1
|
Che H, Lyu J, Xu E, Wu J. Optimization and evaluation of liver deformation modeling under microwave ablation based on ex vivo data. Phys Med Biol 2025; 70:105011. [PMID: 40273931 DOI: 10.1088/1361-6560/add07c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 04/24/2025] [Indexed: 04/26/2025]
Abstract
Objective. Microwave ablation (MWA) has emerged as a crucial therapeutic technique for treating hepatocellular carcinoma. Despite its effectiveness, temperature-dependent structural modifications in liver tissues can adversely affect outcomes. Numerical modeling and simulations are essential tools for predicting tissue temperature and deformation prediction. However, existing methods lack comprehensive consideration of deformation-causative factors and fail to validate accuracy throughout the ablation zone.Approach. To overcome these limitations, we analyzed the gap between theex vivoablation deformation results and numerical simulations, and combined them to optimize the physical fields of thermally induced deformation across the entire liver tissue ablation zone. Specifically, we employed a grid marker arrangement with delayed computed tomography (CT) imaging inex vivoexperiments to capture high-resolution global deformation data. The optimization of the simulation was based on updating the coefficient for protein denaturation shrinkage and incorporating vapor diffusion influence in the mechanical model. The effect of vapor diffusion was thoroughly investigated and modeled into the stress-strain equation.Main results. Evaluation results demonstrate that our method significantly improves simulation alignment with observed experimental data, enhancing prediction accuracy of tissue deformation by 30%-90%. Additionally, our model exhibits enhanced capability for expansion representation to describe localized region deformation, resulting in increases of 2.2%-10.0% in dice similarity coefficient (DICE) and 4.2%-19.0% in intersection over union (IoU) when quantifying morphological differences withex vivoexperimental results.Significance. The improved simulation modeling could benefit the planning and optimization of MWA procedures, potentially enhancing treatment efficacy.
Collapse
Affiliation(s)
- Hui Che
- Institute of Biomedical Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Juntu Lyu
- Institute of Biomedical Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Erjiao Xu
- Department of Medical Ultrasonics, The Eight Affiliated Hospital, SunYat-sen University, Shenzhen 518000, People's Republic of China
| | - Jian Wu
- Institute of Biomedical Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China
| |
Collapse
|
2
|
Jin X, Jiang M, Qian L, Tao L, Yang Y, Xing L, Qian Z, Li W. Effect of 433 MHz double-slot microwave antennas for double-zone ablation in ex vivo swine liver experiment. PLoS One 2025; 20:e0315678. [PMID: 39933011 PMCID: PMC11813083 DOI: 10.1371/journal.pone.0315678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/29/2024] [Indexed: 02/13/2025] Open
Abstract
PURPOSE To evaluate the effects of axial length and slot-to-slot distance of double-slot microwave antenna (DSMA) with frequency of 433 MHz on the size and shape of ablation zones created under different input microwave powers. MATERIALS AND METHODS The design of double slot microwave antennas (DSMAs) with axial lengths (70 mm, 30 mm) and slot-to-slot distance (49 mm, 10 mm) were optimized by numerical simulation and ex vivo liver experiments. Finite-element method simulations and forty ablations of swine liver were employed to obtain the temperature distributions within liver tissue using DSMAs at the 433 MHz operating frequency in a range of heating powers (20, 30, 40 and 50W) for 600 s. The dependence of the effectiveness of MWA on the axial length and slot-to-slot distance of antenna as well as the input power was further evaluated by analyzing morphologic characteristics of ablated zone. RESULTS Two-zone ablation was achieved by two types of double-slot antennas in our study with frequency of 433 MHz, and the observed shapes of ex vivo experimental ablation zones were in good agreement with patterns predicted by simulation models. The ablation zone exhibited a 'gourd' shape after the treatment using the antenna with longer axial length and slot-to-slot distance, while the short antenna caused a guitar-shape ablation in liver tissue after MWA. CONCLUSION The dedicated design of our DSMAs with a frequency of 433 MHz could enable new ablation shapes with controllable dimensions, which can be applied to the clinical treatment of MWA for gourd-shaped liver tumors and other long-shaped tumors. Furthermore, research can be conducted on how to design the antenna as flexible and use it for the treatment of pulmonary nodules or varicose veins.
Collapse
Affiliation(s)
- Xiaofei Jin
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
- Key Laboratory of Multi-modal Brain-Computer Precision Drive, Industry and Information Technology Ministry, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Mengwei Jiang
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Lu Qian
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Ling Tao
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
- Key Laboratory of Brain-Machine Intelligence Technology, Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Yamin Yang
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
- Key Laboratory of Multi-modal Brain-Computer Precision Drive, Industry and Information Technology Ministry, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Lidong Xing
- Key Laboratory of Multi-modal Brain-Computer Precision Drive, Industry and Information Technology Ministry, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Zhiyu Qian
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
- Key Laboratory of Multi-modal Brain-Computer Precision Drive, Industry and Information Technology Ministry, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Weitao Li
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
- Key Laboratory of Multi-modal Brain-Computer Precision Drive, Industry and Information Technology Ministry, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| |
Collapse
|
3
|
Niu PX, Wang XX, Shen JJ, Jin XX, Zhou ZY. Computational study on the effect of thermal deformation of myocardium on lesion formation during radiofrequency ablation. Proc Inst Mech Eng H 2025; 239:133-143. [PMID: 40012120 DOI: 10.1177/09544119251321131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Radiofrequency (RF) catheter ablation treats cardiac diseases by inducing thermal lesion of cardiac tissues through radiofrequency energy operating at around 500 kHz. The electromagnetic wavelength is significantly longer than the size of the radiofrequency active electrode, the tissue is heated through resistive heating. During thermal ablation, the coupled thermo-mechanical property of cardiac tissue influencing the contact area between the electrode and tissue plays a crucial role in the formation of thermal lesions, yet the literature often overlooks the effect of thermal deformation. This paper proposes a thermo-hyperelastic constitutive model for myocardium that models thermal contraction and expansion during ablation. Furthermore, a finite element model was established to investigate the effect of the electro-thermo-mechanical coupling property of myocardium on lesion formation under different contact forces. To ensure convergence, we solved the fully coupled electro-thermo-mechanical finite element model using the segregated step method. The computational results demonstrate that thermal deformation, which causes an expansion in the tissue-electrode contact area, increases lesion width and volume, while its influence on lesion depth is negligible. Specifically, after a 30-s ablation under contact forces of 0.1, 0.15, and 0.2 N, the lesion volume increased from 4.53, 7.66, and 10.62 mm3 (without thermo-mechanical coupling) to 5.36, 8.33, and 13.34 mm3 (with thermo-mechanical coupling), respectively. Similarly, the lesion width increased from 2.68, 3.12, and 3.44 mm to 2.78, 3.22, and 3.62 mm. Moreover, both thermal deformation and contact force exert a minimal effect on lesion formation time.
Collapse
Affiliation(s)
- Pei Xin Niu
- College of Automation & College of Artificial Intelligence, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu, China
| | - Xiang Xiang Wang
- College of Automation & College of Artificial Intelligence, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu, China
| | - Jing Jin Shen
- College of Automation & College of Artificial Intelligence, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu, China
| | - Xiao Xiao Jin
- Northern Jiangsu People's Hospital, Yangzhou City, Jiangsu Province, China
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou City, Jiangsu Province, China
| | - Zhen Yu Zhou
- College of Automation & College of Artificial Intelligence, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu, China
| |
Collapse
|
4
|
Hübner F, Klaus M, Siedow N, Leithäuser C, Vogl TJ. CT-based evaluation of tissue expansion in cryoablation of ex vivo kidney. BIOMED ENG-BIOMED TE 2024; 69:211-217. [PMID: 37924274 DOI: 10.1515/bmt-2023-0174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 10/11/2023] [Indexed: 11/06/2023]
Abstract
OBJECTIVES To evaluate tissue expansion during cryoablation, the displacement of markers in ex vivo kidney tissue was determined using computed tomographic (CT) imaging. METHODS CT-guided cryoablation was performed in nine porcine kidneys over a 10 min period. Markers and fiber optic temperature probes were positioned perpendicular to the cryoprobe shaft in an axial orientation. The temperature measurement was performed simultaneously with the acquisitions of the CT images in 5 s intervals. The distance change of the markers to the cryoprobe was determined in each CT image and equated to the measured temperature at the marker. RESULTS The greatest increase in the distance between the markers and the cryoprobe was observed in the initial phase of cryoablation. The maximum displacement of the markers was determined to be 0.31±0.2 mm and 2.8±0.02 %, respectively. CONCLUSIONS The mean expansion of ex vivo kidney tissue during cryoablation with a single cryoprobe is 0.31±0.2 mm. The results can be used for identification of basic parameters for optimization of therapy planning.
Collapse
Affiliation(s)
- Frank Hübner
- Institute of Diagnostic and Interventional Radiology, University Hospital, Goethe University Frankfurt, Frankfurt, Germany
| | - Moritz Klaus
- Institute of Diagnostic and Interventional Radiology, University Hospital, Goethe University Frankfurt, Frankfurt, Germany
| | - Norbert Siedow
- Fraunhofer Institute for Industrial Mathematics (ITWM), Kaiserslautern, Germany
| | | | - Thomas Josef Vogl
- Institute of Diagnostic and Interventional Radiology, University Hospital, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
5
|
Hendriks P, Boel F, Oosterveer TTM, Broersen A, de Geus-Oei LF, Dijkstra J, Burgmans MC. Ablation margin quantification after thermal ablation of malignant liver tumors: How to optimize the procedure? A systematic review of the available evidence. Eur J Radiol Open 2023; 11:100501. [PMID: 37405153 PMCID: PMC10316004 DOI: 10.1016/j.ejro.2023.100501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/06/2023] Open
Abstract
Introduction To minimize the risk of local tumor progression after thermal ablation of liver malignancies, complete tumor ablation with sufficient ablation margins is a prerequisite. This has resulted in ablation margin quantification to become a rapidly evolving field. The aim of this systematic review is to give an overview of the available literature with respect to clinical studies and technical aspects potentially influencing the interpretation and evaluation of ablation margins. Methods The Medline database was reviewed for studies on radiofrequency and microwave ablation of liver cancer, ablation margins, image processing and tissue shrinkage. Studies included in this systematic review were analyzed for qualitative and quantitative assessment methods of ablation margins, segmentation and co-registration methods, and the potential influence of tissue shrinkage occurring during thermal ablation. Results 75 articles were included of which 58 were clinical studies. In most clinical studies the aimed minimal ablation margin (MAM) was ≥ 5 mm. In 10/31 studies, MAM quantification was performed in 3D rather than in three orthogonal image planes. Segmentations were performed either semi-automatically or manually. Rigid and non-rigid co-registration algorithms were used about as often. Tissue shrinkage rates ranged from 7% to 74%. Conclusions There is a high variability in ablation margin quantification methods. Prospectively obtained data and a validated robust workflow are needed to better understand the clinical value. Interpretation of quantified ablation margins may be influenced by tissue shrinkage, as this may cause underestimation.
Collapse
Affiliation(s)
- Pim Hendriks
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Fleur Boel
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Timo TM Oosterveer
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Alexander Broersen
- LKEB Laboratory of Clinical and Experimental Imaging, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Lioe-Fee de Geus-Oei
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
- Biomedical Photonic Imaging Group, University of Twente, the Netherlands
| | - Jouke Dijkstra
- LKEB Laboratory of Clinical and Experimental Imaging, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Mark C Burgmans
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
6
|
Varble NA, Bakhutashvili I, Reed SL, Delgado J, Tokoutsi Z, Frackowiak B, Baragona M, Karanian JW, Wood BJ, Pritchard WF. Morphometric characterization and temporal temperature measurements during hepatic microwave ablation in swine. PLoS One 2023; 18:e0289674. [PMID: 37540658 PMCID: PMC10403086 DOI: 10.1371/journal.pone.0289674] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/24/2023] [Indexed: 08/06/2023] Open
Abstract
PURPOSE Heat-induced destruction of cancer cells via microwave ablation (MWA) is emerging as a viable treatment of primary and metastatic liver cancer. Prediction of the impacted zone where cell death occurs, especially in the presence of vasculature, is challenging but may be achieved via biophysical modeling. To advance and characterize thermal MWA for focal cancer treatment, an in vivo method and experimental dataset were created for assessment of biophysical models designed to dynamically predict ablation zone parameters, given the delivery device, power, location, and proximity to vessels. MATERIALS AND METHODS MWA zone size, shape, and temperature were characterized and monitored in the absence of perfusion in ex vivo liver and a tissue-mimicking thermochromic phantom (TMTCP) at two power settings. Temperature was monitored over time using implanted thermocouples with their locations defined by CT. TMTCPs were used to identify the location of the ablation zone relative to the probe. In 6 swine, contrast-enhanced CTs were additionally acquired to visualize vasculature and absence of perfusion along with corresponding post-mortem gross pathology. RESULTS Bench studies demonstrated average ablation zone sizes of 4.13±1.56cm2 and 8.51±3.92cm2, solidity of 0.96±0.06 and 0.99±0.01, ablations centered 3.75cm and 3.5cm proximal to the probe tip, and temperatures of 50 ºC at 14.5±13.4s and 2.5±2.1s for 40W and 90W ablations, respectively. In vivo imaging showed average volumes of 9.8±4.8cm3 and 33.2±28.4cm3 and 3D solidity of 0.87±0.02 and 0.75±0.15, and gross pathology showed a hemorrhagic halo area of 3.1±1.2cm2 and 9.1±3.0cm2 for 40W and 90W ablations, respectfully. Temperatures reached 50ºC at 19.5±9.2s and 13.0±8.3s for 40W and 90W ablations, respectively. CONCLUSION MWA results are challenging to predict and are more variable than manufacturer-provided and bench predictions due to vascular stasis, heat-induced tissue changes, and probe operating conditions. Accurate prediction of MWA zones and temperature in vivo requires comprehensive thermal validation sets.
Collapse
Affiliation(s)
- Nicole A. Varble
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National, Institutes of Health, Bethesda, Maryland, United States of America
- Philips, Best, The Netherlands
| | - Ivane Bakhutashvili
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National, Institutes of Health, Bethesda, Maryland, United States of America
| | - Sheridan L. Reed
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National, Institutes of Health, Bethesda, Maryland, United States of America
| | - Jose Delgado
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National, Institutes of Health, Bethesda, Maryland, United States of America
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, United States of America
| | | | | | | | - John W. Karanian
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National, Institutes of Health, Bethesda, Maryland, United States of America
| | - Bradford J. Wood
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National, Institutes of Health, Bethesda, Maryland, United States of America
- Bioengineering and National Cancer Institute Center, Bethesda, Maryland, United States of America
| | - William F. Pritchard
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National, Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
7
|
Boregowda G, Mariappan P. 3D modeling of vector/edge finite element method for multi-ablation technique for large tumor-computational approach. PLoS One 2023; 18:e0289262. [PMID: 37506084 PMCID: PMC10381062 DOI: 10.1371/journal.pone.0289262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Microwave ablation (MWA) is a cancer thermal ablation treatment that uses electromagnetic waves to generate heat within the tissue. The goal of this treatment is to eliminate tumor cells while leaving healthy cells unharmed. During MWA, excess heat generation can kill healthy cells. Hence, mathematical models and numerical techniques are required to analyze the heat distribution in the tissue before the treatment. The aim of this research is to explain the implementation of the 3D vector finite element method in a wave propagation model that simulates the specific absorption rate in the liver. The 3D Nedelec elements from H(curl; Ω) space are used to discretize the wave propagation model, and this implementation is helpful in solving many real-world problems that involve electromagnetic propagation with perfect conducting and absorbing boundary conditions. One of the difficulties in ablation treatment is creating a large ablation zone for a large tumor (diameter greater than 3 cm) in a short period of time with minimum damage to the surrounding tissue. This article addresses the aforementioned issue by introducing four antennas into the different places of the tumor sequentially and producing heat uniformly over the tumor. The results demonstrated that 95.5% of the tumor cells were killed with minimal damage to the healthy cells when the heating time was increased to 4 minutes at each position. Subsequently, we studied the temperature distribution and localised tissue contraction in the tissue using the three-dimensional bio-heat equation and temperature-time dependent model, respectively. The local tissue contraction is measured at arbitrary points in the domain and is more noticeable at temperatures higher than 102°C. The thermal damage in the liver during MWA treatment is investigated using the three-state cell death model. The system of partial differential equations is solved numerically due to the complex geometry of the domain, and the results are compared with experimental data to validate the models and parameters.
Collapse
Affiliation(s)
- Gangadhara Boregowda
- Department of Mathematics and Statistics, Indian Institute of Technology Tirupati, Andhra Pradesh, India
| | - Panchatcharam Mariappan
- Department of Mathematics and Statistics, Indian Institute of Technology Tirupati, Andhra Pradesh, India
| |
Collapse
|
8
|
Zhao S, Wang H, Zou J, Zhang A. A coupled thermal-electrical-structural model for balloon-based thermoplasty treatment of atherosclerosis. Int J Hyperthermia 2023; 40:2122597. [PMID: 36642421 DOI: 10.1080/02656736.2022.2122597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVES The outcome of balloon-based atherosclerosis thermoplasty is closely related to the temperature/stress distribution during the treatment. For precise prediction of a required thermal lesion in the heterogeneous and thin atherosclerotic vessel, a numerical model incorporating heat-induced tissue expansion or shrinkage and the strain caused by balloon dilation is necessary. METHODS A fully coupled thermal-electrical-structural new model was established. The model features a heterogeneous structure including eccentric plaque, healthy artery and surrounding tissue. Tissue expansion/shrinkage and hyperelasticity material model were taken into consideration. Different heating strategies and plaque mechanical properties were investigated. The temperature distribution was compared with the traditional thermal-electrical coupled model. The possibility of thermoplasty treatment using balloons with different sizes was also explored. RESULTS The temperature, the electrical intensity and the stress during the thermoplasty were obtained. Lower stress was found in the heating region where tissue shrinkage occurred. The ablation depth was predicted to be ∼0.42 mm larger without coupling the biomechanical influence. The mechanical properties and input condition significantly affect the temperature and stress distribution considering the small dimensions of the tissue. Besides, with a 12.5% reduction of balloon diameter, the largest Von Mises stress decreases by 25.4%. CONCLUSIONS It is confirmed that a coupled thermal-electrical-structural model is needed for precise temperature prediction in the balloon-based thermoplasty of the heterogeneous and thin tissue. The model presented may help with future development of optimized treatment planning considering both ablation depth and minimum stress.
Collapse
Affiliation(s)
- Shiqing Zhao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Hongying Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Jincheng Zou
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Aili Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China
| |
Collapse
|
9
|
Bottiglieri A, Brace C, O’Halloran M, Farina L. MWA Performed at 5.8 GHz through 'Side Firing' Approach: An Exploratory Study. SENSORS (BASEL, SWITZERLAND) 2022; 22:9320. [PMID: 36502019 PMCID: PMC9735527 DOI: 10.3390/s22239320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Recent studies have shown that ablation techniques have the potential to eradicate adrenal adenomas while preserving the functionalities of the adrenal gland and the surrounding anatomical structures. This study explores a new microwave ablation (MWA) approach operating at 5.8 GHz and using anatomical and dielectric characteristics of the target tissue to create directional heating patterns. Numerical simulations are executed in planar and 3D adrenal models, considering two energy doses. The numerical study is refined accounting for the vaporization of the tissue water content. Ex vivo experimental evaluations on porcine adrenal models complete the study. The numerical and experimental results show that spherical ablation zones are able to cover the target for both energy doses considered. Nonetheless, most of the non-targeted tissues can be preserved from excessive heating when low energy level is used. Numerical models accounting for water vaporization are capable to foresee the experimental temperature values. This study shows that the proposed MWA directional approach operating at 5.8 GHz can be considered for creating effective and selective ablation zones.
Collapse
Affiliation(s)
- Anna Bottiglieri
- Electrical and Electronic Engineering, National University of Ireland Galway, H91 TK33 Galway, Ireland
- Translational Medical Device Lab, National University of Ireland Galway, H91 TK33 Galway, Ireland
| | - Christopher Brace
- Department of Biomedical Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706, USA
- Department of Radiology, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI 53705, USA
| | - Martin O’Halloran
- Translational Medical Device Lab, National University of Ireland Galway, H91 TK33 Galway, Ireland
| | - Laura Farina
- Translational Medical Device Lab, National University of Ireland Galway, H91 TK33 Galway, Ireland
| |
Collapse
|
10
|
Jin X, Feng Y, Zhu R, Qian L, Yang Y, Yu Q, Zou Z, Li W, Liu Y, Qian Z. Temperature control and intermittent time-set protocol optimization for minimizing tissue carbonization in microwave ablation. Int J Hyperthermia 2022; 39:868-879. [PMID: 35858640 DOI: 10.1080/02656736.2022.2075041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
PURPOSE The charring tissue formation in the ablated lesion during the microwave ablation (MWA) of tumors would induce various unwanted inflammatory responses. This paper aimed to deliver appropriate thermal dose for effective ablations while preventing tissue carbonization by optimizing the treatment protocol during MWA with the set combinations of temperature control and pulsed microwave energy delivery. MATERIAL AND METHODS The thermal phase transition of ex vivo porcine liver tissues were recorded by differential scanning calorimetry (DSC) to determine the temperature threshold during microwave output control. MWA was performed by an in-house built system with the ease of microwave output parameter adjustment and real-time temperature monitoring. The effects of continuous and pulsed microwave deliveries as well as various intermittent time-set of MWA were evaluated by measuring the dimensions of the coagulation zone and the carbonization zone. RESULTS The DSC scans demonstrated that the ex vivo porcine liver tissues have been in a state of endothermic heat during the heating process, where the maximum absorbed heat occurred at the temperature of 105 °C ± 5 °C. The temperature control during MWA resulted in effective coagulative necrosis while preventing tissue carbonization, after setting 100 °C as the upper threshold temperature and 60 °C as the lower threshold. Both the numerical simulation and ex vivo experiments have shown that, upon the optimization of the time-set parameters in the periodic intermittent pulsed microwave output, the tissue carbonization was significantly diminished. CONCLUSION This study developed a straight-forward anti-carbonization strategy in MWA by modulating the pulsing mode and intermittent time. The programmed protocols of intermittent pulsing MWA have demonstrated its potentials toward future expansion of MWA technology in clinical application.
Collapse
Affiliation(s)
- Xiaofei Jin
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Yu Feng
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Roujun Zhu
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Lu Qian
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Yamin Yang
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Qindong Yu
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Zhihan Zou
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Weitao Li
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Yangyang Liu
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Zhiyu Qian
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| |
Collapse
|
11
|
Servin F, Collins JA, Heiselman JS, Frederick-Dyer KC, Planz VB, Geevarghese SK, Brown DB, Miga MI. Fat Quantification Imaging and Biophysical Modeling for Patient-Specific Forecasting of Microwave Ablation Therapy. Front Physiol 2022; 12:820251. [PMID: 35185606 PMCID: PMC8850958 DOI: 10.3389/fphys.2021.820251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/29/2021] [Indexed: 11/14/2022] Open
Abstract
Computational tools are beginning to enable patient-specific surgical planning to localize and prescribe thermal dosing for liver cancer ablation therapy. Tissue-specific factors (e.g., tissue perfusion, material properties, disease state, etc.) have been found to affect ablative therapies, but current thermal dosing guidance practices do not account for these differences. Computational modeling of ablation procedures can integrate these sources of patient specificity to guide therapy planning and delivery. This paper establishes an imaging-data-driven framework for patient-specific biophysical modeling to predict ablation extents in livers with varying fat content in the context of microwave ablation (MWA) therapy. Patient anatomic scans were segmented to develop customized three-dimensional computational biophysical models and mDIXON fat-quantification images were acquired and analyzed to establish fat content and determine biophysical properties. Simulated patient-specific microwave ablations of tumor and healthy tissue were performed at four levels of fatty liver disease. Ablation models with greater fat content demonstrated significantly larger treatment volumes compared to livers with less severe disease states. More specifically, the results indicated an eightfold larger difference in necrotic volumes with fatty livers vs. the effects from the presence of more conductive tumor tissue. Additionally, the evolution of necrotic volume formation as a function of the thermal dose was influenced by the presence of a tumor. Fat quantification imaging showed multi-valued spatially heterogeneous distributions of fat deposition, even within their respective disease classifications (e.g., low, mild, moderate, high-fat). Altogether, the results suggest that clinical fatty liver disease levels can affect MWA, and that fat-quantitative imaging data may improve patient specificity for this treatment modality.
Collapse
Affiliation(s)
- Frankangel Servin
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Institute for Surgery and Engineering, Vanderbilt University, Nashville, TN, United States
| | - Jarrod A. Collins
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
| | - Jon S. Heiselman
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Institute for Surgery and Engineering, Vanderbilt University, Nashville, TN, United States
| | - Katherine C. Frederick-Dyer
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Virginia B. Planz
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Sunil K. Geevarghese
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Daniel B. Brown
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Michael I. Miga
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Institute for Surgery and Engineering, Vanderbilt University, Nashville, TN, United States
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, United States
- *Correspondence: Michael I. Miga,
| |
Collapse
|
12
|
Radosevic A, Prieto D, Burdío F, Berjano E, Prakash P, Trujillo M. Short pulsed microwave ablation: computer modeling and ex vivo experiments. Int J Hyperthermia 2021; 38:409-420. [PMID: 33719808 DOI: 10.1080/02656736.2021.1894358] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
PURPOSE To study the differences between continuous and short-pulse mode microwave ablation (MWA). METHODS We built a computational model for MWA including a 200 mm long and 14 G antenna from Amica-Gen and solved an electromagnetic-thermal coupled problem using COMSOL Multiphysics. We compared the coagulation zone (CZ) sizes created with pulsed and continuous modes under ex vivo and in vivo conditions. The model was used to compare long vs. short pulses, and 1000 W high-powered short pulses. Ex vivo experiments were conducted to validate the model. RESULTS The computational models predicted the axial diameter of the CZ with an error of 2-3% and overestimated the transverse diameter by 9-11%. For short pulses, the ex vivo computer modeling results showed a trend toward larger CZ when duty cycles decreases. In general, short pulsed mode yielded higher CZ diameters and volumes than continuous mode, but the differences were not significant (<5%), as in terms of CZ sphericity. The same trends were observed in the simulations mimicking in vivo conditions. Both CZ diameter and sphericity were similar with short and long pulses. Short 1000 W pulses produced smaller sphericity and similar CZ sizes under in vivo and ex vivo conditions. CONCLUSIONS The characteristics of the CZ created by continuous and pulsed MWA show no significant differences from ex vivo experiments and computer simulations. The proposed idea of enlarging coagulation zones and improving their sphericity in pulsed mode was not evident in this study.
Collapse
Affiliation(s)
- Aleksandar Radosevic
- Department of Radiology, Hospital del Mar, Universitat Pompeu Fabra, Barcelona, Spain
| | - Diego Prieto
- BioMIT, Department of Applied Mathematics, Universitat Politècnica de València, Valencia, Spain
| | | | - Enrique Berjano
- BioMIT, Department of Electronic Engineering, Universitat Politècnica de València, Valencia, Spain
| | - Punit Prakash
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS, USA
| | - Macarena Trujillo
- BioMIT, Department of Applied Mathematics, Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
13
|
Pekçevik R, Ballı Ö. Percutaneous Intraductal Microwave Ablation and Self-expandable Metallic Stenting: A New Treatment Method for Malignant Extrahepatic Biliary Obstruction. Cardiovasc Intervent Radiol 2020; 44:110-117. [PMID: 33145700 DOI: 10.1007/s00270-020-02684-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 10/07/2020] [Indexed: 11/25/2022]
Abstract
PURPOSE To evaluate the patency and clinical efficacy of percutaneous intraductal microwave ablation (PIMWA) and uncovered self-expandable metallic stents (USEMs) in inoperable malignant extrahepatic biliary obstruction. MATERIALS AND METHODS The procedures to be performed on patients with malignant inoperable extrahepatic biliary obstruction were decided by a multidisciplinary team including an interventional radiologist. In our study, 141 patients were evaluated retrospectively. Twenty-one patients who underwent PIMWA + USEMs with the MedWaves AveCure microwave system (AveCure® Intelligent Controller and Super-Flex Smart Catheter) and met the inclusion criteria were included in the study. Complications related to the intervention, stent patency, survival time, serum bilirubin levels, and the general condition of the patients were noted. RESULTS The median stent patency and the median survival time were 108 and 143 days, respectively. The rates of 30-day, 2-month, 6-month and 8-month survival were 95.2%, 85.7%, 38.1%, and 14.3%, respectively. CONCLUSION The PIMWA + USEMs procedure is a safe, effective, and minimally invasive alternative palliative treatment method in patients with malignant inoperable extrahepatic biliary obstruction.
Collapse
Affiliation(s)
- Rıdvan Pekçevik
- Department of Interventional Radiology, İzmir Katip Çelebi University Atatürk Training and Research Hospital, 35360, İzmir, Turkey.
| | - Ömür Ballı
- Department of Interventional Radiology, İzmir Katip Çelebi University Atatürk Training and Research Hospital, 35360, İzmir, Turkey
| |
Collapse
|
14
|
Wetley KA, Abel EJ, Dreyfuss LD, Huang W, Brace CL, Wells SA. CT and MR imaging surveillance of stage 1 renal cell carcinoma after microwave ablation. Abdom Radiol (NY) 2020; 45:2810-2824. [PMID: 32715335 DOI: 10.1007/s00261-020-02662-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/27/2020] [Accepted: 07/09/2020] [Indexed: 01/20/2023]
Abstract
OBJECTIVE To describe the CT and MR imaging findings after microwave ablation of clinical stage 1 renal cell carcinoma (RCC). METHODS This single-center retrospective study was performed under a waiver of informed consent. 49 patients (38 M/11F, mean age 66 ± 9.0) with 52 cT1a RCC and 19 patients (10M/9F, mean age 67 ± 9.7) with 19 cT1b RCC were treated with percutaneous microwave ablation between January 2012 and June 2014. The size and volume of the RCC and ablation zone were measured and the kidney, ablation zones and retroperitoneum were assessed at immediate post-procedure CT and surveillance CT and MRI. RESULTS Median imaging follow-up was 18 months (IQR 12-28). Ablation zones were heterogeneously hyperintense on T1W and hypointense on T2W MRI and hyperdense at CT. Thin peripheral, but no internal enhancement after contrast administration signified successful ablation zones. Ablation zones decreased in size, but did not resolve during surveillance. Immediate post-procedure subcapsular gas and hematoma (5/71, 7%) resolved prior to first follow-up. Focal, enhancing soft tissue within the ablation zone, invariably along the renal margin, signified local recurrence. Local recurrence rates were higher for T1b (2/19, 11%) compared to T1a (1/52, 2%). Urinomas (4/71, 6%) decreased in size and resolved during surveillance. Retroperitoneal fat necrosis (6/71, 9%), with opposed-phase loss of T1W MRI signal, was confirmed at histology after percutaneous biopsy. CONCLUSION CT and MR imaging features after microwave ablation of renal cell carcinoma are predictable and reliably demonstrate treatment success, early and delayed complications, and local recurrences that can guide patient management.
Collapse
Affiliation(s)
- Karla A Wetley
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, E3/366, 600 Highland Avenue, Madison, WI, 53792, USA
| | - E Jason Abel
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, E3/366, 600 Highland Avenue, Madison, WI, 53792, USA
- Department of Urology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Leo D Dreyfuss
- University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Wei Huang
- Department of Pathology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Chris L Brace
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, E3/366, 600 Highland Avenue, Madison, WI, 53792, USA
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA
| | - Shane A Wells
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, E3/366, 600 Highland Avenue, Madison, WI, 53792, USA.
| |
Collapse
|
15
|
Etoz S, Brace CL. Computed Tomography-Based Modeling of Water Vapor-Induced Changes in Permittivity During Microwave Ablation. IEEE Trans Biomed Eng 2020; 67:2427-2433. [DOI: 10.1109/tbme.2019.2962363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
16
|
Sun H, Fu W, Zhou W, Liu Y. Effect of chemical shrinkage and temperature shrinkage on early cracking of recycled concrete. ASIA-PAC J CHEM ENG 2020. [DOI: 10.1002/apj.2505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Huayin Sun
- School of Civil and Architectural Engineering Yangtze Normal University Chongqing China
| | - Weijia Fu
- School of Architecture and Design Changchun Institute of Technology Changchun China
| | - Weili Zhou
- School of Civil and Architectural Engineering Yangtze Normal University Chongqing China
| | - Yali Liu
- School of Civil and Architectural Engineering Yangtze Normal University Chongqing China
| |
Collapse
|
17
|
Bottiglieri A, Ruvio G, O’Halloran M, Farina L. Exploiting Tissue Dielectric Properties to Shape Microwave Thermal Ablation Zones. SENSORS 2020; 20:s20143960. [PMID: 32708680 PMCID: PMC7411896 DOI: 10.3390/s20143960] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/07/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023]
Abstract
The dielectric characterization of tissue targets of microwave thermal ablation (MTA) have improved the efficacy and pre-procedural planning of treatment. In some clinical scenarios, the tissue target lies at the interface with an external layer of fat. The aim of this work is to investigate the influence of the dielectric contrast between fat and target tissue on the shape and size of the ablation zone. A 2.45 GHz monopole antenna is placed parallel to an interface modelled by fat and a tissue characterized by higher dielectric properties and powered at 30 and 60 W for 60 s. The performances of MTA are numerically investigated considering different interface scenarios (i.e., different widths of fat layer, shifts in the antenna alignment) and a homogeneous reference scenario. Experiments (N = 10) are conducted on ex vivo porcine tissue to validate the numerical results. Asymmetric heating patterns are obtained in the interface scenario, the ablation zone in the target tissue is two-fold to ten-fold the size of the zone in the adipose tissue, and up to four times larger than the homogenous scenario. The adipose tissue reflects the electromagnetic energy into the adjacent tissue target, reducing the heating in the opposite direction.
Collapse
Affiliation(s)
- Anna Bottiglieri
- Electrical and Electronic Engineering, National University of Ireland Galway, H91 TK33 Galway, Ireland
- Translational Medical Device Lab, National University of Ireland Galway, H91 TK33 Galway, Ireland; (G.R.); (L.F.)
- Correspondence: (A.B.); (M.O.)
| | - Giuseppe Ruvio
- Translational Medical Device Lab, National University of Ireland Galway, H91 TK33 Galway, Ireland; (G.R.); (L.F.)
- Endowave Ltd., National University of Ireland Galway, H91 TK33 Galway, Ireland
| | - Martin O’Halloran
- Translational Medical Device Lab, National University of Ireland Galway, H91 TK33 Galway, Ireland; (G.R.); (L.F.)
- Correspondence: (A.B.); (M.O.)
| | - Laura Farina
- Translational Medical Device Lab, National University of Ireland Galway, H91 TK33 Galway, Ireland; (G.R.); (L.F.)
- CÚRAM, SFI Research Centre for Medical Devices, H91 TK33 Galway, Ireland
| |
Collapse
|
18
|
Tehrani MHH, Soltani M, Kashkooli FM, Raahemifar K. Use of microwave ablation for thermal treatment of solid tumors with different shapes and sizes-A computational approach. PLoS One 2020; 15:e0233219. [PMID: 32542034 PMCID: PMC7295236 DOI: 10.1371/journal.pone.0233219] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 04/30/2020] [Indexed: 12/11/2022] Open
Abstract
Microwave Ablation (MWA) is one of the most recent developments in the field of thermal therapy. This approach is an effective method for thermal tumor ablation by increasing the temperature above the normal physiological threshold to kill cancer cells with minimum side effects to surrounding organs due to rapid heat dispersive tissues. In the present study, the effects of the shape and size of the tumor on MWA are investigated. To obtain the temperature gradient, coupled bio-heat and electromagnetic equations are solved using a three-dimensional finite element method (FEM). To extract cellular response at different temperatures and times, the three-state mathematical model was employed to achieve the ablation zone size. Results show that treatment of larger tumors is more difficult than that of smaller ones. By doubling the diameter of the tumor, the percentage of dead cancer cells is reduced by 20%. For a spherical tumor smaller than 2 cm, applying 50 W input power compared to 25 W has no significant effects on treatment efficiency and only increases the risk of damage to adjacent tissues. However, for tumors larger than 2 cm, it can increase the ablation zone up to 21%. In the spherical and oblate tumors, the mean percentage of dead cells at 6 GHz is nearly 30% higher than that at 2.45GHz, but for prolate tumors, treatment efficacy is reduced by 10% at a higher frequency. Moreover, the distance between two slots in the coaxial double slot antenna is modified based on the best treatment of prolate tumors. The findings of this study can be used to choose the optimum frequency and the best antenna design according to the shape and size of the tumor.
Collapse
Affiliation(s)
- Masoud H. H. Tehrani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - M. Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
- Advanced Bioengineering Initiative Center, Computational Medicine Center, K. N. Toosi University of Technology, Tehran, Iran
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada
- Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, ON, Canada
- Cancer Biology Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Kaamran Raahemifar
- Electrical and Computer Engineering Department, Sultan Qaboos University, Muscat, Sultanate of Oman
- Chemical Engineering Department, University of Waterloo, Waterloo, ON, Canada
- College of Information Sciences and Technology (IST), Data Science and Artificial Intelligence Program, Penn State University, State College, Pennsylvania, PA, United States of America
| |
Collapse
|
19
|
Singh S, Melnik R. Thermal ablation of biological tissues in disease treatment: A review of computational models and future directions. Electromagn Biol Med 2020; 39:49-88. [PMID: 32233691 DOI: 10.1080/15368378.2020.1741383] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Percutaneous thermal ablation has proven to be an effective modality for treating both benign and malignant tumours in various tissues. Among these modalities, radiofrequency ablation (RFA) is the most promising and widely adopted approach that has been extensively studied in the past decades. Microwave ablation (MWA) is a newly emerging modality that is gaining rapid momentum due to its capability of inducing rapid heating and attaining larger ablation volumes, and its lesser susceptibility to the heat sink effects as compared to RFA. Although the goal of both these therapies is to attain cell death in the target tissue by virtue of heating above 50°C, their underlying mechanism of action and principles greatly differs. Computational modelling is a powerful tool for studying the effect of electromagnetic interactions within the biological tissues and predicting the treatment outcomes during thermal ablative therapies. Such a priori estimation can assist the clinical practitioners during treatment planning with the goal of attaining successful tumour destruction and preservation of the surrounding healthy tissue and critical structures. This review provides current state-of-the-art developments and associated challenges in the computational modelling of thermal ablative techniques, viz., RFA and MWA, as well as touch upon several promising avenues in the modelling of laser ablation, nanoparticles assisted magnetic hyperthermia and non-invasive RFA. The application of RFA in pain relief has been extensively reviewed from modelling point of view. Additionally, future directions have also been provided to improve these models for their successful translation and integration into the hospital work flow.
Collapse
Affiliation(s)
- Sundeep Singh
- MS2Discovery Interdisciplinary Research Institute, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Roderick Melnik
- MS2Discovery Interdisciplinary Research Institute, Wilfrid Laurier University, Waterloo, Ontario, Canada.,BCAM - Basque Center for Applied Mathematics, Bilbao, Spain
| |
Collapse
|
20
|
Gao H, Wang X, Wu S, Zhou Z, Bai Y, Wu W. Conformal coverage of liver tumors by the thermal coagulation zone in 2450-MHz microwave ablation. Int J Hyperthermia 2020; 36:591-605. [PMID: 31172824 DOI: 10.1080/02656736.2019.1617437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Purpose: To optimize treatment schemes using 2450-MHz microwave ablation (MWA), a novel conformal coverage method based on bipolar-angle mapping is proposed that determines whether a liver tumor is completely encompassed by thermal coagulation zones. Materials and methods: Firstly, three-dimensional (3-D) triangular mesh data of liver tumors were reconstructed from clinical computed tomography (CT) slices using the Marching cubes (MC) algorithm. Secondly, characterization models of thermal coagulation zones were established based on finite element simulation results of 40, 45, 50, 55, and 60 W ablations. Finally, coagulation zone models and tumor surface data were mapped and fused on a two-dimensional (2-D) plane to achieve conformal coverage of liver tumors by comparing the corresponding polar radii. Results: Optimal parameters for ablation treatment of liver tumors were efficiently obtained with the proposed conformal coverage method. Fifteen liver tumors were obtained with maximal diameters of 12.329-78.612 mm (mean ± standard deviation, 39.094 ± 19.447 mm). The insertion positions and orientations of the MWA antenna were determined based on 3-D reconstruction results of these tumors. The ablation patterns and durations of tumors were planned according to the minimum mean standard deviations between the ablative margin and tumor surface. Conclusion: The proposed method can be applied to computer-assisted MWA treatment planning of liver tumors, and is expected to guide clinical procedures in future.
Collapse
Affiliation(s)
- Hongjian Gao
- a College of Life Science and Bioengineering , Beijing University of Technology , Beijing , China
| | - Xiaoru Wang
- a College of Life Science and Bioengineering , Beijing University of Technology , Beijing , China
| | - Shuicai Wu
- a College of Life Science and Bioengineering , Beijing University of Technology , Beijing , China
| | - Zhuhuang Zhou
- a College of Life Science and Bioengineering , Beijing University of Technology , Beijing , China
| | - Yanping Bai
- a College of Life Science and Bioengineering , Beijing University of Technology , Beijing , China
| | - Weiwei Wu
- b College of Biomedical Engineering , Capital Medical University , Beijing , China
| |
Collapse
|
21
|
Singh S, Melnik R. Coupled thermo-electro-mechanical models for thermal ablation of biological tissues and heat relaxation time effects. Phys Med Biol 2019; 64:245008. [PMID: 31600740 DOI: 10.1088/1361-6560/ab4cc5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Thermal ablation is a widely applied electrosurgical process in medical treatment of soft biological tissues. Numerical modeling and simulations play an important role in prediction of temperature distribution and damage volume during the treatment planning stage of associated therapies. In this contribution we report a coupled thermo-electro-mechanical model, accounting for heat relaxation time, for more accurate and precise prediction of the temperature distribution, tissue deformation and damage volume during the thermal ablation of biological tissues. Finite element solutions are obtained for most widely used percutaneous thermal ablative techniques, viz., radiofrequency ablation (RFA) and microwave ablation (MWA). Importantly, both tissue expansion and shrinkage have been considered for modeling the tissue deformation in the coupled model of high temperature thermal ablation. The coupled model takes into account the non-Fourier effects, considering both single-phase-lag (SPL) and dual-phase-lag (DPL) models of bio-heat transfer. The temperature-dependent electrical and thermal parameters, damage-dependent blood perfusion rate and phase change effect accounting for tissue vaporization have been accounted for obtaining more clinically relevant model. The proposed model predictions are found to be in good agreement against the temperature distribution and damage volume reported by previous experimental studies. The numerical simulation results revealed that the non-Fourier effects cause a decrease in the predicted temperature distribution, tissue deformation and damage volume during the high temperature thermal ablative procedures. Furthermore, the effects of different magnitudes of phase lags of the heat flux and temperature gradient on the predicted treatment outcomes of the considered thermal ablative modalities are also quantified and discussed in detail.
Collapse
Affiliation(s)
- Sundeep Singh
- MS2Discovery Interdisciplinary Research Institute, Wilfrid Laurier University, 75 University Avenue West, Waterloo, Ontario N2L 3C5, Canada. Author to whom any correspondence should be addressed
| | | |
Collapse
|
22
|
Sebek J, Bortel R, Prakash P. Broadband lung dielectric properties over the ablative temperature range: Experimental measurements and parametric models. Med Phys 2019; 46:4291-4303. [PMID: 31286530 PMCID: PMC6893909 DOI: 10.1002/mp.13704] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/20/2019] [Accepted: 06/20/2019] [Indexed: 11/05/2022] Open
Abstract
PURPOSE Computational models of microwave tissue ablation are widely used to guide the development of ablation devices, and are increasingly being used for the development of treatment planning and monitoring platforms. Knowledge of temperature-dependent dielectric properties of lung tissue is essential for accurate modeling of microwave ablation (MWA) of the lung. METHODS We employed the open-ended coaxial probe method, coupled with a custom tissue heating apparatus, to measure dielectric properties of ex vivo porcine and bovine lung tissue at temperatures ranging between 31 and 150 ∘ C, over the frequency range 500 MHz to 6 GHz. Furthermore, we employed numerical optimization techniques to provide parametric models for characterizing the broadband temperature-dependent dielectric properties of tissue, and their variability across tissue samples, suitable for use in computational models of microwave tissue ablation. RESULTS Rapid decreases in both relative permittivity and effective conductivity were observed in the temperature range from 94 to 108 ∘ C. Over the measured frequency range, both relative permittivity and effective conductivity were suitably modeled by piecewise linear functions [root mean square error (RMSE) = 1.0952 for permittivity and 0.0650 S/m for conductivity]. Detailed characterization of the variability in lung tissue properties was provided to enable uncertainty quantification of models of MWA. CONCLUSIONS The reported dielectric properties of lung tissue, and parametric models which also capture their distribution, will aid the development of computational models of microwave lung ablation.
Collapse
Affiliation(s)
- Jan Sebek
- Department of Electrical and Computer Engineering, Kansas State University, 1701D Platt st., Manhattan, KS, 66506, USA
- Department of Circuit Theory, Czech Technical University, Technicka 2, 160 00, Praha 6, Czech Republic
| | - Radoslav Bortel
- Department of Circuit Theory, Czech Technical University, Technicka 2, 160 00, Praha 6, Czech Republic
| | - Punit Prakash
- Department of Electrical and Computer Engineering, Kansas State University, 1701D Platt st., Manhattan, KS, 66506, USA
| |
Collapse
|
23
|
Collins JA, Heiselman JS, Clements LW, Weis JA, Brown DB, Miga MI. Toward Image Data-Driven Predictive Modeling for Guiding Thermal Ablative Therapy. IEEE Trans Biomed Eng 2019; 67:1548-1557. [PMID: 31494543 DOI: 10.1109/tbme.2019.2939686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Accurate prospective modeling of microwave ablation (MWA) procedures can provide powerful planning and navigational information to physicians. However, patient-specific tissue properties are generally unavailable and can vary based on factors such as relative perfusion and state of disease. Therefore, a need exists for modeling frameworks that account for variations in tissue properties. METHODS In this study, we establish an inverse modeling approach to reconstruct a set of tissue properties that best fit the model-predicted and observed ablation zone extents in a series of phantoms of varying fat content. We then create a model of these tissue properties as a function of fat content and perform a comprehensive leave-one-out evaluation of the predictive property model. Furthermore, we validate the inverse-model predictions in a separate series of phantoms that include co-recorded temperature data. RESULTS This model-based approach yielded thermal profiles in close agreement with experimental measurements in the series of validation phantoms (average root-mean-square error of 4.8 °C). The model-predicted ablation zones showed compelling overlap with observed ablations in both the series of validation phantoms (93.4 ± 2.2%) and the leave-one-out cross validation study (86.6 ± 5.3%). These results demonstrate an average improvement of 17.3% in predicted ablation zone overlap when comparing the presented property-model to properties derived from phantom component volume fractions. CONCLUSION These results demonstrate accurate model-predicted ablation estimates based on image-driven determination of tissue properties. SIGNIFICANCE The work demonstrates, as a proof-of-concept, that physical modeling parameters can be linked with quantitative medical imaging to improve the utility of predictive procedural modeling for MWA.
Collapse
|
24
|
Liu D, Brace CL. Evaluation of tissue deformation during radiofrequency and microwave ablation procedures: Influence of output energy delivery. Med Phys 2019; 46:4127-4134. [PMID: 31260115 DOI: 10.1002/mp.13688] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 06/07/2019] [Accepted: 06/22/2019] [Indexed: 12/12/2022] Open
Abstract
PURPOSE The purpose of this study was to quantitatively analyze tissue deformation during radiofrequency (RF) and microwave ablation for varying output energy levels. METHODS A total of 46 fiducial markers which were classified into outer, middle, and inner lines were positioned into a single plane around an RF or microwave ablation applicator in each ex vivo bovine liver sample (8 cm × 6 cm × 4 cm, n = 18). Radiofrequency (500 kHz; ~35 W average) or microwave (2.4 GHz; 50-100 W output, ~35-70 W delivered) ablation was performed for 10 min (n = 4-6 each setting). CT images were acquired over the entire liver volume every 15 s. Principle strain magnitude and direction were determined from fiducial marker displacement. Normal and shear strain were then calculated such that negative strain denoted contraction and positive strain denoted expansion. Temporal variations, the final magnitudes, and angles of the strain were compared across energy delivery settings, using one-way ANOVA with post hoc Tukey's tests. RESULTS On average, tissue strain rates peak at around 1 min and decayed exponentially over time. No evidence of tissue expansion was observed. The tissue strains from RF and 50 W, 75 W, and 100 W microwave ablation at 10 min were -8.5%, -38.9%, -54.4%, and -65.7%, respectively, from the inner region and -3.6%, -23.7%, -41.8%, and -44.3%, respectively, from the outer region. Negative strain magnitude was positively correlated to energy delivery in the inner region (Spearman's ρ = -0.99). Microwaves at higher powers (75-100 W) induced significantly more strain than at lower power (50 W) or after RF ablation (P < 0.01). Principal strain angles ranged from 0.8° to -8.1°, indicating that tissue deformed more in the direction transverse to the applicator than along the direction of the applicator. CONCLUSIONS The influence of output energy on tissue deformation during RF and microwave ablation was analyzed. Microwave ablation created significantly greater contraction than RF ablation with similar energy delivery. During microwave ablation, more contraction was noted at higher power levels and in proximity to the antenna. Contraction primarily transverse to the antenna produces ablation zones that are more elongated than the original tissue volume.
Collapse
Affiliation(s)
- Dong Liu
- Departments of Radiology, Biomedical Engineering, University of Wisconsin, Madison, WI, 53705, USA
| | - Christopher L Brace
- Departments of Radiology, Biomedical Engineering, University of Wisconsin, Madison, WI, 53705, USA
| |
Collapse
|
25
|
Strigari L, Minosse S, D'Alessio D, Farina L, Cavagnaro M, Cassano B, Pinto R, Vallati G, Lopresto V. Microwave thermal ablation using CT-scanner for predicting the variation of ablated region over time: advantages and limitations. Phys Med Biol 2019; 64:115021. [PMID: 30995620 DOI: 10.1088/1361-6560/ab1a67] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This study aims at investigating in real-time the structural and dynamical changes occurring in an ex vivo tissue during a microwave thermal ablation (MTA) procedure. The experimental set-up was based on ex vivo liver tissue inserted in a dedicated box, in which 3 fibre-optic (FO) temperature probes were introduced to measure the temperature increase over time. Computed tomography (CT) imaging technique was exploited to experimentally study in real-time the Hounsfield Units (HU) modification occurring during MTA. The collected image data were processed with a dedicated MATLAB tool, developed to analyse the FO positions and HU modifications from the CT images acquired over time before and during the ablation procedures. The radial position of a FO temperature probe (rFO) and the value of HU in the region of interest (ROI) containing the probe (HUo), along with the corresponding value of HU in the contralateral ROI with respect to the MTA antenna applicator (HUc), were determined and registered over time during and after the MTA procedure. Six experiments were conducted to confirm results. The correlation between temperature and the above listed predictors was investigated using univariate and multivariate analysis. At the multivariate analysis, the time, rFO and HUc resulted significant predictive factors of the logarithm of measured temperature. The correlation between predicted and measured temperatures was 0.934 (p < 0.001). The developed tool allows identifying and registering the image-based parameters useful for predicting the temperature variation over time in each investigated voxel by taking into consideration the HU variation.
Collapse
Affiliation(s)
- L Strigari
- Laboratory of Medical Physics and Expert Systems, IRCCS Regina Elena National Cancer Institute, IFO, via Elio Chianesi, 53, 00144, Rome, Italy. Current address: Department of Medical Physics, St. Orsola-Malpighi University Hospital, via Massarenti 9 40138 Bologna, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Collins JA, Heiselman JS, Clements LW, Brown DB, Miga MI. Multiphysics modeling toward enhanced guidance in hepatic microwave ablation: a preliminary framework. J Med Imaging (Bellingham) 2019; 6:025007. [PMID: 31131291 DOI: 10.1117/1.jmi.6.2.025007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 04/23/2019] [Indexed: 12/14/2022] Open
Abstract
We compare a surface-driven, model-based deformation correction method to a clinically relevant rigid registration approach within the application of image-guided microwave ablation for the purpose of demonstrating improved localization and antenna placement in a deformable hepatic phantom. Furthermore, we present preliminary computational modeling of microwave ablation integrated within the navigational environment to lay the groundwork for a more comprehensive procedural planning and guidance framework. To achieve this, we employ a simple, retrospective model of microwave ablation after registration, which allows a preliminary evaluation of the combined therapeutic and navigational framework. When driving registrations with full organ surface data (i.e., as could be available in a percutaneous procedure suite), the deformation correction method improved average ablation antenna registration error by 58.9% compared to rigid registration (i.e., 2.5 ± 1.1 mm , 5.6 ± 2.3 mm of average target error for corrected and rigid registration, respectively) and on average improved volumetric overlap between the modeled and ground-truth ablation zones from 67.0 ± 11.8 % to 85.6 ± 5.0 % for rigid and corrected, respectively. Furthermore, when using sparse-surface data (i.e., as is available in an open surgical procedure), the deformation correction improved registration error by 38.3% and volumetric overlap from 64.8 ± 12.4 % to 77.1 ± 8.0 % for rigid and corrected, respectively. We demonstrate, in an initial phantom experiment, enhanced navigation in image-guided hepatic ablation procedures and identify a clear multiphysics pathway toward a more comprehensive thermal dose planning and deformation-corrected guidance framework.
Collapse
Affiliation(s)
- Jarrod A Collins
- Vanderbilt University, Department of Biomedical Engineering, Nashville, Tennessee, United States
| | - Jon S Heiselman
- Vanderbilt University, Department of Biomedical Engineering, Nashville, Tennessee, United States
| | - Logan W Clements
- Vanderbilt University, Department of Biomedical Engineering, Nashville, Tennessee, United States
| | - Daniel B Brown
- Vanderbilt University Medical Center, Department of Radiology and Radiological Sciences, Nashville, Tennessee, United States
| | - Michael I Miga
- Vanderbilt University, Department of Biomedical Engineering, Nashville, Tennessee, United States.,Vanderbilt University Medical Center, Department of Radiology and Radiological Sciences, Nashville, Tennessee, United States
| |
Collapse
|
27
|
Almekkawy M, Chen J, Ellis MD, Haemmerich D, Holmes DR, Linte CA, Panescu D, Pearce J, Prakash P, Zderic V. Therapeutic Systems and Technologies: State-of-the-Art Applications, Opportunities, and Challenges. IEEE Rev Biomed Eng 2019; 13:325-339. [PMID: 30951478 PMCID: PMC7341980 DOI: 10.1109/rbme.2019.2908940] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In this review, we present current state-of-the-art developments and challenges in the areas of thermal therapy, ultrasound tomography, image-guided therapies, ocular drug delivery, and robotic devices in neurorehabilitation. Additionally, intellectual property and regulatory aspects pertaining to therapeutic systems and technologies are addressed.
Collapse
|
28
|
Hübner F, Schreiner R, Reimann C, Bazrafshan B, Kaltenbach B, Schüßler M, Jakoby R, Vogl TJ. Ex vivo validation of microwave thermal ablation simulation using different flow coefficients in the porcine liver. Med Eng Phys 2019; 66:56-64. [PMID: 30826254 DOI: 10.1016/j.medengphy.2019.02.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 02/06/2019] [Accepted: 02/11/2019] [Indexed: 12/25/2022]
Abstract
The purpose of the study was to validate the simulation model for a microwave thermal ablation in ex vivo liver tissue. The study aims to show that heat transfer due to the flow of tissue water during ablation in ex vivo tissue is not negligible. Ablation experiments were performed in ex vivo porcine liver with microwave powers of 60 W to 100 W. During the procedure, the temperature was recorded in the liver sample at different distances to the applicator using a fiber-optic thermometer. The position of the probes was identified by CT imaging and transferred to the simulation. The simulation of the heat distribution in the liver tissue was carried out with the software CST Studio Suite. The results of the simulation with different flow coefficients were compared with the results of the ablation experiments using the Bland-Altman analysis. The analysis showed that the flow coefficient of 90,000 W/(K*m3) can be considered as the most suitable value for clinically used powers. The presented simulation model can be used to calculate the temperature distribution for microwave ablation in ex vivo liver tissue.
Collapse
Affiliation(s)
- Frank Hübner
- Institute for Diagnostic and Interventional Radiology, Johann Wolfgang Goethe - University Hospital, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| | - Roland Schreiner
- Institute for Diagnostic and Interventional Radiology, Johann Wolfgang Goethe - University Hospital, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Carolin Reimann
- Institute for Microwave Engineering and Photonics, Technische Universität Darmstadt, Merckstrasse 25, 64283 Darmstadt, Germany
| | - Babak Bazrafshan
- Institute for Diagnostic and Interventional Radiology, Johann Wolfgang Goethe - University Hospital, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Benjamin Kaltenbach
- Institute for Diagnostic and Interventional Radiology, Johann Wolfgang Goethe - University Hospital, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Martin Schüßler
- Institute for Microwave Engineering and Photonics, Technische Universität Darmstadt, Merckstrasse 25, 64283 Darmstadt, Germany
| | - Rolf Jakoby
- Institute for Microwave Engineering and Photonics, Technische Universität Darmstadt, Merckstrasse 25, 64283 Darmstadt, Germany
| | - Thomas Josef Vogl
- Institute for Diagnostic and Interventional Radiology, Johann Wolfgang Goethe - University Hospital, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| |
Collapse
|
29
|
Ge M, Jiang H, Huang X, Zhou Y, Zhi D, Zhao G, Chen Y, Wang L, Qiu B. A multi-slot coaxial microwave antenna for liver tumor ablation. Phys Med Biol 2018; 63:175011. [PMID: 30102247 DOI: 10.1088/1361-6560/aad9c5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This paper presents a multi-slot coaxial antenna with a pi impedance matching network for liver tumor ablation. A multi-slot radiating probe was optimized by using the modified genetic algorithm to produce a near-spherical heating zone with significantly increased possibility of conformal treatment. A pi impedance matching network was designed to match the feeding transmission line and antenna without increasing antenna size. The reflection coefficient, ablation zone shape, specific absorption rate, and temperature were determined by a finite element electromagnetic simulation using COMSOL. Experimental validations were designed to evaluate the proposed antenna. Both simulation and experimental results show that the proposed antenna has the ability for liver tumor ablation, which offers faster heating rates in the heating center and more localized heating distribution than the conventional single-slot antenna.
Collapse
Affiliation(s)
- Mengke Ge
- Centers for Biomedical Engineering, Department of Electronic Science and Technology, University of Science and Technology of China, Hefei 230027, People's Republic of China. These authors contributed equally to this work and should be considered co-first authors
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Lopresto V, Strigari L, Farina L, Minosse S, Pinto R, D’Alessio D, Cassano B, Cavagnaro M. CT-based investigation of the contraction ofex vivotissue undergoing microwave thermal ablation. ACTA ACUST UNITED AC 2018. [DOI: 10.1088/1361-6560/aaaf07] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
31
|
Park CS, Liu C, Hall SK, Payne SJ. A thermoelastic deformation model of tissue contraction during thermal ablation. Int J Hyperthermia 2017; 34:221-228. [DOI: 10.1080/02656736.2017.1335441] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Chang Sub Park
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| | - Cong Liu
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| | - Sheldon K. Hall
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| | - Stephen J. Payne
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| |
Collapse
|
32
|
Cornelis FH, Durack JC, Kimm SY, Wimmer T, Coleman JA, Solomon SB, Srimathveeravalli G. A Comparative Study of Ablation Boundary Sharpness After Percutaneous Radiofrequency, Cryo-, Microwave, and Irreversible Electroporation Ablation in Normal Swine Liver and Kidneys. Cardiovasc Intervent Radiol 2017; 40:1600-1608. [PMID: 28516273 DOI: 10.1007/s00270-017-1692-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 05/03/2017] [Indexed: 02/08/2023]
Abstract
PURPOSE To compare ablation boundary sharpness after percutaneous radiofrequency ablation (RFA), cryoablation (CA), microwave ablation (MWA) and irreversible electroporation (IRE) ablation in normal swine liver and kidney. MATERIALS AND METHODS Percutaneous CT-guided RFA (n = 5), CA (n = 5), MWA (n = 5) and IRE (n = 5) were performed in the liver and kidney of four Yorkshire pigs. Parameters were chosen to produce ablations 2-3 cm in diameter with a single ablation probe. Contrast-enhanced CT imaging was performed 24 h after ablation, and animals were killed. Treated organs were removed and processed for histologic analysis with hematoxylin and eosin, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL). Three readers independently analyzed CT, H&E and TUNEL stained images of the ablation boundary to delineate regions of (1) viable cells, (2) complete necrosis or (3) mixture of viable and necrotic cells which was defined as the transition zone (TZ). The width of TZ was compared across the techniques and organs. RESULTS Ablations appeared as non-contrast-enhancing regions on CT with sharp transition to enhancing normal tissue. On TUNEL stained slides, the mean width (μm) of the TZ after MWA was 319 ± 157 in liver and 267 ± 95 in kidney, which was significantly lower than RFA (811 ± 477 and 938 ± 429); CA (452 ± 222 and 700 ± 563); and IRE (1319 ± 682 and 1570 ± 962) (all p < 0.01). No significant differences were observed between the organs. CONCLUSION Under similar conditions, the width of the TZ at the ablation boundary varies significantly between different ablation techniques.
Collapse
Affiliation(s)
- Francois H Cornelis
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Jeremy C Durack
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Simon Y Kimm
- Department of Urology, Palo Alto Medical Foundation, Palo Alto, CA, USA
| | | | - Jonathan A Coleman
- Division of Urology, Department of Surgery, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Stephen B Solomon
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Govindarajan Srimathveeravalli
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA. .,Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|