1
|
Huang S, Liu Q, Xie T. Chinese reference population: Open-source age-dependent computational phantoms of reference Chinese population. Med Phys 2025; 52:2688-2696. [PMID: 39917909 DOI: 10.1002/mp.17670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 12/05/2024] [Accepted: 01/16/2025] [Indexed: 04/06/2025] Open
Abstract
PURPOSE Computational phantoms have been widely used in radiation protection, radiotherapy, medical imaging, surgery navigation, and digital anatomy. However, current Chinese phantoms lack representation for all sensitive groups including adults, children, and pregnant women. This manuscript aims to address this gap by developing novel open-access computational phantoms representing the Chinese population. ACQUISITION AND VALIDATION METHODS The Chinese reference population (CRP) developed in this study includes 30 phantoms, available in both voxel and nonuniform rational B-spline (NURBS) formats, with ages in 0, 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 18 years, and adult male and female, as well as four pregnant women in early pregnancy, first trimester, second trimester, and third trimester. The development process involved image segmentation, NURBS reconstruction, and voxelization based on whole-body computed tomography (CT) scans of 22 original individual patients. Reference organ masses were directly obtained from the Chinese Reference Human Anatomical Physiological and Metabolic Data, as well as international commission on radiological protection (ICRP) Publication 89. DATA FORMAT AND USAGE NOTES Voxelized phantoms are accessible in DAT format as raw data, which can be opened by medical imaging softwares such as a medical image data analysis tool (AMIDE). Excel files contain descriptive information (ages, genders, phantom sizes, voxel sizes, organ masses, densities) and organ absorbed doses on18 F - F D G $^{18}F-FDG$ application. All data in this study can be obtained from our official website (https://alldigitaltwins.com) and Zenodo (https://zenodo.org/records/14268606). POTENTIAL APPLICATIONS This work offers a collection of open-source age-dependent phantoms featuring anatomical data specific to the Chinese population. Researchers can utilize this dataset to modify and adapt the phantoms for specific applications, fostering innovation and progress, and enhancing accuracy and applicability in various fields.
Collapse
Affiliation(s)
- Siyi Huang
- Institute of Radiation Medicine, Fudan University, Shanghai, China
| | - Qian Liu
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Haikou, China
| | - Tianwu Xie
- Institute of Radiation Medicine, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Pommranz CM, Elmoujarkach EA, Lan W, Cabello J, Linder PM, Vo HP, Mannheim JG, Santangelo A, Conti M, la Fougère C, Rafecas M, Schmidt FP. A digital twin of the Biograph Vision Quadra long axial field of view PET/CT: Monte Carlo simulation and image reconstruction framework. EJNMMI Phys 2025; 12:31. [PMID: 40163262 PMCID: PMC11958866 DOI: 10.1186/s40658-025-00738-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 02/28/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND The high sensitivity and axial coverage of large axial field of view (LAFOV) PET scanners have an unmet potential for total-body PET research. Despite these technological advances, inherent challenges to PET scans such as patient motion persist. To provide simulation-derived ground truth information, we developed a digital replica of the Biograph Vision Quadra LAFOV PET/CT scanner closely mimicking real event processing and image reconstruction. MATERIAL AND METHODS The framework uses a GATE model in combination with vendor-specific software prototypes for event processing and image reconstruction (e7 tools, Siemens Healthineers). The framework was validated against experimental measurements following the NEMA NU-2 2018 standard. In addition, patient-like simulations were performed with the XCAT phantom, including respiratory motion and modeled lesions of 5, 10, 20 mm size, to assess the impact of motion artefacts on PET images using a motion-free reference. RESULTS The simulation framework demonstrated high accuracy in replicating scanner performance in terms of image quality, contrast recovery (37 mm sphere: 86.5% and 85.5%; 28 mm: 82.6% and 82.4%; 22 mm: 78.8% and 77.7%; 17 mm: 74.9% and 74.6%; 13 mm: 67.0% and 67.9%; 10 mm: 55.5% and 64.3%), image noise (CV of 7.5% and 7.7%) and sensitivity (174.6 cps/kBq and 175.3 cps/kBq) for the simulation and experimental data, respectively. High agreement was found for the spatial resolution with a difference of 0.4 ± 0.3 mm and the NECR aligned well with a maximum deviation of 9%, particularly in the clinical activity range below 10 kBq/mL. Motion induced artefacts resulted in a quantification error at lesion level between - 12.3% and - 45.1%. CONCLUSION The experimentally validated digital twin of the Biograph Vision Quadra facilitates detailed studies of realistic patient scenarios while offering unprecedented opportunities for motion correction, dosimetry, AI training, and imaging protocol optimization.
Collapse
Affiliation(s)
- Christian M Pommranz
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Roentgenweg 13, 72076, Tuebingen, Germany.
- Institute for Astronomy and Astrophysics, Eberhard Karls University Tuebingen, Sand 1, 72076, Tuebingen, Germany.
| | | | - Wenhong Lan
- Department of Nuclear Medicine and Clinical Molecular Imaging, University Hospital Tuebingen, Tuebingen, Germany
| | - Jorge Cabello
- Siemens Medical Solutions USA, Inc., Knoxville, TN, USA
| | - Pia M Linder
- Department of Nuclear Medicine and Clinical Molecular Imaging, University Hospital Tuebingen, Tuebingen, Germany
| | - Hong Phuc Vo
- Institute of Medical Engineering, University of Lübeck, Lübeck, Germany
| | - Julia G Mannheim
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Roentgenweg 13, 72076, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, Tuebingen, Germany
| | - Andrea Santangelo
- Institute for Astronomy and Astrophysics, Eberhard Karls University Tuebingen, Sand 1, 72076, Tuebingen, Germany
| | | | - Christian la Fougère
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, Tuebingen, Germany
- Department of Nuclear Medicine and Clinical Molecular Imaging, University Hospital Tuebingen, Tuebingen, Germany
| | - Magdalena Rafecas
- Institute of Medical Engineering, University of Lübeck, Lübeck, Germany
| | - Fabian P Schmidt
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Roentgenweg 13, 72076, Tuebingen, Germany
- Department of Nuclear Medicine and Clinical Molecular Imaging, University Hospital Tuebingen, Tuebingen, Germany
| |
Collapse
|
3
|
Zhang X, Xie J, Tan Y, Su T, Zhu J, Cui H, Xia D, Zheng H, Liang D, Ge Y. Model-based CBCT scatter correction with dual-layer flat-panel detector. Med Phys 2025; 52:1500-1514. [PMID: 39688364 DOI: 10.1002/mp.17567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/27/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Recently, the popularity of dual-layer flat-panel detector (DL-FPD) based dual-energy cone-beam CT (CBCT) imaging has been increasing. However, the image quality of dual-energy CBCT remains constrained by the Compton scattered x-ray photons. PURPOSE The objective of this study is to develop a novel scatter correction method, named e-Grid, for DL-FPD based CBCT imaging. METHODS In DL-FPD, a certain portion of the x-ray photons (mainly low-energy [LE] primary and scattered photons) passing through the object are captured by the top detector layer, while the remaining x-ray photons (mainly high-energy [HE] primary and scattered photons) are collected by the bottom detector layer. A linear signal model was approximated between the HE primary and scatter signals and the LE primary and scatter signals. Physical calibration experiments were performed on cone beam and fan beam to validate the aforementioned signal model via linear fittings. Monte Carlo (MC) simulations of a 10 cm diameter water phantom were conducted on GATE at first to verify this newly developed scatter estimation method. In addition, physical validation experiments of water phantom, head phantom, and abdominal phantom were carried out on a DL-FPD based benchtop CBCT imaging system. The image non-uniformity (NU), which represents the relative difference between the center and the edges of CT images, was measured to quantify the reduction of image shading artifacts. Finally, multi-material decomposition was conducted. RESULTS The MC results, CBCT images and line profiles, showed that the newly proposed e-Grid approach was able to accurately predict the scatter distributions in both shape and intensity. As a result, uniform CBCT images that are close to the scatter artifact-free reference images can be obtained. Moreover, the physical experiments demonstrated that the e-Grid method can greatly reduce the shading artifacts in both LE and HE CBCT images acquired from DL-FPD. Results also demonstrated that the e-Grid method is effective for varied objects that having different diameters (from 10 to 28 cm). Quantitatively, the NU value was reduced by over 77% in the LE CBCT image and by over 66% in the HE CBCT image on average. As a consequence, the accuracy of the decomposed multi-material bases, iodine and gadolinium, was substantially improved. CONCLUSIONS The Compton scattered x-ray signals could be significantly reduced using the proposed e-Grid method for DL-FPD based dual-energy CBCT imaging systems.
Collapse
Affiliation(s)
- Xin Zhang
- Research Center for Advanced Detection Materials and Medical Imaging Devices, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jixiong Xie
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems of Ministry of Education of China, College of Power Engineering, Chongqing University, Chongqing, China
| | - Yuhang Tan
- Research Center for Advanced Detection Materials and Medical Imaging Devices, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Ting Su
- Research Center for Advanced Detection Materials and Medical Imaging Devices, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Jiongtao Zhu
- Research Center for Advanced Detection Materials and Medical Imaging Devices, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Han Cui
- Research Center for Advanced Detection Materials and Medical Imaging Devices, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Dongmei Xia
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems of Ministry of Education of China, College of Power Engineering, Chongqing University, Chongqing, China
| | - Hairong Zheng
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
- Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, Guangdong, China
- National Innovation Center for Advanced Medical Devices, Shenzhen, Guangdong, China
| | - Dong Liang
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
- Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Yongshuai Ge
- Research Center for Advanced Detection Materials and Medical Imaging Devices, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
- Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, Guangdong, China
- National Innovation Center for Advanced Medical Devices, Shenzhen, Guangdong, China
| |
Collapse
|
4
|
Tiwari A, Andriotty M, Agasthya G, Sunderland JJ, Osborne DR, Kapadia AJ. Dosimetric and biological impact of activity extravasation of radiopharmaceuticals in PET imaging. Med Phys 2025; 52:801-813. [PMID: 39565933 DOI: 10.1002/mp.17520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 10/12/2024] [Accepted: 11/04/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND The increasing use of nuclear medicine and PET imaging has intensified scrutiny of radiotracer extravasation. To our knowledge, this topic is understudied but holds great potential for enhancing our understanding of extravasation in clinical PET imaging. PURPOSE This work aims to (1) quantify the absorbed doses from radiotracer extravasation in PET imaging, both locally at the site of extravasation and with the extravasation location as a source of exposure to bodily organs and (2) assess the biological ramifications within the injection site at the cellular level. METHODS A radiation dosimetry simulation was performed using a whole-body 4D Extended Cardiac-Torso (XCAT) phantom embedded in the GATE Monte Carlo platform. A 10-mCi dose of 18F-FDG was chosen to simulate a typical clinical PET scan scenario, with 10% of the activity extravasated in the antecubital fossa of the right arm of the phantom. The extravasation volume was modeled as a 5.5 mL rectangle in the hypodermal layer of skin. Absorbed dose contributions were calculated for the first two half-lives, assuming biological clearance thereafter. Dose calculations were performed as absorbed doses at the organ and skin levels. Energy deposition was simulated both at the local extravasation site and in multiple organs of interest and converted to absorbed doses based on their respective masses. Each simulation was repeated ten times to estimate Monte Carlo uncertainties. Biological impacts on cells within the extravasated volume were evaluated by randomizing cells and exposing them to a uniform radiation source of 18F and 68Ga. Particle types, their energies, and direction cosines were recorded in phase space files using a separate Geant4 simulation to characterize their entry into the nucleus of the cellular volume. Subsequently, the phase space files were imported into the TOPAS-nBio simulation to assess the extent of DNA damage, including double-strand breaks (DSBs) and single-strand breaks (SSBs). RESULTS Organ-level dosimetric estimations are presented for 18F and 68Ga radionuclides in various organs of interest. With 10% extravasation, the hypodermal layer of the skin received the highest absorbed dose of 1.32 ± 0.01 Gy for 18F and 0.99 ± 0.01 Gy for 68Ga. The epidermal and dermal layers received absorbed doses of 0.07 ± 0.01 Gy and 0.13 ± 0.01 Gy for 18F, and 0.14 ± 0.01 Gy and 0.29 ± 0.01 Gy for 68Ga, respectively. In the extravasated volume, 18F caused an average absorbed dose per nucleus of 0.17 ± 0.01 Gy, estimated to result in 10.58 ± 0.50 DSBs and 268.11 ± 12.43 SSBs per nucleus. For 68Ga, the absorbed dose per nucleus was 0.11 ± 0.01 Gy, leading to an estimated 6.49 ± 0.34 DSBs and 161.24 ± 8.12 SSBs per nucleus. Absorbed doses in other organs were on the order of micro-gray (µGy). CONCLUSION The likelihood of epidermal erythema resulting from extravasation during PET imaging is low, as the simulated absorbed doses to the epidermis remain below the thresholds that trigger such effects. Moreover, the organ-level absorbed doses were found to be clinically insignificant across various simulated organs. The minimal DNA damage at the extravasation site suggests that long-term harm, such as radiation-induced carcinogenesis, is highly unlikely.
Collapse
Affiliation(s)
- Ashok Tiwari
- Advanced Computing for Health Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Matthew Andriotty
- Department of Nuclear & Radiological Engineering & Medical Physics, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Greeshma Agasthya
- Department of Nuclear & Radiological Engineering & Medical Physics, Georgia Institute of Technology, Atlanta, Georgia, USA
| | | | - Dustin R Osborne
- Department of Radiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Anuj J Kapadia
- Advanced Computing for Health Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| |
Collapse
|
5
|
Lequertier V, Testa É, Maxim V. CoReSi: a GPU-based software for Compton camera reconstruction and simulation in collimator-free SPECT. Phys Med Biol 2025; 70:045001. [PMID: 39813793 DOI: 10.1088/1361-6560/adaacc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/15/2025] [Indexed: 01/18/2025]
Abstract
Objective.Compton cameras (CCs) are imaging devices that may improve observation of sources ofγphotons. The images are obtained by solving a difficult inverse problem. We present CoReSi, a Compton reconstruction and simulation software implemented in Python and powered by PyTorch to leverage multi-threading and to easily interface with image processing and deep learning algorithms. The code is mainly dedicated to medical imaging and near-field experiments where images are reconstructed in 3D.Approach.The code was developed over several years in C++, with the initial version being proprietary. We have since redesigned and translated it into Python, adding new features to improve its adaptability and performances. This paper reviews the literature on CC mathematical models, explains the implementation strategies we have adopted and presents the features of CoReSi.Main results.The code includes state-of-the-art mathematical models from the literature, from the simplest, which allow limited knowledge of the sources, to more sophisticated ones with a finer description of the physics involved. It offers flexibility in defining the geometry of the CC and the detector materials. Several identical cameras can be considered at arbitrary positions in space. The main functions of the code are dedicated to the computation of the system matrix, leading to the forward and backward projector operators. These are the cornerstones of any image reconstruction algorithm. A simplified Monte Carlo data simulation function is provided to facilitate code development and fast prototyping.Significance.As far as we know, there is no open source code for CC reconstruction, except for MEGAlib, which is mainly dedicated to astronomy applications. This code aims to facilitate research as more and more teams from different communities such as applied mathematics, electrical engineering, physics, medical physics get involved in CC studies. Implementation with PyTorch will also facilitate interfacing with deep learning algorithms.
Collapse
Affiliation(s)
- Vincent Lequertier
- INSA-Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, CREATIS UMR 5220, U1294, F-69100 Lyon, France
| | - Étienne Testa
- Université Claude Bernard Lyon 1, CNRS/IN2P3, IP2I Lyon, UMR 5822, Villeurbanne, F-69100, France
| | - Voichiţa Maxim
- INSA-Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, CREATIS UMR 5220, U1294, F-69100 Lyon, France
| |
Collapse
|
6
|
Limbaco ME, Toledo FU, Tondo RMV, Nawang SA. Modelling and validation of a 6 MV compact linear accelerator via Monte Carlo simulation using Geant4 Application for Tomographic Emission (GATE). Biomed Phys Eng Express 2025; 11:025018. [PMID: 39808843 DOI: 10.1088/2057-1976/ada9ef] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 01/14/2025] [Indexed: 01/16/2025]
Abstract
Objective. To accurately model and validate the 6 MV Elekta Compact linear accelerator using the Geant4 Application for Tomographic Emission (GATE). In particular, this study focuses on the precise calibration and validation of critical parameters, including jaw collimator positioning, electron source nominal energy, flattening filter geometry, and electron source spot size, which are often not provided in technical documentation.Methods. Simulation of the Elekta CompactTM6 MV linear accelerator was performed using the Geant4 Application for Tomographic Emission (GATE) v.9.1. A 50 cm × 50 cm × 50 cm water phantom was irradiated with a source-to-surface distance of 100 cm. Percentage Depth Dose Profile (PDD) and Lateral Dose Profile (Crossplane and Inplane) were assessed as reference dose measurements. The half-length field difference (FHLD) method was introduced to optimize the jaw collimator setup. Gamma index analysis was used to quantitatively assess the accuracy of the simulated dosimetry data in relation to the actual dose measurements.Results. Crucial parameters of the Linac Head have been successfully optimized. The validation achieved Gamma-Index acceptance rates of 97.93% for the Depth Dose profile, 100% for the Crossplane (X) Dose Profile, and 93.98% for the Inplane (Y) Dose Profile, all meeting the 1%/1 mm Gamma-Index criteria.Conclusion. The simulation and calibration of the Elekta Compact Linac have achieved a reliable model with high fidelity in dosimetry calculations which could pave the way for the future development and application of new techniques using Elekta CompactTMLinear Accelerator.
Collapse
Affiliation(s)
- Maynard E Limbaco
- Department of Physics, Mindanao State University-Iligan Institute of Technology, Iligan City, 9200, Philippines
- Mindanao Radiation Physics Center, Premier Research Institute of Science and Mathematics (PRISM), Mindanao State University-Iligan Institute of Technology, Iligan City, 9200, Philippines
| | - Franklin U Toledo
- Cagayan de Oro Polymedic Cancer Center, Cagayan de Oro Polymedic Medical Plaza, Kauswagan, National Highway, Cagayan de Oro City, 9000, Philippines
| | - Renna Mae V Tondo
- Department of Physics, Mindanao State University-Iligan Institute of Technology, Iligan City, 9200, Philippines
- Mindanao Radiation Physics Center, Premier Research Institute of Science and Mathematics (PRISM), Mindanao State University-Iligan Institute of Technology, Iligan City, 9200, Philippines
| | - Salasa A Nawang
- Department of Physics, Mindanao State University-Iligan Institute of Technology, Iligan City, 9200, Philippines
- Mindanao Radiation Physics Center, Premier Research Institute of Science and Mathematics (PRISM), Mindanao State University-Iligan Institute of Technology, Iligan City, 9200, Philippines
| |
Collapse
|
7
|
Cheng Z, Chen P, Yan J. A review of state-of-the-art resolution improvement techniques in SPECT imaging. EJNMMI Phys 2025; 12:9. [PMID: 39883257 PMCID: PMC11782768 DOI: 10.1186/s40658-025-00724-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 01/21/2025] [Indexed: 01/31/2025] Open
Abstract
Single photon emission computed tomography (SPECT), a technique capable of capturing functional and molecular information, has been widely adopted in theranostics applications across various fields, including cardiology, neurology, and oncology. The spatial resolution of SPECT imaging is relatively poor, which poses a significant limitation, especially the visualization of small lesions. The main factors affecting the limited spatial resolution of SPECT include projection sampling techniques, hardware and software. Both hardware and software innovations have contributed substantially to improved SPECT imaging quality. The present review provides an overview of state-of-the-art methods for improving spatial resolution in clinical and pre-clinical SPECT systems. It delves into advancements in detector design and modifications, projection sampling techniques, traditional reconstruction algorithm development and optimization, and the emerging role of deep learning. Hardware enhancements can result in SPECT systems that are both lighter and more compact, while also improving spatial resolution. Software innovations can mitigate the costs of hardware modifications. This survey offers a thorough overview of the rapid advancements in resolution enhancement techniques within the field of SPECT, with the objective of identifying the most recent trends. This is anticipated to facilitate further optimization and improvement of clinical systems, enabling the visualization of small lesions in the early stages of tumor detection, thereby enhancing accurate localization and facilitating both diagnostic imaging and radionuclide therapy, ultimately benefiting both clinicians and patients.
Collapse
Affiliation(s)
- Zhibiao Cheng
- School of Information and Communication Engineering, North University of China, Taiyuan, 030051, China.
- Shanxi Key Laboratory of Intelligent Detection Technology and Equipment, North University of China, Taiyuan, 030051, China.
| | - Ping Chen
- School of Information and Communication Engineering, North University of China, Taiyuan, 030051, China.
- Shanxi Key Laboratory of Intelligent Detection Technology and Equipment, North University of China, Taiyuan, 030051, China.
| | - Jianhua Yan
- Department of Nuclear Medicine, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| |
Collapse
|
8
|
Baran J, Krzemien W, Parzych S, Raczyński L, Bała M, Coussat A, Chug N, Czerwiński E, Curceanu CO, Dadgar M, Dulski K, Eliyan K, Gajewski J, Gajos A, Hiesmayr BC, Kacprzak K, Kapłon Ł, Klimaszewski K, Korcyl G, Kozik T, Kumar D, Niedźwiecki S, Panek D, Perez Del Rio E, Ruciński A, Sharma S, Shivani, Shopa RY, Skurzok M, Stępień E, Tayefiardebili F, Tayefiardebili K, Wiślicki W, Moskal P. Realistic total-body J-PET geometry optimization: Monte Carlo study. Med Phys 2025. [PMID: 39853786 DOI: 10.1002/mp.17627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/26/2024] [Accepted: 12/28/2024] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND Total-body (TB) Positron Emission Tomography (PET) is one of the most promising medical diagnostics modalities, opening new perspectives for personalized medicine, low-dose imaging, multi-organ dynamic imaging or kinetic modeling. The high sensitivity provided by total-body technology can be advantageous for novel tomography methods like positronium imaging, demanding the registration of triple coincidences. Currently, state-of-the-art PET scanners use inorganic scintillators. However, the high acquisition cost reduces the accessibility of TB PET technology. Several efforts are ongoing to mitigate this problem. Among the alternatives, the Jagiellonian PET (J-PET) technology, based on axially arranged plastic scintillator strips, offers a low-cost alternative solution for TB PET. PURPOSE The work aimed to compare five total-body J-PET geometries with plastic scintillators suitable for multi-organ and positronium tomography as a possible next-generation J-PET scanner design. METHODS We present comparative studies of performance characteristics of the cost-effective total-body PET scanners using J-PET technology. We investigated in silico five TB scanner geometries, varying the number of rings, scanner radii, and other parameters. Monte Carlo simulations of the anthropomorphic XCAT phantom, the extended 2-m sensitivity line source and positronium sensitivity phantoms were used to assess the performance of the geometries. Two hot spheres were placed in the lungs and in the liver of the XCAT phantom to mimic the pathological changes. We compared the sensitivity profiles and performed quantitative analysis of the reconstructed images by using quality metrics such as contrast recovery coefficient, background variability and root mean squared error. The studies are complemented by the determination of sensitivity for the positronium lifetime tomography and the relative cost analysis of the studied setups. RESULTS The analysis of the reconstructed XCAT images reveals the superiority of the seven-ring scanners over the three-ring setups. However, the three-ring scanners would be approximately 2-3 times cheaper. The peak sensitivity values for two-gamma vary from 20 to 34 cps/kBq and are dominated by the differences in geometrical acceptance of the scanners. The sensitivity curves for the positronium tomography have a similar shape to the two-gamma sensitivity profiles. The peak values are lower compared to the two-gamma cases, from about 20-28 times, with a maximum value of 1.66 cps/kBq. This can be contrasted with the 50-cm one-layer J-PET modular scanner used to perform the first in-vivo positronium imaging with a sensitivity of 0.06 cps/kBq. CONCLUSIONS The results show the feasibility of multi-organ imaging of all the systems to be considered for the next generation of TB J-PET designs. Among the scanner parameters, the most important ones are related to the axial field-of-view coverage. The two-gamma sensitivity and XCAT image reconstruction analyzes show the advantage of seven-ring scanners. However, the cost of the scintillator materials and SiPMs is more than two times higher for the longer modalities compared to the three-ring solutions. Nevertheless, the relative cost for all the scanners is about 10-4 times lower compared to the cost of the uExplorer. These properties coupled together with J-PET cost-effectiveness and triggerless acquisition mode enabling three-gamma positronium imaging, make the J-PET technology an attractive solution for broad application in clinics.
Collapse
Affiliation(s)
- Jakub Baran
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
- Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Wojciech Krzemien
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
- Center for Theranostics, Jagiellonian University, Kraków, Poland
- High Energy Physics Division, National Centre for Nuclear Research, Otwock-Świerk, Poland
| | - Szymon Parzych
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
- Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Lech Raczyński
- Department of Complex Systems, National Centre for Nuclear Research, Otwock-Świerk, Poland
| | - Mateusz Bała
- Department of Complex Systems, National Centre for Nuclear Research, Otwock-Świerk, Poland
| | - Aurélien Coussat
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
- Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Neha Chug
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
- Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Eryk Czerwiński
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
- Center for Theranostics, Jagiellonian University, Kraków, Poland
| | | | - Meysam Dadgar
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
- Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Kamil Dulski
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
- Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Kavya Eliyan
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
- Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Jan Gajewski
- Cyclotron Centre Bronowice, Institute of Nuclear Physics Polish Academy of Sciences, Kraków, Poland
| | - Aleksander Gajos
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
- Center for Theranostics, Jagiellonian University, Kraków, Poland
| | | | - Krzysztof Kacprzak
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
- Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Łukasz Kapłon
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
- Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Konrad Klimaszewski
- Department of Complex Systems, National Centre for Nuclear Research, Otwock-Świerk, Poland
| | - Grzegorz Korcyl
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
- Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Tomasz Kozik
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
- Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Deepak Kumar
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
- Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Szymon Niedźwiecki
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
- Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Dominik Panek
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
- Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Elena Perez Del Rio
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
- Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Antoni Ruciński
- Cyclotron Centre Bronowice, Institute of Nuclear Physics Polish Academy of Sciences, Kraków, Poland
| | - Sushil Sharma
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
- Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Shivani
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
- Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Roman Y Shopa
- Department of Complex Systems, National Centre for Nuclear Research, Otwock-Świerk, Poland
| | - Magdalena Skurzok
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
- Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Ewa Stępień
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
- Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Faranak Tayefiardebili
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
- Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Keyvan Tayefiardebili
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
- Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Wojciech Wiślicki
- Department of Complex Systems, National Centre for Nuclear Research, Otwock-Świerk, Poland
| | - Paweł Moskal
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
- Center for Theranostics, Jagiellonian University, Kraków, Poland
| |
Collapse
|
9
|
Lee H. Monte Carlo methods for medical imaging research. Biomed Eng Lett 2024; 14:1195-1205. [PMID: 39465109 PMCID: PMC11502642 DOI: 10.1007/s13534-024-00423-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/24/2024] [Accepted: 08/26/2024] [Indexed: 10/29/2024] Open
Abstract
In radiation-based medical imaging research, computational modeling methods are used to design and validate imaging systems and post-processing algorithms. Monte Carlo methods are widely used for the computational modeling as they can model the systems accurately and intuitively by sampling interactions between particles and imaging subject with known probability distributions. This article reviews the physics behind Monte Carlo methods, their applications in medical imaging, and available MC codes for medical imaging research. Additionally, potential research areas related to Monte Carlo for medical imaging are discussed.
Collapse
Affiliation(s)
- Hoyeon Lee
- Department of Diagnostic Radiology and Centre of Cancer Medicine, University of Hong Kong, Hong Kong, China
| |
Collapse
|
10
|
Saed M, Mahani H, Sadremomtaz A. Characterization of accurate 3D collimator-detector response function for single- and multi-lofthole collimated SPECT cameras. Jpn J Radiol 2024; 42:1330-1341. [PMID: 38954193 DOI: 10.1007/s11604-024-01624-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
PURPOSE Collimator-detector response function (CDRF) of a SPECT scanner refers to the image generated from a point source of activity. This research aims to characterize the CDRF of a breast-dedicated SPECT imager equipped with a lofthole collimator using GATE Monte Carlo simulation. MATERIALS AND METHODS To do so, a cylindrical multi-lofthole collimation system with lofthole apertures dedicated to breast imaging was modeled using the GATE Monte Carlo simulator. The dependency of the CDRF on the source-to-collimator distance of a single-lofthole as well as 8-lofthole collimations was assessed and then compared. In addition, the 3D-sensitivity map of the 8-lofthole collimation was derived. Finally, fair comparisons were conducted between the response of the 8-lofthole collimator and that of an 8-pinhole and also existing analytical derivations. In all cases, a data acquisition period of 5.0 min with an in-air 99mTc point source was considered. RESULTS For the single-lofthole collimator, 4.5 times increasing the magnification factor leads to a 16- and twofold improvement in the sensitivity and spatial resolution, respectively. In the single-lofthole collimator, the resolution and sensitivity are degraded as the source-to-aperture distance increases. For the cylindrical 8-lofthole collimator, the findings confirm that CDRF strongly depends on source-to-aperture distance and angle of photon incidence. For a 30 mm in-plane offset point, a 25% increase in sensitivity is observed compared to that of the center of the FOV. Increasing the angle from 0∘ to 34∘ results in a 50% reduction in sensitivity. Furthermore, the findings illustrate that spatial resolution follows a quadratic function as10 - 3 d 2 + 2 × 10 - 4 d + R 0 where d is an offset along the x-, y-, and z-axis, and R0 is the spatial resolution at the center of the FOV. CONCLUSION In conclusion, both spatial resolution and sensitivity of the lofthole collimation are considerably angle- and offset-dependent within the FOV of single- and multi-lofthole collimated SPECT imagers.
Collapse
Affiliation(s)
- Maryam Saed
- Department of Physics, Faculty of Science, University of Guilan, 41635-1914 Rasht, Iran
| | - Hojjat Mahani
- Radiation Applications Research School, Nuclear Science and Technology Research Institute, 14395-836 Tehran, Iran.
| | - Alireza Sadremomtaz
- Department of Physics, Faculty of Science, University of Guilan, 41635-1914 Rasht, Iran
| |
Collapse
|
11
|
Ahmadi Ganjeh Z, Zapien-Campos B, Traneus E, Both S, Dendooven P. RayStation/GATE Monte Carlo simulation framework for verification of proton therapy based on the 12N imaging. Phys Med Biol 2024; 69:195007. [PMID: 39299264 DOI: 10.1088/1361-6560/ad7d5c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/19/2024] [Indexed: 09/22/2024]
Abstract
Objective.12N, having a half-life of 11 ms, is a highly effective positron emitter that can potentially provide near real-time feedback in proton therapy. There is currently no framework for comparing and validating positron emission imaging of12N. This work describes the development and validation of a Monte Carlo (MC) framework to calculate the images of12N, as well as long-lived isotopes, originating from activation by protons.Approach. The available dual-panel Biograph mCT PET scanner was modeled in GATE and validated by comparing the simulated sensitivity map with the measured one. The distributions of12N and long-lived isotopes were calculated by RayStation and used as the input of GATE simulations. The RayStation/GATE combination was verified using proton beam irradiations of homogeneous phantoms. A 120 MeV pulsed pencil beam with 108protons per pulse was used. Two-dimensional images were created from the GATE output and compared with the images based on the measurements and the 1D longitudinal projection of the full 2D image was used to calculate the12N activity range.Main results. The simulated sensitivity in the center of the FoV (5.44%) agrees well with the measured one (5.41%). The simulated and measured 2D sensitivity maps agree in good detail. The relative difference between the measured and simulated positron activity range for both12N and long-lived isotopes is less than 1%. The broadening of the12N images relative to those of the longer-lived isotopes can be understood in terms of the large positron range of12N.Significance. We developed and validated a MC framework based on RayStation/GATE to support the in-beam PET method for quality assurance of proton therapy. The inclusion of the very short-lived isotope12N makes the framework useful for developing near real-time verification. This represents a significant step towards translating12N real-time in vivo verification to the clinic.
Collapse
Affiliation(s)
- Zahra Ahmadi Ganjeh
- Particle Therapy Research Center (PARTREC), Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Brian Zapien-Campos
- Particle Therapy Research Center (PARTREC), Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | - Stefan Both
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Peter Dendooven
- Particle Therapy Research Center (PARTREC), Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
12
|
Moskal P, Baran J, Bass S, Choiński J, Chug N, Curceanu C, Czerwiński E, Dadgar M, Das M, Dulski K, Eliyan KV, Fronczewska K, Gajos A, Kacprzak K, Kajetanowicz M, Kaplanoglu T, Kapłon Ł, Klimaszewski K, Kobylecka M, Korcyl G, Kozik T, Krzemień W, Kubat K, Kumar D, Kunikowska J, Mączewska J, Migdał W, Moskal G, Mryka W, Niedźwiecki S, Parzych S, Del Rio EP, Raczyński L, Sharma S, Shivani S, Shopa RY, Silarski M, Skurzok M, Tayefi F, Ardebili KT, Tanty P, Wiślicki W, Królicki L, Stępień EŁ. Positronium image of the human brain in vivo. SCIENCE ADVANCES 2024; 10:eadp2840. [PMID: 39270027 PMCID: PMC11397496 DOI: 10.1126/sciadv.adp2840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 08/09/2024] [Indexed: 09/15/2024]
Abstract
Positronium is abundantly produced within the molecular voids of a patient's body during positron emission tomography (PET). Its properties dynamically respond to the submolecular architecture of the tissue and the partial pressure of oxygen. Current PET systems record only two annihilation photons and cannot provide information about the positronium lifetime. This study presents the in vivo images of positronium lifetime in a human, for a patient with a glioblastoma brain tumor, by using the dedicated Jagiellonian PET system enabling simultaneous detection of annihilation photons and prompt gamma emitted by a radionuclide. The prompt gamma provides information on the time of positronium formation. The photons from positronium annihilation are used to reconstruct the place and time of its decay. In the presented case study, the determined positron and positronium lifetimes in glioblastoma cells are shorter than those in salivary glands and those in healthy brain tissues, indicating that positronium imaging could be used to diagnose disease in vivo.
Collapse
Affiliation(s)
- Paweł Moskal
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Jakub Baran
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Steven Bass
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
- Kitzbühel Centre for Physics, Kitzbühel, Austria
| | | | - Neha Chug
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Catalina Curceanu
- INFN, Laboratori Nazionali di Frascati, Via E. Fermi 40, 00044 Frascati, Italy
| | - Eryk Czerwiński
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Meysam Dadgar
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Manish Das
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Kamil Dulski
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Kavya V Eliyan
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Katarzyna Fronczewska
- Department of Nuclear Medicine, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland
| | - Aleksander Gajos
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Krzysztof Kacprzak
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Marcin Kajetanowicz
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Tevfik Kaplanoglu
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Łukasz Kapłon
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Konrad Klimaszewski
- Department of Complex Systems, National Centre for Nuclear Research, 05-400 Otwock-Świerk, Poland
| | - Małgorzata Kobylecka
- Department of Nuclear Medicine, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland
| | - Grzegorz Korcyl
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Tomasz Kozik
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Wojciech Krzemień
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
- High Energy Department, National Centre for Nuclear Research, 05-400 Otwock-Świerk, Poland
| | - Karol Kubat
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Deepak Kumar
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Jolanta Kunikowska
- Department of Nuclear Medicine, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland
| | - Joanna Mączewska
- Department of Nuclear Medicine, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland
| | - Wojciech Migdał
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Gabriel Moskal
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
- Department of Chemical Technology, Faculty of Chemistry of the Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Wiktor Mryka
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Szymon Niedźwiecki
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Szymon Parzych
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Elena P Del Rio
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Lech Raczyński
- Department of Complex Systems, National Centre for Nuclear Research, 05-400 Otwock-Świerk, Poland
| | - Sushil Sharma
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Shivani Shivani
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Roman Y Shopa
- Department of Complex Systems, National Centre for Nuclear Research, 05-400 Otwock-Świerk, Poland
| | - Michał Silarski
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Magdalena Skurzok
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Faranak Tayefi
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Keyvan T Ardebili
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Pooja Tanty
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Wojciech Wiślicki
- Department of Complex Systems, National Centre for Nuclear Research, 05-400 Otwock-Świerk, Poland
| | - Leszek Królicki
- Department of Nuclear Medicine, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland
| | - Ewa Ł Stępień
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| |
Collapse
|
13
|
Toussaint M, Loignon-Houle F, Auger É, Lapointe G, Dussault JP, Lecomte R. On the implementation of acollinearity in PET Monte Carlo simulations. Phys Med Biol 2024; 69:18NT01. [PMID: 39159667 DOI: 10.1088/1361-6560/ad70f1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 08/19/2024] [Indexed: 08/21/2024]
Abstract
Objective.Acollinearity of annihilation photons (APA) introduces spatial blur in positron emission tomography (PET) imaging. This phenomenon increases proportionally with the scanner diameter and it has been shown to follow a Gaussian distribution. This last statement can be interpreted in two ways: the magnitude of the acollinearity angle, or the angular deviation of annihilation photons from perfect collinearity. As the former constitutes the partial integral of the latter, a misinterpretation could have significant consequences on the resulting spatial blurring. Previous research investigating the impact of APA in PET imaging has assumed the Gaussian nature of its angular deviation, which is consistent with experimental results. However, a comprehensive analysis of several simulation software packages for PET data acquisition revealed that the magnitude of APA was implemented as a Gaussian distribution.Approach.We quantified the impact of this misinterpretation of APA by comparing simulations obtained with GATE, which is one of these simulation programs, to an in-house modification of GATE that models APA deviation as following a Gaussian distribution.Main results.We show that the APA misinterpretation not only alters the spatial blurring profile in image space, but also considerably underestimates the impact of APA on spatial resolution. For an ideal PET scanner with a diameter of 81 cm, the APA point source response simulated under the first interpretation has a cusp shape with 0.4 mm FWHM. This is significantly different from the expected Gaussian point source response of 2.1 mm FWHM reproduced under the second interpretation.Significance.Although this misinterpretation has been found in several PET simulation tools, it has had a limited impact on the simulated spatial resolution of current PET scanners due to its small magnitude relative to the other factors. However, the inaccuracy it introduces in estimating the overall spatial resolution of PET scanners will increase as the performance of newer devices improves.
Collapse
Affiliation(s)
- Maxime Toussaint
- Sherbrooke Molecular Imaging Center of CRCHUS and Department of Nuclear Medicine and Radiobiology, Sherbrooke, Québec, Canada
| | - Francis Loignon-Houle
- Instituto de Instrumentación para Imagen Molecular (I3M), Centro Mixto CSIC-Universitat Politécnica de Valéncia, Valencia, Spain
| | | | | | - Jean-Pierre Dussault
- Department of Computer Science, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Roger Lecomte
- Sherbrooke Molecular Imaging Center of CRCHUS and Department of Nuclear Medicine and Radiobiology, Sherbrooke, Québec, Canada
- IR&T Inc., Sherbrooke, Québec, Canada
| |
Collapse
|
14
|
Orehar M, Dolenec R, El Fakhri G, Korpar S, Križan P, Razdevšek G, Marin T, Žontar D, Pestotnik R. Design Optimisation of a Flat-Panel, Limited-Angle TOF-PET Scanner: A Simulation Study. Diagnostics (Basel) 2024; 14:1976. [PMID: 39272760 PMCID: PMC11487429 DOI: 10.3390/diagnostics14171976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/21/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
In time-of-flight positron emission tomography (TOF-PET), a coincidence time resolution (CTR) below 100 ps reduces the angular coverage requirements and, thus, the geometric constraints of the scanner design. Among other possibilities, this opens the possibility of using flat-panel PET detectors. Such a design would be more cost-accessible and compact and allow for a higher degree of modularity than a conventional ring scanner. However, achieving adequate CTR is a considerable challenge and requires improvements at every level of detection. Based on recent results in the ongoing development of optimised TOF-PET photodetectors and electronics, we expect that within a few years, a CTR of about 75 ps will be be achievable at the system level. In this work, flat-panel scanners with four panels and various design parameters were simulated, assessed and compared to a reference scanner based on the Siemens Biograph Vision using NEMA NU 2-2018 metrics. Point sources were also simulated, and a method for evaluating spatial resolution that is more appropriate for flat-panel geometry is presented. We also studied the effects of crystal readout strategies, comparing single-crystal and module readout levels. The results demonstrate that with a CTR below 100 ps, a flat-panel scanner can achieve image quality comparable to that of a reference clinical scanner, with considerable savings in scintillator material.
Collapse
Affiliation(s)
- Matic Orehar
- Faculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana, Slovenia; (R.D.); (P.K.)
| | - Rok Dolenec
- Faculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana, Slovenia; (R.D.); (P.K.)
- Jožef Stefan Institute, 1000 Ljubljana, Slovenia; (S.K.); (G.R.); (D.Ž.); (R.P.)
| | - Georges El Fakhri
- PET Center at Yale School of Medicine, New Haven, CT 06510, USA; (G.E.F.); (T.M.)
| | - Samo Korpar
- Jožef Stefan Institute, 1000 Ljubljana, Slovenia; (S.K.); (G.R.); (D.Ž.); (R.P.)
- Faculty of Chemistry and Chemical Engineering, University of Maribor, 2000 Maribor, Slovenia
| | - Peter Križan
- Faculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana, Slovenia; (R.D.); (P.K.)
- Jožef Stefan Institute, 1000 Ljubljana, Slovenia; (S.K.); (G.R.); (D.Ž.); (R.P.)
| | - Gašper Razdevšek
- Jožef Stefan Institute, 1000 Ljubljana, Slovenia; (S.K.); (G.R.); (D.Ž.); (R.P.)
| | - Thibault Marin
- PET Center at Yale School of Medicine, New Haven, CT 06510, USA; (G.E.F.); (T.M.)
| | - Dejan Žontar
- Jožef Stefan Institute, 1000 Ljubljana, Slovenia; (S.K.); (G.R.); (D.Ž.); (R.P.)
| | - Rok Pestotnik
- Jožef Stefan Institute, 1000 Ljubljana, Slovenia; (S.K.); (G.R.); (D.Ž.); (R.P.)
| |
Collapse
|
15
|
Li S, Hamdi M, Dutta K, Fraum TJ, Luo J, Laforest R, Shoghi KI. FAST (fast analytical simulator of tracer)-PET: an accurate and efficient PET analytical simulation tool. Phys Med Biol 2024; 69:165020. [PMID: 39047765 DOI: 10.1088/1361-6560/ad6743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/23/2024] [Indexed: 07/27/2024]
Abstract
Objective.Simulation of positron emission tomography (PET) images is an essential tool in the development and validation of quantitative imaging workflows and advanced image processing pipelines. Existing Monte Carlo or analytical PET simulators often compromise on either efficiency or accuracy. We aim to develop and validate fast analytical simulator of tracer (FAST)-PET, a novel analytical framework, to simulate PET images accurately and efficiently.Approach. FAST-PET simulates PET images by performing precise forward projection, scatter, and random estimation that match the scanner geometry and statistics. Although the same process should be applicable to other scanner models, we focus on the Siemens Biograph Vision-600 in this work. Calibration and validation of FAST-PET were performed through comparison with an experimental scan of a National Electrical Manufacturers Association (NEMA) Image Quality (IQ) phantom. Further validation was conducted between FAST-PET and Geant4 Application for Tomographic Emission (GATE) quantitatively in clinical image simulations in terms of intensity-based and texture-based features and task-based tumor segmentation.Main results.According to the NEMA IQ phantom simulation, FAST-PET's simulated images exhibited partial volume effects and noise levels comparable to experimental images, with a relative bias of the recovery coefficient RC within 10% for all spheres and a coefficient of variation for the background region within 6% across various acquisition times. FAST-PET generated clinical PET images exhibit high quantitative accuracy and texture comparable to GATE (correlation coefficients of all features over 0.95) but with ∼100-fold lower computation time. The tumor segmentation masks comparison between both methods exhibited significant overlap and shape similarity with high concordance CCC > 0.97 across measures.Significance.FAST-PET generated PET images with high quantitative accuracy comparable to GATE, making it ideal for applications requiring extensive PET image simulations such as virtual imaging trials, and the development and validation of image processing pipelines.
Collapse
Affiliation(s)
- Suya Li
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, United States of America
- Imaging Science Program, McKelvey School of Engineering, Washington University in St Louis, St Louis, MO, United States of America
| | - Mahdjoub Hamdi
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, United States of America
| | - Kaushik Dutta
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, United States of America
- Imaging Science Program, McKelvey School of Engineering, Washington University in St Louis, St Louis, MO, United States of America
| | - Tyler J Fraum
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, United States of America
| | - Jingqin Luo
- Department of Surgery, Washington University School of Medicine, St Louis, MO, United States of America
| | - Richard Laforest
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, United States of America
- Imaging Science Program, McKelvey School of Engineering, Washington University in St Louis, St Louis, MO, United States of America
| | - Kooresh I Shoghi
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, United States of America
- Imaging Science Program, McKelvey School of Engineering, Washington University in St Louis, St Louis, MO, United States of America
- Department of Biomedical Engineering, Washington University in St Louis, St Louis, MO, United States of America
| |
Collapse
|
16
|
Enríquez-Mier-Y-Terán FE, Zhou L, Meikle SR, Kyme AZ. A deep neural network for positioning and inter-crystal scatter identification in multiplexed PET detectors: a simulation study. Phys Med Biol 2024; 69:165017. [PMID: 39059440 DOI: 10.1088/1361-6560/ad682e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/26/2024] [Indexed: 07/28/2024]
Abstract
Objective.High-resolution positron emission tomography (PET) relies on the accurate positioning of annihilation photons impinging the crystal array. However, conventional positioning algorithms in light-sharing PET detectors are often limited due to edge effects and/or the absence of additional information for identifying and correcting scattering within the crystal array (known as inter-crystal scattering). This study explores the feasibility of deep neural network (DNN) techniques for more precise event positioning in finely segmented and highly multiplexed PET detectors with light-sharing.Approach.Initially, a Geant4 Application for Tomographic Emission (GATE) simulation was used to study the spatial and statistical properties of inter-crystal scatter (ICS) events in finely segmented LYSO PET detectors. Next, a DNN for crystal localisation was designed, trained and tested with light distributions of photoelectric (P) and Compton + photoelectric (CP) events simulated using optical GATE and an analytical method to speed up data generation. Using the statistical properties of ICS events, an energy-guided positioning algorithm was then built into the DNN. The positioning algorithm enables selection of the unique or first crystal of interaction in P and CP events, respectively. Performance of the DNN was compared with Anger logic using light distributions from simulated 511 keV point sources placed at different locations around a single PET detector module.Main results. The fraction of events forward and backward scattered in the LYSO detector was 0.54 and 0.46, respectively, whereas naïve application of the Klein-Nishina formulation predicts 70% forward scatter. Despite coarse photodetector data due to signal multiplexing, the DNN demonstrated a crystal classification accuracy of 90% for P events and 82% for CP events. For crystal positioning, the DNN outperformed Anger logic by at least 34% and 14% for P and CP events, respectively. Further improvement is somewhat constrained by the physics-specifically, the ratio of backward to forward scattering of gamma rays within the crystal array being close to 1. This prevents selecting the first crystal of interaction in CP events with a high degree of certainty.Significance.Light sharing and multiplexed PET detectors are common in high-resolution PET, yet their traditional positioning algorithms often underperform due to edge effects and/or the difficulty in correcting ICS events. Our study indicates that DNN-based event positioning has the potential to enhance 2D coincidence event positioning accuracy by nearly a factor of 3 compared to Anger logic. However, further improvements are difficult to foresee without additional information such as event timing.
Collapse
Affiliation(s)
- Francisco E Enríquez-Mier-Y-Terán
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, NSW 2006, Australia
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
| | - Luping Zhou
- School of Electrical and Information Engineering, The University of Sydney, Sydney, NSW 2008, Australia
| | - Steven R Meikle
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
- Sydney Imaging Core Research Facility, The University of Sydney, Sydney, NSW 2050, Australia
| | - Andre Z Kyme
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, NSW 2006, Australia
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
| |
Collapse
|
17
|
Salvadori J, Merlet A, Presles B, Cabello J, Su KH, Cochet A, Etxebeste A, Vrigneaud JM, Sarrut D. PET digitization chain for Monte Carlo simulation in GATE. Phys Med Biol 2024; 69:165013. [PMID: 39009009 DOI: 10.1088/1361-6560/ad638c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/15/2024] [Indexed: 07/17/2024]
Abstract
Objective. We introduce a versatile methodology for the accurate modelling of PET imaging systems via Monte Carlo simulations, using the Geant4 application for tomographic emission (GATE) platform. Accurate Monte Carlo modelling involves the incorporation of a complete analytical signal processing chain, called the digitizer in GATE, to emulate the different count rates encountered in actual positron emission tomography (PET) systems.Approach. The proposed approach consists of two steps: (1) modelling the digitizer to replicate the detection chain of real systems, covering all available parameters, whether publicly accessible or supplied by manufacturers; (2) estimating the remaining parameters, i.e. background noise level, detection efficiency, and pile-up, using optimisation techniques based on experimental single and prompt event rates. We show that this two-step optimisation reproduces the other experimental count rates (true, scatter, and random), without the need for additional adjustments. This method has been applied and validated with experimental data derived from the NEMA count losses test for three state-of-the-art SiPM-based time-of-flight (TOF)-PET systems: Philips Vereos, Siemens Biograph Vision 600 and GE Discovery MI 4-ring.Main results. The results show good agreement between experiments and simulations for the three PET systems, with absolute relative discrepancies below 3%, 6%, 6%, 7% and 12% for prompt, random, true, scatter and noise equivalent count rates, respectively, within the 0-10 kBq·ml-1activity concentration range typically observed in whole-body18F scans.Significance. Overall, the proposed digitizer optimisation method was shown to be effective in reproducing count rates and NECR for three of the latest generation SiPM-based TOF-PET imaging systems. The proposed methodology could be applied to other PET scanners.
Collapse
Affiliation(s)
- Julien Salvadori
- Groupement de Coopération Sanitaire, Institut de Cancérologie Strasbourg Europe (ICANS), Nuclear medicine, Strasbourg, France
| | - Antoine Merlet
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB), UMR CNRS 6302, University of Burgundy, Dijon, France
| | - Benoit Presles
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB), UMR CNRS 6302, University of Burgundy, Dijon, France
| | - Jorge Cabello
- Siemens Medical Solutions, USA, Inc., Knoxville, TN, United States of America
| | - Kuan-Hao Su
- GE Healthcare, Waukesha, WI, United States of America
| | - Alexandre Cochet
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB), UMR CNRS 6302, University of Burgundy, Dijon, France
- Department of Nuclear Medicine, Georges-François Leclerc Cancer Centre, Dijon, France
| | - Ane Etxebeste
- Université de Lyon, CREATIS; CNRS UMR5220, Inserm U1044, INSA-Lyon; Université Lyon 1, Centre Léon Bérard, France
| | - Jean-Marc Vrigneaud
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB), UMR CNRS 6302, University of Burgundy, Dijon, France
- Department of Nuclear Medicine, Georges-François Leclerc Cancer Centre, Dijon, France
| | - David Sarrut
- Université de Lyon, CREATIS; CNRS UMR5220, Inserm U1044, INSA-Lyon; Université Lyon 1, Centre Léon Bérard, France
| |
Collapse
|
18
|
Bayerlein R, Swarnakar V, Selfridge A, Spencer BA, Nardo L, Badawi RD. Cloud-based serverless computing enables accelerated monte carlo simulations for nuclear medicine imaging. Biomed Phys Eng Express 2024; 10:10.1088/2057-1976/ad5847. [PMID: 38876087 PMCID: PMC11254166 DOI: 10.1088/2057-1976/ad5847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/14/2024] [Indexed: 06/16/2024]
Abstract
Objective.This study investigates the potential of cloud-based serverless computing to accelerate Monte Carlo (MC) simulations for nuclear medicine imaging tasks. MC simulations can pose a high computational burden-even when executed on modern multi-core computing servers. Cloud computing allows simulation tasks to be highly parallelized and considerably accelerated.Approach.We investigate the computational performance of a cloud-based serverless MC simulation of radioactive decays for positron emission tomography imaging using Amazon Web Service (AWS) Lambda serverless computing platform for the first time in scientific literature. We provide a comparison of the computational performance of AWS to a modern on-premises multi-thread reconstruction server by measuring the execution times of the processes using between105and2·1010simulated decays. We deployed two popular MC simulation frameworks-SimSET and GATE-within the AWS computing environment. Containerized application images were used as a basis for an AWS Lambda function, and local (non-cloud) scripts were used to orchestrate the deployment of simulations. The task was broken down into smaller parallel runs, and launched on concurrently running AWS Lambda instances, and the results were postprocessed and downloaded via the Simple Storage Service.Main results.Our implementation of cloud-based MC simulations with SimSET outperforms local server-based computations by more than an order of magnitude. However, the GATE implementation creates more and larger output file sizes and reveals that the internet connection speed can become the primary bottleneck for data transfers. Simulating 109decays using SimSET is possible within 5 min and accrues computation costs of about $10 on AWS, whereas GATE would have to run in batches for more than 100 min at considerably higher costs.Significance.Adopting cloud-based serverless computing architecture in medical imaging research facilities can considerably improve processing times and overall workflow efficiency, with future research exploring additional enhancements through optimized configurations and computational methods.
Collapse
Affiliation(s)
- Reimund Bayerlein
- Department of Biomedical Engineering, University of California Davis, Davis, CA, USA
| | - Vivek Swarnakar
- Department of Radiology, University of California Davis, Davis, CA, USA
| | - Aaron Selfridge
- Department of Biomedical Engineering, University of California Davis, Davis, CA, USA
| | - Benjamin A Spencer
- Department of Biomedical Engineering, University of California Davis, Davis, CA, USA
- Department of Radiology, University of California Davis, Davis, CA, USA
| | - Lorenzo Nardo
- Department of Radiology, University of California Davis, Davis, CA, USA
| | - Ramsey D Badawi
- Department of Biomedical Engineering, University of California Davis, Davis, CA, USA
- Department of Radiology, University of California Davis, Davis, CA, USA
| |
Collapse
|
19
|
Cutrì E, Morel-Corlu E, Rolland Y, Saint-Jalmes H, Eliat PA, Garin E, Bezy-Wendling J. A microscopic model of the dose distribution in hepatocellular carcinoma after selective internal radiation therapy. Phys Med 2024; 122:103384. [PMID: 38824827 DOI: 10.1016/j.ejmp.2024.103384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 04/03/2024] [Accepted: 05/21/2024] [Indexed: 06/04/2024] Open
Abstract
The dosimetry evaluation for the selective internal radiation therapy is currently performed assuming a uniform activity distribution, which is in contrast with literature findings. A 2D microscopic model of the perfused liver was developed to evaluate the effect of two different 90Y microspheres distributions: i) homogeneous partitioning with the microspheres equally distributed in the perfused liver, and ii) tumor-clustered partitioning where the microspheres distribution is inferred from the patient specific images. METHODS Two subjects diagnosed with liver cancer were included in this study. For each subject, abdominal CT scans acquired prior to the SIRT and post-treatment 90Y positron emission tomography were considered. Two microspheres partitionings were simulated namely homogeneous and tumor-clustered partitioning. The homogeneous and tumor-clustered partitionings were derived starting from CT images. The microspheres radiation is simulated by means of Russell's law. RESULTS In homogenous simulations, the dose delivery is uniform in the whole liver while in the tumor-clustered simulations a heterogeneous distribution of the delivered dose is visible with higher values in the tumor regions. In addition, in the tumor-clustered simulation, the delivered dose is higher in the viable tumor than in the necrotic tumor, for all patients. In the tumor-clustered case, the dose delivered in the non-tumoral tissue (NTT) was considerably lower than in the perfused liver. CONCLUSIONS The model proposed here represents a proof-of-concept for personalized dosimetry assessment based on preoperative CT images.
Collapse
Affiliation(s)
- Elena Cutrì
- Univ Rennes, CLCC Eugène Marquis, Inserm, LTSI - UMR 1099, F-35000, Rennes, France; Université de technologie de Compiègne, CNRS, Biomechanics and Bioengineering, 60203 Compiègne Cedex, France; Inria, Saclay Ile-de-France, Palaiseau, 91120, France.
| | - Ewan Morel-Corlu
- Univ Rennes, CLCC Eugène Marquis, Inserm, LTSI - UMR 1099, F-35000, Rennes, France
| | - Yan Rolland
- Univ Rennes, CLCC Eugène Marquis, Inserm, LTSI - UMR 1099, F-35000, Rennes, France
| | - Hervé Saint-Jalmes
- Univ Rennes, CLCC Eugène Marquis, Inserm, LTSI - UMR 1099, F-35000, Rennes, France
| | - Pierre-Antoine Eliat
- INRAE, INSERM, Univ Rennes, Nutrition Metabolisms and Cancer, NuMeCan, St Gilles, Rennes, France; CNRS, INSERM, Biosit UAR 3480 US_S 018, PRISM, Univ Rennes, Rennes, France
| | - Etienne Garin
- INRAE, INSERM, Univ Rennes, Nutrition Metabolisms and Cancer, NuMeCan, St Gilles, Rennes, France; Department of Nuclear Medicine, Centre Eugène Marquis, Rennes, France
| | | |
Collapse
|
20
|
Huang B, Li T, Arino-Estrada G, Dulski K, Shopa RY, Moskal P, Stepien E, Qi J. SPLIT: Statistical Positronium Lifetime Image Reconstruction via Time-Thresholding. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:2148-2158. [PMID: 38261489 PMCID: PMC11409919 DOI: 10.1109/tmi.2024.3357659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Positron emission tomography (PET) is a widely utilized medical imaging modality that uses positron-emitting radiotracers to visualize biochemical processes in a living body. The spatiotemporal distribution of a radiotracer is estimated by detecting the coincidence photon pairs generated through positron annihilations. In human tissue, about 40% of the positrons form positroniums prior to the annihilation. The lifetime of these positroniums is influenced by the microenvironment in the tissue and could provide valuable information for better understanding of disease progression and treatment response. Currently, there are few methods available for reconstructing high-resolution lifetime images in practical applications. This paper presents an efficient statistical image reconstruction method for positronium lifetime imaging (PLI). We also analyze the random triple-coincidence events in PLI and propose a correction method for random events, which is essential for real applications. Both simulation and experimental studies demonstrate that the proposed method can produce lifetime images with high numerical accuracy, low variance, and resolution comparable to that of the activity images generated by a PET scanner with currently available time-of-flight resolution.
Collapse
|
21
|
Enríquez-Mier-Y-Terán FE, Kyme AZ, Angelis G, Meikle SR. Virtual cylindrical PET for efficient DOI image reconstruction with sub-millimetre resolution. Phys Med Biol 2024; 69:115043. [PMID: 38749466 DOI: 10.1088/1361-6560/ad4c51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/15/2024] [Indexed: 05/31/2024]
Abstract
Objective.Image reconstruction in high resolution, narrow bore PET scanners with depth of interaction (DOI) capability presents a substantial computational challenge due to the very high sampling in detector and image space. The aim of this study is to evaluate the use of a virtual cylinder in reducing the number of lines of response (LOR) for DOI-based reconstruction in high resolution PET systems while maintaining uniform sub-millimetre spatial resolution.Approach.Virtual geometry was investigated using the awake animal mousePET as a high resolution test case. Using GEANT4 Application for Tomographic Emission (GATE), we simulated the physical scanner and three virtual cylinder implementations with detector size 0.74 mm, 0.47 mm and 0.36 mm (vPET1, vPET2 and vPET3, respectively). The virtual cylinder condenses physical LORs stemming from various crystal pairs and DOI combinations, and which intersect a single virtual detector pair, into a single virtual LOR. Quantitative comparisons of the point spread function (PSF) at various positions within the field of view (FOV) were compared for reconstructions based on the vPET implementations and the physical scanner. We also assessed the impact of the anisotropic PSFs by reconstructing images of a micro Derenzo phantom.Main results.All virtual cylinder implementations achieved LOR data compression of at least 50% for DOI PET reconstruction. PSF anisotropy in radial and tangential profiles was chiefly influenced by DOI resolution and only marginally by virtual detector size. Spatial degradation introduced by virtual cylinders was most prominent in the axial profile. All virtual cylinders achieved sub-millimetre volumetric resolution across the FOV when 6-bin DOI reconstructions (3.3 mm DOI resolution) were performed. Using vPET2 with 6 DOI bins yielded nearly identical reconstructions to the non-virtual case in the transaxial plane, with an LOR compression factor of 86%. Resolution modelling significantly reduced the effects of the asymmetric PSF arising from the non-cylindrical geometry of mousePET.Significance.Narrow bore and high resolution PET scanners require detectors with DOI capability, leading to computationally demanding reconstructions due to the large number of LORs. In this study, we show that DOI PET reconstruction with 50%-86% LOR compression is possible using virtual cylinders while maintaining sub-millimetre spatial resolution throughout the FOV. The methodology and analysis can be extended to other scanners with DOI capability intended for high resolution PET imaging.
Collapse
Affiliation(s)
- Francisco E Enríquez-Mier-Y-Terán
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, NSW 2006, Australia
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
| | - Andre Z Kyme
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, NSW 2006, Australia
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
| | - Georgios Angelis
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, NSW 2006, Australia
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- Sydney Imaging Core Research Facility, The University of Sydney, Sydney, NSW 2050, Australia
| | - Steven R Meikle
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- Sydney Imaging Core Research Facility, The University of Sydney, Sydney, NSW 2050, Australia
- School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
| |
Collapse
|
22
|
Dadgar M, Maebe J, Vandenberghe S. Evaluation of lesion contrast in the walk-through long axial FOV PET scanner simulated with XCAT anthropomorphic phantoms. EJNMMI Phys 2024; 11:44. [PMID: 38722428 PMCID: PMC11082126 DOI: 10.1186/s40658-024-00645-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND This study evaluates the lesion contrast in a cost-effective long axial field of view (FOV) PET scanner, called the walk-through PET (WT-PET). The scanner consists of two flat detector panels covering the entire torso and head, scanning patients in an upright position for increased throughput. High-resolution, depth-of-interaction capable, monolithic detector technology is used to provide good spatial resolution and enable detection of smaller lesions. METHODS Monte Carlo GATE simulations are used in conjunction with XCAT anthropomorphic phantoms to evaluate lesion contrast in lung, liver and breast for various lesion diameters (10, 7 and 5 mm), activity concentration ratios (8:1, 4:1 and 2:1) and patient BMIs (18-37). Images were reconstructed iteratively with listmode maximum likelihood expectation maximization, and contrast recovery coefficients (CRCs) were obtained for the reconstructed lesions. RESULTS Results shows notable variations in contrast recovery coefficients (CRC) across different lesion sizes and organ locations within the XCAT phantoms. Specifically, our findings reveal that 10 mm lesions consistently exhibit higher CRC compared to 7 mm and 5 mm lesions, with increases of approximately 54% and 330%, respectively, across all investigated organs. Moreover, high contrast recovery is observed in most liver lesions regardless of diameter or activity ratio (average CRC = 42%), as well as in the 10 mm lesions in the lung. Notably, for the 10 mm lesions, the liver demonstrates 42% and 62% higher CRC compared to the lung and breast, respectively. This trend remains consistent across lesion sizes, with the liver consistently exhibiting higher CRC values compared to the lung and breast: 7 mm lesions show an increase of 96% and 41%, while 5 mm lesions exhibit approximately 294% and 302% higher CRC compared to the lung and breast, respectively. CONCLUSION A comparison with a conventional pixelated LSO long axial FOV PET shows similar performance, achieved at a reduced cost for the WT-PET due to a reduction in required number of detectors.
Collapse
Affiliation(s)
- Meysam Dadgar
- Department of Electronics and Information Systems, Medical Image and Signal Processing, Ghent University, C. Heymanslaan 10, Ghent, Belgium.
| | - Jens Maebe
- Department of Electronics and Information Systems, Medical Image and Signal Processing, Ghent University, C. Heymanslaan 10, Ghent, Belgium
| | - Stefaan Vandenberghe
- Department of Electronics and Information Systems, Medical Image and Signal Processing, Ghent University, C. Heymanslaan 10, Ghent, Belgium
| |
Collapse
|
23
|
Sarrut D, Etxebeste A, Létang JM. A photon source model for alpha-emitter radionuclides. Phys Med Biol 2024; 69:095009. [PMID: 38537308 DOI: 10.1088/1361-6560/ad3881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/27/2024] [Indexed: 04/18/2024]
Abstract
Objective.A Monte Carlo virtual source model named PHID (photon from Ion decay) that generates photons emitted in the complex decay chain process of alpha-emitter radionuclides is proposed, typically for use during the simulation of SPECT image acquisition.Approach.Given an alpha-emitter radionuclide, the PHID model extracts from Geant4 databases the photon emission lines from all decaying daughters for both isometric transition and atomic relaxation processes. According to a given time range, abundances and activities in the decay chain are considered thanks to the Bateman equations, taking into account the decay rates and the initial abundances.Main results.PHID is evaluated by comparison with analog Monte Carlo simulation. It generates photons with the correct energy and temporal distribution, avoiding the costly simulation of the complete decay chain thus decreasing the computation time. The exact time gain depends on the simulation setup. As an example, it is 30× faster for simulating 1 MBq of225Ac in water for 1 section Moreover, for225Ac, PHID was also compared to a simplified source model with the two main photon emission lines (218 and 440 keV). PHID shows that 2 times more particles are simulated and 60% more counts are detected in the images.Significance.PHID can simulate any alpha-emitter radionuclide available in the Geant4 database. As a limitation, photons emitted from Bremsstrahlung are ignored, but they represent only 0.7% of the photons above 30 keV and are not significant for SPECT imaging. PHID is open-source, available in GATE 10, and eases the investigation of imaging photon emission from alpha emitters.
Collapse
Affiliation(s)
- D Sarrut
- CREATIS; CNRS UMR5220; Inserm U1044; INSA-Lyon; Université Lyon 1; Centre Léon Bérard, France
| | - A Etxebeste
- CREATIS; CNRS UMR5220; Inserm U1044; INSA-Lyon; Université Lyon 1; Centre Léon Bérard, France
| | - J M Létang
- CREATIS; CNRS UMR5220; Inserm U1044; INSA-Lyon; Université Lyon 1; Centre Léon Bérard, France
| |
Collapse
|
24
|
Zapien-Campos B, Ahmadi Ganjeh Z, Both S, Dendooven P. Measurement of the 12C(p,n) 12N reaction cross section below 150 MeV. Phys Med Biol 2024; 69:075025. [PMID: 38382103 DOI: 10.1088/1361-6560/ad2b97] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/21/2024] [Indexed: 02/23/2024]
Abstract
Objective. Proton therapy currently faces challenges from clinical complications on organs-at-risk due to range uncertainties. To address this issue, positron emission tomography (PET) of the proton-induced11C and15O activity has been used to provide feedback on the proton range. However, this approach is not instantaneous due to the relatively long half-lives of these nuclides. An alternative nuclide,12N (half-life 11 ms), shows promise for real-timein vivoproton range verification. Development of12N imaging requires better knowledge of its production reaction cross section.Approach. The12C(p,n)12N reaction cross section was measured by detecting positron activity of graphite targets irradiated with 66.5, 120, and 150 MeV protons. A pulsed beam delivery with 0.7-2 × 108protons per pulse was used. The positron activity was measured during the beam-off periods using a dual-head Siemens Biograph mCT PET scanner. The12N production was determined from activity time histograms.Main results. The cross section was calculated for 11 energies, ranging from 23.5 to 147 MeV, using information on the experimental setup and beam delivery. Through a comprehensive uncertainty propagation analysis, a statistical uncertainty of 2.6%-5.8% and a systematic uncertainty of 3.3%-4.6% were achieved. Additionally, a comparison between measured and simulated scanner sensitivity showed a scaling factor of 1.25 (±3%). Despite this, there was an improvement in the precision of the cross section measurement compared to values reported by the only previous study.Significance. Short-lived12N imaging is promising for real-timein vivoverification of the proton range to reduce clinical complications in proton therapy. The verification procedure requires experimental knowledge of the12N production cross section for proton energies of clinical importance, to be incorporated in a Monte Carlo framework for12N imaging prediction. This study is the first to achieve a precise measurement of the12C(p,n)12N nuclear cross section for such proton energies.
Collapse
Affiliation(s)
- Brian Zapien-Campos
- Particle Therapy Research Center (PARTREC), Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Zahra Ahmadi Ganjeh
- Particle Therapy Research Center (PARTREC), Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Stefan Both
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Peter Dendooven
- Particle Therapy Research Center (PARTREC), Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
25
|
Shi M, Cui S, Chuang C, Oderinde O, Kovalchuk N, Surucu M, Xing L, Han B. A time- and space-saving Monte Carlo simulation method using post-collimation generative adversarial network for dose calculation of an O-ring gantry Linac. Phys Med 2024; 119:103318. [PMID: 38382210 DOI: 10.1016/j.ejmp.2024.103318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/23/2024] Open
Abstract
PURPOSE This study explores the feasibility of employing Generative Adversarial Networks (GANs) to model the RefleXion X1 Linac. The aim is to investigate the accuracy of dose simulation and assess the potential computational benefits. METHODS The X1 Linac is a new radiotherapy machine with a binary multi-leaf collimation (MLC) system, facilitating innovative biology-guided radiotherapy. A total of 34 GAN generators, each representing a desired MLC aperture, were developed. Each generator was trained using a phase space file generated underneath the corresponding aperture, enabling the generation of particles and serving as a beam source for Monte Carlo simulation. Dose distributions in water were simulated for each aperture using both the GAN and phase space sources. The agreement between dose distributions was evaluated. The computational time reduction from bypassing the collimation simulation and storage space savings were estimated. RESULTS The percentage depth dose at 10 cm, penumbra, and full-width half maximum of the GAN simulation agree with the phase space simulation, with differences of 0.4 % ± 0.2 %, 0.32 ± 0.66 mm, and 0.26 ± 0.44 mm, respectively. The gamma passing rate (1 %/1mm) for the planar dose exceeded 90 % for all apertures. The estimated time-saving for simulating an plan using 5766 beamlets was 530 CPU hours. The storage usage was reduced by a factor of 102. CONCLUSION The utilization of the GAN in simulating the X1 Linac demonstrated remarkable accuracy and efficiency. The reductions in both computational time and storage requirements make this approach highly valuable for future dosimetry studies and beam modeling.
Collapse
Affiliation(s)
- Mengying Shi
- Department of Radiation Oncology, Stanford University, Palo Alto, CA, USA; Department of Radiation Oncology, University of California, Irvine, Orange, CA, USA.
| | - Sunan Cui
- Department of Radiation Oncology, Stanford University, Palo Alto, CA, USA; Department of Radiation Oncology, University of Washington, Seattle, WA, USA
| | - Cynthia Chuang
- Department of Radiation Oncology, Stanford University, Palo Alto, CA, USA
| | | | - Nataliya Kovalchuk
- Department of Radiation Oncology, Stanford University, Palo Alto, CA, USA
| | - Murat Surucu
- Department of Radiation Oncology, Stanford University, Palo Alto, CA, USA
| | - Lei Xing
- Department of Radiation Oncology, Stanford University, Palo Alto, CA, USA
| | - Bin Han
- Department of Radiation Oncology, Stanford University, Palo Alto, CA, USA
| |
Collapse
|
26
|
Mandeville JB, Efthimiou N, Weigand-Whittier J, Hardy E, Knudsen GM, Jørgensen LM, Chen YCI. Partial volume correction of PET image data using geometric transfer matrices based on uniform B-splines. Phys Med Biol 2024; 69:10.1088/1361-6560/ad22a0. [PMID: 38271737 PMCID: PMC10936689 DOI: 10.1088/1361-6560/ad22a0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 01/25/2024] [Indexed: 01/27/2024]
Abstract
Objective. Most methods for partial volume correction (PVC) of positron emission tomography (PET) data employ anatomical segmentation of images into regions of interest. This approach is not optimal for exploratory functional imaging beyond regional hypotheses. Here, we describe a novel method for unbiased voxel-wise PVC.Approach.B-spline basis functions were combined with geometric transfer matrices to enable a method (bsGTM) that provides PVC or alternatively provides smoothing with minimal regional crosstalk. The efficacy of the proposed method was evaluated using Monte Carlo simulations, human PET data, and murine functional PET data.Main results.In simulations, bsGTM provided recovery of partial volume signal loss comparable to iterative deconvolution, while demonstrating superior resilience to noise. In a real murine PET dataset, bsGTM yielded much higher sensitivity for detecting amphetamine-induced reduction of [11C]raclopride binding potential. In human PET data, bsGTM smoothing enabled increased signal-to-noise ratios with less degradation of binding potentials relative to Gaussian convolution or non-local means.Significance.bsGTM offers improved performance for PVC relative to iterative deconvolution, the current method of choice for voxel-wise PVC, especially in the common PET regime of low signal-to-noise ratio. The new method provides an anatomically unbiased way to compensate partial volume errors in cases where anatomical segmentation is unavailable or of questionable relevance or accuracy.
Collapse
Affiliation(s)
- Joseph B. Mandeville
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston MA
- Harvard Medical School, Boston, MA, USA
| | - Nikos Efthimiou
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston MA
- Harvard Medical School, Boston, MA, USA
| | - Jonah Weigand-Whittier
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston MA
- Department of Bioengineering, University of California, Berkeley CA
| | - Erin Hardy
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston MA
| | - Gitte M. Knudsen
- Neurobiology Research Unit, Rigshospitalet and University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - LM Jørgensen
- Neurobiology Research Unit, Rigshospitalet and University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Yin-Ching I. Chen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston MA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
27
|
Galve P, Arias-Valcayo F, Villa-Abaunza A, Ibáñez P, Udías JM. UMC-PET: a fast and flexible Monte Carlo PET simulator. Phys Med Biol 2024; 69:035018. [PMID: 38198727 DOI: 10.1088/1361-6560/ad1cf9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 01/10/2024] [Indexed: 01/12/2024]
Abstract
Objective.The GPU-based Ultra-fast Monte Carlo positron emission tomography simulator (UMC-PET) incorporates the physics of the emission, transport and detection of radiation in PET scanners. It includes positron range, non-colinearity, scatter and attenuation, as well as detector response. The objective of this work is to present and validate UMC-PET as a a multi-purpose, accurate, fast and flexible PET simulator.Approach.We compared UMC-PET against PeneloPET, a well-validated MC PET simulator, both in preclinical and clinical scenarios. Different phantoms for scatter fraction (SF) assessment following NEMA protocols were simulated in a 6R-SuperArgus and a Biograph mMR scanner, comparing energy histograms, NEMA SF, and sensitivity for different energy windows. A comparison with real data reported in the literature on the Biograph scanner is also shown.Main results.NEMA SF and sensitivity estimated by UMC-PET where within few percent of PeneloPET predictions. The discrepancies can be attributed to small differences in the physics modeling. Running in a 11 GB GeForce RTX 2080 Ti GPU, UMC-PET is ∼1500 to ∼2000 times faster than PeneloPET executing in a single core Intel(R) Xeon(R) CPU W-2155 @ 3.30 GHz.Significance.UMC-PET employs a voxelized scheme for the scanner, patient adjacent objects (such as shieldings or the patient bed), and the activity distribution. This makes UMC-PET extremely flexible. Its high simulation speed allows applications such as MC scatter correction, faster SRM estimation for complex scanners, or even MC iterative image reconstruction.
Collapse
Affiliation(s)
- Pablo Galve
- Grupo de Física Nuclear, EMFTEL & IPARCOS, Universidad Complutense de Madrid, CEI Moncloa, 28040 Madrid, Spain
- Université Paris Cité, Inserm, PARCC, F-75015 Paris, France
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Fernando Arias-Valcayo
- Grupo de Física Nuclear, EMFTEL & IPARCOS, Universidad Complutense de Madrid, CEI Moncloa, 28040 Madrid, Spain
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Amaia Villa-Abaunza
- Grupo de Física Nuclear, EMFTEL & IPARCOS, Universidad Complutense de Madrid, CEI Moncloa, 28040 Madrid, Spain
| | - Paula Ibáñez
- Grupo de Física Nuclear, EMFTEL & IPARCOS, Universidad Complutense de Madrid, CEI Moncloa, 28040 Madrid, Spain
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - José Manuel Udías
- Grupo de Física Nuclear, EMFTEL & IPARCOS, Universidad Complutense de Madrid, CEI Moncloa, 28040 Madrid, Spain
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| |
Collapse
|
28
|
Liu Y, Li L, Huang G, Qiu W, Yang Y, Guo Y, Li W, Xu J, Chen R, Kang Y. A preliminary study of dynamic interactive simulation and computational CT scan of the ideal alveolus model. Med Phys 2024; 51:601-611. [PMID: 37831515 DOI: 10.1002/mp.16773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 08/12/2023] [Accepted: 09/20/2023] [Indexed: 10/14/2023] Open
Abstract
BACKGROUND While the development of CT imaging technique has brought cognition of in vivo organs, the resolution of CT images and their static characteristics have gradually become barriers of microscopic tissue research. PURPOSE Previous research used the finite element method to study the airflow and gas exchange in the alveolus and acinar to show the fate of inhaled aerosols and studied the diffusive, convective, and sedimentation mechanisms. Our study combines these techniques with CT scan simulation to study the mechanisms of respiratory movement and its imaging appearance. METHODS We use 3D fluid-structure interaction simulation to study the movement of an ideal alveolus under regular and forced breathing situations and ill alveoli with different tissue elasticities. Additionally, we use the Monte Carlo algorithm within the OpenGATE platform to simulate the computational CT images of the dynamic process with different designated resolutions. The resolutions show the relationship between the kinematic model of the human alveolus and its imaging appearance. RESULTS The results show that the alveolus and the wall thickness can be seen with an image resolution smaller than 15.6 μm. With ordinary CT resolution, the alveolus is expressed with four voxels. CONCLUSIONS This is a preliminary study concerning the imaging appearance of the dynamic alveolus model. This technique will be used to study the imaging appearance of the dynamic bronchial tree and the lung lobe models in the future.
Collapse
Affiliation(s)
- Yang Liu
- Medical Health and Intelligent Simulation Laboratory, Health Science and Environmental Engineering School, Shenzhen Technology University, Shenzhen, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Longyu Li
- Medical Health and Intelligent Simulation Laboratory, Health Science and Environmental Engineering School, Shenzhen Technology University, Shenzhen, China
| | - Guangtao Huang
- Medical Health and Intelligent Simulation Laboratory, Health Science and Environmental Engineering School, Shenzhen Technology University, Shenzhen, China
| | - Weiyan Qiu
- Medical Health and Intelligent Simulation Laboratory, Health Science and Environmental Engineering School, Shenzhen Technology University, Shenzhen, China
| | - Yingjian Yang
- Medical Health and Intelligent Simulation Laboratory, Health Science and Environmental Engineering School, Shenzhen Technology University, Shenzhen, China
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Yingwei Guo
- Medical Health and Intelligent Simulation Laboratory, Health Science and Environmental Engineering School, Shenzhen Technology University, Shenzhen, China
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Wei Li
- Medical Health and Intelligent Simulation Laboratory, Health Science and Environmental Engineering School, Shenzhen Technology University, Shenzhen, China
| | - Jiaxuan Xu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Rongchang Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yan Kang
- Medical Health and Intelligent Simulation Laboratory, Health Science and Environmental Engineering School, Shenzhen Technology University, Shenzhen, China
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| |
Collapse
|
29
|
Hamill JJ, Cabello J, Surti S, Karp JS. Energy-based scatter estimation in clinical PET. Med Phys 2024; 51:54-69. [PMID: 37956261 PMCID: PMC11483182 DOI: 10.1002/mp.16826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/29/2023] [Accepted: 10/13/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Scatter correction (SC) is essential in PET for accurate quantitative imaging. The state-of-the-art SC method is single-scatter simulation (SSS). Although this method is usually robust and accurate, it can fail in some situations, for example when there is motion between the CT and PET scans in PET/CT. Therefore, it is of interest to consider other SC methods. PURPOSE In this work, an energy-based scatter estimation (EBS) method is described in detail, tested in phantoms and patients, and compared to SSS. METHODS This version of EBS was developed for list-mode data from Biograph Vision-600 PET/CT scanner. EBS is based on digitized 2D energy histograms in each bin of a coarsely sampled PET sinogram, either with or without time of flight (TOF). The histograms are modeled as a noisy realization of a linear combination of nine basis functions whose parameters were derived from a measurement of the 511-keV photopeak spectrum as well as Monte-Carlo simulations of the scattering process. EBS uses an iterative expectation maximization approach to determine the coefficients in the linear combination, and from this estimates the scatter. The investigation was restricted to 18 F-based PET data in which the acquired number of counts was similar to the levels seen in oncological whole-body PET/CT scans. To evaluate the performance, phantom scans were used that involved the NEMA NU2-2018 protocol, a slab phantom, an NU 2-1994 phantom, a cardiac phantom in an anthropomorphic chest phantom, and a uniformly-filled torso phantom with a bladder phantom slightly outside the axial field of view. Contrast recovery (CR) and other parameters were evaluated in images reconstructed with SSS and EBS. Furthermore, FDG PET scans of seven lung cancer patients were used in the evaluation. Standardized uptake values (SUV) based on SSS and EBS were compared in 27 lesions. RESULTS EBS and SSS images were visually similar in all cases except the torso + bladder phantom, where the EBS was much closer to the expected uniform image. The NU2-2018 analysis indicated a 2% scatter residual in EBS images compared to 3% with SSS, and 10% higher background variability, which is a surrogate for image noise. The cardiac phantom scan showed that CR was 98.2% with EBS and 99.6% with SSS, and that the SSS sinogram had values greater than the net-true emission sinogram, indicating a slight overcorrection in the case of SSS. In the lesion SUV comparison in patient scans, EBS correlated strongly (R2 = 0.9973) with SSS, and SUV based on EBS were systematically 0.1 SUV lower. In the case of the torso + bladder phantom portion, the SSS image of the torso + bladder phantom was 299% times hotter than expected in one area, due to scatter estimation error, compared to 16% colder with EBS. CONCLUSIONS In evaluating clinically relevant parameters such as SUV in focal lesions, EBS and SSS give almost the same results. In phantoms, some scatter figures of merit were slightly improved by use of EBS, though an image variability figure of merit was slightly degraded. In typical oncological whole-body PET/CT, EBS may be a suitable replacement for SSS, especially when SSS fails due to technical problems during the scan.
Collapse
Affiliation(s)
| | - Jorge Cabello
- Siemens Medical Solutions, Knoxville, Tennessee, USA
| | - Suleman Surti
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Joel S. Karp
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
30
|
Zhao D, Zhou X, Wu W. A Metamodel-Based Multi-Scale Reliability Analysis of FRP Truss Structures under Hybrid Uncertainties. MATERIALS (BASEL, SWITZERLAND) 2023; 17:29. [PMID: 38203883 PMCID: PMC10780098 DOI: 10.3390/ma17010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/10/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024]
Abstract
This study introduces a Radial Basis Function-Genetic Algorithm-Back Propagation-Importance Sampling (RBF-GA-BP-IS) algorithm for the multi-scale reliability analysis of Fiber-Reinforced Polymer (FRP) composite structures. The proposed method integrates the computationally powerful RBF neural network with GA, BP neural network and IS to efficiently calculate inner and outer optimization problems for reliability analysis with hybrid random and interval uncertainties. The investigation profoundly delves into incorporating both random and interval parameters in the reliability appraisal of FRP constructs, ensuring fluctuating parameters within designated boundaries are meticulously accounted for, thus augmenting analytic exactness. In application, the algorithm was subjected to diverse structural evaluations, including a seven-bar planar truss, an architectural space dome truss, and an intricate nonlinear truss bridge. Results demonstrate the algorithm's exceptional performance in terms of model invocation counts and accurate failure probability estimation. Specifically, within the seven-bar planar truss evaluation, the algorithm exhibited a deviation of 0.08% from the established failure probability benchmark.
Collapse
Affiliation(s)
- Desheng Zhao
- Department of Bridge Engineering, School of Transportation, Southeast University, Nanjing 211189, China; (D.Z.); (W.W.)
- School of Civil Engineering, Hefei University of Technology, Hefei 230002, China
| | - Xiaoyi Zhou
- Department of Bridge Engineering, School of Transportation, Southeast University, Nanjing 211189, China; (D.Z.); (W.W.)
| | - Wenqing Wu
- Department of Bridge Engineering, School of Transportation, Southeast University, Nanjing 211189, China; (D.Z.); (W.W.)
| |
Collapse
|
31
|
Dadgar M, Maebe J, Abi Akl M, Vervenne B, Vandenberghe S. A simulation study of the system characteristics for a long axial FOV PET design based on monolithic BGO flat panels compared with a pixelated LSO cylindrical design. EJNMMI Phys 2023; 10:75. [PMID: 38036794 PMCID: PMC10689648 DOI: 10.1186/s40658-023-00593-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 11/07/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Although a new generation of tomographs with a longer axial field-of-view called total-body PET have been developed, they are not widely utilized due to their high cost compared to conventional scanners. The newly designed walk-through total-body PET scanner is introduced as a high-throughput and cost-efficient alternative to total-body PET scanners, by making use of a flat panel geometry and lower cost, depth-of-interaction capable, monolithic BGO detectors. The main aim of the presented study is to evaluate through Monte Carlo simulation the system characteristics of the walk-through total-body PET scanner by comparing it with a Quadra-like total-body PET of similar attributes to the Siemens Biograph Vision Quadra. METHODS The walk-through total-body PET is comprised of two flat detector panels, spaced 50 cm apart. Each panel, 70 [Formula: see text] 106 cm[Formula: see text] in size, consists of 280 BGO-based monolithic detectors. The Quadra-like TB-PET has been simulated based on the characteristics of the Biograph Vision Quadra, one of the most common total-body PET scanners with 106 cm of axial field-of-view, which is constructed with pixelated LSO scintillation crystals. The spatial resolution, sensitivity, count rate performance, scatter fractions, and image quality of both scanners are simulated in the GATE simulation toolkit for comparison. RESULTS Due to the DOI-capable detectors used in the walk-through total-body PET, the values of the spatial resolution of this scanner were all below 2 mm along directions parallel to the panels, and reached a maximum of 3.36 mm in the direction perpendicular to the panels. This resolution is a large improvement compared to the values of the Quadra-like TB-PET. The walk-through total-body PET uses its maximum sensitivity (154 cps/kBq) for data acquisition and image reconstruction. CONCLUSION Based on the combination of very good spatial resolution and high sensitivity of the walk-through total-body PET, along with a 2.2 times lower scintillation crystal volume and 1.8 times lower SiPM surface, this scanner can be a very cost-efficient alternative for total-body PET scanners in cases where concomitant CT is not required.
Collapse
Affiliation(s)
- Meysam Dadgar
- Department of Electronics and Information Systems, Medical Image and Signal Processing, Ghent University, C. Heymanslaan 10, Ghent, Belgium.
| | - Jens Maebe
- Department of Electronics and Information Systems, Medical Image and Signal Processing, Ghent University, C. Heymanslaan 10, Ghent, Belgium
| | - Maya Abi Akl
- Department of Electronics and Information Systems, Medical Image and Signal Processing, Ghent University, C. Heymanslaan 10, Ghent, Belgium
- Division of Arts and Sciences, Texas A&M University at Qatar, Doha, Qatar
| | - Boris Vervenne
- Department of Electronics and Information Systems, Medical Image and Signal Processing, Ghent University, C. Heymanslaan 10, Ghent, Belgium
| | - Stefaan Vandenberghe
- Department of Electronics and Information Systems, Medical Image and Signal Processing, Ghent University, C. Heymanslaan 10, Ghent, Belgium
| |
Collapse
|
32
|
Dadgar M, Parzych S, Baran J, Chug N, Curceanu C, Czerwiński E, Dulski K, Elyan K, Gajos A, Hiesmayr BC, Kapłon Ł, Klimaszewski K, Konieczka P, Korcyl G, Kozik T, Krzemien W, Kumar D, Niedzwiecki S, Panek D, Perez Del Rio E, Raczyński L, Sharma S, Shivani S, Shopa RY, Skurzok M, Stepień EŁ, Tayefi Ardebili F, Tayefi Ardebili K, Vandenberghe S, Wiślicki W, Moskal P. Comparative studies of the sensitivities of sparse and full geometries of Total-Body PET scanners built from crystals and plastic scintillators. EJNMMI Phys 2023; 10:62. [PMID: 37819578 PMCID: PMC10567620 DOI: 10.1186/s40658-023-00572-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/08/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND Alongside the benefits of Total-Body imaging modalities, such as higher sensitivity, single-bed position, low dose imaging, etc., their final construction cost prevents worldwide utilization. The main aim of this study is to present a simulation-based comparison of the sensitivities of existing and currently developed tomographs to introduce a cost-efficient solution for constructing a Total-Body PET scanner based on plastic scintillators. METHODS For the case of this study, eight tomographs based on the uEXPLORER configuration with different scintillator materials (BGO, LYSO), axial field-of-view (97.4 cm and 194.8 cm), and detector configurations (full and sparse) were simulated. In addition, 8 J-PET scanners with different configurations, such as various axial field-of-view (200 cm and 250 cm), different cross sections of plastic scintillator, and multiple numbers of plastic scintillator layers (2, 3, and 4), based on J-PET technology have been simulated by GATE software. Furthermore, Siemens' Biograph Vision has been simulated to compare the results with standard PET scans. Two types of simulations have been performed. The first one with a centrally located source with a diameter of 1 mm and a length of 250 cm, and the second one with the same source inside a water-filled cylindrical phantom with a diameter of 20 cm and a length of 183 cm. RESULTS With regards to sensitivity, among all the proposed scanners, the ones constructed with BGO crystals give the best performance ([Formula: see text] 350 cps/kBq at the center). The utilization of sparse geometry or LYSO crystals significantly lowers the achievable sensitivity of such systems. The J-PET design gives a similar sensitivity to the sparse LYSO crystal-based detectors while having full detector coverage over the body. Moreover, it provides uniform sensitivity over the body with additional gain on its sides and provides the possibility for high-quality brain imaging. CONCLUSION Taking into account not only the sensitivity but also the price of Total-Body PET tomographs, which till now was one of the main obstacles in their widespread clinical availability, the J-PET tomography system based on plastic scintillators could be a cost-efficient alternative for Total-Body PET scanners.
Collapse
Affiliation(s)
- M Dadgar
- Department of Experimental Particle Physics and Applications, Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Kraków, Poland.
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland.
| | - S Parzych
- Department of Experimental Particle Physics and Applications, Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - J Baran
- Department of Experimental Particle Physics and Applications, Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - N Chug
- Department of Experimental Particle Physics and Applications, Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - C Curceanu
- INFN, Laboratori Nazionali di Frascati, Frascati, Italy
| | - E Czerwiński
- Department of Experimental Particle Physics and Applications, Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - K Dulski
- Department of Experimental Particle Physics and Applications, Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - K Elyan
- Department of Experimental Particle Physics and Applications, Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - A Gajos
- Department of Experimental Particle Physics and Applications, Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - B C Hiesmayr
- Faculty of Physics, University of Vienna, Vienna, Austria
| | - Ł Kapłon
- Department of Experimental Particle Physics and Applications, Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - K Klimaszewski
- Department of Complex Systems, National Centre for Nuclear Research, Otwock-Świerk, Poland
| | - P Konieczka
- Department of Complex Systems, National Centre for Nuclear Research, Otwock-Świerk, Poland
| | - G Korcyl
- Department of Experimental Particle Physics and Applications, Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - T Kozik
- Department of Experimental Particle Physics and Applications, Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Kraków, Poland
| | - W Krzemien
- High Energy Physics Division, National Centre for Nuclear Research, Otwock-Świerk, Poland
| | - D Kumar
- Department of Experimental Particle Physics and Applications, Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - S Niedzwiecki
- Department of Experimental Particle Physics and Applications, Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - D Panek
- Department of Experimental Particle Physics and Applications, Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - E Perez Del Rio
- Department of Experimental Particle Physics and Applications, Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - L Raczyński
- Department of Complex Systems, National Centre for Nuclear Research, Otwock-Świerk, Poland
| | - S Sharma
- Department of Experimental Particle Physics and Applications, Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - S Shivani
- Department of Experimental Particle Physics and Applications, Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - R Y Shopa
- Department of Complex Systems, National Centre for Nuclear Research, Otwock-Świerk, Poland
| | - M Skurzok
- Department of Experimental Particle Physics and Applications, Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - E Ł Stepień
- Department of Experimental Particle Physics and Applications, Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
- Theranostics Center, Jagiellonian University, Kraków, Poland
| | - F Tayefi Ardebili
- Department of Experimental Particle Physics and Applications, Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - K Tayefi Ardebili
- Department of Experimental Particle Physics and Applications, Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - S Vandenberghe
- Department of Electronics and Information Systems, MEDISIP, MEDISIP, Ghent University-IBiTech, Ghent, Belgium
| | - W Wiślicki
- Department of Complex Systems, National Centre for Nuclear Research, Otwock-Świerk, Poland
| | - P Moskal
- Department of Experimental Particle Physics and Applications, Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Kraków, Poland.
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland.
- Theranostics Center, Jagiellonian University, Kraków, Poland.
| |
Collapse
|
33
|
Qutbi M. Adjustment of acquisition arc in cardiac malposition during myocardial perfusion SPECT imaging: computer simulation based on deterministic modeling. J Nucl Cardiol 2023; 30:1910-1921. [PMID: 37142878 DOI: 10.1007/s12350-023-03266-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/25/2023] [Indexed: 05/06/2023]
Abstract
OBJECTIVES To simulate cardiac malpositions, leftward and rightward shift and dextrocardia, and also to compare distribution of activity of septal and lateral walls of left ventricle acquired in standard acquisition arc and after relevant adjustment. METHODS In this study, digital phantoms with cardiac malpositions are designed and procedure of acquisition of scan in standard arc (from right anterior oblique to left posterior oblique) and adjusted acquisition arc is simulated. The three situations of malposition including leftward and rightward shift and dextrocardia are considered. For all types, acquisition is conducted in standard and then adjusted arcs (from anterior to posterior and also from right to left for leftward and rightward shifts, respectively, and for dextrocardia, from left anterior oblique to right posterior oblique). All obtained projections are reconstructed using the algorithm of filtered back projection. During forward projection to obtain sinograms, radiation attenuation is also modeled by incorporation of a simplified transmission map to emission map. The resulting tomographic slices of the LV (septum, apex, and lateral wall) are presented visually and are compared by plotting intensity profiles of the walls. Finally, normalized error images are also computed. All the computations are performed in MATLAB software package. RESULTS In transverse slice, septum and lateral wall are attenuated progressively from apex, which is closer to the camera, to the base in similar fashion. In tomographic slices of standard acquisition arc, the septum shows remarkably higher activity compared to lateral wall. However, after adjustment, both seems equally intense and progressively being attenuated from apex to base, similar to that found in phantom with normally positioned heart. Likewise, for the phantom with rightward shift, when the scanning was done in standard arc, the septum is more intense than the lateral wall. And similarly, adjustment of the arc renders both walls equally intense. In dextrocardia, level of attenuation of basal parts of septum and lateral wall is higher in 360° arc compared to adjusted 180° arc. CONCLUSION Adjustment of acquisition arc exerts perceptible changes in distribution of activity over LV walls which are more compatible with normally positioned heart.
Collapse
Affiliation(s)
- Mohsen Qutbi
- Department of Nuclear Medicine, Taleghani Hospital, School of Medicine, Shahid Beheshti University of Medical Sciences, Yaman St., Velenjak, 1985711151, Tehran, Iran.
| |
Collapse
|
34
|
Pells S, Cullen DM, Deidda D, Denis-Bacelar AM, Fenwick A, Ferreira KM, Hamilton D, Heetun W, Julyan P, Needham G, Pietras B, Price E, Scuffham J, Tipping J, Robinson AP. Quantitative validation of Monte Carlo SPECT simulation: application to a Mediso AnyScan GATE simulation. EJNMMI Phys 2023; 10:60. [PMID: 37777689 PMCID: PMC10542438 DOI: 10.1186/s40658-023-00581-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/15/2023] [Indexed: 10/02/2023] Open
Abstract
BACKGROUND Monte Carlo (MC) simulations are used in nuclear medicine imaging as they provide unparalleled insight into processes that are not directly experimentally measurable, such as scatter and attenuation in an acquisition. Whilst MC is often used to provide a 'ground-truth', this is only the case if the simulation is fully validated against experimental data. This work presents a quantitative validation for a MC simulation of a single-photon emission computed tomography (SPECT) system. METHODS An MC simulation model of the Mediso AnyScan SCP SPECT system installed at the UK National Physical Laboratory was developed in the GATE (Geant4 Application for Tomographic Emission) toolkit. Components of the detector head and two collimator configurations were modelled according to technical specifications and physical measurements. Experimental detection efficiency measurements were collected for a range of energies, permitting an energy-dependent intrinsic camera efficiency correction function to be determined and applied to the simulation on an event-by-event basis. Experimental data were collected in a range of geometries with [Formula: see text]Tc for comparison to simulation. The procedure was then repeated with [Formula: see text]Lu to determine how the validation extended to another isotope and set of collimators. RESULTS The simulation's spatial resolution, sensitivity, energy spectra and the projection images were compared with experimental measurements. The simulation and experimental uncertainties were determined and propagated to all calculations, permitting the quantitative agreement between simulated and experimental SPECT acquisitions to be determined. Statistical agreement was seen in sinograms and projection images of both [Formula: see text]Tc and [Formula: see text]Lu data. Average simulated and experimental sensitivity ratios of ([Formula: see text]) were seen for emission and scatter windows of [Formula: see text]Tc, and ([Formula: see text]) and ([Formula: see text]) for the 113 and 208 keV emissions of [Formula: see text]Lu, respectively. CONCLUSIONS MC simulations will always be an approximation of a physical system and the level of agreement should be assessed. A validation method is presented to quantify the level of agreement between a simulation model and a physical SPECT system.
Collapse
Affiliation(s)
- Sophia Pells
- Department of Physics and Astronomy, The University of Manchester, Manchester, UK.
- National Physical Laboratory, Teddington, UK.
- Department of Radiology, UMass Chan Medical School, Worcester, MA, USA.
| | - David M Cullen
- Department of Physics and Astronomy, The University of Manchester, Manchester, UK
| | | | | | | | | | | | | | - Peter Julyan
- The Christie NHS Foundation Trust, Manchester, UK
| | - George Needham
- Department of Physics and Astronomy, The University of Manchester, Manchester, UK
- The Christie NHS Foundation Trust, Manchester, UK
| | - Ben Pietras
- Department of Physics and Astronomy, The University of Manchester, Manchester, UK
| | - Emlyn Price
- Department of Physics and Astronomy, The University of Manchester, Manchester, UK
| | - James Scuffham
- National Physical Laboratory, Teddington, UK
- Royal Surrey County Hospital, Guildford, UK
| | - Jill Tipping
- The Christie NHS Foundation Trust, Manchester, UK
| | - Andrew P Robinson
- Department of Physics and Astronomy, The University of Manchester, Manchester, UK
- National Physical Laboratory, Teddington, UK
- The Christie NHS Foundation Trust, Manchester, UK
| |
Collapse
|
35
|
Okuda K, Nakajima K, Kitamura C, Ljungberg M, Hosoya T, Kirihara Y, Hashimoto M. Machine learning-based prediction of conversion coefficients for I-123 metaiodobenzylguanidine heart-to-mediastinum ratio. J Nucl Cardiol 2023; 30:1630-1641. [PMID: 36740650 PMCID: PMC10372132 DOI: 10.1007/s12350-023-03198-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 12/22/2022] [Indexed: 02/07/2023]
Abstract
PURPOSE We developed a method of standardizing the heart-to-mediastinal ratio in 123I-labeled meta-iodobenzylguanidine (MIBG) images using a conversion coefficient derived from a dedicated phantom. This study aimed to create a machine-learning (ML) model to estimate conversion coefficients without using a phantom. METHODS 210 Monte Carlo (MC) simulations of 123I-MIBG images to obtain conversion coefficients using collimators that differed in terms of hole diameter, septal thickness, and length. Simulated conversion coefficients and collimator parameters were prepared as training datasets, then a gradient-boosting ML was trained to estimate conversion coefficients from collimator parameters. Conversion coefficients derived by ML were compared with those that were MC simulated and experimentally derived from 613 phantom images. RESULTS Conversion coefficients were superior when estimated by ML compared with the classical multiple linear regression model (root mean square deviations: 0.021 and 0.059, respectively). The experimental, MC simulated, and ML-estimated conversion coefficients agreed, being, respectively, 0.54, 0.55, and 0.55 for the low-; 0.74, 0.70, and 0.72 for the low-middle; and 0.88, 0.88, and 0.88 for the medium-energy collimators. CONCLUSIONS The ML model estimated conversion coefficients without the need for phantom experiments. This means that conversion coefficients were comparable when estimated based on collimator parameters and on experiments.
Collapse
Affiliation(s)
- Koichi Okuda
- Department of Physics, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku, Ishikawa, 920-0293, Japan.
- Department of Radiation Science, Hirosaki University Graduate School of Health Sciences, Hirosaki-shi, Aomori, Japan.
| | - Kenichi Nakajima
- Department of Functional Imaging and Artificial Intelligence, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | | | | | | | | | - Mitsumasa Hashimoto
- Department of Physics, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku, Ishikawa, 920-0293, Japan
| |
Collapse
|
36
|
Konieczka P, Raczyński L, Wiślicki W, Fedoruk O, Klimaszewski K, Kopka P, Krzemień W, Shopa RY, Baran J, Coussat A, Chug N, Curceanu C, Czerwiński E, Dadgar M, Dulski K, Gajos A, Hiesmayr BC, Kacprzak K, Kapłon Ł, Korcyl G, Kozik T, Kumar D, Niedźwiecki S, Parzych S, Río EPD, Sharma S, Shivani S, Skurzok M, Stępień EŁ, Tayefi F, Moskal P. Transformation of PET raw data into images for event classification using convolutional neural networks. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:14938-14958. [PMID: 37679166 DOI: 10.3934/mbe.2023669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
In positron emission tomography (PET) studies, convolutional neural networks (CNNs) may be applied directly to the reconstructed distribution of radioactive tracers injected into the patient's body, as a pattern recognition tool. Nonetheless, unprocessed PET coincidence data exist in tabular format. This paper develops the transformation of tabular data into n-dimensional matrices, as a preparation stage for classification based on CNNs. This method explicitly introduces a nonlinear transformation at the feature engineering stage and then uses principal component analysis to create the images. We apply the proposed methodology to the classification of simulated PET coincidence events originating from NEMA IEC and anthropomorphic XCAT phantom. Comparative studies of neural network architectures, including multilayer perceptron and convolutional networks, were conducted. The developed method increased the initial number of features from 6 to 209 and gave the best precision results (79.8) for all tested neural network architectures; it also showed the smallest decrease when changing the test data to another phantom.
Collapse
Affiliation(s)
- Paweł Konieczka
- Department of Complex Systems, National Centre for Nuclear Research, 05-400 Świerk, Poland
| | - Lech Raczyński
- Department of Complex Systems, National Centre for Nuclear Research, 05-400 Świerk, Poland
| | - Wojciech Wiślicki
- Department of Complex Systems, National Centre for Nuclear Research, 05-400 Świerk, Poland
| | - Oleksandr Fedoruk
- Department of Complex Systems, National Centre for Nuclear Research, 05-400 Świerk, Poland
| | - Konrad Klimaszewski
- Department of Complex Systems, National Centre for Nuclear Research, 05-400 Świerk, Poland
| | - Przemysław Kopka
- Department of Complex Systems, National Centre for Nuclear Research, 05-400 Świerk, Poland
| | - Wojciech Krzemień
- High Energy Physics Division, National Centre for Nuclear Research, 05-400 Świerk, Poland
| | - Roman Y Shopa
- Department of Complex Systems, National Centre for Nuclear Research, 05-400 Świerk, Poland
| | - Jakub Baran
- Marian Smoluchowski Institute of Physics, Jagiellonian University, 31-348 Cracow, Poland
- Center for Theranostics, Jagiellonian University, 31-348 Cracow, Poland
| | - Aurélien Coussat
- Marian Smoluchowski Institute of Physics, Jagiellonian University, 31-348 Cracow, Poland
- Center for Theranostics, Jagiellonian University, 31-348 Cracow, Poland
| | - Neha Chug
- Marian Smoluchowski Institute of Physics, Jagiellonian University, 31-348 Cracow, Poland
- Center for Theranostics, Jagiellonian University, 31-348 Cracow, Poland
| | | | - Eryk Czerwiński
- Marian Smoluchowski Institute of Physics, Jagiellonian University, 31-348 Cracow, Poland
- Center for Theranostics, Jagiellonian University, 31-348 Cracow, Poland
| | - Meysam Dadgar
- Marian Smoluchowski Institute of Physics, Jagiellonian University, 31-348 Cracow, Poland
- Center for Theranostics, Jagiellonian University, 31-348 Cracow, Poland
| | - Kamil Dulski
- Marian Smoluchowski Institute of Physics, Jagiellonian University, 31-348 Cracow, Poland
- Center for Theranostics, Jagiellonian University, 31-348 Cracow, Poland
| | - Aleksander Gajos
- Marian Smoluchowski Institute of Physics, Jagiellonian University, 31-348 Cracow, Poland
- Center for Theranostics, Jagiellonian University, 31-348 Cracow, Poland
| | | | - Krzysztof Kacprzak
- Marian Smoluchowski Institute of Physics, Jagiellonian University, 31-348 Cracow, Poland
- Center for Theranostics, Jagiellonian University, 31-348 Cracow, Poland
| | - Łukasz Kapłon
- Marian Smoluchowski Institute of Physics, Jagiellonian University, 31-348 Cracow, Poland
- Center for Theranostics, Jagiellonian University, 31-348 Cracow, Poland
| | - Grzegorz Korcyl
- Marian Smoluchowski Institute of Physics, Jagiellonian University, 31-348 Cracow, Poland
- Center for Theranostics, Jagiellonian University, 31-348 Cracow, Poland
| | - Tomasz Kozik
- Marian Smoluchowski Institute of Physics, Jagiellonian University, 31-348 Cracow, Poland
- Center for Theranostics, Jagiellonian University, 31-348 Cracow, Poland
| | - Deepak Kumar
- Marian Smoluchowski Institute of Physics, Jagiellonian University, 31-348 Cracow, Poland
- Center for Theranostics, Jagiellonian University, 31-348 Cracow, Poland
| | - Szymon Niedźwiecki
- Marian Smoluchowski Institute of Physics, Jagiellonian University, 31-348 Cracow, Poland
- Center for Theranostics, Jagiellonian University, 31-348 Cracow, Poland
| | - Szymon Parzych
- Marian Smoluchowski Institute of Physics, Jagiellonian University, 31-348 Cracow, Poland
- Center for Theranostics, Jagiellonian University, 31-348 Cracow, Poland
| | - Elena Pérez Del Río
- Marian Smoluchowski Institute of Physics, Jagiellonian University, 31-348 Cracow, Poland
- Center for Theranostics, Jagiellonian University, 31-348 Cracow, Poland
| | - Sushil Sharma
- Marian Smoluchowski Institute of Physics, Jagiellonian University, 31-348 Cracow, Poland
- Center for Theranostics, Jagiellonian University, 31-348 Cracow, Poland
| | - Shivani Shivani
- Marian Smoluchowski Institute of Physics, Jagiellonian University, 31-348 Cracow, Poland
- Center for Theranostics, Jagiellonian University, 31-348 Cracow, Poland
| | - Magdalena Skurzok
- Marian Smoluchowski Institute of Physics, Jagiellonian University, 31-348 Cracow, Poland
- Center for Theranostics, Jagiellonian University, 31-348 Cracow, Poland
- INFN, National Laboratory of Frascati, 00044 Frascati, Italy
| | - Ewa Łucja Stępień
- Marian Smoluchowski Institute of Physics, Jagiellonian University, 31-348 Cracow, Poland
- Center for Theranostics, Jagiellonian University, 31-348 Cracow, Poland
| | - Faranak Tayefi
- Marian Smoluchowski Institute of Physics, Jagiellonian University, 31-348 Cracow, Poland
- Center for Theranostics, Jagiellonian University, 31-348 Cracow, Poland
| | - Paweł Moskal
- Marian Smoluchowski Institute of Physics, Jagiellonian University, 31-348 Cracow, Poland
- Center for Theranostics, Jagiellonian University, 31-348 Cracow, Poland
| |
Collapse
|
37
|
Barrientos L, Borja-Lloret M, Casaña J, Hueso-González F, Ros A, Roser J, Senra C, Solaz C, Viegas R, Llosá G. System characterization and performance studies with MACACO III Compton camera. Radiat Phys Chem Oxf Engl 1993 2023. [DOI: 10.1016/j.radphyschem.2023.110922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
38
|
Joya M, Nedaie HA, Geraily G, Rezaei H, Bromand A, Ghorbani M, Sheikhzadeh P. Investigation of TG-43 Dosimetric Parameters for 192Ir Brachytherapy Source Using GATE Monte Carlo Code. J Med Phys 2023; 48:268-273. [PMID: 37969149 PMCID: PMC10642593 DOI: 10.4103/jmp.jmp_41_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/29/2023] [Accepted: 06/21/2023] [Indexed: 11/17/2023] Open
Abstract
Purpose According to the revised Task Group number 43 recommendations, a brachytherapy source must be validated against a similar or identical source before its clinical application. The purpose of this investigation is to verify the dosimetric data of the high dose rate (HDR) BEBIG 192Ir source (Ir2.A85-2). Materials and Methods The HDR 192Ir encapsulated seed was simulated and its main dosimetric data were calculated using Geant4 Application for Tomographic Emission (GATE) simulation code. Cubic cells were used for the calculation of dose rate constant and radial dose function while for anisotropy function ring cells were used. DoseActors were simulated and attached to the respective cells to obtain the required data. Results The dose rate constant was obtained as 1.098 ± 0.003 cGy.h - 1.U - 1, differing by 1.0% from the reference value reported by Granero et al. Similarly, the calculated values for radial dose and anisotropy functions presented good agreement with the results obtained by Granero et al. Conclusion The results of this study suggest that the GATE Monte Carlo code is a valid toolkit for benchmarking brachytherapy sources and can be used for brachytherapy simulation-based studies and verification of brachytherapy treatment planning systems.
Collapse
Affiliation(s)
- Musa Joya
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran, Iran
- Department of Radiology, Kabul University of Medical Sciences, Kabul, Afghanistan
| | - Hassan Ali Nedaie
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran, Iran
| | - Ghazale Geraily
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran, Iran
| | - Hadi Rezaei
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran, Iran
- Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Awaz Bromand
- Department of Physics, Ghor Institute of Higher Education, Ghor, Afghanistan
| | - Mahdi Ghorbani
- Department of Biomedical Engineering and Medical Physics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Peyman Sheikhzadeh
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran, Iran
- Department of Nuclear Medicine, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
39
|
Marquis H, Willowson KP, Schmidtlein CR, Bailey DL. Investigation and optimization of PET-guided SPECT reconstructions for improved radionuclide therapy dosimetry estimates. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2023; 3:1124283. [PMID: 39380952 PMCID: PMC11460090 DOI: 10.3389/fnume.2023.1124283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/25/2023] [Indexed: 10/10/2024]
Abstract
Introduction To investigate and optimize the SPECTRE (Single Photon Emission Computed Theranostic REconstruction) reconstruction approach, using the hybrid kernelised expectation maximization (HKEM) algorithm implemented in the software for tomographic image reconstruction (STIR) software library, and to demonstrate the feasibility of performing algorithm exploration and optimization in 2D. Optimal SPECTRE parameters were investigated for the purpose of improving SPECT-based radionuclide therapy (RNT) dosimetry estimates. Materials and Methods Using the NEMA IEC body phantom as the test object, SPECT data were simulated to model an early and late imaging time point following a typical therapeutic dose of 8 GBq of 177Lu. A theranostic 68Ga PET-prior was simulated for the SPECTRE reconstructions. The HKEM algorithm parameter space was investigated for SPECT-unique and PET-SPECT mutual features to characterize optimal SPECTRE parameters for the simulated data. Mean and maximum bias, coefficient of variation (COV %), recovery, SNR and root-mean-square error (RMSE) were used to facilitate comparisons between SPECTRE reconstructions and OSEM reconstructions with resolution modelling (OSEM_RM). 2D reconstructions were compared to those performed in 3D in order to evaluate the utility of accelerated algorithm optimization in 2D. Segmentation accuracy was evaluated using a 42% fixed threshold (FT) on the 3D reconstructed data. Results SPECTRE parameters that demonstrated improved image quality and quantitative accuracy were determined through investigation of the HKEM algorithm parameter space. OSEM_RM and SPECTRE reconstructions performed in 2D and 3D were qualitatively and quantitatively similar, with SPECTRE showing an average reduction in background COV % by a factor of 2.7 and 3.3 for the 2D case and 3D case respectively. The 42% FT analysis produced an average % volume difference from ground truth of 158% and 26%, for the OSEM_RM and SPECTRE reconstructions, respectively. Conclusions The SPECTRE reconstruction approach demonstrates significant potential for improved SPECT image quality, leading to more accurate RNT dosimetry estimates when conventional segmentation methods are used. Exploration and optimization of SPECTRE benefited from both fast reconstruction times afforded by first considering the 2D case. This is the first in-depth exploration of the SPECTRE reconstruction approach, and as such, it reveals several insights for reconstructing SPECT data using PET side information.
Collapse
Affiliation(s)
- Harry Marquis
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Institute of Medical Physics, University of Sydney, Sydney, NSW, Australia
| | - Kathy P. Willowson
- Institute of Medical Physics, University of Sydney, Sydney, NSW, Australia
- Department of Nuclear Medicine, Royal North Shore Hospital, Sydney, NSW, Australia
| | - C. Ross Schmidtlein
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Dale L. Bailey
- Department of Nuclear Medicine, Royal North Shore Hospital, Sydney, NSW, Australia
| |
Collapse
|
40
|
Pointon JL, Wen T, Tugwell-Allsup J, Sújar A, Létang JM, Vidal FP. Simulation of X-ray projections on GPU: Benchmarking gVirtualXray with clinically realistic phantoms. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 234:107500. [PMID: 37030136 DOI: 10.1016/j.cmpb.2023.107500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 03/09/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND AND OBJECTIVES This study provides a quantitative comparison of images created using gVirtualXray (gVXR) to both Monte Carlo (MC) and real images of clinically realistic phantoms. gVirtualXray is an open-source framework that relies on the Beer-Lambert law to simulate X-ray images in realtime on a graphics processor unit (GPU) using triangular meshes. METHODS Images are generated with gVirtualXray and compared with a corresponding ground truth image of an anthropomorphic phantom: (i) an X-ray projection generated using a Monte Carlo simulation code, (ii) real digitally reconstructed radiographs (DRRs), (iii) computed tomography (CT) slices, and (iv) a real radiograph acquired with a clinical X-ray imaging system. When real images are involved, the simulations are used in an image registration framework so that the two images are aligned. RESULTS The mean absolute percentage error (MAPE) between the images simulated with gVirtualXray and MC is 3.12%, the zero-mean normalised cross-correlation (ZNCC) is 99.96% and the structural similarity index (SSIM) is 0.99. The run-time is 10 days for MC and 23 ms with gVirtualXray. Images simulated using surface models segmented from a CT scan of the Lungman chest phantom were similar to (i) DRRs computed from the CT volume and (ii) an actual digital radiograph. CT slices reconstructed from images simulated with gVirtualXray were comparable to the corresponding slices of the original CT volume. CONCLUSIONS When scattering can be ignored, accurate images that would take days using MC can be generated in milliseconds with gVirtualXray. This speed of execution enables the use of repetitive simulations with varying parameters, e.g. to generate training data for a deep-learning algorithm, and to minimise the objective function of an optimisation problem in image registration. The use of surface models enables the combination of X-ray simulation with real-time soft-tissue deformation and character animation, which can be deployed in virtual reality applications.
Collapse
Affiliation(s)
- Jamie Lea Pointon
- School of Computer Science & Electronic Engineering, Bangor University, UK
| | - Tianci Wen
- School of Computer Science & Electronic Engineering, Bangor University, UK
| | - Jenna Tugwell-Allsup
- Radiology Department, Betsi Cadwaladr University Health Board (BCUHB), North Wales, Ysbyty Gwynedd, UK
| | - Aaron Sújar
- Department of Computer Science, Universidad Rey Juan Carlos, Mostoles, Spain; School of Computer Science & Electronic Engineering, Bangor University, UK
| | - Jean Michel Létang
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1294, Lyon, F-69373, France
| | | |
Collapse
|
41
|
Strugari M, Falcon C, Erlandsson K, Hutton BF, Brewer K, Thielemans K. Integration of advanced 3D SPECT modelling for pinhole collimators into the open-source STIR framework. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2023; 3:1134774. [PMID: 39380953 PMCID: PMC11459977 DOI: 10.3389/fnume.2023.1134774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/23/2023] [Indexed: 10/10/2024]
Abstract
Single-photon emission computed tomography (SPECT) systems with pinhole collimators are becoming increasingly important in clinical and preclinical nuclear medicine investigations as they can provide a superior resolution-sensitivity trade-off compared to conventional parallel-hole and fanbeam collimators. Previously, open-source software did not exist for reconstructing tomographic images from pinhole-SPECT datasets. A 3D SPECT system matrix modelling library specific for pinhole collimators has recently been integrated into STIR, an open-source software package for tomographic image reconstruction. The pinhole-SPECT library enables corrections for attenuation and the spatially variant collimator-detector response by incorporating their effects into the system matrix. Attenuation correction can be calculated with a simple single line of response or a full model. The spatially variant collimator-detector response can be modelled with a point spread function and depth of interaction corrections for increased system matrix accuracy. In addition, improvements to computational speed and memory requirements can be made with image masking. This work demonstrates the flexibility and accuracy of STIR's support for pinhole-SPECT datasets using measured and simulated single-pinhole SPECT data from which reconstructed images were analysed quantitatively and qualitatively. The extension of the open-source STIR project with advanced pinhole-SPECT modelling will enable the research community to study the impact of pinhole collimators in several SPECT imaging scenarios and with different scanners.
Collapse
Affiliation(s)
- Matthew Strugari
- Biomedical MRI Research Laboratory, IWK Health Centre, Halifax, NS, Canada
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS, Canada
| | - Carles Falcon
- Neuroimaging Group, Barcelonaßeta Brain Research Center, Barcelona, Spain
- Institute of Nuclear Medicine, University College London, London, United Kingdom
| | - Kjell Erlandsson
- Institute of Nuclear Medicine, University College London, London, United Kingdom
| | - Brian F. Hutton
- Institute of Nuclear Medicine, University College London, London, United Kingdom
| | - Kimberly Brewer
- Biomedical MRI Research Laboratory, IWK Health Centre, Halifax, NS, Canada
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS, Canada
- Department of Diagnostic Radiology, Dalhousie University, Halifax, NS, Canada
| | - Kris Thielemans
- Institute of Nuclear Medicine, University College London, London, United Kingdom
- Centre for Medical Image Computing, University College London, London, United Kingdom
| |
Collapse
|
42
|
He X, Trigila C, Ariño-Estrada G, Roncali E. Potential of Depth-of-Interaction-Based Detection Time Correction in Cherenkov Emitter Crystals for TOF-PET. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2023; 7:233-240. [PMID: 36994147 PMCID: PMC10042439 DOI: 10.1109/trpms.2022.3226950] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cherenkov light can improve the timing resolution of Positron Emission Tomography (PET) radiation detectors, thanks to its prompt emission. Coincidence time resolutions (CTR) of ~30 ps were recently reported when using 3.2 mm-thick Cherenkov emitters. However, sufficient detection efficiency requires thicker crystals, causing the timing resolution to be degraded by the optical propagation inside the crystal. We report on depth-of-interaction (DOI) correction to mitigate the time-jitter due to the photon time spread in Cherenkov-based radiation detectors. We simulated the Cherenkov and scintillation light generation and propagation in 3 × 3 mm2 lead fluoride, lutetium oxyorthosilicate, bismuth germanate, thallium chloride, and thallium bromide. Crystal thicknesses varied from 9 to 18 mm with a 3-mm step. A DOI-based time correction showed a 2-to-2.5-fold reduction of the photon time spread across all materials and thicknesses. Results showed that highly refractive crystals, though producing more Cherenkov photons, were limited by an experimentally obtained high-cutoff wavelength and refractive index, restricting the propagation and extraction of Cherenkov photons mainly emitted at shorter wavelengths. Correcting the detection time using DOI information shows a high potential to mitigate the photon time spread. These simulations highlight the complexity of Cherenkov-based detectors and the competing factors in improving timing resolution.
Collapse
Affiliation(s)
- Xuzhi He
- Department of Biomedical Engineering at the University of California Davis, Davis, CA 95616 USA
| | - Carlotta Trigila
- Department of Biomedical Engineering at the University of California Davis, Davis, CA 95616 USA
| | - Gerard Ariño-Estrada
- Department of Biomedical Engineering at the University of California Davis, Davis, CA 95616 USA
| | - Emilie Roncali
- Department of Biomedical Engineering at the University of California Davis, Davis, CA 95616 USA
- Department of Radiology at University of California Davis, Sacramento, CA 95817 USA
| |
Collapse
|
43
|
Vergnaud L, Robert A, Baudier T, Parisse-Di Martino S, Boissard P, Rit S, Badel JN, Sarrut D. Dosimetric impact of 3D motion-compensated SPECT reconstruction for SIRT planning. EJNMMI Phys 2023; 10:8. [PMID: 36749446 PMCID: PMC9905464 DOI: 10.1186/s40658-023-00525-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/11/2023] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND In selective internal radiation therapy, 99mTc SPECT images are used to optimize patient treatment planning, but they are affected by respiratory motion. In this study, we evaluated on patient data the dosimetric impact of motion-compensated SPECT reconstruction on several volumes of interest (VOI), on the tumor-to-normal liver (TN) ratio and on the activity to be injected. METHODS Twenty-nine patients with liver cancer or hepatic metastases treated by radioembolization were included in this study. The biodistribution of 90Y is assumed to be the same as that of 99mTc when predictive dosimetry is implemented. A total of 31 99mTc SPECT images were acquired and reconstructed with two methods: conventional OSEM (3D) and motion-compensated OSEM (3Dcomp). Seven VOI (liver, lungs, tumors, perfused liver, hepatic reserve, healthy perfused liver and healthy liver) were delineated on the CT or obtained by thresholding SPECT images followed by Boolean operations. Absorbed doses were calculated for each reconstruction using Monte Carlo simulations. Percentages of dose difference (PDD) between 3Dcomp and 3D reconstructions were estimated as well as the relative differences for TN ratio and activities to be injected. The amplitude of movement was determined with local rigid registration of the liver between the 3Dcomp reconstructions of the extreme phases of breathing. RESULTS The mean amplitude of the liver was 9.5 ± 2.7 mm. Medians of PDD were closed to zero for all VOI except for lungs (6.4%) which means that the motion compensation overestimates the absorbed dose to the lungs compared to the 3D reconstruction. The smallest lesions had higher PDD than the largest ones. Between 3D and 3Dcomp reconstructions, means of differences in lung dose and TN ratio were not statistically significant, but in some cases these differences exceed 1 Gy (4/31) and 8% (2/31). The absolute differences in activity were on average 3.1% ± 5.1% and can reach 22.8%. CONCLUSION The correction of respiratory motion mainly impacts the lung and tumor doses but only for some patients. The largest dose differences are observed for the smallest lesions.
Collapse
Affiliation(s)
- Laure Vergnaud
- CREATIS; CNRS UMR 5220; INSERM U 1044; Université de Lyon; INSA-Lyon, Université Lyon 1, Lyon, France. .,Centre de Lutte Contre Le Cancer Léon Bérard, Lyon, France.
| | - Antoine Robert
- grid.7849.20000 0001 2150 7757CREATIS; CNRS UMR 5220; INSERM U 1044; Université de Lyon; INSA-Lyon, Université Lyon 1, Lyon, France
| | - Thomas Baudier
- grid.7849.20000 0001 2150 7757CREATIS; CNRS UMR 5220; INSERM U 1044; Université de Lyon; INSA-Lyon, Université Lyon 1, Lyon, France ,grid.418116.b0000 0001 0200 3174Centre de Lutte Contre Le Cancer Léon Bérard, Lyon, France
| | | | - Philippe Boissard
- grid.418116.b0000 0001 0200 3174Centre de Lutte Contre Le Cancer Léon Bérard, Lyon, France
| | - Simon Rit
- grid.7849.20000 0001 2150 7757CREATIS; CNRS UMR 5220; INSERM U 1044; Université de Lyon; INSA-Lyon, Université Lyon 1, Lyon, France
| | - Jean-Noël Badel
- grid.418116.b0000 0001 0200 3174Centre de Lutte Contre Le Cancer Léon Bérard, Lyon, France
| | - David Sarrut
- grid.7849.20000 0001 2150 7757CREATIS; CNRS UMR 5220; INSERM U 1044; Université de Lyon; INSA-Lyon, Université Lyon 1, Lyon, France ,grid.418116.b0000 0001 0200 3174Centre de Lutte Contre Le Cancer Léon Bérard, Lyon, France
| |
Collapse
|
44
|
Maebe J, Vandenberghe S. Effect of detector geometry and surface finish on Cerenkov based time estimation in monolithic BGO detectors. Phys Med Biol 2023; 68. [PMID: 36595325 DOI: 10.1088/1361-6560/acabfd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Objective.Time-of-flight positron emission tomography based on bismuth germanate (BGO) detectors is made possible due to fast emission of Cerenkov light. Only around 17 Cerenkov photons are produced per 511 keV photoelectric event, making high photon collection efficiency crucial for obtaining good time-of-flight capabilities. In this study, we investigate how different lateral and back surface finishes affect the photon collection efficiency and Cerenkov based timing performance in monolithic BGO.Approach.The study is performed using GATE for gamma and optical photon modeling, with surface reflections of photons simulated by the LUT Davis model. We compare for different detector configurations (regarding size and surface finishes) the photon collection efficiency, detection delays of the first few optical photons and coincidence time resolution estimations obtained by modeling the SiPM signals and performing leading edge discrimination. An additional comparison is made to LYSO scintillators and pixelated detectors.Main results.Although Cerenkov photon emission is directional, many high incidence angle Cerenkov photons are emitted due to electron scattering in the crystal. Substituting a polished back (photodetector side) surface for a rough surface increases the collection efficiency of these high angle of incidence photons. Results show that for a monolithic 50 × 50 × 12 mm3BGO detector with reflective side surfaces, this leads to an overall increase in photon collection efficiency of 34%. Cerenkov photon collection efficiency is also improved, resulting in a reduction of the photon detection delays (and the variation therein) of the first few optical photons. This leads to a better coincidence time resolution, primarily achieved by a shortening of the tails in the time-of-flight kernel, with an 18% reduction in full width at tenth maximum.Significance.This study shows the importance of the photon collection efficiency for timing performance in Cerenkov based monolithic detectors, and how it can be improved with different surface finishes.
Collapse
Affiliation(s)
- Jens Maebe
- Department of Electronics and Information Systems, Ghent University, Ghent, Belgium
| | - Stefaan Vandenberghe
- Department of Electronics and Information Systems, Ghent University, Ghent, Belgium
| |
Collapse
|
45
|
Monte-Carlo techniques for radiotherapy applications I: introduction and overview of the different Monte-Carlo codes. JOURNAL OF RADIOTHERAPY IN PRACTICE 2023. [DOI: 10.1017/s1460396923000079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Abstract
Introduction:
The dose calculation plays a crucial role in many aspects of contemporary clinical radiotherapy treatment planning process. It therefore goes without saying that the accuracy of the dose calculation is of very high importance. The gold standard for absorbed dose calculation is the Monte-Carlo algorithm.
Methods:
This first of two papers gives an overview of the main openly available and supported codes that have been widely used for radiotherapy simulations.
Results:
The paper aims to provide an overview of Monte-Carlo in the field of radiotherapy and point the reader in the right direction of work that could help them get started or develop their existing understanding and use of Monte-Carlo algorithms in their practice.
Conclusions:
It also serves as a useful companion to a curated collection of papers on Monte-Carlo that have been published in this journal.
Collapse
|
46
|
Monte-Carlo techniques for radiotherapy applications II: equipment and source modelling, dose calculations and radiobiology. JOURNAL OF RADIOTHERAPY IN PRACTICE 2023. [DOI: 10.1017/s1460396923000080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Abstract
Introduction:
This is the second of two papers giving an overview of the use of Monte-Carlo techniques for radiotherapy applications.
Methods:
The first paper gave an introduction and introduced some of the codes that are available to the user wishing to model the different aspects of radiotherapy treatment. It also aims to serve as a useful companion to a curated collection of papers on Monte-Carlo that have been published in this journal.
Results and Conclusions:
This paper focuses on the application of Monte-Carlo to specific problems in radiotherapy. These include radiotherapy and imaging beam production, brachytherapy, phantom and patient dosimetry, detector modelling and track structure calculations for micro-dosimetry, nano-dosimetry and radiobiology.
Collapse
|
47
|
Caravaca J, Peter R, Yang J, Gunther C, Antonio Camara Serrano J, Nostrand C, Steri V, Seo Y. Comparison and calibration of dose delivered by 137Cs and x-ray irradiators in mice. Phys Med Biol 2022; 67:10.1088/1361-6560/ac9e88. [PMID: 36317316 PMCID: PMC9933773 DOI: 10.1088/1361-6560/ac9e88] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/28/2022] [Indexed: 11/07/2022]
Abstract
Objective.The Office of Radiological Security, U.S. Department of Energy's National Nuclear Security Administration, is implementing a radiological risk reduction program which seeks to minimize or eliminate the use of high activity radiological sources, including137Cs, by replacing them with non-radioisotopic technologies, such as x-ray irradiators. The main goal of this paper is to evaluate the equivalence of the dose delivered by gamma- and x-ray irradiators in mice using experimental measurements and Monte Carlo simulations. We also propose a novel biophantom as anin situdose calibration method.Approach.We irradiated mouse carcasses and 3D-printed mouse biophantoms in a137Cs irradiator (Mark I-68) and an x-ray irradiator (X-Rad320) at three voltages (160 kVp, 225 kVp and 320 kVp) and measured the delivered radiation dose. A Geant4-based Monte Carlo model was developed and validated to provide a comprehensive picture of gamma- and x-ray irradiation in mice.Main Results.Our Monte Carlo model predicts a uniform dose delivered in soft-tissue for all the explored irradiation programs and in agreement with the absolute dose measurements. Our Monte Carlo model shows an energy-dependent difference between dose in bone and in soft tissue that decreases as photon energy increases. Dose rate depends on irradiator and photon energy. We observed a deviation of the measured dose from the target value of up to -9% for the Mark I-68, and up to 35% for the X-Rad320. The dose measured in the 3D-printed phantoms are equivalent to that in the carcasses within 6% uncertainty.Significance.Our results suggest that 320 kVp irradiation is a good candidate to substitute137Cs irradiation barring a few caveats. There is a significant difference between measured and targeted doses for x-ray irradiation that suggests a strong need forin situcalibration, which can be achieved with 3D-printed mouse biophantoms. A dose correction is necessary for bone doses, which can be provided by a Monte Carlo calculation. Finally, the biological implications of the differences in dose rates and dose per photon for the different irradiation methods should be carefully assessed for each small-animal irradiation experiment.
Collapse
Affiliation(s)
- Javier Caravaca
- Physics Research Laboratory, University of California, San Francisco, United States of America
| | - Robin Peter
- Physics Research Laboratory, University of California, San Francisco, United States of America
- Department of Nuclear Engineering, University of California, Berkeley, United States of America
| | - Jaewon Yang
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Chad Gunther
- C&C Irradiator Service, LLC, Washington, DC. United States of America
| | - Juan Antonio Camara Serrano
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, United States of America
| | | | - Veronica Steri
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, United States of America
| | - Youngho Seo
- Physics Research Laboratory, University of California, San Francisco, United States of America
- Department of Nuclear Engineering, University of California, Berkeley, United States of America
| |
Collapse
|
48
|
Herald M, Nicuşan A, Wheldon TK, Seville J, Windows-Yule C. Autonomous digitizer calibration of a Monte Carlo detector model through evolutionary simulation. Sci Rep 2022; 12:19535. [PMID: 36376375 PMCID: PMC9663564 DOI: 10.1038/s41598-022-24022-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Simulating the response of a radiation detector is a modelling challenge due to the stochastic nature of radiation, often complex geometries, and multi-stage signal processing. While sophisticated tools for Monte Carlo simulation have been developed for radiation transport, emulating signal processing and data loss must be accomplished using a simplified model of the electronics called the digitizer. Due to a large number of free parameters, calibrating a digitizer quickly becomes an optimisation problem. To address this, we propose a novel technique by which evolutionary algorithms calibrate a digitizer autonomously. We demonstrate this by calibrating six free parameters in a digitizer model for the ADAC Forte. The accuracy of solutions is quantified via a cost function measuring the absolute percent difference between simulated and experimental coincidence count rates across a robust characterisation data set, including three detector configurations and a range of source activities. Ultimately, this calibration produces a count rate response with 5.8% mean difference to the experiment, improving from 18.3% difference when manually calibrated. Using evolutionary algorithms for model calibration is a notable advancement because this method is novel, autonomous, fault-tolerant, and achieved through a direct comparison of simulation to reality. The software used in this work has been made freely available through a GitHub repository.
Collapse
Affiliation(s)
- Matthew Herald
- School of Chemical Engineering, University of Birmingham, Birmingham, UK.
| | - Andrei Nicuşan
- School of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - Tzany Kokalova Wheldon
- School of Physics and Astronomy, University of Birmingham, Birmingham, UK
- Positron Imaging Centre, University of Birmingham, Birmingham, UK
| | - Jonathan Seville
- School of Chemical Engineering, University of Birmingham, Birmingham, UK
- Positron Imaging Centre, University of Birmingham, Birmingham, UK
| | - Christopher Windows-Yule
- School of Chemical Engineering, University of Birmingham, Birmingham, UK
- Positron Imaging Centre, University of Birmingham, Birmingham, UK
| |
Collapse
|
49
|
Abbani N, Baudier T, Rit S, Franco FD, Okoli F, Jaouen V, Tilquin F, Barateau A, Simon A, de Crevoisier R, Bert J, Sarrut D. Deep learning-based segmentation in prostate radiation therapy using Monte Carlo simulated cone-beam computed tomography. Med Phys 2022; 49:6930-6944. [PMID: 36000762 DOI: 10.1002/mp.15946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 07/28/2022] [Accepted: 08/05/2022] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Segmenting organs in cone-beam CT (CBCT) images would allow to adapt the radiotherapy based on the organ deformations that may occur between treatment fractions. However, this is a difficult task because of the relative lack of contrast in CBCT images, leading to high inter-observer variability. Deformable image registration (DIR) and deep-learning based automatic segmentation approaches have shown interesting results for this task in the past years. However, they are either sensitive to large organ deformations, or require to train a convolutional neural network (CNN) from a database of delineated CBCT images, which is difficult to do without improvement of image quality. In this work, we propose an alternative approach: to train a CNN (using a deep learning-based segmentation tool called nnU-Net) from a database of artificial CBCT images simulated from planning CT, for which it is easier to obtain the organ contours. METHODS Pseudo-CBCT (pCBCT) images were simulated from readily available segmented planning CT images, using the GATE Monte Carlo simulation. CT reference delineations were copied onto the pCBCT, resulting in a database of segmented images used to train the neural network. The studied segmentation contours were: bladder, rectum, and prostate contours. We trained multiple nnU-Net models using different training: (1) segmented real CBCT, (2) pCBCT, (3) segmented real CT and tested on pseudo-CT (pCT) generated from CBCT with cycleGAN, and (4) a combination of (2) and (3). The evaluation was performed on different datasets of segmented CBCT or pCT by comparing predicted segmentations with reference ones thanks to Dice similarity score and Hausdorff distance. A qualitative evaluation was also performed to compare DIR-based and nnU-Net-based segmentations. RESULTS Training with pCBCT was found to lead to comparable results to using real CBCT images. When evaluated on CBCT obtained from the same hospital as the CT images used in the simulation of the pCBCT, the model trained with pCBCT scored mean DSCs of 0.92 ± 0.05, 0.87 ± 0.02, and 0.85 ± 0.04 and mean Hausdorff distance 4.67 ± 3.01, 3.91 ± 0.98, and 5.00 ± 1.32 for the bladder, rectum, and prostate contours respectively, while the model trained with real CBCT scored mean DSCs of 0.91 ± 0.06, 0.83 ± 0.07, and 0.81 ± 0.05 and mean Hausdorff distance 5.62 ± 3.24, 6.43 ± 5.11, and 6.19 ± 1.14 for the bladder, rectum, and prostate contours, respectively. It was also found to outperform models using pCT or a combination of both, except for the prostate contour when tested on a dataset from a different hospital. Moreover, the resulting segmentations demonstrated a clinical acceptability, where 78% of bladder segmentations, 98% of rectum segmentations, and 93% of prostate segmentations required minor or no corrections, and for 76% of the patients, all structures of the patient required minor or no corrections. CONCLUSION We proposed to use simulated CBCT images to train a nnU-Net segmentation model, avoiding the need to gather complex and time-consuming reference delineations on CBCT images.
Collapse
Affiliation(s)
- Nelly Abbani
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, Lyon, France
| | - Thomas Baudier
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, Lyon, France
| | - Simon Rit
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, Lyon, France
| | - Francesca di Franco
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, Lyon, France
| | - Franklin Okoli
- LaTIM, Université de Bretagne Occidentale, Inserm, Brest, France
| | - Vincent Jaouen
- LaTIM, Université de Bretagne Occidentale, Inserm, Brest, France
| | | | - Anaïs Barateau
- Univ Rennes, CLCC Eugène Marquis, Inserm, Rennes, France
| | - Antoine Simon
- Univ Rennes, CLCC Eugène Marquis, Inserm, Rennes, France
| | | | - Julien Bert
- LaTIM, Université de Bretagne Occidentale, Inserm, Brest, France
| | - David Sarrut
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, Lyon, France
| |
Collapse
|
50
|
Trigila C, Roncali E. Effect of crystal-photodetector interface extraction efficiency on Cerenkov photons' detection time. FRONTIERS IN PHYSICS 2022; 10:1028293. [PMID: 39717486 PMCID: PMC11666256 DOI: 10.3389/fphy.2022.1028293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Using Cerenkov photons to improve detector timing resolution in time-of-flight positron emission tomography scanners is promising since they constitute most of the signal rising edge. The main challenge in using Cerenkov light is its low yield per photoelectric interaction, which requires optimizing their complex optical transport in the detector. Monte Carlo simulations unlock information unavailable through benchtop measurements and help better understand the Cerenkov photon behavior. Although the first Cerenkov photons are emitted forward, part of the early triggering signal is lost due to poor light extraction at the crystal-photodetector interface. In addition, the electron path in the crystal, that determines the Cerenkov photon direction, is tortuous due to multiple scattering, causing the Cerenkov photons emitted after a few scatters to no longer be forward-directed. In this context, the transit time spread in the crystal, highly dependent on the detector geometry, plays a crucial role in the photon detection time. In this work, we performed optical simulations in bismuth germanium oxide using 511 keV gamma with GATE to investigate the optical photons extraction when modifying the index of refraction at the crystal-photodetector interface and the crystal aspect ratio. The mean detection time of the first, second, and third detected optical and Cerenkov photon separately was studied as a function of the total number of Cerenkov detected per event. For each configuration, we calculated the expected mean detection time using the probability of detection. Thinner crystals led to lower expected detection times due to the reduced transit time in the crystal. Reducing the refractive index discontinuity at the crystal-photodetector interface decreased all configurations expected mean detection time values. We showed that it not only improves the optical photons (scintillation and Cerenkov) detection efficiency at the photodetector face but directly ameliorates the probability of detecting the fastest one, reducing the effect of thicker materials and of losing the first detected photon information, both crucial to reduce the detector timing resolution. Thanks to their prompt emission and directionality at emission, Cerenkov photons represent the first detected optical photon in most configurations but increasing their detection efficiency is crucial to detect the fastest one.
Collapse
Affiliation(s)
- Carlotta Trigila
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States
| | - Emilie Roncali
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States
- Department of Radiology, University of California, Davis, Davis, CA, United States
| |
Collapse
|