1
|
Pakola SA, Clubb JHA, Kudling TV, van der Heijden M, Jirovec E, Arias V, Haybout L, Peltola K, Alanko T, Sormunen J, Pellinen T, Taipale K, Quixabeira DCA, Kistler C, Havunen R, Sorsa S, Santos JM, Cervera-Carrascon V, Hemminki A. Transient lymphocyte count decrease correlates with oncolytic adenovirus efficacy in humans: mechanistic and biomarker findings from TUNIMO phase I trial. J Immunother Cancer 2025; 13:e010493. [PMID: 39870491 PMCID: PMC11772932 DOI: 10.1136/jitc-2024-010493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 01/09/2025] [Indexed: 01/29/2025] Open
Abstract
BACKGROUND Oncolytic viruses (OVs) are promising immunotherapeutics to treat immunologically cold tumors. However, research on the mechanism of action of OVs in humans and clinically relevant biomarkers is still sparse. To induce strong T-cell responses against solid tumors, TILT-123 (Ad5/3-E2F-d24-hTNFa-IRES-hIL2, igrelimogene litadenorepvec) was developed. TILT-123 encodes two transgenes: tumor necrosis alpha (TNFa) and interleukin-2 (IL-2). TUNIMO (NCT04695327) was a phase I clinical trial using TILT-123 in patients with advanced solid tumors aiming to assess the safety, efficacy, and immunological effects of TILT-123. Research presented in this study evaluated the immunological effects of TILT-123 in the TUNIMO trial by using biological samples collected from the patients during the study, with an objective to leverage the findings to develop possible biomarkers of response and gain insights into possible synergistic combination treatments. METHODS 20 patients with advanced solid tumors were treated with TILT-123. Response to therapy was assessed with contrast-enhanced CT and fluorodeoxyglucose positron emission tomography, along with overall survival (OS) calculation. Biological samples from patients were collected in the form of blood and tumor biopsies. Collected samples were analyzed with immunohistochemistry, transcriptomics, proteomics, and flow cytometry. RESULTS TILT-123 induced cyclical decreases in blood lymphocyte count, and more substantial blood lymphocyte count correlated with better radiographical response and longer OS. Lymphocyte count findings were confirmed with external control dataset of 96 patients. More substantial lymphocyte count change was linked to stronger immune activation in plasma proteome after intravenous TILT-123 and the presence of TILT-123 mRNA in tumors. Regarding other assays. tumor biopsies profiled showed increased amounts of CD8+ T cells, CD4+ T cells and NK cells after intravenous TILT-123, but not after intratumoral TILT-123. Transcriptional differences were seen in tumors after intravenous therapy and intratumoral therapy, with patients benefitting therapy showing stronger downregulation of immune activation at all time points. CONCLUSIONS TILT-123 therapy induced accumulation of effector lymphocytes in tumors. Peripheral lymphocyte count decrease is a promising biomarker for assessing oncolytic adenovirus therapy response.
Collapse
Affiliation(s)
- Santeri A Pakola
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - James H A Clubb
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd, Helsinki, Finland
| | - Tatiana V Kudling
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Mirte van der Heijden
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Elise Jirovec
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Victor Arias
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Lyna Haybout
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd, Helsinki, Finland
| | - Katriina Peltola
- Comprehensive Cancer Center, HUS Helsinki University Hospital, Helsinki, Finland
| | | | | | - Teijo Pellinen
- Digital Microscopy and Molecular Pathology Unit, University of Helsinki Institute for Molecular Medicine, Helsinki, Finland
| | - Kristian Taipale
- Health and Hospital Services, Wellbeing Services County of North Karelia - Siun sote, Joensuu, Finland
| | - Dafne C A Quixabeira
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd, Helsinki, Finland
| | | | - Riikka Havunen
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd, Helsinki, Finland
| | - Suvi Sorsa
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd, Helsinki, Finland
| | - Joao M Santos
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd, Helsinki, Finland
| | - Victor Cervera-Carrascon
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd, Helsinki, Finland
| | - Akseli Hemminki
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd, Helsinki, Finland
- Comprehensive Cancer Center, HUS Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
2
|
Machitani M, Sakurai F, Wakabayashi K, Nakatani K, Tachibana M, Kato N, Fujiwara T, Mizuguchi H. Suppression of Oncolytic Adenovirus-Mediated Hepatotoxicity by Liver-Specific Inhibition of NF-κB. MOLECULAR THERAPY-ONCOLYTICS 2017; 7:76-85. [PMID: 29202008 PMCID: PMC5704103 DOI: 10.1016/j.omto.2017.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 10/22/2017] [Indexed: 11/28/2022]
Abstract
Telomerase-specific replication-competent adenoviruses (Ads), i.e., TRADs, which possess an E1 gene expression cassette driven by the human telomerase reverse transcriptase promoter, are promising agents for cancer treatment. However, even though oncolytic Ads, including TRAD, are intratumorally administered, they are disseminated from the tumor to systemic circulation, causing concern about oncolytic Ad-mediated hepatotoxicity (due mainly to leaky expression of Ad genes in liver). We reported that inhibition of nuclear factor-κB (NF-κB) leads to the suppression of replication-incompetent Ad vector-mediated hepatotoxicity via reduction of the leaky expression of Ad genes in liver. Here, to develop a TRAD with an improved safety profile, we designed a TRAD that carries a liver-specific promoter-driven dominant-negative IκBα (DNIκBα) expression cassette (TRAD-DNIκBα). Compared with a conventional TRAD, TRAD-DNIκBα showed hepatocyte-specific inhibition of NF-κB signaling and significantly reduced Ad gene expression and replication in the normal human hepatocyte cell line. TRAD-induced hepatotoxicity was largely suppressed in mice following intravenous administration of TRAD-DNIκBα. However, the replication profiles and oncolytic activities of TRAD-DNIκBα were comparable with those of the conventional TRAD in human non-hepatic tumor cells. These results indicate that oncolytic Ads containing the liver-specific DNIκBα expression cassette have improved safety profiles without inhibiting oncolytic activities.
Collapse
Affiliation(s)
- Mitsuhiro Machitani
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.,Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Fuminori Sakurai
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.,Laboratory of Regulatory Sciences for Oligonucleotide Therapeutics, Clinical Drug Development Unit, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Keisaku Wakabayashi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kosuke Nakatani
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masashi Tachibana
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.,Global Center for Medical Engineering and Informatics, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Nobuyuki Kato
- Department of Tumor Virology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Toshiyoshi Fujiwara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.,Global Center for Medical Engineering and Informatics, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.,Laboratory of Hepatocyte Regulation, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito, Asagi, Ibaraki, Osaka 567-0085, Japan.,iPS Cell-Based Research Project on Hepatic Toxicity and Metabolism, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.,Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
3
|
Engineered adenovirus fiber shaft fusion homotrimer of soluble TRAIL with enhanced stability and antitumor activity. Cell Death Dis 2016; 7:e2274. [PMID: 27336718 PMCID: PMC5143403 DOI: 10.1038/cddis.2016.177] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 05/15/2016] [Accepted: 05/27/2016] [Indexed: 12/16/2022]
Abstract
Successful cancer therapies aim to induce selective apoptosis in neoplastic cells. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is considered an attractive anticancer agent due to its tumor cell-specific cytotoxicity. However, earlier studies with recombinant TRAIL revealed many shortcomings, including a short half-life, off-target toxicity and existence of TRAIL-resistant tumor cells. In this study, we developed a novel engineering strategy for recombinant soluble TRAIL by redesigning its structure with the adenovirus knobless fiber motif to form a stable homotrimer with improved antitumor activity. The result is a highly stable fiber-TRAIL fusion protein that could form homotrimers similar to natural TRAIL. The recombinant fusion TRAIL developed here displayed high specific activity in both cell-based assays in vitro and animal tests in vivo. This construct will serve as a foundation for a new generation of recombinant proteins suitable for use in preclinical and clinical studies and for effective combination therapies to overcome tumor resistance to TRAIL.
Collapse
|
4
|
Yoon AR, Hong J, Kim SW, Yun CO. Redirecting adenovirus tropism by genetic, chemical, and mechanical modification of the adenovirus surface for cancer gene therapy. Expert Opin Drug Deliv 2016; 13:843-58. [PMID: 26967319 DOI: 10.1517/17425247.2016.1158707] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Despite remarkable advancements, clinical evaluations of adenovirus (Ad)-mediated cancer gene therapies have highlighted the need for improved delivery and targeting. AREA COVERED Genetic modification of Ad capsid proteins has been extensively attempted. Although genetic modification enhances the therapeutic potential of Ad, it is difficult to successfully incorporate extraneous moieties into the capsid and the engineering process is laborious. Recently, chemical modification of the Ad surface with nanomaterials and targeting moieties has been found to enhance Ad internalization into the target by both passive and active mechanisms. Alternatively, external stimulus-mediated targeting can result in selective accumulation of Ad in the tumor and prevent dissemination of Ad into surrounding nontarget tissues. In the present review, we discuss various genetic, chemical, and mechanical engineering strategies for overcoming the challenges that hinder the therapeutic efficacy of Ad-based approaches. EXPERT OPINION Surface modification of Ad by genetic, chemical, or mechanical engineering strategies enables Ad to overcome the shortcomings of conventional Ad and enhances delivery efficiency through distinct and unique mechanisms that unmodified Ad cannot mimic. However, although the therapeutic potential of Ad-mediated gene therapy has been enhanced by various surface modification strategies, each strategy still possesses innate limitations that must be addressed, requiring innovative ideas and designs.
Collapse
Affiliation(s)
- A-Rum Yoon
- a Department of Bioengineering, College of Engineering , Hanyang University , Seoul , Korea
| | - Jinwoo Hong
- a Department of Bioengineering, College of Engineering , Hanyang University , Seoul , Korea
| | - Sung Wan Kim
- a Department of Bioengineering, College of Engineering , Hanyang University , Seoul , Korea.,b Center for Controlled Chemical Delivery, Department of Pharmaceutics and Pharmaceutical Chemistry , University of Utah , Salt Lake City , UT , USA
| | - Chae-Ok Yun
- a Department of Bioengineering, College of Engineering , Hanyang University , Seoul , Korea
| |
Collapse
|
5
|
Abstract
Cancer gene therapy approaches have benefited greatly from the utilization of molecular-based therapeutics. Of these, adenovirus-based interventions hold much promise as a platform for targeted therapeutic delivery to tumors. However, a barrier to this progression is the lack of native adenovirus receptor expression on a variety of cancer types. As such, any adenovirus-based cancer therapy must take into consideration retargeting the vector to nonnative cellular surface receptors. Predicated upon the knowledge gained in native adenovirus biology, several strategies to transductionally retarget adenovirus have emerged. Herein, we describe the biological hurdles as well as strategies utilized in adenovirus transductional targeting, covering the progress of both adapter-based and genetic manipulation-based targeting. Additionally, we discuss recent translation of these targeting strategies into a clinical setting.
Collapse
Affiliation(s)
- Matthew S Beatty
- Division of Cancer Biology, Department of Radiation Oncology, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
| | | |
Collapse
|
6
|
The effect of artificial lipid envelopment of Adenovirus 5 (Ad5) on liver de-targeting and hepatotoxicity. Biomaterials 2012; 34:1354-63. [PMID: 23146432 DOI: 10.1016/j.biomaterials.2012.10.053] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 10/22/2012] [Indexed: 12/18/2022]
Abstract
Human Adenovirus type 5 (Ad5) has been extensively explored in clinical gene therapy, but its immunogenicity dramatically affects the kinetics and toxicity profile of the vector. We previously designed a variety of artificial lipid bilayer envelopes around the viral capsid to develop safer hybrid vectors. Here, we studied the interaction of enveloped Ad in cationic (DOTAP:Chol) or anionic (DOPE:CHEMS) lipid bilayers with different blood components. When Ad was enveloped by cationic lipids, significantly high levels of viral uptake in HepG2 cultured cells were achieved, independent of blood coagulation factors present. In vitro experiments also showed that artificial envelopment of Ad completely altered the affinity towards both human and murine red blood cells. After intravenous administration in BALB/c mice, real-time PCR and transgene expression studies indicated that cationic lipid envelopes significantly reduced hepatocyte transduction significantly increasing virus lung accumulation compared to DOPE:CHEMS enveloped or naked Ad. ALT/AST serum levels and liver histology showed that envelopment also improved hepatotoxicity profiles compared to naked Ad. This study suggests that artificial envelopes for Ad significantly alter the interactions with blood components and can divert viral particles from their natural liver tropism resulting in reduced hepatotoxicity.
Collapse
|
7
|
Kaufmann JK, Nettelbeck DM. Virus chimeras for gene therapy, vaccination, and oncolysis: adenoviruses and beyond. Trends Mol Med 2012; 18:365-76. [PMID: 22633438 DOI: 10.1016/j.molmed.2012.04.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 04/19/2012] [Accepted: 04/20/2012] [Indexed: 12/27/2022]
Abstract
Several challenges need to be addressed when developing viruses for clinical applications in gene therapy, vaccination, or viral oncolysis, including specific and efficient target cell transduction, virus delivery via the blood stream, and evasion of pre-existing immunity. With rising frequency, these goals are tackled by generating chimeric viruses containing nucleic acid fragments or proteins from two or more different viruses, thus combining different beneficial features of the parental viruses. These chimeras have boosted the development of virus-based treatment regimens for major inherited and acquired diseases, including cancer. Using adenoviruses as the paradigm and prominent examples from other virus families, we review the technological and functional advances in therapeutic virus chimera development and recent successful applications that can pave the way for future therapies.
Collapse
Affiliation(s)
- Johanna K Kaufmann
- Helmholtz University Group Oncolytic Adenoviruses, German Cancer Research Center (DKFZ) and Department of Dermatology, Heidelberg University Hospital, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
| | | |
Collapse
|
8
|
Viru L, Heller G, Lehto T, Pärn K, El Andaloussi S, Langel Ü, Merits A. Novel viral vectors utilizing intron splice-switching to activate genome rescue, expression and replication in targeted cells. Virol J 2011; 8:243. [PMID: 21595942 PMCID: PMC3113310 DOI: 10.1186/1743-422x-8-243] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 05/19/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The outcome of virus infection depends from the precise coordination of viral gene expression and genome replication. The ability to control and regulate these processes is therefore important for analysis of infection process. Viruses are also useful tools in bio- and gene technology; they can efficiently kill cancer cells and trigger immune responses to tumors. However, the methods for constructing tissue- or cell-type specific viruses typically suffer from low target-cell specificity and a high risk of reversion. Therefore novel and universal methods of regulation of viral infection are also important for therapeutic application of virus-based systems. METHODS Aberrantly spliced introns were introduced into crucial gene-expression units of adenovirus vector and alphavirus DNA/RNA layered vectors and their effects on the viral gene expression, replication and/or the release of infectious genomes were studied in cell culture. Transfection of the cells with splice-switching oligonucleotides was used to correct the introduced functional defect(s). RESULTS It was demonstrated that viral gene expression, replication and/or the release of infectious genomes can be blocked by the introduction of aberrantly spliced introns. The insertion of such an intron into an adenovirus vector reduced the expression of the targeted gene more than fifty-fold. A similar insertion into an alphavirus DNA/RNA layered vector had a less dramatic effect; here, only the release of the infectious transcript was suppressed but not the subsequent replication and spread of the virus. However the insertion of two aberrantly spliced introns resulted in an over one hundred-fold reduction in the infectivity of the DNA/RNA layered vector. Furthermore, in both systems the observed effects could be reverted by the delivery of splice-switching oligonucleotide(s), which corrected the splicing defects. CONCLUSIONS Splice-switch technology, originally developed for genetic disease therapy, can also be used to control gene expression of viral vectors. This approach represents a novel, universal and powerful method for controlling gene expression, replication, viral spread and, by extension, virus-induced cytotoxic effects and can be used both for basic studies of virus infection and in virus-based gene- and anti-cancer therapy.
Collapse
Affiliation(s)
- Liane Viru
- Institute of Technology, University of Tartu, Tartu, Estonia
| | | | | | | | | | | | | |
Collapse
|
9
|
Pesonen S, Kangasniemi L, Hemminki A. Oncolytic Adenoviruses for the Treatment of Human Cancer: Focus on Translational and Clinical Data. Mol Pharm 2010; 8:12-28. [PMID: 21126047 DOI: 10.1021/mp100219n] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Sari Pesonen
- Cancer Gene Therapy Group, Molecular Cancer Biology Program & Transplantation Laboratory & Haartman Institute & Finnish Institute for Molecular Medicine, P.O. Box 63, 00014 University of Helsinki, Helsinki, Finland, HUSLAB, Helsinki University Central Hospital, Finland, and Oncos Therapeutics Ltd., Tukholmankatu 8, 00290 Helsinki, Finland
| | - Lotta Kangasniemi
- Cancer Gene Therapy Group, Molecular Cancer Biology Program & Transplantation Laboratory & Haartman Institute & Finnish Institute for Molecular Medicine, P.O. Box 63, 00014 University of Helsinki, Helsinki, Finland, HUSLAB, Helsinki University Central Hospital, Finland, and Oncos Therapeutics Ltd., Tukholmankatu 8, 00290 Helsinki, Finland
| | - Akseli Hemminki
- Cancer Gene Therapy Group, Molecular Cancer Biology Program & Transplantation Laboratory & Haartman Institute & Finnish Institute for Molecular Medicine, P.O. Box 63, 00014 University of Helsinki, Helsinki, Finland, HUSLAB, Helsinki University Central Hospital, Finland, and Oncos Therapeutics Ltd., Tukholmankatu 8, 00290 Helsinki, Finland
| |
Collapse
|
10
|
Abstract
Cancer treatments have improved steadily, but still only few metastatic solid tumors can be cured. Apoptosis-resistant clones frequently develop following standard treatments. Resistance factors are shared between different treatment regimens and, therefore, loss of response can occur rapidly, despite changing the drug, and there is a tendency for crossresistance between modalities. Therefore, new agents with novel mechanisms of action are desperately needed. Oncolytic adenoviruses, featuring cancer-selective cell lysis and spread, constitute an interesting drug platform aimed towards the goals of tumor specificity, and have been engineered in a variety of ways to improve their selectivity and efficacy. They allow rational drug development by the genetic incorporation of targeting mechanisms that can exert their function at different stages of the viral replication cycle. Owing to their immunogenicity, adenoviruses are particularly attractive for immunostimulatory purposes.
Collapse
Affiliation(s)
| | - Akseli Hemminki
- HUSLAB, Helsinki University Central Hospital, Finland; Cancer Gene Therapy Group, Molecular Cancer Biology Program & Haartman Institute & Transplantation Laboratory & Finnish Institute for Molecular Medicine, University of Helsinki, PO Box 63, Biomedicum B506b, 00014 University of Helsinki, Finland
| |
Collapse
|
11
|
Paupoo AAV, Zhu ZB, Wang M, Rein DT, Starzinski-Powitz A, Curiel DT. A conditionally replicative adenovirus, CRAd-S-pK7, can target endometriosis with a cell-killing effect. Hum Reprod 2010; 25:2068-83. [PMID: 20573677 DOI: 10.1093/humrep/deq137] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Novel therapeutic approaches for endometriosis based on molecular strategies may prove to be useful. Conditionally replicative adenoviruses (CRAds) are designed to exploit key differences between target and normal cells. The wild-type adenovirus (Adwt) promoter can be replaced by tissue-specific promoters, allowing viral replication only in target cells. Viral infectivity can be enhanced by altering Ad tropism via fiber modification. We investigated whether CRAds can be used to target endometriosis and determined the most efficient transcriptional- and transductional-targeting strategy. METHODS An in vitro study was carried out using human endometriotic cell lines, 11Z (epithelial) and 22B (stromal), normal human ovarian surface epithelial cell line (NOSE006) and primary human endometriosis cells. A total of 9 promoters and 12 Ad tropism modifications were screened by means of a luciferase reporter assay. From this screening data, three CRAds (CRAd-S-pK7, CRAd-S-RGD, CRAd-S-F5/3sigma1, all incorporating the survivin promoter but with different fiber modifications) were selected to perform experiments using Adwt and a replication-deficient virus as controls. CRAds were constructed using a plasmid recombination system. Viral-binding capacity, rates of entry and DNA replication were evaluated by quantitative real-time PCR of viral genome copy. Cell-killing effects were determined by crystal violet staining and a cell viability assay for different concentrations of viral particles per cell. RESULTS Comparison of promoters demonstrated that the survivin promoter exhibited the highest induction in both endometriotic cell lines. Among the fiber-modified viruses, the polylysine modification (pK7) showed the best infection enhancement. CRAd-S-pK7 was validated as the optimal CRAd to target endometriosis in terms of binding ability, entry kinetics, DNA replication and cell-killing effect. CRAd-S-pK7 also exhibited a high level of DNA replication in primary endometriosis cells. CONCLUSIONS CRAd-S-pK7 has the best infection and cell-killing effect in the context of endometriosis. It could prove to be a useful novel method to target refractory cases of endometriosis.
Collapse
Affiliation(s)
- A A V Paupoo
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, The University of Alabama at Birmingham, Birmingham, AL, USA.
| | | | | | | | | | | |
Collapse
|
12
|
Nakashima H, Kaur B, Chiocca EA. Directing systemic oncolytic viral delivery to tumors via carrier cells. Cytokine Growth Factor Rev 2010; 21:119-26. [PMID: 20226717 DOI: 10.1016/j.cytogfr.2010.02.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The systemic administration of oncolytic virus (OV) is often inefficient due to clearance of the virus by host defense mechanism and spurious targeting of non-cancer tissues through the bloodstream. Cell mediated OV delivery could hide the virus from host defenses and direct them toward tumors: Mesenchymal and neural stem cells have been described to possess tumor-homing ability as well as the capacity to deliver OVs. In this review, we will focus on approaches where OV and carrier cells are utilized for cancer therapy. Effective cellular internalization and replication of OVs need to occur both in cancer and carrier cells. We thus will discuss the current challenges faced by the use of OV delivery via carrier cells.
Collapse
Affiliation(s)
- Hiroshi Nakashima
- Dardinger Laboratory for Neuro-oncology and Neurosciences, Department of Neurological Surgery, James Comprehensive Cancer Center, Columbus, OH 43210, United States
| | | | | |
Collapse
|
13
|
Matthews KS, Alvarez RD, Curiel DT. Advancements in adenoviral based virotherapy for ovarian cancer. Adv Drug Deliv Rev 2009; 61:836-41. [PMID: 19422865 DOI: 10.1016/j.addr.2009.04.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Accepted: 04/28/2009] [Indexed: 12/17/2022]
Abstract
Ovarian cancer is a leading gynecologic malignancy with relatively grim survival statistics. There is a significant need for the development of new treatment options for this malignancy. The development of virotherapy as a treatment option for ovarian cancer has the potential to improve patient survival. Adenoviruses have multiple advantages as vectors for virotherapy including a well-understood structure and the ability to infect cells easily. We will outline the advances in virotherapy in the treatment of ovarian cancer, with particular attention directed toward adenoviral vectors.
Collapse
Affiliation(s)
- Kellie S Matthews
- The Division of Gynecologic Oncology, The University of Alabama at Birmingham, 619 19th Street South, OHB 534, Birmingham, AL 35213, USA.
| | | | | |
Collapse
|
14
|
Sharma A, Tandon M, Bangari DS, Mittal SK. Adenoviral vector-based strategies for cancer therapy. CURRENT DRUG THERAPY 2009; 4:117-138. [PMID: 20160875 DOI: 10.2174/157488509788185123] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Definitive treatment of cancer has eluded scientists for decades. Current therapeutic modalities like surgery, chemotherapy, radiotherapy and receptor-targeted antibodies have varied degree of success and generally have moderate to severe side effects. Gene therapy is one of the novel and promising approaches for therapeutic intervention of cancer. Viral vectors in general and adenoviral (Ad) vectors in particular are efficient natural gene delivery systems and are one of the obvious choices for cancer gene therapy. Clinical and preclinical findings with a wide variety of approaches like tumor suppressor and suicide gene therapy, oncolysis, immunotherapy, anti-angiogenesis and RNA interference using Ad vectors have been quite promising, but there are still many hurdles to overcome. Shortcomings like increased immunogenicity, prevalence of preexisting anti-Ad immunity in human population and lack of specific targeting limit the clinical usefulness of Ad vectors. In recent years, extensive research efforts have been made to overcome these limitations through a variety of approaches including the use of conditionally-replicating Ad and specific targeting of tumor cells. In this review, we discuss the potential strengths and limitations of Ad vectors for cancer therapy.
Collapse
Affiliation(s)
- Anurag Sharma
- Department of Comparative Pathobiology, and Bindley Bioscience Center, School of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | |
Collapse
|
15
|
Sharma A, Li X, Bangari DS, Mittal SK. Adenovirus receptors and their implications in gene delivery. Virus Res 2009; 143:184-94. [PMID: 19647886 PMCID: PMC2903974 DOI: 10.1016/j.virusres.2009.02.010] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 02/15/2009] [Indexed: 12/14/2022]
Abstract
Adenoviruses (Ads) have gained popularity as gene delivery vectors for therapeutic and prophylactic applications. Ad entry into host cells involves specific interactions between cell surface receptors and viral capsid proteins. Several cell surface molecules have been identified as receptors for Ad attachment and entry. Tissue tropism of Ad vectors is greatly influenced by their receptor usage. A variety of strategies have been investigated to modify Ad vector tropism by manipulating the receptor-interacting moieties. Many such strategies are aimed at targeting and/or detargeting of Ad vectors. In this review, we discuss the various cell surface molecules that are implicated as receptors for virus attachment and internalization. Special emphasis is given to Ad types that are utilized as gene delivery vectors. Various strategies to modify Ad tropism using the knowledge of Ad receptors are also discussed.
Collapse
Affiliation(s)
- Anurag Sharma
- Department of Comparative Pathobiology, School of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | |
Collapse
|
16
|
Coagulation factors IX and X enhance binding and infection of adenovirus types 5 and 31 in human epithelial cells. J Virol 2009; 83:3816-25. [PMID: 19158249 DOI: 10.1128/jvi.02562-08] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Most adenoviruses bind directly to the coxsackie and adenovirus receptor (CAR) on target cells in vitro, but recent research has shown that adenoviruses can also use soluble components in body fluids for indirect binding to target cells. These mechanisms have been identified upon addressing the questions of how to de- and retarget adenovirus-based vectors for human gene and cancer therapy, but the newly identified mechanisms also suggest that the role of body fluids and their components may also be of importance for natural, primary infections. Here we demonstrate that plasma, saliva, and tear fluid promote binding and infection of adenovirus type 5 (Ad5) in respiratory and ocular epithelial cells, which corresponds to the natural tropism of most adenoviruses, and that plasma promotes infection by Ad31. By using a set of binding and infection experiments, we also found that Ad5 and Ad31 require coagulation factors IX (FIX) or X (FX) or just FIX, respectively, for efficient binding and infection. The concentrations of these factors that were required for maximum binding were 1/100th of the physiological concentrations. Preincubation of virions with heparin or pretreatment of cells with heparinase I indicated that the role of cell surface heparan sulfate during FIX- and FX-mediated adenovirus binding and infection is mechanistically serotype specific. We conclude that the use of coagulation factors by adenoviruses may be of importance not only for the liver tropism seen when administering adenovirus vectors to the circulation but also during primary infections by wild-type viruses of their natural target cell types.
Collapse
|
17
|
Brown CW, Bell JC. Oncolytic Viruses: A New Weapon to Fight Cancer. J Med Imaging Radiat Sci 2008; 39:115-127. [PMID: 31051886 DOI: 10.1016/j.jmir.2008.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Remission from cancer after viral infection was first noted in the beginning of the 20th century, and with advances in virotherapy and genetic engineering, the advent of an approved viral therapeutic in North America is fast approaching. Mechanisms of tumour selectivity and killing, along with information obtained from clinical trials are reviewed here. Although oncolytic viruses are generally safe and well tolerated, their overall anti-tumour efficacy has varied. This article outlines strategies to improve the efficacy of the oncolytic platform without compromising its impressive safety profile. It will highlight new methods being developed to quantify the activity of oncolytic viruses in real time. Harnessing the factors that control the tumour microenvironment and the immune system are the key to enhancing the oncolytic activity. The purpose of this article is to introduce and provide an overview of the current state of cancer killing of oncolytic viruses. The reader will acquire knowledge of the basic principles of oncolytic viruses and their use in the clinical setting. This review summarizes articles retrieved from Medline using key words such as "virus," "oncolytic virus," "virotherapy," "cancer," and "clinical trials." Review articles published in the English language from 2005 onward were read and corroborating data and conclusions were summarized. When appropriate, cited references were also reviewed and incorporated. The reader is directed to references we found most concise.
Collapse
Affiliation(s)
- Christopher W Brown
- Department of Microbiology & Immunology and the Ottawa Health Research Institute, University of Ottawa, Ottawa Regional Cancer Center, Ottawa, Ontario; Division of Orthopaedic Surgery, University of Ottawa, Ottawa Hospital General Campus, Ottawa, Ontario
| | - John C Bell
- Department of Microbiology & Immunology and the Ottawa Health Research Institute, University of Ottawa, Ottawa Regional Cancer Center, Ottawa, Ontario.
| |
Collapse
|
18
|
Derivation of a triple mosaic adenovirus based on modification of the minor capsid protein IX. Virology 2008; 377:391-400. [DOI: 10.1016/j.virol.2008.04.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Revised: 04/07/2008] [Accepted: 04/17/2008] [Indexed: 11/23/2022]
|
19
|
Haisma HJ, Kamps JAAM, Kamps GK, Plantinga JA, Rots MG, Bellu AR. Polyinosinic acid enhances delivery of adenovirus vectors in vivo by preventing sequestration in liver macrophages. J Gen Virol 2008; 89:1097-1105. [PMID: 18420786 DOI: 10.1099/vir.0.83495-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Adenovirus is among the preferred vectors for gene therapy because of its superior in vivo gene-transfer efficiency. However, upon systemic administration, adenovirus is preferentially sequestered by the liver, resulting in reduced adenovirus-mediated transgene expression in targeted tissues. In the liver, Kupffer cells are responsible for adenovirus degradation and contribute to the inflammatory response. As scavenger receptors present on Kupffer cells are responsible for the elimination of blood-borne pathogens, we investigated the possible implication of these receptors in the clearance of the adenovirus vector. Polyinosinic acid [poly(I)], a scavenger receptor A ligand, was analysed for its capability to inhibit adenovirus uptake specifically in macrophages. In in vitro studies, the addition of poly(I) before virus infection resulted in a specific inhibition of adenovirus-induced gene expression in a J774 macrophage cell line and in primary Kupffer cells. In in vivo experiments, pre-administration of poly(I) caused a 10-fold transient increase in the number of adenovirus particles circulating in the blood. As a consequence, transgene expression levels measured in different tissues were enhanced (by 5- to 15-fold) compared with those in animals that did not receive poly(I). Finally, necrosis of Kupffer cells, which normally occurs as a consequence of systemic adenovirus administration, was prevented by the use of poly(I). No toxicity, as measured by liver-enzyme levels, was observed after poly(I) treatment. From our data, we conclude that poly(I) can prevent adenovirus sequestration by liver macrophages. These results imply that, by inhibiting adenovirus uptake by Kupffer cells, it is possible to reduce the dose of the viral vector to diminish the liver-toxicity effect and to improve the level of transgene expression in target tissues. In systemic gene-therapy applications, this will have great impact on the development of targeted adenoviral vectors.
Collapse
Affiliation(s)
- Hidde J Haisma
- Department of Therapeutic Gene Modulation, Groningen University Institute for Drug Exploration, University of Groningen, The Netherlands
| | - Jan A A M Kamps
- Department of Pathology and Laboratory Medicine, Medical Biology Section, University Medical Center Groningen (UMCG), University of Groningen, The Netherlands
| | - Gera K Kamps
- Department of Therapeutic Gene Modulation, Groningen University Institute for Drug Exploration, University of Groningen, The Netherlands
| | - Josee A Plantinga
- Department of Therapeutic Gene Modulation, Groningen University Institute for Drug Exploration, University of Groningen, The Netherlands
| | - Marianne G Rots
- Department of Therapeutic Gene Modulation, Groningen University Institute for Drug Exploration, University of Groningen, The Netherlands
| | - Anna Rita Bellu
- Department of Therapeutic Gene Modulation, Groningen University Institute for Drug Exploration, University of Groningen, The Netherlands
| |
Collapse
|
20
|
Zeng Y, Pinard M, Jaime J, Bourget L, Uyen Le P, O'Connor-McCourt MD, Gilbert R, Massie B. A ligand-pseudoreceptor system based onde novo designed peptides for the generation of adenoviral vectors with altered tropism. J Gene Med 2008; 10:355-67. [DOI: 10.1002/jgm.1155] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
21
|
Ulasov IV, Rivera AA, Han Y, Curiel DT, Zhu ZB, Lesniak MS. Targeting adenovirus to CD80 and CD86 receptors increases gene transfer efficiency to malignant glioma cells. J Neurosurg 2007; 107:617-27. [PMID: 17886563 DOI: 10.3171/jns-07/09/0617] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECT Gene therapy protocols for malignant gliomas utilize adenoviral vectors that rely almost exclusively on the adenovirus serotype 5 (Ad5) backbone. The authors have previously shown that chimeric vectors that bind to the Ad3 receptor, or CD46, increase the transduction efficiency of malignant brain tumors. In light of the debate regarding the efficacy of CD46 compared with CD80/CD86 in binding Ad3 virions, the authors now examine the expression and transduction efficiency of Ad5/3 chimeras that bind via CD80/CD86. METHODS The authors first analyzed CD80/CD86 expression in glioma cell lines. They then used three replication-defective vectors containing a luciferase reporter gene: Ad5/3 (containing the tail and shaft domain of Ad5 and the knob domain of Ad3); Ad3/5 (containing the tail of Ad5, shaft of Ad3, and knob of Ad5); and Ad3/3 (containing the tail of Ad5, shaft of Ad3, and knob of Ad3). These vectors were analyzed both in vitro and in vivo against malignant glioma cells. To examine further the effect of Ad5/3 fiber modification, the authors created an oncolytic vector, conditionally replicative Ad5/3 (CRAd5/3). RESULTS The Ad5/3 vector showed a 10- to 100-fold enhanced transduction efficiency of malignant glioma compared with replication-defective wild-type adenovirus (reAd5) (p < 0.05). Moreover the use of Ad5/3 reduced transgene expression by more than 90% in normal human brain cells compared with reAd5. Finally, the use of CRAd5/3 inhibited tumor cell proliferation by 43% more than replication-competent wild-type virus in vitro (p < 0.05). CONCLUSIONS The results of this study demonstrate that the Ad5/3 vector offers superior transduction efficiency and low toxicity in the setting of brain tumors, and therefore represents a potential new approach to gene therapy for malignant gliomas.
Collapse
Affiliation(s)
- Ilya V Ulasov
- Division of Neurosurgery, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | |
Collapse
|
22
|
Trilisky EI, Lenhoff AM. Sorption processes in ion-exchange chromatography of viruses. J Chromatogr A 2007; 1142:2-12. [PMID: 17240385 DOI: 10.1016/j.chroma.2006.12.094] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Revised: 12/19/2006] [Accepted: 12/28/2006] [Indexed: 11/19/2022]
Abstract
Purified viruses are used in gene therapy and vaccine production. Ion-exchange chromatography (IEC) is the most common method for large-scale downstream purification of viruses and proteins. Published IEC protocols provide details for specific separations but not general methods for selecting operating parameters. To make the selection more systematic, we study adenovirus type 5 (Ad5) as a model virus and develop batch uptake and light scattering methods for optimizing the ionic strength and pH of adsorption, as well as providing heuristics for resin geometry. The static capacity for Ad5 was found to go through a maximum with increasing ionic strength. Comparison to a protein-resin system shows that resin capacity for the virus is at least an order of magnitude lower, even on a wide-pore resin. Virus penetration into the wide-pore resin is only partial and the uptake rate is an order of magnitude slower than the uptake onto a narrow-pore resin.
Collapse
Affiliation(s)
- E I Trilisky
- Department of Chemical Engineering, University of Delaware, Newark, DE 19716, USA
| | | |
Collapse
|
23
|
Abstract
Adenovirus (Ad)-based cancer gene therapy is a promising, novel approach for treating cancer resistant to established treatment modalities. Unfortunately, the efficacy of nonreplicative first generation Ads was low and data from clinical trials were disappointing. To address this problem, conditionally replicating Ads have been constructed. Infection of tumor cells with conditionally replicating Ads results in tumor-specific replication, subsequent oncolysis and release of the virus progeny. Recently, it has been suggested that the low expression of the coxsackie-Ad receptor is the rate-limiting factor for infectivity with serotype 5 (Ad5). Unfortunately, coxsackie-Ad receptor expression is highly variable and often low on many tumor types. Consequently, molecular strategies have been applied for the development of coxsackie-Ad receptor-independent oncolytic Ads. This review describes recent developments of Ad-based cancer gene therapy, including novel engineering techniques of the Ad capsid for efficient tumor targeting, as well as targeting techniques, to restrict transgene expression to cancer cells.
Collapse
Affiliation(s)
- Daniel T Rein
- University of Düsseldorf Medical Center, Department of Obstetrics and Gynecology, Düsseldorf, Germany
| | | | | |
Collapse
|
24
|
Mathis JM, Stewart PL, Zhu ZB, Curiel DT. Advanced generation adenoviral virotherapy agents embody enhanced potency based upon CAR-independent tropism. Clin Cancer Res 2006; 12:2651-6. [PMID: 16675555 PMCID: PMC2203211 DOI: 10.1158/1078-0432.ccr-06-0497] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- J. Michael Mathis
- Gene Therapy Program, Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Phoebe L. Stewart
- Department of Molecular Physiology and Biophysics,Vanderbilt University Medical Center, Nashville, Tennessee
| | - Zheng B. Zhu
- Division of Human GeneTherapy, Departments of Medicine, Surgery, Pathology, Obstetrics, and Gynecology and the Gene Therapy Center, University of Alabama at Birmingham, Birmingham, Louisiana
| | - David T. Curiel
- Division of Human GeneTherapy, Departments of Medicine, Surgery, Pathology, Obstetrics, and Gynecology and the Gene Therapy Center, University of Alabama at Birmingham, Birmingham, Louisiana
| |
Collapse
|
25
|
Le LP, Rivera AA, Glasgow JN, Ternovoi VV, Wu H, Wang M, Smith BF, Siegal GP, Curiel DT. Infectivity enhancement for adenoviral transduction of canine osteosarcoma cells. Gene Ther 2006; 13:389-99. [PMID: 16292351 DOI: 10.1038/sj.gt.3302674] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The full realization of conditionally replicative adenoviruses (CRAds) for cancer therapy has been hampered by the limited knowledge of CRAd function in vivo and particularly in an immunocompetent host. To address this issue, we previously proposed a canine adenovirus type 2 (CAV2)-based CRAd for clinical evaluation in canine patients with osteosarcoma (OS). In this study, we evaluated infectivity-enhancement strategies to establish the foundation for designing a potent CAV2 CRAd with effective transduction capacity in dog osteosarcoma cells. The results indicate that the native CAV2 fiber-knob can mediate increased binding, and consequently gene transfer, in both canine osteosarcoma immortalized and primary cell lines relative to previously reported Ad5 infectivity-enhancement strategies. Gene delivery was further enhanced by incorporating a polylysine polypeptide onto the carboxy terminus of the CAV2 knob. This vector demonstrated improved gene delivery in osteosarcoma xenograft tumors. These data provide the rationale for generation of infectivity-enhanced syngeneic CAV2 CRAds for clinical evaluation in a dog osteosarcoma model.
Collapse
Affiliation(s)
- L P Le
- Division of Human Gene Therapy, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Dwyer RM, Bergert ER, O'Connor MK, Gendler SJ, Morris JC. Sodium iodide symporter-mediated radioiodide imaging and therapy of ovarian tumor xenografts in mice. Gene Ther 2006; 13:60-6. [PMID: 16121204 DOI: 10.1038/sj.gt.3302599] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Ovarian cancer represents the fifth leading cause of cancer death among women in the United States, with >16 000 deaths expected this year. This study was carried out to investigate the potential of sodium iodide symporter (NIS)-mediated radioiodide therapy as a novel approach for ovarian cancer treatment. Radioiodide is routinely and effectively used for the treatment of benign and malignant thyroid disease as a result of native thyroidal expression of NIS, which mediates iodide uptake. In vitro gene transfer studies in ovarian cancer cells revealed a 12- and five-fold increase in iodide uptake when transduced with Ad/CMV/NIS or Ad/MUC1/NIS, respectively. Western blot/immunohistochemistry confirmed NIS protein expression. In vivo ovarian tumor xenografts were infected with the adenoviral constructs. (123)I imaging revealed a clear image of the CMV/NIS-transduced tumor, with a less intense image apparent following infection with MUC1/NIS. Therapeutic doses of (131)I following CMV/NIS infection caused a mean 53% reduction in tumor volume (P<0.0001). MUC1/NIS-transduced tumors did not regress, although at 8 weeks following therapy, tumor volume was significantly less that of control animals (166 versus 332%, respectively, P<0.05). This study represents a promising first step investigating the potential for NIS-mediated radioiodide imaging and therapy of ovarian tumors.
Collapse
Affiliation(s)
- R M Dwyer
- Department of Endocrinology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | |
Collapse
|
27
|
Nakayama M, Both GW, Banizs B, Tsuruta Y, Yamamoto S, Kawakami Y, Douglas JT, Tani K, Curiel DT, Glasgow JN. An adenovirus serotype 5 vector with fibers derived from ovine atadenovirus demonstrates CAR-independent tropism and unique biodistribution in mice. Virology 2006; 350:103-15. [PMID: 16516257 DOI: 10.1016/j.virol.2006.01.037] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Revised: 12/23/2005] [Accepted: 01/26/2006] [Indexed: 01/09/2023]
Abstract
Many clinically important tissues are refractory to adenovirus (Ad) infection due to negligible levels of the primary Ad5 receptor the coxsackie and adenovirus receptor CAR. Thus, development of novel CAR-independent Ad vectors should lead to therapeutic gain. Ovine atadenovirus type 7, the prototype member of genus Atadenovirus, efficiently transduces CAR-deficient human cells in vitro, and systemic administration of OAdV is not associated with liver sequestration in mice. The penton base of OAdV7 does not contain an RGD motif, implicating the long-shafted fiber molecule as a major structural dictate of OAdV tropism. We hypothesized that replacement of the Ad5 fiber with the OAdV7 fiber would result in an Ad5 vector with CAR-independent tropism in vitro and liver "detargeting" in vivo. An Ad5 vector displaying the OAdV7 fiber was constructed (Ad5Luc1-OvF) and displayed CAR-independent, enhanced transduction of CAR-deficient human cells. When administered systemically to C57BL/6 mice, Ad5Luc1-OvF reporter gene expression was reduced by 80% in the liver compared to Ad5 and exhibited 50-fold higher gene expression in the kidney than the control vector. To our knowledge, this is the first report of a fiber-pseudotyped Ad vector that simultaneously displays decreased liver uptake and a distinct organ tropism in vivo. This vector may have future utility in murine models of renal disease.
Collapse
Affiliation(s)
- Masaharu Nakayama
- Division of Human Gene Therapy, Department of Medicine, University of Alabama at Birmingham, 901 19th Street South BMR2-572, Birmingham, AL 35294-2180, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Yu P, Wang X, Fu YX. Enhanced local delivery with reduced systemic toxicity: Delivery, delivery, and delivery. Gene Ther 2006; 13:1131-2. [PMID: 17243201 DOI: 10.1038/sj.gt.3302760] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
29
|
Glasgow JN, Everts M, Curiel DT. Transductional targeting of adenovirus vectors for gene therapy. Cancer Gene Ther 2006; 13:830-44. [PMID: 16439993 PMCID: PMC1781516 DOI: 10.1038/sj.cgt.7700928] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cancer gene therapy approaches will derive considerable benefit from adenovirus (Ad) vectors capable of self-directed localization to neoplastic disease or immunomodulatory targets in vivo. The ablation of native Ad tropism coupled with active targeting modalities has demonstrated that innate gene delivery efficiency may be retained while circumventing Ad dependence on its primary cellular receptor, the coxsackie and Ad receptor. Herein, we describe advances in Ad targeting that are predicated on a fundamental understanding of vector/cell interplay. Further, we propose strategies by which existing paradigms, such as nanotechnology, may be combined with Ad vectors to form advanced delivery vehicles with multiple functions.
Collapse
Affiliation(s)
- JN Glasgow
- Division of Human Gene Therapy, Departments of Medicine, Pathology and Surgery, Birmingham, AL, USA
| | - M Everts
- Division of Human Gene Therapy, Departments of Medicine, Pathology and Surgery, Birmingham, AL, USA
- Gene Therapy Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - DT Curiel
- Division of Human Gene Therapy, Departments of Medicine, Pathology and Surgery, Birmingham, AL, USA
- Gene Therapy Center, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
30
|
Mathis JM, Stoff-Khalili MA, Curiel DT. Oncolytic adenoviruses - selective retargeting to tumor cells. Oncogene 2005; 24:7775-91. [PMID: 16299537 DOI: 10.1038/sj.onc.1209044] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Virotherapy is an approach for the treatment of cancer, in which the replicating virus itself is the anticancer agent. Virotherapy exploits the lytic property of virus replication to kill tumor cells. As this approach relies on viral replication, the virus can self-amplify and spread in the tumor from an initial infection of only a few cells. The success of this approach is fundamentally based on the ability to deliver the replication-competent viral genome to target cells with a requisite level of efficiency. With virotherapy, while a number of transcriptional retargeting strategies have been utilized to restrict viral replication to tumor cells, this review will focus primarily on transductional retargeting strategies, whereby oncolytic viruses can be designed to selectively infect tumor cells. Using the adenoviral vector paradigm, there are three broad strategies useful for viral retargeting. One strategy uses heterologous retargeting ligands that are bispecific in that they bind both to the viral vector as well as to a cell surface target. A second strategy uses genetically modified viral vectors in which a cellular retargeting ligand is incorporated. A third strategy involves the construction of chimeric recombinant vectors, in which a capsid protein from one virus is exchanged for that of another. These transductional retargeting strategies have the potential for reducing deleterious side effects, and increasing the therapeutic index of virotherapeutic agents.
Collapse
Affiliation(s)
- J Michael Mathis
- Gene Therapy Program, Department of Cellular Biology and Anatomy, LSU Health Sciences Center, Shreveport, LA 71130, USA
| | | | | |
Collapse
|
31
|
Parato KA, Senger D, Forsyth PAJ, Bell JC. Recent progress in the battle between oncolytic viruses and tumours. Nat Rev Cancer 2005; 5:965-76. [PMID: 16294217 DOI: 10.1038/nrc1750] [Citation(s) in RCA: 412] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In the past 5 years, the field of oncolytic virus research has matured significantly and is moving past the stage of being a laboratory novelty into a new era of preclinical and clinical trials. What have recent anticancer trials of oncolytic viruses taught us about this exciting new line of therapeutics?
Collapse
Affiliation(s)
- Kelley A Parato
- Centre for Cancer Therapeutics, Ottawa Health Research Institute, 503 Smyth Road, Ottawa, Ontario, Canada K1H 8L6
| | | | | | | |
Collapse
|
32
|
Rein DT, Breidenbach M, Kirby TO, Han T, Siegal GP, Bauerschmitz GJ, Wang M, Nettelbeck DM, Tsuruta Y, Yamamoto M, Dall P, Hemminki A, Curiel DT. A Fiber-Modified, Secretory Leukoprotease Inhibitor Promoter-Based Conditionally Replicating Adenovirus for Treatment of Ovarian Cancer. Clin Cancer Res 2005. [DOI: 10.1158/1078-0432.1327.11.3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Purpose: The use of conditionally replicating adenoviruses (CRAD) is dependent on molecular differences between tumor cells and nontumor cells. Transcriptional targeting of CRAD replication via tumor-specific promoters is an effective way to control replication regulation. Genetic fiber pseudotyping is an approach for circumventing low expression of the primary adenovirus serotype 5 (Ad5) receptor by using the distinct adenovirus serotype 3 (Ad3) receptor for entry into and subsequent killing of ovarian cancer cells.
Experimental Design: In this study, we constructed a fiber-modified CRAD containing the secretory leukoprotease inhibitor (SLPI) promoter to control viral replication via the E1A gene (Ad5/3SLPI). To evaluate the liver toxicity of chimeric 5/3 fiber-modified CRADs, we compared Ad5/3SLPI with Ad5/3Cox-2L, a CRAD with E1A under control of the Cox-2 promoter, and Ad5/3Δ24, a CRAD that replicates in cancer cells inactive in the retinoblastoma/p16 pathway by use of an in vivo hepatotoxicity model and by a model system that uses slices of human liver.
Results: We show efficient viral replication and oncolysis of Ad5/3SLPI in both multiple ovarian cancer cell lines and primary tumor cell spheroids as well as therapeutic efficacy in an orthotopic mouse model of peritoneal carcinomatosis. Ad5/3SLPI showed significantly decreased liver toxicity compared with other 5/3 fiber-modified control vectors examined.
Conclusions: In summary, Ad5/3SLPI is a promising vector candidate for treating metastatic ovarian cancer and showed robust virus replication, oncolysis, and in vivo therapeutic efficacy. Ad5/3SLPI showed comparatively low liver toxicity and therefore holds potential for patient use in the clinic.
Collapse
Affiliation(s)
- Daniel T. Rein
- 1Division of Human Gene Therapy, Departments of Medicine, Surgery, and Pathology and Gene Therapy Center,
- 4Department of Obstetrics and Gynecology, University of Düsseldorf Medical Center, Düsseldorf, Germany
| | - Martina Breidenbach
- 1Division of Human Gene Therapy, Departments of Medicine, Surgery, and Pathology and Gene Therapy Center,
- 5Department of Obstetrics and Gynecology, Rhine-Westphalian Technical University, Aachen, Germany
| | - Tyler O. Kirby
- 3Division of Gynecologic Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Tie Han
- 1Division of Human Gene Therapy, Departments of Medicine, Surgery, and Pathology and Gene Therapy Center,
| | - Gene P. Siegal
- 2Departments of Pathology, Cell Biology, and Surgery and Gene Therapy Center, and
| | - Gerd J. Bauerschmitz
- 4Department of Obstetrics and Gynecology, University of Düsseldorf Medical Center, Düsseldorf, Germany
| | - Minghui Wang
- 1Division of Human Gene Therapy, Departments of Medicine, Surgery, and Pathology and Gene Therapy Center,
| | - Dirk M. Nettelbeck
- 6Department of Dermatology, University of Erlangen-Nürnberg, Erlangen, Germany; and
| | - Yuko Tsuruta
- 1Division of Human Gene Therapy, Departments of Medicine, Surgery, and Pathology and Gene Therapy Center,
| | - Masato Yamamoto
- 1Division of Human Gene Therapy, Departments of Medicine, Surgery, and Pathology and Gene Therapy Center,
| | - Peter Dall
- 4Department of Obstetrics and Gynecology, University of Düsseldorf Medical Center, Düsseldorf, Germany
| | - Akseli Hemminki
- 7Rational Drug Design Program, University of Helsinki and Department of Oncology, Helsinki University Central Hospital, Helsinki, Finland
| | - David T. Curiel
- 1Division of Human Gene Therapy, Departments of Medicine, Surgery, and Pathology and Gene Therapy Center,
| |
Collapse
|