1
|
Parsania M, Khorrami SMS, Hasanzad M, Parsania N, Nagozir S, Mokhtari N, Habibabadi HM, Ghaziasadi A, Soltani S, Jafarpour A, Pakzad R, Jazayeri SM. Association of polymorphisms in TLR3 and TLR7 genes with susceptibility to COVID-19 among Iranian population: a retrospective case-control study. IRANIAN JOURNAL OF MICROBIOLOGY 2024; 16:114-123. [PMID: 38682063 PMCID: PMC11055434 DOI: 10.18502/ijm.v16i1.14880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Background and Objectives Host genetic changes like single nucleotide polymorphisms (SNPs) are one of the main factors influencing susceptibility to viral infectious diseases. This study aimed to investigate the association between the host SNP of Toll-Like Receptor3 (TLR3) and Toll-Like Receptor7 (TLR7) genes involved in the immune system and susceptibility to COVID-19 in a sample of the Iranian population. Materials and Methods This retrospective case-control study evaluated 244 hospitalized COVID-19 patients as the case group and 156 suspected COVID-19 patients with mild signs as the control group. The genomic DNA of patients was genotyped for TLR7 (rs179008 and rs179009) and TLR3 (rs3775291 and rs3775296) SNPs using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Results A significant association between rs179008 SNP in the TLR7 gene and the susceptibility of COVID-19 was found between case and control groups. The AT genotype (Heterozygous) of TLR7 rs179008 A>T polymorphism showed a significant association with a 2.261-fold increased odds of COVID-19 (P=0.003; adjusted OR: 2.261; 99% CI: 1.117-4.575). In addition, a significant association between TC genotype of TLR7 rs179009 T>C polymorphism and increased odds of COVID-19 (P<0.0001; adjusted OR: 6.818; 99% CI: 3.149-14.134) were determined. The polymorphism frequency of TLR3 rs3775291 and rs3775296 genotypes were not significantly different between the case and control groups (P> 0.004167). Conclusion SNPs in TLR7 rs179008 and rs179009 genotypes are considered host genetic factors that could be influenced individual susceptibility to COVID-19. The SNPs in TLR3 (rs3775296 and rs3775291) showed no significant association with COVID-19 in Iranian population.
Collapse
Affiliation(s)
- Masoud Parsania
- Department of Microbiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Mandana Hasanzad
- Medical Genomics Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Personalized Medicine Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Negar Parsania
- Medical Genomics Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sina Nagozir
- Medical Genomics Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Narges Mokhtari
- Medical Genomics Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Azam Ghaziasadi
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Saber Soltani
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Jafarpour
- Amir-al-Momenin Medical and Educational Center, Gerash University of Medical Sciences, Gerash, Iran
| | - Reza Pakzad
- Department of Epidemiology, Faculty of Health, Ilam University of Medical Sciences, Ilam, Iran
| | - Seyed Mohammad Jazayeri
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
de Almeida Baptista MV, da Silva LT, Samer S, Oshiro TM, Shytaj IL, Giron LB, Pena NM, Cruz N, Gosuen GC, Ferreira PRA, Cunha-Neto E, Galinskas J, Dias D, Sucupira MCA, de Almeida-Neto C, Salomão R, da Silva Duarte AJ, Janini LM, Hunter JR, Savarino A, Juliano MA, Diaz RS. Immunogenicity of personalized dendritic-cell therapy in HIV-1 infected individuals under suppressive antiretroviral treatment: interim analysis from a phase II clinical trial. AIDS Res Ther 2022; 19:2. [PMID: 35022035 PMCID: PMC8753935 DOI: 10.1186/s12981-021-00426-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/16/2021] [Indexed: 11/12/2022] Open
Abstract
Background We developed a personalized Monocyte-Derived Dendritic-cell Therapy (MDDCT) for HIV-infected individuals on suppressive antiretroviral treatment and evaluated HIV-specific T-cell responses. Methods PBMCs were obtained from 10 HIV+ individuals enrolled in trial NCT02961829. Monocytes were differentiated into DCs using IFN-α and GM-CSF. After sequencing each patient’s HIV-1 Gag and determining HLA profiles, autologous Gag peptides were selected based on the predicted individual immunogenicity and used to pulse MDDCs. Three doses of the MDDCT were administered every 15 days. To assess immunogenicity, patients’ cells were stimulated in vitro with autologous peptides, and intracellular IL-2, TNF, and interferon-gamma (IFN-γ) production were measured in CD4+ and CD8+ T-cells. Results The protocol of ex-vivo treatment with IFN-α and GM-CSF was able to induce maturation of MDDCs, as well as to preserve their viability for reinfusion. MDDCT administration was associated with increased expression of IL-2 in CD4+ and CD8+ T-cells at 15 and/or 30 days after the first MDDCT administration. Moreover, intracellular TNF and IFN-γ expression was significantly increased in CD4+ T-cells. The number of candidates that increased in vitro the cytokine levels in CD4+ and CD8+ T cells upon stimulation with Gag peptides from baseline to day 15 and from baseline to day 30 and day 120 after MDDCT was significant as compared to Gag unstimulated response. This was accompanied by an increasing trend in the frequency of polyfunctional T-cells over time, which was visible when considering both cells expressing two and three out of the three cytokines examined. Conclusions MDDC had a mature profile, and this MDDCT promoted in-vitro T-cell immune responses in HIV-infected patients undergoing long-term suppressive antiretroviral treatment. Trial registration NCT02961829: (Multi Interventional Study Exploring HIV-1 Residual Replication: a Step Towards HIV-1 Eradication and Sterilizing Cure, https://www.clinicaltrials.gov/ct2/show/NCT02961829, posted November 11th, 2016) Supplementary Information The online version contains supplementary material available at 10.1186/s12981-021-00426-z.
Collapse
|
3
|
Kim H, Zhang W, Hwang J, An EK, Choi YK, Moon E, Loznik M, Huh YH, Herrmann A, Kwak M, Jin JO. Carrier-free micellar CpG interacting with cell membrane for enhanced immunological treatment of HIV-1. Biomaterials 2021; 277:121081. [PMID: 34481291 DOI: 10.1016/j.biomaterials.2021.121081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 10/20/2022]
Abstract
Unmethylated CpG motifs activate toll-like receptor 9 (TLR9), leading to sequence- and species-specific immune stimulation. Here, we engineered a CpG oligodeoxyribonucleotide (ODN) with multiple hydrophobic moieties, so-called lipid-modified uracil, which resulted in a facile micelle formation of the stimulant. The self-assembled CpG nanostructure (U4CpG) containing the ODN 2216 sequence was characterized by various spectroscopic and microscopic methods together with molecular dynamics simulations. Next, we evaluated the nano-immunostimulant for enhancement of anti-HIV immunity. U4CpG treatment induced activation of plasmacytoid dendritic cells (pDCs) and natural killer (NK) cells in healthy human peripheral blood, which produced type I interferons (IFNs) and IFN-γ in human peripheral blood mononuclear cells (PBMCs). Moreover, we validated the activation and promotion efficacy of U4CpG in patient-derived blood cells, and HIV-1 spread was significantly suppressed by a low dosage of the immunostimulant. Furthermore, U4CpG-treated PBMC cultured medium elicited transcription of latent HIV-1 in U1 cells indicating that U4CpG reversed HIV-1 latency. Thus, the functions of U4CpG in eradicating HIV-1 by enhancing immunity and reversing latency make the material a potential candidate for clinical studies dealing with viral infection.
Collapse
Affiliation(s)
- Haejoo Kim
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai, 201508, China; Department of Chemistry and Industry 4.0 Convergence Bionics Engineering, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan, 48513, Republic of Korea
| | - Wei Zhang
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai, 201508, China
| | - Juyoung Hwang
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai, 201508, China; Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Republic of Korea; Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Eun-Koung An
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Republic of Korea; Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Yeol Kyo Choi
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Eunyoung Moon
- Center for Electron Microscopy Research, Korea Basic Science Institute, Chungcheongbuk-do, 28119, Republic of Korea
| | - Mark Loznik
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstrasse 50, 52056, Aachen, Germany; Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Yang Hoon Huh
- Center for Electron Microscopy Research, Korea Basic Science Institute, Chungcheongbuk-do, 28119, Republic of Korea
| | - Andreas Herrmann
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstrasse 50, 52056, Aachen, Germany; Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Minseok Kwak
- Department of Chemistry and Industry 4.0 Convergence Bionics Engineering, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan, 48513, Republic of Korea; DWI-Leibniz Institute for Interactive Materials, Forckenbeckstrasse 50, 52056, Aachen, Germany.
| | - Jun-O Jin
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai, 201508, China; Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Republic of Korea; Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
4
|
Salahong T, Schwartz C, Sungthong R. Are BET Inhibitors yet Promising Latency-Reversing Agents for HIV-1 Reactivation in AIDS Therapy? Viruses 2021; 13:v13061026. [PMID: 34072421 PMCID: PMC8228869 DOI: 10.3390/v13061026] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 12/26/2022] Open
Abstract
AIDS first emerged decades ago; however, its cure, i.e., eliminating all virus sources, is still unachievable. A critical burden of AIDS therapy is the evasive nature of HIV-1 in face of host immune responses, the so-called "latency." Recently, a promising approach, the "Shock and Kill" strategy, was proposed to eliminate latently HIV-1-infected cell reservoirs. The "Shock and Kill" concept involves two crucial steps: HIV-1 reactivation from its latency stage using a latency-reversing agent (LRA) followed by host immune responses to destroy HIV-1-infected cells in combination with reinforced antiretroviral therapy to kill the progeny virus. Hence, a key challenge is to search for optimal LRAs. Looking at epigenetics of HIV-1 infection, researchers proved that some bromodomains and extra-terminal motif protein inhibitors (BETis) are able to reactivate HIV-1 from latency. However, to date, only a few BETis have shown HIV-1-reactivating functions, and none of them have yet been approved for clinical trial. In this review, we aim to demonstrate the epigenetic roles of BETis in HIV-1 infection and HIV-1-related immune responses. Possible future applications of BETis and their HIV-1-reactivating properties are summarized and discussed.
Collapse
Affiliation(s)
- Thanarat Salahong
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand;
| | - Christian Schwartz
- Research Unit 7292, DHPI, IUT Louis Pasteur, University of Strasbourg, 67300 Schiltigheim, France
- Correspondence: (C.S.); (R.S.)
| | - Rungroch Sungthong
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK
- Laboratory of Hydrology and Geochemistry of Strasbourg, University of Strasbourg, UMR 7517 CNRS/EOST, 67084 Strasbourg CEDEX, France
- Correspondence: (C.S.); (R.S.)
| |
Collapse
|
5
|
Huang Z, Kang SG, Li Y, Zak J, Shaabani N, Deng K, Shepherd J, Bhargava R, Teijaro JR, Xiao C. IFNAR1 signaling in NK cells promotes persistent virus infection. SCIENCE ADVANCES 2021; 7:7/13/eabb8087. [PMID: 33771858 PMCID: PMC7997497 DOI: 10.1126/sciadv.abb8087] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
Inhibition of type 1 interferon (IFN-I) signaling promotes the control of persistent virus infection, but the underlying mechanisms remain poorly understood. Here, we report that genetic ablation of Ifnar1 specifically in natural killer (NK) cells led to elevated numbers of T follicular helper cells, germinal center B cells, and plasma cells and improved antiviral T cell function, resulting in hastened virus clearance that was comparable to IFNAR1 neutralizing antibody treatment. Antigen-specific B cells and antiviral antibodies were essential for the accelerated control of LCMV Cl13 infection following IFNAR1 blockade. IFNAR1 signaling in NK cells promoted NK cell function and general killing of antigen-specific CD4 and CD8 T cells. Therefore, inhibition of IFN-I signaling in NK cells enhances CD4 and CD8 T cell responses, promotes humoral immune responses, and thereby facilitates the control of persistent virus infection.
Collapse
Affiliation(s)
- Zhe Huang
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Seung Goo Kang
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Molecular Bioscience/Institute of Bioscience and Biotechnology, College of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Yunqiao Li
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jaroslav Zak
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Namir Shaabani
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Kaiyuan Deng
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- School of Medicine, Nankai University, Tianjin 30071, China
| | - Jovan Shepherd
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Raag Bhargava
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - John R Teijaro
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Changchun Xiao
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
6
|
Teer E, Joseph DE, Glashoff RH, Faadiel Essop M. Monocyte/Macrophage-Mediated Innate Immunity in HIV-1 Infection: From Early Response to Late Dysregulation and Links to Cardiovascular Diseases Onset. Virol Sin 2021; 36:565-576. [PMID: 33400091 DOI: 10.1007/s12250-020-00332-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/26/2020] [Indexed: 12/11/2022] Open
Abstract
Although monocytes and macrophages are key mediators of the innate immune system, the focus has largely been on the role of the adaptive immune system in the context of human immunodeficiency virus (HIV) infection. Thus more attention and research work regarding the innate immune system-especially the role of monocytes and macrophages during early HIV-1 infection-is required. Blood monocytes and tissue macrophages are both susceptible targets of HIV-1 infection, and the early host response can determine whether the nature of the infection becomes pathogenic or not. For example, monocytes and macrophages can contribute to the HIV reservoir and viral persistence, and influence the initiation/extension of immune activation and chronic inflammation. Here the expansion of monocyte subsets (classical, intermediate and non-classical) provide an increased understanding of the crucial role they play in terms of chronic inflammation and also by increasing the risk of coagulation during HIV-1 infection. This review discusses the role of monocytes and macrophages during HIV-1 pathogenesis, starting from the early response to late dysregulation that occurs as a result of persistent immune activation and chronic inflammation. Such changes are also linked to downstream targets such as increased coagulation and the onset of cardiovascular diseases.
Collapse
Affiliation(s)
- Eman Teer
- Centre for Cardio-metabolic Research in Africa (CARMA), Department of Physiological Sciences, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Danzil E Joseph
- Centre for Cardio-metabolic Research in Africa (CARMA), Department of Physiological Sciences, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Richard H Glashoff
- Division of Medical Microbiology & Immunology, Department of Pathology, Stellenbosch University and NHLS, Cape Town, 7505, South Africa
| | - M Faadiel Essop
- Centre for Cardio-metabolic Research in Africa (CARMA), Department of Physiological Sciences, Stellenbosch University, Stellenbosch, 7600, South Africa.
| |
Collapse
|
7
|
Zhang T, Zhu J, Su B, Cao L, Li Z, Wei H, Huang X, Zheng K, Li A, Chen N, Liu L, Xia W, Wu H, He Q. Effects of TLR7 Polymorphisms on the Susceptibility and Progression of HIV-1 Infection in Chinese MSM Population. Front Immunol 2020; 11:589010. [PMID: 33193416 PMCID: PMC7649213 DOI: 10.3389/fimmu.2020.589010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/05/2020] [Indexed: 12/12/2022] Open
Abstract
Toll-like receptor (TLR) 7 plays a key role in innate and adaptive immunity for HIV-1 infection. We evaluated the effect of TLR7 polymorphisms on disease susceptibility and progression of HIV-1 infection in Chinese MSM (men who have sex with men). Blood samples were taken from 270 patients with laboratory confirmed HIV infection, 196 male controls were tested, and three TLR7 intronic polymorphisms (rs179010-C > T, X:12884766; rs2074109-T > C, X:12885330; and rs179009-A > G, X:12885361) were analyzed by PCR-based sequencing. The frequency of TLR7 rs179010 T allele was significantly lower in MSM patients than in controls (P = 0.039). The haplotype TTA was associated with a decreased susceptibility to HIV-1 infection (P = 0.013), especially to acute HIV-1 infection (AHI) (P = 0.002), but not to chronic HIV-1 infection (CHI). Furthermore, the haplotype TTA is linked to slow disease progression in AHI patients (P = 0.002) and a lower viral load (P = 0.042). In contrast, TLR7 rs179009 allele A contributed to a higher set point in AHI patients with rapid progression, and the frequency of rs179009 minor allele G was over-presented in CHI patients. This finding supports a role for genetic variations of TLR7 in susceptibility and disease progression of an HIV-1 infection in Chinese Han population and warrants further studies on the effect of TLR7 polymorphisms on HIV-1 infection in different populations.
Collapse
Affiliation(s)
- Tong Zhang
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Junping Zhu
- Department of Medical Microbiology and Research Centre of Microbiome, Capital Medical University, Beijing, China
| | - Bin Su
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Lina Cao
- Department of Medical Microbiology and Research Centre of Microbiome, Capital Medical University, Beijing, China
| | - Zhen Li
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Huanhuan Wei
- Department of Medical Microbiology and Research Centre of Microbiome, Capital Medical University, Beijing, China
| | - Xiaojie Huang
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Kai Zheng
- Department of Medical Microbiology and Research Centre of Microbiome, Capital Medical University, Beijing, China
| | - Aixin Li
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Ning Chen
- Department of Medical Microbiology and Research Centre of Microbiome, Capital Medical University, Beijing, China
| | - Lifeng Liu
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Wei Xia
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Hao Wu
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Qiushui He
- Department of Medical Microbiology and Research Centre of Microbiome, Capital Medical University, Beijing, China.,Department of Medical Microbiology and Immunology, University of Turku, Turku, Finland
| |
Collapse
|
8
|
Dabee S, Mkhize NN, Jaspan HB, Lewis D, Gumbi PP, Passmore JAS. Initiation of Antiretroviral Therapy Differentially Influences Genital and Systemic Immune Activation in HIV-Infected Women. AIDS Res Hum Retroviruses 2020; 36:821-830. [PMID: 32524856 DOI: 10.1089/aid.2019.0268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Antiretroviral therapy (ART) has significantly improved the quality of life of HIV-infected individuals: reducing plasma viremia, restoring CD4+ T cell numbers, and correcting imbalances in blood memory T cell subsets. While ART improves immune correlates at mucosal sites, including the lower female genital tract (FGT), ART initiation has been associated with reactivation of common FGT infections. We investigated the effect of ART on immune activation and inflammation in the genital tract. We measured blood and genital T cell activation, proliferation, and immunosenescence (CD38, HLADR, Ki67, CD127, and CD57), and cytokine levels in women on ART for ∼7 years (cross-sectional analysis) or initiating ART (immediately before and 1 month after). Effector memory T cells predominated in blood and FGT during chronic infection, irrespective of ART status. In women initiating ART, 1 month was insufficient for T cell reconstitution, or alterations in T cell subset distribution, despite both plasma and genital viral loads decreasing to undetectable levels in most participants. Initiating ART was accompanied by a decline in plasma IP-10 that correlated with decreased blood CD38 expression in blood (p = .0204) but not in the FGT. The reduction in plasma (but not genital) cytokine levels due to ART initiation was dependent on their concentrations before treatment. While T cell activation decreased significantly in blood (CD4: p = .032; CD8: p = .0137), activation levels remained similar in the genital tract despite 1 month of treatment. Overall, the decrease in cellular activation and inflammation seen in blood with ART initiation was not evident in the FGT.
Collapse
Affiliation(s)
- Smritee Dabee
- Division of Medical Virology, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
| | | | - Heather B. Jaspan
- Division of Medical Virology, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
- Seattle Childrens Hospital, Seattle, Washington, USA
| | - David Lewis
- Western Sydney Sexual Health Centre, Parramatta, Australia
- Westmead Clinical School and Centre for Infectious Diseases and Microbiology & Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, Australia
| | - Pamela P. Gumbi
- Department of Biochemistry, University of KwaZulu Natal, Pietermaritzburg, South Africa
| | - Jo-Ann S. Passmore
- Division of Medical Virology, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
- NRF-DST Centre of Excellence in HIV Prevention, Centre for the AIDS Programme of Research in South Africa, University of KwaZulu Natal, Durban, South Africa
- National Health Laboratory Service, Cape Town, South Africa
| |
Collapse
|
9
|
Kuka M, De Giovanni M, Iannacone M. The role of type I interferons in CD4 + T cell differentiation. Immunol Lett 2019; 215:19-23. [PMID: 30771379 PMCID: PMC7234836 DOI: 10.1016/j.imlet.2019.01.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 01/26/2019] [Accepted: 01/30/2019] [Indexed: 12/12/2022]
Abstract
Type I interferons (IFNs) released upon viral infections play different and opposing roles in disease outcome. This pleiotropic effect is mainly influenced by the cellular sources, timing and target cells for these molecules. The effect of type I IFN signaling on the activation and differentiation of antiviral CD4+ T cells remains ill defined, with studies reporting either a beneficial or a detrimental role, depending on the context of infection. This review will highlight several recent studies that have investigated the role of type I IFNs in the priming and polarization of CD4+ T cells and discuss areas of uncertainty that require further investigation.
Collapse
Affiliation(s)
- Mirela Kuka
- Division of Immunology, Transplantation and Infectious Diseases and Experimental Imaging Center, IRCCS San Raffaele Scientific Institute and Vita-Salute San Raffaele University, Milan, 20132, Italy
| | - Marco De Giovanni
- Division of Immunology, Transplantation and Infectious Diseases and Experimental Imaging Center, IRCCS San Raffaele Scientific Institute and Vita-Salute San Raffaele University, Milan, 20132, Italy
| | - Matteo Iannacone
- Division of Immunology, Transplantation and Infectious Diseases and Experimental Imaging Center, IRCCS San Raffaele Scientific Institute and Vita-Salute San Raffaele University, Milan, 20132, Italy.
| |
Collapse
|
10
|
Papasavvas E, Azzoni L, Kossenkov AV, Dawany N, Morales KH, Fair M, Ross BN, Lynn K, Mackiewicz A, Mounzer K, Tebas P, Jacobson JM, Kostman JR, Showe L, Montaner LJ. NK Response Correlates with HIV Decrease in Pegylated IFN-α2a-Treated Antiretroviral Therapy-Suppressed Subjects. THE JOURNAL OF IMMUNOLOGY 2019; 203:705-717. [PMID: 31253727 DOI: 10.4049/jimmunol.1801511] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 06/03/2019] [Indexed: 01/27/2023]
Abstract
We previously reported that pegylated IFN-α2a (Peg-IFN-α2a) added to antiretroviral therapy (ART)-suppressed, HIV-infected subjects resulted in plasma HIV control and integrated HIV DNA decrease. We now evaluated whether innate NK cell activity or PBMC transcriptional profiles were associated with decreases in HIV measures. Human peripheral blood was analyzed prior to Peg-IFN-α2a administration (ART, baseline), after 5 wk of ART+Peg-IFN-α2a, and after 12 wk of Peg-IFN-α2a monotherapy (primary endpoint). After 5 wk of ART+Peg-IFN-α2a, immune subset frequencies were preserved, and induction of IFN-stimulated genes was noted in all subjects except for a subset in which the lack of IFN-stimulated gene induction was associated with increased expression of microRNAs. Viral control during Peg-IFN-α2a monotherapy was associated with 1) higher levels of NK cell activity and IFN-γ-induced protein 10 (IP-10) on ART (preimmunotherapy) and 2) downmodulation of NK cell KIR2DL1 and KIR2DL2/DL3 expression, transcriptional enrichment of expression of genes associated with NK cells in HIV controller subjects, and higher ex vivo IFN-α-induced NK cytotoxicity after 5 wk of ART+Peg-IFN-α2a. Integrated HIV DNA decline after immunotherapy was also associated with gene expression patterns indicative of cell-mediated activation and NK cytotoxicity. Overall, an increase in innate activity and NK cell cytotoxicity were identified as correlates of Peg-IFN-α2a-mediated HIV control.
Collapse
Affiliation(s)
| | | | | | - Noor Dawany
- The Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Knashawn H Morales
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | | | | | - Kenneth Lynn
- Presbyterian Hospital-University of Pennsylvania Hospital, Philadelphia, PA 19104
| | | | - Karam Mounzer
- Jonathan Lax Immune Disorders Treatment Center, Philadelphia Field Initiating Group for HIV-1 Trials, Philadelphia, PA 19107
| | - Pablo Tebas
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Jeffrey M Jacobson
- Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140; and
| | - Jay R Kostman
- John Bell Health Center, Philadelphia Field Initiating Group for HIV-1 Trials, Philadelphia, PA 19107
| | | | | |
Collapse
|
11
|
Han R, Song YJ, Sun SY, Zhou Q, Chen XZ, Zheng QL, Cheng H. Influence of Human Papillomavirus E7 Oncoprotein on Maturation and Function of Plasmacytoid Dendritic Cells In Vitro. Virol Sin 2018; 33:493-501. [PMID: 30569289 PMCID: PMC6335218 DOI: 10.1007/s12250-018-0069-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/31/2018] [Indexed: 12/31/2022] Open
Abstract
The major difficulties of human papillomavirus (HPV) treatment are its persistence and recurrence. The HPV E7 oncoprotein-loaded dendritic cells have been evaluated as cellular vaccine in previous reports. Plasmacytoid dendritic cells (pDCs) play an essential role of connecting the innate immune response and adaptive immune response in the immune system. But they function in HPV E7 loading is unclear. To investigate whether loading of the HPV type 6b, 11, and 16 E7 proteins affects the activity of pDCs, human peripheral blood-separated pDCs and mouse bone marrow-derived pDCs were pulsed with the HPV E7 proteins. The expression levels of CD40, CD80, CD86, and MHC II were significantly upregulated in pDCs upon HPV 6b/11 E7 protein pulse. The secretion and gene expression of type I IFN and IL-6 were both upregulated by HPV 6b/11 E7 proteins, more significant than HPV 16 E7 protein. The expression of essential factors of TLR signaling pathway and JNK/p38 MAP kinase signaling pathway were all increased in HPV 6b/11 E7 proteins pulsed pDCs. Our results suggest that HPV E7 proteins could promote the differentiation and maturation of pDCs and activate the TLR and MAPK pathway to induce host innate immune response. It might be conducive to explore novel immunotherapy targeting HPV infection with HPV E7 loaded pDC.
Collapse
Affiliation(s)
- Rui Han
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Yin-Jing Song
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Si-Yuan Sun
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
| | - Qiang Zhou
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Xian-Zhen Chen
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Qiao-Li Zheng
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Hao Cheng
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
| |
Collapse
|
12
|
Abstract
The interplay between immune response and HIV is intensely studied via mathematical modeling, with significant insights but few direct answers. In this short review, we highlight advances and knowledge gaps across different aspects of immunity. In particular, we identify the innate immune response and its role in priming the adaptive response as ripe for modeling. The latter have been the focus of most modeling studies, but we also synthesize key outstanding questions regarding effector mechanisms of cellular immunity and development of broadly neutralizing antibodies. Thus far, most modeling studies aimed to infer general immune mechanisms; we foresee that significant progress will be made next by detailed quantitative fitting of models to data, and prediction of immune responses.
Collapse
Affiliation(s)
- Jessica M Conway
- Department of Mathematics and Center for Infectious Disease Dynamics, Pennsylvania State University, University Park PA 16802, USA
| | - Ruy M Ribeiro
- Laboratorio de Biomatematica, Faculdade de Medicina da Universidade de Lisboa, Portugal and Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| |
Collapse
|
13
|
Echebli N, Tchitchek N, Dupuy S, Bruel T, Peireira Bittencourt Passaes C, Bosquet N, Le Grand R, Bourgeois C, Favier B, Cheynier R, Lambotte O, Vaslin B. Stage-specific IFN-induced and IFN gene expression reveal convergence of type I and type II IFN and highlight their role in both acute and chronic stage of pathogenic SIV infection. PLoS One 2018; 13:e0190334. [PMID: 29324751 PMCID: PMC5764266 DOI: 10.1371/journal.pone.0190334] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 12/12/2017] [Indexed: 02/07/2023] Open
Abstract
Interferons (IFNs) play a major role in controlling viral infections including HIV/SIV infections. Persistent up-regulation of interferon stimulated genes (ISGs) is associated with chronic immune activation and progression in SIV/HIV infections, but the respective contribution of different IFNs is unclear. We analyzed the expression of IFN genes and ISGs in tissues of SIV infected macaques to understand the respective roles of type I and type II IFNs. Both IFN types were induced in lymph nodes during early stage of primary infection and to some extent in rectal biopsies but not in PBMCs. Induction of Type II IFN expression persisted during the chronic phase, in contrast to undetectable induction of type I IFN expression. Global gene expression analysis with a major focus on ISGs revealed that at both acute and chronic infection phases most differentially expressed ISGs were inducible by both type I and type II IFNs and displayed the highest increases, indicating strong convergence and synergy between type I and type II IFNs. The analysis of functional signatures of ISG expression revealed temporal changes in IFN expression patterns identifying phase-specific ISGs. These results suggest that IFN-γ strongly contribute to shape ISG upregulation in addition to type I IFN.
Collapse
Affiliation(s)
- Nadia Echebli
- CEA, Université Paris Sud, INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department / IBFJ, Fontenay-aux-Roses, France
| | - Nicolas Tchitchek
- CEA, Université Paris Sud, INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department / IBFJ, Fontenay-aux-Roses, France
| | - Stéphanie Dupuy
- CEA, Université Paris Sud, INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department / IBFJ, Fontenay-aux-Roses, France
| | - Timothée Bruel
- CEA, Université Paris Sud, INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department / IBFJ, Fontenay-aux-Roses, France
| | - Caroline Peireira Bittencourt Passaes
- CEA, Université Paris Sud, INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department / IBFJ, Fontenay-aux-Roses, France
| | - Nathalie Bosquet
- CEA, Université Paris Sud, INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department / IBFJ, Fontenay-aux-Roses, France
| | - Roger Le Grand
- CEA, Université Paris Sud, INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department / IBFJ, Fontenay-aux-Roses, France
| | - Christine Bourgeois
- CEA, Université Paris Sud, INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department / IBFJ, Fontenay-aux-Roses, France
| | - Benoit Favier
- CEA, Université Paris Sud, INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department / IBFJ, Fontenay-aux-Roses, France
| | - Rémi Cheynier
- Cytokines and Viral Infections, Immunology Infection and Inflammation Department, Institut Cochin, INSERM U1016, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Paris, France
| | - Olivier Lambotte
- CEA, Université Paris Sud, INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department / IBFJ, Fontenay-aux-Roses, France
- APHP, Service de Médecine Interne–Immunologie Clinique, Hôpitaux Universitaires Paris Sud, Le Kremlin-Bicêtre, France
| | - Bruno Vaslin
- CEA, Université Paris Sud, INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department / IBFJ, Fontenay-aux-Roses, France
- * E-mail:
| |
Collapse
|
14
|
Marra A, Scognamiglio G, Peluso I, Botti G, Fusciello C, Filippelli A, Ascierto PA, Pepe S, Sabbatino F. Immune Checkpoint Inhibitors in Melanoma and HIV Infection. Open AIDS J 2017; 11:91-100. [PMID: 29290886 PMCID: PMC5730951 DOI: 10.2174/1874613601711010091] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 10/10/2017] [Accepted: 10/13/2017] [Indexed: 12/16/2022] Open
Abstract
Introduction: Immunotherapy with immune checkpoint inhibitors increases the overall survival of patients with metastatic melanoma regardless of their oncogene addicted mutations. However, no data is available from clinical trials of effective therapies in subgroups of melanoma patients that carry chronic infective diseases such as HIV. Evidences suggest a key role of the immune checkpoint molecules as a mechanism of immune escape not only from melanoma but also from HIV host immune response. Conclusion: In this article, firstly, we will describe the role of the immune checkpoint molecules in HIV chronic infection. Secondly, we will summarize the most relevant clinical evidences utilizing immune checkpoint inhibitors for the treatment of melanoma patients. Lastly, we will discuss the potential implications as well as the potential applications of immune checkpoint molecule-based immunotherapy in patients with melanoma and HIV infection.
Collapse
Affiliation(s)
- Antonio Marra
- Department of Medical Oncology, San Gerardo Hospital, via G. B. Pergolesi, 20052 Monza, Italy
| | - Giosuè Scognamiglio
- Pathology Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale", via M. Semmola, 80131 Naples, Italy
| | - Ilaria Peluso
- Hematology Unit, Department of Clinical and Surgical Medicine, University of Naples Federico II, via S. Pansini, 80131 Naples, Italy
| | - Gerardo Botti
- Pathology Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale", via M. Semmola, 80131 Naples, Italy
| | - Celeste Fusciello
- Oncology Unit, Department of Medicine, Surgery and Dentistry, University of Salerno, via Allende, 84081 Baronissi (Salerno), Italy
| | - Amelia Filippelli
- Pharmacology Unit, Department of Medicine, Surgery and Dentistry, University of Salerno, via Allende, 84081 Baronissi (Salerno), Italy
| | - Paolo A Ascierto
- Unit of Melanoma, Cancer Immunotherapy and Innovative Therapy, Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale", via M. Semmola, 80131 Naples, Italy
| | - Stefano Pepe
- Oncology Unit, Department of Medicine, Surgery and Dentistry, University of Salerno, via Allende, 84081 Baronissi (Salerno), Italy
| | - Francesco Sabbatino
- Oncology Unit, Department of Medicine, Surgery and Dentistry, University of Salerno, via Allende, 84081 Baronissi (Salerno), Italy
| |
Collapse
|
15
|
Aroh C, Wang Z, Dobbs N, Luo M, Chen Z, Gao J, Yan N. Innate Immune Activation by cGMP-AMP Nanoparticles Leads to Potent and Long-Acting Antiretroviral Response against HIV-1. THE JOURNAL OF IMMUNOLOGY 2017; 199:3840-3848. [PMID: 29084836 DOI: 10.4049/jimmunol.1700972] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 10/03/2017] [Indexed: 12/11/2022]
Abstract
HIV-1 evades immune detection by the cGAS-STING cytosolic DNA-sensing pathway during acute infection. STING is a critical mediator of type I IFN production, and STING agonists such as cGMP-AMP (cGAMP) and other cyclic dinucleotides elicit potent immune and antitumor response. In this article, we show that administration of cGAMP, delivered by an ultra-pH-sensitive nanoparticle (NP; PC7A), in human PBMCs induces potent and long-acting antiretroviral response against several laboratory-adapted and clinical HIV-1 isolates. cGAMP-PC7A NP requires endocytosis for intracellular delivery and immune signaling activation. cGAMP-PC7A NP-induced protection is mediated through type I IFN signaling and requires monocytes in PBMCs. cGAMP-PC7A NPs also inhibit HIV-1 replication in HIV+ patient PBMCs after ex vivo reactivation. Because pattern recognition receptor agonists continue to show more clinical benefits than the traditional IFN therapy, our data present important evidence for potentially developing cGAMP or other STING agonists as a new class of immune-stimulating long-acting antiretroviral agents.
Collapse
Affiliation(s)
- Chukwuemika Aroh
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Zhaohui Wang
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Nicole Dobbs
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Min Luo
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Zhijian Chen
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390; .,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Jinming Gao
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390; .,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390.,Department of Otolaryngology, University of Texas Southwestern Medical Center, Dallas, TX 75390; and
| | - Nan Yan
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390; .,Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
16
|
Modeling aging in HIV infection in nonhuman primates to address an emerging challenge of the post-ART era. Curr Opin Virol 2017; 25:66-75. [PMID: 28803049 DOI: 10.1016/j.coviro.2017.07.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/17/2017] [Accepted: 07/18/2017] [Indexed: 12/22/2022]
Abstract
The advent of antiretroviral therapy (ART) has dramatically improved both quality and length of life for subjects infected with human immunodeficiency virus (HIV), delaying or preventing progression to acquired immunodeficiency syndrome (AIDS). However, the virus induces aging-related changes to the immune system which confound treatment. Additionally, the normal physiologic events that occur during aging lead to deficiencies in immunity which not only exacerbate HIV pathogenesis but also trigger a variety of comorbidities. Here, the synergistic linkage between aging and HIV infection is examined in regard to the immunological and pathological mechanisms that drive both senescence and disease progression. The use of NHPs to investigate potential therapeutic strategies to control the deleterious consequences of aging with HIV infection is also reviewed.
Collapse
|
17
|
Zhao G, Liu L, Su B, Zhang T, Chen P, Li W, Wu H. The dynamic changes of interferon lambdas related genes and proteins in JAK/STAT pathway in both acute and chronic HIV-1 infected patients. AIDS Res Ther 2017; 14:31. [PMID: 28623917 PMCID: PMC5474299 DOI: 10.1186/s12981-017-0158-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 06/08/2017] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Host immune responses during acute HIV-1 infection can influence the viral setpoint, which is a predictor of disease progression. Interferon (IFN)-lambdas are newly classified type III interferons, which use JAK-STAT pathway. Currently, the dynamics of IFN-lambdas related genes and proteins expression in the signaling pathway have not been well elaborated, especially in acute HIV-1-infected patients. OBJECTIVES To evaluate the dynamic changes of IFN-lambdas related genes and proteins in JAK/STAT pathway in acute HIV-1-infected patients, and analyze their correlation with CD4 T cell counts and HIV-1 viral loads. STUDY DESIGN Real-time PCR and flow cytometry methods were used to evaluate the dynamic changes of IFN-lambdas related genes and proteins in JAK/STAT pathway in both acute and chronic HIV-1-infected patients. RESULTS The IFN-alpha receptors (R), IFN-gamma R, IFN-lambdas R and STAT1 mRNA and protein levels increased in acute HIV-1-infected patients (p < 0.01), in addition, Mx1 mRNA levels in acute HIV-1-infected patients are higher than those in HIV-negative subjects. IFN-lambdas R and IFN-alpha R mRNA levels are inversely correlated with CD4+ T-cell counts, but are positively correlated with viral loads. CONCLUSIONS The dynamic changes of IFNs related genes in JAK-STAT pathway in acute HIV-1 infection will deepen our understanding of the roles of IFN-lambdas in HIV pathogenesis.
Collapse
Affiliation(s)
- Guoxian Zhao
- Center for Infectious Diseases, Beijing You’an Hospital, Capital Medical University, Beijing, 100069 China
- Beijing Key Laboratory for HIV/AIDS Research, Beijing, 100069 China
| | - Lifeng Liu
- Center for Infectious Diseases, Beijing You’an Hospital, Capital Medical University, Beijing, 100069 China
- Beijing Key Laboratory for HIV/AIDS Research, Beijing, 100069 China
| | - Bin Su
- Center for Infectious Diseases, Beijing You’an Hospital, Capital Medical University, Beijing, 100069 China
- Beijing Key Laboratory for HIV/AIDS Research, Beijing, 100069 China
| | - Tong Zhang
- Center for Infectious Diseases, Beijing You’an Hospital, Capital Medical University, Beijing, 100069 China
- Beijing Key Laboratory for HIV/AIDS Research, Beijing, 100069 China
| | - Peng Chen
- Center for Infectious Diseases, Beijing You’an Hospital, Capital Medical University, Beijing, 100069 China
- Beijing Key Laboratory for HIV/AIDS Research, Beijing, 100069 China
| | - Wei Li
- Center for Infectious Diseases, Beijing You’an Hospital, Capital Medical University, Beijing, 100069 China
- Beijing Key Laboratory for HIV/AIDS Research, Beijing, 100069 China
- Center of Interventional Oncology and Liver Diseases, Beijing You’an Hospital, Capital Medical University, Beijing, 100069 China
| | - Hao Wu
- Center for Infectious Diseases, Beijing You’an Hospital, Capital Medical University, Beijing, 100069 China
- Beijing Key Laboratory for HIV/AIDS Research, Beijing, 100069 China
| |
Collapse
|
18
|
Toll-Like Receptor 2 Ligation Enhances HIV-1 Replication in Activated CCR6+ CD4+ T Cells by Increasing Virus Entry and Establishing a More Permissive Environment to Infection. J Virol 2017; 91:JVI.01402-16. [PMID: 27928019 DOI: 10.1128/jvi.01402-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 12/01/2016] [Indexed: 12/14/2022] Open
Abstract
In this study, we investigated the effect of Toll-like receptor 2 (TLR2) ligation on the permissiveness of activated CD4+ T cells to HIV-1 infection by focusing our experiments on the relative susceptibility of cell subsets based on their expression of CCR6. Purified primary human CD4+ T cells were first subjected to a CD3/CD28 costimulation before treatment with the TLR2 agonist Pam3CSK4. Finally, cells were inoculated with R5-tropic HIV-1 particles that permit us to study the effect of TLR2 triggering on virus production at both population and single-cell levels. We report here that HIV-1 replication is augmented in CD3/CD28-costimulated CCR6+ CD4+ T cells upon engagement of the cell surface TLR2. Additional studies indicate that a higher virus entry and polymerization of the cortical actin are seen in this cell subset following TLR2 stimulation. A TLR2-mediated increase in the level of phosphorylated NF-κB p65 subunit was also detected in CD3/CD28-costimulated CCR6+ CD4+ T cells. We propose that, upon antigenic presentation, an engagement of TLR2 acts specifically on CCR6+ CD4+ T cells by promoting virus entry in an intracellular milieu more favorable for productive HIV-1 infection. IMPORTANCE Following primary infection, HIV-1 induces an immunological and structural disruption of the gut mucosa, leading to bacterial translocation and release of microbial components in the bloodstream. These pathogen-derived constituents include several agonists of Toll-like receptors that may affect gut-homing CD4+ T cells, such as those expressing the chemokine receptor CCR6, which are highly permissive to HIV-1 infection. We demonstrate that TLR2 ligation in CD3/CD28-costimulated CCR6+ CD4+ T cells leads to enhanced virus production. Our results highlight the potential impact of bacterial translocation on the overall permissiveness of CCR6+ CD4+ T cells to productive HIV-1 infection.
Collapse
|
19
|
Galvão-Lima LJ, Espíndola MS, Soares LS, Zambuzi FA, Cacemiro M, Fontanari C, Bollela VR, Frantz FG. Classical and alternative macrophages have impaired function during acute and chronic HIV-1 infection. Braz J Infect Dis 2016; 21:42-50. [PMID: 27912071 PMCID: PMC9425483 DOI: 10.1016/j.bjid.2016.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 08/18/2016] [Accepted: 10/03/2016] [Indexed: 12/13/2022] Open
Abstract
Objectives Three decades after HIV recognition and its association with AIDS development, many advances have emerged – especially related to prevention and treatment. Undoubtedly, the development of Highly Active Antiretroviral Therapy (HAART) dramatically changed the future of the syndrome that we know today. In the present study, we evaluate the impact of Highly Active Antiretroviral Therapy on macrophage function and its relevance to HIV pathogenesis. Methods PBMCs were isolated from blood samples and monocytes (CD14+ cells) were purified. Monocyte-Derived Macrophages (MDMs) were activated on classical (MGM-CSF+IFN-γ) or alternative (MIL-4+IL13) patterns using human recombinant cytokines for six days. After this period, Monocyte-Derived Macrophages were stimulated with TLR2/Dectin-1 or TLR4 agonists and we evaluated the influence of HIV-1 infection and Highly Active Antiretroviral Therapy on the release of cytokines/chemokines by macrophages. Results The data were obtained using Monocyte-Derived Macrophages derived from HIV naïve or from patients on regular Highly Active Antiretroviral Therapy. Classically Monocyte-Derived Macrophages obtained from HIV-1 infected patients on Highly Active Antiretroviral Therapy released higher levels of IL-6 and IL-12 even without PAMPs stimuli when compared to control group. On the other hand, alternative Monocyte-Derived Macrophages derived from HIV-1 infected patients on Highly Active Antiretroviral Therapy released lower levels of IL-6, IL-10, TNF-α, IP-10 and RANTES after LPS stimuli when compared to control group. Furthermore, healthy individuals have a complex network of cytokines/chemokines released by Monocyte-Derived Macrophages after PAMP stimuli, which was deeply affected in MDMs obtained from naïve HIV-1 infected patients and only partially restored in MDMs derived from HIV-1 infected patients even on regular Highly Active Antiretroviral Therapy. Conclusion Our therapy protocols were not effective in restoring the functional alterations induced by HIV, especially those found on macrophages. These findings indicate that we still need to develop new approaches and improve the current therapy protocols, focusing on the reestablishment of cellular functions and prevention/treatment of opportunistic infections.
Collapse
Affiliation(s)
- Leonardo J Galvão-Lima
- Universidade de São Paulo, Faculdade de Ciências Farmacêuticas, Laboratório de Imunologia e Epigenética, São Paulo, SP, Brazil
| | - Milena S Espíndola
- Universidade de São Paulo, Faculdade de Ciências Farmacêuticas, Laboratório de Imunologia e Epigenética, São Paulo, SP, Brazil
| | - Luana S Soares
- Universidade de São Paulo, Faculdade de Ciências Farmacêuticas, Laboratório de Imunologia e Epigenética, São Paulo, SP, Brazil
| | - Fabiana A Zambuzi
- Universidade de São Paulo, Faculdade de Ciências Farmacêuticas, Laboratório de Imunologia e Epigenética, São Paulo, SP, Brazil
| | - Maira Cacemiro
- Universidade de São Paulo, Faculdade de Ciências Farmacêuticas, Laboratório de Imunologia e Epigenética, São Paulo, SP, Brazil
| | - Caroline Fontanari
- Universidade de São Paulo, Faculdade de Ciências Farmacêuticas, Laboratório de Imunologia e Epigenética, São Paulo, SP, Brazil
| | - Valdes R Bollela
- Universidade de São Paulo, Hospital das Clínicas de Ribeirão Preto, Divisão de Doenças Infecciosas, São Paulo, SP, Brazil
| | - Fabiani G Frantz
- Universidade de São Paulo, Faculdade de Ciências Farmacêuticas, Laboratório de Imunologia e Epigenética, São Paulo, SP, Brazil.
| |
Collapse
|
20
|
Huang X, Liu X, Meyers K, Liu L, Su B, Wang P, Li Z, Li L, Zhang T, Li N, Chen H, Li H, Wu H. Cytokine cascade and networks among MSM HIV seroconverters: implications for early immunotherapy. Sci Rep 2016; 6:36234. [PMID: 27830756 PMCID: PMC5103227 DOI: 10.1038/srep36234] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 09/15/2016] [Indexed: 12/24/2022] Open
Abstract
The timing, intensity and duration of the cytokine cascade and reorganized interrelations in cytokine networks are not fully understood during acute HIV-1 infection (AHI). Using sequential plasma samples collected over three years post-infection in a cohort of MSM HIV-1 seroconvertors, we determined the early kinetics of cytokine levels during FiebigI-IV stages using Luminex-based multiplex assays. Cytokines were quantified and relationships between cytokines were assessed by Spearman correlation. Compared with HIV-negative MSM, HIV-infected individuals had significantly increased multiple plasma cytokines, including GM-CSF, IFN-α2, IL-12p70, IP-10 and VEGF, during both acute and chronic stages of infection. Furthermore, rapid disease progressors (RDPs) had earlier and more robust cytokine storms, compared with slow disease progressors (SDPs) (49.6 days vs. 74.9 days, respectively; 6.7-fold vs. 3.7-fold change of cytokines, respectively), suggesting the faster and stronger cytokine storm during AHI could promote disease progression. On the other hand, HIV-1 infection induced more interlocked cytokines network, establishing new strong correlations and imposing a higher rigidity. There were, respectively, 146 (44.9%) statistically significant correlations of cytokines in RDPs and 241 (74.2%) in SDPs (p < 0.001). This study suggests that immunomodulatory interventions aimed at controlling cytokine storm in AHI may be beneficial to slow eventual disease progression.
Collapse
Affiliation(s)
- Xiaojie Huang
- Center for Infectious Diseases, Beijing You'an Hospital, Capital Medical University, Beijing 100069, China
| | - Xinchao Liu
- Infectious Diseases Department, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Kathrine Meyers
- The Aaron Diamond AIDS Research Center, New York, NY 10016, United States
| | - Lihong Liu
- The Aaron Diamond AIDS Research Center, New York, NY 10016, United States
| | - Bin Su
- Center for Infectious Diseases, Beijing You'an Hospital, Capital Medical University, Beijing 100069, China
| | - Pengfei Wang
- The Aaron Diamond AIDS Research Center, New York, NY 10016, United States
| | - Zhen Li
- Center for Infectious Diseases, Beijing You'an Hospital, Capital Medical University, Beijing 100069, China
| | - Lan Li
- Center for Infectious Diseases, Beijing You'an Hospital, Capital Medical University, Beijing 100069, China
| | - Tong Zhang
- Center for Infectious Diseases, Beijing You'an Hospital, Capital Medical University, Beijing 100069, China
| | - Ning Li
- Center for Infectious Diseases, Beijing You'an Hospital, Capital Medical University, Beijing 100069, China
| | - Hui Chen
- School of Biomedical Engineering, Capital Medical University, Beijing 100069, China
| | - Haiying Li
- Center for Infectious Diseases, Beijing You'an Hospital, Capital Medical University, Beijing 100069, China
| | - Hao Wu
- Center for Infectious Diseases, Beijing You'an Hospital, Capital Medical University, Beijing 100069, China
| |
Collapse
|
21
|
Immune activation in the central nervous system throughout the course of HIV infection. Curr Opin HIV AIDS 2016; 11:226-33. [PMID: 26760827 DOI: 10.1097/coh.0000000000000243] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Robust and dynamic innate and adaptive responses characterize the acute central nervous system (CNS) response to HIV and other viral infections. In a state of chronic infection or viral latency, persistent immune activation associates with abnormality in the CNS. Understanding this process is critical, as immune-mediated abnormality in nonrenewable CNS cells may result in long-term neurologic sequelae for HIV-infected individuals. RECENT FINDINGS In humans, immune activation is reduced by suppressive combination antiretroviral therapy, but persists at abnormally elevated levels on treatment. CNS immune activation is initiated in acute infection and progressively increases until combination antiretroviral therapy is started. Newly identified characteristics of the CNS immune surveillance network include features of homeostasis and function of brain microglial cells, lymphatic drainage from CNS to cervical lymph nodes, and cells in cerebrospinal fluid associated with neurocognitive impairment. SUMMARY More research is required to determine whether early intervention to reduce infection limits the immunopathology established by sustained immune responses that ultimately fail to resolve infection, and to unravel mechanisms of persistent immune activation during treated HIV so that strategies can be developed to therapeutically protect the brain.
Collapse
|
22
|
Sensing of HIV-1 Infection in Tzm-bl Cells with Reconstituted Expression of STING. J Virol 2015; 90:2064-76. [PMID: 26656698 DOI: 10.1128/jvi.02966-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 12/01/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Production of proinflammatory cytokines indicative of potent recognition by the host innate immune system has long been recognized as a hallmark of the acute phase of HIV-1 infection. The first components of the machinery by which primary HIV target cells sense infection have recently been described; however, the mechanistic dissection of innate immune recognition and viral evasion would be facilitated by an easily accessible cell line model. Here we describe that reconstituted expression of the innate signaling adaptor STING enhanced the ability of the well-established HIV reporter cell line Tzm-bl to sense HIV infection and to convert this information into nuclear translocation of IRF3 as well as expression of cytokine mRNA. STING-dependent immune sensing of HIV-1 required virus entry and reverse transcription but not genome integration. Particularly efficient recognition was observed for an HIV-1 variant lacking expression of the accessory protein Vpr, suggesting a role of the viral protein in circumventing STING-mediated immune signaling. Vpr as well as STING significantly impacted the magnitude and breadth of the cytokine mRNA expression profile induced upon HIV-1 infection. However, cytoplasmic DNA sensing did not result in detectable cytokine secretion in this cell system, and innate immune recognition did not affect infection rates. Despite these deficits in eliciting antiviral effector functions, these results establish Tzm-bl STING and Tzm-bl STING IRF3.GFP cells as useful tools for studies aimed at dissecting mechanisms and regulation of early innate immune recognition of HIV infection. IMPORTANCE Cell-autonomous immune recognition of HIV infection was recently established as an important aspect by which the host immune system attempts to fend off HIV-1 infection. Mechanistic studies on host cell recognition and viral evasion are hampered by the resistance of many primary HIV target cells to detailed experimental manipulation. We describe here that expression of the signaling adaptor STING renders the well-established HIV reporter cell line Tzm-bl competent for innate recognition of HIV infection. Key characteristics reflected in this cell model include nuclear translocation of IRF3, expression of a broad range of cytokine mRNAs, and an antagonistic activity of the HIV-1 protein Vpr. These results establish Tzm-bl STING and Tzm-bl STING IRF3.GFP cells as a useful tool for studies of innate recognition of HIV infection.
Collapse
|
23
|
Sanchez DJ, Miranda D, Marsden MD, Dizon TMA, Bontemps JR, Davila SJ, Del Mundo LE, Ha T, Senaati A, Zack JA, Cheng G. Disruption of Type I Interferon Induction by HIV Infection of T Cells. PLoS One 2015; 10:e0137951. [PMID: 26375588 PMCID: PMC4574156 DOI: 10.1371/journal.pone.0137951] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 08/24/2015] [Indexed: 11/18/2022] Open
Abstract
Our main objective of this study was to determine how Human Immunodeficiency Virus (HIV) avoids induction of the antiviral Type I Interferon (IFN) system. To limit viral infection, the innate immune system produces important antiviral cytokines such as the IFN. IFN set up a critical roadblock to virus infection by limiting further replication of a virus. Usually, IFN production is induced by the recognition of viral nucleic acids by innate immune receptors and subsequent downstream signaling. However, the importance of IFN in the defense against viruses has lead most pathogenic viruses to evolve strategies to inhibit host IFN induction or responses allowing for increased pathogenicity and persistence of the virus. While the adaptive immune responses to HIV infection have been extensively studied, less is known about the balance between induction and inhibition of innate immune defenses, including the antiviral IFN response, by HIV infection. Here we show that HIV infection of T cells does not induce significant IFN production even IFN I Interferon production. To explain this paradox, we screened HIV proteins and found that two HIV encoded proteins, Vpu and Nef, strongly antagonize IFN induction, with expression of these proteins leading to loss of expression of the innate immune viral RNA sensing adaptor protein, IPS-1 (IFN-β promoter stimulator-1). We hypothesize that with lower levels of IPS-1 present, infected cells are defective in mounting antiviral responses allowing HIV to replicate without the normal antiviral actions of the host IFN response. Using cell lines as well as primary human derived cells, we show that HIV targeting of IPS-1 is key to limiting IFN induction. These findings describe how HIV infection modulates IFN induction providing insight into the mechanisms by which HIV establishes infection and persistence in a host.
Collapse
Affiliation(s)
- David Jesse Sanchez
- Pharmaceutical Sciences Department, College of Pharmacy, Western University of Health Sciences, Pomona, California, United States of America
- * E-mail:
| | - Daniel Miranda
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, California, United States of America
- UCLA AIDS Institute, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Matthew D. Marsden
- UCLA AIDS Institute, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- Department of Medicine, Division of Hematology and Oncology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Thomas Michael A. Dizon
- Pharmaceutical Sciences Department, College of Pharmacy, Western University of Health Sciences, Pomona, California, United States of America
| | - Johnny R. Bontemps
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Sergio J. Davila
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Lara E. Del Mundo
- Pharmaceutical Sciences Department, College of Pharmacy, Western University of Health Sciences, Pomona, California, United States of America
| | - Thai Ha
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Ashkon Senaati
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Jerome A. Zack
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, California, United States of America
- UCLA AIDS Institute, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- Department of Medicine, Division of Hematology and Oncology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Genhong Cheng
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
24
|
Henrick BM, Yao XD, Rosenthal KL. HIV-1 Structural Proteins Serve as PAMPs for TLR2 Heterodimers Significantly Increasing Infection and Innate Immune Activation. Front Immunol 2015; 6:426. [PMID: 26347747 PMCID: PMC4541371 DOI: 10.3389/fimmu.2015.00426] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 08/05/2015] [Indexed: 12/12/2022] Open
Abstract
Immune activation is critical to HIV infection and pathogenesis; however, our understanding of HIV innate immune activation remains incomplete. Recently we demonstrated that soluble TLR2 (sTLR2) physically inhibited HIV-induced NFκB activation and inflammation, as well as HIV-1 infection. In light of these findings, we hypothesized that HIV-1 structural proteins may serve as pathogen-associated molecular patterns (PAMPs) for cellular TLR2 heterodimers. These studies made use of primary human T cells and TZMbl cells stably transformed to express TLR2 (TZMbl-2). Our results demonstrated that cells expressing TLR2 showed significantly increased proviral DNA compared to cells lacking TLR2, and mechanistically this may be due to a TLR2-mediated increased CCR5 expression. Importantly, we show that HIV-1 structural proteins, p17, p24, and gp41, act as viral PAMPs signaling through TLR2 and its heterodimers leading to significantly increased immune activation via the NFκB signaling pathway. Using co-immunoprecipitation and a dot blot method, we demonstrated direct protein interactions between these viral PAMPs and TLR2, while only p17 and gp41 bound to TLR1. Specifically, TLR2/1 heterodimer recognized p17 and gp41, while p24 lead to immune activation through TLR2/6. These results were confirmed using TLR2/1 siRNA knock down assays which ablated p17 and gp41-induced cellular activation and through studies of HEK293 cells expressing selected TLRs. Interestingly, our results show in the absence of TLR6, p24 bound to TLR2 and blocked p17 and gp41-induced activation, thus providing a novel mechanism by which HIV-1 can manipulate innate sensing. Taken together, our results identified, for the first time, novel HIV-1 PAMPs that play a role in TLR2-mediated cellular activation and increased proviral DNA. These findings have important implications for our fundamental understanding of HIV-1 immune activation and pathogenesis, as well as HIV-1 vaccine development.
Collapse
Affiliation(s)
- Bethany M Henrick
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University , Hamilton, ON , Canada
| | - Xiao-Dan Yao
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University , Hamilton, ON , Canada
| | - Kenneth Lee Rosenthal
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University , Hamilton, ON , Canada
| | | |
Collapse
|
25
|
|
26
|
In Vivo Activation of Human NK Cells by Treatment with an Interleukin-15 Superagonist Potently Inhibits Acute In Vivo HIV-1 Infection in Humanized Mice. J Virol 2015; 89:6264-74. [PMID: 25833053 DOI: 10.1128/jvi.00563-15] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 03/27/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Natural killer (NK) cells with anti-HIV-1 activity may inhibit HIV-1 replication and dissemination during acute HIV-1 infection. We hypothesized that the capacity of NK cells to suppress acute in vivo HIV-1 infection would be augmented by activating them via treatment with an interleukin-15 (IL-15) superagonist, IL-15 bound to soluble IL-15Rα, an approach that potentiates human NK cell-mediated killing of tumor cells. In vitro stimulation of human NK cells with a recombinant IL-15 superagonist significantly induced their expression of the cytotoxic effector molecules granzyme B and perforin; their degranulation upon exposure to K562 cells, as indicated by cell surface expression of CD107a; and their capacity to lyse K562 cells and HIV-1-infected T cells. The impact of IL-15 superagonist-induced activation of human NK cells on acute in vivo HIV-1 infection was investigated by using hu-spl-PBMC-NSG mice, NOD-SCID-IL2rγ(-/-) (NSG) mice intrasplenically injected with human peripheral blood mononuclear cells (PBMCs) which develop productive in vivo infection after intrasplenic inoculation with HIV-1. IL-15 superagonist treatment potently inhibited acute HIV-1 infection in hu-spl-PBMC-NSG mice even when delayed until 3 days after intrasplenic HIV-1 inoculation. Removal of NK cells from human PBMCs prior to intrasplenic injection into NSG mice completely abrogated IL-15 superagonist-mediated suppression of in vivo HIV-1 infection. Thus, the in vivo activation of NK cells, integral mediators of the innate immune response, by treatment with an IL-15 superagonist increases their anti-HIV activity and enables them to potently suppress acute in vivo HIV-1 infection. These results indicate that in vivo activation of NK cells may represent a new immunotherapeutic approach to suppress acute HIV-1 infection. IMPORTANCE Epidemiological studies have indicated that NK cells contribute to the control of HIV-1 infection, and in vitro studies have demonstrated that NK cells can selectively kill HIV-1-infected cells. We demonstrated that in vivo activation of NK cells by treatment with an IL-15 superagonist that potently stimulates the antitumor activity of NK cells markedly inhibited acute HIV-1 infection in humanized mice, even when activation of NK cells by IL-15 superagonist treatment is delayed until 3 days after HIV-1 inoculation. NK cell depletion from PBMCs prior to their intrasplenic injection abrogated the suppression of in vivo HIV-1 infection observed in humanized mice treated with the IL-15 superagonist, demonstrating that activated human NK cells were mediating IL-15 superagonist-induced inhibition of acute HIV-1 infection. Thus, in vivo immunostimulation of NK cells, a promising therapeutic approach for cancer therapy, may represent a new treatment modality for HIV-1-infected individuals, particularly in the earliest stages of infection.
Collapse
|
27
|
Snell LM, Brooks DG. New insights into type I interferon and the immunopathogenesis of persistent viral infections. Curr Opin Immunol 2015; 34:91-8. [PMID: 25771184 DOI: 10.1016/j.coi.2015.03.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 02/25/2015] [Accepted: 03/02/2015] [Indexed: 02/07/2023]
Abstract
Most viruses generate potent T cell responses that rapidly control infection. However, certain viruses can subvert the immune response to establish persistent infections. The inability to clear virus induces an immunosuppressive program leading to the sustained expression of many immunoregulatory molecules that down-regulate T cell responses. Further, viral persistence is associated with multiple immune dysfunctions including lymphoid disorganization, defective antigen presentation, aberrant B cell responses and hypergammaglobulinemia. Although best known for its antiviral activity, recent data has highlighted the role of type I IFN (IFN-I) signaling as a central mediator of immunosuppression during viral persistence. It is also becoming increasingly apparent that many of the immune dysfunctions during persistent virus infection can be attributed directly or indirectly to the effects of chronic IFN-I signaling. This review explores the increasingly complex role of IFN-I in the regulation of immunity against persistently replicating virus infections and examines current and potential uses of IFN-I and blockade of IFN-I signaling to dampen chronic inflammation and activation in the clinic.
Collapse
Affiliation(s)
- Laura M Snell
- Department of Microbiology, Immunology and Molecular Genetics and UCLA AIDS Institute, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, United States
| | - David G Brooks
- Department of Microbiology, Immunology and Molecular Genetics and UCLA AIDS Institute, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, United States; Princess Margaret Cancer Center, University Health Network and the Department of Immunology, University of Toronto, Toronto, Ontario, M5G 2M9 Canada.
| |
Collapse
|
28
|
Percario ZA, Ali M, Mangino G, Affabris E. Nef, the shuttling molecular adaptor of HIV, influences the cytokine network. Cytokine Growth Factor Rev 2014; 26:159-73. [PMID: 25529283 DOI: 10.1016/j.cytogfr.2014.11.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 11/05/2014] [Indexed: 12/17/2022]
Abstract
Several viruses manipulate host innate immune responses to avoid immune recognition and improve viral replication and spreading. The viral protein Nef of Human Immunodeficiency Virus is mainly involved in this "hijacking" activity and is a well established virulence factor. In the last few years there have been remarkable advances in outlining a defined framework of its functions. In particular Nef appears to be a shuttling molecular adaptor able to exert its effects both on infected and non infected bystander cell. In addition it is emerging fact that it has an important impact on the chemo-cytokine network. Nef protein represents an interesting new target to develop therapeutic drugs for treatment of seropositive patients. In this review we have tried to provide a unifying view of the multiple functions of this viral protein on the basis of recently available experimental data.
Collapse
Affiliation(s)
| | - Muhammad Ali
- Department of Sciences, University Roma Tre, Rome, Italy
| | - Giorgio Mangino
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Italy
| | | |
Collapse
|
29
|
Albrecht C, Malzahn D, Brameier M, Hermes M, Ansari AA, Walter L. Progression to AIDS in SIV-Infected Rhesus Macaques is Associated with Distinct KIR and MHC class I Polymorphisms and NK Cell Dysfunction. Front Immunol 2014; 5:600. [PMID: 25506344 PMCID: PMC4246914 DOI: 10.3389/fimmu.2014.00600] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 11/07/2014] [Indexed: 12/21/2022] Open
Abstract
Killer cell immunoglobulin-like receptors (KIR) regulate the activity of natural killer (NK) cells and have been shown to be associated with susceptibility to a number of human infectious diseases. Here, we analyzed NK cell function and genetic associations in a cohort of 52 rhesus macaques experimentally infected with SIVmac and subsequently stratified into high viral load (HVL) and low viral load (LVL) plasma viral loads at set point. This stratification coincided with fast (HVL) and slow (LVL) disease progression indicated by the disease course and critical clinical parameters including CD4+ T cell counts. HVL animals revealed sustained proliferation of NK cells but distinct loss of peripheral blood NK cell numbers and lytic function. Genetic analyses revealed that KIR genes 3DL05, 3DS05, and 3DL10 as well as 3DSW08, 3DLW03, and 3DSW09 are correlated, most likely due to underlying haplotypes. SIV-infection outcome associated with presence of transcripts for two inhibitory KIR genes (KIR3DL02, KIR3DL10) and three activating KIR genes (KIR3DSW08, KIR3DS02, KIR3DS05). Presence of KIR3DL02 and KIR3DSW08 was associated with LVL outcome, whereas presence of KIR3DS02 was associated with HVL outcome. Furthermore, we identified epistasis between KIR and MHC class I alleles as the transcript presence of the correlated genes KIR3DL05, KIR3DS05, and KIR3DL10 increased HVL risk when Mamu-B*012 transcripts were also present or when Mamu-A1*001 transcripts were absent. These genetic associations were mirrored by changes in the numbers, the level of proliferation, and lytic capabilities of NK cells as well as overall survival time and gastro-intestinal tissue viral load.
Collapse
Affiliation(s)
- Christina Albrecht
- Primate Genetics Laboratory, German Primate Center, Leibniz-Institute for Primate Research , Göttingen , Germany
| | - Dörthe Malzahn
- Department of Genetic Epidemiology, University Medical Center, Georg-August-University , Göttingen , Germany
| | - Markus Brameier
- Primate Genetics Laboratory, German Primate Center, Leibniz-Institute for Primate Research , Göttingen , Germany
| | - Meike Hermes
- Primate Genetics Laboratory, German Primate Center, Leibniz-Institute for Primate Research , Göttingen , Germany
| | - Aftab A Ansari
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine , Atlanta, GA , USA
| | - Lutz Walter
- Primate Genetics Laboratory, German Primate Center, Leibniz-Institute for Primate Research , Göttingen , Germany
| |
Collapse
|
30
|
Xu X, Qiu C, Zhu L, Huang J, Li L, Fu W, Zhang L, Wei J, Wang Y, Geng Y, Zhang X, Qiao W, Xu J. IFN-stimulated gene LY6E in monocytes regulates the CD14/TLR4 pathway but inadequately restrains the hyperactivation of monocytes during chronic HIV-1 infection. THE JOURNAL OF IMMUNOLOGY 2014; 193:4125-36. [PMID: 25225669 DOI: 10.4049/jimmunol.1401249] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Owing to ongoing recognition of pathogen-associated molecular patterns, immune activation and upregulation of IFN-stimulated genes (ISGs) are sustained in the chronically infected host. Albeit most ISGs are important effectors for containing viral replication, some might exert compensatory immune suppression to limit pathological dysfunctions, although the mechanisms are not fully understood. In this study, we report that the ISG lymphocyte Ag 6 complex, locus E (LY6E) is a negative immune regulator of monocytes. LY6E in monocytes negatively modulated CD14 expression and subsequently dampened the responsiveness to LPS stimulation in vitro. In the setting of chronic HIV infection, the upregulation of LY6E was correlated with reduced CD14 level on monocytes; however, the immunosuppressive effect of LY6E was not adequate to remedy the hyperresponsiveness of activated monocytes. Taken together, the regulatory LY6E pathway in monocytes represents one of negative feedback mechanisms that counterbalance monocyte activation, which might be caused by LPS translocation through the compromised gastrointestinal tract during persistent HIV-1 infection and may serve as a potential target for immune intervention.
Collapse
Affiliation(s)
- Xuan Xu
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Shanghai Medical College, Fudan University, Shanghai 201508, China; Key Laboratory of Molecular Microbiology and Biotechnology (Ministry of Education) and Key Laboratory of Microbial Functional Genomics (Tianjin), College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Chao Qiu
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Shanghai Medical College, Fudan University, Shanghai 201508, China;
| | - Lingyan Zhu
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Shanghai Medical College, Fudan University, Shanghai 201508, China
| | - Jun Huang
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Shanghai Medical College, Fudan University, Shanghai 201508, China
| | - Lishuang Li
- Key Laboratory of Molecular Microbiology and Biotechnology (Ministry of Education) and Key Laboratory of Microbial Functional Genomics (Tianjin), College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Weihui Fu
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Shanghai Medical College, Fudan University, Shanghai 201508, China
| | - Linxia Zhang
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Shanghai Medical College, Fudan University, Shanghai 201508, China
| | - Jun Wei
- Yuncheng Center for Disease Control and Prevention, Shanxi 044400, China
| | - Ying Wang
- Shanghai Center for Disease Control and Prevention, Shanghai 200336, China; and
| | - Yunqi Geng
- Key Laboratory of Molecular Microbiology and Biotechnology (Ministry of Education) and Key Laboratory of Microbial Functional Genomics (Tianjin), College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiaoyan Zhang
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Shanghai Medical College, Fudan University, Shanghai 201508, China; State Key Laboratory for Infectious Disease Prevention and Control, China Centers for Disease Control and Prevention, Beijing 102206, China
| | - Wentao Qiao
- Key Laboratory of Molecular Microbiology and Biotechnology (Ministry of Education) and Key Laboratory of Microbial Functional Genomics (Tianjin), College of Life Sciences, Nankai University, Tianjin 300071, China;
| | - Jianqing Xu
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Shanghai Medical College, Fudan University, Shanghai 201508, China; State Key Laboratory for Infectious Disease Prevention and Control, China Centers for Disease Control and Prevention, Beijing 102206, China
| |
Collapse
|
31
|
Nissen SK, Højen JF, Andersen KLD, Kofod-Olsen E, Berg RK, Paludan SR, Østergaard L, Jakobsen MR, Tolstrup M, Mogensen TH. Innate DNA sensing is impaired in HIV patients and IFI16 expression correlates with chronic immune activation. Clin Exp Immunol 2014; 177:295-309. [PMID: 24593816 DOI: 10.1111/cei.12317] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2014] [Indexed: 02/03/2023] Open
Abstract
The innate immune system has been recognized to play a role in the pathogenesis of HIV infection, both by stimulating protective activities and through a contribution to chronic immune activation, the development of immunodeficiency and progression to AIDS. A role for DNA sensors in HIV recognition has been suggested recently, and the aim of the present study was to describe the influence of HIV infection on expression and function of intracellular DNA sensing. Here we demonstrate impaired expression of interferon-stimulated genes in responses to DNA in peripheral blood monuclear cells from HIV-positive individuals, irrespective of whether patients receive anti-retroviral treatment. Furthermore, we show that expression levels of the DNA sensors interferon-inducible protein 16 (IFI16) and cyclic guanosine monophosphate-adenosine monophosphate synthase were increased in treatment-naive patients, and for IFI16 expression was correlated with high viral load and low CD4 cell count. Finally, our data demonstrate a correlation between IFI16 and CD38 expression, a marker of immune activation, in CD4(+) central and effector memory T cells, which may indicate that IFI16-mediated DNA sensing and signalling contributes to chronic immune activation. Altogether, the present study demonstrates abnormal expression and function of cytosolic DNA sensors in HIV patients, which may have implications for control of opportunistic infections, chronic immune activation and T cell death.
Collapse
Affiliation(s)
- S K Nissen
- Department of Infectious Diseases, Aarhus University Hospital Skejby, Aarhus, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Shang L, Smith AJ, Duan L, Perkey KE, Qu L, Wietgrefe S, Zupancic M, Southern PJ, Masek-Hammerman K, Reeves RK, Johnson RP, Haase AT. NK cell responses to simian immunodeficiency virus vaginal exposure in naive and vaccinated rhesus macaques. THE JOURNAL OF IMMUNOLOGY 2014; 193:277-84. [PMID: 24899503 DOI: 10.4049/jimmunol.1400417] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
NK cell responses to HIV/SIV infection have been well studied in acute and chronic infected patients/monkeys, but little is known about NK cells during viral transmission, particularly in mucosal tissues. In this article, we report a systematic study of NK cell responses to high-dose vaginal exposure to SIVmac251 in the rhesus macaque female reproductive tract (FRT). Small numbers of NK cells were recruited into the FRT mucosa following vaginal inoculation. The influx of mucosal NK cells preceded local virus replication and peaked at 1 wk and, thus, was in an appropriate time frame to control an expanding population of infected cells at the portal of entry. However, NK cells were greatly outnumbered by recruited target cells that fuel local virus expansion and were spatially dissociated from SIV RNA+ cells at the major site of expansion of infected founder populations in the transition zone and adjoining endocervix. The number of NK cells in the FRT mucosa decreased rapidly in the second week, while the number of SIV RNA+ cells in the FRT reached its peak. Mucosal NK cells produced IFN-γ and MIP-1α/CCL3 but lacked several markers of activation and cytotoxicity, and this was correlated with inoculum-induced upregulation of the inhibitory ligand HLA-E and downregulation of the activating receptor CD122/IL-2Rβ. Examination of SIVΔnef-vaccinated monkeys suggested that recruitment of NK cells to the genital mucosa was not involved in vaccine-induced protection from vaginal challenge. In summary, our results suggest that NK cells play, at most, a limited role in defenses in the FRT against vaginal challenge.
Collapse
Affiliation(s)
- Liang Shang
- Department of Microbiology, Medical School, University of Minnesota, Minneapolis, MN 55455; and
| | - Anthony J Smith
- Department of Microbiology, Medical School, University of Minnesota, Minneapolis, MN 55455; and
| | - Lijie Duan
- Department of Microbiology, Medical School, University of Minnesota, Minneapolis, MN 55455; and
| | - Katherine E Perkey
- Department of Microbiology, Medical School, University of Minnesota, Minneapolis, MN 55455; and
| | - Lucy Qu
- Department of Microbiology, Medical School, University of Minnesota, Minneapolis, MN 55455; and
| | - Stephen Wietgrefe
- Department of Microbiology, Medical School, University of Minnesota, Minneapolis, MN 55455; and
| | - Mary Zupancic
- Department of Microbiology, Medical School, University of Minnesota, Minneapolis, MN 55455; and
| | - Peter J Southern
- Department of Microbiology, Medical School, University of Minnesota, Minneapolis, MN 55455; and
| | | | - R Keith Reeves
- New England Primate Research Center, Harvard Medical School, Southborough, MA 01772
| | - R Paul Johnson
- New England Primate Research Center, Harvard Medical School, Southborough, MA 01772
| | - Ashley T Haase
- Department of Microbiology, Medical School, University of Minnesota, Minneapolis, MN 55455; and
| |
Collapse
|
33
|
Li Y, Li S, Duan X, Liu B, Yang C, Zeng P, McGilvray I, Chen L. Activation of endogenous type I IFN signaling contributes to persistent HCV infection. Rev Med Virol 2014; 24:332-42. [PMID: 24806972 DOI: 10.1002/rmv.1795] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 04/04/2014] [Accepted: 04/04/2014] [Indexed: 12/14/2022]
Abstract
HCV infection is a major world health problem, leading to both end-stage liver disease and primary liver cancer. Great efforts have been made in developing new therapies for HCV infection; however, combination therapy with pegylated IFN-α and ribavirin (pegIFN-RBV) remains the first choice of treatment for chronic HCV infection in most countries. The treatment response to pegIFN-RBV remains relatively low. Understanding the molecular mechanisms of persistent HCV infection and pegIFN-RBV resistance will suggest ways of improving the current standard of care and offers new antiviral therapies for both HCV and other viral infections. Recent data suggest that increased expression of hepatic IFN-stimulated genes (ISGs) before treatment is associated with treatment nonresponse in patients chronically infected with HCV. Although ISGs are generally antiviral in nature, in the case of HCV, the virus may exploit some of them to its benefit. This is not unique to HCV: Blockade of type I IFN signaling has been shown to control persistent LCMV infection. Thus, in certain viral infections, preactivation or overactivation of type I IFN signaling may contribute to viral persistence. In this review, we briefly summarize the findings from high-throughput gene expression profiling from patients chronically infected with HCV, then focus on a novel ubiquitin-like signaling pathway (ISG15/USP18) and its potential role in HCV persistence. Finally, the role of activation of endogenous type I IFN signaling in persistent HCV infection will be discussed in the context of recent studies indicating that blocking IFN signaling controls persistent LCMV infection.
Collapse
Affiliation(s)
- Yujia Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, Sichuan, China
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Verhoeven D, George MD, Hu W, Dang AT, Smit-McBride Z, Reay E, Macal M, Fenton A, Sankaran-Walters S, Dandekar S. Enhanced innate antiviral gene expression, IFN-α, and cytolytic responses are predictive of mucosal immune recovery during simian immunodeficiency virus infection. THE JOURNAL OF IMMUNOLOGY 2014; 192:3308-18. [PMID: 24610016 DOI: 10.4049/jimmunol.1302415] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The mucosa that lines the respiratory and gastrointestinal (GI) tracts is an important portal of entry for pathogens and provides the first line of innate immune defense against infections. Although an abundance of memory CD4(+) T cells at mucosal sites render them highly susceptible to HIV infection, the gut and not the lung experiences severe and sustained CD4(+) T cell depletion and tissue disruption. We hypothesized that distinct immune responses in the lung and gut during the primary and chronic stages of viral infection contribute to these differences. Using the SIV model of AIDS, we performed a comparative analysis of the molecular and cellular characteristics of host responses in the gut and lung. Our findings showed that both mucosal compartments harbor similar percentages of memory CD4(+) T cells and displayed comparable cytokine (IL-2, IFN-γ, and TNF-α) responses to mitogenic stimulations prior to infection. However, despite similar viral replication and CD4(+) T cell depletion during primary SIV infection, CD4(+) T cell restoration kinetics in the lung and gut diverged during acute viral infection. The CD4(+) T cells rebounded or were preserved in the lung mucosa during chronic viral infection, which correlated with heightened induction of type I IFN signaling molecules and innate viral restriction factors. In contrast, the lack of CD4(+) T cell restoration in the gut was associated with dampened immune responses and diminished expression of viral restriction factors. Thus, unique immune mechanisms contribute to the differential response and protection of pulmonary versus GI mucosa and can be leveraged to enhance mucosal recovery.
Collapse
Affiliation(s)
- David Verhoeven
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA 95616
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Liyanage NPM, Gordon SN, Doster MN, Pegu P, Vaccari M, Shukur N, Schifanella L, Pise-Masison CA, Lipinska D, Grubczak K, Moniuszko M, Franchini G. Antiretroviral therapy partly reverses the systemic and mucosal distribution of NK cell subsets that is altered by SIVmac₂₅₁ infection of macaques. Virology 2014; 450-451:359-68. [PMID: 24503100 DOI: 10.1016/j.virol.2013.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 12/02/2013] [Accepted: 12/04/2013] [Indexed: 01/06/2023]
Abstract
We characterized three subsets of NK cells in blood, and two subsets in mucosal tissues. SIVmac251 infection increased total and CD16(+) NK cells in the blood. In the rectum, we observed a significant increase in total and NKG2A(+) NK cells during SIV infection. In contrast, the NKp44(+) subset significantly depleted in acute infection and continued to decline in frequency during chronic phase. During SIV infection, blood CD16 and mucosal NKG2A(+) subsets had increased cytotoxic potential. Intriguingly, the NKp44(+) NK cell subtype that likely mediates mucosal homeostasis via the production of cytokines, acquired cytotoxicity. Antiretroviral therapy significantly increased the frequency of mucosal NKG2A(+) NK cells and peripheral CD16(+) NK cells. However, it failed to restore the normal frequency of NKp44(+) NK cells in the rectum. Thus, SIVmac251 infection causes changes in the distribution and function of NK cells and antiretroviral therapy during chronic infection only partially restores NK homeostasis and function.
Collapse
Affiliation(s)
- Namal P M Liyanage
- Animal Models & Retroviral Vaccines Section, NCI, NIH, Bethesda, MD 20892, USA
| | - Shari N Gordon
- Animal Models & Retroviral Vaccines Section, NCI, NIH, Bethesda, MD 20892, USA
| | - Melvin N Doster
- Animal Models & Retroviral Vaccines Section, NCI, NIH, Bethesda, MD 20892, USA
| | - Poonam Pegu
- Animal Models & Retroviral Vaccines Section, NCI, NIH, Bethesda, MD 20892, USA
| | - Monica Vaccari
- Animal Models & Retroviral Vaccines Section, NCI, NIH, Bethesda, MD 20892, USA
| | - Nebiyu Shukur
- Animal Models & Retroviral Vaccines Section, NCI, NIH, Bethesda, MD 20892, USA
| | - Luca Schifanella
- Animal Models & Retroviral Vaccines Section, NCI, NIH, Bethesda, MD 20892, USA
| | | | - Danuta Lipinska
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Kamil Grubczak
- Department of Immunology, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Marcin Moniuszko
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, 15-269 Bialystok, Poland; Department of Allergology and Internal Medicine, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Genoveffa Franchini
- Animal Models & Retroviral Vaccines Section, NCI, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
36
|
Ng CT, Snell LM, Brooks DG, Oldstone MBA. Networking at the level of host immunity: immune cell interactions during persistent viral infections. Cell Host Microbe 2013; 13:652-64. [PMID: 23768490 DOI: 10.1016/j.chom.2013.05.014] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Persistent viral infections are the result of a series of connected events that culminate in diminished immunity and the inability to eliminate infection. By building our understanding of how distinct components of the immune system function both individually and collectively in productive versus abortive responses, new potential therapeutic targets can be developed to overcome immune dysfunction and thus fight persistent infections. Using lymphocytic choriomeningitis virus (LCMV) as a model of a persistent virus infection and drawing parallels to persistent human viral infections such as human immunodeficiency virus (HIV) and hepatitis C virus (HCV), we describe the cellular relationships and interactions that determine the outcome of initial infection and highlight immune targets for therapeutic intervention to prevent or treat persistent infections. Ultimately, these findings will further our understanding of the immunologic basis of persistent viral infection and likely lead to strategies to treat human viral infections.
Collapse
Affiliation(s)
- Cherie T Ng
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
37
|
HIV-1 Vpr accelerates viral replication during acute infection by exploitation of proliferating CD4+ T cells in vivo. PLoS Pathog 2013; 9:e1003812. [PMID: 24339781 PMCID: PMC3855622 DOI: 10.1371/journal.ppat.1003812] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 10/22/2013] [Indexed: 11/28/2022] Open
Abstract
The precise role of viral protein R (Vpr), an HIV-1-encoded protein, during HIV-1 infection and its contribution to the development of AIDS remain unclear. Previous reports have shown that Vpr has the ability to cause G2 cell cycle arrest and apoptosis in HIV-1-infected cells in vitro. In addition, vpr is highly conserved in transmitted/founder HIV-1s and in all primate lentiviruses, which are evolutionarily related to HIV-1. Although these findings suggest an important role of Vpr in HIV-1 pathogenesis, its direct evidence in vivo has not been shown. Here, by using a human hematopoietic stem cell-transplanted humanized mouse model, we demonstrated that Vpr causes G2 cell cycle arrest and apoptosis predominantly in proliferating CCR5+ CD4+ T cells, which mainly consist of regulatory CD4+ T cells (Tregs), resulting in Treg depletion and enhanced virus production during acute infection. The Vpr-dependent enhancement of virus replication and Treg depletion is observed in CCR5-tropic but not CXCR4-tropic HIV-1-infected mice, suggesting that these effects are dependent on the coreceptor usage by HIV-1. Immune activation was observed in CCR5-tropic wild-type but not in vpr-deficient HIV-1-infected humanized mice. When humanized mice were treated with denileukin diftitox (DD), to deplete Tregs, DD-treated humanized mice showed massive activation/proliferation of memory T cells compared to the untreated group. This activation/proliferation enhanced CCR5 expression in memory CD4+ T cells and rendered them more susceptible to CCR5-tropic wild-type HIV-1 infection than to vpr-deficient virus. Taken together, these results suggest that Vpr takes advantage of proliferating CCR5+ CD4+ T cells for enhancing viremia of CCR5-tropic HIV-1. Because Tregs exist in a higher cycling state than other T cell subsets, Tregs appear to be more vulnerable to exploitation by Vpr during acute HIV-1 infection. HIV-1 encodes nine genes, five of which (gag, pol, env, tat, and rev) are essential for viral replication, and four, termed accessory genes (vif, vpu, nef, and vpr), appear to aid virus infection. Of the four accessory proteins, Vpr is the most enigmatic. It is well known that Vpr has the potential to cause G2 cell cycle arrest and apoptosis in vitro. Moreover, it has been reported that Vpr-mediated G2 arrest increases HIV-1 production in vitro. However, the role of Vpr in HIV-1 propagation in vivo remains unclear. Here, by using a humanized mouse model, we demonstrate that Vpr enhances CCR5-tropic but not CXCR4-tropic HIV-1 replication in vivo by exploiting Tregs during acute infection. In CCR5-tropic HIV-1-infected humanized mice, Vpr-dependent G2 cell cycle arrest and apoptosis are predominantly observed in infected Tregs, and wild-type but not vpr-deficient HIV-1-infected mice displayed acute Treg depletion. This Vpr-dependent Treg depletion may lead to immune activation and provide a pool of activated/proliferating CD4+ T cells, which supports subsequent HIV-1 expansion in vivo. This is the first report demonstrating the role of Vpr in HIV-1 infection in vivo.
Collapse
|
38
|
Efficient BST2 antagonism by Vpu is critical for early HIV-1 dissemination in humanized mice. Retrovirology 2013; 10:128. [PMID: 24195843 PMCID: PMC4226203 DOI: 10.1186/1742-4690-10-128] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 10/27/2013] [Indexed: 11/30/2022] Open
Abstract
Background Vpu is a multifunctional accessory protein that enhances the release of HIV-1 by counteracting the entrapment of nascent virions on infected cell surface mediated by BST2/Tetherin. Vpu-mediated BST2 antagonism involves physical association with BST2 and subsequent mislocalization of the restriction factor to intracellular compartments followed by SCF(β-TrCP) E3 ligase-dependent lysosomal degradation. Apart from BST2 antagonism, Vpu also induces down regulation of several immune molecules, including CD4 and SLAMF6/NTB-A, to evade host immune responses and promote viral dissemination. However, it should be noted that the multiple functions of Vpu have been studied in cell-based assays, and thus it remains unclear how Vpu influences the dynamic of HIV-1 infection in in vivo conditions. Results Using a humanized mouse model of acute infection as well as CCR5-tropic HIV-1 that lack Vpu or encode WT Vpu or Vpu with mutations in the β-TrCP binding domain, we provide evidence that Vpu-mediated BST2 antagonism plays a crucial role in establishing early plasma viremia and viral dissemination. Interestingly, we also find that efficient HIV-1 release and dissemination are directly related to functional strength of Vpu in antagonizing BST2. Thus, reduced antagonism of BST2 due to β-TrCP binding domain mutations results in decreased plasma viremia and frequency of infected T cells, highlighting the importance of Vpu-mediated β-TrCP-dependent BST-2 degradation for optimal initial viral propagation. Conclusions Overall, our findings suggest that BST2 antagonism by Vpu is critical for efficient early viral expansion and dissemination during acute infection and as such is likely to confer HIV-1 increased transmission fitness.
Collapse
|
39
|
Li H, Gillis J, Johnson RP, Reeves RK. Multi-functional plasmacytoid dendritic cells redistribute to gut tissues during simian immunodeficiency virus infection. Immunology 2013; 140:244-9. [PMID: 23746074 DOI: 10.1111/imm.12132] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Revised: 05/31/2013] [Accepted: 06/03/2013] [Indexed: 11/29/2022] Open
Abstract
The objective of this study was to determine the systemic effects of chronic simian immunodeficiency virus (SIV) infection on plasmacytoid dendritic cells (pDCs). pDCs play a critical role in antiviral immunity, but current data are conflicting on whether pDCs inhibit HIV/SIV replication, or, alternatively, contribute to chronic immune activation and disease. Furthermore, previous pDC studies have been complicated by incomplete descriptions of generalized depletion during HIV/SIV infection, and the effects of infection on pDCs outside peripheral blood remain unclear. In scheduled-sacrifice studies of naive and chronically SIV-infected rhesus macaques we evaluated the distribution and functionality of pDCs in multiple tissues using surface and intracellular polychromatic flow cytometry. As previously observed, pDCs were reduced in peripheral blood and spleens, but were also depleted in non-lymphoid organs such as the liver. Interestingly, pDCs accumulated up to fourfold in jejunum, colon and gut-draining lymph nodes, but not in peripheral lymph nodes. Most unexpectedly, SIV infection induced a multi-functional interferon-α, tumour necrosis factor-α, and macrophage inflammatory protein-1β cytokine secretion phenotype, whereas in normal animals these were generally distinct and separate functions. Herein we show a systemic redistribution of pDCs to gut tissues and gut-draining lymph nodes during chronic SIV infection, coupled to a novel multi-functional cytokine-producing phenotype. While pDC accumulation in the mucosa could aid in virus control, over-production of cytokines from these cells could also contribute to the increased immune activation in the gut mucosa commonly associated with progressive lentivirus infections.
Collapse
Affiliation(s)
- Haiying Li
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough, MA, USA
| | | | | | | |
Collapse
|
40
|
Abstract
OBJECTIVE To study the cytokine/chemokine profiles in response to HIV-1 viremia, and elucidate the pathways leading to HIV-1-induced inflammation. DESIGN/METHODS Plasma levels of 19 cytokines in individuals with early HIV-1 infection and individuals undergoing treatment interruptions were evaluated via multiplex assay. To investigate the cellular sources of relevant cytokines, sorted cells from HIV-1 infected individuals were assessed for mRNA expression. Relevant signaling pathways were assessed by comparing cytokine production patterns of peripheral blood mononuclear cells stimulated with intact HIV-1 or specific Toll-like receptor (TLR) stimulants with and without a TLR7/9 antagonist. RESULTS IP-10 plasma concentration was most significantly associated with HIV-1 viral load and was the most significant contributor in a multivariate model. IP-10 mRNA was highly expressed in monocytes and mDCs and these cells were the dominant producers after in-vitro stimulation with TLR7/8 ligands (CL097 and ssRNAGag1166), AT-2 HIV-1, and HIV-1NL43 virus. Partial least square discriminant analysis of culture supernatants revealed distinct cytokine/chemokine secretion profiles associated with intact viruses compared with TLR7/8 ligands alone, with IP-10 production linked to the former. A TLR7/9 antagonist blocked IP-10 production following whole virus stimulation, suggesting the involvement of TLR7/9 in the recognition of HIV-1 by these cells. CONCLUSION Monocytes and mDCs produce significant amounts of IP-10 in response to HIV-1 viremia and after in-vitro stimulation with HIV-1. Stimulation with HIV-1-derived TLR7/8-ligands versus HIV-1 resulted in distinct cytokine/chemokine profiles, indicating additional pathways other than TLR7/8 that lead to the activation of innate immune cells by HIV-1.
Collapse
|
41
|
Toll-like receptor variants are associated with infant HIV-1 acquisition and peak plasma HIV-1 RNA level. AIDS 2013; 27:2431-9. [PMID: 24037211 DOI: 10.1097/qad.0b013e3283629117] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE We evaluated the association of single nucleotide polymorphisms (SNPs) in TLRs with infant HIV-1 acquisition and viral control. DESIGN Infant HIV-1 outcomes were assessed in a Kenyan perinatal HIV-1 cohort. METHODS Infants were genotyped for six candidate and 118 haplotype-tagging polymorphisms in TLRs 2, 3, 4, 7, 8, and 9, MYD88 and TIRAP. Cox proportional hazards and linear regression were performed to assess associations with time to HIV-1 acquisition, time to infant mortality, and peak viral load. RESULTS Among 368 infants, 56 (15%) acquired HIV-1 by month 1 and 17 (4.6%) between 1 and 12 months. Infants with the TLR9 1635A (rs352140) variant were more likely to acquire HIV-1 by 1 month [hazard ratio = 1.81, 95% confidence interval (CI) = 1.05-3.14, P = 0.033] and by 12 months (hazard ratio = 1.62, CI = 1.01-2.60, P = 0.044) in dominant models adjusted for maternal plasma HIV-1 RNA level and genetic ancestry. Among 56 infants infected at 1 month of age or less, at least one copy of the TLR9 1635A allele was associated with a 0.58 log₁₀ copies/ml lower peak viral load (P = 0.002). Female infants with at least one copy of the TLR8 1G (rs3764880) variant had a 0.78 log₁₀ copies/ml higher peak viral load (P = 0.0009) and having at least one copy of the C allele for a haplotype tagging TLR7 variant (rs1634319) was associated with a 0.80 log₁₀ copies/ml higher peak viral load in female infants (P = 0.0003). CONCLUSION In this African perinatal cohort, we found several TLR polymorphisms associated with HIV-1 acquisition and progression. Defining mechanisms for these TLR associations may inform HIV-1 prevention strategies that leverage innate responses.
Collapse
|
42
|
Higher NK cell IFN-γ production is associated with delayed HIV disease progression in LTNPs. J Clin Immunol 2013; 33:1376-85. [PMID: 23996459 DOI: 10.1007/s10875-013-9930-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 07/26/2013] [Indexed: 12/31/2022]
Abstract
Natural killer (NK) cells are important effectors of the innate immune system that help control viral infections and tumorigenesis. However, the relationship between NK cell function and HIV disease progression remains poorly defined. In this study, we examined the function of NK cells in Chinese patients who were HIV-infected but treatment-naïve. These individuals include primary HIV-infected patients (PHIs), typical progressors (TPs), and long-term nonprogressors (LTNPs). We observed an increase of CD56(dim) NK cells in PHIs, but the production of interferon-gamma (IFN-γ) and CD107a expression in PHIs were not altered compared with normal control subjects (NCs). However, the NK cells from LTNPs exhibited increased activities in IFN-γ production, CD107a expression and granzyme B change after K562 stimulation compared with NCs. Furthermore, the percentage of IFN-γ(+)CD107a(-) NK cells in LTNPs was higher than that in TPs, PHIs and NCs; levels of IFN-γ production in LTNP NK cells exhibited an inverse correlation with viral loads. Similar correlations, however, were not observed in the PHI and TP groups. Taken together, these data demonstrate that enhanced NK cell function may contribute to the control of HIV infection, and increased IFN-γ secretion may be associated with delayed disease progression.
Collapse
|
43
|
Teijaro JR, Ng C, Lee AM, Sullivan BM, Sheehan KC, Welch M, Schreiber RD, de la Torre JC, Oldstone MBA. Persistent LCMV infection is controlled by blockade of type I interferon signaling. Science 2013; 340:207-11. [PMID: 23580529 PMCID: PMC3640797 DOI: 10.1126/science.1235214] [Citation(s) in RCA: 610] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
During persistent viral infections, chronic immune activation, negative immune regulator expression, an elevated interferon signature, and lymphoid tissue destruction correlate with disease progression. We demonstrated that blockade of type I interferon (IFN-I) signaling using an IFN-I receptor neutralizing antibody reduced immune system activation, decreased expression of negative immune regulatory molecules, and restored lymphoid architecture in mice persistently infected with lymphocytic choriomeningitis virus. IFN-I blockade before and after establishment of persistent virus infection resulted in enhanced virus clearance and was CD4 T cell-dependent. Hence, we demonstrate a direct causal link between IFN-I signaling, immune activation, negative immune regulator expression, lymphoid tissue disorganization, and virus persistence. Our results suggest that therapies targeting IFN-I may help control persistent virus infections.
Collapse
Affiliation(s)
- John R. Teijaro
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037
| | - Cherie Ng
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037
| | - Andrew M. Lee
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037
| | - Brian M. Sullivan
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037
| | - Kathleen C.F. Sheehan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MI 63110
| | | | - Robert D. Schreiber
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MI 63110
| | - Juan Carlos de la Torre
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037
| | - Michael B. A. Oldstone
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037
| |
Collapse
|
44
|
Azzoni L, Foulkes AS, Papasavvas E, Mexas AM, Lynn KM, Mounzer K, Tebas P, Jacobson JM, Frank I, Busch MP, Deeks SG, Carrington M, O'Doherty U, Kostman J, Montaner LJ. Pegylated Interferon alfa-2a monotherapy results in suppression of HIV type 1 replication and decreased cell-associated HIV DNA integration. J Infect Dis 2013; 207:213-22. [PMID: 23105144 PMCID: PMC3532820 DOI: 10.1093/infdis/jis663] [Citation(s) in RCA: 174] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 07/30/2012] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Antiretroviral therapy (ART)-mediated immune reconstitution fails to restore the capacity of the immune system to spontaneously control human immunodeficiency virus (HIV) replication. METHODS A total of 23 HIV type 1 (HIV-1)-infected, virologically suppressed subjects receiving ART (CD4(+) T-cell count, >450 cells/μL) were randomly assigned to have 180 μg/week (for arm A) or 90 μg/week (for arm B) of pegylated (Peg) interferon alfa-2a added to their current ART regimen. After 5 weeks, ART was interrupted, and Peg-interferon alfa-2a was continued for up to 12 weeks (the primary end point), with an option to continue to 24 weeks. End points included virologic failure (viral load, ≥ 400 copies/mL) and adverse events. Residual viral load and HIV-1 DNA integration were also assessed. RESULTS At week 12 of Peg-interferon alfa-2a monotherapy, viral suppression was observed in 9 of 20 subjects (45%), a significantly greater proportion than expected (arm A, P = .0088; arm B, P = .0010; combined arms, P < .0001). Over 24 weeks, both arms had lower proportions of subjects who had viral load, compared with the proportion of subjects in a historical control group (arm A, P = .0046; arm B, P = .0011). Subjects who had a sustained viral load of <400 copies/mL had decreased levels of integrated HIV DNA (P = .0313) but increased residual viral loads (P = .0078), compared with subjects who experienced end-point failure. CONCLUSIONS Peg-interferon alfa-2a immunotherapy resulted in control of HIV replication and decreased HIV-1 integration, supporting a role for immunomediated approaches in HIV suppression and/or eradication. CLINICAL TRIALS REGISTRATION NCT00594880.
Collapse
Affiliation(s)
- Livio Azzoni
- HIV-1 Immunopathogenesis Laboratory, The Wistar Institute
| | - Andrea S. Foulkes
- Division of Biostatistics and Epidemiology, University of Massachusetts, Amherst
| | | | | | - Kenneth M. Lynn
- HIV-1 Immunopathogenesis Laboratory, The Wistar Institute
- Department of Medicine, School of Medicine, University of Pennsylvania
| | | | - Pablo Tebas
- Department of Medicine, School of Medicine, University of Pennsylvania
| | | | - Ian Frank
- Department of Medicine, School of Medicine, University of Pennsylvania
| | - Michael P. Busch
- Blood Systems Research Institute
- Department of Laboratory Medicine
| | - Steven G. Deeks
- Department of Medicine, University of California–San Francisco, San Francisco, California
| | - Mary Carrington
- Laboratory of Experimental Immunology, AIC Frederick, NCI Frederick, Frederick, Maryland
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts
| | | | - Jay Kostman
- Department of Medicine, School of Medicine, University of Pennsylvania
| | | |
Collapse
|
45
|
|
46
|
Ma JP, Xia HJ, Zhang GH, Han JB, Zhang LG, Zheng YT. Inhibitory effects of chloroquine on the activation of plasmacytoid dendritic cells in SIVmac239-infected Chinese rhesus macaques. Cell Mol Immunol 2012; 9:410-6. [PMID: 22885523 DOI: 10.1038/cmi.2012.22] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
It is currently widely accepted that immune activation in HIV-infected individuals leads to a severe loss of CD4⁺ T cells and the progression to AIDS. However, the underlying mechanism of this immune activation remains unclear. Experimental data suggest that the activation of plasmacytoid dendritic cells (pDCs) by plasma viremia may play a critical role in HIV-induced immune activation. In this study, we found that the level of immune activation was higher in the late phase of SIVmac239 infection compared with chronic infection, which suggests that immune activation might be related to disease progression in SIVmac239-infected non-human primate models. Our work also showed that chloroquine could effectively inhibit the activation of pDCs in vitro and in vivo. However, chloroquine treatment of SIVmac239-infected macaques had no significant influence on the Cellular composition of peripheral blood in these animals.
Collapse
Affiliation(s)
- Jian-Ping Ma
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | | | | | | | | | | |
Collapse
|
47
|
Delaloye J, De Bruin IJA, Darling KEA, Reymond MK, Sweep FCGJ, Roger T, Calandra T, Cavassini M. Increased macrophage migration inhibitory factor (MIF) plasma levels in acute HIV-1 infection. Cytokine 2012; 60:338-40. [PMID: 22898393 DOI: 10.1016/j.cyto.2012.07.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 07/19/2012] [Accepted: 07/21/2012] [Indexed: 10/28/2022]
Abstract
Considering macrophage migratory inhibitory factor (MIF) as a critical pro-inflammatory cytokine of the immune system, we evaluated plasma MIF levels in 89 HIV-infected adults. Plasma MIF levels were higher in HIV-infected than in HIV-negative individuals. Highest MIF levels were observed during acute HIV infection (AHI) whilst patients on antiretroviral therapy (ART) had lower MIF levels, regardless of ART efficacy. Our results suggest that MIF is an integral component of the cytokine storm characteristic of AHI.
Collapse
Affiliation(s)
- Julie Delaloye
- Infectious Diseases Service, Department of Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Reeves RK, Evans TI, Gillis J, Wong FE, Kang G, Li Q, Johnson RP. SIV infection induces accumulation of plasmacytoid dendritic cells in the gut mucosa. J Infect Dis 2012; 206:1462-8. [PMID: 22711907 DOI: 10.1093/infdis/jis408] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Multiple studies suggest that plasmacytoid dendritic cells (pDCs) are depleted and dysfunctional during human immunodeficiency virus/simian immunodeficiency virus (HIV/SIV) infection, but little is known about pDCs in the gut-the primary site of virus replication. Here, we show that during SIV infection, pDCs were reduced 3--fold in the circulation and significantly upregulated the gut-homing marker α4β7, but were increased 4-fold in rectal biopsies of infected compared to naive macaques. These data revise the understanding of pDC immunobiology during SIV infection, indicating that pDCs are not necessarily depleted, but instead may traffic to and accumulate in the gut mucosa.
Collapse
Affiliation(s)
- R Keith Reeves
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough, MA, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Borel S, Espert L, Biard-Piechaczyk M. Macroautophagy Regulation during HIV-1 Infection of CD4+ T Cells and Macrophages. Front Immunol 2012; 3:97. [PMID: 22586428 PMCID: PMC3345938 DOI: 10.3389/fimmu.2012.00097] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 04/13/2012] [Indexed: 11/13/2022] Open
Abstract
Autophagy is an intracellular mechanism whereby pathogens, particularly viruses, are destroyed in autolysosomes after their entry into targets cells. Therefore, to survive and replicate in host cells, viruses have developed multiple strategies to either counteract or exploit this process. The aim of this review is to outline the known relationships between HIV-1 and autophagy in CD4+ T lymphocytes and macrophages, two main HIV-1 cell targets. The differential regulation of autophagy in these two cell-types is highlighted and its potential consequences in terms of viral replication and physiopathology discussed.
Collapse
Affiliation(s)
- Sophie Borel
- Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé, CNRS UMR5236, UM1/UM2 Montpellier, France
| | | | | |
Collapse
|
50
|
Hill AL, Rosenbloom DIS, Nowak MA. Evolutionary dynamics of HIV at multiple spatial and temporal scales. J Mol Med (Berl) 2012; 90:543-61. [PMID: 22552382 PMCID: PMC7080006 DOI: 10.1007/s00109-012-0892-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 02/24/2012] [Accepted: 03/07/2012] [Indexed: 11/28/2022]
Abstract
Infectious diseases remain a formidable challenge to human health, and understanding pathogen evolution is crucial to designing effective therapeutics and control strategies. Here, we review important evolutionary aspects of HIV infection, highlighting the concept of selection at multiple spatial and temporal scales. At the smallest scale, a single cell may be infected by multiple virions competing for intracellular resources. Recombination and phenotypic mixing introduce novel evolutionary dynamics. As the virus spreads between cells in an infected individual, it continually evolves to circumvent the immune system. We discuss evolutionary mechanisms of HIV pathogenesis and progression to AIDS. Viral spread throughout the human population can lead to changes in virulence and the transmission of immune-evading variation. HIV emerged as a human pathogen due to selection occurring between different species, adapting from related viruses of primates. HIV also evolves resistance to antiretroviral drugs within a single infected host, and we explore the possibility for the spread of these strains between hosts, leading to a drug-resistant epidemic. We investigate the role of latency, drug-protected compartments, and direct cell-to-cell transmission on viral evolution. The introduction of an HIV vaccine may select for viral variants that escape vaccine control, both within an individual and throughout the population. Due to the strong selective pressure exerted by HIV-induced morbidity and mortality in many parts of the world, the human population itself may be co-evolving in response to the HIV pandemic. Throughout the paper, we focus on trade-offs between costs and benefits that constrain viral evolution and accentuate how selection pressures differ at different levels of selection.
Collapse
Affiliation(s)
- Alison L Hill
- Program for Evolutionary Dynamics, Department of Mathematics, Harvard University, Cambridge, MA 02138, USA.
| | | | | |
Collapse
|