1
|
Carbajal A, Lobato IG, Agustí C, Muñoz-Baquero M, Serres-Corral P, López-Béjar M. A New Research Tool for Use in Sharks and Rays: Relevance of Reproductive Hormone Levels in the Skin of Small-Spotted Catshark ( Scyliorhinus canicula). Animals (Basel) 2025; 15:762. [PMID: 40076045 PMCID: PMC11899118 DOI: 10.3390/ani15050762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
The present study marks a significant step forward in validating the use of skin biopsies for measuring reproductive steroid hormones in sharks. Given the conservation concerns surrounding many chondrichthyan species and the growing emphasis on adhering to the 3R principles in wildlife research, we should prioritize the acquisition of data through non-destructive or minimally invasive sampling techniques collected remotely. Dart skin biopsy samples can be collected remotely, without the need to chase, capture, and restrain the animal. Accordingly, the present study aimed to (i) develop a suitable extraction and analytical technique for reproductive hormone determination in shark skin biopsies and (ii) evaluate whether sex steroid hormones detected in shark skin differ between males and females and depending on males' maturity. The results of assay validation demonstrated that the commercial enzyme immunoassay used can provide reliable measures of progesterone, 17β-estradiol, and testosterone measured in shark skin extracts. After ensuring that reproductive hormones are accurately measured in this sample type, we compared hormone levels between males (mature and immature) and females to evaluate the variation in reproductive hormones relative to sex and males' maturity stage. We detected significant differences in skin hormone levels between sexes, suggesting that this technique may be a promising alternative approach for obtaining relevant biological data in free-ranging sharks. By employing this novel technique, we expect to gain a deeper understanding of the reproductive processes of living chondrichthyans, which is essential for formulating effective science-based conservation and management strategies.
Collapse
Affiliation(s)
- Annaïs Carbajal
- Department of Animal Health and Anatomy, Veterinary Faculty, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (P.S.-C.); (M.L.-B.)
| | | | - Clara Agustí
- Associació Aletea, 17488 Cadaqués, Spain; (I.G.L.); (C.A.)
- Animal Welfare Education Centre (AWEC), Veterinary Faculty, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Marta Muñoz-Baquero
- Fundació Oceanogràfic de la Comunitat Valenciana, Research Department, Ciudad de las Artes y las Ciencias, 46005 Valencia, Spain;
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Instituto de Ciencias Biomédicas, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Alfara del Patriarca, Spain
| | - Paula Serres-Corral
- Department of Animal Health and Anatomy, Veterinary Faculty, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (P.S.-C.); (M.L.-B.)
| | - Manel López-Béjar
- Department of Animal Health and Anatomy, Veterinary Faculty, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (P.S.-C.); (M.L.-B.)
| |
Collapse
|
2
|
Mucientes G, Alonso-Fernández A, Vedor M, Sims DW, Queiroz N. Discovery of a potential open ocean nursery for the endangered shortfin mako shark in a global fishing hotspot. Sci Rep 2025; 15:2190. [PMID: 39820057 PMCID: PMC11739380 DOI: 10.1038/s41598-025-85572-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 01/03/2025] [Indexed: 01/19/2025] Open
Abstract
Populations of large pelagic sharks are declining worldwide due to overfishing. Determining the overlap between shark populations and fishing activities is important to inform conservation measures. However, for many threatened sharks the whereabouts of particularly vulnerable life-history stages - such as pregnant females and juveniles - are poorly known. Here, we investigated the spatial distribution of size classes, energy transfer and reproductive states of pregnant females of the endangered shortfin mako, Isurus oxyrinchus, using spatially resolved catch data from a Spanish surface longline vessel (1996 - 2009) in the South-east Pacific Ocean. Our results suggest a general eastward gradient of occurrence of pregnant females of thousands of kilometers from western oceanic feeding grounds towards the eastern Pacific, where we observed an aggregation area of small juveniles. Moreover, the potential nursery likely overlapped a longline fishing hotspot, increasing the vulnerability of juveniles from fisheries. Our results suggest that limiting fishing pressure in this area could reduce mortality of early life stages and contribute to the conservation of this endangered shark species.
Collapse
Affiliation(s)
- Gonzalo Mucientes
- Centro de Investigação em Biodiversidade e Recursos Genéticos, CIBIO-InBIO, Universidade do Porto, Campus Agrário de Vairão, r/ Padre Armando Quintas, Vairão, 4485-661, Portugal.
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, 4485-661, Portugal.
- Instituto de Investigaciones Marinas (IIM), CSIC, Eduardo Cabello 6, Vigo, 36208, Spain.
| | | | - Marisa Vedor
- Centro de Investigação em Biodiversidade e Recursos Genéticos, CIBIO-InBIO, Universidade do Porto, Campus Agrário de Vairão, r/ Padre Armando Quintas, Vairão, 4485-661, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, 4485-661, Portugal
| | - David W Sims
- Marine Biological Association, , The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK
- Ocean and Earth Science, University of Southampton, National Oceanography Centre Southampton, Waterfront Campus, Southampton, SO14 3ZH, UK
| | - Nuno Queiroz
- Centro de Investigação em Biodiversidade e Recursos Genéticos, CIBIO-InBIO, Universidade do Porto, Campus Agrário de Vairão, r/ Padre Armando Quintas, Vairão, 4485-661, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, 4485-661, Portugal
| |
Collapse
|
3
|
Martins S, Ferreira C, Mateus AP, Santos CP, Fonseca J, Rosa R, Power DM. Immunological resilience of a temperate catshark to a simulated marine heatwave. J Exp Biol 2024; 227:jeb247684. [PMID: 39422000 DOI: 10.1242/jeb.247684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024]
Abstract
Marine heatwaves (MHWs) have recently been proposed to be more relevant in driving population changes than the continuous increase in average temperatures associated with climate change. The causal processes underpinning MHW effects in sharks are unclear but may be linked to changes in fitness caused by physiological trade-offs that influence the immune response. Considering the scarcity of data about the immune response of sharks under anomalous warming events, the present study analyzed several fitness indices and characterized the immune response (in the blood, epigonal organ, liver, spleen and intestine) of temperate adult small-spotted catsharks (Scyliorhinus canicula) after a 30 day exposure to a category II MHW. The results indicated that adult small-spotted catsharks have developed coping strategies for MHWs. Specifically, among the 35 parameters investigated, only the gonad-to-body ratio (GBR) and plasma glucose concentration showed significant increases. In contrast, gene expression of igm and tumor necrosis factor receptor (tnfr) in blood cells, and tnfr in the epigonal organ, as well as the number of monocytes, all significantly decreased. Although a decline in immune function in small-spotted catsharks was revealed following MHW exposure, energy mobilization restored homeostasis and indicated a shift in energy allocation towards reproduction. Group resilience may be due to the variable tolerance of individuals, the phenotypic plasticity of cellular immunity, thermal imprinting and/or metabolic capacity of the individuals.
Collapse
Affiliation(s)
- Sandra Martins
- MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Portugal, 2750-374 Cascais, Portugal
- Comparative Molecular and Integrative Biology, Centro de Ciências do Mar, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Cristina Ferreira
- Instituto de Medicina Molecular, João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Ana Patrícia Mateus
- Comparative Molecular and Integrative Biology, Centro de Ciências do Mar, Universidade do Algarve, 8005-139 Faro, Portugal
- Escola Superior de Saúde, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Catarina Pereira Santos
- MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Portugal, 2750-374 Cascais, Portugal
| | - Joana Fonseca
- Faculdade de Medicina Veterinária, Universidade Lusófona de Humanidades e Tecnologias (FMV-ULHT), 1749-024 Lisboa, Portugal
| | - Rui Rosa
- MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Portugal, 2750-374 Cascais, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Portugal, 1749-016 Cascais, Portugal
- Sphyrna Association, Boa Vista Island, Sal Rei, 5110, Cape Verde
| | - Deborah M Power
- Comparative Molecular and Integrative Biology, Centro de Ciências do Mar, Universidade do Algarve, 8005-139 Faro, Portugal
| |
Collapse
|
4
|
de Farias Araujo G, de Oliveira LVA, Hoff RB, Wosnick N, Vianna M, Verruck S, Hauser-Davis RA, Saggioro EM. "Cocaine Shark": First report on cocaine and benzoylecgonine detection in sharks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174798. [PMID: 39019288 DOI: 10.1016/j.scitotenv.2024.174798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/19/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
Cocaine (COC) and benzoylecgonine (BE), the main COC metabolite, have been detected in aquatic ecosystems. Studies focusing on wild fish are, however, very limited, and no reports concerning elasmobranchs are available. This study investigated COC and BE levels in Brazilian Sharpnose sharks (Rhizoprionodon lalandii) (n = 13) using LC-MS/MS. All samples (13/13) tested positive for COC, with 92 % (12/13) testing positive for BE. COC concentrations (23.0 μg kg-1) were over 3-fold higher than BE (7.0 μg kg-1). COC levels were about three-fold significantly higher in muscle (33.8 ± 33.4 g kg-1) compared to liver (12.2 ± 14.2 μg kg-1). Females presented higher COC concentrations in muscle (40.2 ± 35.8 μg kg-1) compared to males (12.4 ± 5.9 μg kg-1). Several positive statistical correlations were noted between COC and BE (rho = 0.84) in females, indicating systemic COC transport and metabolization, as well as between BE and weight (rho = 0.62), and between COC and the Condition Factor (rho = 0.73). A strong correlation was noted between BE and COC in the muscle of non-pregnant females (rho = 1.00). This study represents the first COC and BE report in free-ranging sharks, and the findings point to the potential impacts of the presence of illicit drugs in environments.
Collapse
Affiliation(s)
- Gabriel de Farias Araujo
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil; Programa de Pós-Graduação em Saúde Pública e Meio Ambiente, Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Luan Valdemiro Alves de Oliveira
- Universidade Federal de Santa Catarina, Centro de Ciências Agrárias, Departamento de Ciência e Tecnologia de Alimentos, Florianópolis, Brazil
| | - Rodrigo Barcellos Hoff
- Sepor Laboratorial Avançado em Santa Catarina (SLAV/SC), Ministério da Agricultura, Pecuária e Abastecimento, Santa Catarina, Brazil
| | | | - Marcelo Vianna
- Laboratório de Biologia e Tecnologia Pesqueira, Departamento de Biologia Marinha, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; IMAM - AquaRio, Rio de Janeiro Aquarium Research Center, Rio de Janeiro, Brazil
| | - Silvani Verruck
- Universidade Federal de Santa Catarina, Centro de Ciências Agrárias, Departamento de Ciência e Tecnologia de Alimentos, Florianópolis, Brazil
| | - Rachel Ann Hauser-Davis
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.
| | - Enrico Mendes Saggioro
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil; Programa de Pós-Graduação em Saúde Pública e Meio Ambiente, Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.
| |
Collapse
|
5
|
Gayford JH, Whitehead DA, Jaquemet S. Ontogenetic shifts in body form in the bull shark Carcharhinus leucas. J Morphol 2024; 285:e21673. [PMID: 38361272 DOI: 10.1002/jmor.21673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 02/17/2024]
Abstract
Recent studies have uncovered mosaic patterns of allometric and isometric growth underlying ontogenetic shifts in the body form of elasmobranch species (shark and rays). It is thought that shifts in trophic and spatial ecology through ontogeny drive these morphological changes; however, additional hypotheses relating to developmental constraints have also been posed. The bull shark (Carcharhinus leucas) is a large-bodied coastal shark that exhibits strong ontogenetic shifts in trophic and spatial ecology. In this study, we utilise a large data set covering a large number of morphological structures to reveal ontogenetic shifts in the body form of C. leucas, stratifying analyses by sex and size classes to provide fine-scale, more ecomorphologically relevant results. Our results indicate shifts in functional demands across the body through ontogeny, driven by selective pressures relating to trophic and spatial ecology driving the evolution of allometry. We also find significant differences in scaling trends between life stages, and between the sexes, highlighting the importance of utilising large, diverse datasets that can be stratified in this way to improve our understanding of elasmobranch morphological evolution. Ultimately, we discuss the implications of these results for existing ecomorphological hypotheses regarding the evolution of specific morphological structures, and pose novel hypotheses where relevant.
Collapse
Affiliation(s)
- Joel H Gayford
- Department of Life Sciences, Silwood Park Campus, Imperial College London, Berks, UK
| | | | - Sébastien Jaquemet
- Université de La Réunion, UMR Entropie (Univ. Réunion, IRD, CNRS, Ifremer, Univ. Nouvelle-Calédonie), Saint Denis Message Cedex 9, Ile de La Réunion, France
| |
Collapse
|
6
|
Energetic consequences of resource use diversity in a marine carnivore. Oecologia 2022; 200:65-78. [PMID: 36165921 DOI: 10.1007/s00442-022-05241-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 08/06/2022] [Indexed: 10/14/2022]
Abstract
Understanding how intraspecific variation in the use of prey resources impacts energy metabolism has strong implications for predicting long-term fitness and is critical for predicting population-to-community level responses to environmental change. Here, we examine the energetic consequences of variable prey resource use in a widely distributed marine carnivore, juvenile sand tiger sharks (Carcharias taurus). We used carbon and nitrogen isotope analysis to identify three primary prey resource pools-demersal omnivores, pelagic forage, and benthic detritivores and estimated the proportional assimilation of each resource using Bayesian mixing models. We then quantified how the utilization of these resource pools impacted the concentrations of six plasma lipids and how this varied by ontogeny. Sharks exhibited variable reliance on two of three predominant prey resource pools: demersal omnivores and pelagic forage. Resource use variation was a strong predictor of energetic condition, whereby individuals more reliant upon pelagic forage exhibited higher blood plasma concentrations of very low-density lipoproteins, cholesterol, and triglycerides. These findings underscore how intraspecific variation in resource use may impact the energy metabolism of animals, and more broadly, that natural and anthropogenically driven fluctuations in prey resources could have longer term energetic consequences.
Collapse
|
7
|
Shipley ON, Olin JA, Whiteman JP, Bethea DM, Newsome SD. Bulk and amino acid nitrogen isotopes suggest shifting nitrogen balance of pregnant sharks across gestation. Oecologia 2022; 199:313-328. [PMID: 35718810 DOI: 10.1007/s00442-022-05197-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 05/21/2022] [Indexed: 10/18/2022]
Abstract
Nitrogen isotope (δ15N) analysis of bulk tissues and individual amino acids (AA) can be used to assess how consumers maintain nitrogen balance with broad implications for predicting individual fitness. For elasmobranchs, a ureotelic taxa thought to be constantly nitrogen limited, the isotopic effects associated with nitrogen-demanding events such as prolonged gestation remain unknown. Given the linkages between nitrogen isotope variation and consumer nitrogen balance, we used AA δ15N analysis of muscle and liver tissue collected from female bonnethead sharks (Sphyrna tiburo, n = 16) and their embryos (n = 14) to explore how nitrogen balance may vary across gestation. Gestational stage was a strong predictor of bulk tissue and AA δ15N values in pregnant shark tissues, decreasing as individuals neared parturition. This trend was observed in trophic (e.g., Glx, Ala, Val), source (e.g., Lys), and physiological (e.g., Gly) AAs. Several potential mechanisms may explain these results including nitrogen conservation, scavenging, and bacterially mediated breakdown of urea to free ammonia that is used to synthesize AAs. We observed contrasting patterns of isotopic discrimination in embryo tissues, which generally became enriched in 15N throughout development. This was attributed to greater excretion of nitrogenous waste in more developed embryos, and the role of physiologically sensitive AAs (i.e., Gly and Ser) to molecular processes such as nucleotide synthesis. These findings underscore how AA isotopes can quantify shifts in nitrogen balance, providing unequivocal evidence for the role of physiological condition in driving δ15N variation in both bulk tissues and individual AAs.
Collapse
Affiliation(s)
- Oliver N Shipley
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA. .,Beneath the Waves, PO Box 126, Herndon, VA, 20172, USA.
| | - Jill A Olin
- Biological Sciences, Great Lakes Research Center, Michigan Technological University, Houghton, MI, 49931, USA
| | - John P Whiteman
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, 23529, USA
| | - Dana M Bethea
- NOAA Fisheries Southeast Regional Office, Saint Petersburg, FL, 33701, USA
| | - Seth D Newsome
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| |
Collapse
|
8
|
Hammerschlag N, McDonnell LH, Rider MJ, Street GM, Hazen EL, Natanson LJ, McCandless CT, Boudreau MR, Gallagher AJ, Pinsky ML, Kirtman B. Ocean warming alters the distributional range, migratory timing, and spatial protections of an apex predator, the tiger shark (Galeocerdo cuvier). GLOBAL CHANGE BIOLOGY 2022; 28:1990-2005. [PMID: 35023247 PMCID: PMC9305416 DOI: 10.1111/gcb.16045] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/14/2021] [Accepted: 12/12/2021] [Indexed: 05/07/2023]
Abstract
Given climate change threats to ecosystems, it is critical to understand the responses of species to warming. This is especially important in the case of apex predators since they exhibit relatively high extinction risk, and changes to their distribution could impact predator-prey interactions that can initiate trophic cascades. Here we used a combined analysis of animal tracking, remotely sensed environmental data, habitat modeling, and capture data to evaluate the effects of climate variability and change on the distributional range and migratory phenology of an ectothermic apex predator, the tiger shark (Galeocerdo cuvier). Tiger sharks satellite tracked in the western North Atlantic between 2010 and 2019 revealed significant annual variability in the geographic extent and timing of their migrations to northern latitudes from ocean warming. Specifically, tiger shark migrations have extended farther poleward and arrival times to northern latitudes have occurred earlier in the year during periods with anomalously high sea-surface temperatures. A complementary analysis of nearly 40 years of tiger shark captures in the region revealed decadal-scale changes in the distribution and timing of shark captures in parallel with long-term ocean warming. Specifically, areas of highest catch densities have progressively increased poleward and catches have occurred earlier in the year off the North American shelf. During periods of anomalously high sea-surface temperatures, movements of tracked sharks shifted beyond spatial management zones that had been affording them protection from commercial fishing and bycatch. Taken together, these study results have implications for fisheries management, human-wildlife conflict, and ecosystem functioning.
Collapse
Affiliation(s)
- Neil Hammerschlag
- Rosenstiel School of Marine and Atmospheric ScienceUniversity of MiamiMiamiFloridaUSA
- Leonard & Jayne Abess Center for Ecosystem Science and PolicyUniversity of MiamiCoral GablesFloridaUSA
| | - Laura H. McDonnell
- Leonard & Jayne Abess Center for Ecosystem Science and PolicyUniversity of MiamiCoral GablesFloridaUSA
| | - Mitchell J. Rider
- Rosenstiel School of Marine and Atmospheric ScienceUniversity of MiamiMiamiFloridaUSA
| | - Garrett M. Street
- Department of Wildlife, Fisheries, and AquacultureMississippi State UniversityStarkvilleMississippiUSA
- Quantitative Ecology and Spatial Technologies LaboratoryMississippi State UniversityStarkvilleMississippiUSA
| | - Elliott L. Hazen
- Environmental Research DivisionNOAA Southwest Fisheries Science CenterMontereyCaliforniaUSA
| | - Lisa J. Natanson
- National Marine Fisheries ServiceNarragansett LaboratoryNOAA Northeast Fisheries Science CenterNarragansettRhode IslandUSA
| | - Camilla T. McCandless
- National Marine Fisheries ServiceNarragansett LaboratoryNOAA Northeast Fisheries Science CenterNarragansettRhode IslandUSA
| | - Melanie R. Boudreau
- Department of Wildlife, Fisheries, and AquacultureMississippi State UniversityStarkvilleMississippiUSA
- Quantitative Ecology and Spatial Technologies LaboratoryMississippi State UniversityStarkvilleMississippiUSA
| | | | - Malin L. Pinsky
- Department of Ecology, Evolution, and Natural ResourcesRutgers, The State University of New JerseyNew BrunswickNew JerseyUSA
| | - Ben Kirtman
- Rosenstiel School of Marine and Atmospheric ScienceUniversity of MiamiMiamiFloridaUSA
| |
Collapse
|
9
|
Lawson CL, Dudgeon CL, Richardson AJ, Broadhurst MK, Bennett MB. Flexibility for fuelling reproduction in a pelagic ray (Mobula eregoodoo) suggested by bioenergetic modelling. JOURNAL OF FISH BIOLOGY 2022; 100:783-792. [PMID: 35049041 DOI: 10.1111/jfb.14995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/13/2021] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
This study investigated the measurements of energy density and bioenergetic modelling for a pelagic ray, Mobula eregoodoo, to estimate its relative allocation to various bodily processes and especially reproduction. The data revealed M. eregoodoo uses up to 21.0% and 2.5% of its annual energy budget on growth and reproduction, respectively. During pregnancy, females depleted energy reserves in the liver, which, along with their biennial reproductive cycle, aligns with general theory that ectotherms are capital breeders and thus build energy reserves before reproduction. Nonetheless, the reduction in energy reserves did not account for all reproductive costs, and therefore, gravid females supplement reproductive costs through energy derived from the diet, according to an income-breeding strategy. These characteristics imply that M. eregoodoo exhibits some flexibility in fuelling reproduction depending on energy availability throughout the reproductive cycle, which may be prevalent in other elasmobranchs. The data represent the first estimates of both the metabolic costs of gestation in elasmobranchs and the relative cost of reproduction in rays. Energy costs and plasticity associated with highly variable reproductive strategies in elasmobranchs may influence long-term population viability under a rapidly changing environment.
Collapse
Affiliation(s)
- Christopher L Lawson
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Christine L Dudgeon
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Anthony J Richardson
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Oceans and Atmosphere, Queensland Biosciences Precinct (QBP), St Lucia, Queensland, Australia
- Centre for Applications in Natural Resource Mathematics, School of Mathematics and Physics, The University of Queensland, St Lucia, Queensland, Australia
| | - Matt K Broadhurst
- New South Wales Department of Primary Industries, Fisheries Conservation Technology Unit, National Marine Science Centre, Southern Cross University, Coffs Harbour, New South Wales, Australia
| | - Michael B Bennett
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
10
|
Initial Characterization of Male Southern Stingray ( Hypanus americanus) Reproductive Parameters and Preliminary Investigation of Sperm Cryopreservation. Animals (Basel) 2021; 11:ani11092716. [PMID: 34573681 PMCID: PMC8468634 DOI: 10.3390/ani11092716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/11/2021] [Accepted: 09/14/2021] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Understanding the reproductive biology of a species is critical for the development of biobanks and assisted reproductive techniques to aid in the genetic management of isolated populations. Male southern stingray (Hypanus americanus) reproductive examinations were opportunistically conducted in March and June. Semen and plasma were collected to characterize ejaculate parameters and to investigate the effect of plasma total testosterone on semen quality. Semen was used for preliminary sperm cryopreservation studies. Changes in semen quality were observed with changes in plasma testosterone concentrations and body conditions. Southern stingray spermatozoa were highly sensitive to cooling rates with slower rates, producing a higher post-thaw survival. Abstract This study investigated the reproductive biology and sperm cryopreservation of ex situ southern stingrays (Hypanus americanus) by semen collection and characterization and the development and validation of an enzyme-linked immunoassay for plasma total testosterone. Semen was collected in March and June using a manual massage technique, and the ejaculates were assessed for volume, pH, osmolarity, motility, status (0–5 scale: 0 = no forward progression, 5 = rapid linear progression) and total sperm count. Semen was extended in Hank’s elasmobranch ringer solution containing 10% DMSO, 10% glycerol or 5% glycerol with 5% N-methylformamide and cryopreserved using a conventional freezing method (~−50 °C/min) or a modified slow freezing method (~−3 °C/min). Body condition was scored from 1–5 and was noted to be low in March (1.93 ± 0.07) due to feeding practices and increased by June (2.93 ± 0.05) after dietary corrections were made. A concomitant increase (p < 0.05) in plasma total testosterone concentration and sperm motility was noted between March (8.0 ± 7.2 ng/mL, 5.71 ± 2.77%) and June (97.3 ± 11.3 ng/mL, 51.4 ± 14.3%). Samples cryopreserved using a modified slow freeze method (~−3 °C/min) had higher post-thaw motility and plasma membrane integrity than conventionally cryopreserved samples. Data indicate that southern stingray sperm morphometrics adheres to those of other elasmobranch species and that a slow cooling rate may be an avenue of research to improve southern stingray sperm survival during cryopreservation.
Collapse
|
11
|
Rangel BDS, Moreira RG, Niella YV, Sulikowski JA, Hammerschlag N. Metabolic and nutritional condition of juvenile tiger sharks exposed to regional differences in coastal urbanization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146548. [PMID: 34030348 DOI: 10.1016/j.scitotenv.2021.146548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/08/2021] [Accepted: 03/13/2021] [Indexed: 05/23/2023]
Abstract
How varying levels of human activity, such as proximity and size of the nearest market (i.e., market gravity), influence the nutritional ecology and physiological condition of highly migratory marine predators is poorly understood. In the present study, we used a non-lethal approach to compare the concentration of metabolic hormones (i.e. corticosteroids and thyroid hormones) and plasma fatty acids between juvenile female tiger sharks (Galeocerdo cuvier) sampled in two areas of the subtropical north Atlantic, which differed markedly in their levels of coastal urbanization, Florida and the Bahamas (high versus low, respectively). We hypothesized that juvenile female tiger sharks sampled in water surrounding high coastal urbanization (Florida), would exhibit evidence of lower prey quality and higher energetic demands as compared to individuals sampled in relatively less urbanized areas of Northern Bahamas. Results revealed that relative corticosteroid levels (a proxy for energy mobilization) were higher in juvenile female tiger sharks sampled in Florida; however, no differences were found in concentrations of thyroid hormones (proxies of energetic adjustments) between the two locations. We found higher percentages of omega-3 polyunsaturated fatty acids (indicative of high prey quality) in juvenile tiger sharks from Florida, whereas higher percentages of bacterial markers (often indicative of domestic sewage effluent) were detected in the individuals sampled in the Bahamas. Taken together, these findings do not suggest that the differences in nutritional quality and metabolic condition found between the two sampling locations can be fully attributed to foraging in areas exposed to differing levels of urbanization. We speculate that these patterns may be due to the highly migratory nature and generalist feeding strategy of this species, even at the juvenile life stage, as well as proximity of sampling locations from shore.
Collapse
Affiliation(s)
- Bianca de Sousa Rangel
- Laboratório de Metabolismo e Reprodução de Organismos Aquáticos, Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, travessa 14, 321, CEP 05508-090, Cidade Universitária, São Paulo, SP, Brazil.
| | - Renata Guimarães Moreira
- Laboratório de Metabolismo e Reprodução de Organismos Aquáticos, Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, travessa 14, 321, CEP 05508-090, Cidade Universitária, São Paulo, SP, Brazil
| | - Yuri Vieira Niella
- Department of Biological Sciences, Macquarie University, North Ryde, New South Wales 2113, Australia
| | - James A Sulikowski
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA
| | - Neil Hammerschlag
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA; Leonard and Jayne Abess Center for Ecosystem Science and Policy, University of Miami, Coral Gables, FL 33146, USA
| |
Collapse
|
12
|
Physiological markers suggest energetic and nutritional adjustments in male sharks linked to reproduction. Oecologia 2021; 196:989-1004. [PMID: 34328556 DOI: 10.1007/s00442-021-04999-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 07/21/2021] [Indexed: 10/20/2022]
Abstract
Energetic condition is one of the most important factors that influence fitness and reproductive performance in vertebrates. Yet, we lack evidence on how energetic states change in response to reproduction in large marine vertebrates. In the present study, we used a non-lethal approach to assess relationships among reproductive stage, circulating steroid hormones (testosterone and relative corticosteroid levels), plasma fatty acids, and the ketone body β-hydroxybutyrate in male sharks of two species with divergent ecologies, the benthic nurse shark (Ginglymostoma cirratum) and the epipelagic blacktip shark (Carcharhinus limbatus). We found higher relative corticosteroid levels in adult nurse sharks during the pre-mating period and in blacktip sharks during the mating period. Higher levels of β-hydroxybutyrate were found in adult nurse sharks during the mating period, but concentrations of this ketone body did not significantly vary across reproductive stages in blacktip sharks. We also detected reduced percentages of essential fatty acids during the mating period of both nurse and blacktip sharks. Taken together, our findings suggest that nurse and blacktip sharks differ in their energetic strategy to support reproduction, however, they likely rely on physiologically important fatty acids during mating, to support spermatogenesis.
Collapse
|
13
|
Pérez-Rojas JG, Mejía-Falla PA, Navia AF, Tarazona AM, Pardo-Carrasco SC. Hematology and blood biochemistry profile of the freshwater stingray Potamotrygon magdalenae as a tool for population assessment in artificial environments. BRAZ J BIOL 2021; 82:e233780. [PMID: 33787714 DOI: 10.1590/1519-6984.233780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 07/30/2020] [Indexed: 11/21/2022] Open
Abstract
Hematological and blood biochemical reference information is important to establish physiological status of freshwater stingray populations and improve care and management protocols in artificial environments. Here, we used a commercial freshwater stingray with high mortality rates in the market (Potamotrygon magdalenae), as an example to understand how artificial environments and handling protocols influence physiological status of captive freshwater stingrays. To this purpose, blood from five adult males and six adult females was collected to perform complete blood counts and blood chemistry analyses. All sampled animals showed good body condition with no differences between sexes. Differences between sexes were only found for the differential count of lymphocytes. Red blood results were consistent with previously studied potamotrygonids while white blood results showed higher values of leukocytes, thrombocytes, heterophils and lymphocytes in P. magdalenae compared to other Potamotrygonids. All types of leukocytes described for elasmobranchs were found except neutrophils and basophils. Blood metabolites showed an influence of ex situ diet in total protein, triglycerides and cholesterol. Glucose results were consistent while urea showed lower levels than those recorded for other freshwater stingrays. These results highlight the importance of physical, physiological and health analysis in freshwater stingrays as a part of welfare assessment to improve monitoring protocols and survival rates in public or private aquaria.
Collapse
Affiliation(s)
- J G Pérez-Rojas
- Fundación Colombiana para la Investigación y Conservación de Tiburones y Rayas - SQUALUS, Cali, Colombia.,Universidad Nacional de Colombia, Facultad de Ciencias Agrarias, Departamento de Producción Animal, Medellín, Colombia
| | - P A Mejía-Falla
- Fundación Colombiana para la Investigación y Conservación de Tiburones y Rayas - SQUALUS, Cali, Colombia.,Wildlife Conservation Society - WCS Colombia, Cali, Colombia
| | - A F Navia
- Fundación Colombiana para la Investigación y Conservación de Tiburones y Rayas - SQUALUS, Cali, Colombia
| | - A M Tarazona
- Universidad Nacional de Colombia, Facultad de Ciencias Agrarias, Departamento de Producción Animal, Medellín, Colombia
| | - S C Pardo-Carrasco
- Universidad Nacional de Colombia, Facultad de Ciencias Agrarias, Departamento de Producción Animal, Medellín, Colombia
| |
Collapse
|
14
|
Moorhead SG, Gallagher AJ, Merly L, Hammerschlag N. Variation of body condition and plasma energy substrates with life stage, sex, and season in wild-sampled nurse sharks Ginglymostoma cirratum. JOURNAL OF FISH BIOLOGY 2021; 98:680-693. [PMID: 33161578 DOI: 10.1111/jfb.14612] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/23/2020] [Accepted: 11/07/2020] [Indexed: 06/11/2023]
Abstract
Reported here are the relationships among morphological (i.e., body condition) and biochemical (i.e., plasma concentrations of triglycerides, cholesterol, free fatty acids, and ketone bodies and ketone body ratios) parameters related to energy storage and use, as well as the variation of such parameters, for 107 free-ranging nurse sharks Ginglymostoma cirratum sampled off South Florida. Immature G. cirratum exhibited a higher variance in body condition, plasma free fatty acid concentrations and ketone body ratios compared to adults. Mature female G. cirratum had significantly higher body condition than mature males, driven by a seasonal increase in mature female body condition during the wet season. Mature male G. cirratum showed a decrease in the ketone body β-hydroxybutyric acid during the dry season. Taken together, this study provides a baseline assessment of body condition and internal physiological state for a data-poor marine species and demonstrates significant ontogenetic, sexual and seasonal variation in G. cirratum energetic state. As concluded by other studies of energy metabolism in free-ranging sharks, this research highlights the importance of considering intraspecific patterns and sampling context for inferring the drivers of variation.
Collapse
Affiliation(s)
- Shannon G Moorhead
- Department of Marine Ecosystems and Society, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida, USA
| | - Austin J Gallagher
- Beneath the Waves, Herndon, Virginia, USA
- Fish Ecology and Conservation Physiology Laboratory, Carleton University, Ottawa, Ontario, Canada
| | - Liza Merly
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida, USA
| | - Neil Hammerschlag
- Department of Marine Ecosystems and Society, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida, USA
- Leonard and Jayne Abess Center for Ecosystem Science and Policy, University of Miami, Coral Gables, Florida, USA
| |
Collapse
|
15
|
Shipley ON, Lee CS, Fisher NS, Sternlicht JK, Kattan S, Staaterman ER, Hammerschlag N, Gallagher AJ. Metal concentrations in coastal sharks from The Bahamas with a focus on the Caribbean Reef shark. Sci Rep 2021; 11:218. [PMID: 33420176 PMCID: PMC7794238 DOI: 10.1038/s41598-020-79973-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/10/2020] [Indexed: 12/28/2022] Open
Abstract
Over the last century anthropogenic activities have rapidly increased the influx of metals and metalloids entering the marine environment, which can bioaccumulate and biomagnify in marine top consumers. This may elicit sublethal effects on target organisms, having broad implications for human seafood consumers. We provide the first assessment of metal (Cd, Pb, Cr, Mn, Co, Cu, Zn, As, Ag, and THg) and metalloid (As) concentrations in the muscle tissue of coastal sharks from The Bahamas. A total of 36 individual sharks from six species were evaluated, spanning two regions/study areas, with a focus on the Caribbean reef shark (Carcharhinus perezi), and to a lesser extent the tiger shark (Galeocerdo cuvier). This is due their high relative abundance and ecological significance throughout coastal Bahamian and regional ecosystems. Caribbean reef sharks exhibited some of the highest metal concentrations compared to five other species, and peaks in the concentrations of Pb, Cr, Cu were observed as individuals reached sexual maturity. Observations were attributed to foraging on larger, more piscivorous prey, high longevity, as well a potential slowing rate of growth. We observed correlations between some metals, which are challenging to interpret but may be attributed to trophic level and ambient metal conditions. Our results provide the first account of metal concentrations in Bahamian sharks, suggesting individuals exhibit high concentrations which may potentially cause sublethal effects. Finally, these findings underscore the potential toxicity of shark meat and have significant implications for human consumers.
Collapse
Affiliation(s)
- Oliver N Shipley
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794, USA.
| | - Cheng-Shiuan Lee
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794, USA
- New York State Center for Clean Water Technology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Nicholas S Fisher
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794, USA
| | | | - Sami Kattan
- Beneath the Waves, PO Box 126, Herndon, VA, USA
| | | | - Neil Hammerschlag
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, 33149, USA
| | | |
Collapse
|
16
|
Wosnick N, Chaves AP, Niella YV, Takatsuka V, Hazin FHV, Nunes JLS, Morick D. Physiological Impairment as a Result of Bile Accumulation in an Apex Predator, the Tiger Shark ( Galeocerdo cuvier Péron & Lesueur, 1822). Animals (Basel) 2020; 10:ani10112030. [PMID: 33158068 PMCID: PMC7694183 DOI: 10.3390/ani10112030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/22/2020] [Accepted: 11/02/2020] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Sharks rely on a diet with high lipid content, depending on gallbladder proper functioning for lipid emulsification, absorption, and subsequent hepatic storage. The present study reports a physiological impairment due to bile accumulation in juvenile tiger sharks and the possible causes of such condition. Abstract Physiological adaptations have evolved to help sharks face rapid periods of feast. Tiger sharks are generalist apex predators that rely on a high-lipid/protein diet. To achieve a satisfactory nutritional condition, proper lipid absorption and hepatic storage are needed. Bile secretion in sharks is low and sporadic but increases during short periods of fasting. The present study describes a physiological impairment caused by bile accumulation in juvenile tiger sharks, possibly due to prolonged fasting. These evidences suggest that, even though sharks have adaptations that prevent them from dying from starvation, alarming physiological alterations might occur. Future studies are needed to assess how such a condition can affect wild populations, as well as possible sublethal consequences that could impact their long-term survival.
Collapse
Affiliation(s)
- Natascha Wosnick
- Programa de Pós-graduação em Zoologia, Universidade Federal do Paraná, Curitiba 81530-000, Brazil
- Correspondence:
| | - Ana Paula Chaves
- Laboratório de Organismos Aquáticos, Universidade Federal do Maranhão, São Luís 65080-805, Brazil; (A.P.C.); (J.L.S.N.)
| | - Yuri Vieira Niella
- Department of Biological Sciences, Macquarie University, Macquarie Park, Sydney, NSW 2109, Australia;
| | | | - Fábio Hissa Vieira Hazin
- Laboratório de Biologia Pesqueira, Universidade Federal Rural de Pernambuco, Recife 52171-900, Brazil;
| | - Jorge Luiz Silva Nunes
- Laboratório de Organismos Aquáticos, Universidade Federal do Maranhão, São Luís 65080-805, Brazil; (A.P.C.); (J.L.S.N.)
| | - Danny Morick
- Morris Kahn Marine Research Station, University of Haifa, Haifa 3498838, Israel;
- Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China
| |
Collapse
|
17
|
Studying animal niches using bulk stable isotope ratios: an updated synthesis. Oecologia 2020; 193:27-51. [DOI: 10.1007/s00442-020-04654-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 04/11/2020] [Indexed: 10/24/2022]
|
18
|
Ecosystem Function and Services of Aquatic Predators in the Anthropocene. Trends Ecol Evol 2019; 34:369-383. [PMID: 30857757 DOI: 10.1016/j.tree.2019.01.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 01/17/2019] [Accepted: 01/18/2019] [Indexed: 11/23/2022]
Abstract
Arguments for the need to conserve aquatic predator (AP) populations often focus on the ecological and socioeconomic roles they play. Here, we summarize the diverse ecosystem functions and services connected to APs, including regulating food webs, cycling nutrients, engineering habitats, transmitting diseases/parasites, mediating ecological invasions, affecting climate, supporting fisheries, generating tourism, and providing bioinspiration. In some cases, human-driven declines and increases in AP populations have altered these ecosystem functions and services. We present a social ecological framework for supporting adaptive management decisions involving APs in response to social and environmental change. We also identify outstanding questions to guide future research on the ecological functions and ecosystem services of APs in a changing world.
Collapse
|