1
|
Chen Y, Chen F. Co-crosslinking strategy for dual functionalization of small magnetic nanoparticles with redox probes and biological probes. Mikrochim Acta 2024; 191:448. [PMID: 38967796 PMCID: PMC11229446 DOI: 10.1007/s00604-024-06517-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/18/2024] [Indexed: 07/06/2024]
Abstract
Surface functionalization strategy is becoming a crucial bridge from magnetic nanoparticles (MNPs) to their broad bio-application. To realize the multiple functions of MNPs such as magnetic manipulation, target capture, and signal amplification in their use of electrochemical biosensing, co-crosslinking strategy was proposed here to construct dual-functionalized MNPs by combining ultra-sensitive redox moieties and specific biological probes. In this work, MNPs with a TEM size of 10 nm were synthesized by co-precipitation for amination and PEGylation to maintain colloid stability once dispersed in high-ionic-strength buffer (such as phosphate-buffered saline). Then, MNPs@IgG were prepared via the bis(sulfosuccinimidyl) suberate (BS3) cross-linker to conjugate these IgG onto the MNP surface, with a binding efficiency of 73%. To construct dual-functionalized MNPs, these redox probes of ferrocene-NHS (Fc) were co-crosslinked onto the MNP surface, together with IgG, by using BS3. The developed MNPs@Redox@IgG were characterized by SDS‒PAGE to identify IgG binding and by square wave voltammetry (SWV) to validate the redox signal. Additionally, the anti-CD63 antibodies were selected for the development of MNPs@anti-CD63 for use in the bio-testing of exosome sample capture. Therefore, co-crosslinking strategy paved a way to develop dual-functionalized MNPs that can be an aid of their potential utilization in diagnostic assay or electrochemical methods.
Collapse
Affiliation(s)
- Ye Chen
- Huangyan District Center for Disease Control and Prevention, Taizhou, Zhejiang, China
| | - Feixiong Chen
- Centre for BioNano Interactions, School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland.
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90014, Oulu, Finland.
| |
Collapse
|
2
|
Solanki R, Shankar A, Modi U, Patel S. New insights from nanotechnology in SARS-CoV-2 detection, treatment strategy, and prevention. MATERIALS TODAY. CHEMISTRY 2023; 29:101478. [PMID: 36950312 PMCID: PMC9981536 DOI: 10.1016/j.mtchem.2023.101478] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/13/2023] [Accepted: 02/25/2023] [Indexed: 05/14/2023]
Abstract
The recent outbreak of SARS-CoV-2 resulted into the deadly COVID-19 pandemic, which has made a profound impact on mankind and the world health care system. SARS-CoV-2 is mainly transmitted within the population via symptomatic carriers, enters the host cell via ACE2 and TMPSSR2 receptors and damages the organs. The standard diagnostic tests and treatment methods implemented lack required efficiency to beat SARS-CoV-2 in the race of its spreading. The most prominently used diagnostic test,reverse transcription-polymerase chain reaction (a nucleic acid-based method), has limitations including a prolonged time taken to reveal results, limited sensitivity, a high rate of false negative results, and lacking specificity due to a homology with other viruses. Furthermore, as part of the treatment, antiviral drugs such as remdesivir, favipiravir, lopinavir/ritonavir, chloroquine, daclatasvir, atazanavir, and many more have been tested clinically to check their potency for the treatment of SARS-CoV-2 but none of these antiviral drugs are the definitive cure or suitable prophylaxis. Thus, it is always required to combat SARS-CoV-2 spread and infection for a better and precise prognosis. This review answers the above mentioned challenges by employing nanomedicine for the development of improved detection, treatment, and prevention strategies for SARS-CoV-2. In this review, nanotechnology-based detection methods such as colorimetric assays, photothermal biosensors, molecularly imprinted nanoparticles sensors, electrochemical nanoimmunosensors, aptamer-based biosensors have been discussed. Furthermore, nanotechnology-based treatment strategies involving polymeric nanoparticles, metallic nanoparticles, lipid nanoparticles, and nanocarrier-based antiviral siRNA delivery have been depicted. Moreover, SARS-CoV-2 prevention strategies, which include the nanotechnology for upgrading personal protective equipment, facemasks, ocular protection gears, and nanopolymer-based disinfectants, have been also reviewed. This review will provide a one-site informative platform for researchers to explore the crucial role of nanomedicine in managing the COVID-19 curse more effectively.
Collapse
Affiliation(s)
- R Solanki
- School of Life Sciences, Central University of Gujarat, Sector-30, Gandhinagar, 382030, India
| | - A Shankar
- School of Life Sciences, Central University of Gujarat, Sector-30, Gandhinagar, 382030, India
| | - U Modi
- Biomaterials & Biomimetics Laboratory, School of Life Sciences, Central University of Gujarat, Sector-30, Gandhinagar, 382030, India
| | - S Patel
- School of Life Sciences, Central University of Gujarat, Sector-30, Gandhinagar, 382030, India
| |
Collapse
|
3
|
Hatta MHM, Matmin J, Malek NANN, Kamisan FH, Badruzzaman A, Batumalaie K, Ling Lee S, Abdul Wahab R. COVID‐19: Prevention, Detection, and Treatment by Using Carbon Nanotubes‐Based Materials. ChemistrySelect 2023. [DOI: 10.1002/slct.202204615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- Mohd Hayrie Mohd Hatta
- Centre for Research and Development Asia Metropolitan University 81750 Johor Bahru Johor Malaysia
| | - Juan Matmin
- Department of Chemistry Faculty of Science Universiti Teknologi Malaysia 81310 UTM Johor Bahru Johor Malaysia
- Centre for Sustainable Nanomaterials Ibnu Sina Institute for Scientific and Industrial Research Universiti Teknologi Malaysia 81310 UTM Johor Bahru Johor Malaysia
| | - Nik Ahmad Nizam Nik Malek
- Centre for Sustainable Nanomaterials Ibnu Sina Institute for Scientific and Industrial Research Universiti Teknologi Malaysia 81310 UTM Johor Bahru Johor Malaysia
- Department of Biosciences, Faculty of Science Universiti Teknologi Malaysia 81310 UTM Johor Bahru Johor Malaysia
| | - Farah Hidayah Kamisan
- Department of Biomedical Sciences Faculty of Health Sciences Asia Metropolitan University 81750 Johor Bahru Johor Malaysia
| | - Aishah Badruzzaman
- Centre for Foundation, Language and General Studies Asia Metropolitan University 81750 Johor Bahru Johor Malaysia
| | - Kalaivani Batumalaie
- Department of Biomedical Sciences Faculty of Health Sciences Asia Metropolitan University 81750 Johor Bahru Johor Malaysia
| | - Siew Ling Lee
- Department of Chemistry Faculty of Science Universiti Teknologi Malaysia 81310 UTM Johor Bahru Johor Malaysia
- Centre for Sustainable Nanomaterials Ibnu Sina Institute for Scientific and Industrial Research Universiti Teknologi Malaysia 81310 UTM Johor Bahru Johor Malaysia
| | - Roswanira Abdul Wahab
- Department of Chemistry Faculty of Science Universiti Teknologi Malaysia 81310 UTM Johor Bahru Johor Malaysia
| |
Collapse
|
4
|
Hsieh CT, Gu S, Gandomi YA, Fu CC, Sung PY, Juang RS, Chen CC. Employing functionalized graphene quantum dots to combat coronavirus and enterovirus. J Colloid Interface Sci 2023; 630:1-10. [PMID: 36308803 PMCID: PMC9580242 DOI: 10.1016/j.jcis.2022.10.082] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 10/11/2022] [Accepted: 10/16/2022] [Indexed: 11/20/2022]
Abstract
The ongoing COVID-19 (i.e., coronavirus) pandemic continues to adversely affect the human life, economy, and the world's ecosystem. Although significant progress has been made in developing antiviral materials for the coronavirus, much more work is still needed. In this work, N-functionalized graphene quantum dots (GQDs) were designed and synthesized as the antiviral nanomaterial for Feline Coronavirus NTU156 (FCoV NTU156) and Enterovirus 71 (EV71)) with ultra-high inhibition (>99.9%). To prepare the GQD samples, a unique solid-phase microwave-assisted technique was developed and the cell toxicity was established on the H171 and H184 cell lines after 72 h incubation, indicating superior biocompatibility. The surface functionality of GQDs (i.e., the phenolic and amino groups) plays a vital role in interacting with the receptor-binding-domain of the spike protein. It was also found that the addition of polyethylene glycol is advantageous for the dispersion and the adsorption of functionalized GQDs onto the virus surface, leading to an enhanced virus inhibition. The functionality of as-prepared GQD nanomaterials was further confirmed where a functionalized GQD-coated glass was shown to be extremely effective in hindering the virus spread for a relatively long period (>20 h).
Collapse
Affiliation(s)
- Chien-Te Hsieh
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan 32003, Taiwan; Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, TN 37996, United States.
| | - Siyong Gu
- Fujian Provincial Key Laboratory of Functional Materials and Applications, School of Materials Science and Engineering, Xiamen University of Technology, Xiamen 361024, China
| | - Yasser Ashraf Gandomi
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, United States
| | - Chun-Chieh Fu
- Department of Chemical and Materials Engineering, Chang Gung University, Guishan, Taoyuan 33302, Taiwan; Research and Development Division, Gold Carbon Co., Ltd., Taoyuan 320675, Taiwan
| | - Po-Yu Sung
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan 32003, Taiwan
| | - Ruey-Shin Juang
- Department of Chemical and Materials Engineering, Chang Gung University, Guishan, Taoyuan 33302, Taiwan; Division of Nephrology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, Taiwan; Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, Taishan, New Taipei City 24301, Taiwan.
| | - Cheng-Cheung Chen
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei City 23742, Taiwan; Graduate Institute of Medical Science, National Defense Medical Center, Taipei City 11490, Taiwan.
| |
Collapse
|
5
|
Iqbal R, Khan S, Ali HM, Khan M, Wahab S, Khan T. Application of nanomaterials against SARS-CoV-2: An emphasis on their usefulness against emerging variants of concern. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.1060756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Researchers are now looking to nanomaterials to fight serious infectious diseases that cause outbreaks and even pandemics. SARS-CoV-2 brought chaos to almost every walk of life in the past 2 years and has challenged every available treatment method. Although vaccines were developed in no time against it, the most pressing issue was the emergence of variants of concern arising because of the rapidly evolving viral strains. The higher pathogenicity and, in turn, the higher mortality rate of infections caused by these variants renders the existing vaccines less effective and the effort to produce further vaccines a costly endeavor. While several techniques, such as immunotherapy and repurposed pharmaceutical research, are being studied to minimize viral infection, the fundamentals of nanotechnology must also be considered to enhance the anti-SARS-CoV-2 efforts. For instance, silver nanoparticles (AgNPs) have been applied against SARS-CoV-2 effectively. Similarly, nanomaterials have been tested in masks, gloves, and disinfectants to aid in controlling SARS-CoV-2. Nanotechnology has also contributed to diagnoses such as rapid and accurate detection and treatment such as the delivery of mRNA vaccines and other antiviral agents into the body. The development of polymeric nanoparticles has been dubbed a strategy of choice over traditional drugs because of their tunable release kinetics, specificity, and multimodal drug composition. Our article explores the potential of nanomaterials in managing the variants of concern. This will be achieved by highlighting the inherent ability of nanomaterials to act against the virus on fronts such as inhibition of SARS-CoV-2 entry, inhibition of RNA replication in SARS-CoV-2, and finally, inhibition of their release. In this review, a detailed discussion on the potential of nanomaterials in these areas will be tallied with their potential against the current and emerging future variants of concern.
Collapse
|
6
|
Adam T, Dhahi TS, Gopinath SCB, Hashim U. Novel Approaches in Fabrication and Integration of Nanowire for Micro/Nano Systems. Crit Rev Anal Chem 2022; 52:1913-1929. [DOI: 10.1080/10408347.2021.1925523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tijjani Adam
- Faculty of Electronic Engineering Technology, Universiti Malaysia Perlis, Perlis, Malaysia
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, Perlis, Malaysia
| | | | - Subash C. B. Gopinath
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, Perlis, Malaysia
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis, Perlis, Malaysia
| | - Uda Hashim
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, Perlis, Malaysia
| |
Collapse
|
7
|
Bhattacharjee R, Dubey AK, Ganguly A, Bhattacharya B, Mishra YK, Mostafavi E, Kaushik A. State-of-art high-performance Nano-systems for mutated coronavirus infection management: From Lab to Clinic. OPENNANO 2022. [PMCID: PMC9463543 DOI: 10.1016/j.onano.2022.100078] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants made emerging novel coronavirus diseases (COVID-19) pandemic/endemic/or both more severe and difficult to manage due to increased worry about the efficacy and efficiency of present preventative, therapeutic, and sensing measures. To deal with these unexpected circumstances, the development of novel nano-systems with tuneable optical, electrical, magnetic, and morphological properties can lead to novel research needed for (1) COVID-19 infection (anti-microbial systems against SARS-CoV-2), (2) early detection of mutated SARS-CoV-2, and (3) targeted delivery of therapeutics using nano-systems, i.e., nanomedicine. However, there is a knowledge gap in understanding all these nano-biotechnology potentials for managing mutated SARS-CoV-2 on a single platform. To bring up the aspects of nanotechnology to tackle SARS-CoV-2 variants related COVID-19 pandemic, this article emphasizes improvements in the high-performance of nano-systems to combat SARS-CoV-2 strains/variants with a goal of managing COVID-19 infection via trapping, eradication, detection/sensing, and treatment of virus. The potential of state-of-the-art nano-assisted approaches has been demonstrated as an efficient drug delivery systems, viral disinfectants, vaccine productive cargos, anti-viral activity, and biosensors suitable for point-of-care (POC) diagnostics. Furthermore, the process linked with the efficacy of nanosystems to neutralize and eliminate SARS-CoV-2 is extensively highligthed in this report. The challenges and opportunities associated with managing COVID-19 using nanotechnology as part of regulations are also well-covered. The outcomes of this review will help researchers to design, investigate, and develop an appropriate nano system to manage COVID-19 infection, with a focus on the detection and eradication of SARS-CoV-2 and its variants. This article is unique in that it discusses every aspect of high-performance nanotechnology for ideal COVID pandemic management.
Collapse
|
8
|
Rastogi A, Singh A, Naik K, Mishra A, Chaudhary S, Manohar R, Singh Parmar A. A systemic review on liquid crystals, nanoformulations and its application for detection and treatment of SARS - CoV- 2 (COVID - 19). J Mol Liq 2022; 362:119795. [PMID: 35832289 PMCID: PMC9265145 DOI: 10.1016/j.molliq.2022.119795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 01/31/2023]
Abstract
The COVID-19 is a pandemic caused by the SARS-CoV-2 virus, has instigated major health problems and prompted WHO to proclaim a worldwide medical emergency. The knowledge of SARS-CoV-2 fundamental structure, aetiology, its entrance mechanism, membrane hijacking and immune response against the virus, are important parameters to develop effective vaccines and medicines. Liquid crystals integrated nano-techniques and various nanoformulations were applied to tackle the severity of the virus. It was reported that nanoformulations have helped to enhance the effectiveness of presently accessible antiviral medicines or to elicit a fast immunological response against COVID-19 virus. Applications of liquid crystals, nanostructures, nanoformulations and nanotechnology in diagnosis, prevention, treatment and tailored vaccine administration against COVID-19 which will help in establishing the framework for a successful pandemic combat are reviewed. This review also focuses on limitations associated with liquid crystal-nanotechnology based systems and suggests the possible ways to address these limitations. Also, topical advancements in the ground of liquid crystals and nanostructures established diagnostics (nanosensor/biosensor) are discussed in detail.
Collapse
Affiliation(s)
- Ayushi Rastogi
- Liquid Crystal Laboratory, Department of Physics, University of Lucknow, Lucknow 226007, Uttar Pradesh, India
- Department of Humanity and Applied Sciences (Physics), SMS College of Engineering, Institute of Technology, Lucknow 226001, Uttar Pradesh, India
| | - Abhilasha Singh
- Department of Physics, J.S.S Academy of Technical Education, Bangalore 560060, Karnataka, India
| | - Kaustubh Naik
- Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Archana Mishra
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay - 400085, Mumbai, India
| | - Shilpi Chaudhary
- Department of Applied Sciences, Punjab Engineering College (Deemed to be University), Chandigarh 160012, Punjab, India
| | - Rajiv Manohar
- Liquid Crystal Laboratory, Department of Physics, University of Lucknow, Lucknow 226007, Uttar Pradesh, India
| | | |
Collapse
|
9
|
Khaksarinejad R, Arabpour Z, RezaKhani L, Parvizpour F, Rasmi Y. Biomarker based biosensors: An opportunity for diagnosis of COVID-19. Rev Med Virol 2022; 32:e2356. [PMID: 35478470 PMCID: PMC9111147 DOI: 10.1002/rmv.2356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/16/2022] [Accepted: 03/26/2022] [Indexed: 01/08/2023]
Abstract
Early diagnosis and treatment of diseases are crucial research areas of human health. For early diagnosis, one method that has proven efficient is the detection of biomarkers which can provide real-time and accurate biological information. Most biomarker detection is currently carried out at localised dedicated laboratories using large and automated analysers, increasing waiting time and costs. Smaller, faster, and cheaper devices could potentially replace these time-consuming laboratory analyses and make analytical results available as point-of-care diagnostics. Innovative biosensor-based strategies could allow biomarkers to be tested reliably in a decentralised setting. Early diagnosis of COVID-19 patients has a key role in order to use quarantine and treatment strategies in a timely manner. Raised levels of several biomarkers in COVID-19 patients are associated with respiratory infections or dysfunction of various organs. Through clinical studies of COVID-19 patient biomarkers such as ferritin, Interleukins, albumin and …are found to reveals significant differences in their excretion ranges from healthy patients and patients with SARS-CoV-2, in addition to the development of biomarkers based biosensor such as stated biomarkers can be used and to investigate more specific biomarkers further proteomic analysis can be performed. This review presents several biomarker alterations in COVID-19 patients such as salivary, circulatory, coagulation, cardiovascular, renal, liver, C-reactive protein (CRP), immunological and inflammatory biomarkers. Also, biomarker sensors based on electrochemical, optical, and lateral flow characteristics which have potential applications for SARS-COV-2 in the recent COVID-19 pandemic, will be discussed.
Collapse
Affiliation(s)
- Reza Khaksarinejad
- Department of ToxicologyFaculty of Medical SciencesTarbiat Modares UniversityTehranIran
| | - Zohreh Arabpour
- Iranian Tissue Bank and Research CenterTehran University of Medical SciencesTehranIran
| | - Leila RezaKhani
- Fertility and Infertility Research CenterHealth Technology InstituteKermanshah University of Medical SciencesKermanshahIran
- Department of Tissue EngineeringSchool of MedicineKermanshah University of Medical SciencesKermanshahIran
| | - Farzad Parvizpour
- Iranian Tissue Bank and Research CenterTehran University of Medical SciencesTehranIran
| | - Yousef Rasmi
- Department of BiochemistryFaculty of MedicineUrmia University of Medical SciencesUrmiaIran
- Cellular and Molecular Research CenterUrmia University of Medical SciencesUrmiaIran
| |
Collapse
|
10
|
Alqahtani MS, Abbas M, Abdulmuqeet M, Alqahtani AS, Alshahrani MY, Alsabaani A, Ramalingam M. Forecasting the Post-Pandemic Effects of the SARS-CoV-2 Virus Using the Bullwhip Phenomenon Alongside Use of Nanosensors for Disease Containment and Cure. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5078. [PMID: 35888544 PMCID: PMC9317545 DOI: 10.3390/ma15145078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022]
Abstract
The COVID-19 pandemic has the tendency to affect various organizational paradigm alterations, which civilization hasyet to fully comprehend. Personal to professional, individual to corporate, and across most industries, the spectrum of transformations is vast. Economically, the globe has never been more intertwined, and it has never been subjected to such widespread disruption. While many people have felt and acknowledged the pandemic's short-term repercussions, the resultant paradigm alterations will certainly have long-term consequences with an unknown range and severity. This review paper aims at acknowledging various approaches for the prevention, detection, and diagnosis of the SARS-CoV-2 virus using nanomaterials as a base material. A nanostructure is a material classification based on dimensionality, in proportion to the characteristic diameter and surface area. Nanoparticles, quantum dots, nanowires (NW), carbon nanotubes (CNT), thin films, and nanocomposites are some examples of various dimensions, each acting as a single unit, in terms of transport capacities. Top-down and bottom-up techniques are used to fabricate nanomaterials. The large surface-to-volume ratio of nanomaterials allows one to create extremely sensitive charge or field sensors (electrical sensors, chemical sensors, explosives detection, optical sensors, and gas sensing applications). Nanowires have potential applications in information and communication technologies, low-energy lightning, and medical sensors. Carbon nanotubes have the best environmental stability, electrical characteristics, and surface-to-volume ratio of any nanomaterial, making them ideal for bio-sensing applications. Traditional commercially available techniques have focused on clinical manifestations, as well as molecular and serological detection equipment that can identify the SARS-CoV-2 virus. Scientists are expressing a lot of interest in developing a portable and easy-to-use COVID-19 detection tool. Several unique methodologies and approaches are being investigated as feasible advanced systems capable of meeting the demands. This review article attempts to emphasize the pandemic's aftereffects, utilising the notion of the bullwhip phenomenon's short-term and long-term effects, and it specifies the use of nanomaterials and nanosensors for detection, prevention, diagnosis, and therapy in connection to the SARS-CoV-2.
Collapse
Affiliation(s)
- Mohammed S. Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia;
- BioImaging Unit, Space Research Centre, Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia;
- Computers and Communications Department, College of Engineering, Delta University for Science and Technology, Gamasa 35712, Egypt
| | - Mohammed Abdulmuqeet
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia;
| | - Abdullah S. Alqahtani
- Pathology and Clinical Laboratory Medicine Administration (PCLMA), King Fahad Medical City, Riyadh 59046, Saudi Arabia;
| | - Mohammad Y. Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia;
| | - Abdullah Alsabaani
- Department of Family and Community Medicine, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia;
| | - Murugan Ramalingam
- Institute of Tissue Regeneration Engineering, Department of Nanobiomedical Science, BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea;
- School of Basic Medical Sciences, Chengdu University, Chengdu 610106, China
| |
Collapse
|
11
|
Loutfy SA, Abdel-Salam AI, Moatasim Y, Gomaa MR, Abdel Fattah NF, Emam MH, Ali F, ElShehaby HA, Ragab EA, Alam El-Din HM, Mostafa A, Ali MA, Kasry A. Antiviral activity of chitosan nanoparticles encapsulating silymarin (Sil-CNPs) against SARS-CoV-2 ( in silico and in vitro study). RSC Adv 2022; 12:15775-15786. [PMID: 35685696 PMCID: PMC9132606 DOI: 10.1039/d2ra00905f] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/19/2022] [Indexed: 02/06/2023] Open
Abstract
To develop a specific treatment against COVID-19, we investigated silymarin-chitosan nanoparticles (Sil-CNPs) as an antiviral agent against SARS-CoV-2 using in silico and in vitro approaches. Docking of Sil and CNPs was carried out against SARS-CoV-2 spike protein using AutoDock Vina. CNPs and Sil-CNPs were prepared by the ionic gelation method and characterized by TEM, FT-IR, zeta analysis, and the membrane diffusion method to determine the drug release profile. Cytotoxicity was tested on both Vero and Vero E6 cell lines using the MTT assay. Minimum binding energies with spike protein and ACE2 were -6.6, and -8.0 kcal mol-1 for CNPs, and -8.9, and -9.7 kcal mol-1 for Sil, respectively, compared to -6.6 and -8.4 kcal mol-1 respectively for remdesivir (RMV). CNPs and Sil-CNPs were prepared at sizes of 29 nm and 82 nm. The CC50 was 135, 35, and 110 μg mL-1 for CNPs, Sil, and Sil-CNPs, respectively, on Vero E6. The IC50 was determined at concentrations of 0.9, 12 and 0.8 μg mL-1 in virucidal/replication assays for CNPs, Sil, and Sil-CNPs respectively using crystal violet. These results indicate antiviral activity of Sil-CNPs against SARS-CoV-2.
Collapse
Affiliation(s)
- Samah A Loutfy
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute (NCI), Cairo University Fom El-Khalig 11796 Cairo Egypt
- Nanotechnology Research Center (NTRC), The British University in Egypt El-Shorouk City, Suez Desert Road P. O. Box 43 Cairo 11837 Egypt
| | - Ahmed I Abdel-Salam
- Nanotechnology Research Center (NTRC), The British University in Egypt El-Shorouk City, Suez Desert Road P. O. Box 43 Cairo 11837 Egypt
| | - Yassmin Moatasim
- Center of Scientific Excellence for Influenza Viruses, National Research Centre (NRC) Giza 12622 Egypt
| | - Mokhtar R Gomaa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre (NRC) Giza 12622 Egypt
| | - Nasra F Abdel Fattah
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute (NCI), Cairo University Fom El-Khalig 11796 Cairo Egypt
| | - Merna H Emam
- Nanotechnology Research Center (NTRC), The British University in Egypt El-Shorouk City, Suez Desert Road P. O. Box 43 Cairo 11837 Egypt
| | - Fedaa Ali
- Nanotechnology Research Center (NTRC), The British University in Egypt El-Shorouk City, Suez Desert Road P. O. Box 43 Cairo 11837 Egypt
| | | | - Eman A Ragab
- Biochemistry Dept, Faculty of Science, Cairo University Egypt
| | - Hanaa M Alam El-Din
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute (NCI), Cairo University Fom El-Khalig 11796 Cairo Egypt
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre (NRC) Giza 12622 Egypt
| | - Mohamed A Ali
- Center of Scientific Excellence for Influenza Viruses, National Research Centre (NRC) Giza 12622 Egypt
| | - Amal Kasry
- Nanotechnology Research Center (NTRC), The British University in Egypt El-Shorouk City, Suez Desert Road P. O. Box 43 Cairo 11837 Egypt
| |
Collapse
|
12
|
Mallakpour S, Behranvand V, Hussain CM. Worldwide fight against COVID-19 using nanotechnology, polymer science, and 3D printing technology. Polym Bull (Berl) 2022; 80:165-183. [PMID: 35106016 PMCID: PMC8794596 DOI: 10.1007/s00289-021-04006-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 01/17/2023]
Abstract
One of the lethal illnesses that humanity has ever seen is COVID-19 irrefutably. The speed of virus spread is high and happens through polluted surfaces, respiratory droplets, and bodily fluids. It was found that without an efficient vaccine or specific treatment using personal protective equipment, preventing contamination of hands, and social distancing are the best ways to stay safe during the present pandemic. In this line, polymers, nanotechnology, and additive manufacturing, or 3D printing technology have been considered to probe, sense, and treat COVID-19. All aforementioned fields showed undeniable roles during the COVID-19 pandemic, which their contributions have been reviewed here. Finally, the effect of COVID-19 on the environment, alongside its positive and negative effects has been mentioned.
Collapse
Affiliation(s)
- Shadpour Mallakpour
- Organic Polymer Chemistry Research Laboratory, Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111 Islamic Republic of Iran
| | - Vajiheh Behranvand
- Organic Polymer Chemistry Research Laboratory, Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111 Islamic Republic of Iran
| | | |
Collapse
|
13
|
Feng T, Nie C, Peng P, Lu H, Wang T, Li P, Huang W. Nanoagent-based theranostic strategies against human coronaviruses. NANO RESEARCH 2022; 15:3323-3337. [PMID: 35003529 PMCID: PMC8727479 DOI: 10.1007/s12274-021-3949-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/21/2021] [Accepted: 10/24/2021] [Indexed: 05/08/2023]
Abstract
The emergence of human coronaviruses (HCoVs), especially the current pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), engender severe threats to public health globally. Despite the outstanding breakthrough of new vaccines and therapeutic medicines in the past years, HCoVs still undergo unpredictable mutations, thus demanding more effective diagnostic and therapeutic strategies. Benefitting from the unique physicochemical properties and multiple nano-bio interactions, nanomaterials hold promising potential to fight against various HCoVs, either by providing sensitive and economic nanosensors for rapid viral detection, or by developing translatable nanovaccines and broad-spectrum nanomedicines for HCoV treatment. Herein, we systemically summarized the recent applications of nanoagents in diagnostics and therapeutics for HCoV-induced diseases, as well as their limitations and perspectives against HCoV variants. We believe this review will promote the design of innovative theranostic nanoagents for the current and future HCoV-caused pandemics.
Collapse
Affiliation(s)
- Tao Feng
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Ningbo Institute & Chongqing Technology Innovation Center, Northwestern Polytechnical University (NPU), Xi'an, 710072 China
| | - Chaofan Nie
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Ningbo Institute & Chongqing Technology Innovation Center, Northwestern Polytechnical University (NPU), Xi'an, 710072 China
| | - Pandi Peng
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Ningbo Institute & Chongqing Technology Innovation Center, Northwestern Polytechnical University (NPU), Xi'an, 710072 China
| | - Hui Lu
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Ningbo Institute & Chongqing Technology Innovation Center, Northwestern Polytechnical University (NPU), Xi'an, 710072 China
| | - Tengjiao Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Ningbo Institute & Chongqing Technology Innovation Center, Northwestern Polytechnical University (NPU), Xi'an, 710072 China
| | - Peng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Ningbo Institute & Chongqing Technology Innovation Center, Northwestern Polytechnical University (NPU), Xi'an, 710072 China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Ningbo Institute & Chongqing Technology Innovation Center, Northwestern Polytechnical University (NPU), Xi'an, 710072 China
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816 China
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023 China
| |
Collapse
|
14
|
Mbunge E, Muchemwa B, Jiyane S, Batani J. Sensors and healthcare 5.0: transformative shift in virtual care through emerging digital health technologies. GLOBAL HEALTH JOURNAL 2021. [DOI: 10.1016/j.glohj.2021.11.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
15
|
Pouresmaieli M, Ekrami E, Akbari A, Noorbakhsh N, Moghadam NB, Mamoudifard M. A comprehensive review on efficient approaches for combating coronaviruses. Biomed Pharmacother 2021; 144:112353. [PMID: 34794240 PMCID: PMC8531103 DOI: 10.1016/j.biopha.2021.112353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/14/2021] [Accepted: 10/19/2021] [Indexed: 02/07/2023] Open
Abstract
Almost 80% of people confronting COVID-19 recover from COVID-19 disease without any particular treatments. They experience heterogeneous symptoms; a wide range of respiratory symptoms, cough, dyspnea, fever, and viral pneumonia. However, some others need urgent intervention and special treatment to get rid of this widespread disease. So far, there isn't any unique drug for the potential treatment of COVID 19. However, some available therapeutic drugs used for other diseases seem beneficial for the COVID-19 treatment. On the other hand, there is a robust global concern for developing an efficient COVID-19 vaccine to control the COVID-19 pandemic sustainably. According to the WHO report, since 8 October 2021, 320 vaccines have been in progress. 194 vaccines are in the pre-clinical development stage that 126 of them are in clinical progression. Here, in this paper, we have comprehensively reviewed the most recent and updated information about coronavirus and its mutations, all the potential therapeutic approaches for treating COVID-19, developed diagnostic systems for COVID- 19 and the available COVID-19 vaccines and their mechanism of action.
Collapse
Affiliation(s)
- Mahdi Pouresmaieli
- Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran,Faculty of Mining, Petroleum and Geophysics, Shahrood University of Technology, Shahrood, Iran
| | - Elena Ekrami
- Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Ali Akbari
- Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran,Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Negin Noorbakhsh
- Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran,Faculty of Medical Science and Technologies, Islamic Azad University Science and Research, Tehran, Iran
| | - Negin Borzooee Moghadam
- Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Matin Mamoudifard
- Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| |
Collapse
|
16
|
Pilaquinga F, Morey J, Torres M, Seqqat R, Piña MDLN. Silver nanoparticles as a potential treatment against SARS-CoV-2: A review. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1707. [PMID: 33638618 PMCID: PMC7995207 DOI: 10.1002/wnan.1707] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 12/12/2022]
Abstract
Several human coronaviruses (HCoVs) are distinguished by the ability to generate epidemics or pandemics, with their corresponding diseases characterized by severe respiratory illness, such as that which occurs in severe acute respiratory syndrome (SARS-CoV), Middle East respiratory syndrome (MERS-CoV), and, today, in SARS-CoV-2, an outbreak that has struck explosively and uncontrollably beginning in December 2019 and has claimed the lives of more than 1.9 M people worldwide as of January 2021. The development of vaccines has taken one year, which is why it is necessary to investigate whether some already-existing alternatives that have been successfully developed in recent years can mitigate the pandemic's advance. Silver nanoparticles (AgNPs) have proved effective in antiviral action. Thus, in this review, several in vitro and in vivo studies of the effect of AgNPs on viruses that cause respiratory diseases are analyzed and discussed to promote an understanding of the possible interaction of AgNPs with SARS-CoV-2. The study focuses on several in vivo toxicological studies of AgNPs and a dose extrapolation to humans to determine the chief avenue of exposure. It can be concluded that the use of AgNPs as a possible treatment for SARS-CoV-2 could be viable, based on comparing the virus' behavior to that of similar viruses in in vivo studies, and that the suggested route of administration in terms of least degree of adverse effects is inhalation. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Respiratory Disease Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials.
Collapse
Affiliation(s)
- Fernanda Pilaquinga
- School of Chemistry SciencesPontificia Universidad Católica del EcuadorQuitoEcuador
- Department of ChemistryUniversity of the Balearic IslandsPalma de MallorcaSpain
| | - Jeroni Morey
- Department of ChemistryUniversity of the Balearic IslandsPalma de MallorcaSpain
| | - Marbel Torres
- Immunology and Virology Laboratory, Nanoscience and Nanotechnology CenterUniversidad de las Fuerzas Armadas, ESPESangolquíEcuador
| | - Rachid Seqqat
- Immunology and Virology Laboratory, Nanoscience and Nanotechnology CenterUniversidad de las Fuerzas Armadas, ESPESangolquíEcuador
| | | |
Collapse
|
17
|
Yayehrad AT, Siraj EA, Wondie GB, Alemie AA, Derseh MT, Ambaye AS. Could Nanotechnology Help to End the Fight Against COVID-19? Review of Current Findings, Challenges and Future Perspectives. Int J Nanomedicine 2021; 16:5713-5743. [PMID: 34465991 PMCID: PMC8402990 DOI: 10.2147/ijn.s327334] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 07/29/2021] [Indexed: 12/21/2022] Open
Abstract
A serious viral infectious disease was introduced to the globe by the end of 2019 that was seen primarily from China, but spread worldwide in a few months to be a pandemic. Since then, accurate prevention, early detection, and effective treatment strategies are not yet outlined. There is no approved drug to counter its worldwide transmission. However, integration of nanostructured delivery systems with the current management strategies has promised a pronounced opportunity to tackle the pandemic. This review addressed the various promising nanotechnology-based approaches for the diagnosis, prevention, and treatment of the pandemic. The pharmaceutical, pharmacoeconomic, and regulatory aspects of these systems with currently achieved or predicted beneficial outcomes, challenges, and future perspectives are also highlighted.
Collapse
Affiliation(s)
- Ashagrachew Tewabe Yayehrad
- Department of Pharmaceutics and Social Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Pharmacy, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia
| | - Ebrahim Abdela Siraj
- Department of Pharmaceutics and Social Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Pharmacy, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia
| | - Gebremariam Birhanu Wondie
- Department of Pharmaceutics and Social Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Atlaw Abate Alemie
- Department of Pharmaceutics and Social Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Ethiopian Food and Drug Authority (EFDA), Federal Ministry of Health (FMoH), Addis Ababa, Ethiopia
| | - Manaye Tamrie Derseh
- Department of Pharmaceutics and Social Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Departement of Pharmaceutics and Social Pharmacy, School of Pharmacy, College of Medicine and Health Sciences, Mizan-Tepi University, Mizan-Aman, Ethiopia
| | - Abyou Seyfu Ambaye
- Departement of Pharmaceutics and Social Pharmacy, School of Pharmacy, College of Medicine and Health Sciences, Mizan-Tepi University, Mizan-Aman, Ethiopia
| |
Collapse
|
18
|
Mba IE, Sharndama HC, Osondu-chuka GO, Okeke OP. Immunobiology and nanotherapeutics of severe acute respiratory syndrome 2 (SARS-CoV-2): a current update. Infect Dis (Lond) 2021; 53:559-580. [PMID: 33905282 PMCID: PMC8095391 DOI: 10.1080/23744235.2021.1916071] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 02/07/2023] Open
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) constitutes the most significant global public health challenge in a century. It has reignited research interest in coronavirus. While little information is available, research is currently in progress to comprehensively understand the general biology and immune response mechanism against SARS-CoV-2. The spike proteins (S protein) of SARS-CoV-2 perform a crucial function in viral infection establishment. ACE2 and TMPRSS2 play a pivotal role in viral entry. Upon viral entry, the released pro-inflammatory proteins (cytokines and chemokines) cause the migration of the T cells, monocytes, and macrophages to the infection site. IFNϒ released by T cells initiates a loop of pro-inflammatory feedback. The inflammatory state may further enhance with an increase in immune dysfunction responsible for the infection's progression. A treatment approach that prevents ACE2-mediated viral entry and reduces inflammatory response is a crucial therapeutic intervention strategy, and nanomaterials and their conjugates are promising candidates. Nanoparticles can inhibit viral entry and replication. Nanomaterials have also found application in targeted drug delivery and also in developing a vaccine against SARS-CoV-2. Here, we briefly summarize the origin, transmission, and clinical features of SARS-CoV-2. We then discussed the immune response mechanisms of SARS-CoV-2. Finally, we further discussed nanotechnology's potentials as an intervention strategy against SARS-CoV-2 infection. All these understandings will be crucial in developing therapeutic strategies against SARS-CoV-2.
Collapse
|
19
|
Yang Y, Wang H. The Golden Age: Shining the Light on Theragnostics. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202000103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Yamin Yang
- Department of Biomedical Engineering Nanjing University of Aeronautics and Astronautics Nanjing Jiangsu 211106 China
| | - Hongjun Wang
- Department of Biomedical Engineering Stevens Institute of Technology Hoboken NJ 07030 USA
- Department of Chemistry and Chemical Biology Stevens Institute of Technology Hoboken NJ 07030 USA
| |
Collapse
|
20
|
Martín J, Tena N, Asuero AG. Current state of diagnostic, screening and surveillance testing methods for COVID-19 from an analytical chemistry point of view. Microchem J 2021; 167:106305. [PMID: 33897053 PMCID: PMC8054532 DOI: 10.1016/j.microc.2021.106305] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 12/18/2022]
Abstract
Since December 2019, we have been in the battlefield with a new threat to the humanity known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this review, we describe the four main methods used for diagnosis, screening and/or surveillance of SARS-CoV-2: Real-time reverse transcription polymerase chain reaction (RT-PCR); chest computed tomography (CT); and different complementary alternatives developed in order to obtain rapid results, antigen and antibody detection. All of them compare the highlighting advantages and disadvantages from an analytical point of view. The gold standard method in terms of sensitivity and specificity is the RT-PCR. The different modifications propose to make it more rapid and applicable at point of care (POC) are also presented and discussed. CT images are limited to central hospitals. However, being combined with RT-PCR is the most robust and accurate way to confirm COVID-19 infection. Antibody tests, although unable to provide reliable results on the status of the infection, are suitable for carrying out maximum screening of the population in order to know the immune capacity. More recently, antigen tests, less sensitive than RT-PCR, have been authorized to determine in a quicker way whether the patient is infected at the time of analysis and without the need of specific instruments.
Collapse
Key Words
- 2019-nCoV, 2019 novel coronavirus
- ACE2, Angiotensin-Converting Enzyme 2
- AI, Artificial Intelligence
- ALP, Alkaline Phosphatase
- ASOs, Antisense Oligonucleotides
- Antigen and antibody tests
- AuNIs, Gold Nanoislands
- AuNPs, Gold Nanoparticles
- BSL, Biosecurity Level
- CAP, College of American Pathologists
- CCD, Charge-Coupled Device
- CG, Colloidal Gold
- CGIA, Colloidal Gold Immunochromatographic Assay
- CLIA, Chemiluminescence Enzyme Immunoassay
- CLIA, Clinical Laboratory Improvement Amendments
- COVID-19
- COVID-19, Coronavirus disease-19
- CRISPR, Clustered Regularly Interspaced Short Palindromic Repeats
- CT, Chest Computed Tomography
- Cas, CRISPR Associate Protein
- China CDC, Chinese Center for Disease Control and Prevention
- Ct, Cycle Threshold
- DETECTR, SARS-CoV-2 DNA Endonuclease-Targeted CRISPR Trans Reporter
- DNA, Dexosyrosyribonucleic Acid
- E, Envelope protein
- ELISA, Enzyme Linked Immunosorbent Assay
- EMA, European Medicines Agency
- EUA, Emergence Use Authorization
- FDA, Food and Drug Administration
- FET, Field-Effect Transistor
- GISAID, Global Initiative on Sharing All Influenza Data
- GeneBank, Genetic sequence data base of the National Institute of Health
- ICTV, International Committee on Taxonomy of Viruses
- IgA, Immunoglobulins A
- IgG, Immunoglobulins G
- IgM, Immunoglobulins M
- IoMT, Internet of Medical Things
- IoT, Internet of Things
- LFIA, Lateral Flow Immunochromatographic Assays
- LOC, Lab-on-a-Chip
- LOD, Limit of detection
- LSPR, Localized Surface Plasmon Resonance
- M, Membrane protein
- MERS-CoV, Middle East Respiratory Syndrome Coronavirus
- MNP, Magnetic Nanoparticle
- MS, Mass spectrometry
- N, Nucleocapsid protein
- NER, Naked Eye Readout
- NGM, Next Generation Molecular
- NGS, Next Generation Sequencing
- NIH, National Institute of Health
- NSPs, Nonstructural Proteins
- Net, Neural Network
- ORF, Open Reading Frame
- OSN, One Step Single-tube Nested
- PDMS, Polydimethylsiloxane
- POC, Point of Care
- PPT, Plasmonic Photothermal
- QD, Quantum Dot
- R0, Basic reproductive number
- RBD, Receptor-binding domain
- RNA, Ribonucleic Acid
- RNaseH, Ribonuclease H
- RT, Reverse Transcriptase
- RT-LAMP, Reverse Transcription Loop-Mediated Isothermal Amplification
- RT-PCR, Real-Time Reverse Transcription Polymerase Chain Reaction
- RT-PCR, chest computerized tomography
- RdRp, RNA-Dependent RNA Polymerase
- S, Spike protein
- SARS-CoV-2
- SARS-CoV-2, Severe Acute Respiratory Syndrome Coronavirus 2
- SERS, Surface Enhanced Raman Spectroscopy
- SHERLOCK, Specific High Sensitivity Enzymatic Reporter UnLOCKing
- STOPCovid, SHERLOCK Testing on One Pot
- SVM, Support Vector Machine
- SiO2@Ag, Complete silver nanoparticle shell coated on silica core
- US CDC, US Centers for Disease Control and Prevention
- VOC, Variant of Concern
- VTM, Viral Transport Medium
- WGS, Whole Genome Sequencing
- WHO, World Health Organization
- aM, Attomolar
- dNTPs, Nucleotides
- dPCR, Digital PCR
- ddPCR, Droplet digital PCR
- fM, Femtomolar
- m-RNA, Messenger Ribonucleic Acid
- nM, Nanomolar
- pM, Picomolar
- pfu, Plaque-forming unit
- rN, Recombinant nucleocapsid protein antigen
- rS, Recombinant Spike protein antigen
- ssRNA, Single-Stranded Positive-Sense RNA
Collapse
Affiliation(s)
- Julia Martín
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/ Virgen de África 7, Sevilla E-41011, Spain
| | - Noelia Tena
- Departamento de Química Analítica, Facultad de Farmacia, Universidad de Sevilla, Prof. García González, 2, Sevilla 41012, Spain
| | - Agustin G Asuero
- Departamento de Química Analítica, Facultad de Farmacia, Universidad de Sevilla, Prof. García González, 2, Sevilla 41012, Spain
| |
Collapse
|
21
|
Nasalapure AV, Chalannavar RK, Kasai DR, Reddy KR, Raghu AV. Novel polymeric hydrogel composites: Synthesis, physicochemical, mechanical and biocompatible properties. NANO EXPRESS 2021. [DOI: 10.1088/2632-959x/ac11bf] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Abstract
In this research study, novel hydrogel composite films were constructed using different ratios of poly (vinyl alcohol) (PVA)/kappa-carrageenan (KC) (PVA90/KC10%, PVA80/KC20%, PVA70/KC30%, PVA60/KC40%) crosslinked with glutaraldehyde (0.025%) and investigated their physicochemical characteristics such as mechanical, thermal, morphological, swelling behaviour, and cell viability. SEM and FTIR revealed that surface morphology changed to heterogeneous and the presence of molecular interaction among the polymers. PVA90KC10 and PVA60KC40 exhibited smaller and larger pores on surface respectively. The change in the proportion of PVA and KC also triggered the tensile strength (Ts) of the film and the highest Ts observed were 21.60 MPa for PVA60KC40. Moreover, the thermal analysis showed three-phase degradation, and an increase in KC40 concentration results inversely proportional to a decrease in the rate of thermal degradation. Further, swelling and in-vitro biodegradation study confirmed the enhanced perseverance of water uptake for PVA60KC40 (286%) due to pores structure of the hydrogel film and PVA and KC alone degraded faster as compare to other films results suggested higher concentration of PVA90KC10 showed lower degradation rate and highest for PVA60KC40 about 6% and 22% respectively. Further, the cell viability was studied with MTT assay method by using NIH3T3 and HEK-293 cells for biocompatibility study revealed NIH3T3 cells were more biocompatible than HEK-293 and cell viability percent for PVA60KC40 showed the highest cell attachment about 99%. Overall corroborating data obtained from the study attested to the average swelling, appreciable mechanical characters, good interaction between molecules, and cell viability of the constructed PVA/KC hydrogel film, these all characters pave to be used as a potential template for biomedical applications such as tissue engineering and drug delivery.
Collapse
|
22
|
Rai M, Bonde S, Yadav A, Bhowmik A, Rathod S, Ingle P, Gade A. Nanotechnology as a Shield against COVID-19: Current Advancement and Limitations. Viruses 2021; 13:1224. [PMID: 34202815 PMCID: PMC8310263 DOI: 10.3390/v13071224] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/21/2021] [Accepted: 06/21/2021] [Indexed: 12/15/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a global health problem that the WHO declared a pandemic. COVID-19 has resulted in a worldwide lockdown and threatened to topple the global economy. The mortality of COVID-19 is comparatively low compared with previous SARS outbreaks, but the rate of spread of the disease and its morbidity is alarming. This virus can be transmitted human-to-human through droplets and close contact, and people of all ages are susceptible to this virus. With the advancements in nanotechnology, their remarkable properties, including their ability to amplify signal, can be used for the development of nanobiosensors and nanoimaging techniques that can be used for early-stage detection along with other diagnostic tools. Nano-based protection equipment and disinfecting agents can provide much-needed protection against SARS-CoV-2. Moreover, nanoparticles can serve as a carrier for antigens or as an adjuvant, thereby making way for the development of a new generation of vaccines. The present review elaborates the role of nanotechnology-based tactics used for the detection, diagnosis, protection, and treatment of COVID-19 caused by the SARS-CoV-2 virus.
Collapse
Affiliation(s)
- Mahendra Rai
- Nanobiotechnology Lab., Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati 444 602, Maharashtra, India; (S.B.); (A.Y.); (P.I.); (A.G.)
| | - Shital Bonde
- Nanobiotechnology Lab., Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati 444 602, Maharashtra, India; (S.B.); (A.Y.); (P.I.); (A.G.)
| | - Alka Yadav
- Nanobiotechnology Lab., Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati 444 602, Maharashtra, India; (S.B.); (A.Y.); (P.I.); (A.G.)
| | - Arpita Bhowmik
- Faculty of Medicine, Dentistry and Health, The University of Sheffield, Sheffield S10 2TN, UK;
| | - Sanjay Rathod
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - Pramod Ingle
- Nanobiotechnology Lab., Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati 444 602, Maharashtra, India; (S.B.); (A.Y.); (P.I.); (A.G.)
| | - Aniket Gade
- Nanobiotechnology Lab., Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati 444 602, Maharashtra, India; (S.B.); (A.Y.); (P.I.); (A.G.)
| |
Collapse
|
23
|
Wang P, Ma C, Zhang X, Chen L, Yi L, Liu X, Lu Q, Cao Y, Gao S. A Ligation/Recombinase Polymerase Amplification Assay for Rapid Detection of SARS-CoV-2. Front Cell Infect Microbiol 2021; 11:680728. [PMID: 34123877 PMCID: PMC8193850 DOI: 10.3389/fcimb.2021.680728] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/11/2021] [Indexed: 12/24/2022] Open
Abstract
The pandemic of COVID-19 caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has led to more than 117 million reported cases and 2.6 million deaths. Accurate diagnosis technologies are vital for controlling this pandemic. Reverse transcription (RT)-based nucleic acid detection assays have been developed, but the strict sample processing requirement of RT has posed obstacles on wider applications. This study established a ligation and recombinase polymerase amplification (L/RPA) combined assay for rapid detection of SARS-CoV-2 on genes N and ORF1ab targeting the specific biomarkers recommended by the China CDC. Ligase-based strategies usually have a low-efficiency problem on RNA templates. This study has addressed this problem by using a high concentration of the T4 DNA ligase and exploiting the high sensitivity of RPA. Through selection of the ligation probes and optimization of the RPA primers, the assay achieved a satisfactory sensitivity of 101 viral RNA copies per reaction, which was comparable to RT-quantitative polymerase chain reaction (RT-qPCR) and other nucleic acid detection assays for SARS-CoV-2. The assay could be finished in less than 30 min with a simple procedure, in which the requirement for sophisticated thermocycling equipment had been avoided. In addition, it avoided the RT procedure and could potentially ease the requirement for sample processing. Once validated with clinical samples, the L/RPA assay would increase the practical testing availability of SARS-CoV-2. Moreover, the principle of L/RPA has an application potential to the identification of concerned mutations of the virus.
Collapse
Affiliation(s)
- Pei Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Biomedical Engineering, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Chao Ma
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Key Laboratory of Marine Biological Resources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, School of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| | - Xue Zhang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Key Laboratory of Marine Biological Resources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, School of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| | - Lizhan Chen
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Key Laboratory of Marine Biological Resources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, School of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| | - Longyu Yi
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Biomedical Engineering, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Biomedical Engineering, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Qunwei Lu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Biomedical Engineering, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Cao
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Key Laboratory of Marine Biological Resources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, School of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| | - Song Gao
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Key Laboratory of Marine Biological Resources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, School of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| |
Collapse
|
24
|
Kumawat M, Umapathi A, Lichtfouse E, Daima HK. Nanozymes to fight the COVID-19 and future pandemics. ENVIRONMENTAL CHEMISTRY LETTERS 2021; 19:3951-3957. [PMID: 34031634 PMCID: PMC8134966 DOI: 10.1007/s10311-021-01252-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Affiliation(s)
- Mamta Kumawat
- Amity Centre for Nanobiotechnology and Nanomedicine (ACNN), Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, 303002 Rajasthan India
| | - Akhela Umapathi
- Amity Centre for Nanobiotechnology and Nanomedicine (ACNN), Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, 303002 Rajasthan India
| | - Eric Lichtfouse
- CNRS, IRD, INRAE, Coll France, Aix-Marseille Université, 13100 Marseille, Aix‑en‑Provence France
| | - Hemant Kumar Daima
- Amity Centre for Nanobiotechnology and Nanomedicine (ACNN), Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, 303002 Rajasthan India
| |
Collapse
|
25
|
Karmacharya M, Kumar S, Gulenko O, Cho YK. Advances in Facemasks during the COVID-19 Pandemic Era. ACS APPLIED BIO MATERIALS 2021; 4:3891-3908. [PMID: 35006814 PMCID: PMC7839420 DOI: 10.1021/acsabm.0c01329] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/04/2021] [Indexed: 12/17/2022]
Abstract
The outbreak of coronavirus disease (COVID-19) has transformed the daily lifestyles of people worldwide. COVID-19 was characterized as a pandemic owing to its global spread, and technologies based on engineered materials that help to reduce the spread of infections have been reported. Nanotechnology present in materials with enhanced physicochemical properties and versatile chemical functionalization offer numerous ways to combat the disease. Facemasks are a reliable preventive measure, although they are not 100% effective against viral infections. Nonwoven materials, which are the key components of masks, act as barriers to the virus through filtration. However, there is a high chance of cross-infection because the used mask lacks virucidal properties and can become an additional source of infection. The combination of antiviral and filtration properties enhances the durability and reliability of masks, thereby reducing the likelihood of cross-infection. In this review, we focus on masks, from the manufacturing stage to practical applications, and their abilities to combat COVID-19. Herein, we discuss the impacts of masks on the environment, while considering safe industrial production in the future. Furthermore, we discuss available options for future research directions that do not negatively impact the environment.
Collapse
Affiliation(s)
- Mamata Karmacharya
- Center for Soft and Living Matter,
Institute for Basic Science (IBS), UNIST-gil 50, Ulsan 44919,
Republic of Korea
- Department of Chemical Engineering, Ulsan
National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan
44919, Republic of Korea
| | - Sumit Kumar
- Center for Soft and Living Matter,
Institute for Basic Science (IBS), UNIST-gil 50, Ulsan 44919,
Republic of Korea
- Department of Biomedical Engineering, Ulsan
National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan
44919, Republic of Korea
| | - Oleksandra Gulenko
- Center for Soft and Living Matter,
Institute for Basic Science (IBS), UNIST-gil 50, Ulsan 44919,
Republic of Korea
- Department of Biomedical Engineering, Ulsan
National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan
44919, Republic of Korea
| | - Yoon-Kyoung Cho
- Center for Soft and Living Matter,
Institute for Basic Science (IBS), UNIST-gil 50, Ulsan 44919,
Republic of Korea
- Department of Biomedical Engineering, Ulsan
National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan
44919, Republic of Korea
| |
Collapse
|
26
|
Singh P, Singh D, Sa P, Mohapatra P, Khuntia A, K Sahoo S. Insights from nanotechnology in COVID-19: prevention, detection, therapy and immunomodulation. Nanomedicine (Lond) 2021; 16:1219-1235. [PMID: 33998837 PMCID: PMC8127834 DOI: 10.2217/nnm-2021-0004] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The outbreak of SARS-CoV-2 infection has presented the world with an urgent demand for advanced diagnostics and therapeutics to prevent, treat and control the spread of infection. Nanotechnology seems to be highly relevant in this emergency due to the unique physicochemical properties of nanomaterials which offer versatile chemical functionalization to create advanced biomedical tools. Here, nano-intervention is discussed for designing effective strategies in developing advanced personal protective equipment kits, disinfectants, rapid and cost-effective diagnostics and therapeutics against the infection. We have also highlighted the nanoparticle-based vaccination approaches and how nanoparticles can regulate the host immune system against infection. Overall, this review discusses various nanoformulations that have shown clinical relevance or can be explored in the fight against COVID-19.
Collapse
Affiliation(s)
- Priya Singh
- Institute of Life Sciences, Bhubaneswar, Odisha, 751023, India.,Regional Center for Biotechnology, Pali, Haryana, 121001, India
| | - Deepika Singh
- Institute of Life Sciences, Bhubaneswar, Odisha, 751023, India
| | - Pratikshya Sa
- Institute of Life Sciences, Bhubaneswar, Odisha, 751023, India.,Regional Center for Biotechnology, Pali, Haryana, 121001, India
| | - Priyanka Mohapatra
- Institute of Life Sciences, Bhubaneswar, Odisha, 751023, India.,Regional Center for Biotechnology, Pali, Haryana, 121001, India
| | - Auromira Khuntia
- Institute of Life Sciences, Bhubaneswar, Odisha, 751023, India.,Regional Center for Biotechnology, Pali, Haryana, 121001, India
| | - Sanjeeb K Sahoo
- Institute of Life Sciences, Bhubaneswar, Odisha, 751023, India
| |
Collapse
|
27
|
Peter AE, Sandeep BV, Rao BG, Kalpana VL. Nanotechnology to the Rescue: Treatment Perspective for the Immune Dysregulation Observed in COVID-19. FRONTIERS IN NANOTECHNOLOGY 2021. [DOI: 10.3389/fnano.2021.644023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The study of the use of nanotechnology for drug delivery has been extensive. Nanomedical approaches for therapeutics; drug delivery in particular is superior to conventional methods in that it allows for controlled targeted delivery and release, higher stability, extended circulation time, minimal side-effects, and improved pharmacokinetic clearance (of the drug) form the body, to name a few. The magnitude of COVID-19, the current ongoing pandemic has been severe; it has caused widespread the loss of human life. In individuals with severe COVID-19, immune dysregulation and a rampant state of hyperinflammation is observed. This kind of an immunopathological response is detrimental and results in rapid disease progression, development of secondary infections, sepsis and can be fatal. Several studies have pin-pointed the reason for this immune dysregulation; deviations in the signaling pathways involved in the mediation and control of immune responses. In severe COVID-19 patients, many signaling cascades including JAK/STAT, NF-κB, MAPK/ERK, TGF beta, VEGF, and Notch signaling were found to be either upregulated or inactivated. Targeting these aberrant signaling pathways in conjunction with antiviral therapy will effectuate mitigation of the hyperinflammation, hypercytokinemia, and promote faster recovery. The science of the use of nanocarriers as delivery agents to modulate these signaling pathways is not new; it has already been explored for other inflammatory diseases and in particular, cancer therapy. Numerous studies have evaluated the efficacy and potential of nanomedical approaches to modulate these signaling pathways and have been met with positive results. A treatment regime, that includes nanotherapeutics and antiviral therapies will prove effective and holds great promise for the successful treatment of COVID-19. In this article, we review different nanomedical approaches already studied for targeting aberrant signaling pathways, the host immune response to SARS-CoV-2, immunopathology and the dysregulated signaling pathways observed in severe COVID-19 and the current treatment methods in use for targeting signaling cascades in COVID-19. We then conclude by suggesting that the use of nanomedical drug delivery systems for targeting signaling pathways can be extended to effectively target the aberrant signaling pathways in COVID-19 for best treatment results.
Collapse
|
28
|
Vivekanandhan K, Shanmugam P, Barabadi H, Arumugam V, Daniel Raj Daniel Paul Raj D, Sivasubramanian M, Ramasamy S, Anand K, Boomi P, Chandrasekaran B, Arokiyaraj S, Saravanan M. Emerging Therapeutic Approaches to Combat COVID-19: Present Status and Future Perspectives. Front Mol Biosci 2021; 8:604447. [PMID: 33763450 PMCID: PMC7983051 DOI: 10.3389/fmolb.2021.604447] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 01/22/2021] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease (COVID-19) has emerged as a fast-paced epidemic in late 2019 which is disrupting life-saving immunization services. SARS-CoV-2 is a highly transmissible virus and an infectious disease that has caused fear among people across the world. The worldwide emergence and rapid expansion of SARS-CoV-2 emphasizes the need for exploring innovative therapeutic approaches to combat SARS-CoV-2. The efficacy of some antiviral drugs such as remdesivir, favipiravir, umifenovir, etc., are still tested against SARS-CoV-2. Additionally, there is a large global effort to develop vaccines for the protection against COVID-19. Because vaccines seem the best solution to control the pandemic but time is required for its development, pre-clinical/clinical trials, approval from FDA and scale-up. The nano-based approach is another promising approach to combat COVID-19 owing to unique physicochemical properties of nanomaterials. Peptide based vaccines emerged as promising vaccine candidates for SARS-CoV-2. The study emphasizes the current therapeutic approaches against SARS-CoV-2 and some of the potential candidates for SARS-CoV-2 treatment which are still under clinical studies for their effectiveness against SARS-CoV-2. Overall, it is of high importance to mention that clinical trials are necessary for confirming promising drug candidates and effective vaccines and the safety profile of the new components must be evaluated before translation of in vitro studies for implementation in clinical use.
Collapse
Affiliation(s)
- Karthik Vivekanandhan
- Department of Biotechnology, K. S. Rangasamy College of Technology, Tiruchengode, Tamilnadu, India
| | - Poornima Shanmugam
- Department of Biotechnology, K. S. Rangasamy College of Technology, Tiruchengode, Tamilnadu, India
| | - Hamed Barabadi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vigneshwaran Arumugam
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | | | - Manikandan Sivasubramanian
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Subbaiya Ramasamy
- Department of Biological Sciences, School of Mathematics and Natural Sciences, The Copperbelt University, Riverside, Zambia
| | - Krishnan Anand
- Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences and National Health Laboratory Service, University of the Free State, Bloemfontein, South Africa
| | - Pandi Boomi
- Department of Bioinformatics, Alagappa University, Karaikudi, India
| | | | - Selvaraj Arokiyaraj
- Department of Food Science and Biotechnology, Sejong University, Seoul, South Korea
| | - Muthupandian Saravanan
- Department of Microbiology and Immunology, Division of Biomedical Science, School of Medicine, College of Health Science, Mekelle University, Mekelle, Ethiopia
- AMR and Nanomedicine Laboratory, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| |
Collapse
|
29
|
Sengupta J, Hussain CM. Carbon nanomaterials to combat virus: A perspective in view of COVID-19. CARBON TRENDS 2021; 2:100019. [PMID: 38620887 PMCID: PMC7834913 DOI: 10.1016/j.cartre.2020.100019] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 05/12/2023]
Abstract
The rapid outbreaks of lethal viruses necessitate the development of novel antiviral substance. Besides the conventional antiviral substances, biocompatible nanomaterials also have significant potential in combating the virus at various stages of infection. Carbon nanomaterials have an impressive record against viruses and can deal with many crucial healthcare issues. In accordance with the published literature, biocompatible carbon nanomaterials have a promising prospect as an antiviral substance. Subsequently, the antiviral properties of different carbon nanomaterials namely fullerene, carbon nanotube, carbon dot and graphene oxide have been reviewed.
Collapse
Affiliation(s)
- Joydip Sengupta
- Department of Electronic Science Jogesh Chandra Chaudhuri College (Affiliated to University of Calcutta), Kolkata 700033, West Bengal, India
| | | |
Collapse
|