical University of Lublin, Lublin, Poland
| | - Justyna Muzyka-Kasietczuk
- Department of Hematooncology and Bone Marrow Transplantation, Medical University of Lublin, Lublin, Poland
| | - Sylwia Chocholska
- Department of Hematooncology and Bone Marrow Transplantation, Medical University of Lublin, Lublin, Poland
| | - Monika Podhorecka
- Department of Hematooncology and Bone Marrow Transplantation, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
6
|
Trajkova S, Di Gregorio E, Ferrero GB, Carli D, Pavinato L, Delplancq G, Kuentz P, Brusco A. New Insights into Potocki-Shaffer Syndrome: Report of Two Novel Cases and Literature Review. Brain Sci 2020; 10:788. [PMID: 33126574 PMCID: PMC7693731 DOI: 10.3390/brainsci10110788] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/16/2020] [Accepted: 10/27/2020] [Indexed: 12/24/2022] Open
Abstract
Potocki-Shaffer syndrome (PSS) is a rare non-recurrent contiguous gene deletion syndrome involving chromosome 11p11.2. Current literature implies a minimal region with haploinsufficiency of three genes, ALX4 (parietal foramina), EXT2 (multiple exostoses), and PHF21A (craniofacial anomalies, and intellectual disability). The rest of the PSS phenotype is still not associated with a specific gene. We report a systematic review of the literature and included two novel cases. Because deletions are highly variable in size, we defined three groups of patients considering the PSS-genes involved. We found 23 full PSS cases (ALX4, EXT2, and PHF21A), 14 cases with EXT2-ALX4, and three with PHF21A only. Among the latter, we describe a novel male child showing developmental delay, café-au-lait spots, liner postnatal overgrowth and West-like epileptic encephalopathy. We suggest PSS cases may have epileptic spasms early in life, and PHF21A is likely to be the causative gene. Given their subtle presentation these may be overlooked and if left untreated could lead to a severe type or deterioration in the developmental plateau. If our hypothesis is correct, a timely therapy may ameliorate PSS phenotype and improve patients' outcomes. Our analysis also shows PHF21A is a candidate for the overgrowth phenotype.
Collapse
Affiliation(s)
- Slavica Trajkova
- Department of Medical Sciences, University of Torino, 10126 Turin, Italy; (S.T.); (L.P.)
| | - Eleonora Di Gregorio
- Medical Genetics Unit, Città della Salute e della Scienza, University Hospital, 10126 Turin, Italy; (E.D.)
| | - Giovanni Battista Ferrero
- Department of Public Health and Paediatrics, University of Torino, 10126 Turin, Italy; (G.B.F.); (D.C.)
| | - Diana Carli
- Department of Public Health and Paediatrics, University of Torino, 10126 Turin, Italy; (G.B.F.); (D.C.)
| | - Lisa Pavinato
- Department of Medical Sciences, University of Torino, 10126 Turin, Italy; (S.T.); (L.P.)
| | - Geoffroy Delplancq
- Centre de Génétique Humaine, Université de Franche-Comté, 25000 Besançon, France; (G.D.)
- Service de Pédiatrie, CHU, 25000 Besançon, France
| | - Paul Kuentz
- Oncobiologie Génétique Bioinformatique, PCBio, Centre Hospitalier Universitaire de Besançon, 25000 Besançon, France; (P.K.)
- UMR-Inserm 1231 GAD, Génétique des Anomalies du développement, Université de Bourgogne Franche-Comté, 21000 Dijon, France
- Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (FHU TRANSLAD), Centre Hospitalier Universitaire de Dijon et Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Alfredo Brusco
- Department of Medical Sciences, University of Torino, 10126 Turin, Italy; (S.T.); (L.P.)
- Medical Genetics Unit, Città della Salute e della Scienza, University Hospital, 10126 Turin, Italy; (E.D.)
| |
Collapse
|
7
|
Abelleyro MM, Radic CP, Marchione VD, Waisman K, Tetzlaff T, Neme D, Rossetti LC, De Brasi CD. Molecular insights into the mechanism of nonrecurrent F8 structural variants: Full breakpoint characterization and bioinformatics of DNA elements implicated in the upmost severe phenotype in hemophilia A. Hum Mutat 2020; 41:825-836. [PMID: 31898853 DOI: 10.1002/humu.23977] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/09/2019] [Accepted: 12/26/2019] [Indexed: 11/08/2022]
Abstract
Hemophilia A (HA) provides excellent models to analyze genotype-phenotype relationships and mutational mechanisms. NhF8ld's breakpoints were characterized using case-specific DNA-tags, direct- or inverse-polymerase chain reaction amplification, and Sanger sequencing. DNA-break's stimulators (n = 46), interspersed repeats, non-B-DNA, and secondary structures were analyzed around breakpoints versus null hypotheses (E-values) based on computer simulations and base-frequency probabilities. Nine of 18 (50%) severe-HA patients with nhF8lds developed inhibitors, 1/8 affecting one exon and 8/10 (80%) affecting multi-exons. NhF8lds range: 2-165 kb. Five (45%) nhF8lds involve F8-extragenic regions including three affecting vicinal genes (SMIM9 and BRCC3) but none shows an extra-phenotype not related to severe-HA. The contingency analysis of recombinogenic motifs at nhF8ld breakpoints indicated a significant involvement of several DNA-break stimulator elements. Most nhF8ld's breakpoint junctions showed microhomologies (1-7 bp). Three (27%) nhF8lds show complexities at the breakpoints: an 8-bp inverted-insertion, and the remnant two, inverted- and direct-insertions (46-68 bp) supporting replicative models microhomology-mediated break-induced replication/Fork Stalling and Template Switching. The remnant eight (73%) nhF8lds may support nonhomologous end joining/microhomology-mediated end joining models. Our study suggests the involvement of the retroposition machinery (e.g., Jurka-targets, Alu-elements, long interspersed nuclear elements, long terminal repeats), microhomologies, and secondary structures at breakpoints playing significant roles in the origin of the upmost severe phenotype in HA.
Collapse
Affiliation(s)
- Miguel Martín Abelleyro
- Instituto de Medicina Experimental (IMEX, CONICET-Academia Nacional de Medicina), Buenos Aires, Argentina
| | - Claudia Pamela Radic
- Instituto de Medicina Experimental (IMEX, CONICET-Academia Nacional de Medicina), Buenos Aires, Argentina
| | - Vanina Daniela Marchione
- Instituto de Medicina Experimental (IMEX, CONICET-Academia Nacional de Medicina), Buenos Aires, Argentina
| | - Karen Waisman
- Instituto de Medicina Experimental (IMEX, CONICET-Academia Nacional de Medicina), Buenos Aires, Argentina
| | - Tomas Tetzlaff
- Universidad Nacional de General Sarmiento, Los Polvorines, Argentina
| | - Daniela Neme
- Fundación de la Hemofilia Alfredo Pavlovsky, Buenos Aires, Argentina
| | - Liliana Carmen Rossetti
- Instituto de Medicina Experimental (IMEX, CONICET-Academia Nacional de Medicina), Buenos Aires, Argentina
| | - Carlos Daniel De Brasi
- Instituto de Medicina Experimental (IMEX, CONICET-Academia Nacional de Medicina), Buenos Aires, Argentina.,Instituto de Investigaciones Hematológicas Mariano R Castex (Academia Nacional de Medicina), Buenos Aires, Argentina
| |
Collapse
|
8
|
Distinct patterns of complex rearrangements and a mutational signature of microhomeology are frequently observed in PLP1 copy number gain structural variants. Genome Med 2019; 11:80. [PMID: 31818324 PMCID: PMC6902434 DOI: 10.1186/s13073-019-0676-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 10/10/2019] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND We investigated the features of the genomic rearrangements in a cohort of 50 male individuals with proteolipid protein 1 (PLP1) copy number gain events who were ascertained with Pelizaeus-Merzbacher disease (PMD; MIM: 312080). We then compared our new data to previous structural variant mutagenesis studies involving the Xq22 region of the human genome. The aggregate data from 159 sequenced join-points (discontinuous sequences in the reference genome that are joined during the rearrangement process) were studied. Analysis of these data from 150 individuals enabled the spectrum and relative distribution of the underlying genomic mutational signatures to be delineated. METHODS Genomic rearrangements in PMD individuals with PLP1 copy number gain events were investigated by high-density customized array or clinical chromosomal microarray analysis and breakpoint junction sequence analysis. RESULTS High-density customized array showed that the majority of cases (33/50; ~ 66%) present with single duplications, although complex genomic rearrangements (CGRs) are also frequent (17/50; ~ 34%). Breakpoint mapping to nucleotide resolution revealed further previously unknown structural and sequence complexities, even in single duplications. Meta-analysis of all studied rearrangements that occur at the PLP1 locus showed that single duplications were found in ~ 54% of individuals and that, among all CGR cases, triplication flanked by duplications is the most frequent CGR array CGH pattern observed. Importantly, in ~ 32% of join-points, there is evidence for a mutational signature of microhomeology (highly similar yet imperfect sequence matches). CONCLUSIONS These data reveal a high frequency of CGRs at the PLP1 locus and support the assertion that replication-based mechanisms are prominent contributors to the formation of CGRs at Xq22. We propose that microhomeology can facilitate template switching, by stabilizing strand annealing of the primer using W-C base complementarity, and is a mutational signature for replicative repair.
Collapse
|
9
|
De Coster W, De Rijk P, De Roeck A, De Pooter T, D'Hert S, Strazisar M, Sleegers K, Van Broeckhoven C. Structural variants identified by Oxford Nanopore PromethION sequencing of the human genome. Genome Res 2019; 29:1178-1187. [PMID: 31186302 PMCID: PMC6633254 DOI: 10.1101/gr.244939.118] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 06/06/2019] [Indexed: 01/17/2023]
Abstract
We sequenced the genome of the Yoruban reference individual NA19240 on the long-read sequencing platform Oxford Nanopore PromethION for evaluation and benchmarking of recently published aligners and germline structural variant calling tools, as well as a comparison with the performance of structural variant calling from short-read sequencing data. The structural variant caller Sniffles after NGMLR or minimap2 alignment provides the most accurate results, but additional confidence or sensitivity can be obtained by a combination of multiple variant callers. Sensitive and fast results can be obtained by minimap2 for alignment and a combination of Sniffles and SVIM for variant identification. We describe a scalable workflow for identification, annotation, and characterization of tens of thousands of structural variants from long-read genome sequencing of an individual or population. By discussing the results of this well-characterized reference individual, we provide an approximation of what can be expected in future long-read sequencing studies aiming for structural variant identification.
Collapse
Affiliation(s)
- Wouter De Coster
- Neurodegenerative Brain Diseases Group, Center for Molecular Neurology, VIB, 2610 Antwerp, Belgium
- Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Peter De Rijk
- Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium
- Neuromics Support Facility, Center for Molecular Neurology, VIB, 2610 Antwerp, Belgium
| | - Arne De Roeck
- Neurodegenerative Brain Diseases Group, Center for Molecular Neurology, VIB, 2610 Antwerp, Belgium
- Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Tim De Pooter
- Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium
- Neuromics Support Facility, Center for Molecular Neurology, VIB, 2610 Antwerp, Belgium
| | - Svenn D'Hert
- Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium
- Neuromics Support Facility, Center for Molecular Neurology, VIB, 2610 Antwerp, Belgium
| | - Mojca Strazisar
- Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium
- Neuromics Support Facility, Center for Molecular Neurology, VIB, 2610 Antwerp, Belgium
| | - Kristel Sleegers
- Neurodegenerative Brain Diseases Group, Center for Molecular Neurology, VIB, 2610 Antwerp, Belgium
- Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Christine Van Broeckhoven
- Neurodegenerative Brain Diseases Group, Center for Molecular Neurology, VIB, 2610 Antwerp, Belgium
- Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium
| |
Collapse
|
10
|
Beck CR, Carvalho CMB, Akdemir ZC, Sedlazeck FJ, Song X, Meng Q, Hu J, Doddapaneni H, Chong Z, Chen ES, Thornton PC, Liu P, Yuan B, Withers M, Jhangiani SN, Kalra D, Walker K, English AC, Han Y, Chen K, Muzny DM, Ira G, Shaw CA, Gibbs RA, Hastings PJ, Lupski JR. Megabase Length Hypermutation Accompanies Human Structural Variation at 17p11.2. Cell 2019; 176:1310-1324.e10. [PMID: 30827684 PMCID: PMC6438178 DOI: 10.1016/j.cell.2019.01.045] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 11/06/2018] [Accepted: 01/25/2019] [Indexed: 01/16/2023]
Abstract
DNA rearrangements resulting in human genome structural variants (SVs) are caused by diverse mutational mechanisms. We used long- and short-read sequencing technologies to investigate end products of de novo chromosome 17p11.2 rearrangements and query the molecular mechanisms underlying both recurrent and non-recurrent events. Evidence for an increased rate of clustered single-nucleotide variant (SNV) mutation in cis with non-recurrent rearrangements was found. Indel and SNV formation are associated with both copy-number gains and losses of 17p11.2, occur up to ∼1 Mb away from the breakpoint junctions, and favor C > G transversion substitutions; results suggest that single-stranded DNA is formed during the genesis of the SV and provide compelling support for a microhomology-mediated break-induced replication (MMBIR) mechanism for SV formation. Our data show an additional mutational burden of MMBIR consisting of hypermutation confined to the locus and manifesting as SNVs and indels predominantly within genes.
Collapse
Affiliation(s)
- Christine R Beck
- Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA
| | | | - Zeynep C Akdemir
- Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA
| | | | - Xiaofei Song
- Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA
| | - Qingchang Meng
- Human Genome Sequencing Center, BCM, Houston, TX 77030, USA
| | - Jianhong Hu
- Human Genome Sequencing Center, BCM, Houston, TX 77030, USA
| | | | - Zechen Chong
- Department of Genetics and the Informatics Institute, the University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Edward S Chen
- Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA
| | - Philip C Thornton
- Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA
| | - Pengfei Liu
- Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA
| | - Bo Yuan
- Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA
| | - Marjorie Withers
- Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA
| | | | - Divya Kalra
- Human Genome Sequencing Center, BCM, Houston, TX 77030, USA
| | | | - Adam C English
- Human Genome Sequencing Center, BCM, Houston, TX 77030, USA
| | - Yi Han
- Human Genome Sequencing Center, BCM, Houston, TX 77030, USA
| | - Ken Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Donna M Muzny
- Human Genome Sequencing Center, BCM, Houston, TX 77030, USA
| | - Grzegorz Ira
- Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA
| | - Chad A Shaw
- Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA
| | - Richard A Gibbs
- Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA; Human Genome Sequencing Center, BCM, Houston, TX 77030, USA
| | - P J Hastings
- Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA; Dan L. Duncan Comprehensive Cancer Center, BCM, Houston, TX 77030, USA.
| | - James R Lupski
- Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA; Human Genome Sequencing Center, BCM, Houston, TX 77030, USA; Department of Pediatrics, BCM, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA; Dan L. Duncan Comprehensive Cancer Center, BCM, Houston, TX 77030, USA.
| |
Collapse
|
11
|
Lopez-Canovas L, Martinez Benitez MB, Herrera Isidron JA, Flores Soto E. Pulsed Field Gel Electrophoresis: Past, present, and future. Anal Biochem 2019; 573:17-29. [PMID: 30826351 DOI: 10.1016/j.ab.2019.02.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/22/2019] [Accepted: 02/22/2019] [Indexed: 12/27/2022]
Abstract
Pulsed Field Gel Electrophoresis (PFGE) has been considered for many years the 'gold-standard' for characterizing many pathogenic organisms as well as for subtyping bacterial species causing infection outbreaks. This article reviews the basic principles of PFGE and it includes the main advantages and limitations of the different electrode configurations that have been used in PFGE equipment and their influence on the DNA electrophoretic separation. Remarkably, we summarize here the most relevant theoretical and practical aspects that we have learned for more than 20 years developing and using the miniaturized PFGE systems. We also discussed the theoretical aspects related to DNA migration in PFGE agarose gels. It served as the basis for simulating the DNA electrophoretic patterns in CHEF mini gels and mini-chambers during experimental design and optimization. A critical comparison between standard and miniaturized PFGE systems, as well as the enzymatic and non-enzymatic methods for intact immobilized DNA preparation, is provided throughout the review. The PFGE current applications, advantages, limitations and future challenges of the methodology are also discussed.
Collapse
Affiliation(s)
- Lilia Lopez-Canovas
- Postgraduate Program in Genomic Sciences, School of Science and Technology (CCyT), Autonomous University of Mexico City (UACM), Mexico City, Mexico.
| | - Maximo B Martinez Benitez
- Postgraduate Program in Genomic Sciences, School of Science and Technology (CCyT), Autonomous University of Mexico City (UACM), Mexico City, Mexico.
| | | | - Eduardo Flores Soto
- Academy of Biology, School of Sciences and Humanities, UACM, Mexico City, Mexico.
| |
Collapse
|
12
|
Madagascar ground gecko genome analysis characterizes asymmetric fates of duplicated genes. BMC Biol 2018; 16:40. [PMID: 29661185 PMCID: PMC5901865 DOI: 10.1186/s12915-018-0509-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/22/2018] [Indexed: 11/13/2022] Open
Abstract
Background Conventionally, comparison among amniotes – birds, mammals, and reptiles – has often been approached through analyses of mammals and, for comparison, birds. However, birds are morphologically and physiologically derived and, moreover, some parts of their genomes are recognized as difficult to sequence and/or assemble and are thus missing in genome assemblies. Therefore, sequencing the genomes of reptiles would aid comparative studies on amniotes by providing more comprehensive coverage to help understand the molecular mechanisms underpinning evolutionary changes. Results Herein, we present the whole genome sequences of the Madagascar ground gecko (Paroedura picta), a promising study system especially in developmental biology, and used it to identify changes in gene repertoire across amniotes. The genome-wide analysis of the Madagascar ground gecko allowed us to reconstruct a comprehensive set of gene phylogenies comprising 13,043 ortholog groups from diverse amniotes. Our study revealed 469 genes retained by some reptiles but absent from available genome-wide sequence data of both mammals and birds. Importantly, these genes, herein collectively designated as ‘elusive’ genes, exhibited high nucleotide substitution rates and uneven intra-genomic distribution. Furthermore, the genomic regions flanking these elusive genes exhibited distinct characteristics that tended to be associated with increased gene density, repeat element density, and GC content. Conclusion This highly continuous and nearly complete genome assembly of the Madagascar ground gecko will facilitate the use of this species as an experimental animal in diverse fields of biology. Gene repertoire comparisons across amniotes further demonstrated that the fate of a duplicated gene can be affected by the intrinsic properties of its genomic location, which can persist for hundreds of millions of years. Electronic supplementary material The online version of this article (10.1186/s12915-018-0509-4) contains supplementary material, which is available to authorized users.
Collapse
|
13
|
Blazejewski SM, Bennison SA, Smith TH, Toyo-Oka K. Neurodevelopmental Genetic Diseases Associated With Microdeletions and Microduplications of Chromosome 17p13.3. Front Genet 2018; 9:80. [PMID: 29628935 PMCID: PMC5876250 DOI: 10.3389/fgene.2018.00080] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/26/2018] [Indexed: 01/24/2023] Open
Abstract
Chromosome 17p13.3 is a region of genomic instability that is linked to different rare neurodevelopmental genetic diseases, depending on whether a deletion or duplication of the region has occurred. Chromosome microdeletions within 17p13.3 can result in either isolated lissencephaly sequence (ILS) or Miller-Dieker syndrome (MDS). Both conditions are associated with a smooth cerebral cortex, or lissencephaly, which leads to developmental delay, intellectual disability, and seizures. However, patients with MDS have larger deletions than patients with ILS, resulting in additional symptoms such as poor muscle tone, congenital anomalies, abnormal spasticity, and craniofacial dysmorphisms. In contrast to microdeletions in 17p13.3, recent studies have attracted considerable attention to a condition known as a 17p13.3 microduplication syndrome. Depending on the genes involved in their microduplication, patients with 17p13.3 microduplication syndrome may be categorized into either class I or class II. Individuals in class I have microduplications of the YWHAE gene encoding 14-3-3ε, as well as other genes in the region. However, the PAFAH1B1 gene encoding LIS1 is never duplicated in these patients. Class I microduplications generally result in learning disabilities, autism, and developmental delays, among other disorders. Individuals in class II always have microduplications of the PAFAH1B1 gene, which may include YWHAE and other genetic microduplications. Class II microduplications generally result in smaller body size, developmental delays, microcephaly, and other brain malformations. Here, we review the phenotypes associated with copy number variations (CNVs) of chromosome 17p13.3 and detail their developmental connection to particular microdeletions or microduplications. We also focus on existing single and double knockout mouse models that have been used to study human phenotypes, since the highly limited number of patients makes a study of these conditions difficult in humans. These models are also crucial for the study of brain development at a mechanistic level since this cannot be accomplished in humans. Finally, we emphasize the usefulness of the CRISPR/Cas9 system and next generation sequencing in the study of neurodevelopmental diseases.
Collapse
Affiliation(s)
- Sara M Blazejewski
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Sarah A Bennison
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Trevor H Smith
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Kazuhito Toyo-Oka
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| |
Collapse
|
14
|
Mendez-Rosado LA, Lantigua A, Galarza J, Hamid Al-Rikabi AB, Ziegler M, Liehr T. Unusual de novo Partial Trisomy 17p12p11.2 due to Unbalanced Insertion into 5p13.1 in a Severely Affected Boy. J Pediatr Genet 2017; 6:165-168. [PMID: 28794908 DOI: 10.1055/s-0037-1599195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 01/18/2017] [Indexed: 10/20/2022]
Abstract
Gain of copy numbers can be due to different chromosomal rearrangements such as direct or indirect duplications, translocations, small supernumerary marker chromosomes, or insertions. In a 3-year-old boy with dysmorphic features and developmental delay, chromosome analyses revealed a derivative chromosome 5. Microdissection and reverse fluorescence in situ hybridization identified the in 5p13.1 inserted part as 17p12-p11.2 material. Thus the patient suffered from a rare combination of genomic disorder, that is, Charcot-Marie-Tooth disease type 1A and Potocki-Lupski syndrome. Parental studies indicated that the abnormality was de novo in origin. As the question how this rearrangement arose cannot be answered conclusively, formal genetic counseling is warranted, which includes a discussion regarding the possibility of gonadal mosaicism. In conclusion, this case highlights that chromosome 17p is genetically relatively instable, and thus it can lead to rare chromosomal conditions.
Collapse
Affiliation(s)
| | | | | | - Ahmed B Hamid Al-Rikabi
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Jena, Germany
| | - Monika Ziegler
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Jena, Germany
| | - Thomas Liehr
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Jena, Germany
| |
Collapse
|
15
|
Gu S, Szafranski P, Akdemir ZC, Yuan B, Cooper ML, Magriñá MA, Bacino CA, Lalani SR, Breman AM, Smith JL, Patel A, Song RH, Bi W, Cheung SW, Carvalho CMB, Stankiewicz P, Lupski JR. Mechanisms for Complex Chromosomal Insertions. PLoS Genet 2016; 12:e1006446. [PMID: 27880765 PMCID: PMC5120786 DOI: 10.1371/journal.pgen.1006446] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 10/24/2016] [Indexed: 12/21/2022] Open
Abstract
Chromosomal insertions are genomic rearrangements with a chromosome segment inserted into a non-homologous chromosome or a non-adjacent locus on the same chromosome or the other homologue, constituting ~2% of nonrecurrent copy-number gains. Little is known about the molecular mechanisms of their formation. We identified 16 individuals with complex insertions among 56,000 individuals tested at Baylor Genetics using clinical array comparative genomic hybridization (aCGH) and fluorescence in situ hybridization (FISH). Custom high-density aCGH was performed on 10 individuals with available DNA, and breakpoint junctions were fine-mapped at nucleotide resolution by long-range PCR and DNA sequencing in 6 individuals to glean insights into potential mechanisms of formation. We observed microhomologies and templated insertions at the breakpoint junctions, resembling the breakpoint junction signatures found in complex genomic rearrangements generated by replication-based mechanism(s) with iterative template switches. In addition, we analyzed 5 families with apparently balanced insertion in one parent detected by FISH analysis and found that 3 parents had additional small copy-number variants (CNVs) at one or both sides of the inserting fragments as well as at the inserted sites. We propose that replicative repair can result in interchromosomal complex insertions generated through chromothripsis-like chromoanasynthesis involving two or three chromosomes, and cause a significant fraction of apparently balanced insertions harboring small flanking CNVs. By traditional cytogenetic techniques, the incidence of microscopically visible chromosomal insertions was estimated to be 1 in 80,000 live births. More recently, by aCGH in conjunction with FISH confirmation of the aCGH findings, insertion events were demonstrated to occur much more frequently (1 in ~500 individuals tested). Although frequently detected, little is known about the molecular mechanisms of their formation. In this study, we identified 16 individuals with complex chromosomal insertions among 56,000 individuals tested at Baylor Genetics using clinical microarray analysis (CMA) and FISH. Custom high-density aCGH was performed on 10 individuals with available DNA, and breakpoint junctions were fine-mapped at nucleotide resolution by long-range PCR and DNA sequencing in 6 individuals to glean insights into potential mechanisms of formation. In addition, we analyzed 5 families with apparently balanced insertion in one parent detected by FISH analysis and found that 3 parents had additional small copy-number variants (CNVs) at one or both sides of the inserting fragments as well as at the inserted sites. We propose that replicative repair can result in interchromosomal complex insertions generated through chromothripsis-like chromoanasynthesis involving two or three chromosomes, and cause a significant fraction of apparently balanced insertions harboring small flanking CNVs.
Collapse
Affiliation(s)
- Shen Gu
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Przemyslaw Szafranski
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Zeynep Coban Akdemir
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Bo Yuan
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Mitchell L. Cooper
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Maria A. Magriñá
- Medical Specialties Unit From City Hall São José dos Campos, São Paulo, Brazil
| | - Carlos A. Bacino
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Seema R. Lalani
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Amy M. Breman
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Janice L. Smith
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ankita Patel
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Rodger H. Song
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Weimin Bi
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Sau Wai Cheung
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Claudia M. B. Carvalho
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Paweł Stankiewicz
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail: (JRL); (PS)
| | - James R. Lupski
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States of America
- Texas Children’s Hospital, Houston, Texas, United States of America
- * E-mail: (JRL); (PS)
| |
Collapse
|
16
|
Yuan B, Neira J, Gu S, Harel T, Liu P, Briceño I, Elsea SH, Gómez A, Potocki L, Lupski JR. Nonrecurrent PMP22-RAI1 contiguous gene deletions arise from replication-based mechanisms and result in Smith-Magenis syndrome with evident peripheral neuropathy. Hum Genet 2016; 135:1161-74. [PMID: 27386852 DOI: 10.1007/s00439-016-1703-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 06/21/2016] [Indexed: 11/29/2022]
Abstract
Hereditary neuropathy with liability to pressure palsies (HNPP) and Smith-Magenis syndrome (SMS) are genomic disorders associated with deletion copy number variants involving chromosome 17p12 and 17p11.2, respectively. Nonallelic homologous recombination (NAHR)-mediated recurrent deletions are responsible for the majority of HNPP and SMS cases; the rearrangement products encompass the key dosage-sensitive genes PMP22 and RAI1, respectively, and result in haploinsufficiency for these genes. Less frequently, nonrecurrent genomic rearrangements occur at this locus. Contiguous gene duplications encompassing both PMP22 and RAI1, i.e., PMP22-RAI1 duplications, have been investigated, and replication-based mechanisms rather than NAHR have been proposed for these rearrangements. In the current study, we report molecular and clinical characterizations of six subjects with the reciprocal phenomenon of deletions spanning both genes, i.e., PMP22-RAI1 deletions. Molecular studies utilizing high-resolution array comparative genomic hybridization and breakpoint junction sequencing identified mutational signatures that were suggestive of replication-based mechanisms. Systematic clinical studies revealed features consistent with SMS, including features of intellectual disability, speech and gross motor delays, behavioral problems and ocular abnormalities. Five out of six subjects presented clinical signs and/or objective electrophysiologic studies of peripheral neuropathy. Clinical profiling may improve the clinical management of this unique group of subjects, as the peripheral neuropathy can be more severe or of earlier onset as compared to SMS patients having the common recurrent deletion. Moreover, the current study, in combination with the previous report of PMP22-RAI1 duplications, contributes to the understanding of rare complex phenotypes involving multiple dosage-sensitive genes from a genetic mechanistic standpoint.
Collapse
Affiliation(s)
- Bo Yuan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Juanita Neira
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Shen Gu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Tamar Harel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ignacio Briceño
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
- Instituto de Referencia Andino, Bogotá, Colombia
- Facultad de Medicina, Universidad de La Sabana, Chía, Colombia
| | - Sarah H Elsea
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Alberto Gómez
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
- Instituto de Referencia Andino, Bogotá, Colombia
| | - Lorraine Potocki
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Texas Children's Hospital, Houston, TX, 77030, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA.
- Texas Children's Hospital, Houston, TX, 77030, USA.
| |
Collapse
|
17
|
Goos JAC, Fenwick AL, Swagemakers SMA, McGowan SJ, Knight SJL, Twigg SRF, Hoogeboom AJM, van Dooren MF, Magielsen FJ, Wall SA, Mathijssen IMJ, Wilkie AOM, van der Spek PJ, van den Ouweland AMW. Identification of Intragenic Exon Deletions and Duplication of TCF12 by Whole Genome or Targeted Sequencing as a Cause of TCF12-Related Craniosynostosis. Hum Mutat 2016; 37:732-6. [PMID: 27158814 PMCID: PMC4949653 DOI: 10.1002/humu.23010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 04/08/2016] [Accepted: 04/14/2016] [Indexed: 11/09/2022]
Abstract
TCF12-related craniosynostosis can be caused by small heterozygous loss-of-function mutations in TCF12. Large intragenic rearrangements, however, have not been described yet. Here, we present the identification of four large rearrangements in TCF12 causing TCF12-related craniosynostosis. Whole-genome sequencing was applied on the DNA of 18 index cases with coronal synostosis and their family members (43 samples in total). The data were analyzed using an autosomal-dominant disease model. Structural variant analysis reported intragenic exon deletions (of sizes 84.9, 8.6, and 5.4 kb) in TCF12 in three different families. The results were confirmed by deletion-specific PCR and dideoxy-sequence analysis. Separately, targeted sequencing of the TCF12 genomic region in a patient with coronal synostosis identified a tandem duplication of 11.3 kb. The pathogenic effect of this duplication was confirmed by cDNA analysis. These findings indicate the importance of screening for larger rearrangements in patients suspected to have TCF12-related craniosynostosis.
Collapse
Affiliation(s)
- Jacqueline A C Goos
- Erasmus MC, Department of Plastic and Reconstructive Surgery and Hand Surgery, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Aimee L Fenwick
- Clinical Genetics Group, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Sigrid M A Swagemakers
- Erasmus MC, Department of Bioinformatics, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Simon J McGowan
- Computational Biology Research Group, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Samantha J L Knight
- NIHR Biomedical Research Centre, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Stephen R F Twigg
- Clinical Genetics Group, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - A Jeannette M Hoogeboom
- Erasmus MC, Department of Clinical Genetics, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Marieke F van Dooren
- Erasmus MC, Department of Clinical Genetics, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Frank J Magielsen
- Erasmus MC, Department of Clinical Genetics, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Steven A Wall
- Craniofacial Unit, Department of Plastic and Reconstructive Surgery, Oxford University Hospitals NHS Trust, John Radcliffe Hospital, Oxford, UK
| | - Irene M J Mathijssen
- Erasmus MC, Department of Plastic and Reconstructive Surgery and Hand Surgery, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Andrew O M Wilkie
- Clinical Genetics Group, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK.,Craniofacial Unit, Department of Plastic and Reconstructive Surgery, Oxford University Hospitals NHS Trust, John Radcliffe Hospital, Oxford, UK
| | - Peter J van der Spek
- Erasmus MC, Department of Bioinformatics, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Ans M W van den Ouweland
- Erasmus MC, Department of Clinical Genetics, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
18
|
Yuan B, Harel T, Gu S, Liu P, Burglen L, Chantot-Bastaraud S, Gelowani V, Beck C, Carvalho C, Cheung S, Coe A, Malan V, Munnich A, Magoulas P, Potocki L, Lupski J. Nonrecurrent 17p11.2p12 Rearrangement Events that Result in Two Concomitant Genomic Disorders: The PMP22-RAI1 Contiguous Gene Duplication Syndrome. Am J Hum Genet 2015; 97:691-707. [PMID: 26544804 DOI: 10.1016/j.ajhg.2015.10.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 10/05/2015] [Indexed: 12/31/2022] Open
Abstract
The genomic duplication associated with Potocki-Lupski syndrome (PTLS) maps in close proximity to the duplication associated with Charcot-Marie-Tooth disease type 1A (CMT1A). PTLS is characterized by hypotonia, failure to thrive, reduced body weight, intellectual disability, and autistic features. CMT1A is a common autosomal dominant distal symmetric peripheral polyneuropathy. The key dosage-sensitive genes RAI1 and PMP22 are respectively associated with PTLS and CMT1A. Recurrent duplications accounting for the majority of subjects with these conditions are mediated by nonallelic homologous recombination between distinct low-copy repeat (LCR) substrates. The LCRs flanking a contiguous genomic interval encompassing both RAI1 and PMP22 do not share extensive homology; thus, duplications encompassing both loci are rare and potentially generated by a different mutational mechanism. We characterized genomic rearrangements that simultaneously duplicate PMP22 and RAI1, including nine potential complex genomic rearrangements, in 23 subjects by high-resolution array comparative genomic hybridization and breakpoint junction sequencing. Insertions and microhomologies were found at the breakpoint junctions, suggesting potential replicative mechanisms for rearrangement formation. At the breakpoint junctions of these nonrecurrent rearrangements, enrichment of repetitive DNA sequences was observed, indicating that they might predispose to genomic instability and rearrangement. Clinical evaluation revealed blended PTLS and CMT1A phenotypes with a potential earlier onset of neuropathy. Moreover, additional clinical findings might be observed due to the extra duplicated material included in the rearrangements. Our genomic analysis suggests replicative mechanisms as a predominant mechanism underlying PMP22-RAI1 contiguous gene duplications and provides further evidence supporting the role of complex genomic architecture in genomic instability.
Collapse
|
19
|
Rawal RM, Joshi MN, Bhargava P, Shaikh I, Pandit AS, Patel RP, Patel S, Kothari K, Shah M, Saxena A, Bagatharia SB. Tobacco habituated and non-habituated subjects exhibit different mutational spectrums in head and neck squamous cell carcinoma. 3 Biotech 2015; 5:685-696. [PMID: 28324520 PMCID: PMC4569615 DOI: 10.1007/s13205-014-0267-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 11/15/2014] [Indexed: 12/28/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common non-skin cancer in the world. Tobacco chewing is implicated with most of the cases of HNSCC but this type of cancer is increasing in non-tobacco chewers as well. This study was instigated to provide comprehensive variant and gene-level data in HNSCC subjects of the Indian population and fill the gap in the literature on comparative assessment of gene mutations in cancer subjects with a habit of tobacco and those without any habit using targeted amplicon sequencing. We performed targeted Amplicon sequencing of 409 tumor suppressor genes and oncogenes, frequently mutated across many cancer types, including head and neck. DNA from primary tumor tissues and matched blood was analyzed for HNSCC patients with a habit of tobacco and those without any habit. PDE4DIP, SYNE1, and NOTCH1 emerged as the highly mutated genes in HNSCC. A total of 39 candidate causal variants in 22 unique cancer driver genes were identified in non-habitual (WoH) and habitual (WH) subjects. Comparison of genes from both the subjects, showed seven unique cancer driver genes (KIT, ATM, RNF213, GATA2, DST, RET, CYP2C19) in WoH, while WH showed five (IL7R, PKHD1, MLL3, PTPRD, MAPK8) and 10 genes (SETD2, ATR, CDKN2A, NCOA4, TP53, SYNE1, KAT6B, THBS1, PTPRT, and FGFR3) were common to both subjects. In addition to this NOTCH1, NOTCH2, and NOTCH4 gene were found to be mutated only in habitual subjects. These findings strongly support a causal role for tobacco, acting via PI3K and MAPK pathway inhibition and stimulation of various genes leading to oncogenic transformations in case of tobacco chewers. In case of non-tobacco chewers it appears that mutations in the pathway affecting the squamous epithelial lineage and DNA repair genes lead to HNSCC. Somatic mutation in CYP2C19 gene in the non-habitual subjects suggests that this gene may have a tobacco independent role in development and progression of HNSCC. In addition to sharing high mutation rate, NOTCH gene family was found to be mutated only in habitual sample. Further, presence of mutated genes not earlier reported to be involved in HNSCC, suggest that the Indian sub-continent may have different sets of genes, as compared to other parts of the world, involved in the development and progression of HNSCC.
Collapse
Affiliation(s)
- Rakesh M Rawal
- Gujarat Cancer and Research Institute, Gujarat Cancer Society, Civil Hospital Campus, Asarwa, Ahmedabad, 380 016, Gujarat, India
| | - Madhvi N Joshi
- Gujarat State Biotechnology Mission, Department of Science and Technology, Government of Gujarat, 11th Block, 9th Floor, Udyog Bhavan, Gandhinagar, 382 011, Gujarat, India
| | - Poonam Bhargava
- Gujarat State Biotechnology Mission, Department of Science and Technology, Government of Gujarat, 11th Block, 9th Floor, Udyog Bhavan, Gandhinagar, 382 011, Gujarat, India
| | - Inayat Shaikh
- Gujarat State Biotechnology Mission, Department of Science and Technology, Government of Gujarat, 11th Block, 9th Floor, Udyog Bhavan, Gandhinagar, 382 011, Gujarat, India
| | - Aanal S Pandit
- Gujarat State Biotechnology Mission, Department of Science and Technology, Government of Gujarat, 11th Block, 9th Floor, Udyog Bhavan, Gandhinagar, 382 011, Gujarat, India
| | - Riddhi P Patel
- Gujarat State Biotechnology Mission, Department of Science and Technology, Government of Gujarat, 11th Block, 9th Floor, Udyog Bhavan, Gandhinagar, 382 011, Gujarat, India
| | - Shanaya Patel
- Gujarat Cancer and Research Institute, Gujarat Cancer Society, Civil Hospital Campus, Asarwa, Ahmedabad, 380 016, Gujarat, India
| | - Kiran Kothari
- Gujarat Cancer and Research Institute, Gujarat Cancer Society, Civil Hospital Campus, Asarwa, Ahmedabad, 380 016, Gujarat, India
| | - Manoj Shah
- Gujarat Cancer and Research Institute, Gujarat Cancer Society, Civil Hospital Campus, Asarwa, Ahmedabad, 380 016, Gujarat, India
| | - Akshay Saxena
- Gujarat State Biotechnology Mission, Department of Science and Technology, Government of Gujarat, 11th Block, 9th Floor, Udyog Bhavan, Gandhinagar, 382 011, Gujarat, India
| | - Snehal B Bagatharia
- Gujarat State Biotechnology Mission, Department of Science and Technology, Government of Gujarat, 11th Block, 9th Floor, Udyog Bhavan, Gandhinagar, 382 011, Gujarat, India.
| |
Collapse
|
20
|
The role of combined SNV and CNV burden in patients with distal symmetric polyneuropathy. Genet Med 2015; 18:443-51. [PMID: 26378787 DOI: 10.1038/gim.2015.124] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/27/2015] [Indexed: 01/10/2023] Open
Abstract
PURPOSE Charcot-Marie-Tooth (CMT) disease is a heterogeneous group of genetic disorders of the peripheral nervous system. Copy-number variants (CNVs) contribute significantly to CMT, as duplication of PMP22 underlies the majority of CMT1 cases. We hypothesized that CNVs and/or single-nucleotide variants (SNVs) might exist in patients with CMT with an unknown molecular genetic etiology. METHODS Two hundred patients with CMT, negative for both SNV mutations in several CMT genes and for CNVs involving PMP22, were screened for CNVs by high-resolution oligonucleotide array comparative genomic hybridization. Whole-exome sequencing was conducted on individuals with rare, potentially pathogenic CNVs. RESULTS Putatively causative CNVs were identified in five subjects (~2.5%); four of the five map to known neuropathy genes. Breakpoint sequencing revealed Alu-Alu-mediated junctions as a predominant contributor. Exome sequencing identified MFN2 SNVs in two of the individuals. CONCLUSION Neuropathy-associated CNV outside of the PMP22 locus is rare in CMT. Nevertheless, there is potential clinical utility in testing for CNVs and exome sequencing in CMT cases negative for the CMT1A duplication. These findings suggest that complex phenotypes including neuropathy can potentially be caused by a combination of SNVs and CNVs affecting more than one disease-associated locus and contributing to a mutational burden.Genet Med 18 5, 443-451.
Collapse
|
21
|
Abstract
Gene expression is a process of DNA sequence reading into protein synthesis. In cases of problems in DNA repair/apoptosis mechanisms, cells accumulate genomic abnormalities and pass them through generations of cells. The accumulation of mutations causes diseases and even tumors. In addition to cancer, many other neurologic conditions have been associated with genetic mutations. Some trials are testing patients with epigenetic treatments. Epigenetic therapy must be used with caution because epigenetic processes and changes happen constantly in normal cells, giving rise to drug off-target effects. Scientists are making progress in specifically targeting abnormal cells with minimal damage to normal ones.
Collapse
Affiliation(s)
- Marina Lipkin Vasquez
- Molecular Biology Laboratory, Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Rua do Resende 156, 2nd Floor, Centro, Rio de Janeiro CEP 20231-092, Brazil.
| | | |
Collapse
|
22
|
Ruchi R, Genovese G, Lee J, Charoonratana VT, Bernhardy AJ, Alper SL, Kopp JB, Thadhani R, Friedman DJ, Pollak MR. Copy Number Variation at the APOL1 Locus. PLoS One 2015; 10:e0125410. [PMID: 25933006 PMCID: PMC4416782 DOI: 10.1371/journal.pone.0125410] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 03/23/2015] [Indexed: 11/26/2022] Open
Abstract
Two coding variants in the APOL1 gene (G1 and G2) explain most of the high rate of kidney disease in African Americans. APOL1-associated kidney disease risk inheritance follows an autosomal recessive pattern: The relative risk of kidney disease associated with inheritance of two high-risk variants is 7–30 fold, depending on the specific kidney phenotype. We wished to determine if the variability in phenotype might in part reflect structural differences in APOL1 gene. We analyzed sequence coverage from 1000 Genomes Project Phase 3 samples as well as exome sequencing data from African American kidney disease cases for copy number variation. 8 samples sequenced in the 1000 Genomes Project showed increased coverage over a ~100kb region that includes APOL2, APOL1 and part of MYH9, suggesting the presence of APOL1 copy number greater than 2. We reasoned that such duplications should be enriched in apparent G1 heterozygotes with kidney disease. Using a PCR-based assay, we observed the presence of this duplication in additional samples from apparent G0G1 or G0G2 individuals. The frequency of this APOL1 duplication was compared among cases (n = 123) and controls (n = 255) with apparent G0G1 heterozygosity. The presence of APOL1 duplication was observed in 4.06% of cases and 0.78% controls, preliminary evidence that this APOL1 duplication may alter susceptibility to kidney disease (p = 0.03). Taqman-based copy number assays confirmed the presence of 3 APOL1 copies in individuals positive for this specific duplication by PCR assay, but also identified a small number of individuals with additional APOL1 copies of presumably different structure. These observations motivate further studies to better assess the contribution of APOL1 copy number on kidney disease risk and on APOL1 function. Investigators and clinicians genotyping APOL1 should also consider whether the particular genotyping platform used is subject to technical errors when more than two copies of APOL1 are present.
Collapse
Affiliation(s)
- Rupam Ruchi
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- Division of Nephrology, Department of Medicine, University of Florida, Gainesville, Florida, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Giulio Genovese
- Stanley Center, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| | - Jessica Lee
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Victoria T. Charoonratana
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Andrea J. Bernhardy
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Seth L. Alper
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
- Stanley Center, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| | - Jeffrey B. Kopp
- Kidney Diseases Branch, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ravi Thadhani
- Renal Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - David J. Friedman
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Martin R. Pollak
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
23
|
Wang M, Beck CR, English AC, Meng Q, Buhay C, Han Y, Doddapaneni HV, Yu F, Boerwinkle E, Lupski JR, Muzny DM, Gibbs RA. PacBio-LITS: a large-insert targeted sequencing method for characterization of human disease-associated chromosomal structural variations. BMC Genomics 2015; 16:214. [PMID: 25887218 PMCID: PMC4376517 DOI: 10.1186/s12864-015-1370-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 02/20/2015] [Indexed: 11/24/2022] Open
Abstract
Background Generation of long (>5 Kb) DNA sequencing reads provides an approach for interrogation of complex regions in the human genome. Currently, large-insert whole genome sequencing (WGS) technologies from Pacific Biosciences (PacBio) enable analysis of chromosomal structural variations (SVs), but the cost to achieve the required sequence coverage across the entire human genome is high. Results We developed a method (termed PacBio-LITS) that combines oligonucleotide-based DNA target-capture enrichment technologies with PacBio large-insert library preparation to facilitate SV studies at specific chromosomal regions. PacBio-LITS provides deep sequence coverage at the specified sites at substantially reduced cost compared with PacBio WGS. The efficacy of PacBio-LITS is illustrated by delineating the breakpoint junctions of low copy repeat (LCR)-associated complex structural rearrangements on chr17p11.2 in patients diagnosed with Potocki–Lupski syndrome (PTLS; MIM#610883). We successfully identified previously determined breakpoint junctions in three PTLS cases, and also were able to discover novel junctions in repetitive sequences, including LCR-mediated breakpoints. The new information has enabled us to propose mechanisms for formation of these structural variants. Conclusions The new method leverages the cost efficiency of targeted capture-sequencing as well as the mappability and scaffolding capabilities of long sequencing reads generated by the PacBio platform. It is therefore suitable for studying complex SVs, especially those involving LCRs, inversions, and the generation of chimeric Alu elements at the breakpoints. Other genomic research applications, such as haplotype phasing and small insertion and deletion validation could also benefit from this technology. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1370-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Min Wang
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Christine R Beck
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Adam C English
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Qingchang Meng
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Christian Buhay
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Yi Han
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Harsha V Doddapaneni
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Fuli Yu
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA. .,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Eric Boerwinkle
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA. .,Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| | - James R Lupski
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA. .,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Donna M Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Richard A Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA. .,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
24
|
Chen C, Ma H, Zhang F, Chen L, Xing X, Wang S, Zhang X, Luo Y. Screening of Duchenne muscular dystrophy (DMD) mutations and investigating its mutational mechanism in Chinese patients. PLoS One 2014; 9:e108038. [PMID: 25244321 PMCID: PMC4171529 DOI: 10.1371/journal.pone.0108038] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 08/25/2014] [Indexed: 11/18/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a common X-linked recessive disease of muscle degeneration and death. In order to provide accurate and reliable genetic counseling and prenatal diagnosis, we screened DMD mutations in a cohort of 119 Chinese patients using multiplex ligation-dependent probe amplification (MLPA) and denaturing high performance liquid chromatography (DHPLC) followed by Sanger sequencing. In these unrelated DMD patients, we identified 11 patients with DMD small mutations (9.2%) and 81 patients with DMD deletions/duplications (del/dup) (68.1%), of which 64 (79.0%) were deletions, 16 (19.8%) were duplications, and one (1.2%) was both deletion and duplication. Furthermore, we analyzed the frequency of DMD breakpoint in the 64 deletion cases by calculating exon-deletion events of certain exon interval that revealed a novel mutation hotspot boundary. To explore why DMD rearrangement breakpoints were predisposed to specific regions (hotspot), we precisely characterized junction sequences of breakpoints at the nucleotide level in 21 patients with exon deleted/duplicated in DMD with a high-resolution SNP microarray assay. There were no exactly recurrent breakpoints and there was also no significant difference between single-exon del/dup and multiple-exon del/dup cases. The data from the current study provided a comprehensive strategy to detect DMD mutations for clinical practice, and identified two deletion hotspots at exon 43–55 and exon 10–23 by calculating exon-deletion events of certain exon interval. Furthermore, this is the first study to characterize DMD breakpoint at the nucleotide level in a Chinese population. Our observations provide better understanding of the mechanism for DMD gene rearrangements.
Collapse
Affiliation(s)
- Chen Chen
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Chinese Ministry of Education, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Hongwei Ma
- Department of Developing Pediatrics, Shengjing Hospital, China Medical University, Shenyang, China
| | - Feng Zhang
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Lu Chen
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Xuesha Xing
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Chinese Ministry of Education, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Shusen Wang
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Chinese Ministry of Education, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Xue Zhang
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yang Luo
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Chinese Ministry of Education, College of Basic Medical Science, China Medical University, Shenyang, China
- * E-mail:
| |
Collapse
|
25
|
Sahoo T, Wang JC, Elnaggar MM, Sanchez-Lara P, Ross LP, Mahon LW, Hafezi K, Deming A, Hinman L, Bruno Y, Bartley JA, Liehr T, Anguiano A, Jones M. Concurrent triplication and uniparental isodisomy: evidence for microhomology-mediated break-induced replication model for genomic rearrangements. Eur J Hum Genet 2014; 23:61-6. [PMID: 24713661 DOI: 10.1038/ejhg.2014.53] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 02/17/2014] [Accepted: 02/19/2014] [Indexed: 12/11/2022] Open
Abstract
Whole-genome oligonucleotide single-nucleotide polymorphism (oligo-SNP) arrays enable simultaneous interrogation of copy number variations (CNVs), copy neutral regions of homozygosity (ROH) and uniparental disomy (UPD). Structural variation in the human genome contributes significantly to genetic variation, and often has deleterious effects leading to disease causation. Co-occurrence of CNV and regions of allelic homozygosity in tandem involving the same chromosomal arm are extremely rare. Replication-based mechanisms such as microhomology-mediated break-induced replication (MMBIR) are recent models predicted to induce structural rearrangements and gene dosage aberrations; however, supportive evidence in humans for one-ended DNA break repair coupled with MMBIR giving rise to interstitial copy number gains and distal loss of heterozygosity has not been documented. We report on the identification and characterization of two cases with interstitial triplication followed by uniparental isodisomy (isoUPD) for remainder of the chromosomal arm. Case 1 has a triplication at 9q21.11-q21.33 and segmental paternal isoUPD for 9q21.33-qter, and presented with citrullinemia with a homozygous mutation in the argininosuccinate synthetase gene (ASS1 at 9q34.1). Case 2 has a triplication at 22q12.1-q12.2 and segmental maternal isoUPD 22q12.2-qter, and presented with hearing loss, mild dysmorphic features and bilateral iris coloboma. Interstitial triplication coupled with distal segmental isoUPD is a novel finding that provides human evidence for one-ended DNA break and replication-mediated repair. Both copy number gains and isoUPD may contribute to the phenotype. Significantly, these cases represent the first detailed genomic analysis that provides support for a MMBIR mechanism inducing copy number gains and segmental isoUPD in tandem.
Collapse
Affiliation(s)
- Trilochan Sahoo
- Quest Diagnostics Nichols Institute, San Juan Capistrano, CA, USA
| | - Jia-Chi Wang
- Quest Diagnostics Nichols Institute, San Juan Capistrano, CA, USA
| | | | - Pedro Sanchez-Lara
- Children's Hospital Los Angeles, Division of Medical Genetics, Los Angeles, CA, USA
| | - Leslie P Ross
- Quest Diagnostics Nichols Institute, San Juan Capistrano, CA, USA
| | - Loretta W Mahon
- Quest Diagnostics Nichols Institute, San Juan Capistrano, CA, USA
| | - Katayoun Hafezi
- Quest Diagnostics Nichols Institute, San Juan Capistrano, CA, USA
| | - Abigail Deming
- Quest Diagnostics Nichols Institute, San Juan Capistrano, CA, USA
| | - Lynne Hinman
- Quest Diagnostics Nichols Institute, San Juan Capistrano, CA, USA
| | - Yovana Bruno
- White Memorial Medical Center, Los Angeles, CA, USA
| | - James A Bartley
- Children's Hospital Los Angeles, Division of Medical Genetics, Los Angeles, CA, USA
| | | | - Arturo Anguiano
- Quest Diagnostics Nichols Institute, San Juan Capistrano, CA, USA
| | - Marilyn Jones
- 1] Rady Children's Hospital, Division of Genetics/Dysmorphology, San Diego, CA, USA [2] University of California, San Diego, CA, USA
| |
Collapse
|
26
|
Dubourg C, Bonnet-Brilhault F, Toutain A, Mignot C, Jacquette A, Dieux A, Gérard M, Beaumont-Epinette MP, Julia S, Isidor B, Rossi M, Odent S, Bendavid C, Barthélémy C, Verloes A, David V. Identification of Nine New RAI1-Truncating Mutations in Smith-Magenis Syndrome Patients without 17p11.2 Deletions. Mol Syndromol 2014; 5:57-64. [PMID: 24715852 DOI: 10.1159/000357359] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2013] [Indexed: 11/19/2022] Open
Abstract
Smith-Magenis syndrome (SMS) is an intellectual disability syndrome with sleep disturbance, self-injurious behaviors and dysmorphic features. It is estimated to occur in 1/25,000 births, and in 90% of cases it is associated with interstitial deletions of chromosome 17p11.2. RAI1 (retinoic acid induced 1; OMIM 607642) mutations are the second most frequent molecular etiology, with this gene being located in the SMS locus at 17p11.2. Here, we report 9 new RAI1-truncating mutations in nonrelated individuals referred for molecular analysis due to a possible SMS diagnosis. None of these patients carried a 17p11.2 deletion. The 9 mutations include 2 nonsense mutations and 7 heterozygous frameshift mutations leading to protein truncation. All mutations map in exon 3 of RAI1 which codes for more than 98% of the protein. RAI1 regulates gene transcription, and its targets are themselves involved in transcriptional regulation, cell growth and cell cycle regulation, bone and skeletal development, lipid and glucide metabolisms, neurological development, behavioral functions, and circadian activity. We report the clinical features of the patients carrying these deleterious mutations in comparison with those of patients carrying 17p11.2 deletions.
Collapse
Affiliation(s)
- C Dubourg
- Laboratoire de Génétique Moléculaire, CHU Pontchaillou, France ; CNRS UMR 6290, IFR140, Université de Rennes 1, France
| | | | - A Toutain
- Génétique, CHRU Bretonneau, Tours, France
| | - C Mignot
- Service de Génétique Clinique, CHU La Pitié Salpêtrière, France ; Service de Neuropédiatrie, APHP, Hôpital Armand Trousseau, France
| | - A Jacquette
- Service de Génétique Clinique, CHU La Pitié Salpêtrière, France
| | - A Dieux
- Service de Génétique Clinique, CHU, Lille, France
| | - M Gérard
- Service de Génétique, CHR Clémenceau, Caen, France
| | | | - S Julia
- Service de Génétique Médicale, CHU Purpan, Toulouse, France
| | - B Isidor
- Service de Génétique Médicale, CHU, Nantes, France
| | - M Rossi
- Service de Génétique Clinique, CHU, Lyon-Bron, France
| | - S Odent
- CNRS UMR 6290, IFR140, Université de Rennes 1, France ; Service de Génétique Médicale, CHU Hôpital Sud, Rennes, Services de, France
| | - C Bendavid
- CNRS UMR 6290, IFR140, Université de Rennes 1, France
| | | | - A Verloes
- Service de Génétique Clinique, CHU Robert Debré, Paris, France
| | - V David
- Laboratoire de Génétique Moléculaire, CHU Pontchaillou, France ; CNRS UMR 6290, IFR140, Université de Rennes 1, France
| |
Collapse
|
27
|
Goh ESY, Banwell B, Stavropoulos DJ, Shago M, Yoon G. Mosaic microdeletion of 17p11.2-p12 and duplication of 17q22-q24 in a girl with Smith-Magenis phenotype and peripheral neuropathy. Am J Med Genet A 2013; 164A:748-52. [PMID: 24357149 DOI: 10.1002/ajmg.a.36322] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 10/11/2013] [Indexed: 11/08/2022]
Abstract
We report on a girl with a de novo mosaic derivative chromosome 17 involving a 7.4 Mb deletion of chromosome region 17p11.2 to 17p12 and a duplication of a 12.35 Mb region at 17q22 to 17q24. She was ascertained because of developmental delay, peripheral neuropathy, brachydactyly and minor anomalies. The derivative chromosome was present in approximately 12% of lymphocytes based on FISH studies, and was detected by array comparative genomic hybridization. To our knowledge, this is the third case of mosaicism involving deletion of the 17p11.2 region and the lowest level of mosaicism reported in a patient with Smith-Magenis syndrome (SMS).
Collapse
Affiliation(s)
- Elaine Suk-Ying Goh
- Department of Pediatrics, Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | | | | | | | | |
Collapse
|
28
|
Katju V. In with the old, in with the new: the promiscuity of the duplication process engenders diverse pathways for novel gene creation. INTERNATIONAL JOURNAL OF EVOLUTIONARY BIOLOGY 2012; 2012:341932. [PMID: 23008799 PMCID: PMC3449122 DOI: 10.1155/2012/341932] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 06/03/2012] [Indexed: 01/26/2023]
Abstract
The gene duplication process has exhibited far greater promiscuity in the creation of paralogs with novel exon-intron structures than anticipated even by Ohno. In this paper I explore the history of the field, from the neo-Darwinian synthesis through Ohno's formulation of the canonical model for the evolution of gene duplicates and culminating in the present genomic era. I delineate the major tenets of Ohno's model and discuss its failure to encapsulate the full complexity of the duplication process as revealed in the era of genomics. I discuss the diverse classes of paralogs originating from both DNA- and RNA-mediated duplication events and their evolutionary potential for assuming radically altered functions, as well as the degree to which they can function unconstrained from the pressure of gene conversion. Lastly, I explore theoretical population-genetic considerations of how the effective population size (N(e)) of a species may influence the probability of emergence of genes with radically altered functions.
Collapse
Affiliation(s)
- Vaishali Katju
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
29
|
Froyen G, Belet S, Martinez F, Santos-Rebouças C, Declercq M, Verbeeck J, Donckers L, Berland S, Mayo S, Rosello M, Pimentel M, Fintelman-Rodrigues N, Hovland R, Rodrigues dos Santos S, Raymond F, Bose T, Corbett M, Sheffield L, van Ravenswaaij-Arts C, Dijkhuizen T, Coutton C, Satre V, Siu V, Marynen P. Copy-number gains of HUWE1 due to replication- and recombination-based rearrangements. Am J Hum Genet 2012; 91:252-64. [PMID: 22840365 DOI: 10.1016/j.ajhg.2012.06.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 05/21/2012] [Accepted: 06/21/2012] [Indexed: 12/20/2022] Open
Abstract
We previously reported on nonrecurrent overlapping duplications at Xp11.22 in individuals with nonsyndromic intellectual disability (ID) harboring HSD17B10, HUWE1, and the microRNAs miR-98 and let-7f-2 in the smallest region of overlap. Here, we describe six additional individuals with nonsyndromic ID and overlapping microduplications that segregate in the families. High-resolution mapping of the 12 copy-number gains reduced the minimal duplicated region to the HUWE1 locus only. Consequently, increased mRNA levels were detected for HUWE1, but not HSD17B10. Marker and SNP analysis, together with identification of two de novo events, suggested a paternally derived intrachromosomal duplication event. In four independent families, we report on a polymorphic 70 kb recurrent copy-number gain, which harbors part of HUWE1 (exon 28 to 3' untranslated region), including miR-98 and let-7f-2. Our findings thus demonstrate that HUWE1 is the only remaining dosage-sensitive gene associated with the ID phenotype. Junction and in silico analysis of breakpoint regions demonstrated simple microhomology-mediated rearrangements suggestive of replication-based duplication events. Intriguingly, in a single family, the duplication was generated through nonallelic homologous recombination (NAHR) with the use of HUWE1-flanking imperfect low-copy repeats, which drive this infrequent NAHR event. The recurrent partial HUWE1 copy-number gain was also generated through NAHR, but here, the homologous sequences used were identified as TcMAR-Tigger DNA elements, a template that has not yet been reported for NAHR. In summary, we showed that an increased dosage of HUWE1 causes nonsyndromic ID and demonstrated that the Xp11.22 region is prone to recombination- and replication-based rearrangements.
Collapse
|
30
|
Birkbak NJ, Wang ZC, Kim JY, Eklund AC, Li Q, Tian R, Bowman-Colin C, Li Y, Greene-Colozzi A, Iglehart JD, Tung N, Ryan PD, Garber JE, Silver DP, Szallasi Z, Richardson AL. Telomeric allelic imbalance indicates defective DNA repair and sensitivity to DNA-damaging agents. Cancer Discov 2012; 2:366-375. [PMID: 22576213 PMCID: PMC3806629 DOI: 10.1158/2159-8290.cd-11-0206] [Citation(s) in RCA: 464] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
UNLABELLED DNA repair competency is one determinant of sensitivity to certain chemotherapy drugs, such as cisplatin. Cancer cells with intact DNA repair can avoid the accumulation of genome damage during growth and also can repair platinum-induced DNA damage. We sought genomic signatures indicative of defective DNA repair in cell lines and tumors and correlated these signatures to platinum sensitivity. The number of subchromosomal regions with allelic imbalance extending to the telomere (N(tAI)) predicted cisplatin sensitivity in vitro and pathologic response to preoperative cisplatin treatment in patients with triple-negative breast cancer (TNBC). In serous ovarian cancer treated with platinum-based chemotherapy, higher levels of N(tAI) forecast a better initial response. We found an inverse relationship between BRCA1 expression and N(tAI) in sporadic TNBC and serous ovarian cancers without BRCA1 or BRCA2 mutation. Thus, accumulation of telomeric allelic imbalance is a marker of platinum sensitivity and suggests impaired DNA repair. SIGNIFICANCE Mutations in BRCA genes cause defects in DNA repair that predict sensitivity to DNA damaging agents, including platinum; however, some patients without BRCA mutations also benefit from these agents. NtAI, a genomic measure of unfaithfully repaired DNA, may identify cancer patients likely to benefit from treatments targeting defective DNA repair.
Collapse
Affiliation(s)
- Nicolai J Birkbak
- Center for Biological Sequence Analysis, Technical University of Denmark, DK-2800 Lyngby, Denmark
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215 USA
| | - Zhigang C Wang
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215 USA
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Ji-Young Kim
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115 USA
- CHA University School of Medicine, Seoul, Republic of Korea
| | - Aron C Eklund
- Center for Biological Sequence Analysis, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Qiyuan Li
- Center for Biological Sequence Analysis, Technical University of Denmark, DK-2800 Lyngby, Denmark
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215 USA
| | - Ruiyang Tian
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215 USA
| | | | - Yang Li
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215 USA
| | | | - J Dirk Iglehart
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215 USA
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Nadine Tung
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Paula D Ryan
- Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111
| | - Judy E Garber
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215 USA
| | - Daniel P Silver
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215 USA
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Zoltan Szallasi
- Center for Biological Sequence Analysis, Technical University of Denmark, DK-2800 Lyngby, Denmark
- Children's Hospital Informatics Program at the Harvard-MIT Division of Health Sciences and Technology (CHIP@HST), Harvard Medical School, Boston, MA, 02115 USA
| | - Andrea L Richardson
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215 USA
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115 USA
| |
Collapse
|
31
|
Abstract
Structural variation (SV) encompasses diverse types of genomic variants including deletions, duplications, inversions, transpositions, translocations, and complex rearrangements, and is now recognized to be an abundant class of genetic variation in mammals. Different individuals, or strains, of a given species can differ by thousands of variants. However, despite a large number of studies over the past decade and impressive progress on many fronts, there remain significant gaps in our knowledge, particularly in species other than human. Arguably the most relevant among these are genetically tractable models such as mouse, rat, and dog. The emergence of efficient and affordable DNA sequencing technologies presents an opportunity to make rapid progress toward understanding the nature, origin, and function of SV in these, and other, domesticated species. Here, we summarize the current state of knowledge of SV in mammals, with a focus on the similarities and differences between domesticated species and human. We then present methods to identify SV breakpoints from next-generation sequence (NGS) data by paired-end mapping, split-read mapping, and local assembly, and discuss challenges that arise when interpreting these data in lineages with complex breeding histories and incomplete reference genomes. We further describe technical modifications that allow for identification of variants involving repetitive DNA elements such as transposons and segmental duplications. Finally, we explore a few of the key biological insights that can be gained by applying NGS methods to model organisms.
Collapse
Affiliation(s)
- Ira M Hall
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA.
| | | |
Collapse
|
32
|
López C, Baumann T, Costa D, López-Guerra M, Navarro A, Gómez C, Arias A, Muñoz C, Rozman M, Villamor N, Colomer D, Montserrat E, Campo E, Carrió A. A new genetic abnormality leading to TP53 gene deletion in chronic lymphocytic leukaemia. Br J Haematol 2011; 156:612-8. [DOI: 10.1111/j.1365-2141.2011.08978.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
33
|
Liu P, Erez A, Nagamani SCS, Dhar SU, Kołodziejska KE, Dharmadhikari AV, Cooper ML, Wiszniewska J, Zhang F, Withers MA, Bacino CA, Campos-Acevedo LD, Delgado MR, Freedenberg D, Garnica A, Grebe TA, Hernández-Almaguer D, Immken L, Lalani SR, McLean SD, Northrup H, Scaglia F, Strathearn L, Trapane P, Kang SHL, Patel A, Cheung SW, Hastings PJ, Stankiewicz P, Lupski JR, Bi W. Chromosome catastrophes involve replication mechanisms generating complex genomic rearrangements. Cell 2011; 146:889-903. [PMID: 21925314 DOI: 10.1016/j.cell.2011.07.042] [Citation(s) in RCA: 342] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 06/06/2011] [Accepted: 07/25/2011] [Indexed: 10/25/2022]
Abstract
Complex genomic rearrangements (CGRs) consisting of two or more breakpoint junctions have been observed in genomic disorders. Recently, a chromosome catastrophe phenomenon termed chromothripsis, in which numerous genomic rearrangements are apparently acquired in one single catastrophic event, was described in multiple cancers. Here, we show that constitutionally acquired CGRs share similarities with cancer chromothripsis. In the 17 CGR cases investigated, we observed localization and multiple copy number changes including deletions, duplications, and/or triplications, as well as extensive translocations and inversions. Genomic rearrangements involved varied in size and complexities; in one case, array comparative genomic hybridization revealed 18 copy number changes. Breakpoint sequencing identified characteristic features, including small templated insertions at breakpoints and microhomology at breakpoint junctions, which have been attributed to replicative processes. The resemblance between CGR and chromothripsis suggests similar mechanistic underpinnings. Such chromosome catastrophic events appear to reflect basic DNA metabolism operative throughout an organism's life cycle.
Collapse
Affiliation(s)
- Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Stankiewicz P, Kulkarni S, Dharmadhikari AV, Sampath S, Bhatt SS, Shaikh TH, Xia Z, Pursley AN, Cooper ML, Shinawi M, Paciorkowski AR, Grange DK, Noetzel MJ, Saunders S, Simons P, Summar M, Lee B, Scaglia F, Fellmann F, Martinet D, Beckmann JS, Asamoah A, Platky K, Sparks S, Martin AS, Madan-Khetarpal S, Hoover J, Medne L, Bonnemann CG, Moeschler JB, Vallee SE, Parikh S, Irwin P, Dalzell VP, Smith WE, Banks VC, Flannery DB, Lovell CM, Bellus GA, Golden-Grant K, Gorski JL, Kussmann JL, McGregor TL, Hamid R, Pfotenhauer J, Ballif BC, Shaw CA, Kang SHL, Bacino CA, Patel A, Rosenfeld JA, Cheung SW, Shaffer LG. Recurrent deletions and reciprocal duplications of 10q11.21q11.23 including CHAT and SLC18A3 are likely mediated by complex low-copy repeats. Hum Mutat 2011; 33:165-79. [PMID: 21948486 DOI: 10.1002/humu.21614] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 09/06/2011] [Indexed: 11/11/2022]
Abstract
We report 24 unrelated individuals with deletions and 17 additional cases with duplications at 10q11.21q21.1 identified by chromosomal microarray analysis. The rearrangements range in size from 0.3 to 12 Mb. Nineteen of the deletions and eight duplications are flanked by large, directly oriented segmental duplications of >98% sequence identity, suggesting that nonallelic homologous recombination (NAHR) caused these genomic rearrangements. Nine individuals with deletions and five with duplications have additional copy number changes. Detailed clinical evaluation of 20 patients with deletions revealed variable clinical features, with developmental delay (DD) and/or intellectual disability (ID) as the only features common to a majority of individuals. We suggest that some of the other features present in more than one patient with deletion, including hypotonia, sleep apnea, chronic constipation, gastroesophageal and vesicoureteral refluxes, epilepsy, ataxia, dysphagia, nystagmus, and ptosis may result from deletion of the CHAT gene, encoding choline acetyltransferase, and the SLC18A3 gene, mapping in the first intron of CHAT and encoding vesicular acetylcholine transporter. The phenotypic diversity and presence of the deletion in apparently normal carrier parents suggest that subjects carrying 10q11.21q11.23 deletions may exhibit variable phenotypic expressivity and incomplete penetrance influenced by additional genetic and nongenetic modifiers.
Collapse
Affiliation(s)
- Paweł Stankiewicz
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Liu P, Lacaria M, Zhang F, Withers M, Hastings P, Lupski J. Frequency of nonallelic homologous recombination is correlated with length of homology: evidence that ectopic synapsis precedes ectopic crossing-over. Am J Hum Genet 2011; 89:580-8. [PMID: 21981782 DOI: 10.1016/j.ajhg.2011.09.009] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 09/14/2011] [Accepted: 09/15/2011] [Indexed: 10/16/2022] Open
Abstract
Genomic disorders constitute a class of diseases that are associated with DNA rearrangements resulting from region-specific genome instability, that is, genome architecture incites genome instability. Nonallelic homologous recombination (NAHR) or crossing-over in meiosis between sequences that are not in allelic positions (i.e., paralogous sequences) can result in recurrent deletions or duplications causing genomic disorders. Previous studies of NAHR have focused on description of the phenomenon, but it remains unclear how NAHR occurs during meiosis and what factors determine its frequency. Here we assembled two patient cohorts with reciprocal genomic disorders; deletion associated Smith-Magenis syndrome and duplication associated Potocki-Lupski syndrome. By assessing the full spectrum of rearrangement types from the two cohorts, we find that complex rearrangements (those with more than one breakpoint) are more prevalent in copy-number gains (17.7%) than in copy-number losses (2.3%); an observation that supports a role for replicative mechanisms in complex rearrangement formation. Interestingly, for NAHR-mediated recurrent rearrangements, we show that crossover frequency is positively associated with the flanking low-copy repeat (LCR) length and inversely influenced by the inter-LCR distance. To explain this, we propose that the probability of ectopic chromosome synapsis increases with increased LCR length, and that ectopic synapsis is a necessary precursor to ectopic crossing-over.
Collapse
|
36
|
Cooper DN, Bacolla A, Férec C, Vasquez KM, Kehrer-Sawatzki H, Chen JM. On the sequence-directed nature of human gene mutation: the role of genomic architecture and the local DNA sequence environment in mediating gene mutations underlying human inherited disease. Hum Mutat 2011; 32:1075-99. [PMID: 21853507 PMCID: PMC3177966 DOI: 10.1002/humu.21557] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2011] [Accepted: 06/17/2011] [Indexed: 12/21/2022]
Abstract
Different types of human gene mutation may vary in size, from structural variants (SVs) to single base-pair substitutions, but what they all have in common is that their nature, size and location are often determined either by specific characteristics of the local DNA sequence environment or by higher order features of the genomic architecture. The human genome is now recognized to contain "pervasive architectural flaws" in that certain DNA sequences are inherently mutation prone by virtue of their base composition, sequence repetitivity and/or epigenetic modification. Here, we explore how the nature, location and frequency of different types of mutation causing inherited disease are shaped in large part, and often in remarkably predictable ways, by the local DNA sequence environment. The mutability of a given gene or genomic region may also be influenced indirectly by a variety of noncanonical (non-B) secondary structures whose formation is facilitated by the underlying DNA sequence. Since these non-B DNA structures can interfere with subsequent DNA replication and repair and may serve to increase mutation frequencies in generalized fashion (i.e., both in the context of subtle mutations and SVs), they have the potential to serve as a unifying concept in studies of mutational mechanisms underlying human inherited disease.
Collapse
Affiliation(s)
- David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom.
| | | | | | | | | | | |
Collapse
|
37
|
Carmona-Mora P, Molina J, Encina CA, Walz K. Mouse models of genomic syndromes as tools for understanding the basis of complex traits: an example with the smith-magenis and the potocki-lupski syndromes. Curr Genomics 2011; 10:259-68. [PMID: 19949547 PMCID: PMC2709937 DOI: 10.2174/138920209788488508] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 04/07/2009] [Accepted: 04/09/2009] [Indexed: 11/29/2022] Open
Abstract
Each human's genome is distinguished by extra and missing DNA that can be “benign” or powerfully impact everything from development to disease. In the case of genomic disorders DNA rearrangements, such as deletions or duplications, correlate with a clinical specific phenotype. The clinical presentations of genomic disorders were thought to result from altered gene copy number of physically linked dosage sensitive genes. Genomic disorders are frequent diseases (~1 per 1,000 births). Smith-Magenis syndrome (SMS) and Potocki-Lupski syndrome (PTLS) are genomic disorders, associated with a deletion and a duplication, of 3.7 Mb respectively, within chromosome 17 band p11.2. This region includes 23 genes. Both syndromes have complex and distinctive phenotypes including multiple congenital and neurobehavioral abnormalities. Human chromosome 17p11.2 is syntenic to the 32-34 cM region of murine chromosome 11. The number and order of the genes are highly conserved. In this review, we will exemplify how genomic disorders can be modeled in mice and the advantages that such models can give in the study of genomic disorders in particular and gene copy number variation (CNV) in general. The contributions of the SMS and PTLS animal models in several aspects ranging from more specific ones, as the definition of the clinical aspects of the human clinical spectrum, the identification of dosage sensitive genes related to the human syndromes, to the more general contributions as the definition of genetic locus impacting obesity and behavior and the elucidation of general mechanisms related to the pathogenesis of gene CNV are discussed.
Collapse
|
38
|
Navarro A, Royo C, Hernández L, Jares P, Campo E. Molecular Pathogenesis of Mantle Cell Lymphoma: New Perspectives and Challenges With Clinical Implications. Semin Hematol 2011; 48:155-65. [DOI: 10.1053/j.seminhematol.2011.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
39
|
Benhammou JN, Vocke CD, Santani A, Schmidt LS, Baba M, Seyama K, Wu X, Korolevich S, Nathanson KL, Stolle CA, Linehan WM. Identification of intragenic deletions and duplication in the FLCN gene in Birt-Hogg-Dubé syndrome. Genes Chromosomes Cancer 2011; 50:466-77. [PMID: 21412933 PMCID: PMC3075348 DOI: 10.1002/gcc.20872] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 02/16/2011] [Accepted: 02/17/2011] [Indexed: 12/26/2022] Open
Abstract
Birt-Hogg-Dubé syndrome (BHDS), caused by germline mutations in the folliculin (FLCN) gene, predisposes individuals to develop fibrofolliculomas, pulmonary cysts, spontaneous pneumothoraces, and kidney cancer. The FLCN mutation detection rate by bidirectional DNA sequencing in the National Cancer Institute BHDS cohort was 88%. To determine if germline FLCN intragenic deletions/duplications were responsible for BHDS in families lacking FLCN sequence alterations, 23 individuals from 15 unrelated families with clinically confirmed BHDS but no sequence variations were analyzed by real-time quantitative PCR (RQ-PCR) using primers for all 14 exons. Multiplex ligation-dependent probe amplification (MLPA) assay and array-based comparative genomic hybridization (aCGH) were utilized to confirm and fine map the rearrangements. Long-range PCR followed by DNA sequencing was used to define the breakpoints. We identified six unique intragenic deletions in nine patients from six different BHDS families including four involving exon 1, one that spanned exons 2-5, and one that encompassed exons 7-14 of FLCN. Four of the six deletion breakpoints were mapped, revealing deletions ranging from 5688 to 9189 bp. In addition, one 1341 bp duplication, which included exons 10 and 11, was identified and mapped. This report confirms that large intragenic FLCN deletions can cause BHDS and documents the first large intragenic FLCN duplication in a BHDS patient. Additionally, we identified a deletion "hot spot" in the 5'-noncoding-exon 1 region that contains the putative FLCN promoter based on a luciferase reporter assay. RQ-PCR, MLPA and aCGH may be used for clinical molecular diagnosis of BHDS in patients who are FLCN mutation-negative by DNA sequencing.
Collapse
Affiliation(s)
| | - Cathy D. Vocke
- Urologic Oncology Branch, NCI, NIH, Bethesda, MD, 20892 USA
| | - Avni Santani
- Molecular Genetics Laboratory, Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Abramson Research Center, Philadelphia, PA USA
| | - Laura S. Schmidt
- Urologic Oncology Branch, NCI, NIH, Bethesda, MD, 20892 USA
- Basic Science Program, SAIC-Frederick, Inc., NCI-Frederick, Frederick, MD 21702 USA
| | - Masaya Baba
- Urologic Oncology Branch, NCI, NIH, Bethesda, MD, 20892 USA
| | - Kuniaki Seyama
- Department of Respiratory Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Xiaolin Wu
- Laboratory of Molecular Technology, SAIC-Frederick, Inc., NCI-Frederick, Frederick, MD 21702 USA
| | - Susana Korolevich
- Laboratory of Molecular Technology, SAIC-Frederick, Inc., NCI-Frederick, Frederick, MD 21702 USA
| | - Katherine L. Nathanson
- Abramson Cancer Center at the University of Pennsylvania and Department of Medicine, Division of Medical Genetics, University of Pennsylvania, Philadelphia, PA USA
| | - Catherine A. Stolle
- Molecular Genetics Laboratory, Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Abramson Research Center, Philadelphia, PA USA
| | | |
Collapse
|
40
|
Oshima J, Lee JA, Breman AM, Fernandes PH, Babovic-Vuksanovic D, Ward PA, Wolfe LA, Eng CM, Del Gaudio D. LCR-initiated rearrangements at the IDS locus, completed with Alu-mediated recombination or non-homologous end joining. J Hum Genet 2011; 56:516-23. [PMID: 21593745 DOI: 10.1038/jhg.2011.51] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mucopolysaccharidosis type II (MPS II) is caused by mutations in the IDS gene, which encodes the lysosomal enzyme iduronate-2-sulfatase. In ∼20% of MPS II patients the disorder is caused by gross IDS structural rearrangements. We identified two male cases harboring complex rearrangements involving the IDS gene and the nearby pseudogene, IDSP1, which has been annotated as a low-copy repeat (LCR). In both cases the rearrangement included a partial deletion of IDS and an inverted insertion of the neighboring region. In silico analyses revealed the presence of repetitive elements as well as LCRs at the junctions of rearrangements. Our models illustrate two alternative consequences of rearrangements initiated by non-allelic homologous recombination of LCRs: resolution by a second recombination event (that is, Alu-mediated recombination), or resolution by non-homologous end joining repair. These complex rearrangements have the potential to be recurrent and may be present among those MSP II cases with previously uncharacterized aberrations involving IDS.
Collapse
Affiliation(s)
- Junko Oshima
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Smith–Magenis syndrome: haploinsufficiency of RAI1 results in altered gene regulation in neurological and metabolic pathways. Expert Rev Mol Med 2011; 13:e14. [DOI: 10.1017/s1462399411001827] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Smith–Magenis syndrome (SMS) is a complex neurobehavioural disorder characterised by intellectual disability, self-injurious behaviours, sleep disturbance, obesity, and craniofacial and skeletal anomalies. Diagnostic strategies are focused towards identification of a 17p11.2 microdeletion encompassing the gene RAI1 (retinoic acid induced 1) or a mutation of RAI1. Molecular evidence shows that most SMS features are due to RAI1 haploinsufficiency, whereas variability and severity are modified by other genes in the 17p11.2 region for 17p11.2 deletion cases. The functional role of RAI1 is not completely understood, but it is probably a transcription factor acting in several different biological pathways that are dysregulated in SMS. Functional studies based on the hypothesis that RAI1 acts through phenotype-specific pathways involving several downstream genes have shown that RAI1 gene dosage is crucial for normal regulation of circadian rhythm, lipid metabolism and neurotransmitter function. Here, we review the clinical and molecular features of SMS and explore more recent studies supporting possible therapeutic strategies for behavioural management.
Collapse
|
42
|
Hu TT, Pattyn P, Bakker EG, Cao J, Cheng JF, Clark RM, Fahlgren N, Fawcett JA, Grimwood J, Gundlach H, Haberer G, Hollister JD, Ossowski S, Ottilar RP, Salamov AA, Schneeberger K, Spannagl M, Wang X, Yang L, Nasrallah ME, Bergelson J, Carrington JC, Gaut BS, Schmutz J, Mayer KFX, Van de Peer Y, Grigoriev IV, Nordborg M, Weigel D, Guo YL. The Arabidopsis lyrata genome sequence and the basis of rapid genome size change. Nat Genet 2011; 43:476-81. [PMID: 21478890 PMCID: PMC3083492 DOI: 10.1038/ng.807] [Citation(s) in RCA: 618] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 03/18/2011] [Indexed: 12/19/2022]
Abstract
We report the 207-Mb genome sequence of the North American Arabidopsis lyrata strain MN47 based on 8.3× dideoxy sequence coverage. We predict 32,670 genes in this outcrossing species compared to the 27,025 genes in the selfing species Arabidopsis thaliana. The much smaller 125-Mb genome of A. thaliana, which diverged from A. lyrata 10 million years ago, likely constitutes the derived state for the family. We found evidence for DNA loss from large-scale rearrangements, but most of the difference in genome size can be attributed to hundreds of thousands of small deletions, mostly in noncoding DNA and transposons. Analysis of deletions and insertions still segregating in A. thaliana indicates that the process of DNA loss is ongoing, suggesting pervasive selection for a smaller genome. The high-quality reference genome sequence for A. lyrata will be an important resource for functional, evolutionary and ecological studies in the genus Arabidopsis.
Collapse
Affiliation(s)
- Tina T Hu
- Molecular and Computational Biology, University of Southern California, Los Angeles, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Wooderchak W, Gedge F, McDonald M, Krautscheid P, Wang X, Malkiewicz J, Bukjiok CJ, Lewis T, Bayrak-Toydemir P. Hereditary hemorrhagic telangiectasia: two distinct ENG deletions in one family. Clin Genet 2011; 78:484-9. [PMID: 20412114 DOI: 10.1111/j.1399-0004.2010.01418.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant disorder characterized by aberrant vascular development. Mutations in endoglin (ENG) or activin A receptor type II-like 1 (ACVRL1) account for around 90% of HHT patients, 10% of those are large deletions or duplications. We report here the first observation of two distinct, large ENG deletions segregating in one pedigree. An ENG exon 4-7 deletion was observed in a patient with HHT. This deletion was identified in several affected family members. However, some affected family members had an ENG exon 3 deletion instead. These deletions were detected by multiplex ligation-dependent probe amplification and confirmed by mRNA sequencing and an oligo-CGH array. Linkage analysis revealed that one individual with the exon 3 deletion inherited the same chromosome from his mother who has the exon 4-7 deletion. This finding has important clinical implications because it shows that targeted family-specific mutation analysis for exon deletions could have led to the misdiagnosis of some affected family members.
Collapse
Affiliation(s)
- W Wooderchak
- ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, UT, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Willemsen MH, Beunders G, Callaghan M, de Leeuw N, Nillesen WM, Yntema HG, van Hagen JM, Nieuwint AWM, Morrison N, Keijzers-Vloet STM, Hoischen A, Brunner HG, Tolmie J, Kleefstra T. Familial Kleefstra syndrome due to maternal somatic mosaicism for interstitial 9q34.3 microdeletions. Clin Genet 2011; 80:31-8. [PMID: 21204793 DOI: 10.1111/j.1399-0004.2010.01607.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The Kleefstra syndrome (Online Mendelian Inheritance in Man 607001) is caused by a submicroscopic 9q34.3 deletion or by intragenic euchromatin histone methyl transferase 1 (EHMT1) mutations. So far only de novo occurrence of mutations has been reported, whereas 9q34.3 deletions can be either de novo or caused by complex chromosomal rearrangements or translocations. Here we give the first descriptions of affected parent-to-child transmission of Kleefstra syndrome caused by small interstitial deletions, approximately 200 kb, involving part of the EHMT1 gene. Additional genome-wide array studies in the parents showed the presence of similar deletions in both mothers who only had mild learning difficulties and minor facial characteristics suggesting either variable clinical expression or somatic mosaicism for these deletions. Further studies showed only one of the maternal deletions resulted in significantly quantitative differences in signal intensity on the array between the mother and her child. But by investigating different tissues with additional fluorescent in situ hybridization (FISH) and multiplex ligation-dependent probe amplification (MLPA) analyses, we confirmed somatic mosaicism in both mothers. Careful clinical and cytogenetic assessments of parents of an affected proband with an (interstitial) 9q34.3 microdeletion are merited for accurate estimation of recurrence risk.
Collapse
Affiliation(s)
- M H Willemsen
- Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands Department of Clinical Genetics, VU University Medical Centre, Amsterdam, the Netherlands Department of Medical Genetics, Ferguson Smith Centre, Yorkhill Hospital, Glasgow, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Theisen A, Shaffer LG. Disorders caused by chromosome abnormalities. APPLICATION OF CLINICAL GENETICS 2010; 3:159-74. [PMID: 23776360 PMCID: PMC3681172 DOI: 10.2147/tacg.s8884] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Many human genetic disorders result from unbalanced chromosome abnormalities, in which there is a net gain or loss of genetic material. Such imbalances often disrupt large numbers of dosage-sensitive, developmentally important genes and result in specific and complex phenotypes. Alternately, some chromosomal syndromes may be caused by a deletion or duplication of a single gene with pleiotropic effects. Traditionally, chromosome abnormalities were identified by visual inspection of the chromosomes under a microscope. The use of molecular cytogenetic technologies, such as fluorescence in situ hybridization and microarrays, has allowed for the identification of cryptic or submicroscopic imbalances, which are not visible under the light microscope. Microarrays have allowed for the identification of numerous new syndromes through a genotype-first approach in which patients with the same or overlapping genomic alterations are identified and then the phenotypes are described. Because many chromosomal alterations are large and encompass numerous genes, the ascertainment of individuals with overlapping deletions and varying clinical features may allow researchers to narrow the region in which to search for candidate genes.
Collapse
|
46
|
Scott SA, Cohen N, Brandt T, Warburton PE, Edelmann L. Large inverted repeats within Xp11.2 are present at the breakpoints of isodicentric X chromosomes in Turner syndrome. Hum Mol Genet 2010; 19:3383-93. [PMID: 20570968 PMCID: PMC2916707 DOI: 10.1093/hmg/ddq250] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 06/03/2010] [Accepted: 06/14/2010] [Indexed: 02/01/2023] Open
Abstract
Turner syndrome (TS) results from whole or partial monosomy X and is mediated by haploinsufficiency of genes that normally escape X-inactivation. Although a 45,X karyotype is observed in half of all TS cases, the most frequent variant TS karyotype includes the isodicentric X chromosome alone [46,X,idic(X)(p11)] or as a mosaic [46,X,idic(X)(p11)/45,X]. Given the mechanism of idic(X)(p11) rearrangement is poorly understood and breakpoint sequence information is unknown, this study sought to investigate the molecular mechanism of idic(X)(p11) formation by determining their precise breakpoint intervals. Karyotype analysis and fluorescence in situ hybridization mapping of eight idic(X)(p11) cell lines and three unbalanced Xp11.2 translocation lines identified the majority of breakpoints within a 5 Mb region, from approximately 53 to 58 Mb, in Xp11.1-p11.22, clustering into four regions. To further refine the breakpoints, a high-resolution oligonucleotide microarray (average of approximately 350 bp) was designed and array-based comparative genomic hybridization (aCGH) was performed on all 11 idic(X)(p11) and Xp11.2 translocation lines. aCGH analyses identified all breakpoint regions, including an idic(X)(p11) line with two potential breakpoints, one breakpoint shared between two idic(X)(p11) lines and two Xp translocations that shared breakpoints with idic(X)(p11) lines. Four of the breakpoint regions included large inverted repeats composed of repetitive gene clusters and segmental duplications, which corresponded to regions of copy-number variation. These data indicate that the rearrangement sites on Xp11.2 that lead to isodicentric chromosome formation and translocations are probably not random and suggest that the complex repetitive architecture of this region predisposes it to rearrangements, some of which are recurrent.
Collapse
Affiliation(s)
| | | | | | | | - Lisa Edelmann
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine of New York University, New York 10029, USA
| |
Collapse
|
47
|
Zhang F, Seeman P, Liu P, Weterman MA, Gonzaga-Jauregui C, Towne CF, Batish SD, De Vriendt E, De Jonghe P, Rautenstrauss B, Krause KH, Khajavi M, Posadka J, Vandenberghe A, Palau F, Van Maldergem L, Baas F, Timmerman V, Lupski JR. Mechanisms for nonrecurrent genomic rearrangements associated with CMT1A or HNPP: rare CNVs as a cause for missing heritability. Am J Hum Genet 2010; 86:892-903. [PMID: 20493460 DOI: 10.1016/j.ajhg.2010.05.001] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2010] [Revised: 04/28/2010] [Accepted: 05/03/2010] [Indexed: 12/20/2022] Open
Abstract
Genomic rearrangements involving the peripheral myelin protein gene (PMP22) in human chromosome 17p12 are associated with neuropathy: duplications cause Charcot-Marie-Tooth disease type 1A (CMT1A), whereas deletions lead to hereditary neuropathy with liability to pressure palsies (HNPP). Our previous studies showed that >99% of these rearrangements are recurrent and mediated by nonallelic homologous recombination (NAHR). Rare copy number variations (CNVs) generated by nonrecurrent rearrangements also exist in 17p12, but their underlying mechanisms are not well understood. We investigated 21 subjects with rare CNVs associated with CMT1A or HNPP by oligonucleotide-based comparative genomic hybridization microarrays and breakpoint sequence analyses, and we identified 17 unique CNVs, including two genomic deletions, ten genomic duplications, two complex rearrangements, and three small exonic deletions. Each of these CNVs includes either the entire PMP22 gene, or exon(s) only, or ultraconserved potential regulatory sequences upstream of PMP22, further supporting the contention that PMP22 is the critical gene mediating the neuropathy phenotypes associated with 17p12 rearrangements. Breakpoint sequence analysis reveals that, different from the predominant NAHR mechanism in recurrent rearrangement, various molecular mechanisms, including nonhomologous end joining, Alu-Alu-mediated recombination, and replication-based mechanisms (e.g., FoSTeS and/or MMBIR), can generate nonrecurrent 17p12 rearrangements associated with neuropathy. We document a multitude of ways in which gene function can be altered by CNVs. Given the characteristics, including small size, structural complexity, and location outside of coding regions, of selected rare CNVs, their identification remains a challenge for genome analysis. Rare CNVs may potentially represent an important portion of "missing heritability" for human diseases.
Collapse
|
48
|
Bartsch O, Gebauer K, Lechno S, van Esch H, Froyen G, Bonin M, Seidel J, Thamm-Mücke B, Horn D, Klopocki E, Hertzberg C, Zechner U, Haaf T. Four unrelated patients with Lubs X-linked mental retardation syndrome and different Xq28 duplications. Am J Med Genet A 2010; 152A:305-12. [PMID: 20082459 DOI: 10.1002/ajmg.a.33198] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The Lubs X-linked mental retardation syndrome (MRXSL) is caused by small interstitial duplications at distal Xq28 including the MECP2 gene. Here we report on four novel male patients with MRXSL and different Xq28 duplications delineated by microarray-based chromosome analysis. All mothers were healthy carriers of the duplications. Consistent with an earlier report [Bauters et al. (2008); Genome Res 18: 847-858], the distal breakpoints of all four Xq28 duplications were located in regions containing low-copy repeats (LCRs; J, K, and L groups), which may facilitate chromosome breakage and reunion events. The proximal breakpoint regions did not contain known LCRs. Interestingly, we identified apparent recurrent breakage sites in the proximal and distal breakpoint regions. Two of the four patients displayed more complex rearrangements. Patient 2 was endowed with a quadruplicated segment and a small triplication within the duplication, whereas patient 3 displayed two triplicated segments within the duplication, supporting that the Fork Stalling and Template Switching (FoSTeS) model may explain a subset of the structural rearrangements in Xq28. Clinically, muscular hypertonia and contractures of large joints may present a major problem in children with MRXSL. Because injection of botulinum toxin (BT-A; Botox) proved to be extremely helpful for patient 1, we recommend consideration of Botox treatment in other patients with MRXSL and severe joint contractures.
Collapse
Affiliation(s)
- Oliver Bartsch
- Institut für Humangenetik, Universitätsmedizin der Johannes Gutenberg-Universität Mainz, Mainz, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Quinlan AR, Clark RA, Sokolova S, Leibowitz ML, Zhang Y, Hurles ME, Mell JC, Hall IM. Genome-wide mapping and assembly of structural variant breakpoints in the mouse genome. Genome Res 2010; 20:623-35. [PMID: 20308636 DOI: 10.1101/gr.102970.109] [Citation(s) in RCA: 202] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Structural variation (SV) is a rich source of genetic diversity in mammals, but due to the challenges associated with mapping SV in complex genomes, basic questions regarding their genomic distribution and mechanistic origins remain unanswered. We have developed an algorithm (HYDRA) to localize SV breakpoints by paired-end mapping, and a general approach for the genome-wide assembly and interpretation of breakpoint sequences. We applied these methods to two inbred mouse strains: C57BL/6J and DBA/2J. We demonstrate that HYDRA accurately maps diverse classes of SV, including those involving repetitive elements such as transposons and segmental duplications; however, our analysis of the C57BL/6J reference strain shows that incomplete reference genome assemblies are a major source of noise. We report 7196 SVs between the two strains, more than two-thirds of which are due to transposon insertions. Of the remainder, 59% are deletions (relative to the reference), 26% are insertions of unlinked DNA, 9% are tandem duplications, and 6% are inversions. To investigate the origins of SV, we characterized 3316 breakpoint sequences at single-nucleotide resolution. We find that approximately 16% of non-transposon SVs have complex breakpoint patterns consistent with template switching during DNA replication or repair, and that this process appears to preferentially generate certain classes of complex variants. Moreover, we find that SVs are significantly enriched in regions of segmental duplication, but that this effect is largely independent of DNA sequence homology and thus cannot be explained by non-allelic homologous recombination (NAHR) alone. This result suggests that the genetic instability of such regions is often the cause rather than the consequence of duplicated genomic architecture.
Collapse
Affiliation(s)
- Aaron R Quinlan
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Zhang F, Potocki L, Sampson JB, Liu P, Sanchez-Valle A, Robbins-Furman P, Navarro AD, Wheeler PG, Spence JE, Brasington CK, Withers MA, Lupski JR. Identification of uncommon recurrent Potocki-Lupski syndrome-associated duplications and the distribution of rearrangement types and mechanisms in PTLS. Am J Hum Genet 2010; 86:462-70. [PMID: 20188345 DOI: 10.1016/j.ajhg.2010.02.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 01/26/2010] [Accepted: 02/01/2010] [Indexed: 10/19/2022] Open
Abstract
Nonallelic homologous recombination (NAHR) can mediate recurrent rearrangements in the human genome and cause genomic disorders. Smith-Magenis syndrome (SMS) and Potocki-Lupski syndrome (PTLS) are genomic disorders associated with a 3.7 Mb deletion and its reciprocal duplication in 17p11.2, respectively. In addition to these common recurrent rearrangements, an uncommon recurrent 5 Mb SMS-associated deletion has been identified. However, its reciprocal duplication predicted by the NAHR mechanism had not been identified. Here we report the molecular assays on 74 subjects with PTLS-associated duplications, 35 of whom are newly investigated. By both oligonucleotide-based comparative genomic hybridization and recombination hot spot analyses, we identified two cases of the predicted 5 Mb uncommon recurrent PTLS-associated duplication. Interestingly, the crossovers occur in proximity to a recently delineated allelic homologous recombination (AHR) hot spot-associated sequence motif, further documenting the common hot spot features shared between NAHR and AHR. An additional eight subjects with nonrecurrent PTLS duplications were identified. The smallest region of overlap (SRO) for all of the 74 PTLS duplications examined is narrowed to a 125 kb interval containing only RAI1, a gene recently further implicated in autism. Sequence complexities consistent with DNA replication-based mechanisms were identified in four of eight (50%) newly identified nonrecurrent PTLS duplications. Our findings of the uncommon recurrent PTLS-associated duplication at a relative prevalence reflecting the de novo mutation rate and the distribution of 17p11.2 duplication types in PTLS reveal insights into both the contributions of new mutations and the different underlying mechanisms that generate genomic rearrangements causing genomic disorders.
Collapse
|