1
|
Han CY, Choi SH, Chi SH, Hong JH, Cho YE, Kim J. Nano-fluorescence imaging: advancing lymphatic disease diagnosis and monitoring. NANO CONVERGENCE 2024; 11:53. [PMID: 39661218 PMCID: PMC11635084 DOI: 10.1186/s40580-024-00462-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 11/30/2024] [Indexed: 12/12/2024]
Abstract
The lymphatic system plays a crucial role in maintaining physiological homeostasis and regulating immune responses. Traditional imaging modalities such as magnetic resonance imaging, computerized tomography, and positron emission tomography have been widely used to diagnose disorders in the lymphatic system, including lymphedema, lymphangioma, lymphatic metastasis, and Castleman disease. Nano-fluorescence technology has distinct advantages-including naked-eye visibility, operational simplicity, portability of the laser, and real-time visibility-and serves as an innovative alternative to traditional imaging techniques. This review explores recent advancements in nano-fluorescence imaging aimed at enhancing the resolution of lymphatic structure, function, and immunity. After delineating the fundamental characteristics of lymphatic systems, it elaborates on the development of various nano-fluorescence systems (including nanoparticles incorporating fluorescent dyes and those with intrinsic fluorescence) while addressing key challenges such as photobleaching, limited tissue penetration, biocompatibility, and signal interference from biomolecules. Furthermore, this review highlights the clinical applications of nano-fluorescence and its potential integration into standard diagnostic protocols. Ongoing advancements in nanoparticle technology underscore the potential of nano-fluorescence to revolutionize the diagnosis and treatment of lymphatic disease.
Collapse
Affiliation(s)
- Chae Yeon Han
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, South Korea
| | - Sang-Hun Choi
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, South Korea
| | - Soo-Hyang Chi
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, South Korea
| | - Ji Hyun Hong
- Department of Radiation Oncology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Young-Eun Cho
- Department of Food and Nutrition, Andong National University, Andong, 36729, South Korea
| | - Jihoon Kim
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, South Korea.
| |
Collapse
|
2
|
Dhayalan M, Wang W, Riyaz SUM, Dinesh RA, Shanmugam J, Irudayaraj SS, Stalin A, Giri J, Mallik S, Hu R. Advances in functional lipid nanoparticles: from drug delivery platforms to clinical applications. 3 Biotech 2024; 14:57. [PMID: 38298556 PMCID: PMC10825110 DOI: 10.1007/s13205-023-03901-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/18/2023] [Indexed: 02/02/2024] Open
Abstract
Since Doxil's first clinical approval in 1995, lipid nanoparticles have garnered great interest and shown exceptional therapeutic efficacy. It is clear from the licensure of two RNA treatments and the mRNA-COVID-19 vaccination that lipid nanoparticles have immense potential for delivering nucleic acids. The review begins with a list of lipid nanoparticle types, such as liposomes and solid lipid nanoparticles. Then it moves on to the earliest lipid nanoparticle forms, outlining how lipid is used in a variety of industries and how it is used as a versatile nanocarrier platform. Lipid nanoparticles must then be functionally modified. Various approaches have been proposed for the synthesis of lipid nanoparticles, such as High-Pressure Homogenization (HPH), microemulsion methods, solvent-based emulsification techniques, solvent injection, phase reversal, and membrane contractors. High-pressure homogenization is the most commonly used method. All of the methods listed above follow four basic steps, as depicted in the flowchart below. Out of these four steps, the process of dispersing lipids in an aqueous medium to produce liposomes is the most unpredictable step. A short outline of the characterization of lipid nanoparticles follows discussions of applications for the trapping and transporting of various small molecules. It highlights the use of rapamycin-coated lipid nanoparticles in glioblastoma and how lipid nanoparticles function as a conjugator in the delivery of anticancer-targeting nucleic acids. High biocompatibility, ease of production, scalability, non-toxicity, and tailored distribution are just a meager of the enticing allowances of using lipid nanoparticles as drug delivery vehicles. Due to the present constraints in drug delivery, more research is required to utterly realize the potential of lipid nanoparticles for possible clinical and therapeutic purposes.
Collapse
Affiliation(s)
- Manikandan Dhayalan
- Department of Prosthodontics, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences (Saveetha University), Chennai, Tamil Nadu 600 077 India
- College of Public Health Sciences (CPHS), Chulalongkorn University, 254 Phyathai Road, Pathumwan, Bangkok 10330 Thailand
| | - Wei Wang
- Beidahuang Industry Group General Hospital, Harbin, 150001 China
| | - S. U. Mohammed Riyaz
- Department of Prosthodontics, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences (Saveetha University), Chennai, Tamil Nadu 600 077 India
- PG & Research Department of Biotechnology, Islamiah College (Autonomous), Vaniyambadi, Tamil Nadu 635752 India
| | - Rakshi Anuja Dinesh
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072 Australia
| | - Jayashree Shanmugam
- Department of Biotechnology, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu India
| | | | - Antony Stalin
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054 China
| | - Jayant Giri
- Department of Mechanical Engineering, Yeshwantrao Chavan College of Engineering, Nagpur, India
| | - Saurav Mallik
- Department of Environmental Health, Harvard T H Chan School of Public Health, Boston, MA USA
| | - Ruifeng Hu
- Department of Neurology, Harvard Medical School, Boston, MA USA
| |
Collapse
|
3
|
Ivanov KI, Samuilova OV, Zamyatnin AA. The emerging roles of long noncoding RNAs in lymphatic vascular development and disease. Cell Mol Life Sci 2023; 80:197. [PMID: 37407839 PMCID: PMC10322780 DOI: 10.1007/s00018-023-04842-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 06/06/2023] [Accepted: 06/19/2023] [Indexed: 07/07/2023]
Abstract
Recent advances in RNA sequencing technologies helped uncover what was once uncharted territory in the human genome-the complex and versatile world of long noncoding RNAs (lncRNAs). Previously thought of as merely transcriptional "noise", lncRNAs have now emerged as essential regulators of gene expression networks controlling development, homeostasis and disease progression. The regulatory functions of lncRNAs are broad and diverse, and the underlying molecular mechanisms are highly variable, acting at the transcriptional, post-transcriptional, translational, and post-translational levels. In recent years, evidence has accumulated to support the important role of lncRNAs in the development and functioning of the lymphatic vasculature and associated pathological processes such as tumor-induced lymphangiogenesis and cancer metastasis. In this review, we summarize the current knowledge on the role of lncRNAs in regulating the key genes and pathways involved in lymphatic vascular development and disease. Furthermore, we discuss the potential of lncRNAs as novel therapeutic targets and outline possible strategies for the development of lncRNA-based therapeutics to treat diseases of the lymphatic system.
Collapse
Affiliation(s)
- Konstantin I Ivanov
- Research Center for Translational Medicine, Sirius University of Science and Technology, Sochi, Russian Federation.
- Department of Microbiology, University of Helsinki, Helsinki, Finland.
| | - Olga V Samuilova
- Department of Biochemistry, Sechenov First Moscow State Medical University, Moscow, Russian Federation
- HSE University, Moscow, Russian Federation
| | - Andrey A Zamyatnin
- Research Center for Translational Medicine, Sirius University of Science and Technology, Sochi, Russian Federation
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russian Federation
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
4
|
Ji C, Zhao M, Wang C, Liu R, Zhu S, Dong X, Su C, Gu Z. Biocompatible Tantalum Nanoparticles as Radiosensitizers for Enhancing Therapy Efficacy in Primary Tumor and Metastatic Sentinel Lymph Nodes. ACS NANO 2022; 16:9428-9441. [PMID: 35666259 DOI: 10.1021/acsnano.2c02314] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Metastasis of breast carcinoma is commonly realized through lymphatic circulation, which seriously threatens the lives of breast cancer patients. Therefore, efficient therapy for both primary tumor and metastatic sentinel lymph nodes (SLNs) is highly desired to inhibit cancer growth and metastasis. During breast cancer treatment, radiotherapy (RT) is a common clinical method. However, the efficacy of RT is decreased by the radioresistance to a hypoxic microenvironment and inevitable side effects for healthy issues at high radiation doses. Considering the above-mentioned, we provide high biocompatible poly(vinylpyrrolidone) coated Ta nanoparticles (Ta@PVP NPs) for photothermal therapy (PTT) assisted RT for primary tumor and metastatic SLNs. On the one hand, for primary tumor treatment, Ta@PVP NPs with a high X-ray mass attenuation coefficient (4.30 cm2/kg at 100 keV) can deposit high radiation doses within tumors. On the other hand, for metastatic SLNs treatment, the effective delivery of Ta@PVP NPs from the primary tumor into SLNs is monitored by computed tomography and photoacoustic imaging, which greatly benefit the prognosis and treatment for metastatic SLNs. Moreover, Ta@PVP NPs-mediated PTT could enhance the RT effect, and immunogenic cell death caused by RT/PTT could induce an immune response to improve the therapeutic effect of metastatic SLNs. This study not only explores the potential of Ta@PVP NPs as effective radiosensitizers and photothermal agents for combined RT and PTT but also offers an efficient strategy to cure both primary tumor and metastatic SLNs in breast carcinoma.
Collapse
Affiliation(s)
- Chao Ji
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, Institute of High Energy Physics and National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing 100049, China
- College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Maoru Zhao
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, Institute of High Energy Physics and National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing 100049, China
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chengyan Wang
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, Institute of High Energy Physics and National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing 100049, China
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruixue Liu
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, Institute of High Energy Physics and National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing 100049, China
| | - Shuang Zhu
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, Institute of High Energy Physics and National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing 100049, China
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinghua Dong
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, Institute of High Energy Physics and National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing 100049, China
| | - Chunjian Su
- College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Zhanjun Gu
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, Institute of High Energy Physics and National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing 100049, China
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Singh N, Handa M, Singh V, Kesharwani P, Shukla R. Lymphatic targeting for therapeutic application using nanoparticulate systems. J Drug Target 2022; 30:1017-1033. [PMID: 35722764 DOI: 10.1080/1061186x.2022.2092741] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The lymphatic system has grasped attention of researchers to a greater extent. The conventional methods of lymphatic delivery are now being modified to include nanotechnology to enhance the targeting of the drug at the specific pathological site. Scientists have worked successfully on different drug loaded nanocarriers that are modulated for the lymphatic system targeting for the treatment of various fatal diseases. Huge strides have been made in methods of delivery of these drugs either individually or in combination along with nanoparticles, therapeutic genes, and vaccines. However, the products introduced for commercial use are almost near nil. Altogether, there are challenges that need to be resolved and studies that are meant to be done for further improvements. The current review focuses on the understanding and pathophysiology of the lymphatic system and changes that occur during disease, drug characteristics, and physicochemical parameters that influence the lymphatic uptake of drugs and different nanocarriers. We further highlight different potential results obtained over the years with nanocarriers and other delivery methods to effectively target the lymphatic system for their therapeutic application. The challenges and drawbacks governing the lack of products available clinically have also been discussed.
Collapse
Affiliation(s)
- Nidhi Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, U.P, India-226002
| | - Mayank Handa
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, U.P, India-226002
| | - Vanshikha Singh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India-110062
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India-110062
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, U.P, India-226002
| |
Collapse
|
6
|
Emerging Nanotherapeutic Approaches to Overcome Drug Resistance in Cancers with Update on Clinical Trials. Pharmaceutics 2022; 14:pharmaceutics14040866. [PMID: 35456698 PMCID: PMC9028322 DOI: 10.3390/pharmaceutics14040866] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 02/04/2023] Open
Abstract
A key issue with modern cancer treatments is the emergence of resistance to conventional chemotherapy and molecularly targeted medicines. Cancer nanotherapeutics were created in order to overcome the inherent limitations of traditional chemotherapeutics. Over the last few decades, cancer nanotherapeutics provided unparalleled opportunities to understand and overcome drug resistance through clinical assessment of rationally designed nanoparticulate delivery systems. In this context, various design strategies such as passive targeting, active targeting, nano-drug, and multimodal nano-drug combination therapy provided effective cancer treatment. Even though cancer nanotherapy has made great technological progress, tumor biology complexity and heterogeneity and a lack of comprehensive knowledge of nano-bio interactions remain important roadblocks to future clinical translation and commercialization. The current developments and advancements in cancer nanotherapeutics employing a wide variety of nanomaterial-based platforms to overcome cancer treatment resistance are discussed in this article. There is also a review of various nanotherapeutics-based approaches to cancer therapy, including targeting strategies for the tumor microenvironment and its components, advanced delivery systems for specific targeting of cancer stem cells (CSC), as well as exosomes for delivery strategies, and an update on clinical trials. Finally, challenges and the future perspective of the cancer nanotherapeutics to reverse cancer drug resistance are discussed.
Collapse
|
7
|
Rezzola S, Sigmund EC, Halin C, Ronca R. The lymphatic vasculature: An active and dynamic player in cancer progression. Med Res Rev 2021; 42:576-614. [PMID: 34486138 PMCID: PMC9291933 DOI: 10.1002/med.21855] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/29/2021] [Accepted: 08/26/2021] [Indexed: 12/16/2022]
Abstract
The lymphatic vasculature has been widely described and explored for its key functions in fluid homeostasis and in the organization and modulation of the immune response. Besides transporting immune cells, lymphatic vessels play relevant roles in tumor growth and tumor cell dissemination. Cancer cells that have invaded into afferent lymphatics are propagated to tumor‐draining lymph nodes (LNs), which represent an important hub for metastatic cell arrest and growth, immune modulation, and secondary dissemination to distant sites. In recent years many studies have reported new mechanisms by which the lymphatic vasculature affects cancer progression, ranging from induction of lymphangiogenesis to metastatic niche preconditioning or immune modulation. In this review, we provide an up‐to‐date description of lymphatic organization and function in peripheral tissues and in LNs and the changes induced to this system by tumor growth and progression. We will specifically focus on the reported interactions that occur between tumor cells and lymphatic endothelial cells (LECs), as well as on interactions between immune cells and LECs, both in the tumor microenvironment and in tumor‐draining LNs. Moreover, the most recent prognostic and therapeutic implications of lymphatics in cancer will be reported and discussed in light of the new immune‐modulatory roles that have been ascribed to LECs.
Collapse
Affiliation(s)
- Sara Rezzola
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Elena C Sigmund
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Cornelia Halin
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Roberto Ronca
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
8
|
Progression of Metastasis through Lymphatic System. Cells 2021; 10:cells10030627. [PMID: 33808959 PMCID: PMC7999434 DOI: 10.3390/cells10030627] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 02/06/2023] Open
Abstract
Lymph nodes are the most common sites of metastasis in cancer patients. Nodal disease status provides great prognostic power, but how lymph node metastases should be treated is under debate. Thus, it is important to understand the mechanisms by which lymph node metastases progress and how they can be targeted to provide therapeutic benefits. In this review, we focus on delineating the process of cancer cell migration to and through lymphatic vessels, survival in draining lymph nodes and further spread to other distant organs. In addition, emerging molecular targets and potential strategies to inhibit lymph node metastasis are discussed.
Collapse
|
9
|
Timur SS, Gürsoy RN. Design and in vitro evaluation of solid SEDDS for breast cancer therapy. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.102023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Adityan S, Tran M, Bhavsar C, Wu SY. Nano-therapeutics for modulating the tumour microenvironment: Design, development, and clinical translation. J Control Release 2020; 327:512-532. [DOI: 10.1016/j.jconrel.2020.08.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 08/08/2020] [Accepted: 08/10/2020] [Indexed: 12/12/2022]
|
11
|
Abdallah M, Müllertz OO, Styles IK, Mörsdorf A, Quinn JF, Whittaker MR, Trevaskis NL. Lymphatic targeting by albumin-hitchhiking: Applications and optimisation. J Control Release 2020; 327:117-128. [PMID: 32771478 DOI: 10.1016/j.jconrel.2020.07.046] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 12/20/2022]
Abstract
The lymphatic system plays an integral role in the development and progression of a range of disease conditions, which has impelled medical researchers and clinicians to design, develop and utilize advanced lymphatic drug delivery systems. Following interstitial administration, most therapeutics and molecules are cleared from tissues via the draining blood capillaries. Macromolecules and delivery systems >20 kDa in size or 10-100 nm in diameter are, however, transported from the interstitium via draining lymphatic vessels as they are too large to cross the blood capillary endothelium. Lymphatic uptake of small molecules can be promoted by two general approaches: administration in association with synthetic macromolecular constructs, or through hitchhiking on endogenous cells or macromolecular carriers that are transported from tissues via the lymphatics. In this paper we review the latter approach where molecules are targeted to lymph by hitchhiking on endogenous albumin transport pathways after subcutaneous, intramuscular or intradermal injection. We describe the properties of the lymphatic system and albumin that are relevant to lymphatic targeting, the characteristics of drugs and delivery systems designed to hitchhike on albumin trafficking pathways and how to further optimise these properties, and finally the current applications and potential future directions for albumin-hitchhiking approaches to target the lymphatics.
Collapse
Affiliation(s)
- Mohammad Abdallah
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Olivia O Müllertz
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Australia; Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ian K Styles
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Australia
| | - Alexander Mörsdorf
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - John F Quinn
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Michael R Whittaker
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Natalie L Trevaskis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Australia.
| |
Collapse
|
12
|
Luque‐González MA, Reis RL, Kundu SC, Caballero D. Human Microcirculation‐on‐Chip Models in Cancer Research: Key Integration of Lymphatic and Blood Vasculatures. ACTA ACUST UNITED AC 2020; 4:e2000045. [DOI: 10.1002/adbi.202000045] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/27/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Maria Angélica Luque‐González
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials Biodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineICVS/3B’s—PT Government Associate Laboratory AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra 4805‐017 Barco Braga/Guimarães Portugal
| | - Rui Luis Reis
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials Biodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineICVS/3B’s—PT Government Associate Laboratory AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra 4805‐017 Barco Braga/Guimarães Portugal
| | - Subhas Chandra Kundu
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials Biodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineICVS/3B’s—PT Government Associate Laboratory AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra 4805‐017 Barco Braga/Guimarães Portugal
| | - David Caballero
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials Biodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineICVS/3B’s—PT Government Associate Laboratory AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra 4805‐017 Barco Braga/Guimarães Portugal
| |
Collapse
|
13
|
Targeting Tumor Endothelial Cells with Nanoparticles. Int J Mol Sci 2019; 20:ijms20235819. [PMID: 31756900 PMCID: PMC6928777 DOI: 10.3390/ijms20235819] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/14/2019] [Accepted: 11/18/2019] [Indexed: 12/12/2022] Open
Abstract
Because angiogenesis is a major contributor to cancer progression and metastasis, it is an attractive target for cancer therapy. Although a diverse number of small compounds for anti-angiogenic therapy have been developed, severe adverse effects commonly occur, since small compounds can affect not only tumor endothelial cells (TECs), but also normal endothelial cells. This low selectivity for TECs has motivated researchers to develop alternate types of drug delivery systems (DDSs). In this review, we summarize the current state of knowledge concerning the delivery of nano DDSs to TECs. Their payloads range from small compounds to nucleic acids. Perspectives regarding new therapeutic targets are also mentioned.
Collapse
|
14
|
Abstract
The identification of markers expressed by pathological cells or their microenvironment would help to distinguish such cells from the normal tissues. The strategies derived from this theory can be a promising modality for imaging and treating diseases. LyP-1, a tumor homing peptide, can selectively bind to its receptor p32 protein overexpressed in various tumor-associated cells and atherosclerotic plaque macrophages. During recent decades, multiple types of LyP-1-based imaging probes and drug delivery systems have been designed and developed for diagnostic and therapeutic applications. This review first introduces LyP-1 and its receptor p32, as well as its homing, internalization and proapoptotic properties. Next, we highlight recent studies focusing on the applications of LyP-1-based strategies in the diagnosis and treatment of tumors, metastatic lesions, and atherosclerotic plaques. Finally, several limitations in the clinical translation of LyP-1-based bioconjugates are summarized.
Collapse
Affiliation(s)
- Ningning Song
- a Department of Nuclear Medicine , Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , People's Republic of China
| | - Lingzhou Zhao
- a Department of Nuclear Medicine , Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , People's Republic of China
| | - Meilin Zhu
- b School of Basic Medical Sciences, Ningxia Medical University , Yinchuan , People's Republic of China
| | - Jinhua Zhao
- a Department of Nuclear Medicine , Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , People's Republic of China
| |
Collapse
|
15
|
Wang L, Subasic C, Minchin RF, Kaminskas LM. Drug formulation and nanomedicine approaches to targeting lymphatic cancer metastases. Nanomedicine (Lond) 2019; 14:1605-1621. [PMID: 31166140 DOI: 10.2217/nnm-2018-0478] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Lymphatic metastasis plays an important role in cancer progression and prognosis. However, conventional small-molecule chemotherapy drugs inefficiently access the lymphatic system, making the effective eradication of lymphatic metastases difficult without dose-limiting toxicity. Various formulation and nanomedicine-based approaches can be used to significantly enhance the trafficking of small-molecule, peptide and protein drugs toward the lymphatic system to enhance drug exposure at sites of lymphatic cancer growth. However, a number of obstacles exist in translating improved lymphatic exposure into improved chemotherapeutic outcomes. This review highlights the opportunities and challenges inherent in employing formulation and nanomedicinal approaches to improve chemotherapeutic drug activity within the lymphatic system and, importantly, at sites of lymphatic cancer metastasis.
Collapse
Affiliation(s)
- Lili Wang
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Christopher Subasic
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Rodney F Minchin
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Lisa M Kaminskas
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
16
|
Timur SS, Yöyen-Ermiş D, Esendağlı G, Yonat S, Horzum U, Esendağlı G, Gürsoy RN. Efficacy of a novel LyP-1-containing self-microemulsifying drug delivery system (SMEDDS) for active targeting to breast cancer. Eur J Pharm Biopharm 2019; 136:138-146. [PMID: 30660694 DOI: 10.1016/j.ejpb.2019.01.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 01/02/2019] [Accepted: 01/16/2019] [Indexed: 12/15/2022]
Abstract
An ideal cancer therapy targets the tumor cells selectively without damaging healthy tissues. Even though the tumor-specific markers are limited, these molecules can be used for the delivery of anti-cancer drugs as an active targeting strategy. Since the lymphatic system plays a critical role in the dissemination of cancer cells, the drugs directed through lymphatics can feasibly reach to the sites of metastasis. LyP-1 is a peptide that binds to the p32 receptor which is highly expressed not only on the lymphatic endothelium but also on the malignant cells; thus, making this peptide ligand a preferable candidate to mediate active targeting of lymphatics and cancer cells. In this study, different formulations of LyP-1 containing lipid-based nanopharmaceutics so-called self-microemulsifying drug delivery systems (SMEDDS) were developed and tested for their efficacy in targeting breast cancer. Following the selection of non-toxic formulation, doxorubicin hydrochloride and LyP-1 were co-administered in the SMEDDS, which resulted in a significant increase in in vitro cytotoxicity in p32-expressing breast cancer cells, 4T1 and MDA-MB-231. Accordingly, the uptake of LyP-1 in the SMEDDS by the cancer cells was demonstrated. The expression of p32 was detected in the 4T1 tumor tissues which were efficiently targeted with LyP-1 in the SMEDDS. When doxorubicin was co-administrated with LyP-1 in SMEDDS via intraperitonial administration, tumor growth and metastasis were significantly reduced. In conclusion, a novel and efficacious SMEDDS formulation containing LyP-1 with a droplet size less than 100 nm was developed for the lymphatic targeting of breast cancer.
Collapse
Affiliation(s)
- Selin S Timur
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Diğdem Yöyen-Ermiş
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Güldal Esendağlı
- Department of Medical Pathology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Selcen Yonat
- Department of Medical Pathology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Utku Horzum
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Güneş Esendağlı
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - R Neslihan Gürsoy
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
17
|
Tian F, Dahmani FZ, Qiao J, Ni J, Xiong H, Liu T, Zhou J, Yao J. A targeted nanoplatform co-delivering chemotherapeutic and antiangiogenic drugs as a tool to reverse multidrug resistance in breast cancer. Acta Biomater 2018; 75:398-412. [PMID: 29874597 DOI: 10.1016/j.actbio.2018.05.050] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 05/10/2018] [Accepted: 05/30/2018] [Indexed: 12/31/2022]
Abstract
Several obstacles are currently impeding the successful treatment of breast cancer, namely impaired drug accumulation into the tumor site, toxicity to normal cells and narrow therapeutic index of chemotherapy, multidrug resistance (MDR) and the metastatic spread of cancer cells through the blood and lymphatic vessels. In this regard, we designed a novel multifunctional nano-sized drug delivery system based on LyP-1 peptide-modified low-molecular-weight heparin-quercetin conjugate (PLQ). This nanosystem was developed for targeted co-delivery of multiple anticancer drugs to p32-overexpressing tumor cells and peritumoral lymphatic vessels, using LyP-1 peptide as active targeting ligand, with the aim to achieve a targeted combinatorial chemo/angiostatic therapy and MDR reversal. The cellular uptake of PLQ nanoparticles by p32-overexpressing breast cancer cells was significantly higher than nonfunctionalized nanoparticles. Besides, the anti-angiogenic activity of PLQ nanoparticles was proven by the effective inhibition of the bFGF-induced neovascularization in subcutaneous Matrigel plugs. More importantly, PLQ/GA nanoparticles with better targeting ability toward p32-positive tumors, displayed a high antitumor outcome by inhibition of tumor cells proliferation and angiogenesis. Immunohistochemistry and western blot assay showed that PLQ/GA nanoparticles significantly disrupted the lymphatic formation of tumor, and inhibited the P-glycoprotein (P-gp) expression in MCF-7 tumor cells, respectively. In conclusion, PLQ/GA nanoparticles provide a synergistic strategy for effective targeted co-delivery of chemotherapeutic and antiangiogenic agents and reversing MDR and metastasis in breast cancer. STATEMENT OF SIGNIFICANCE Herein, we successfully developed a novel amphiphilic nanomaterial, LyP-1-LMWH-Qu (PLQ) conjugate, consisting of a tumor-targeting moiety LyP-1, a hydrophobic quercetin (a multidrug resistance [MDR]-reversing drug) inner core, and a hydrophilic low-molecular-weight heparin (an antiangiogenic agent) outer shell for encapsulating and delivering a hydrophobic chemotherapeutic agent (gambogic acid). This versatile nanoplatform with multiple targeted features, i.e., dual chemo/angiostatic effects, destruction ability of the peritumoral lymphatic vessels, and reversal of MDR, resulted in a significantly stronger antitumor efficacy and lower toxic side effect than those of nontargeted nanoparticles and the free drug solution. Therefore, this versatile nanosystem might provide a novel insight for the treatment and palliation of breast cancer by targeted co-delivery of chemo/antiangiogenic agents and reversing MDR and metastasis.
Collapse
|
18
|
Obinu A, Gavini E, Rassu G, Maestri M, Bonferoni MC, Giunchedi P. Lymph node metastases: importance of detection and treatment strategies. Expert Opin Drug Deliv 2018; 15:459-467. [PMID: 29504430 DOI: 10.1080/17425247.2018.1446937] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Lymphatic vessels are the preferential route of most solid tumors to spread their metastases in the body. The onset of metastatic nests in draining lymph nodes (LNs) are a significant indicator of cancer progression and a dismaying sign of worsen staging. Therefore, the individuation and elimination of cancer cells within the lymphatic system (LS) are an important goal. Nevertheless, the targeting of the LS with traditional contrast agents and/or chemotherapeutics is difficult, due to its anatomical structure. For this reason, many studies on new lymphatic delivery systems have been carried out, both to improve lymphatic imaging and to selectively carry chemotherapeutics to LNs, reducing the exposure of healthy tissues to the cytotoxic substances. This is an overview of the present situation in the field of detection and treatment strategies of lymphatic metastases, taking into account the use of nano-drug delivery systems. Nanocarriers, thanks to their small size and other physicochemical characteristics, are suitable vectors for imaging and chemotherapy of the LS. AREAS COVERED The role of the LS in tumor progression and importance of treatment and imaging strategies of lymphatic metastases. EXPERT OPINION The nanoparticles are a promising approach for treatment and detection of lymphatic metastases. However further studies are necessary in order to evaluate their efficacy in human clinical application.
Collapse
Affiliation(s)
- Antonella Obinu
- a PhD in Experimental Medicine, Department of Clinical-Surgical, Diagnostic and Paediatric Sciences , University of Pavia , Pavia , Italy
| | - Elisabetta Gavini
- b Department of Chemistry and Pharmacy , University of Sassari , Sassari , Italy
| | - Giovanna Rassu
- b Department of Chemistry and Pharmacy , University of Sassari , Sassari , Italy
| | - Marcello Maestri
- a PhD in Experimental Medicine, Department of Clinical-Surgical, Diagnostic and Paediatric Sciences , University of Pavia , Pavia , Italy.,c Department of Surgery , IRCCS Policlinico San Matteo Foundation , Pavia , Italy
| | | | - Paolo Giunchedi
- b Department of Chemistry and Pharmacy , University of Sassari , Sassari , Italy
| |
Collapse
|
19
|
Zhang X, Wang F, Shen Q, Xie C, Liu Y, Pan J, Lu W. Structure Reconstruction of LyP-1: Lc(LyP-1) Coupling by Amide Bond Inspires the Brain Metastatic Tumor Targeted Drug Delivery. Mol Pharm 2017; 15:430-436. [DOI: 10.1021/acs.molpharmaceut.7b00801] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xiaoyu Zhang
- Department of Pharmaceutics,
School of Pharmacy, and Key Laboratory of Smart Drug Delivery, Fudan University, Ministry of
Education, Shanghai 201203, China
- State Key Laboratory of Medical Neurobiology,
and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Fei Wang
- Department of Pharmaceutics,
School of Pharmacy, and Key Laboratory of Smart Drug Delivery, Fudan University, Ministry of
Education, Shanghai 201203, China
- State Key Laboratory of Medical Neurobiology,
and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Qing Shen
- Department of Pharmaceutics,
School of Pharmacy, and Key Laboratory of Smart Drug Delivery, Fudan University, Ministry of
Education, Shanghai 201203, China
- State Key Laboratory of Medical Neurobiology,
and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Cao Xie
- Department of Pharmaceutics,
School of Pharmacy, and Key Laboratory of Smart Drug Delivery, Fudan University, Ministry of
Education, Shanghai 201203, China
- State Key Laboratory of Medical Neurobiology,
and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Yu Liu
- Department of Pharmaceutics,
School of Pharmacy, and Key Laboratory of Smart Drug Delivery, Fudan University, Ministry of
Education, Shanghai 201203, China
- State Key Laboratory of Medical Neurobiology,
and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Jun Pan
- Department of Pharmaceutics,
School of Pharmacy, and Key Laboratory of Smart Drug Delivery, Fudan University, Ministry of
Education, Shanghai 201203, China
- State Key Laboratory of Medical Neurobiology,
and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Weiyue Lu
- Department of Pharmaceutics,
School of Pharmacy, and Key Laboratory of Smart Drug Delivery, Fudan University, Ministry of
Education, Shanghai 201203, China
- State Key Laboratory of Medical Neurobiology,
and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
- Minhang Branch, Zhongshan Hospital and Institute of Fudan-Minghang
Academic Health System, Minghang Hospital, Fudan University, Shanghai 201199, China
- Institutes of Integrative Medicine of Fudan University, Shanghai 200040, China
| |
Collapse
|
20
|
Teo P, Wang X, Zhang J, Zhang H, Yang X, Huang Y, Tang J. LyP-1-conjugated Fe3O4nanoparticles suppress tumor growth by magnetic induction hyperthermia. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2017; 29:181-194. [DOI: 10.1080/09205063.2017.1409048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Peishan Teo
- Key Laboratory of Particle & Radiation Imaging of Ministry of Education, Department of Engineering Physics, Tsinghua University, Beijing, P.R. China
| | - Xiaowen Wang
- Yuquan Hospital, Medical Center, Tsinghua University, Beijing, P.R. China
| | - Jieying Zhang
- Key Laboratory of Particle & Radiation Imaging of Ministry of Education, Department of Engineering Physics, Tsinghua University, Beijing, P.R. China
- Department of Biological Pharmaceuticals, Beijing University of Chinese Medicine, Beijing, P.R. China
| | - Han Zhang
- Key Laboratory of Particle & Radiation Imaging of Ministry of Education, Department of Engineering Physics, Tsinghua University, Beijing, P.R. China
- Institute of Developmental Biology, School of Life Sciences, Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, Shandong University, Jinan, P.R. China
| | - Xin Yang
- Key Laboratory of Particle & Radiation Imaging of Ministry of Education, Department of Engineering Physics, Tsinghua University, Beijing, P.R. China
- Department of Biological Pharmaceuticals, Beijing University of Chinese Medicine, Beijing, P.R. China
| | - Yun Huang
- Key Laboratory of Particle & Radiation Imaging of Ministry of Education, Department of Engineering Physics, Tsinghua University, Beijing, P.R. China
| | - Jintian Tang
- Key Laboratory of Particle & Radiation Imaging of Ministry of Education, Department of Engineering Physics, Tsinghua University, Beijing, P.R. China
| |
Collapse
|
21
|
Yu J, Sun L, Zhou J, Gao L, Nan L, Zhao S, Peng T, Han L, Wang J, Lu W, Zhang L, Wang Y, Yan Z, Yu L. Self-Assembled Tumor-Penetrating Peptide-Modified Poly(l-γ-glutamylglutamine)–Paclitaxel Nanoparticles Based on Hydrophobic Interaction for the Treatment of Glioblastoma. Bioconjug Chem 2017; 28:2823-2831. [DOI: 10.1021/acs.bioconjchem.7b00519] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jing Yu
- Institute
of Biomedical Engineering and Technology, Shanghai Engineering Research
Center of Molecular Therapeutics and New Drug Development, School
of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P.R. China
| | - Lei Sun
- Institute
of Biomedical Engineering and Technology, Shanghai Engineering Research
Center of Molecular Therapeutics and New Drug Development, School
of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P.R. China
| | - Jinge Zhou
- Institute
of Biomedical Engineering and Technology, Shanghai Engineering Research
Center of Molecular Therapeutics and New Drug Development, School
of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P.R. China
| | - Lipeng Gao
- Institute
of Biomedical Engineering and Technology, Shanghai Engineering Research
Center of Molecular Therapeutics and New Drug Development, School
of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P.R. China
| | - Lijuan Nan
- Institute
of Biomedical Engineering and Technology, Shanghai Engineering Research
Center of Molecular Therapeutics and New Drug Development, School
of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P.R. China
| | - Shimin Zhao
- Institute
of Biomedical Engineering and Technology, Shanghai Engineering Research
Center of Molecular Therapeutics and New Drug Development, School
of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P.R. China
| | - Ting Peng
- Institute
of Biomedical Engineering and Technology, Shanghai Engineering Research
Center of Molecular Therapeutics and New Drug Development, School
of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P.R. China
| | - Lin Han
- Institute
of Biomedical Engineering and Technology, Shanghai Engineering Research
Center of Molecular Therapeutics and New Drug Development, School
of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P.R. China
| | - Jing Wang
- Institute
of Biomedical Engineering and Technology, Shanghai Engineering Research
Center of Molecular Therapeutics and New Drug Development, School
of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P.R. China
| | - Weiyue Lu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Fudan University, Ministry of Education, Shanghai 201203, P.R. China
| | - Lin Zhang
- Department
of Pharmacy, Shaoxing People’s Hospital, Shaoxing Hospital of ZheJiang University, Shaoxing 312000, P.R. China
| | - Yiting Wang
- Institute
of Biomedical Engineering and Technology, Shanghai Engineering Research
Center of Molecular Therapeutics and New Drug Development, School
of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P.R. China
| | - Zhiqiang Yan
- Institute
of Biomedical Engineering and Technology, Shanghai Engineering Research
Center of Molecular Therapeutics and New Drug Development, School
of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P.R. China
| | - Lei Yu
- Institute
of Biomedical Engineering and Technology, Shanghai Engineering Research
Center of Molecular Therapeutics and New Drug Development, School
of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P.R. China
| |
Collapse
|
22
|
Seek & Destroy, use of targeting peptides for cancer detection and drug delivery. Bioorg Med Chem 2017; 26:2797-2806. [PMID: 28893601 DOI: 10.1016/j.bmc.2017.08.052] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/14/2017] [Accepted: 08/30/2017] [Indexed: 12/21/2022]
Abstract
Accounting for 16 million new cases and 9 million deaths annually, cancer leaves a great number of patients helpless. It is a complex disease and still a major challenge for the scientific and medical communities. The efficacy of conventional chemotherapies is often poor and patients suffer from off-target effects. Each neoplasm exhibits molecular signatures - sometimes in a patient specific manner - that may completely differ from the organ of origin, may be expressed in markedly higher amounts and/or in different location compared to the normal tissue. Although adding layers of complexity in the understanding of cancer biology, this cancer-specific signature provides an opportunity to develop targeting agents for early detection, diagnosis, and therapeutics. Chimeric antibodies, recombinant proteins or synthetic polypeptides have emerged as excellent candidates for specific homing to peripheral and central nervous system cancers. Specifically, peptide ligands benefit from their small size, easy and affordable production, high specificity, and remarkable flexibility regarding their sequence and conjugation possibilities. Coupled to imaging agents, chemotherapies and/or nanocarriers they have shown to increase the on-site delivery, thus allowing better tumor mass contouring in imaging and increased efficacy of the chemotherapies associated with reduced adverse effects. Therefore, some of the peptides alone or in combination have been tested in clinical trials to treat patients. Peptides have been well-tolerated and shown absence of toxicity. This review aims to offer a view on tumor targeting peptides that are either derived from natural peptide ligands or identified using phage display screening. We also include examples of peptides targeting the high-grade malignant tumors of the central nervous system as an example of the complex therapeutic management due to the tumor's location. Peptide vaccines are outside of the scope of this review.
Collapse
|
23
|
Timur SS, Yalçın G, Çevik Ö, Andaç C, Gürsoy RN. Molecular dynamics, thermodynamic, and mutational binding studies for tumor-specific LyP-1 in complex with p32. J Biomol Struct Dyn 2017; 36:1134-1144. [PMID: 28427307 DOI: 10.1080/07391102.2017.1313779] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Recent studies in tumor homing peptides have shown the specificity of LyP-1 (CGNKRTRGC) to tumor lymphatics. In this present work, we evaluated the possible interactions between cyclic LyP-1 and its receptor, p32, with molecular dynamics and docking studies in order to lead the design of novel LyP-1 derivatives, which could bind to p32 more effectively and perform enhanced antitumor effect. The total binding enthalpy energies have been obtained by MM-PBSA thermodynamic computations and the favorability of p32.LyP-1 complex in water has been shown by explicit water MD computations. The last 30 ns of molecular dynamics trajectory have shown the strong interaction of LyP-1 with the inner surface chains of p32, especially with chains B and C. ALA-SCAN mutagenesis studies have indicated the considerable influence of Asn3, Lys4, Arg5, and Arg7 amino acid residues on the specific binding of LyP-1. Within the knowledge of the critical role of p32 receptor in cancer cell metabolism, this study can lead to further developments in anticancer therapy by targeting p32 with LyP-1 derivatives as active targeting moiety. This data can also be applied for the development of new drug delivery systems in which LyP-1 can be used for its targeting and anticancer properties.
Collapse
Affiliation(s)
- Selin Seda Timur
- a Faculty of Pharmacy, Department of Pharmaceutical Technology , Hacettepe University , Ankara , Turkey
| | - Gözde Yalçın
- b Department of Medical Pharmacology, School of Medicine , Mevlana University , Konya , Turkey.,c Institute of Biotechnology , Ankara University , Ankara , Turkey
| | - Özge Çevik
- a Faculty of Pharmacy, Department of Pharmaceutical Technology , Hacettepe University , Ankara , Turkey.,d Department of Pharmaceutical Sciences , Gülhane Military Medical Academy , Ankara , Turkey
| | - Cenk Andaç
- b Department of Medical Pharmacology, School of Medicine , Mevlana University , Konya , Turkey
| | - R Neslihan Gürsoy
- a Faculty of Pharmacy, Department of Pharmaceutical Technology , Hacettepe University , Ankara , Turkey
| |
Collapse
|
24
|
Ruoslahti E. Tumor penetrating peptides for improved drug delivery. Adv Drug Deliv Rev 2017; 110-111:3-12. [PMID: 27040947 PMCID: PMC5045823 DOI: 10.1016/j.addr.2016.03.008] [Citation(s) in RCA: 297] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/16/2016] [Accepted: 03/18/2016] [Indexed: 01/03/2023]
Abstract
In vivo screening of phage libraries in tumor-bearing mice has been used to identify peptides that direct phage homing to a tumor. The power of in vivo phage screening is illustrated by the recent discovery of peptides with unique tumor-penetrating properties. These peptides activate an endocytic transport pathway related to but distinct from macropinocytosis. They do so through a complex process that involves binding to a primary, tumor-specific receptor, followed by a proteolytic cleavage, and binding to a second receptor. The second receptor, neuropilin-1 (or neuropilin-2) activates the transport pathway. This trans-tissue pathway, dubbed the C-end Rule (CendR) pathway, mediates the extravasation transport through extravascular tumor tissue of payloads ranging from small molecule drugs to nanoparticles. The CendR technology provides a solution to a major problem in tumor therapy, poor penetration of drugs into tumors. Targeted delivery with tumor-penetrating peptides has been shown to specifically increase the accumulation of drugs, antibodies and nanotherapeutics in experimental tumors in vivo, and in human tumors ex vivo. Remarkably the payload does not have to be coupled to the peptide; the peptide activates a bulk transport system that sweeps along a drug present in the blood. Treatment studies in mice have shown improved anti-tumor efficacy and less damage to normal tissues with drugs ranging from traditional chemotherapeutics to antibodies, and to nanoparticle drugs.
Collapse
Affiliation(s)
- Erkki Ruoslahti
- Cancer Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA; Center for Nanomedicine, Department of Cell, Molecular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA.
| |
Collapse
|
25
|
Ji RC. Lymph Nodes and Cancer Metastasis: New Perspectives on the Role of Intranodal Lymphatic Sinuses. Int J Mol Sci 2016; 18:ijms18010051. [PMID: 28036019 PMCID: PMC5297686 DOI: 10.3390/ijms18010051] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/21/2016] [Accepted: 12/23/2016] [Indexed: 02/07/2023] Open
Abstract
The lymphatic system is essential for transporting interstitial fluid, soluble antigen, and immune cells from peripheral tissues to lymph nodes (LNs). Functional integrity of LNs is dependent on intact lymphatics and effective lymph drainage. Molecular mechanisms that facilitate interactions between tumor cells and lymphatic endothelial cells (LECs) during tumor progression still remain to be identified. The cellular and molecular structures of LNs are optimized to trigger a rapid and efficient immune response, and to participate in the process of tumor metastasis by stimulating lymphangiogenesis and establishing a premetastatic niche in LNs. Several molecules, e.g., S1P, CCR7-CCL19/CCL21, CXCL12/CXCR4, IL-7, IFN-γ, TGF-β, and integrin α4β1 play an important role in controlling the activity of LN stromal cells including LECs, fibroblastic reticular cells (FRCs) and follicular dendritic cells (DCs). The functional stromal cells are critical for reconstruction and remodeling of the LN that creates a unique microenvironment of tumor cells and LECs for cancer metastasis. LN metastasis is a major determinant for the prognosis of most human cancers and clinical management. Ongoing work to elucidate the function and molecular regulation of LN lymphatic sinuses will provide insight into cancer development mechanisms and improve therapeutic approaches for human malignancy.
Collapse
Affiliation(s)
- Rui-Cheng Ji
- Faculty of Welfare and Health Science, Oita University, Oita 870-1192, Japan.
| |
Collapse
|
26
|
Wang JH, Endsley AN, Green CE, Matin AC. Utilizing native fluorescence imaging, modeling and simulation to examine pharmacokinetics and therapeutic regimen of a novel anticancer prodrug. BMC Cancer 2016; 16:524. [PMID: 27457630 PMCID: PMC4960810 DOI: 10.1186/s12885-016-2508-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 06/23/2016] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Success of cancer prodrugs relying on a foreign gene requires specific delivery of the gene to the cancer, and improvements such as higher level gene transfer and expression. Attaining these objectives will be facilitated in preclinical studies using our newly discovered CNOB-GDEPT, consisting of the produrg: 6-chloro-9-nitro-5-oxo-5H-benzo-(a)-phenoxazine (CNOB) and its activating enzyme ChrR6, which generates the cytotoxic product 9-amino-6-chloro-5H-benzo[a]phenoxazine-5-one (MCHB). MCHB is fluorescent and can be noninvasively imaged in mice, and here we investigated whether MCHB fluorescence quantitatively reflects its concentration, as this would enhance its reporter value in further development of the CNOB-GDEPT therapeutic regimen. PK parameters were estimated and used to predict more effective CNOB administration schedules. METHODS CNOB (3.3 mg/kg) was injected iv in mice implanted with humanized ChrR6 (HChrR6)-expressing 4T1 tumors. Fluorescence was imaged in live mice using IVIS Spectrum, and quantified by Living Image 3.2 software. MCHB and CNOB were quantified also by LC/MS/MS analysis. We used non-compartmental model to estimate PK parameters. Phoenix WinNonlin software was used for simulations to predict a more effective CNOB dosage regimen. RESULTS CNOB administration significantly prolonged mice survival. MCHB fluorescence quantitatively reflected its exposure levels to the tumor and the plasma, as verified by LC/MS/MS analysis at various time points, including at a low concentration of 2 ng/g tumor. The LC/MS/MS data were used to estimate peak plasma concentrations, exposure (AUC0-24), volume of distribution, clearance and half-life in plasma and the tumor. Simulations suggested that the CNOB-GDEPT can be a successful therapy without large increases in the prodrug dosage. CONCLUSION MCHB fluorescence quantifies this drug, and CNOB can be effective at relatively low doses. MCHB fluorescence characteristics will expedite further development of CNOB-GDEPT by, for example, facilitating specific gene delivery to the tumor, its prolonged expression, as well as other attributes necessary for successful gene-delivered enzyme prodrug therapy.
Collapse
Affiliation(s)
- Jing-Hung Wang
- Department of Microbiology and Immunology, Stanford University School of Medicine, Sherman Fairchild Science Building, 299 Campus Drive, Stanford, CA 94305 USA
| | - Aaron N. Endsley
- Bioanalytical Assays and Pharmacokinetics, Bayer HealthCare LLC, 455 Mission Bay Boulevard South, San Francisco, CA 94158 USA
| | - Carol E. Green
- Biosciences Division, SRI International, Menlo Park, 94025 CA USA
| | - A. C. Matin
- Department of Microbiology and Immunology, Stanford University School of Medicine, Sherman Fairchild Science Building, 299 Campus Drive, Stanford, CA 94305 USA
| |
Collapse
|
27
|
Alonso-Nocelo M, Abellan-Pose R, Vidal A, Abal M, Csaba N, Alonso MJ, Lopez-Lopez R, de la Fuente M. Selective interaction of PEGylated polyglutamic acid nanocapsules with cancer cells in a 3D model of a metastatic lymph node. J Nanobiotechnology 2016; 14:51. [PMID: 27339609 PMCID: PMC4918033 DOI: 10.1186/s12951-016-0207-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 06/15/2016] [Indexed: 12/30/2022] Open
Abstract
Background Metastases are the most common reason of cancer death in patients with solid tumors. Lymph nodes, once invaded by tumor cells, act as reservoirs before cancer cells spread to distant organs. To address the limited access of intravenously infused chemotherapeutics to the lymph nodes, we have developed PEGylated polyglutamic acid nanocapsules (PGA-PEG NCs), which have shown ability to reach and to accumulate in the lymphatic nodes and could therefore act as nanotransporters. Once in the lymphatics, the idea is that these nanocapsules would selectively interact with cancer cells, while avoiding non-specific interactions with immune cells and the appearance of subsequent immunotoxicity. Results The potential of the PGA-PEG NCs, with a mean size of 100 nm and a negative zeta potential, to selectively reach metastatic cancer cells, has been explored in a novel 3D model that mimics an infiltrated lymph node. Our 3D model, a co-culture of cancer cells and lymphocytes, allows performing experiments under dynamic conditions that simulate the lymphatic flow. After perfusion of the nanocarriers, we observe a selective interaction with the tumor cells. Efficacy studies manifest the need to develop specific therapies addressed to treat metastatic cells that can be in a dormant state. Conclusions We provide evidence of the ability of PGA-PEG NCs to selectively interact with the tumor cells in presence of lymphocytes, highlighting their potential in cancer therapeutics. We also state the importance of designing precise in vitro models that allow performing mechanistic assays, to efficiently develop and evaluate specific therapies to confront the formation of metastasis.
Collapse
Affiliation(s)
- Marta Alonso-Nocelo
- Translational Medical Oncology Group, Health Research Institute of Santiago de Compostela (IDIS), Clinical University Hospital/SERGAS, Santiago de Compostela, Spain
| | - Raquel Abellan-Pose
- Nanobiofar Group, Center for Research in Molecular and Chronic Diseases (CIMUS), University of Santiago de Compostela, Campus Vida, Santiago de Compostela, 15706, Spain
| | - Anxo Vidal
- Cell Cycle and Oncology Group CiCLOn, IDIS, Center for Research in Molecular and Chronic Diseases (CIMUS), University of Santiago de Compostela, Campus Vida, Santiago de Compostela, 15706, Spain
| | - Miguel Abal
- Translational Medical Oncology Group, Health Research Institute of Santiago de Compostela (IDIS), Clinical University Hospital/SERGAS, Santiago de Compostela, Spain
| | - Noemi Csaba
- Nanobiofar Group, Center for Research in Molecular and Chronic Diseases (CIMUS), University of Santiago de Compostela, Campus Vida, Santiago de Compostela, 15706, Spain
| | - Maria Jose Alonso
- Nanobiofar Group, Center for Research in Molecular and Chronic Diseases (CIMUS), University of Santiago de Compostela, Campus Vida, Santiago de Compostela, 15706, Spain
| | - Rafael Lopez-Lopez
- Translational Medical Oncology Group, Health Research Institute of Santiago de Compostela (IDIS), Clinical University Hospital/SERGAS, Santiago de Compostela, Spain
| | - Maria de la Fuente
- Translational Medical Oncology Group, Health Research Institute of Santiago de Compostela (IDIS), Clinical University Hospital/SERGAS, Santiago de Compostela, Spain.
| |
Collapse
|
28
|
Peng T, Liu K, Gao L, Gao L, Chen J, Wang J, Liu Y, Wang Y, Yan Z, Yu L. Poly (l-γ-glutamylglutamine) Polymer Enhances Doxorubicin Accumulation in Multidrug Resistant Breast Cancer Cells. Molecules 2016; 21:molecules21060720. [PMID: 27271578 PMCID: PMC6272971 DOI: 10.3390/molecules21060720] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 05/22/2016] [Accepted: 05/27/2016] [Indexed: 11/28/2022] Open
Abstract
Background: Drug resistance is one of the bottlenecks of cancer chemotherapy in the clinic. Polymeric nanomedicine is one of the most promising strategies for overcoming poor chemotherapy responses due to the multidrug resistance (MDR). Methods: In this study, a new polymer-based drug delivery system, poly (l-γ-glutamylglutamine)-doxorubicin (PGG-Dox) conjugate, was studied in both drug-induced resistant human breast cancer MDA-MB-231/MDR cells and their parent human breast cancer MDA-MB-231 cells. The effect of PGG on facilitating the growth inhibition of Dox against multidrug resistant cells were investigated by evaluating the cytotoxicity of PGG-Dox conjugate, PGG/Dox unconjugated complex and free Dox on both cells. The underlying mechanisms in resistant cells were further studied via the intracellular traffic studies. Results: Both conjugated and unconjugated PGG significantly increased Dox uptake, prolonged Dox retention and reduced Dox efflux in the MDA-MB-231/MDR cells. The PGG-Dox conjugate is taken up by tumor cells mainly by pinocytosis pathway, in which PGG-Dox conjugate-containing vesicles are formed and enter the cells. Conclusions: This study indicated that both polymer-drug conjugate and unconjugated complex are promising strategies of overcoming resistance of anti-tumor drugs.
Collapse
Affiliation(s)
- Ting Peng
- Institute of Biomedical Engineering and Technology, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
| | - Kai Liu
- Institute of Biomedical Engineering and Technology, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
| | - Liefang Gao
- Institute of Biomedical Engineering and Technology, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
| | - Lipeng Gao
- Institute of Biomedical Engineering and Technology, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
| | - Jing Chen
- Institute of Biomedical Engineering and Technology, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
| | - Jing Wang
- Institute of Biomedical Engineering and Technology, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
| | - Yu Liu
- Key Laboratory of Smart Drug Delivery, Ministry of Education & PLA, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Yiting Wang
- Institute of Biomedical Engineering and Technology, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
| | - Zhiqiang Yan
- Institute of Biomedical Engineering and Technology, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
| | - Lei Yu
- Institute of Biomedical Engineering and Technology, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
| |
Collapse
|
29
|
|
30
|
Torres Andón F, Alonso MJ. Nanomedicine and cancer immunotherapy – targeting immunosuppressive cells. J Drug Target 2015; 23:656-71. [DOI: 10.3109/1061186x.2015.1073295] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
31
|
Zhang XY, Lu WY. Recent advances in lymphatic targeted drug delivery system for tumor metastasis. Cancer Biol Med 2015; 11:247-54. [PMID: 25610710 PMCID: PMC4296090 DOI: 10.7497/j.issn.2095-3941.2014.04.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 12/05/2014] [Indexed: 12/13/2022] Open
Abstract
The lymphatic system has an important defensive role in the human body. The metastasis of most tumors initially spreads through the surrounding lymphatic tissue and eventually forms lymphatic metastatic tumors; the tumor cells may even transfer to other organs to form other types of tumors. Clinically, lymphatic metastatic tumors develop rapidly. Given the limitations of surgical resection and the low effectiveness of radiotherapy and chemotherapy, the treatment of lymphatic metastatic tumors remains a great challenge. Lymph node metastasis may lead to the further spread of tumors and may be predictive of the endpoint event. Under these circumstances, novel and effective lymphatic targeted drug delivery systems have been explored to improve the specificity of anticancer drugs to tumor cells in lymph nodes. In this review, we summarize the principles of lymphatic targeted drug delivery and discuss recent advances in the development of lymphatic targeted carriers.
Collapse
Affiliation(s)
- Xiao-Yu Zhang
- 1 Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China ; 2 Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Wei-Yue Lu
- 1 Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China ; 2 Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
32
|
Yu Z, Yu B, Kaye JB, Tang C, Chen S, Dong C, Shen B. Perspectives and Challenges of Cell-Penetrating Peptides in Effective siRNA Delivery. ACTA ACUST UNITED AC 2014. [DOI: 10.1142/s1793984414410165] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Over the last two decades, hundreds of cell penetrating peptides (CPPs) have been intensively developed as drug and nucleic acid delivery vectors. In many cases, however, the efficient delivery of exogenous bioactive molecules through the plasma membrane to their targets remains a tremendous challenging issue. CPPs have attracted tremendous research interest as efficient cellular delivery vehicles due to their intrinsic ability to enter cells and mediate uptake of a wide range of macromolecular cargos, such as proteins, peptides, nucleic acids, drugs and nanoparticle carriers. This review presents and discusses the current perspectives of CPP-mediated siRNA delivery system. We focus on the CPP-mediated siRNA delivery approaches, and particular emphasis is placed on the strategies for the advantages and disadvantages for each delivery approach. Lastly, the cellular uptake mechanisms of CPPs and the specific challenges associated with each delivery system of siRNAs are discussed.
Collapse
Affiliation(s)
- Zhiqiang Yu
- Department of Physiology, Anhui Medical University, Hefei, Anhui 230032, P. R. China
- Center for BioEnergetics, The Biodesign Institute and Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287, USA
| | - Bin Yu
- School of Pharmaceutical Sciences and New Drug Research & Development Center Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Justin Boy Kaye
- Center for BioEnergetics, The Biodesign Institute and Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287, USA
| | - Chenhong Tang
- Center for BioEnergetics, The Biodesign Institute and Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287, USA
| | - Shengxi Chen
- Center for BioEnergetics, The Biodesign Institute and Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287, USA
| | - Chenbo Dong
- Department of Chemical Engineering, West Virginia University, Morgantown, WV 26505, USA
| | - Bing Shen
- Department of Physiology, Anhui Medical University, Hefei, Anhui 230032, P. R. China
| |
Collapse
|
33
|
Yang C, Fu ZX. Liposomal delivery and polyethylene glycol-liposomal oxaliplatin for the treatment of colorectal cancer (Review). Biomed Rep 2014; 2:335-339. [PMID: 24748970 PMCID: PMC3990200 DOI: 10.3892/br.2014.249] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 02/25/2014] [Indexed: 12/17/2022] Open
Abstract
Oxaliplatin is effective for the treatment of advanced colorectal cancer; however, its application is restricted due to its dose-limiting toxicity. Liposomes are sphere-shaped vesicles consisting of one or more phospholipid bilayers. Liposomes as drug carriers are characterized by delayed release, lesion targeting and may be used as a drug-delivery system to decrease the side effects of cytotoxic drugs. Active targeting modification of liposomes may change the biological distribution of the anticancer agents, reduce or reverse multidrug resistance of tumor cells and enhance the effects of anticancer therapy. Based on the characteristics mentioned above, the aim of the present review was to demonstrate that polyethylene glycol-liposomes containing oxaliplatin may offer advantages for the treatment of colorectal cancer in clinical practice.
Collapse
Affiliation(s)
- Chuang Yang
- Department of General Surgery, Third People's Hospital of Mianyang, Mianyang, Sichuan 621000, P.R. China ; Department of Gastrointestinal Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing, Chongqing 400016, P.R. China
| | - Zhong-Xue Fu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing, Chongqing 400016, P.R. China
| |
Collapse
|
34
|
Yan Z, Yang Y, Wei X, Zhong J, Wei D, Liu L, Xie C, Wang F, Zhang L, Lu W, He D. Tumor-Penetrating Peptide Mediation: An Effective Strategy for Improving the Transport of Liposomes in Tumor Tissue. Mol Pharm 2013; 11:218-25. [DOI: 10.1021/mp400393a] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Zhiqiang Yan
- National Engineering Research Center for Nanotechnology, Shanghai 200241, P.R. China
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics
and New Drug Development, Institutes for
Advanced Interdisciplinary Research, East China Normal University, Shanghai 200062, P.R. China
| | - Yiyi Yang
- National Engineering Research Center for Nanotechnology, Shanghai 200241, P.R. China
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Xiaoli Wei
- Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Department
of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, P.R. China
| | - Jian Zhong
- National Engineering Research Center for Nanotechnology, Shanghai 200241, P.R. China
| | - Daixu Wei
- National Engineering Research Center for Nanotechnology, Shanghai 200241, P.R. China
| | - Lu Liu
- National Engineering Research Center for Nanotechnology, Shanghai 200241, P.R. China
| | - Cao Xie
- Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Department
of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, P.R. China
| | - Fei Wang
- Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Department
of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, P.R. China
| | - Lin Zhang
- Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Department
of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, P.R. China
| | - Weiyue Lu
- Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Department
of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, P.R. China
| | - Dannong He
- National Engineering Research Center for Nanotechnology, Shanghai 200241, P.R. China
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| |
Collapse
|
35
|
Patel NR, Pattni BS, Abouzeid AH, Torchilin VP. Nanopreparations to overcome multidrug resistance in cancer. Adv Drug Deliv Rev 2013; 65:1748-62. [PMID: 23973912 DOI: 10.1016/j.addr.2013.08.004] [Citation(s) in RCA: 257] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 08/02/2013] [Indexed: 01/08/2023]
Abstract
Multidrug resistance is the most widely exploited phenomenon by which cancer eludes chemotherapy. Broad variety of factors, ranging from the cellular ones, such as over-expression of efflux transporters, defective apoptotic machineries, and altered molecular targets, to the physiological factors such as higher interstitial fluid pressure, low extracellular pH, and formation of irregular tumor vasculature are responsible for multidrug resistance. A combination of various undesirable factors associated with biological surroundings together with poor solubility and instability of many potential therapeutic small & large molecules within the biological systems and systemic toxicity of chemotherapeutic agents has necessitated the need for nano-preparations to optimize drug delivery. The physiology of solid tumors presents numerous challenges for successful therapy. However, it also offers unique opportunities for the use of nanotechnology. Nanoparticles, up to 400 nm in size, have shown great promise for carrying, protecting and delivering potential therapeutic molecules with diverse physiological properties. In this review, various factors responsible for the MDR and the use of nanotechnology to overcome the MDR, the use of spheroid culture as well as the current technique of producing microtumor tissues in vitro are discussed in detail.
Collapse
|
36
|
Qin L, Zhang F, Lu X, Wei X, Wang J, Fang X, Si D, Wang Y, Zhang C, Yang R, Liu C, Liang W. Polymeric micelles for enhanced lymphatic drug delivery to treat metastatic tumors. J Control Release 2013; 171:133-42. [DOI: 10.1016/j.jconrel.2013.07.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 06/11/2013] [Accepted: 07/07/2013] [Indexed: 10/26/2022]
|
37
|
Li C, Wang Y, Zhang X, Deng L, Zhang Y, Chen Z. Tumor-targeted liposomal drug delivery mediated by a diseleno bond-stabilized cyclic peptide. Int J Nanomedicine 2013; 8:1051-62. [PMID: 23515368 PMCID: PMC3598503 DOI: 10.2147/ijn.s40498] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Peptide ligands have played an important role in tumor-targeted drug delivery as targeting moieties. The in vivo fate of peptide-mediated drug delivery systems and the following antitumor effects may greatly depend on the stability of the peptide ligand. In the current study, a tumor-targeting cyclic peptide screened by phage display, Lyp-1 (a peptide that specifically binds to tumor and endothelial cells of tumor lymphatics in certain tumors), was structurally modified by replacement of the original intramolecular disulfide bond with a diseleno bond. The produced analog Syp-1 (seleno derivative of Lyp-1) maintained specific binding ability to the target protein p32 (Kd = 18.54 nM), which is similar to that of Lyp-1 (Kd = 10.59 nM), indicated by surface plasmon resonance assay. Compared with Lyp-1, Syp-1 showed significantly improved stability against serum. After the peptide attached onto the surface of fluorophore-encapsulating liposomes, the more efficient tumor uptake of liposomal fluorophore mediated by Syp-1 was observed. Furthermore, Syp-1 modified liposomal doxorubicin presented the most potent tumor growth inhibitory ability among all the therapeutic groups, with a low half maximal inhibitory concentration of 588 nM against MDA-MB-435 cells in vitro and a high tumor inhibition rate of 73.5% in vivo. These findings clearly indicated that Syp-1 was a stable and effective tumor targeting ligand and suggest that the sulfur-to-selenium replacement strategy may help stabilize the phage-displayed cyclic peptide containing disulfide-bond under physiological conditions and strongly support the validity of peptide-mediated drug targeting.
Collapse
Affiliation(s)
- Chong Li
- Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
38
|
Recent trends in multifunctional liposomal nanocarriers for enhanced tumor targeting. JOURNAL OF DRUG DELIVERY 2013; 2013:705265. [PMID: 23533772 PMCID: PMC3606784 DOI: 10.1155/2013/705265] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Accepted: 02/06/2013] [Indexed: 12/30/2022]
Abstract
Liposomes are delivery systems that have been used to formulate a vast variety of therapeutic and imaging agents for the past several decades. They have significant advantages over their free forms in terms of pharmacokinetics, sensitivity for cancer diagnosis and therapeutic efficacy. The multifactorial nature of cancer and the complex physiology of the tumor microenvironment require the development of multifunctional nanocarriers. Multifunctional liposomal nanocarriers should combine long blood circulation to improve pharmacokinetics of the loaded agent and selective distribution to the tumor lesion relative to healthy tissues, remote-controlled or tumor stimuli-sensitive extravasation from blood at the tumor's vicinity, internalization motifs to move from tumor bounds and/or tumor intercellular space to the cytoplasm of cancer cells for effective tumor cell killing. This review will focus on current strategies used for cancer detection and therapy using liposomes with special attention to combination therapies.
Collapse
|
39
|
Tang L, Yang X, Dobrucki LW, Chaudhury I, Yin Q, Yao C, Lezmi S, Helferich WG, Fan TM, Cheng J. Aptamer-functionalized, ultra-small, monodisperse silica nanoconjugates for targeted dual-modal imaging of lymph nodes with metastatic tumors. Angew Chem Int Ed Engl 2012; 51:12721-6. [PMID: 23136130 PMCID: PMC4486261 DOI: 10.1002/anie.201205271] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Indexed: 11/07/2022]
Affiliation(s)
- Li Tang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 W. Green Street, Urbana, IL, 61801 (USA)
| | - Xujuan Yang
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign
| | | | - Isthier Chaudhury
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 W. Green Street, Urbana, IL, 61801 (USA)
| | - Qian Yin
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 W. Green Street, Urbana, IL, 61801 (USA)
| | - Catherine Yao
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 W. Green Street, Urbana, IL, 61801 (USA)
| | - Stéphane Lezmi
- Department of Pathobiology, University of Illinois at Urbana-Champaign
| | - William G. Helferich
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign
| | - Timothy M. Fan
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign
| | - Jianjun Cheng
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 W. Green Street, Urbana, IL, 61801 (USA)
| |
Collapse
|
40
|
Tang L, Yang X, Dobrucki LW, Chaudhury I, Yin Q, Yao C, Lezmi S, Helferich WG, Fan TM, Cheng J. Aptamer-Functionalized, Ultra-Small, Monodisperse Silica Nanoconjugates for Targeted Dual-Modal Imaging of Lymph Nodes with Metastatic Tumors. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201205271] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
41
|
Zhou Y, Kopeček J. Biological rationale for the design of polymeric anti-cancer nanomedicines. J Drug Target 2012; 21:1-26. [PMID: 23009337 DOI: 10.3109/1061186x.2012.723213] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Understanding the biological features of cancer is the basis for designing efficient anti-cancer nanomedicines. On one hand, important therapeutic targets for anti-cancer nanomedicines need to be identified based on cancer biology, to address the unmet medical needs. On the other hand, the unique pathophysiological properties of cancer affect the delivery and interactions of anti-cancer nanomedicines with their therapeutic targets. This review discusses several critical cancer biological properties that challenge the currently available anti-cancer treatments, including cancer heterogeneity and cancer stem cells, the complexcity of tumor microenvironment, and the inevitable cancer metastases. In addition, the biological bases of the enhanced permeability and retention (EPR) effect and tumor-specific active targeting, as well as the physiological barriers for passive and active targeting of anti-cancer nanomedicines are covered in this review. Correspondingly, possible nanomedicine strategies to target cancer heterogeneity, cancer stem cells and metastases, to overcome the challenges related to tumor passive targeting and tumor penetration, and to improve the interactions of therapeutic payloads with the therapeutic targets are discussed. The focus is mainly on the designs of polymeric anti-cancer nanomedicines.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | | |
Collapse
|
42
|
Pearce TR, Shroff K, Kokkoli E. Peptide targeted lipid nanoparticles for anticancer drug delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2012; 24:3803-22, 3710. [PMID: 22674563 DOI: 10.1002/adma.201200832] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Indexed: 05/21/2023]
Abstract
Encapsulating anticancer drugs in nanoparticles has proven to be an effective mechanism to alter the pharmacokinetic and pharmacodynamic profiles of the drugs, leading to clinically useful cancer therapeutics like Doxil and DaunoXome. Underdeveloped tumor vasculature and lymphatics allow these first-generation nanoparticles to passively accumulate within the tumor, but work to create the next-generation nanoparticles that actively participate in the tumor targeting process is underway. Lipid nanoparticles functionalized with targeting peptides are among the most often studied. The goal of this article is to review the recently published literature of targeted nanoparticles to highlight successful designs that improved in vivo tumor therapy, and to discuss the current challenges of designing these nanoparticles for effective in vivo performance.
Collapse
Affiliation(s)
- Timothy R Pearce
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
43
|
Blei F. Update March 2012. Lymphat Res Biol 2012. [DOI: 10.1089/lrb.2012.1012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|