1
|
Development and Evaluation of an Ebola Virus Glycoprotein Mucin-Like Domain Replacement System as a New Dendritic Cell-Targeting Vaccine Approach against HIV-1. J Virol 2021; 95:e0236820. [PMID: 34011553 PMCID: PMC8274623 DOI: 10.1128/jvi.02368-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The development of efficient vaccine approaches against HIV infection remains challenging in the vaccine field. Here, we developed an Ebola virus envelope glycoprotein (EboGP)-based chimeric fusion protein system and demonstrated that replacement of the mucin-like domain (MLD) of EboGP with HIV C2-V3-C3 (134 amino acids [aa]) or C2-V3-C3-V4-C4-V5-C5 (243 aa) polypeptides (EbGPΔM-V3 and EbGPΔM-V3-V5, respectively) still maintained the efficiency of EboGP-mediated viral entry into human macrophages and dendritic cells (DCs). Animal studies using mice revealed that immunization with virus-like particles (VLPs) containing the above chimeric proteins, especially EbGPΔM-V3, induced significantly more potent anti-HIV antibodies than HIV gp120 alone in mouse serum and vaginal fluid. Moreover, the splenocytes isolated from mice immunized with VLPs containing EbGPΔM-V3 produced significantly higher levels of gamma interferon (IFN-γ), interleukin 2 (IL-2), IL-4, IL-5, and macrophage inflammatory protein 1α (MIP-1α). Additionally, we demonstrated that coexpression of EbGPΔM-V3 and the HIV Env glycoprotein in a recombinant vesicular stomatitis virus (rVSV) vector elicited robust anti-HIV antibodies that may have specifically recognized epitopes outside or inside the C2-V3-C3 region of HIV-1 gp120 and cross-reacted with the gp120 from different HIV strains. Thus, this study has demonstrated the great potential of this DC-targeting vaccine platform as a new vaccine approach for improving immunogen delivery and increasing vaccine efficacy. IMPORTANCE Currently, there are more than 38.5 million reported cases of HIV globally. To date, there is no approved vaccine for HIV-1 infection. Thus, the development of an effective vaccine against HIV infection remains a global priority. This study revealed the efficacy of a novel dendritic cell (DC)-targeting vaccination approach against HIV-1. The results clearly show that the immunization of mice with virus-like particles (VLPs) and VSVs containing HIV Env and a fusion protein composed of a DC-targeting domain of Ebola virus GP with HIV C2-V3-C3 polypeptides (EbGPΔM-V3) could induce robust immune responses against HIV-1 Env and/or Gag in serum and vaginal mucosa. These findings provide a proof of concept of this novel and efficient DC-targeting vaccine approach in delivering various antigenic polypeptides of HIV-1 and/or other emergent infections to the host antigen-presenting cells to prevent HIV and other viral infections.
Collapse
|
2
|
Hoffmann R, Ruegamer T, Schaubächer J, Rohrhofer A, Kirmeß P, Fiebig KM, Schmidt B, Eichler J. Exploring Viral Interference Using Peptides: Molecular Determinants of HIV-1 Inhibition by a Peptide Derived from Human Pegivirus-1 Envelope Protein E2. ChemMedChem 2021; 16:1290-1296. [PMID: 33378104 PMCID: PMC8248410 DOI: 10.1002/cmdc.202000892] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/29/2020] [Indexed: 01/13/2023]
Abstract
Co-infection with the human pegivirus 1 (HPgV-1) often has a beneficial effect on disease progression in HIV-1-infected individuals. Several HPgV-1 proteins and peptides, including a 20-mer peptide (P6-2) derived from the N-terminal region of the HPgV-1 surface protein E2, have been associated with this phenomenon, which is referred to as viral interference. We identified the cysteine residues, the hydrophobic core tetrapeptide, as well as the C-terminal negative charge as key factors for the HIV-1 inhibitory activity of P6-2. Analysis of mutations in P6-2-resistant HIV-1 indicated a binding site for the peptide in the HIV-1 envelope glycoprotein gp120. In fact, P6-2 was shown to bind to soluble gp120, as well as to a peptide presenting the gp120 V3 loop. Furthermore, the HIV-1 inhibitory activity of P6-2 could be revoked by the V3 loop peptide, thus indicating a molecular mechanism that involves interaction of P6-2 with the gp120 V3 loop.
Collapse
Affiliation(s)
- Rebecca Hoffmann
- Department of Chemistry and Pharmacy, University of Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Tamara Ruegamer
- Institute of Clinical Microbiology and Hygiene, University of Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Johanna Schaubächer
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Anette Rohrhofer
- Institute of Clinical Microbiology and Hygiene, University of Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Peter Kirmeß
- Department of Chemistry and Pharmacy, University of Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Karen M Fiebig
- Department of Chemistry and Pharmacy, University of Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Barbara Schmidt
- Institute of Clinical Microbiology and Hygiene, University of Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany.,Institute of Medical Microbiology and Hygiene, University of Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Jutta Eichler
- Department of Chemistry and Pharmacy, University of Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| |
Collapse
|
3
|
Sadraeian M, Guimarães FEG, Araújo APU, Worthylake DK, LeCour LJ, Pincus SH. Selective cytotoxicity of a novel immunotoxin based on pulchellin A chain for cells expressing HIV envelope. Sci Rep 2017; 7:7579. [PMID: 28790381 PMCID: PMC5548917 DOI: 10.1038/s41598-017-08037-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/06/2017] [Indexed: 11/29/2022] Open
Abstract
Immunotoxins (ITs), which consist of antibodies conjugated to toxins, have been proposed as a treatment for cancer and chronic infections. To develop and improve the ITs, different toxins such as ricin, have been used, aiming for higher efficacy against target cells. The toxin pulchellin, isolated from the Abrus pulchellus plant, has similar structure and function as ricin. Here we have compared two plant toxins, recombinant A chains from ricin (RAC) and pulchellin (PAC) toxins, for their ability to kill HIV Env-expressing cells. In this study, RAC and PAC were produced in E. coli, and chromatographically purified, then chemically conjugated to two different anti-HIV monoclonal antibodies (MAbs), anti-gp120 MAb 924 or anti-gp41 MAb 7B2. These conjugates were characterized biochemically and immunologically. Cell internalization was studied by flow cytometry and confocal microscopy. Results showed that PAC can function within an effective IT. The ITs demonstrated specific binding against native antigens on persistently HIV-infected cells and recombinant antigens on Env-transfected cells. PAC cytotoxicity appears somewhat less than RAC, the standard for comparison. This is the first report that PAC may have utility for the design and construction of therapeutic ITs, highlighting the potential role for specific cell targeting.
Collapse
Affiliation(s)
- Mohammad Sadraeian
- Instituto de Física de São Carlos, Universidade de São Paulo, Caixa Postal 369, São Carlos, SP, CEP 13560-970, Brazil
- Research Institute for Children, Children's Hospital, New Orleans, LA, 70118, USA
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, 70112, United States
| | - Francisco E G Guimarães
- Instituto de Física de São Carlos, Universidade de São Paulo, Caixa Postal 369, São Carlos, SP, CEP 13560-970, Brazil.
- Instituto de Física de São Carlos, Universidade de São Paulo, Caixa Postal 369, São Carlos, SP, CEP 13560-970, Brazil.
| | - Ana P U Araújo
- Instituto de Física de São Carlos, Universidade de São Paulo, Caixa Postal 369, São Carlos, SP, CEP 13560-970, Brazil
| | - David K Worthylake
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, 70112, United States
| | - Louis Jr LeCour
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, 70112, United States
| | - Seth H Pincus
- Research Institute for Children, Children's Hospital, New Orleans, LA, 70118, USA.
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, 70112, United States.
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA.
| |
Collapse
|
4
|
Boisvert M, Zhang W, Elrod EJ, Bernard NF, Villeneuve JP, Bruneau J, Marcotrigiano J, Shoukry NH, Grakoui A. Novel E2 Glycoprotein Tetramer Detects Hepatitis C Virus-Specific Memory B Cells. THE JOURNAL OF IMMUNOLOGY 2016; 197:4848-4858. [PMID: 27849172 DOI: 10.4049/jimmunol.1600763] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 10/13/2016] [Indexed: 01/16/2023]
Abstract
Acute hepatitis C virus (HCV) infection culminates in viral persistence in the majority of cases. Abs that recognize the envelope glycoproteins E1 and E2 are generated during the late stages of acute infection, yet their contribution to spontaneous viral clearance remains controversial. Investigation of the humoral responses during acute HCV infection have been limited by the inability to directly identify and characterize HCV-specific B cells. In this study we describe the development of a novel tetramer of the E2 glycoprotein ectodomain (J6, genotype 2a strain), which allowed us to visualize E2-specific B cells longitudinally in the peripheral blood of HCV-infected individuals. HCV-specific class-switched memory B cells were detected in 3 out of 7 participants during late acute infection, with a mean frequency of 0.63% for positive samples (range 0.16-0.67%) and in 7 out of 7 participants with chronic infection with a mean frequency of 0.47% (range 0.20-0.78%). In a cross-sectional study, E2 tetramer positive population was detected in 28 out of 31 chronically infected individuals. Deep sequencing of the BCR from E2-specific class-switched memory B cells sorted from two independent participants revealed a focused repertoire suggestive of clonal selection. Tetramer-specific B cells exhibited skewed CDR3 length distribution and increased mutation frequency compared with naive B cells. This BCR profile is indicative of clonal expansion and affinity maturation. E2 tetramer allows for specific and sensitive ex vivo characterization of rare HCV-specific B cells in infected individuals, and will enable researchers to gain a better understanding of humoral immunity in HCV infection.
Collapse
Affiliation(s)
- Maude Boisvert
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec H2X 0A9, Canada
| | - Wanrui Zhang
- Yerkes National Primate Research Center, Emory Vaccine Center, Atlanta, GA 30329
| | - Elizabeth J Elrod
- Yerkes National Primate Research Center, Emory Vaccine Center, Atlanta, GA 30329
| | - Nicole F Bernard
- Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada.,Division of Experimental Medicine, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - Jean-Pierre Villeneuve
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec H2X 0A9, Canada.,Département de Médecine, Faculté de Médecine, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Julie Bruneau
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec H2X 0A9, Canada.,Département de Médecine Familiale et de Médecine D'Urgence, Faculté de Médecine, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Joseph Marcotrigiano
- Center for Advanced Biotechnology and Medicine, Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854; and
| | - Naglaa H Shoukry
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec H2X 0A9, Canada; .,Département de Médecine, Faculté de Médecine, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Arash Grakoui
- Yerkes National Primate Research Center, Emory Vaccine Center, Atlanta, GA 30329; .,Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30329
| |
Collapse
|
5
|
Haut LH, Gill AL, Kurupati RK, Bian A, Li Y, Giles-Davis W, Xiang Z, Zhou XY, Ertl HCJ. A Partial E3 Deletion in Replication-Defective Adenoviral Vectors Allows for Stable Expression of Potentially Toxic Transgene Products. Hum Gene Ther Methods 2016; 27:187-196. [PMID: 27604324 DOI: 10.1089/hgtb.2016.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Adenovirus (Ad) is used extensively for construction of viral vectors, most commonly with deletion in its E1 and/or E3 genomic regions. Previously, our attempts to insert envelope proteins (Env) of HIV-1 into such vectors based on chimpanzee-derived Ad (AdC) viruses were thwarted. Here, we describe that genetic instability of an E1- and E3-deleted AdC vector of serotype C6 expressing Env of HIV-1 can be overcome by reinsertion of E3 sequences with anti-apoptotic activities. This partial E3 deletion presumably delays premature death of HEK-293 packaging cell lines due to Env-induced cell apoptosis. The same partial E3 deletion also allows for the generation of stable glycoprotein 140 (gp140)- and gp160-expressing Ad vectors based on AdC7, a distinct AdC serotype. Env-expressing AdC vectors containing the partial E3 deletion are genetically stable upon serial cell culture passaging, produce yields comparable to those of other AdC vectors, and induce transgene product-specific antibody responses in mice. A partial E3 deletion thereby allows expansion of the repertoire of transgenes that can be expressed by Ad vectors.
Collapse
Affiliation(s)
| | - Amanda L Gill
- 1 The Wistar Institute , Philadelphia, Pennsylvania
- 2 Current address: Clinical Molecular Regulation Section/Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, Maryland
| | | | - Ang Bian
- 1 The Wistar Institute , Philadelphia, Pennsylvania
| | - Yan Li
- 1 The Wistar Institute , Philadelphia, Pennsylvania
| | | | | | | | | |
Collapse
|
6
|
Teodorof C, Divakar S, Soontornniyomkij B, Achim CL, Kaul M, Singh KK. Intracellular mannose binding lectin mediates subcellular trafficking of HIV-1 gp120 in neurons. Neurobiol Dis 2014; 69:54-64. [PMID: 24825317 DOI: 10.1016/j.nbd.2014.05.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 04/26/2014] [Accepted: 05/02/2014] [Indexed: 01/19/2023] Open
Abstract
Human immunodeficiency virus-1 (HIV-1) enters the brain early during infection and leads to severe neuronal damage and central nervous system impairment. HIV-1 envelope glycoprotein 120 (gp120), a neurotoxin, undergoes intracellular trafficking and transport across neurons; however mechanisms of gp120 trafficking in neurons are unclear. Our results show that mannose binding lectin (MBL) that binds to the N-linked mannose residues on gp120, participates in intravesicular packaging of gp120 in neuronal subcellular organelles and also in subcellular trafficking of these vesicles in neuronal cells. Perinuclear MBL:gp120 vesicular complexes were observed and MBL facilitated the subcellular trafficking of gp120 via the endoplasmic reticulum (ER) and Golgi vesicles. The functional carbohydrate recognition domain of MBL was required for perinuclear organization, distribution and subcellular trafficking of MBL:gp120 vesicular complexes. Nocodazole, an agent that depolymerizes the microtubule network, abolished the trafficking of MBL:gp120 vesicles, suggesting that these vesicular complexes were transported along the microtubule network. Live cell imaging confirmed the association of the MBL:gp120 complexes with dynamic subcellular vesicles that underwent trafficking in neuronal soma and along the neurites. Thus, our findings suggest that intracellular MBL mediates subcellular trafficking and transport of viral glycoproteins in a microtubule-dependent mechanism in the neurons.
Collapse
Affiliation(s)
- C Teodorof
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - S Divakar
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - B Soontornniyomkij
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - C L Achim
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - M Kaul
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA; Sanford-Burnham Medical Research Institute, 10901 N Torrey Pines Rd, La Jolla, CA, USA
| | - K K Singh
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
7
|
Zhou YH, Chen Z, Purcell RH, Emerson SU. Positive reactions on Western blots do not necessarily indicate the epitopes on antigens are continuous. Immunol Cell Biol 2006; 85:73-8. [PMID: 17130902 DOI: 10.1038/sj.icb.7100004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Epitope mapping (identification of an antigenic site recognized by an antibody) is an important component of vaccine development and immunological assays. It is widely accepted that in Western blots, antibodies react exclusively with continuous epitopes: discontinuous epitopes are assumed to be irreversibly destroyed by electrophoresis under the denaturing conditions used for sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Here, we demonstrate that the epitopes recognized by four different monoclonal antibodies were identified as discontinuous epitopes when characterized by radioimmunoprecipitation assays and enzyme-linked immunosorbent assays, yet each of these antibodies reacted with the corresponding antigen on Western blots. Reaction on Western blots may be due to epitope renaturation during or after the transfer of the protein to a membrane. Therefore, positive reactions on Western blots do not necessarily indicate that epitopes are continuous and this caveat should be kept in mind while characterizing them.
Collapse
Affiliation(s)
- Yi-Hua Zhou
- Laboratory of Infectious Diseases, Hepatitis Viruses and Molecular Hepatitis Sections, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
8
|
Saha K, Yan H, Nelson JAE, Zerhouni-Layachi B. Infection of human and non-human cells by a highly fusogenic primary CD4-independent HIV-1 isolate with a truncated envelope cytoplasmic tail. Virology 2005; 337:30-44. [PMID: 15914218 DOI: 10.1016/j.virol.2005.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2005] [Revised: 03/11/2005] [Accepted: 04/01/2005] [Indexed: 01/09/2023]
Abstract
Truncation of the envelope cytoplasmic tail has enabled FIV, SIV, and some laboratory HIV-1 strains to acquire broader cellular tropism and enhanced fusogenicity. Here we have characterized a primary CD4-independent HIV-1 isolate (92UG046-T8) with a truncated cytoplasmic tail that was able to infect and induce syncytia in primary lymphocytes from human, chimpanzee, and monkey, as well as CD4-negative cell lines from human and monkey. Increased syncytia were also noticeable with 293 cells expressing the cloned envelope from the 92UG046-T8 isolate suggesting envelope-mediated cellular fusion. Except pooled serum from HIV-1-infected individuals, monoclonal anti-envelope antibodies or antibodies/antagonists against CD4, CXCR4, and CCR5 were not able to prevent infection by the 92UG046-T8 isolate. This is the first report showing a primary HIV-1 variant with truncated cytoplasmic tail which is highly fusogenic and can infect a broad range of cells from human and non-human origins. In vivo evolution of similar HIV-1 mutants may have important implications in AIDS pathogenesis.
Collapse
Affiliation(s)
- Kunal Saha
- Department of Pediatrics and Molecular Virology, Immunology and Medical Genetics, Children's Research Institute and Ohio State University Medical Center, Columbus, 43205, USA.
| | | | | | | |
Collapse
|
9
|
Muthumani K, Zhang D, Dayes NS, Hwang DS, Calarota SA, Choo AY, Boyer JD, Weiner DB. Novel engineered HIV-1 East African Clade-A gp160 plasmid construct induces strong humoral and cell-mediated immune responses in vivo. Virology 2003; 314:134-46. [PMID: 14517067 DOI: 10.1016/s0042-6822(03)00459-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
HIV-1 sequences are highly diverse due to the inaccuracy of the viral reverse transcriptase. This diversity has been studied and used to categorize HIV isolates into subtypes or clades, which are geographically distinct. To develop effective vaccines against HIV-1, immunogens representing different subtypes may be important for induction of cross-protective immunity, but little data exist describing and comparing the immunogenicity induced by different subtype-based vaccines. This issue is further complicated by poor expression of HIV structural antigens due to rev dependence. One costly approach is to codon optimize each subtype construct to be examined. Interestingly, cis-acting transcriptional elements (CTE) can also by pass rev restriction by a rev independent export pathway. We reasoned that rev+CTE constructs might have advantages for such expression studies. A subtype A envelope sequence from a viral isolate from east Africa was cloned into a eukaryotic expression vector under the control of the CMV-IE promoter. The utility of inclusion of the Mason-Pfizer monkey virus (MPV)-CTE with/without rev for driving envelope expression and immunogenicity was examined. Expression of envelope (gp120) was confirmed by immunoblot analysis and by pseudotype virus infectivity assays. The presence of rev and the CTE together increased envelope expression and viral infection. Furthermore the CTE+rev construct was significantly more immunogenic then CTE alone vector. Isotype analysis and cytokine profiles showed strong Th1 response in plasmid-immunized mice, which also demonstrated the superior nature of the rev+CTE construct. These responses were of similar or greater magnitude to a codon-optimized construct. The resulting cellular immune responses were highly cross-reactive with a HIV-1 envelope subtype B antigen. This study suggests a simple strategy for improving the expression and immunogenicity of HIV subtype-specific envelope antigens as plasmid or vector-borne immunogens.
Collapse
Affiliation(s)
- Karuppiah Muthumani
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Levesque K, Zhao YS, Cohen EA. Vpu exerts a positive effect on HIV-1 infectivity by down-modulating CD4 receptor molecules at the surface of HIV-1-producing cells. J Biol Chem 2003; 278:28346-53. [PMID: 12746459 DOI: 10.1074/jbc.m300327200] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human immunodeficiencey virus, type 1 (HIV-1) encodes three proteins, Nef, Vpu, and gp160, that down-modulate surface expression of the CD4 receptor during viral infection. In the present study, we have investigated the role of CD4 down-modulation in the HIV-1 infection cycle, primarily from the perspective of Vpu function. We report here that, like Nef, Vpu-mediated CD4 degradation modulates positively HIV-1 infectivity. Our data reveal that accumulation of CD4 at the cell surface of Vpu-deficient HIV-1-producing cells leads to an efficient recruitment of CD4 into virions and to an impairment of viral infectivity. This CD4-mediated inhibition of viral infectivity was not observed when a CD4 mutant unable to bind Env gp120 was used or when VSV-G glycoprotein was utilized to pseudotype viruses, suggesting that an interaction between CD4 and gp120 is required for interference. Indeed, protein analysis of Vpu-defective viral particles reveals that CD4 recruitment is associated with an increased formation of gp120-CD4 complexes at the virion surface. Interestingly, we did not detect any difference at the level of total virion-associated Env glycoproteins between wild-type and Vpu-defective virus, indicating that accumulation of CD4 at the cell surface and recruitment of CD4 into Vpu-defective HIV-1 particles exert a negative effect on viral infectivity, most likely by promoting the formation of nonfunctional gp120-CD4 complexes at the virion surface. Finally, we show that both Vpu- and Nef-induced CD4 down-modulation activities are required for production of fully infectious particles in CD4+ T cell lines and primary cells, an observation that has clear implications for viral spread in vivo.
Collapse
Affiliation(s)
- Karine Levesque
- Laboratoire de Rétrovirologie Humaine, Département de Microbiologie et Immunologie, Université de Montréal, Québec H3C 3J7, Canada
| | | | | |
Collapse
|
11
|
Gómez-Román VR, Cao C, Bai Y, Santamaría H, Acero G, Manoutcharian K, Weiner DB, Ugen KE, Gevorkian G. Phage-displayed mimotopes recognizing a biologically active anti-HIV-1 gp120 murine monoclonal antibody. J Acquir Immune Defic Syndr 2002; 31:147-53. [PMID: 12394792 DOI: 10.1097/00126334-200210010-00004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Antibody-dependent cellular cytotoxicity (ADCC) is a host defense mechanism in which Fc receptor-bearing effector cells in combination with antigen-specific antibodies recognize and kill antigen-expressing target cells. The authors previously described a murine monoclonal antibody (MAb-ID6) that mediated ADCC activity against HIV-infected cells. It was demonstrated that the specificity of MAb-ID6 maps to the first 204 amino acids of gp120; however, the exact epitope was not identified. In the present work, by screening phage display libraries with MAb-ID6, the authors have mapped the corresponding epitope to amino acids 86-100 (HIV-1 gp120 sequence). This epitope lies within the C1 region of gp120 and is highly conserved among all subtypes and circulating recombinant forms of HIV-1. Thus, these phage mimotopes of C1 may serve as components of a vaccine for the induction of gp120-specific antibodies mimicking MAb-ID6.
Collapse
|