1
|
Webster CP, Hall B, Crossley OM, Dauletalina D, King M, Lin YH, Castelli LM, Yang ZL, Coldicott I, Kyrgiou-Balli E, Higginbottom A, Ferraiuolo L, De Vos KJ, Hautbergue GM, Shaw PJ, West RJ, Azzouz M. RuvBL1/2 reduce toxic dipeptide repeat protein burden in multiple models of C9orf72-ALS/FTD. Life Sci Alliance 2025; 8:e202402757. [PMID: 39638345 PMCID: PMC11629685 DOI: 10.26508/lsa.202402757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024] Open
Abstract
A G4C2 hexanucleotide repeat expansion in C9orf72 is the most common cause of amyotrophic lateral sclerosis and frontotemporal dementia (C9ALS/FTD). Bidirectional transcription and subsequent repeat-associated non-AUG (RAN) translation of sense and antisense transcripts leads to the formation of five dipeptide repeat (DPR) proteins. These DPRs are toxic in a wide range of cell and animal models. Therefore, decreasing RAN-DPRs may be of therapeutic benefit in the context of C9ALS/FTD. In this study, we found that C9ALS/FTD patients have reduced expression of the AAA+ family members RuvBL1 and RuvBL2, which have both been implicated in aggregate clearance. We report that overexpression of RuvBL1, but to a greater extent RuvBL2, reduced C9orf72-associated DPRs in a range of in vitro systems including cell lines, primary neurons from the C9-500 transgenic mouse model, and patient-derived iPSC motor neurons. In vivo, we further demonstrated that RuvBL2 overexpression and consequent DPR reduction in our Drosophila model was sufficient to rescue a number of DPR-related motor phenotypes. Thus, modulating RuvBL levels to reduce DPRs may be of therapeutic potential in C9ALS/FTD.
Collapse
Affiliation(s)
- Christopher P Webster
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, School of Medicine and Population Health, Faculty of Health, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Bradley Hall
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, School of Medicine and Population Health, Faculty of Health, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Olivia M Crossley
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, School of Medicine and Population Health, Faculty of Health, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Dana Dauletalina
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, School of Medicine and Population Health, Faculty of Health, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Marianne King
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, School of Medicine and Population Health, Faculty of Health, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Ya-Hui Lin
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, School of Medicine and Population Health, Faculty of Health, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Lydia M Castelli
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, School of Medicine and Population Health, Faculty of Health, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Zih-Liang Yang
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, School of Medicine and Population Health, Faculty of Health, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Ian Coldicott
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, School of Medicine and Population Health, Faculty of Health, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Ergita Kyrgiou-Balli
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, School of Medicine and Population Health, Faculty of Health, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Adrian Higginbottom
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, School of Medicine and Population Health, Faculty of Health, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Laura Ferraiuolo
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, School of Medicine and Population Health, Faculty of Health, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Kurt J De Vos
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, School of Medicine and Population Health, Faculty of Health, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Guillaume M Hautbergue
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, School of Medicine and Population Health, Faculty of Health, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
- Healthy Lifespan Institute (HELSI), University of Sheffield, Sheffield, UK
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, School of Medicine and Population Health, Faculty of Health, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Ryan Jh West
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, School of Medicine and Population Health, Faculty of Health, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Mimoun Azzouz
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, School of Medicine and Population Health, Faculty of Health, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
- Gene Therapy Innovation and Manufacturing Centre (GTIMC), Division of Neuroscience, University of Sheffield, Sheffield, UK
| |
Collapse
|
2
|
Widner H. Immunology of cell and gene therapy approaches for neurologic diseases. HANDBOOK OF CLINICAL NEUROLOGY 2024; 205:135-144. [PMID: 39341650 DOI: 10.1016/b978-0-323-90120-8.00018-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Repair and replacement strategies using cell replacement or viral gene transfer for neurologic diseases are becoming increasingly efficacious with clinically meaningful benefits in several conditions. An increased understanding of disease processes opens up opportunities for genetic therapies and precision medicine methods aiming at disease modification or repair of lesioned neurologic structures. However, such therapeutic effects may be limited or rendered ineffective by immune responses against gene products or cells used for the intended treatments. When introducing therapeutic agents into the nervous system, a set of biologic responses are inevitably triggered, which may lead to host responses that limit the intended therapeutic goals. Factors of importance include the type of vector used and origin of cells, the mode of introduction, the degree of host immunization, and any prior exposure to the agents used. It is possible to apply specific treatments that interfere with many of these steps and factors in order to limit host immunization and to reduce or eliminate host effector reactions against the therapeutic agents. This includes immune-evading design measures of the advanced therapeutic medicinal products and various immunosuppressive processes. Limited duration of specific immune modulations may be possible under carefully monitored programs.
Collapse
Affiliation(s)
- Håkan Widner
- Department of Neurology, Skåne University Hospital, Lund, Sweden; Section for Neurology, Department of Clinical Sciences, Lund University, Lund, Sweden.
| |
Collapse
|
3
|
Barker RA, Buttery PC. Disease-specific interventions: The use of cell and gene therapies for Parkinson disease. HANDBOOK OF CLINICAL NEUROLOGY 2024; 205:171-191. [PMID: 39341654 DOI: 10.1016/b978-0-323-90120-8.00003-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Approaches to repair the brain around the loss of the nigrostriatal dopaminergic pathways in Parkinson disease (PD) are not new and have been attempted over many years. However, of late, the situation has moved forward in two main ways. In the case of cell therapies, the ability to make large numbers of authentic midbrain dopaminergic neuroblasts from human pluripotent stem cell sources has turned what was an interesting avenue of research into a major area of investment and trialing, by academics in conjunction with Pharma. In the case of gene therapies, their use around dopamine replacement has waned, as the interest in using them for disease modification targeting PD-specific pathways has grown. In this chapter, we discuss all these developments and the current status of cell and gene therapies for PD.
Collapse
Affiliation(s)
- Roger A Barker
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom.
| | - Philip C Buttery
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
4
|
Teixeira M, Sheta R, Idi W, Oueslati A. Optogenetic-mediated induction and monitoring of α-synuclein aggregation in cellular models of Parkinson's disease. STAR Protoc 2023; 4:102738. [PMID: 37991922 PMCID: PMC10700619 DOI: 10.1016/j.xpro.2023.102738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/09/2023] [Accepted: 11/06/2023] [Indexed: 11/24/2023] Open
Abstract
Studying Parkinson's disease (PD) is complex due to a lack of cellular models mimicking key aspects of protein pathology. Here, we present a protocol for inducing and monitoring α-synuclein aggregation in living cells using optogenetics. We describe steps for plasmid transduction, biochemical validation, immunocytochemistry, and live-cell confocal imaging. These induced aggregates fulfill the cardinal features of authentic protein inclusions observed in PD-diseased brains and offer a tool to study the role of protein aggregation in neurodegeneration. For complete details on the use and execution of this protocol, please refer to Bérard et al.1.
Collapse
Affiliation(s)
- Maxime Teixeira
- CHU de Québec Research Center, Axe Neurosciences, Quebec City, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada.
| | - Razan Sheta
- CHU de Québec Research Center, Axe Neurosciences, Quebec City, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Walid Idi
- CHU de Québec Research Center, Axe Neurosciences, Quebec City, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Abid Oueslati
- CHU de Québec Research Center, Axe Neurosciences, Quebec City, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada.
| |
Collapse
|
5
|
Koppenol R, Conceição A, Afonso IT, Afonso-Reis R, Costa RG, Tomé S, Teixeira D, da Silva JP, Côdesso JM, Brito DVC, Mendonça L, Marcelo A, Pereira de Almeida L, Matos CA, Nóbrega C. The stress granule protein G3BP1 alleviates spinocerebellar ataxia-associated deficits. Brain 2023; 146:2346-2363. [PMID: 36511898 PMCID: PMC10232246 DOI: 10.1093/brain/awac473] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 11/04/2022] [Accepted: 11/25/2022] [Indexed: 09/09/2023] Open
Abstract
Polyglutamine diseases are a group of neurodegenerative disorders caused by an abnormal expansion of CAG repeat tracts in the codifying regions of nine, otherwise unrelated, genes. While the protein products of these genes are suggested to play diverse cellular roles, the pathogenic mutant proteins bearing an expanded polyglutamine sequence share a tendency to self-assemble, aggregate and engage in abnormal molecular interactions. Understanding the shared paths that link polyglutamine protein expansion to the nervous system dysfunction and the degeneration that takes place in these disorders is instrumental to the identification of targets for therapeutic intervention. Among polyglutamine diseases, spinocerebellar ataxias (SCAs) share many common aspects, including the fact that they involve dysfunction of the cerebellum, resulting in ataxia. Our work aimed at exploring a putative new therapeutic target for the two forms of SCA with higher worldwide prevalence, SCA type 2 (SCA2) and type 3 (SCA3), which are caused by expanded forms of ataxin-2 (ATXN2) and ataxin-3 (ATXN3), respectively. The pathophysiology of polyglutamine diseases has been described to involve an inability to properly respond to cell stress. We evaluated the ability of GTPase-activating protein-binding protein 1 (G3BP1), an RNA-binding protein involved in RNA metabolism regulation and stress responses, to counteract SCA2 and SCA3 pathology, using both in vitro and in vivo disease models. Our results indicate that G3BP1 overexpression in cell models leads to a reduction of ATXN2 and ATXN3 aggregation, associated with a decrease in protein expression. This protective effect of G3BP1 against polyglutamine protein aggregation was reinforced by the fact that silencing G3bp1 in the mouse brain increases human expanded ATXN2 and ATXN3 aggregation. Moreover, a decrease of G3BP1 levels was detected in cells derived from patients with SCA2 and SCA3, suggesting that G3BP1 function is compromised in the context of these diseases. In lentiviral mouse models of SCA2 and SCA3, G3BP1 overexpression not only decreased protein aggregation but also contributed to the preservation of neuronal cells. Finally, in an SCA3 transgenic mouse model with a severe ataxic phenotype, G3BP1 lentiviral delivery to the cerebellum led to amelioration of several motor behavioural deficits. Overall, our results indicate that a decrease in G3BP1 levels may be a contributing factor to SCA2 and SCA3 pathophysiology, and that administration of this protein through viral vector-mediated delivery may constitute a putative approach to therapy for these diseases, and possibly other polyglutamine disorders.
Collapse
Affiliation(s)
- Rebekah Koppenol
- ABC-RI, Algarve Biomedical Center Research Institute, 8005-139 Faro, Portugal
- PhD Program in Biomedial Sciences, Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, 8005-139 Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, 8005-139 Faro, Portugal
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
| | - André Conceição
- ABC-RI, Algarve Biomedical Center Research Institute, 8005-139 Faro, Portugal
- PhD Program in Biomedial Sciences, Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, 8005-139 Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Inês T Afonso
- ABC-RI, Algarve Biomedical Center Research Institute, 8005-139 Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Ricardo Afonso-Reis
- ABC-RI, Algarve Biomedical Center Research Institute, 8005-139 Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Rafael G Costa
- ABC-RI, Algarve Biomedical Center Research Institute, 8005-139 Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Sandra Tomé
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
| | - Diogo Teixeira
- ABC-RI, Algarve Biomedical Center Research Institute, 8005-139 Faro, Portugal
| | | | - José Miguel Côdesso
- ABC-RI, Algarve Biomedical Center Research Institute, 8005-139 Faro, Portugal
- PhD Program in Biomedial Sciences, Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, 8005-139 Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, 8005-139 Faro, Portugal
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
| | - David V C Brito
- ABC-RI, Algarve Biomedical Center Research Institute, 8005-139 Faro, Portugal
| | - Liliana Mendonça
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
| | - Adriana Marcelo
- ABC-RI, Algarve Biomedical Center Research Institute, 8005-139 Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, 8005-139 Faro, Portugal
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
| | - Luís Pereira de Almeida
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Carlos A Matos
- ABC-RI, Algarve Biomedical Center Research Institute, 8005-139 Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Clévio Nóbrega
- ABC-RI, Algarve Biomedical Center Research Institute, 8005-139 Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, 8005-139 Faro, Portugal
- Champalimaud Research Program, Champalimaud Center for the Unknown, 1400-038 Lisbon, Portugal
| |
Collapse
|
6
|
Castelli LM, Lin YH, Sanchez-Martinez A, Gül A, Mohd Imran K, Higginbottom A, Upadhyay SK, Márkus NM, Rua Martins R, Cooper-Knock J, Montmasson C, Cohen R, Walton A, Bauer CS, De Vos KJ, Mead RJ, Azzouz M, Dominguez C, Ferraiuolo L, Shaw PJ, Whitworth AJ, Hautbergue GM. A cell-penetrant peptide blocking C9ORF72-repeat RNA nuclear export reduces the neurotoxic effects of dipeptide repeat proteins. Sci Transl Med 2023; 15:eabo3823. [PMID: 36857431 DOI: 10.1126/scitranslmed.abo3823] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Hexanucleotide repeat expansions in C9ORF72 are the most common genetic cause of familial amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Studies have shown that the hexanucleotide expansions cause the noncanonical translation of C9ORF72 transcripts into neurotoxic dipeptide repeat proteins (DPRs) that contribute to neurodegeneration. We show that a cell-penetrant peptide blocked the nuclear export of C9ORF72-repeat transcripts in HEK293T cells by competing with the interaction between SR-rich splicing factor 1 (SRSF1) and nuclear export factor 1 (NXF1). The cell-penetrant peptide also blocked the translation of toxic DPRs in neurons differentiated from induced neural progenitor cells (iNPCs), which were derived from individuals carrying C9ORF72-linked ALS mutations. This peptide also increased survival of iNPC-differentiated C9ORF72-ALS motor neurons cocultured with astrocytes. Oral administration of the cell-penetrant peptide reduced DPR translation and rescued locomotor deficits in a Drosophila model of mutant C9ORF72-mediated ALS/FTD. Intrathecal injection of this peptide into the brains of ALS/FTD mice carrying a C9ORF72 mutation resulted in reduced expression of DPRs in mouse brains. These findings demonstrate that disrupting the production of DPRs in cellular and animal models of ALS/FTD might be a strategy to ameliorate neurodegeneration in these diseases.
Collapse
Affiliation(s)
- Lydia M Castelli
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield S10 2HQ, UK
| | - Ya-Hui Lin
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield S10 2HQ, UK
| | - Alvaro Sanchez-Martinez
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Aytaç Gül
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield S10 2HQ, UK
| | - Kamallia Mohd Imran
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield S10 2HQ, UK
| | - Adrian Higginbottom
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield S10 2HQ, UK
| | - Santosh Kumar Upadhyay
- Leicester Institute of Structural and Chemical Biology and Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Nóra M Márkus
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield S10 2HQ, UK
| | - Raquel Rua Martins
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield S10 2HQ, UK
| | - Johnathan Cooper-Knock
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield S10 2HQ, UK
| | - Claire Montmasson
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield S10 2HQ, UK
| | - Rebecca Cohen
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield S10 2HQ, UK
| | - Amy Walton
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield S10 2HQ, UK
| | - Claudia S Bauer
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield S10 2HQ, UK
| | - Kurt J De Vos
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield S10 2HQ, UK
| | - Richard J Mead
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield S10 2HQ, UK
| | - Mimoun Azzouz
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield S10 2HQ, UK
| | - Cyril Dominguez
- Leicester Institute of Structural and Chemical Biology and Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Laura Ferraiuolo
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield S10 2HQ, UK
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield S10 2HQ, UK
| | - Alexander J Whitworth
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Guillaume M Hautbergue
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield S10 2HQ, UK
| |
Collapse
|
7
|
Moll T, Odon V, Harvey C, Collins MO, Peden A, Franklin J, Graves E, Marshall JN, Dos Santos Souza C, Zhang S, Castelli L, Hautbergue G, Azzouz M, Gordon D, Krogan N, Ferraiuolo L, Snyder MP, Shaw PJ, Rehwinkel J, Cooper-Knock J. Low expression of EXOSC2 protects against clinical COVID-19 and impedes SARS-CoV-2 replication. Life Sci Alliance 2023; 6:e202201449. [PMID: 36241425 PMCID: PMC9585911 DOI: 10.26508/lsa.202201449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 12/15/2022] Open
Abstract
New therapeutic targets are a valuable resource for treatment of SARS-CoV-2 viral infection. Genome-wide association studies have identified risk loci associated with COVID-19, but many loci are associated with comorbidities and are not specific to host-virus interactions. Here, we identify and experimentally validate a link between reduced expression of EXOSC2 and reduced SARS-CoV-2 replication. EXOSC2 was one of the 332 host proteins examined, all of which interact directly with SARS-CoV-2 proteins. Aggregating COVID-19 genome-wide association studies statistics for gene-specific eQTLs revealed an association between increased expression of EXOSC2 and higher risk of clinical COVID-19. EXOSC2 interacts with Nsp8 which forms part of the viral RNA polymerase. EXOSC2 is a component of the RNA exosome, and here, LC-MS/MS analysis of protein pulldowns demonstrated interaction between the SARS-CoV-2 RNA polymerase and most of the human RNA exosome components. CRISPR/Cas9 introduction of nonsense mutations within EXOSC2 in Calu-3 cells reduced EXOSC2 protein expression and impeded SARS-CoV-2 replication without impacting cellular viability. Targeted depletion of EXOSC2 may be a safe and effective strategy to protect against clinical COVID-19.
Collapse
Affiliation(s)
- Tobias Moll
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Valerie Odon
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Calum Harvey
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Mark O Collins
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - Andrew Peden
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - John Franklin
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Emily Graves
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Jack Ng Marshall
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | | | - Sai Zhang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Center for Genomics and Personalized Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Lydia Castelli
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Guillaume Hautbergue
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Mimoun Azzouz
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - David Gordon
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
- Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA, USA
| | - Nevan Krogan
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
- Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA, USA
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, CA, USA
| | - Laura Ferraiuolo
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Michael P Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Center for Genomics and Personalized Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Jan Rehwinkel
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Johnathan Cooper-Knock
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| |
Collapse
|
8
|
Carmo-Silva S, Ferreira-Marques M, Nóbrega C, Botelho M, Costa D, Aveleira CA, Pulst SM, Pereira de Almeida L, Cavadas C. Ataxin-2 in the hypothalamus at the crossroads between metabolism and clock genes. J Mol Endocrinol 2023; 70:JME-21-0272. [PMID: 36103139 DOI: 10.1530/jme-21-0272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/14/2022] [Indexed: 01/19/2023]
Abstract
ATXN2 gene, encoding for ataxin-2, is located in a trait locus for obesity. Atxn2 knockout (KO) mice are obese and insulin resistant; however, the cause for this phenotype is still unknown. Moreover, several findings suggest ataxin-2 as a metabolic regulator, but the role of this protein in the hypothalamus was never studied before. The aim of this work was to understand if ataxin-2 modulation in the hypothalamus could play a role in metabolic regulation. Ataxin-2 was overexpressed/re-established in the hypothalamus of C57Bl6/Atxn2 KO mice fed either a chow or a high-fat diet (HFD). This delivery was achieved through stereotaxic injection of lentiviral vectors encoding for ataxin-2. We show, for the first time, that HFD decreases ataxin-2 levels in mouse hypothalamus and liver. Specific hypothalamic ataxin-2 overexpression prevents HFD-induced obesity and insulin resistance. Ataxin-2 re-establishment in Atxn2 KO mice improved metabolic dysfunction without changing body weight. Furthermore, we observed altered clock gene expression in Atxn2 KO that might be causative of metabolic dysfunction. Interestingly, ataxin-2 hypothalamic re-establishment rescued these circadian alterations. Thus, ataxin-2 in the hypothalamus is a determinant for weight, insulin sensitivity and clock gene expression. Ataxin-2's potential role in the circadian clock, through the regulation of clock genes, might be a relevant mechanism to regulate metabolism. Overall, this work shows hypothalamic ataxin-2 as a new player in metabolism regulation, which might contribute to the development of new strategies for metabolic disorders.
Collapse
Affiliation(s)
- Sara Carmo-Silva
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- MIA - Multidisciplinary Institute of Ageing, University of Coimbra, Coimbra, Portugal
| | - Marisa Ferreira-Marques
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Clévio Nóbrega
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- ABC-RI, Algarve Biomedical Center Research Institute, Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, Faro, Portugal
| | - Mariana Botelho
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Daniela Costa
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Célia A Aveleira
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- MIA - Multidisciplinary Institute of Ageing, University of Coimbra, Coimbra, Portugal
| | - Stefan M Pulst
- Department of Neurology, University of Utah, Salt Lake City, Utah, USA
| | - Luís Pereira de Almeida
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Claudia Cavadas
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
9
|
Fourest-Lieuvin A, Vinit A, Blot B, Perrot A, Denarier E, Saudou F, Arnal I. Controlled Tau Cleavage in Cells Reveals Abnormal Localizations of Tau Fragments. Neuroscience 2022; 518:162-177. [PMID: 35995336 DOI: 10.1016/j.neuroscience.2022.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 06/08/2022] [Accepted: 08/16/2022] [Indexed: 11/15/2022]
Abstract
In several forms of dementia, such as Alzheimer's disease, the cytoskeleton-associated protein tau undergoes proteolysis, giving rise to fragments that have a toxic impact on neuronal homeostasis. How these fragments interact with cellular structures, in particular with the cytoskeleton, is currently incompletely understood. Here, we developed a method, derived from a Tobacco Etch Virus (TEV) protease system, to induce controlled cleavage of tau at specific sites. Five tau proteins containing specific TEV recognition sites corresponding to pathological proteolytic sites were engineered, and tagged with GFP at one end and mCherry at the other. Following controlled cleavage to produce GFP-N-terminal and C-terminal-mCherry fragments, we followed the fate of tau fragments in cells. Our results showed that whole engineered tau proteins associate with the cytoskeleton similarly to the non-modified tau, whereas tau fragments adopted different localizations with respect to the actin and microtubule cytoskeletons. These distinct localizations were confirmed by expressing each separate fragment in cells. Some cleavages - in particular cleavages at amino-acid positions 124 or 256 - displayed a certain level of cellular toxicity, with an unusual relocalization of the N-terminal fragments to the nucleus. Based on the data presented here, inducible cleavage of tau by the TEV protease appears to be a valuable tool to reproduce tau fragmentation in cells and study the resulting consequences on cell physiology.
Collapse
Affiliation(s)
- Anne Fourest-Lieuvin
- Université Grenoble Alpes, INSERM, U1216, CEA, CNRS, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000 Grenoble, France.
| | - Angélique Vinit
- Université Grenoble Alpes, INSERM, U1216, CEA, CNRS, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Béatrice Blot
- Université Grenoble Alpes, INSERM, U1216, CEA, CNRS, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Anthime Perrot
- Université Grenoble Alpes, INSERM, U1216, CEA, CNRS, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Eric Denarier
- Université Grenoble Alpes, INSERM, U1216, CEA, CNRS, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Frédéric Saudou
- Université Grenoble Alpes, INSERM, U1216, CEA, CNRS, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Isabelle Arnal
- Université Grenoble Alpes, INSERM, U1216, CEA, CNRS, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000 Grenoble, France.
| |
Collapse
|
10
|
Karyka E, Berrueta Ramirez N, Webster CP, Marchi PM, Graves EJ, Godena VK, Marrone L, Bhargava A, Ray S, Ning K, Crane H, Hautbergue GM, El-Khamisy SF, Azzouz M. SMN-deficient cells exhibit increased ribosomal DNA damage. Life Sci Alliance 2022; 5:e202101145. [PMID: 35440492 PMCID: PMC9018017 DOI: 10.26508/lsa.202101145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 04/04/2022] [Accepted: 04/04/2022] [Indexed: 12/26/2022] Open
Abstract
Spinal muscular atrophy, the leading genetic cause of infant mortality, is a motor neuron disease caused by low levels of survival motor neuron (SMN) protein. SMN is a multifunctional protein that is implicated in numerous cytoplasmic and nuclear processes. Recently, increasing attention is being paid to the role of SMN in the maintenance of DNA integrity. DNA damage and genome instability have been linked to a range of neurodegenerative diseases. The ribosomal DNA (rDNA) represents a particularly unstable locus undergoing frequent breakage. Instability in rDNA has been associated with cancer, premature ageing syndromes, and a number of neurodegenerative disorders. Here, we report that SMN-deficient cells exhibit increased rDNA damage leading to impaired ribosomal RNA synthesis and translation. We also unravel an interaction between SMN and RNA polymerase I. Moreover, we uncover an spinal muscular atrophy motor neuron-specific deficiency of DDX21 protein, which is required for resolving R-loops in the nucleolus. Taken together, our findings suggest a new role of SMN in rDNA integrity.
Collapse
Affiliation(s)
- Evangelia Karyka
- The Healthy Lifespan Institute and Neuroscience Institute, Neurodegeneration and Genome Stability Group, University of Sheffield, Sheffield, UK
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Nelly Berrueta Ramirez
- The Healthy Lifespan Institute and Neuroscience Institute, Neurodegeneration and Genome Stability Group, University of Sheffield, Sheffield, UK
- Department of Molecular Biology and Biotechnology, The Institute of Neuroscience and the Healthy Lifespan Institute, School of Bioscience, Firth Court, University of Sheffield, Sheffield, UK
| | - Christopher P Webster
- The Healthy Lifespan Institute and Neuroscience Institute, Neurodegeneration and Genome Stability Group, University of Sheffield, Sheffield, UK
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Paolo M Marchi
- The Healthy Lifespan Institute and Neuroscience Institute, Neurodegeneration and Genome Stability Group, University of Sheffield, Sheffield, UK
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Emily J Graves
- The Healthy Lifespan Institute and Neuroscience Institute, Neurodegeneration and Genome Stability Group, University of Sheffield, Sheffield, UK
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Vinay K Godena
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Lara Marrone
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Anushka Bhargava
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Swagat Ray
- Department of Molecular Biology and Biotechnology, The Institute of Neuroscience and the Healthy Lifespan Institute, School of Bioscience, Firth Court, University of Sheffield, Sheffield, UK
- Department of Life Sciences, School of Life and Environmental Sciences, University of Lincoln, Lincoln, UK
| | - Ke Ning
- The Healthy Lifespan Institute and Neuroscience Institute, Neurodegeneration and Genome Stability Group, University of Sheffield, Sheffield, UK
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Hannah Crane
- Department of Molecular Biology and Biotechnology, The Institute of Neuroscience and the Healthy Lifespan Institute, School of Bioscience, Firth Court, University of Sheffield, Sheffield, UK
| | - Guillaume M Hautbergue
- The Healthy Lifespan Institute and Neuroscience Institute, Neurodegeneration and Genome Stability Group, University of Sheffield, Sheffield, UK
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Sherif F El-Khamisy
- The Healthy Lifespan Institute and Neuroscience Institute, Neurodegeneration and Genome Stability Group, University of Sheffield, Sheffield, UK
- Department of Molecular Biology and Biotechnology, The Institute of Neuroscience and the Healthy Lifespan Institute, School of Bioscience, Firth Court, University of Sheffield, Sheffield, UK
- The Institute of Cancer Therapeutics, University of Bradford, Bradford, UK
| | - Mimoun Azzouz
- The Healthy Lifespan Institute and Neuroscience Institute, Neurodegeneration and Genome Stability Group, University of Sheffield, Sheffield, UK
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| |
Collapse
|
11
|
Arsenijevic Y, Berger A, Udry F, Kostic C. Lentiviral Vectors for Ocular Gene Therapy. Pharmaceutics 2022; 14:pharmaceutics14081605. [PMID: 36015231 PMCID: PMC9414879 DOI: 10.3390/pharmaceutics14081605] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/14/2022] [Accepted: 07/22/2022] [Indexed: 12/10/2022] Open
Abstract
This review offers the basics of lentiviral vector technologies, their advantages and pitfalls, and an overview of their use in the field of ophthalmology. First, the description of the global challenges encountered to develop safe and efficient lentiviral recombinant vectors for clinical application is provided. The risks and the measures taken to minimize secondary effects as well as new strategies using these vectors are also discussed. This review then focuses on lentiviral vectors specifically designed for ocular therapy and goes over preclinical and clinical studies describing their safety and efficacy. A therapeutic approach using lentiviral vector-mediated gene therapy is currently being developed for many ocular diseases, e.g., aged-related macular degeneration, retinopathy of prematurity, inherited retinal dystrophies (Leber congenital amaurosis type 2, Stargardt disease, Usher syndrome), glaucoma, and corneal fibrosis or engraftment rejection. In summary, this review shows how lentiviral vectors offer an interesting alternative for gene therapy in all ocular compartments.
Collapse
Affiliation(s)
- Yvan Arsenijevic
- Unit Retinal Degeneration and Regeneration, Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, 1004 Lausanne, Switzerland;
- Correspondence: (Y.A.); (C.K.)
| | - Adeline Berger
- Group Epigenetics of ocular diseases, Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, 1004 Lausanne, Switzerland;
| | - Florian Udry
- Unit Retinal Degeneration and Regeneration, Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, 1004 Lausanne, Switzerland;
| | - Corinne Kostic
- Group for Retinal Disorder Research, Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, 1004 Lausanne, Switzerland
- Correspondence: (Y.A.); (C.K.)
| |
Collapse
|
12
|
Characterization of an immune-evading doxycycline-inducible lentiviral vector for gene therapy in the spinal cord. Exp Neurol 2022; 355:114120. [DOI: 10.1016/j.expneurol.2022.114120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 11/18/2022]
|
13
|
Bona R, Michelini Z, Mazzei C, Gallinaro A, Canitano A, Borghi M, Vescio MF, Di Virgilio A, Pirillo MF, Klotman ME, Negri D, Cara A. Safety and efficiency modifications of SIV-based integrase-defective lentiviral vectors for immunization. Mol Ther Methods Clin Dev 2021; 23:263-275. [PMID: 34729374 PMCID: PMC8526422 DOI: 10.1016/j.omtm.2021.09.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/24/2021] [Indexed: 11/20/2022]
Abstract
Integrase-defective lentiviral vectors (IDLVs) represent an attractive platform for vaccine development as a result of the ability to induce persistent humoral- and cellular-mediated immune responses against the encoded transgene. Compared with the parental integrating vector, the main advantages for using IDLV are the reduced hazard of insertional mutagenesis and the decreased risk for vector mobilization by wild-type viruses. Here we report on the development and use in the mouse immunogenicity model of simian immunodeficiency virus (SIV)-based IDLV containing a long deletion in the U3 region and with the 3' polypurine tract (PPT) removed from the transfer vector for improving safety and/or efficacy. Results show that a safer extended deletion of U3 sequences did not modify integrase-mediated or -independent integration efficiency. Interestingly, 3' PPT deletion impaired integrase-mediated integration but did not reduce illegitimate, integrase-independent integration efficiency, contrary to what was previously reported in the HIV system. Importantly, although the extended deletion in the U3 did not affect expression or immunogenicity from IDLV, deletion of 3' PPT considerably reduced both expression and immunogenicity of IDLV.
Collapse
Affiliation(s)
- Roberta Bona
- National Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Zuleika Michelini
- National Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Chiara Mazzei
- National Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Alessandra Gallinaro
- National Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Andrea Canitano
- National Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Martina Borghi
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Maria Fenicia Vescio
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Antonio Di Virgilio
- Center for Animal Research and Welfare, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Maria Franca Pirillo
- National Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Mary E. Klotman
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Donatella Negri
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Andrea Cara
- National Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| |
Collapse
|
14
|
Richetin K, Steullet P, Pachoud M, Perbet R, Parietti E, Maheswaran M, Eddarkaoui S, Bégard S, Pythoud C, Rey M, Caillierez R, Q Do K, Halliez S, Bezzi P, Buée L, Leuba G, Colin M, Toni N, Déglon N. Tau accumulation in astrocytes of the dentate gyrus induces neuronal dysfunction and memory deficits in Alzheimer's disease. Nat Neurosci 2020; 23:1567-1579. [PMID: 33169029 DOI: 10.1038/s41593-020-00728-x] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 09/24/2020] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD) is characterized by the accumulation of the tau protein in neurons, neurodegeneration and memory loss. However, the role of non-neuronal cells in this chain of events remains unclear. In the present study, we found accumulation of tau in hilar astrocytes of the dentate gyrus of individuals with AD. In mice, the overexpression of 3R tau specifically in hilar astrocytes of the dentate gyrus altered mitochondrial dynamics and function. In turn, these changes led to a reduction of adult neurogenesis, parvalbumin-expressing neurons, inhibitory synapses and hilar gamma oscillations, which were accompanied by impaired spatial memory performances. Together, these results indicate that the loss of tau homeostasis in hilar astrocytes of the dentate gyrus is sufficient to induce AD-like symptoms, through the impairment of the neuronal network. These results are important for our understanding of disease mechanisms and underline the crucial role of astrocytes in hippocampal function.
Collapse
Affiliation(s)
- Kevin Richetin
- Department of Psychiatry, Center for Psychiatric Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland. .,Laboratory of Neurotherapies and Neuromodulation, Neuroscience Research Center (CRN), Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland. .,Department of Clinical Neuroscience (DNC), Laboratory of Neurotherapies and Neuromodulation, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland.
| | - Pascal Steullet
- Department of Psychiatry, Center for Psychiatric Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Mathieu Pachoud
- Laboratory of Neurotherapies and Neuromodulation, Neuroscience Research Center (CRN), Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland.,Department of Clinical Neuroscience (DNC), Laboratory of Neurotherapies and Neuromodulation, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Romain Perbet
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
| | - Enea Parietti
- Department of Psychiatry, Center for Psychiatric Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Mathischan Maheswaran
- Laboratory of Neurotherapies and Neuromodulation, Neuroscience Research Center (CRN), Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland.,Department of Clinical Neuroscience (DNC), Laboratory of Neurotherapies and Neuromodulation, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Sabiha Eddarkaoui
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
| | - Séverine Bégard
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
| | - Catherine Pythoud
- Laboratory of Neurotherapies and Neuromodulation, Neuroscience Research Center (CRN), Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland.,Department of Clinical Neuroscience (DNC), Laboratory of Neurotherapies and Neuromodulation, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Maria Rey
- Laboratory of Neurotherapies and Neuromodulation, Neuroscience Research Center (CRN), Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland.,Department of Clinical Neuroscience (DNC), Laboratory of Neurotherapies and Neuromodulation, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Raphaëlle Caillierez
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
| | - Kim Q Do
- Department of Psychiatry, Center for Psychiatric Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Sophie Halliez
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
| | - Paola Bezzi
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Luc Buée
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
| | - Geneviève Leuba
- Department of Psychiatry, Center for Psychiatric Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Morvane Colin
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
| | - Nicolas Toni
- Department of Psychiatry, Center for Psychiatric Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland.
| | - Nicole Déglon
- Laboratory of Neurotherapies and Neuromodulation, Neuroscience Research Center (CRN), Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland.,Department of Clinical Neuroscience (DNC), Laboratory of Neurotherapies and Neuromodulation, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
15
|
Buttery PC, Barker RA. Gene and Cell-Based Therapies for Parkinson's Disease: Where Are We? Neurotherapeutics 2020; 17:1539-1562. [PMID: 33128174 PMCID: PMC7598241 DOI: 10.1007/s13311-020-00940-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2020] [Indexed: 02/07/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder that carries large health and socioeconomic burdens. Current therapies for PD are ultimately inadequate, both in terms of symptom control and in modification of disease progression. Deep brain stimulation and infusion therapies are the current mainstay for treatment of motor complications of advanced disease, but these have very significant drawbacks and offer no element of disease modification. In fact, there are currently no agents that are established to modify the course of the disease in clinical use for PD. Gene and cell therapies for PD are now being trialled in the clinic. These treatments are diverse and may have a range of niches in the management of PD. They hold great promise for improved treatment of symptoms as well as possibly slowing progression of the disease in the right patient group. Here, we review the current state of the art for these therapies and look to future strategies in this fast-moving field.
Collapse
Affiliation(s)
- Philip C Buttery
- Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, CB2 0XY, Cambridge, UK.
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Hills Road, CB2 0QQ, Cambridge, UK.
| | - Roger A Barker
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Hills Road, CB2 0QQ, Cambridge, UK.
- John van Geest Centre for Brain Repair, E.D. Adrian Building, Forvie Site, Robinson Way, CB2 0PY, Cambridge, UK.
| |
Collapse
|
16
|
Maximizing lentiviral vector gene transfer in the CNS. Gene Ther 2020; 28:75-88. [PMID: 32632267 PMCID: PMC7902268 DOI: 10.1038/s41434-020-0172-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/20/2020] [Accepted: 06/25/2020] [Indexed: 12/19/2022]
Abstract
Gene transfer is a widely developed technique for studying and treating genetic diseases. However, the development of therapeutic strategies is challenging, due to the cellular and functional complexity of the central nervous system (CNS), its large size and restricted access. We explored two parameters for improving gene transfer efficacy and capacity for the selective targeting of subpopulations of cells with lentiviral vectors (LVs). We first developed a second-generation LV specifically targeting astrocytes for the efficient expression or silencing of genes of interest, and to better study the importance of cell subpopulations in neurological disorders. We then made use of the retrograde transport properties of a chimeric envelope to target brain circuits affected in CNS diseases and achieve a broad distribution. The combination of retrograde transport and specific tropism displayed by this LV provides opportunities for delivering therapeutic genes to specific cell populations and ensuring high levels of transduction in interconnected brain areas following local administration. This new LV and delivery strategy should be of greater therapeutic benefit and opens up new possibilities for the preclinical development of gene therapy for neurodegenerative diseases.
Collapse
|
17
|
Nieuwenhuis B, Haenzi B, Hilton S, Carnicer-Lombarte A, Hobo B, Verhaagen J, Fawcett JW. Optimization of adeno-associated viral vector-mediated transduction of the corticospinal tract: comparison of four promoters. Gene Ther 2020; 28:56-74. [PMID: 32576975 PMCID: PMC7902269 DOI: 10.1038/s41434-020-0169-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 06/01/2020] [Accepted: 06/11/2020] [Indexed: 12/22/2022]
Abstract
Adeno-associated viral vectors are widely used as vehicles for gene transfer to the nervous system. The promoter and viral vector serotype are two key factors that determine the expression dynamics of the transgene. A previous comparative study has demonstrated that AAV1 displays efficient transduction of layer V corticospinal neurons, but the optimal promoter for transgene expression in corticospinal neurons has not been determined yet. In this paper, we report a side-by-side comparison between four commonly used promoters: the short CMV early enhancer/chicken β actin (sCAG), human cytomegalovirus (hCMV), mouse phosphoglycerate kinase (mPGK) and human synapsin (hSYN) promoter. Reporter constructs with each of these promoters were packaged in AAV1, and were injected in the sensorimotor cortex of rats and mice in order to transduce the corticospinal tract. Transgene expression levels and the cellular transduction profile were examined after 6 weeks. The AAV1 vectors harbouring the hCMV and sCAG promoters resulted in transgene expression in neurons, astrocytes and oligodendrocytes. The mPGK and hSYN promoters directed the strongest transgene expression. The mPGK promoter did drive expression in cortical neurons and oligodendrocytes, while transduction with AAV harbouring the hSYN promoter resulted in neuron-specific expression, including perineuronal net expressing interneurons and layer V corticospinal neurons. This promoter comparison study contributes to improve transgene delivery into the brain and spinal cord. The optimized transduction of the corticospinal tract will be beneficial for spinal cord injury research.
Collapse
Affiliation(s)
- Bart Nieuwenhuis
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Robinson Way, Cambridge, CB2 0PY, UK. .,Laboratory for Regeneration of Sensorimotor Systems, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands.
| | - Barbara Haenzi
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Robinson Way, Cambridge, CB2 0PY, UK
| | - Sam Hilton
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Robinson Way, Cambridge, CB2 0PY, UK
| | - Alejandro Carnicer-Lombarte
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Robinson Way, Cambridge, CB2 0PY, UK
| | - Barbara Hobo
- Laboratory for Regeneration of Sensorimotor Systems, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands
| | - Joost Verhaagen
- Laboratory for Regeneration of Sensorimotor Systems, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands.,Centre for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - James W Fawcett
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Robinson Way, Cambridge, CB2 0PY, UK.,Centre of Reconstructive Neuroscience, Institute of Experimental Medicine, Vídeňská 1083, 142 20, Prague 4, Czech Republic
| |
Collapse
|
18
|
Hirbec H, Déglon N, Foo LC, Goshen I, Grutzendler J, Hangen E, Kreisel T, Linck N, Muffat J, Regio S, Rion S, Escartin C. Emerging technologies to study glial cells. Glia 2020; 68:1692-1728. [PMID: 31958188 DOI: 10.1002/glia.23780] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 12/11/2022]
Abstract
Development, physiological functions, and pathologies of the brain depend on tight interactions between neurons and different types of glial cells, such as astrocytes, microglia, oligodendrocytes, and oligodendrocyte precursor cells. Assessing the relative contribution of different glial cell types is required for the full understanding of brain function and dysfunction. Over the recent years, several technological breakthroughs were achieved, allowing "glio-scientists" to address new challenging biological questions. These technical developments make it possible to study the roles of specific cell types with medium or high-content workflows and perform fine analysis of their mutual interactions in a preserved environment. This review illustrates the potency of several cutting-edge experimental approaches (advanced cell cultures, induced pluripotent stem cell (iPSC)-derived human glial cells, viral vectors, in situ glia imaging, opto- and chemogenetic approaches, and high-content molecular analysis) to unravel the role of glial cells in specific brain functions or diseases. It also illustrates the translation of some techniques to the clinics, to monitor glial cells in patients, through specific brain imaging methods. The advantages, pitfalls, and future developments are discussed for each technique, and selected examples are provided to illustrate how specific "gliobiological" questions can now be tackled.
Collapse
Affiliation(s)
- Hélène Hirbec
- Institute for Functional Genomics (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Nicole Déglon
- Laboratory of Neurotherapies and Neuromodulation, Department of Clinical Neuroscience, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland.,Laboratory of Neurotherapies and Neuromodulation, Neuroscience Research Center, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Lynette C Foo
- Neuroimmunology and Neurodegeneration Section, The Neuroscience and Rare Diseases Discovery and Translational Area, F. Hoffman-La Roche, Basel, Switzerland
| | - Inbal Goshen
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jaime Grutzendler
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Emilie Hangen
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Département de la Recherche Fondamentale, Institut de Biologie François Jacob, MIRCen, Fontenay-aux-Roses, France.,Centre National de la Recherche Scientifique, Neurodegenerative Diseases Laboratory, Université Paris-Sud, Université Paris-Saclay, UMR 9199, Fontenay-aux-Roses, France
| | - Tirzah Kreisel
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nathalie Linck
- Institute for Functional Genomics (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Julien Muffat
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, and Department of Molecular Genetics, The University of Toronto, Toronto, Canada
| | - Sara Regio
- Laboratory of Neurotherapies and Neuromodulation, Department of Clinical Neuroscience, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland.,Laboratory of Neurotherapies and Neuromodulation, Neuroscience Research Center, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Sybille Rion
- Neuroimmunology and Neurodegeneration Section, The Neuroscience and Rare Diseases Discovery and Translational Area, F. Hoffman-La Roche, Basel, Switzerland
| | - Carole Escartin
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Département de la Recherche Fondamentale, Institut de Biologie François Jacob, MIRCen, Fontenay-aux-Roses, France.,Centre National de la Recherche Scientifique, Neurodegenerative Diseases Laboratory, Université Paris-Sud, Université Paris-Saclay, UMR 9199, Fontenay-aux-Roses, France
| |
Collapse
|
19
|
Cuddy LK, Wani WY, Morella ML, Pitcairn C, Tsutsumi K, Fredriksen K, Justman CJ, Grammatopoulos TN, Belur NR, Zunke F, Subramanian A, Affaneh A, Lansbury PT, Mazzulli JR. Stress-Induced Cellular Clearance Is Mediated by the SNARE Protein ykt6 and Disrupted by α-Synuclein. Neuron 2019; 104:869-884.e11. [PMID: 31648898 PMCID: PMC6895429 DOI: 10.1016/j.neuron.2019.09.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 06/05/2019] [Accepted: 08/30/2019] [Indexed: 12/23/2022]
Abstract
Age-related neurodegenerative disorders are characterized by a slow, persistent accumulation of aggregated proteins. Although cells can elicit physiological responses to enhance cellular clearance and counteract accumulation, it is unclear how pathogenic proteins evade this process in disease. We find that Parkinson's disease α-synuclein perturbs the physiological response to lysosomal stress by impeding the SNARE protein ykt6. Cytosolic ykt6 is normally autoinhibited by a unique farnesyl-mediated regulatory mechanism; however, during lysosomal stress, it activates and redistributes into membranes to preferentially promote hydrolase trafficking and enhance cellular clearance. α-Synuclein aberrantly binds and deactivates ykt6 in patient-derived neurons, thereby disabling the lysosomal stress response and facilitating protein accumulation. Activating ykt6 by small-molecule farnesyltransferase inhibitors restores lysosomal activity and reduces α-synuclein in patient-derived neurons and mice. Our findings indicate that α-synuclein creates a permissive environment for aggregate persistence by inhibiting regulated cellular clearance and provide a therapeutic strategy to restore protein homeostasis by harnessing SNARE activity.
Collapse
Affiliation(s)
- Leah K Cuddy
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Willayat Y Wani
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Martino L Morella
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Caleb Pitcairn
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Kotaro Tsutsumi
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Kristina Fredriksen
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | | - Nandkishore R Belur
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Friederike Zunke
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Institute of Biochemistry, Christian-Albrechts-Universität zu Kiel, 24118 Kiel, Germany
| | - Aarthi Subramanian
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Amira Affaneh
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Peter T Lansbury
- Lysosomal Therapeutics, Inc., Cambridge, MA 02139, USA; Department of Neurology, Harvard Medical School, Cambridge, MA 02139, USA
| | - Joseph R Mazzulli
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
20
|
SCUBE1-enhanced bone morphogenetic protein signaling protects against renal ischemia-reperfusion injury. Biochim Biophys Acta Mol Basis Dis 2018; 1865:329-338. [PMID: 30414502 DOI: 10.1016/j.bbadis.2018.10.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 10/30/2018] [Indexed: 12/15/2022]
Abstract
We previously reported that the membrane-bound SCUBE1 (signal peptide-CUB-epithelial growth factor domain-containing protein 1) forms a complex with bone morphogenetic protein 2 (BMP2) ligand and its receptors, thus acting as a BMP co-receptor to augment BMP signal activity. However, whether SCUBE1 can bind to and facilitate signaling activity of BMP7, a renal protective molecule for ischemia-reperfusion (I/R) insult, and contribute to the proliferation and repair of renal tubular cells after I/R remains largely unknown. In this study, we first showed that I/R-induced SCUBE1 was expressed in proximal tubular cells, which coincided with the expression of renoprotective BMP7. Molecular and biochemical analyses revealed that SCUBE1 directly binds to BMP7 and its receptors, functioning as a BMP co-receptor to promote BMP7 signaling. Furthermore, we used a new Scube1 deletion (Δ2) mouse strain to further elucidate the renal pathophysiological function of SCUBE1 after I/R injury. As compared with wild-type littermates, Δ2 mice showed severe renal histopathologic features (extensive loss of brush border, tubular necrosis, and tubular dilation) and increased inflammation (neutrophil infiltrate and induction of monocyte chemoattractant protein-1, tumor necrosis factor-α and interleukin-6) during the resolution of I/R damage. They also showed reduced BMP signaling (phosphorylated Smad1/5/8) along with decreased proliferation and increased apoptosis of renal tubular cells. Importantly, lentivirus-mediated overexpression of SCUBE1 enhanced BMP signaling and conferred a concomitant survival outcome for Δ2 proximal tubular epithelial cells after hypoxia-reoxygenation treatment. The protective BMP7 signaling may be facilitated by stress-inducible SCUBE1 after renal I/R, which suggests potential targeted approaches for acute kidney injury.
Collapse
|
21
|
Abstract
Polyglutamine diseases are hereditary degenerative disorders of the nervous system that have remained, to this date, untreatable. Promisingly, investigation into their molecular etiology and the development of increasingly perfected tools have contributed to the design of novel strategies with therapeutic potential. Encouraging studies have explored gene therapy as a means to counteract cell demise and loss in this context. The current chapter addresses the two main focuses of research in the area: the characteristics of the systems used to deliver nucleic acids to cells and the molecular and cellular actions of the therapeutic agents. Vectors used in gene therapy have to satisfyingly reach the tissues and cell types of interest, while eliciting the lowest toxicity possible. Both viral and non-viral systems have been developed for the delivery of nucleic acids to the central nervous system, each with its respective advantages and shortcomings. Since each polyglutamine disease is caused by mutation of a single gene, many gene therapy strategies have tried to halt degeneration by silencing the corresponding protein products, usually recurring to RNA interference. The potential of small interfering RNAs, short hairpin RNAs and microRNAs has been investigated. Overexpression of protective genes has also been evaluated as a means of decreasing mutant protein toxicity and operate beneficial alterations. Recent gene editing tools promise yet other ways of interfering with the disease-causing genes, at the most upstream points possible. Results obtained in both cell and animal models encourage further delving into this type of therapeutic strategies and support the future use of gene therapy in the treatment of polyglutamine diseases.
Collapse
|
22
|
Plastin 3 Promotes Motor Neuron Axonal Growth and Extends Survival in a Mouse Model of Spinal Muscular Atrophy. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 9:81-89. [PMID: 29552580 PMCID: PMC5852384 DOI: 10.1016/j.omtm.2018.01.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/15/2018] [Indexed: 11/24/2022]
Abstract
Spinal muscular atrophy (SMA) is a devastating childhood motor neuron disease. SMA is caused by mutations in the survival motor neuron gene (SMN1), leading to reduced levels of SMN protein in the CNS. The actin-binding protein plastin 3 (PLS3) has been reported as a modifier for SMA, making it a potential therapeutic target. Here, we show reduced levels of PLS3 protein in the brain and spinal cord of a mouse model of SMA. Our study also revealed that lentiviral-mediated PLS3 expression restored axonal length in cultured Smn-deficient motor neurons. Delivery of adeno-associated virus serotype 9 (AAV9) harboring Pls3 cDNA via cisterna magna in SMNΔ7 mice, a widely used animal model of SMA, led to high neuronal transduction efficiency. PLS3 treatment allowed a small but significant increase of lifespan by 42%. Although there was no improvement of phenotype, this study has demonstrated the potential use of Pls3 as a target for gene therapy, possibly in combination with other disease modifiers.
Collapse
|
23
|
Site Specific Modification of Adeno-Associated Virus Enables Both Fluorescent Imaging of Viral Particles and Characterization of the Capsid Interactome. Sci Rep 2017; 7:14766. [PMID: 29116194 PMCID: PMC5676692 DOI: 10.1038/s41598-017-15255-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 10/24/2017] [Indexed: 01/10/2023] Open
Abstract
Adeno-associated viruses (AAVs) are attractive gene therapy vectors due to their low toxicity, high stability, and rare integration into the host genome. Expressing ligands on the viral capsid can re-target AAVs to new cell types, but limited sites have been identified on the capsid that tolerate a peptide insertion. Here, we incorporated a site-specific tetracysteine sequence into the AAV serotype 9 (AAV9) capsid, to permit labelling of viral particles with either a fluorescent dye or biotin. We demonstrate that fluorescently labelled particles are detectable in vitro, and explore the utility of the method in vivo in mice with time-lapse imaging. We exploit the biotinylated viral particles to generate two distinct AAV interactomes, and identify several functional classes of proteins that are highly represented: actin/cytoskeletal protein binding, RNA binding, RNA splicing/processing, chromatin modifying, intracellular trafficking and RNA transport proteins. To examine the biological relevance of the capsid interactome, we modulated the expression of two proteins from the interactomes prior to AAV transduction. Blocking integrin αVβ6 receptor function reduced AAV9 transduction, while reducing histone deacetylase 4 (HDAC4) expression enhanced AAV transduction. Our method demonstrates a strategy for inserting motifs into the AAV capsid without compromising viral titer or infectivity.
Collapse
|
24
|
Stover JD, Farhang N, Berrett KC, Gertz J, Lawrence B, Bowles RD. CRISPR Epigenome Editing of AKAP150 in DRG Neurons Abolishes Degenerative IVD-Induced Neuronal Activation. Mol Ther 2017; 25:2014-2027. [PMID: 28676344 PMCID: PMC5589089 DOI: 10.1016/j.ymthe.2017.06.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 06/08/2017] [Accepted: 06/09/2017] [Indexed: 01/07/2023] Open
Abstract
Back pain is a major contributor to disability and has significant socioeconomic impacts worldwide. The degenerative intervertebral disc (IVD) has been hypothesized to contribute to back pain, but a better understanding of the interactions between the degenerative IVD and nociceptive neurons innervating the disc and treatment strategies that directly target these interactions is needed to improve our understanding and treatment of back pain. We investigated degenerative IVD-induced changes to dorsal root ganglion (DRG) neuron activity and utilized CRISPR epigenome editing as a neuromodulation strategy. By exposing DRG neurons to degenerative IVD-conditioned media under both normal and pathological IVD pH levels, we demonstrate that degenerative IVDs trigger interleukin (IL)-6-induced increases in neuron activity to thermal stimuli, which is directly mediated by AKAP and enhanced by acidic pH. Utilizing this novel information on AKAP-mediated increases in nociceptive neuron activity, we developed lentiviral CRISPR epigenome editing vectors that modulate endogenous expression of AKAP150 by targeted promoter histone methylation. When delivered to DRG neurons, these epigenome-modifying vectors abolished degenerative IVD-induced DRG-elevated neuron activity while preserving non-pathologic neuron activity. This work elucidates the potential for CRISPR epigenome editing as a targeted gene-based pain neuromodulation strategy.
Collapse
Affiliation(s)
- Joshua D Stover
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Niloofar Farhang
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Kristofer C Berrett
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA; Hunstman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Jason Gertz
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA; Hunstman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Brandon Lawrence
- Department of Orthopaedics, University of Utah, Salt Lake City, UT 84112, USA
| | - Robby D Bowles
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA; Department of Orthopaedics, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
25
|
Merienne N, Vachey G, de Longprez L, Meunier C, Zimmer V, Perriard G, Canales M, Mathias A, Herrgott L, Beltraminelli T, Maulet A, Dequesne T, Pythoud C, Rey M, Pellerin L, Brouillet E, Perrier AL, du Pasquier R, Déglon N. The Self-Inactivating KamiCas9 System for the Editing of CNS Disease Genes. Cell Rep 2017; 20:2980-2991. [DOI: 10.1016/j.celrep.2017.08.075] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 07/14/2017] [Accepted: 08/23/2017] [Indexed: 10/18/2022] Open
|
26
|
Hautbergue GM, Castelli LM, Ferraiuolo L, Sanchez-Martinez A, Cooper-Knock J, Higginbottom A, Lin YH, Bauer CS, Dodd JE, Myszczynska MA, Alam SM, Garneret P, Chandran JS, Karyka E, Stopford MJ, Smith EF, Kirby J, Meyer K, Kaspar BK, Isaacs AM, El-Khamisy SF, De Vos KJ, Ning K, Azzouz M, Whitworth AJ, Shaw PJ. SRSF1-dependent nuclear export inhibition of C9ORF72 repeat transcripts prevents neurodegeneration and associated motor deficits. Nat Commun 2017; 8:16063. [PMID: 28677678 PMCID: PMC5504286 DOI: 10.1038/ncomms16063] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 05/24/2017] [Indexed: 12/13/2022] Open
Abstract
Hexanucleotide repeat expansions in the C9ORF72 gene are the commonest known genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia. Expression of repeat transcripts and dipeptide repeat proteins trigger multiple mechanisms of neurotoxicity. How repeat transcripts get exported from the nucleus is unknown. Here, we show that depletion of the nuclear export adaptor SRSF1 prevents neurodegeneration and locomotor deficits in a Drosophila model of C9ORF72-related disease. This intervention suppresses cell death of patient-derived motor neuron and astrocytic-mediated neurotoxicity in co-culture assays. We further demonstrate that either depleting SRSF1 or preventing its interaction with NXF1 specifically inhibits the nuclear export of pathological C9ORF72 transcripts, the production of dipeptide-repeat proteins and alleviates neurotoxicity in Drosophila, patient-derived neurons and neuronal cell models. Taken together, we show that repeat RNA-sequestration of SRSF1 triggers the NXF1-dependent nuclear export of C9ORF72 transcripts retaining expanded hexanucleotide repeats and reveal a novel promising therapeutic target for neuroprotection.
Collapse
Affiliation(s)
- Guillaume M. Hautbergue
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield S10 2HQ, UK
| | - Lydia M. Castelli
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield S10 2HQ, UK
| | - Laura Ferraiuolo
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield S10 2HQ, UK
| | - Alvaro Sanchez-Martinez
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Johnathan Cooper-Knock
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield S10 2HQ, UK
| | - Adrian Higginbottom
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield S10 2HQ, UK
| | - Ya-Hui Lin
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield S10 2HQ, UK
| | - Claudia S. Bauer
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield S10 2HQ, UK
| | - Jennifer E. Dodd
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield S10 2HQ, UK
| | - Monika A. Myszczynska
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield S10 2HQ, UK
| | - Sarah M. Alam
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Pierre Garneret
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield S10 2HQ, UK
| | - Jayanth S. Chandran
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield S10 2HQ, UK
| | - Evangelia Karyka
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield S10 2HQ, UK
| | - Matthew J. Stopford
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield S10 2HQ, UK
| | - Emma F. Smith
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield S10 2HQ, UK
| | - Janine Kirby
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield S10 2HQ, UK
| | - Kathrin Meyer
- Nationwide Children’s Research Institute, Department of Pediatrics, The Ohio State University, 700 Children’s Drive, Rm. WA3022, Columbus, Ohio 43205, USA
| | - Brian K. Kaspar
- Nationwide Children’s Research Institute, Department of Pediatrics, The Ohio State University, 700 Children’s Drive, Rm. WA3022, Columbus, Ohio 43205, USA
| | - Adrian M. Isaacs
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London WC1N 3BG, UK
| | - Sherif F. El-Khamisy
- Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Sheffield S10 2TN, UK
| | - Kurt J. De Vos
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield S10 2HQ, UK
| | - Ke Ning
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield S10 2HQ, UK
| | - Mimoun Azzouz
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield S10 2HQ, UK
| | - Alexander J. Whitworth
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Pamela J. Shaw
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield S10 2HQ, UK
| |
Collapse
|
27
|
Blits B, Boer GJ, Verhaagen J. Pharmacological, Cell, and Gene Therapy Strategies to Promote Spinal Cord Regeneration. Cell Transplant 2017. [DOI: 10.3727/000000002783985521] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In this review, recent studies using pharmacological treatment, cell transplantation, and gene therapy to promote regeneration of the injured spinal cord in animal models will be summarized. Pharmacological and cell transplantation treatments generally revealed some degree of effect on the regeneration of the injured ascending and descending tracts, but further improvements to achieve a more significant functional recovery are necessary. The use of gene therapy to promote repair of the injured nervous system is a relatively new concept. It is based on the development of methods for delivering therapeutic genes to neurons, glia cells, or nonneural cells. Direct in vivo gene transfer or gene transfer in combination with (neuro)transplantation (ex vivo gene transfer) appeared powerful strategies to promote neuronal survival and axonal regrowth following traumatic injury to the central nervous system. Recent advances in understanding the cellular and molecular mechanisms that govern neuronal survival and neurite outgrowth have enabled the design of experiments aimed at viral vector-mediated transfer of genes encoding neurotrophic factors, growth-associated proteins, cell adhesion molecules, and antiapoptotic genes. Central to the success of these approaches was the development of efficient, nontoxic vectors for gene delivery and the acquirement of the appropriate (genetically modified) cells for neurotransplantation. Direct gene transfer in the nervous system was first achieved with herpes viral and E1-deleted adenoviral vectors. Both vector systems are problematic in that these vectors elicit immunogenic and cytotoxic responses. Adeno-associated viral vectors and lentiviral vectors constitute improved gene delivery systems and are beginning to be applied in neuroregeneration research of the spinal cord. Ex vivo approaches were initially based on the implantation of genetically modified fibroblasts. More recently, transduced Schwann cells, genetically modified pieces of peripheral nerve, and olfactory ensheathing glia have been used as implants into the injured spinal cord.
Collapse
Affiliation(s)
- Bas Blits
- Graduate School Neurosciences Amsterdam, Netherlands Institute for Brain Research, Meibergdreef 33, 1105 AZ Amsterdam-ZO, The Netherlands
| | - Gerard J. Boer
- Graduate School Neurosciences Amsterdam, Netherlands Institute for Brain Research, Meibergdreef 33, 1105 AZ Amsterdam-ZO, The Netherlands
| | - Joost Verhaagen
- Graduate School Neurosciences Amsterdam, Netherlands Institute for Brain Research, Meibergdreef 33, 1105 AZ Amsterdam-ZO, The Netherlands
| |
Collapse
|
28
|
Cambon K, Zimmer V, Martineau S, Gaillard MC, Jarrige M, Bugi A, Miniarikova J, Rey M, Hassig R, Dufour N, Auregan G, Hantraye P, Perrier AL, Déglon N. Preclinical Evaluation of a Lentiviral Vector for Huntingtin Silencing. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2017; 5:259-276. [PMID: 28603746 PMCID: PMC5453866 DOI: 10.1016/j.omtm.2017.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 05/07/2017] [Indexed: 01/12/2023]
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder resulting from a polyglutamine expansion in the huntingtin (HTT) protein. There is currently no cure for this disease, but recent studies suggest that RNAi to downregulate the expression of both normal and mutant HTT is a promising therapeutic approach. We previously developed a small hairpin RNA (shRNA), vectorized in an HIV-1-derived lentiviral vector (LV), that reduced pathology in an HD rodent model. Here, we modified this vector for preclinical development by using a tat-independent third-generation LV (pCCL) backbone and removing the original reporter genes. We demonstrate that this novel vector efficiently downregulated HTT expression in vitro in striatal neurons derived from induced pluripotent stem cells (iPSCs) of HD patients. It reduced two major pathological HD hallmarks while triggering a minimal inflammatory response, up to 6 weeks after injection, when administered by stereotaxic surgery in the striatum of an in vivo rodent HD model. Further assessment of this shRNA vector in vitro showed proper processing by the endogenous silencing machinery, and we analyzed gene expression changes to identify potential off-targets. These preclinical data suggest that this new shRNA vector fulfills primary biosafety and efficiency requirements for further development in the clinic as a cure for HD.
Collapse
Affiliation(s)
- Karine Cambon
- CEA, DRF, Institute of Biology Francois Jacob, Molecular Imaging Research Center, F-92265 Fontenay-aux-Roses, France
- CNRS, CEA, Paris-Sud University, University Paris-Saclay, Neurodegenerative Diseases Laboratory (UMR9199), F-92265 Fontenay-aux-Roses, France
| | - Virginie Zimmer
- Department of Clinical Neurosciences, Laboratory of Cellular and Molecular Neurotherapies, Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
- Neuroscience Research Center, Laboratory of Cellular and Molecular Neurotherapies, Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - Sylvain Martineau
- CEA, DRF, Institute of Biology Francois Jacob, Molecular Imaging Research Center, F-92265 Fontenay-aux-Roses, France
- CNRS, CEA, Paris-Sud University, University Paris-Saclay, Neurodegenerative Diseases Laboratory (UMR9199), F-92265 Fontenay-aux-Roses, France
| | - Marie-Claude Gaillard
- CEA, DRF, Institute of Biology Francois Jacob, Molecular Imaging Research Center, F-92265 Fontenay-aux-Roses, France
- CNRS, CEA, Paris-Sud University, University Paris-Saclay, Neurodegenerative Diseases Laboratory (UMR9199), F-92265 Fontenay-aux-Roses, France
| | - Margot Jarrige
- Institut National de la Santé et de la Recherche Médicale UMR861, I-Stem, AFM, 91100 Corbeil-Essonnes, France
- UEVE UMR861, I-STEM, AFM, 91100 Corbeil-Essonnes, France
- CECS, I-STEM, AFM, 91100 Corbeil-Essonnes, France
| | - Aurore Bugi
- CECS, I-STEM, AFM, 91100 Corbeil-Essonnes, France
| | - Jana Miniarikova
- Department of Research & Development, uniQure, 1105 Amsterdam, the Netherlands
| | - Maria Rey
- Department of Clinical Neurosciences, Laboratory of Cellular and Molecular Neurotherapies, Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
- Neuroscience Research Center, Laboratory of Cellular and Molecular Neurotherapies, Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - Raymonde Hassig
- CEA, DRF, Institute of Biology Francois Jacob, Molecular Imaging Research Center, F-92265 Fontenay-aux-Roses, France
- CNRS, CEA, Paris-Sud University, University Paris-Saclay, Neurodegenerative Diseases Laboratory (UMR9199), F-92265 Fontenay-aux-Roses, France
| | - Noelle Dufour
- CEA, DRF, Institute of Biology Francois Jacob, Molecular Imaging Research Center, F-92265 Fontenay-aux-Roses, France
- CNRS, CEA, Paris-Sud University, University Paris-Saclay, Neurodegenerative Diseases Laboratory (UMR9199), F-92265 Fontenay-aux-Roses, France
| | - Gwenaelle Auregan
- CEA, DRF, Institute of Biology Francois Jacob, Molecular Imaging Research Center, F-92265 Fontenay-aux-Roses, France
- CNRS, CEA, Paris-Sud University, University Paris-Saclay, Neurodegenerative Diseases Laboratory (UMR9199), F-92265 Fontenay-aux-Roses, France
| | - Philippe Hantraye
- CEA, DRF, Institute of Biology Francois Jacob, Molecular Imaging Research Center, F-92265 Fontenay-aux-Roses, France
- CNRS, CEA, Paris-Sud University, University Paris-Saclay, Neurodegenerative Diseases Laboratory (UMR9199), F-92265 Fontenay-aux-Roses, France
| | - Anselme L. Perrier
- Institut National de la Santé et de la Recherche Médicale UMR861, I-Stem, AFM, 91100 Corbeil-Essonnes, France
- UEVE UMR861, I-STEM, AFM, 91100 Corbeil-Essonnes, France
| | - Nicole Déglon
- Department of Clinical Neurosciences, Laboratory of Cellular and Molecular Neurotherapies, Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
- Neuroscience Research Center, Laboratory of Cellular and Molecular Neurotherapies, Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
- Corresponding author: Nicole Déglon, Lausanne University Hospital (CHUV), Laboratory of Cellular and Molecular Neurotherapies (LNCM), Pavillon 3, Avenue de Beaumont, 1011 Lausanne, Switzerland.
| |
Collapse
|
29
|
Chung SY, Kishinevsky S, Mazzulli JR, Graziotto J, Mrejeru A, Mosharov EV, Puspita L, Valiulahi P, Sulzer D, Milner TA, Taldone T, Krainc D, Studer L, Shim JW. Parkin and PINK1 Patient iPSC-Derived Midbrain Dopamine Neurons Exhibit Mitochondrial Dysfunction and α-Synuclein Accumulation. Stem Cell Reports 2016; 7:664-677. [PMID: 27641647 PMCID: PMC5063469 DOI: 10.1016/j.stemcr.2016.08.012] [Citation(s) in RCA: 164] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 08/17/2016] [Accepted: 08/17/2016] [Indexed: 01/29/2023] Open
Abstract
Parkinson's disease (PD) is characterized by the selective loss of dopamine neurons in the substantia nigra; however, the mechanism of neurodegeneration in PD remains unclear. A subset of familial PD is linked to mutations in PARK2 and PINK1, which lead to dysfunctional mitochondria-related proteins Parkin and PINK1, suggesting that pathways implicated in these monogenic forms could play a more general role in PD. We demonstrate that the identification of disease-related phenotypes in PD-patient-specific induced pluripotent stem cell (iPSC)-derived midbrain dopamine (mDA) neurons depends on the type of differentiation protocol utilized. In a floor-plate-based but not a neural-rosette-based directed differentiation strategy, iPSC-derived mDA neurons recapitulate PD phenotypes, including pathogenic protein accumulation, cell-type-specific vulnerability, mitochondrial dysfunction, and abnormal neurotransmitter homeostasis. We propose that these form a pathogenic loop that contributes to disease. Our study illustrates the promise of iPSC technology for examining PD pathogenesis and identifying therapeutic targets.
Collapse
Affiliation(s)
- Sun Young Chung
- Center for Stem Cell Biology, Sloan-Kettering Institute, New York, NY 10065, USA; Developmental Biology Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, Box 256, New York, NY 10065, USA
| | - Sarah Kishinevsky
- Center for Stem Cell Biology, Sloan-Kettering Institute, New York, NY 10065, USA; Developmental Biology Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, Box 256, New York, NY 10065, USA
| | - Joseph R Mazzulli
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - John Graziotto
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Ana Mrejeru
- Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA
| | - Eugene V Mosharov
- Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA
| | - Lesly Puspita
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, 25, Bongjeong-ro, Dongnam-gu, Cheonan-si 31151, Korea
| | - Parvin Valiulahi
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, 25, Bongjeong-ro, Dongnam-gu, Cheonan-si 31151, Korea
| | - David Sulzer
- Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA; Department of Psychiatry, Columbia University Medical Center, New York, NY 10032, USA; Department of Pharmacology, Columbia University Medical Center, New York, NY 10032, USA
| | - Teresa A Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA; Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY 10065, USA
| | - Tony Taldone
- Molecular Pharmacology and Chemistry Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - Dimitri Krainc
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Lorenz Studer
- Center for Stem Cell Biology, Sloan-Kettering Institute, New York, NY 10065, USA; Developmental Biology Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, Box 256, New York, NY 10065, USA.
| | - Jae-Won Shim
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, 25, Bongjeong-ro, Dongnam-gu, Cheonan-si 31151, Korea.
| |
Collapse
|
30
|
Webster CP, Smith EF, Bauer CS, Moller A, Hautbergue GM, Ferraiuolo L, Myszczynska MA, Higginbottom A, Walsh MJ, Whitworth AJ, Kaspar BK, Meyer K, Shaw PJ, Grierson AJ, De Vos KJ. The C9orf72 protein interacts with Rab1a and the ULK1 complex to regulate initiation of autophagy. EMBO J 2016; 35:1656-76. [PMID: 27334615 PMCID: PMC4969571 DOI: 10.15252/embj.201694401] [Citation(s) in RCA: 307] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/03/2016] [Indexed: 12/12/2022] Open
Abstract
A GGGGCC hexanucleotide repeat expansion in the C9orf72 gene is the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia (C9ALS/FTD). C9orf72 encodes two C9orf72 protein isoforms of unclear function. Reduced levels of C9orf72 expression have been reported in C9ALS/FTD patients, and although C9orf72 haploinsufficiency has been proposed to contribute to C9ALS/FTD, its significance is not yet clear. Here, we report that C9orf72 interacts with Rab1a and the Unc‐51‐like kinase 1 (ULK1) autophagy initiation complex. As a Rab1a effector, C9orf72 controls initiation of autophagy by regulating the Rab1a‐dependent trafficking of the ULK1 autophagy initiation complex to the phagophore. Accordingly, reduction of C9orf72 expression in cell lines and primary neurons attenuated autophagy and caused accumulation of p62‐positive puncta reminiscent of the p62 pathology observed in C9ALS/FTD patients. Finally, basal levels of autophagy were markedly reduced in C9ALS/FTD patient‐derived iNeurons. Thus, our data identify C9orf72 as a novel Rab1a effector in the regulation of autophagy and indicate that C9orf72 haploinsufficiency and associated reductions in autophagy might be the underlying cause of C9ALS/FTD‐associated p62 pathology.
Collapse
Affiliation(s)
- Christopher P Webster
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience University of Sheffield, Sheffield, UK
| | - Emma F Smith
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience University of Sheffield, Sheffield, UK
| | - Claudia S Bauer
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience University of Sheffield, Sheffield, UK
| | - Annekathrin Moller
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience University of Sheffield, Sheffield, UK
| | - Guillaume M Hautbergue
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience University of Sheffield, Sheffield, UK
| | - Laura Ferraiuolo
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience University of Sheffield, Sheffield, UK
| | - Monika A Myszczynska
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience University of Sheffield, Sheffield, UK
| | - Adrian Higginbottom
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience University of Sheffield, Sheffield, UK
| | - Matthew J Walsh
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience University of Sheffield, Sheffield, UK
| | | | - Brian K Kaspar
- The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Kathrin Meyer
- The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience University of Sheffield, Sheffield, UK
| | - Andrew J Grierson
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience University of Sheffield, Sheffield, UK
| | - Kurt J De Vos
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience University of Sheffield, Sheffield, UK
| |
Collapse
|
31
|
Xu Y, Wang G, Zou X, Yang Z, Wang Q, Feng H, Zhang M. siRNA-mediated downregulation of GluN2B in the rostral anterior cingulate cortex attenuates mechanical allodynia and thermal hyperalgesia in a rat model of pain associated with bone cancer. Exp Ther Med 2015; 11:221-229. [PMID: 26889244 DOI: 10.3892/etm.2015.2859] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 10/22/2014] [Indexed: 11/06/2022] Open
Abstract
It has previously been suggested that the upregulation of GluN2B-containing N-methyl D-aspartate receptors (GluN2B) within the rostral anterior cingulate cortex (rACC) may contribute to the development of chronic pain. The present study used a rat model of bone cancer pain in order to investigate whether lentiviral-mediated delivery of small interfering RNAs targeting GluN2B (LV-GluN2B) could attenuate pain associated with bone cancer, by selectively decreasing GluN2B expression within the rACC. Sprague Dawley rats were inoculated with osteosarcoma cells into the intramedullary space of the right tibia in order to induce persistent bone cancer-associated pain. Intra-rACC administration of the lentiviral siRNA was performed in the tumor bearing rats; and reverse transcription-quantitative polymerase chain reaction and western blotting were performed in order to detect the expression levels of GluN2B. Pain behavior changes were evaluated via paw withdrawal threshold and latency determinations. Marked and region-selective decreases in the mRNA and protein expression levels of GluN2B were detected in the rACC following the intra-rACC administration of LV-GluN2B. Furthermore, the rats also exhibited pain behavior changes corresponding to the decreased levels of GluN2B. By post-operative day 14, inoculation of osteosarcoma cells had significantly enhanced mechanical allodynia and thermal hyperalgesia in the rats, which were subsequently attenuated by the intra-rACC administration of LV-GluN2B. Notably, the paw withdrawal threshold and latency of the tumor-bearing rats had recovered to normal levels, by day 14 post-administration. The results of the present study suggest that GluN2B within the rACC may be a potential target for RNA interference therapy for the treatment of pain associated with bone cancer. Furthermore, the lentiviral vector delivery strategy may be a promising novel approach for the treatment of bone cancer pain.
Collapse
Affiliation(s)
- Yongguang Xu
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Gongming Wang
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Xuli Zou
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Zaiqi Yang
- Department of Anesthesiology, Taian Central Hospital, Taian, Shandong 270000, P.R. China
| | - Qin Wang
- Department of Anesthesiology, Jinan Central Hospital, Jinan, Shandong 250000, P.R. China
| | - Hao Feng
- Department of Anesthesiology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Mengyuan Zhang
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
32
|
Nóbrega C, Carmo-Silva S, Albuquerque D, Vasconcelos-Ferreira A, Vijayakumar UG, Mendonça L, Hirai H, de Almeida LP. Re-establishing ataxin-2 downregulates translation of mutant ataxin-3 and alleviates Machado-Joseph disease. Brain 2015; 138:3537-54. [PMID: 26490332 DOI: 10.1093/brain/awv298] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 08/25/2015] [Indexed: 01/09/2023] Open
Abstract
Machado-Joseph disease is a progressive neurodegenerative disorder associated with the polyQ-expanded ataxin-3 (encoded by ATXN3), for which no therapy is available. With the aim of clarifying the mechanism of neurodegeneration, we hypothesized that the abnormally long polyQ tract would interact aberrantly with ataxin-2 (encoded by ATXN2), another polyQ protein whose function has recently been linked to translational regulation. Using patient's samples and cellular and animal's models we found that in Machado-Joseph disease: (i) ataxin-2 levels are reduced; and (ii) its subcellular localization is changed towards the nucleus. Restoring ataxin-2 levels by lentiviral-mediated overexpression: (i) reduced mutant ataxin-3 levels; and (ii) rescued behaviour defects and neuropathology in a transgenic mouse model of Machado-Joseph disease. Conversely (i) mutating the ataxin-2 motif that enables binding to its natural interactor and translation activator poly(A)-binding protein; or (ii) overexpressing poly(A)-binding protein, had opposite effects, increasing mutant ataxin-3 translation and aggregation. This work suggests that in Machado-Joseph disease, mutant ataxin-3 drives an abnormal reduction of ataxin-2 levels, which overactivates poly(A)-binding protein, increases translation of mutant ataxin-3 and other proteins and aggravates Machado-Joseph disease. Re-establishment of ataxin-2 levels reduces mutant ataxin-3 and alleviates Machado-Joseph disease pathogenesis opening a new avenue for therapeutic intervention in this and potentially other polyQ disorders.
Collapse
Affiliation(s)
- Clévio Nóbrega
- 1 CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, FMUC, 3004- 504 Coimbra, Portugal
| | - Sara Carmo-Silva
- 1 CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, FMUC, 3004- 504 Coimbra, Portugal 2 Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - David Albuquerque
- 3 Faculty of Sciences and Technology, University of Coimbra, 3004- 517 Coimbra, Portugal
| | - Ana Vasconcelos-Ferreira
- 1 CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, FMUC, 3004- 504 Coimbra, Portugal 2 Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Udaya-Geetha Vijayakumar
- 1 CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, FMUC, 3004- 504 Coimbra, Portugal
| | - Liliana Mendonça
- 1 CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, FMUC, 3004- 504 Coimbra, Portugal
| | - Hirokazu Hirai
- 4 Department of Neurophysiology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Luís Pereira de Almeida
- 1 CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, FMUC, 3004- 504 Coimbra, Portugal 2 Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
33
|
Lin YC, Roffler SR, Yan YT, Yang RB. Disruption of Scube2 Impairs Endochondral Bone Formation. J Bone Miner Res 2015; 30:1255-67. [PMID: 25639508 DOI: 10.1002/jbmr.2451] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 12/17/2014] [Accepted: 01/05/2015] [Indexed: 11/11/2022]
Abstract
Signal peptide-CUB-EGF domain-containing protein 2 (SCUBE2) belongs to a secreted and membrane-tethered multidomain SCUBE protein family composed of three members found in vertebrates and mammals. Recent reports suggested that zebrafish scube2 could facilitate sonic hedgehog (Shh) signaling for proper development of slow muscle. However, whether SCUBE2 can regulate the signaling activity of two other hedgehog ligands (Ihh and Dhh), and the developmental relevance of the SCUBE2-induced hedgehog signaling in mammals remain poorly understood. In this study, we first showed that as compared with SCUBE1 or SCUBE3, SCUBE2 is the most potent modulator of IHH signaling in vitro. In addition, gain and loss-of-function studies demonstrated that SCUBE2 exerted an osteogenic function by enhancing Ihh-stimulated osteoblast differentiation in the mouse mesenchymal progenitor cells. Consistent with these in vitro studies and the prominent roles of Ihh in coordinating skeletogenesis, genetic ablation of Scube2 (-/-) caused defective endochondral bone formation and impaired Ihh-mediated chondrocyte differentiation and proliferation as well as osteoblast differentiation of -/- bone-marrow mesenchymal stromal-cell cultures. Our data demonstrate that Scube2 plays a key regulatory role in Ihh-dependent endochondral bone formation.
Collapse
Affiliation(s)
- Yuh-Charn Lin
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Steve R Roffler
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yu-Ting Yan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ruey-Bing Yang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
34
|
Merienne N, Delzor A, Viret A, Dufour N, Rey M, Hantraye P, Déglon N. Gene transfer engineering for astrocyte-specific silencing in the CNS. Gene Ther 2015; 22:830-9. [PMID: 26109254 DOI: 10.1038/gt.2015.54] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 04/21/2015] [Accepted: 05/28/2015] [Indexed: 01/09/2023]
Abstract
Cell-type-specific gene silencing is critical to understand cell functions in normal and pathological conditions, in particular in the brain where strong cellular heterogeneity exists. Molecular engineering of lentiviral vectors has been widely used to express genes of interest specifically in neurons or astrocytes. However, we show that these strategies are not suitable for astrocyte-specific gene silencing due to the processing of small hairpin RNA (shRNA) in a cell. Here we develop an indirect method based on a tetracycline-regulated system to fully restrict shRNA expression to astrocytes. The combination of Mokola-G envelope pseudotyping, glutamine synthetase promoter and two distinct microRNA target sequences provides a powerful tool for efficient and cell-type-specific gene silencing in the central nervous system. We anticipate our vector will be a potent and versatile system to improve the targeting of cell populations for fundamental as well as therapeutic applications.
Collapse
Affiliation(s)
- N Merienne
- Laboratory of Cellular and Molecular Neurotherapies (LCMN), Department of Clinical Neurosciences (DNC), Lausanne University Hospital (CHUV), Lausanne, Switzerland.,LCMN, Neuroscience Research Center (CRN), Lausanne University Hospital, Lausanne, Switzerland
| | - A Delzor
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Institute of Biomedical Imaging (I2BM), Molecular Imaging Research Center (MIRCen), Fontenay-aux-Roses, France.,CNRS-CEA URA2210, Fontenay-aux-Roses, France
| | - A Viret
- Laboratory of Cellular and Molecular Neurotherapies (LCMN), Department of Clinical Neurosciences (DNC), Lausanne University Hospital (CHUV), Lausanne, Switzerland.,LCMN, Neuroscience Research Center (CRN), Lausanne University Hospital, Lausanne, Switzerland
| | - N Dufour
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Institute of Biomedical Imaging (I2BM), Molecular Imaging Research Center (MIRCen), Fontenay-aux-Roses, France.,CNRS-CEA URA2210, Fontenay-aux-Roses, France
| | - M Rey
- Laboratory of Cellular and Molecular Neurotherapies (LCMN), Department of Clinical Neurosciences (DNC), Lausanne University Hospital (CHUV), Lausanne, Switzerland.,LCMN, Neuroscience Research Center (CRN), Lausanne University Hospital, Lausanne, Switzerland
| | - P Hantraye
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Institute of Biomedical Imaging (I2BM), Molecular Imaging Research Center (MIRCen), Fontenay-aux-Roses, France.,CNRS-CEA URA2210, Fontenay-aux-Roses, France
| | - N Déglon
- Laboratory of Cellular and Molecular Neurotherapies (LCMN), Department of Clinical Neurosciences (DNC), Lausanne University Hospital (CHUV), Lausanne, Switzerland.,LCMN, Neuroscience Research Center (CRN), Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
35
|
Kang W, Marasco WA, Tong HI, Byron MM, Wu C, Shi Y, Sun S, Sun Y, Lu Y. Anti-tat Hutat2:Fc mediated protection against tat-induced neurotoxicity and HIV-1 replication in human monocyte-derived macrophages. J Neuroinflammation 2014; 11:195. [PMID: 25416164 PMCID: PMC4256057 DOI: 10.1186/s12974-014-0195-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 11/05/2014] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND HIV-1 Tat is essential for HIV replication and is also a well-known neurotoxic factor causing HIV-associated neurocognitive disorder (HAND). Currently, combined antiretroviral therapy targeting HIV reverse transcriptase or protease cannot prevent the production of early viral proteins, especially Tat, once HIV infection has been established. HIV-infected macrophages and glial cells in the brain still release Tat into the extracellular space where it can exert direct and indirect neurotoxicity. Therefore, stable production of anti-Tat antibodies in the brain would neutralize HIV-1 Tat and thus provide an effective approach to protect neurons. METHODS We constructed a humanized anti-Tat Hutat2:Fc fusion protein with the goal of antagonizing HIV-1 Tat and delivered the gene into cell lines and primary human monocyte-derived macrophages (hMDM) by an HIV-based lentiviral vector. The function of the anti-Tat Hutat2:Fc fusion protein and the potential side effects of lentiviral vector-mediated gene transfer were evaluated in vitro. RESULTS Our study demonstrated that HIV-1-based lentiviral vector-mediated gene transduction resulted in a high-level, stable expression of anti-HIV-1 Tat Hutat2:Fc in human neuronal and monocytic cell lines, as well as in primary hMDM. Hutat2:Fc was detectable in both cells and supernatants and continued to accumulate to high levels within the supernatant. Hutat2:Fc protected mouse cortical neurons against HIV-1 Tat86-induced neurotoxicity. In addition, both secreted Hutat2:Fc and transduced hMDM led to reducing HIV-1BaL viral replication in human macrophages. Moreover, lentiviral vector-based gene introduction did not result in any significant changes in cytomorphology and cell viability. Although the expression of IL8, STAT1, and IDO1 genes was up-regulated in transduced hMDM, such alternation in gene expression did not affect the neuroprotective effect of Hutat2:Fc. CONCLUSIONS Our study demonstrated that lentivirus-mediated gene transfer could efficiently deliver the Hutat2:Fc gene into primary hMDM and does not lead to any significant changes in hMDM immune-activation. The neuroprotective and HIV-1 suppressive effects produced by Hutat2:Fc were comparable to that of a full-length anti-Tat antibody. This study provides the foundation and insights for future research on the potential use of Hutat2:Fc as a novel gene therapy approach for HAND through utilizing monocytes/macrophages, which naturally cross the blood-brain barrier, for gene delivery.
Collapse
Affiliation(s)
- Wen Kang
- Department of Infectious Diseases, Tangdu Hospital, The Fourth Military Medical University, 569 Xinsi Road, Xi'an, Shaanxi, 710038, China. .,Department of Public Health Sciences, John A. Burns School of Medicine, University of Hawaii, 1960 East-west Road, Honolulu, HI, 96822, USA.
| | - Wayne A Marasco
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, 50 Brookline Avenue, Boston, MA, 02215, USA.
| | - Hsin-I Tong
- Department of Public Health Sciences, John A. Burns School of Medicine, University of Hawaii, 1960 East-west Road, Honolulu, HI, 96822, USA.
| | - Mary Margaret Byron
- Hawaii Center for AIDS, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo St., BSB, Suite 231, Honolulu, HI, 96813, USA.
| | - Chengxiang Wu
- Department of Public Health Sciences, John A. Burns School of Medicine, University of Hawaii, 1960 East-west Road, Honolulu, HI, 96822, USA.
| | - Yingli Shi
- Department of Public Health Sciences, John A. Burns School of Medicine, University of Hawaii, 1960 East-west Road, Honolulu, HI, 96822, USA.
| | - Si Sun
- Department of Public Health Sciences, John A. Burns School of Medicine, University of Hawaii, 1960 East-west Road, Honolulu, HI, 96822, USA.
| | - Yongtao Sun
- Department of Infectious Diseases, Tangdu Hospital, The Fourth Military Medical University, 569 Xinsi Road, Xi'an, Shaanxi, 710038, China.
| | - Yuanan Lu
- Department of Public Health Sciences, John A. Burns School of Medicine, University of Hawaii, 1960 East-west Road, Honolulu, HI, 96822, USA.
| |
Collapse
|
36
|
Geiger TR, Ha NH, Faraji F, Michael HT, Rodriguez L, Walker RC, Green JE, Simpson RM, Hunter KW. Functional analysis of prognostic gene expression network genes in metastatic breast cancer models. PLoS One 2014; 9:e111813. [PMID: 25368990 PMCID: PMC4219783 DOI: 10.1371/journal.pone.0111813] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 10/06/2014] [Indexed: 12/17/2022] Open
Abstract
Identification of conserved co-expression networks is a useful tool for clustering groups of genes enriched for common molecular or cellular functions [1]. The relative importance of genes within networks can frequently be inferred by the degree of connectivity, with those displaying high connectivity being significantly more likely to be associated with specific molecular functions [2]. Previously we utilized cross-species network analysis to identify two network modules that were significantly associated with distant metastasis free survival in breast cancer. Here, we validate one of the highly connected genes as a metastasis associated gene. Tpx2, the most highly connected gene within a proliferation network specifically prognostic for estrogen receptor positive (ER+) breast cancers, enhances metastatic disease, but in a tumor autonomous, proliferation-independent manner. Histologic analysis suggests instead that variation of TPX2 levels within disseminated tumor cells may influence the transition between dormant to actively proliferating cells in the secondary site. These results support the co-expression network approach for identification of new metastasis-associated genes to provide new information regarding the etiology of breast cancer progression and metastatic disease.
Collapse
Affiliation(s)
- Thomas R. Geiger
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ngoc-Han Ha
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Farhoud Faraji
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Helen T. Michael
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Loren Rodriguez
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Renard C. Walker
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jeffery E. Green
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - R. Mark Simpson
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kent W. Hunter
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
37
|
α-Synuclein-induced dopaminergic neurodegeneration in a rat model of Parkinson's disease occurs independent of ATP13A2 (PARK9). Neurobiol Dis 2014; 73:229-43. [PMID: 25461191 DOI: 10.1016/j.nbd.2014.10.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 10/02/2014] [Accepted: 10/12/2014] [Indexed: 11/21/2022] Open
Abstract
Mutations in the ATP13A2 (PARK9) gene cause early-onset, autosomal recessive Parkinson's disease (PD) and Kufor-Rakeb syndrome. ATP13A2 mRNA is spliced into three distinct isoforms encoding a P5-type ATPase involved in regulating heavy metal transport across vesicular membranes. Here, we demonstrate that three ATP13A2 mRNA isoforms are expressed in the normal human brain and are modestly increased in the cingulate cortex of PD cases. ATP13A2 can mediate protection toward a number of stressors in mammalian cells and can protect against α-synuclein-induced toxicity in cellular and invertebrate models of PD. Using a primary cortical neuronal model combined with lentiviral-mediated gene transfer, we demonstrate that human ATP13A2 isoforms 1 and 2 display selective neuroprotective effects toward toxicity induced by manganese and hydrogen peroxide exposure through an ATPase-independent mechanism. The familial PD mutations, F182L and G504R, abolish the neuroprotective effects of ATP13A2 consistent with a loss-of-function mechanism. We further demonstrate that the AAV-mediated overexpression of human ATP13A2 is not sufficient to attenuate dopaminergic neurodegeneration, neuropathology, and striatal dopamine and motoric deficits induced by human α-synuclein expression in a rat model of PD. Intriguingly, the delivery of an ATPase-deficient form of ATP13A2 (D513N) to the substantia nigra is sufficient to induce dopaminergic neuronal degeneration and motor deficits in rats, potentially suggesting a dominant-negative mechanism of action. Collectively, our data demonstrate a distinct lack of ATP13A2-mediated protection against α-synuclein-induced neurotoxicity in the rat nigrostriatal dopaminergic pathway, and limited neuroprotective capacity overall, and raise doubts about the potential of ATP13A2 as a therapeutic target for PD.
Collapse
|
38
|
Drouet V, Ruiz M, Zala D, Feyeux M, Auregan G, Cambon K, Troquier L, Carpentier J, Aubert S, Merienne N, Bourgois-Rocha F, Hassig R, Rey M, Dufour N, Saudou F, Perrier AL, Hantraye P, Déglon N. Allele-specific silencing of mutant huntingtin in rodent brain and human stem cells. PLoS One 2014; 9:e99341. [PMID: 24926995 PMCID: PMC4057216 DOI: 10.1371/journal.pone.0099341] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 05/14/2014] [Indexed: 12/11/2022] Open
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder resulting from polyglutamine expansion in the huntingtin (HTT) protein and for which there is no cure. Although suppression of both wild type and mutant HTT expression by RNA interference is a promising therapeutic strategy, a selective silencing of mutant HTT represents the safest approach preserving WT HTT expression and functions. We developed small hairpin RNAs (shRNAs) targeting single nucleotide polymorphisms (SNP) present in the HTT gene to selectively target the disease HTT isoform. Most of these shRNAs silenced, efficiently and selectively, mutant HTT in vitro. Lentiviral-mediated infection with the shRNAs led to selective degradation of mutant HTT mRNA and prevented the apparition of neuropathology in HD rat's striatum expressing mutant HTT containing the various SNPs. In transgenic BACHD mice, the mutant HTT allele was also silenced by this approach, further demonstrating the potential for allele-specific silencing. Finally, the allele-specific silencing of mutant HTT in human embryonic stem cells was accompanied by functional recovery of the vesicular transport of BDNF along microtubules. These findings provide evidence of the therapeutic potential of allele-specific RNA interference for HD.
Collapse
Affiliation(s)
- Valérie Drouet
- Institute of Biomedical Imaging (I2BM) and Molecular Imaging Research Center (MIRCen), Atomic Energy Commission (CEA), Fontenay-aux-Roses, France
- URA2210, Centre National de Recherché Scientifique (CNRS), Fontenay-aux-Roses, France
| | - Marta Ruiz
- Institute of Biomedical Imaging (I2BM) and Molecular Imaging Research Center (MIRCen), Atomic Energy Commission (CEA), Fontenay-aux-Roses, France
- URA2210, Centre National de Recherché Scientifique (CNRS), Fontenay-aux-Roses, France
| | - Diana Zala
- Institut Curie, Orsay, France
- UMR3306, Centre National de Recherché Scientifique (CNRS), Orsay, France
- U1005, Institut National de la Santé et de la Recherche Médicale (INSERM), Orsay France
| | - Maxime Feyeux
- U861, Institut National de la Santé et de la Recherche Médicale (INSERM), AFM, Evry, France
- UEVE U861, I-STEM, AFM, Evry, France
| | - Gwennaëlle Auregan
- Institute of Biomedical Imaging (I2BM) and Molecular Imaging Research Center (MIRCen), Atomic Energy Commission (CEA), Fontenay-aux-Roses, France
- URA2210, Centre National de Recherché Scientifique (CNRS), Fontenay-aux-Roses, France
| | - Karine Cambon
- Institute of Biomedical Imaging (I2BM) and Molecular Imaging Research Center (MIRCen), Atomic Energy Commission (CEA), Fontenay-aux-Roses, France
- URA2210, Centre National de Recherché Scientifique (CNRS), Fontenay-aux-Roses, France
| | - Laetitia Troquier
- Department of Clinical Neurosciences (DNC), Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Johann Carpentier
- Institute of Biomedical Imaging (I2BM) and Molecular Imaging Research Center (MIRCen), Atomic Energy Commission (CEA), Fontenay-aux-Roses, France
- URA2210, Centre National de Recherché Scientifique (CNRS), Fontenay-aux-Roses, France
| | | | - Nicolas Merienne
- Department of Clinical Neurosciences (DNC), Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Fany Bourgois-Rocha
- U861, Institut National de la Santé et de la Recherche Médicale (INSERM), AFM, Evry, France
- UEVE U861, I-STEM, AFM, Evry, France
| | - Raymonde Hassig
- Institute of Biomedical Imaging (I2BM) and Molecular Imaging Research Center (MIRCen), Atomic Energy Commission (CEA), Fontenay-aux-Roses, France
- URA2210, Centre National de Recherché Scientifique (CNRS), Fontenay-aux-Roses, France
| | - Maria Rey
- Department of Clinical Neurosciences (DNC), Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Noëlle Dufour
- Institute of Biomedical Imaging (I2BM) and Molecular Imaging Research Center (MIRCen), Atomic Energy Commission (CEA), Fontenay-aux-Roses, France
- URA2210, Centre National de Recherché Scientifique (CNRS), Fontenay-aux-Roses, France
| | - Frédéric Saudou
- Institut Curie, Orsay, France
- UMR3306, Centre National de Recherché Scientifique (CNRS), Orsay, France
- U1005, Institut National de la Santé et de la Recherche Médicale (INSERM), Orsay France
| | - Anselme L. Perrier
- U861, Institut National de la Santé et de la Recherche Médicale (INSERM), AFM, Evry, France
- UEVE U861, I-STEM, AFM, Evry, France
| | - Philippe Hantraye
- Institute of Biomedical Imaging (I2BM) and Molecular Imaging Research Center (MIRCen), Atomic Energy Commission (CEA), Fontenay-aux-Roses, France
- URA2210, Centre National de Recherché Scientifique (CNRS), Fontenay-aux-Roses, France
| | - Nicole Déglon
- Institute of Biomedical Imaging (I2BM) and Molecular Imaging Research Center (MIRCen), Atomic Energy Commission (CEA), Fontenay-aux-Roses, France
- URA2210, Centre National de Recherché Scientifique (CNRS), Fontenay-aux-Roses, France
- Department of Clinical Neurosciences (DNC), Lausanne University Hospital (CHUV), Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
39
|
Dusonchet J, Li H, Guillily M, Liu M, Stafa K, Derada Troletti C, Boon JY, Saha S, Glauser L, Mamais A, Citro A, Youmans KL, Liu L, Schneider BL, Aebischer P, Yue Z, Bandopadhyay R, Glicksman MA, Moore DJ, Collins JJ, Wolozin B. A Parkinson's disease gene regulatory network identifies the signaling protein RGS2 as a modulator of LRRK2 activity and neuronal toxicity. Hum Mol Genet 2014; 23:4887-905. [PMID: 24794857 DOI: 10.1093/hmg/ddu202] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mutations in LRRK2 are one of the primary genetic causes of Parkinson's disease (PD). LRRK2 contains a kinase and a GTPase domain, and familial PD mutations affect both enzymatic activities. However, the signaling mechanisms regulating LRRK2 and the pathogenic effects of familial mutations remain unknown. Identifying the signaling proteins that regulate LRRK2 function and toxicity remains a critical goal for the development of effective therapeutic strategies. In this study, we apply systems biology tools to human PD brain and blood transcriptomes to reverse-engineer a LRRK2-centered gene regulatory network. This network identifies several putative master regulators of LRRK2 function. In particular, the signaling gene RGS2, which encodes for a GTPase-activating protein (GAP), is a key regulatory hub connecting the familial PD-associated genes DJ-1 and PINK1 with LRRK2 in the network. RGS2 expression levels are reduced in the striata of LRRK2 and sporadic PD patients. We identify RGS2 as a novel interacting partner of LRRK2 in vivo. RGS2 regulates both the GTPase and kinase activities of LRRK2. We show in mammalian neurons that RGS2 regulates LRRK2 function in the control of neuronal process length. RGS2 is also protective against neuronal toxicity of the most prevalent mutation in LRRK2, G2019S. We find that RGS2 regulates LRRK2 function and neuronal toxicity through its effects on kinase activity and independently of GTPase activity, which reveals a novel mode of action for GAP proteins. This work identifies RGS2 as a promising target for interfering with neurodegeneration due to LRRK2 mutations in PD patients.
Collapse
Affiliation(s)
- Julien Dusonchet
- Department of Pharmacology and Experimental Therapeutics and Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA, Howard Hughes Medical Institute, Department of Biomedical Engineering and Center of Synthetic Biology, Boston University, Boston, MA 02215, USA
| | - Hu Li
- Center for Individualized Medicine, Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Maria Guillily
- Department of Pharmacology and Experimental Therapeutics and
| | - Min Liu
- Laboratory for Drug Discovery in Neurodegeneration, Harvard NeuroDiscovery Center, Brigham and Women's Hospital, Cambridge, MA 02139, USA
| | - Klodjan Stafa
- Laboratory of Molecular Neurodegenerative Research, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | | | - Joon Y Boon
- Department of Pharmacology and Experimental Therapeutics and
| | - Shamol Saha
- Department of Pharmacology and Experimental Therapeutics and
| | - Liliane Glauser
- Laboratory of Molecular Neurodegenerative Research, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Adamantios Mamais
- Reta Lila Weston Institute of Neurological Studies, UCL, Institute of Neurology, London, WC1N 1PJ, UK
| | - Allison Citro
- Department of Pharmacology and Experimental Therapeutics and
| | | | - LiQun Liu
- Department of Pharmacology and Experimental Therapeutics and
| | - Bernard L Schneider
- Neurodegenerative Studies Laboratory, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Patrick Aebischer
- Neurodegenerative Studies Laboratory, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Zhenyu Yue
- Department of Neurology and Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Rina Bandopadhyay
- Reta Lila Weston Institute of Neurological Studies, UCL, Institute of Neurology, London, WC1N 1PJ, UK
| | - Marcie A Glicksman
- Laboratory for Drug Discovery in Neurodegeneration, Harvard NeuroDiscovery Center, Brigham and Women's Hospital, Cambridge, MA 02139, USA
| | - Darren J Moore
- Laboratory of Molecular Neurodegenerative Research, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - James J Collins
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA, Howard Hughes Medical Institute, Department of Biomedical Engineering and Center of Synthetic Biology, Boston University, Boston, MA 02215, USA,
| | - Benjamin Wolozin
- Department of Pharmacology and Experimental Therapeutics and Department of Neurology, Boston University School of Medicine, Boston, MA, 02118, USA,
| |
Collapse
|
40
|
Tsika E, Glauser L, Moser R, Fiser A, Daniel G, Sheerin UM, Lees A, Troncoso JC, Lewis PA, Bandopadhyay R, Schneider BL, Moore DJ. Parkinson's disease-linked mutations in VPS35 induce dopaminergic neurodegeneration. Hum Mol Genet 2014; 23:4621-38. [PMID: 24740878 PMCID: PMC4119414 DOI: 10.1093/hmg/ddu178] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Mutations in the vacuolar protein sorting 35 homolog (VPS35) gene at the PARK17 locus, encoding a key component of the retromer complex, were recently identified as a new cause of late-onset, autosomal dominant Parkinson's disease (PD). Here we explore the pathogenic consequences of PD-associated mutations in VPS35 using a number of model systems. VPS35 exhibits a broad neuronal distribution throughout the rodent brain, including within the nigrostriatal dopaminergic pathway. In the human brain, VPS35 protein levels and distribution are similar in tissues from control and PD subjects, and VPS35 is not associated with Lewy body pathology. The common D620N missense mutation in VPS35 does not compromise its protein stability or localization to endosomal and lysosomal vesicles, or the vesicular sorting of the retromer cargo, sortilin, SorLA and cation-independent mannose 6-phosphate receptor, in rodent primary neurons or patient-derived human fibroblasts. In yeast we show that PD-linked VPS35 mutations are functional and can normally complement VPS35 null phenotypes suggesting that they do not result in a loss-of-function. In rat primary cortical cultures the overexpression of human VPS35 induces neuronal cell death and increases neuronal vulnerability to PD-relevant cellular stress. In a novel viral-mediated gene transfer rat model, the expression of D620N VPS35 induces the marked degeneration of substantia nigra dopaminergic neurons and axonal pathology, a cardinal pathological hallmark of PD. Collectively, these studies establish that dominant VPS35 mutations lead to neurodegeneration in PD consistent with a gain-of-function mechanism, and support a key role for VPS35 in the development of PD.
Collapse
Affiliation(s)
- Elpida Tsika
- Laboratory of Molecular Neurodegenerative Research
| | | | - Roger Moser
- Laboratory of Molecular Neurodegenerative Research
| | - Aris Fiser
- Laboratory of Molecular Neurodegenerative Research
| | | | | | - Andrew Lees
- Queen Square Brain Bank for Neurological Disorders, University College London Institute of Neurology, London WC1N 3BG, UK
| | - Juan C Troncoso
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Patrick A Lewis
- Department of Molecular Neuroscience School of Pharmacy, University of Reading, Reading RG6 6AP, UK
| | - Rina Bandopadhyay
- Reta Lila Weston Institute of Neurological Studies, University College London Institute of Neurology, London WC1N 1PJ, UK
| | - Bernard L Schneider
- Neurodegenerative Disease Laboratory, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Darren J Moore
- Laboratory of Molecular Neurodegenerative Research Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, USA
| |
Collapse
|
41
|
Chermenina M, Schouten P, Nevalainen N, Johansson F, Orädd G, Strömberg I. GDNF is important for striatal organization and maintenance of dopamine neurons grown in the presence of the striatum. Neuroscience 2014; 270:1-11. [PMID: 24726488 DOI: 10.1016/j.neuroscience.2014.04.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 04/02/2014] [Accepted: 04/02/2014] [Indexed: 11/17/2022]
Abstract
Glial cell line-derived neurotrophic factor (GDNF) exerts neuroprotective and neurorestorative effects on neurons and GDNF plays a significant role in maintenance of the dopamine neurons utilizing grafting to create a nigrostriatal microcircuit of Gdnf knockout (Gdnf(-/-)) tissue. To further evaluate the role of GDNF on organization of the nigrostriatal system, single or double grafts of ventral mesencephalon (VM) and lateral ganglionic eminence (LGE) with mismatches in Gdnf genotypes were performed. The survival of single grafts was monitored utilizing magnetic resonance imaging (MRI) and cell survival and graft organization were evaluated with immunohistochemistry. The results revealed that the size of VM single grafts did not change over time independent of genotype, while the size of the LGE transplants was significantly reduced already at 2 weeks postgrafting when lacking GDNF. Lack of GDNF did not significantly affect the survival of tyrosine hydroxylase (TH)-positive neurons in single VM grafts. However, the survival of TH-positive neurons was significantly reduced in VM derived from Gdnf(+/+) when co-grafted with LGE from the Gdnf(-/-) tissue. In contrast, lack of GDNF in the VM portion of co-grafts had no effect on the survival of TH-positive neurons when co-grafted with LGE from Gdnf(+/+) mice. The TH-positive innervation of co-grafts was sparse when the striatal co-grafts were derived from the Gdnf(-/-) tissue while dense and patchy when innervating LGE producing GDNF. The TH-positive innervation overlapped with the organization of dopamine and cyclic AMP-regulated phosphoprotein-relative molecular mass 32,000 (DARPP-32)-positive neurons, that was disorganized in LGE lacking GDNF production. In conclusion, GDNF is important for a proper striatal organization and for survival of TH-positive neurons in the presence of the striatal tissue.
Collapse
Affiliation(s)
- M Chermenina
- Integrative Medical Biology, Umeå University, 901 87 Umeå, Sweden
| | - P Schouten
- Integrative Medical Biology, Umeå University, 901 87 Umeå, Sweden
| | - N Nevalainen
- Integrative Medical Biology, Umeå University, 901 87 Umeå, Sweden
| | - F Johansson
- Integrative Medical Biology, Umeå University, 901 87 Umeå, Sweden
| | - G Orädd
- Integrative Medical Biology, Umeå University, 901 87 Umeå, Sweden
| | - I Strömberg
- Integrative Medical Biology, Umeå University, 901 87 Umeå, Sweden.
| |
Collapse
|
42
|
QU YANG, ZHAO JIANWU, WANG YANG, GAO ZHONGLI. Silencing ephrinB3 improves functional recovery following spinal cord injury. Mol Med Rep 2014; 9:1761-6. [DOI: 10.3892/mmr.2014.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 02/25/2014] [Indexed: 11/06/2022] Open
|
43
|
Du Y, Shi A, Han B, Li S, Wu D, Jia H, Zheng C, Ren L, Fan Z. COX-2 silencing enhances tamoxifen antitumor activity in breast cancer in vivo and in vitro. Int J Oncol 2014; 44:1385-93. [PMID: 24535190 DOI: 10.3892/ijo.2014.2299] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 01/16/2014] [Indexed: 11/06/2022] Open
Abstract
Tamoxifen (Tam), a selective estrogen receptor modulator, is in wide clinical use for the treatment and prevention of breast cancer. However, extended TAM administration for breast cancer induces increased VEGF levels in patients, promoting new blood vessel formation and thereby limiting its efficacy and highlighting the need for improved therapeutic strategies. Cyclooxygenase-2 (COX-2) silencing via a replication-incompetent lentivirus (LV-COX-2) induce cancer apoptosis and suppresses VEGF gene expression. In this study, the effect of LV-COX-2 infection, either alone or in combination with TAM, was analyzed in a breast cell lines for suppressing VEGF expression and simultaneously reducing doses of TAM. Cell proliferation, apoptosis, angiogenesis, metastasis, cell cycle distribution, an receptor signaling were determined after LV-COX-2 combination with TAM treatment. In addition, tumor growth ability in nude mice was detected to define the combination treatment effect in tumorigenesis in vivo. It is found that LV-COX-2 combination with TAM treatment in breast cancer cell significantly suppressed the proliferation and metastasis, and induced tumor apoptosis in vitro, and tumor growth also was suppressed in vivo. In addition, we also found that LV-COX-2 combination with TAM treatment could inhibit angiogenesis and VEGF expression. Taken together, our experimental results indicate that LV-COX-2 combination with TAM has promising outcome in anti-metastatic and apoptotic studies. Furthermore, these results showed that LV-COX-2 combination with TAM is a potential drug candidate for treatment of breast tumors expressing high levels of VEGF.
Collapse
Affiliation(s)
- Ye Du
- Department of Breast Surgery, The First Hospital, Jilin University, Changchun 130021, Jilin, P.R. China
| | - Aiping Shi
- Department of Breast Surgery, The First Hospital, Jilin University, Changchun 130021, Jilin, P.R. China
| | - Bing Han
- Department of Breast Surgery, The First Hospital, Jilin University, Changchun 130021, Jilin, P.R. China
| | - Sijie Li
- Department of Breast Surgery, The First Hospital, Jilin University, Changchun 130021, Jilin, P.R. China
| | - Di Wu
- Department of Breast Surgery, The First Hospital, Jilin University, Changchun 130021, Jilin, P.R. China
| | - Hongyao Jia
- Department of Breast Surgery, The First Hospital, Jilin University, Changchun 130021, Jilin, P.R. China
| | - Chao Zheng
- Department of Breast Surgery, The First Hospital, Jilin University, Changchun 130021, Jilin, P.R. China
| | - Liqun Ren
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun 130021, Jilin, P.R. China
| | - Zhimin Fan
- Department of Breast Surgery, The First Hospital, Jilin University, Changchun 130021, Jilin, P.R. China
| |
Collapse
|
44
|
Abstract
Numerous viral vectors have been developed for the delivery of transgenes to specific target cells. For persistent transgene expression, vectors based on retroviruses are attractive delivery vehicles because of their ability to stably integrate their DNA into the host cell genome. Initially, vectors based on simple retroviruses were the vector of choice for such applications. However, these vectors can only transduce actively dividing cells. Therefore, much interest has turned to retroviral vectors based on the lentivirus genus because of their ability to transduce both dividing and non-dividing cells. The best characterized lentiviral vectors are derived from the human immunodeficiency virus type 1 (HIV-1). This chapter describes the basic features of the HIV-1 replication cycle and the many improvements reported for the lentiviral vector systems to increase the safety and efficiency. We also provide practical information on the production of HIV-1 derived lentiviral vectors, the cell transduction protocol and a method to determine the transduction titers of a lentiviral vector.
Collapse
Affiliation(s)
- Ying Poi Liu
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | |
Collapse
|
45
|
|
46
|
Facchinetti P, Dorard E, Contremoulins V, Gaillard MC, Déglon N, Sazdovitch V, Guihenneuc-Jouyaux C, Brouillet E, Duyckaerts C, Allinquant B. SET translocation is associated with increase in caspase cleaved amyloid precursor protein in CA1 of Alzheimer and Down syndrome patients. Neurobiol Aging 2013; 35:958-68. [PMID: 24262202 DOI: 10.1016/j.neurobiolaging.2013.08.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 08/26/2013] [Accepted: 08/31/2013] [Indexed: 11/30/2022]
Abstract
Caspase cleaved amyloid precursor protein (APPcc) and SET are increased and mislocalized in the neuronal cytoplasm in Alzheimer Disease (AD) brains. Translocated SET to the cytoplasm can induce tau hyperphosphorylation. To elucidate the putative relationships between mislocalized APPcc and SET, we studied their level and distribution in the hippocampus of 5 controls, 3 Down syndrome and 10 Alzheimer patients. In Down syndrome and Alzheimer patients, APPcc and SET levels were increased in CA1 and the frequency of both localizations in the neuronal cytoplasm was high in CA1, and low in CA4. As the increase of APPcc is already present at early stages of AD, we overexpressed APPcc in CA1 and the dentate gyrus neurons of adult mice with a lentiviral construct. APPcc overexpression in CA1 and not in the dentate gyrus induced endogenous SET translocation and tau hyperphosphorylation. These data suggest that increase in APPcc in CA1 neurons could be an early event leading to the translocation of SET and the progression of AD through tau hyperphosphorylation.
Collapse
Affiliation(s)
- Patricia Facchinetti
- INSERM UMR 894, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
| | - Emilie Dorard
- INSERM UMR 894, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
| | - Vincent Contremoulins
- ImagoSeine, Institut Jacques Monod, UMR 7592, CNRS and Université Paris Diderot, Paris, France
| | | | | | - Véronique Sazdovitch
- Laboratoire de Neuropathologie Escourolle, Hôpital de la Salpêtrière, AP-HP, and Centre de Recherche de l'ICM (UPMC, INSERM UMR S 975, CNRS UMR 7225), Paris, France
| | - Chantal Guihenneuc-Jouyaux
- EA 4064, Université Paris Descartes, Sorbonne Paris Cité, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, France
| | | | - Charles Duyckaerts
- Laboratoire de Neuropathologie Escourolle, Hôpital de la Salpêtrière, AP-HP, and Centre de Recherche de l'ICM (UPMC, INSERM UMR S 975, CNRS UMR 7225), Paris, France
| | - Bernadette Allinquant
- INSERM UMR 894, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France.
| |
Collapse
|
47
|
Yaguchi M, Ohashi Y, Tsubota T, Sato A, Koyano KW, Wang N, Miyashita Y. Characterization of the properties of seven promoters in the motor cortex of rats and monkeys after lentiviral vector-mediated gene transfer. Hum Gene Ther Methods 2013; 24:333-44. [PMID: 23964981 DOI: 10.1089/hgtb.2012.238] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Lentiviral vectors deliver transgenes efficiently to a wide range of neuronal cell types in the mammalian central nervous system. To drive gene expression, internal promoters are essential; however, the in vivo properties of promoters, such as their cell type specificity and gene expression activity, are not well known, especially in the nonhuman primate brain. Here, the properties of five ubiquitous promoters (murine stem cell virus [MSCV], cytomegalovirus [CMV], CMV early enhancer/chicken β-actin [CAG], human elongation factor-1α [EF-1α], and Rous sarcoma virus [RSV]) and two cell type-specific promoters (rat synapsin I and mouse α-calcium/calmodulin-dependent protein kinase II [CaMKIIα]) in rat and monkey motor cortices in vivo were characterized. Vesicular stomatitis virus G (VSV-G)-pseudotyped lentiviral vectors expressing enhanced green fluorescent protein (EGFP) under the control of the various promoters were prepared and injected into rat and monkey motor cortices. Immunohistochemical analysis revealed that all of the VSV-G-pseudotyped lentiviral vectors had strong endogenous neuronal tropisms in rat and monkey brains. Among the seven promoters, the CMV promoter showed modest expression in glial cells (9.4%) of the rat brain, whereas the five ubiquitous promoters (MSCV, CMV, CAG, EF-1α, and RSV) showed expression in glial cells (7.0-14.7%) in the monkey brain. Cell type-specific synapsin I and CaMKIIα promoters showed excitatory neuron-specific expression in the monkey brain (synapsin I, 99.7%; CaMKIIα, 100.0%), but their specificities for excitatory neurons were significantly lower in the rat brain (synapsin I, 94.6%; CaMKIIα, 93.7%). These findings could be useful in basic and clinical neuroscience research for the design of vectors that efficiently deliver and express transgenes into rat and monkey brains.
Collapse
Affiliation(s)
- Masae Yaguchi
- 1 Department of Physiology, The University of Tokyo School of Medicine , Tokyo 113-0033, Japan
| | | | | | | | | | | | | |
Collapse
|
48
|
Nielsen TT, Nielsen JE. Antisense gene silencing: therapy for neurodegenerative disorders? Genes (Basel) 2013; 4:457-84. [PMID: 24705213 PMCID: PMC3924827 DOI: 10.3390/genes4030457] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 07/11/2013] [Accepted: 08/13/2013] [Indexed: 01/17/2023] Open
Abstract
Since the first reports that double-stranded RNAs can efficiently silence gene expression in C. elegans, the technology of RNA interference (RNAi) has been intensively exploited as an experimental tool to study gene function. With the subsequent discovery that RNAi could also be applied to mammalian cells, the technology of RNAi expanded from being a valuable experimental tool to being an applicable method for gene-specific therapeutic regulation, and much effort has been put into further refinement of the technique. This review will focus on how RNAi has developed over the years and how the technique is exploited in a pre-clinical and clinical perspective in relation to neurodegenerative disorders.
Collapse
Affiliation(s)
- Troels T Nielsen
- Danish Dementia Research Centre, Neurogenetics Clinic, Department of Neurology, Section 6702, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, DK-2100, Copenhagen Ø, Denmark.
| | - Jørgen E Nielsen
- Danish Dementia Research Centre, Neurogenetics Clinic, Department of Neurology, Section 6702, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, DK-2100, Copenhagen Ø, Denmark
| |
Collapse
|
49
|
Kordower JH, Bjorklund A. Trophic factor gene therapy for Parkinson's disease. Mov Disord 2013; 28:96-109. [PMID: 23390096 DOI: 10.1002/mds.25344] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 12/05/2012] [Accepted: 12/13/2012] [Indexed: 11/06/2022] Open
Abstract
Parkinson's disease (PD) is a chronic and progressive neurodegenerative movement disorder for which there is presently no cure. Pharmacological remedies targeting the dopaminergic network are relatively effective at ameliorating motor deficits, especially in the early stages of the disease, but none of these therapies are curative and many generate their own problems. Recent advances in PD research have demonstrated that gene delivery of trophic factors, glial cell line-derived neurotrophic factor (GDNF) and neurturin, in particular, can provide structural and functional recovery in rodent and nonhuman primate models of PD. Similar success has been gleaned in open-label clinical trials, although this has yet to be realized in double-blinded analyses. This work reviews the field of trophic factor gene delivery for PD.
Collapse
Affiliation(s)
- Jeffrey H Kordower
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois 60612, USA.
| | | |
Collapse
|
50
|
Merienne N, Le Douce J, Faivre E, Déglon N, Bonvento G. Efficient gene delivery and selective transduction of astrocytes in the mammalian brain using viral vectors. Front Cell Neurosci 2013; 7:106. [PMID: 23847471 PMCID: PMC3701857 DOI: 10.3389/fncel.2013.00106] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 06/18/2013] [Indexed: 12/31/2022] Open
Abstract
Astrocytes are now considered as key players in brain information processing because of their newly discovered roles in synapse formation and plasticity, energy metabolism and blood flow regulation. However, our understanding of astrocyte function is still fragmented compared to other brain cell types. A better appreciation of the biology of astrocytes requires the development of tools to generate animal models in which astrocyte-specific proteins and pathways can be manipulated. In addition, it is becoming increasingly evident that astrocytes are also important players in many neurological disorders. Targeted modulation of protein expression in astrocytes would be critical for the development of new therapeutic strategies. Gene transfer is valuable to target a subpopulation of cells and explore their function in experimental models. In particular, viral-mediated gene transfer provides a rapid, highly flexible and cost-effective, in vivo paradigm to study the impact of genes of interest during central nervous system development or in adult animals. We will review the different strategies that led to the recent development of efficient viral vectors that can be successfully used to selectively transduce astrocytes in the mammalian brain.
Collapse
Affiliation(s)
- Nicolas Merienne
- Laboratory of Cellular and Molecular Neurotherapies, Department of Clinical Neurosciences, Lausanne University Hospital Lausanne, Switzerland
| | | | | | | | | |
Collapse
|