1
|
Song Z, Zhao Z, Zhu S, Jin Q, Zhang S, Wang Z, Shen B, Wang Z, Zhao Z. Arylsulfatase D is a prognostic biomarker that promotes glioma cells progression through JAK2/STAT3 pathway and M2 macrophage infiltration. Front Oncol 2023; 13:1228426. [PMID: 37766864 PMCID: PMC10521731 DOI: 10.3389/fonc.2023.1228426] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Background Arylsulfatase D (ARSD) belongs to the sulfatase family and plays a crucial role in maintaining the proper structure of bone and cartilage matrix. Although several researches have revealed the functions of ARSD in tumor progression, the prognostic value of ARSD in glioma and the related mechanisms have not been fully investigated. Methods We performed a pan-cancer analysis of ARSD, and investigated the relationship between expression of ARSD and overall survival (OS) in multiple glioma datasets. ROC curves and nomograms were created to investigate the predictive capacity of ARSD. Immune and analysis were conducted to investigate the mechanisms underlying the roles of ARSD in glioma. Glioma tissue samples were collected to verify the expression of ARSD in glioma, while the functions of ARSD were explored using cell experiment. M2 macrophage infiltration assay was used to determine the relation between ARSD and tumor immune microenvironment. Results Survival analysis indicated that individuals with high ARSD expression in glioma had a shorter survival time. Cox analysis showed that ARSD had a good ability for predicting prognosis in glioma. Immune analysis suggested that ARSD could regulate immune cell infiltration and affect the Cancer-Immunity Cycle to create an immunosuppressive environment. Combined with cell experiment and bioinformatic analysis, we found that ARSD can promote glioma progression through regulation of JAK2/STAT3 pathway and M2 macrophage infiltration. Conclusion Our study found that ARSD can promote glioma development by regulating immune microenvironment and JAK2/STAT3 signaling pathway, which provided a potential therapy target for glioma treatment.
Collapse
Affiliation(s)
- Zihan Song
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zijun Zhao
- Spine Center, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Siyu Zhu
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Qianxu Jin
- Department of Neurosurgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Shiyang Zhang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zairan Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Bowei Shen
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zijian Wang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zongmao Zhao
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Neurosurgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
2
|
Lin Y, Fan L, Zhang R, Pan H, Li Y. ARSD is responsible for carcinoma and amyloidosis of breast epithelial cells. Eur J Cell Biol 2022; 101:151199. [PMID: 35066432 DOI: 10.1016/j.ejcb.2022.151199] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/04/2022] [Accepted: 01/15/2022] [Indexed: 02/05/2023] Open
Abstract
Breast cancer (BC) and Alzheimer's disease (AD) have pronounced female-to-male disparities and both are the major causes of death in elderly women. Intriguingly, there is an inverse incidence between BC and AD. In our previous study, we found that the expression of ARSD, a female-biased gene on chromosome Xp22.3 that encodes arylsulfatase D, is significantly downregulated in triple-negative breast cancer (TNBC) cells and tissue samples, and that ectopic ARSD overexpression could inhibit proliferation and migration of BC cells. However, the exact mechanism remains unclear. In this study, ARSD-overexpressing MDA-MB-231 cell strains were established. RNA-Seq and qRT-PCR validation were performed followed by GO and KEGG analyses. Transcriptome sequencing unveiled that Alzheimer's/Parkinson's/prion diseases were enriched in ARSD overexpressing BC cells. Besides, the top enriched pathways included lipoprotein/cholesterol metabolism, molecular chaperone and misfolding protein binding, mitochondrial respiration, dysfunction of lysosomes, etc. In which, a battery of genes, e.g., SERF1A, APOE, CD36 etc., were upregulated, while a series of genes, e.g., NDUFA11, NDUFS3, NDUFV1, etc. were downregulated, which were closely related to amyloidosis. The amyloidosis of BC cells and nerval cells caused by ARSD overexpression was verified with western blotting, immunohistochemical and Congo red staining. Collectively, downregulated ARSD may be closely associated with BC, and upregulated ARSD may cause amyloidosis of BC cells. Our findings suggest that ARSD deserves to be considered a new promising target for treating TNBC or for AD.
Collapse
Affiliation(s)
- Yun Lin
- The Central Laboratory, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou 515041, China
| | - Liping Fan
- The Central Laboratory, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou 515041, China
| | - Rendong Zhang
- The Breast Center, Surgical Oncology Session No. 1, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou 515041, China
| | - Hongchao Pan
- The Central Laboratory, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou 515041, China
| | - Yaochen Li
- The Central Laboratory, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou 515041, China
| |
Collapse
|
3
|
Lin Y, Li C, Xiong W, Fan L, Pan H, Li Y. ARSD, a novel ERα downstream target gene, inhibits proliferation and migration of breast cancer cells via activating Hippo/YAP pathway. Cell Death Dis 2021; 12:1042. [PMID: 34725332 PMCID: PMC8560752 DOI: 10.1038/s41419-021-04338-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/11/2021] [Accepted: 10/19/2021] [Indexed: 02/05/2023]
Abstract
Advanced breast cancer (BC), especially basal like triple-negative BC (TNBC), is a highly malignant tumor without viable treatment option, highlighting the urgent need to seek novel therapeutic targets. Arylsulfatase D (ARSD), localized at Xp22.3, is a female-biased gene due to its escaping from X chromosome inactivation (XCI). Unfortunately, no systematic investigation of ARSD on BC has been reported. In this study, we observed that ARSD expression was positively related to ERα status either in BC cells or tissue specimens, which were associated with good prognosis. Furthermore, we found a set of hormone-responsive lineage-specific transcription factors, FOXA1, GATA3, ERα, directly drove high expression of ARSD through chromatin looping in luminal subtype BC cells. Opposingly, ARSD still subjected to XCI in TNBC cells mediated by Xist, CpG islands methylation, and inhibitory histone modification. Unexpectedly, we also found that ectopic ARSD overexpression could inhibit proliferation and migration of TNBC cells by activating Hippo/YAP pathway, indicating that ARSD may be a molecule brake on ERα signaling pathway, which restricted ERα to be an uncontrolled active status. Combined with other peoples' researches that Hippo signaling maintained ER expression and ER + BC growth, we believed that there should exist a regulative feedback loop formation among ERα, ARSD, and Hippo/YAP pathway. Collectively, our findings will help filling the knowledge gap about the influence of ARSD on BC and providing evidence that ARSD may serve as a potential marker to predict prognosis and as a therapeutic target.
Collapse
Affiliation(s)
- Yun Lin
- Central laboratory, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou, 515041, China
| | - Chun Li
- Faculty of Health science, Hull York Medical School, University of Hull, Hull, UK, HU6 7RX
| | - Wei Xiong
- Central laboratory, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou, 515041, China
| | - Liping Fan
- Central laboratory, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou, 515041, China
| | - Hongchao Pan
- Central laboratory, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou, 515041, China.
| | - Yaochen Li
- Central laboratory, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou, 515041, China.
| |
Collapse
|
4
|
Holmes RS. Comparative and evolutionary studies of mammalian arylsulfatase and sterylsulfatase genes and proteins encoded on the X-chromosome. Comput Biol Chem 2017; 68:71-77. [DOI: 10.1016/j.compbiolchem.2017.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 12/22/2016] [Accepted: 02/22/2017] [Indexed: 12/09/2022]
|
5
|
Shortt K, Chaudhary S, Grigoryev D, Heruth DP, Venkitachalam L, Zhang LQ, Ye SQ. Identification of novel single nucleotide polymorphisms associated with acute respiratory distress syndrome by exome-seq. PLoS One 2014; 9:e111953. [PMID: 25372662 PMCID: PMC4221189 DOI: 10.1371/journal.pone.0111953] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 09/29/2014] [Indexed: 12/26/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a lung condition characterized by impaired gas exchange with systemic release of inflammatory mediators, causing pulmonary inflammation, vascular leak and hypoxemia. Existing biomarkers have limited effectiveness as diagnostic and therapeutic targets. To identify disease-associating variants in ARDS patients, whole-exome sequencing was performed on 96 ARDS patients, detecting 1,382,399 SNPs. By comparing these exome data to those of the 1000 Genomes Project, we identified a number of single nucleotide polymorphisms (SNP) which are potentially associated with ARDS. 50,190SNPs were found in all case subgroups and controls, of which89 SNPs were associated with susceptibility. We validated three SNPs (rs78142040, rs9605146 and rs3848719) in additional ARDS patients to substantiate their associations with susceptibility, severity and outcome of ARDS. rs78142040 (C>T) occurs within a histone mark (intron 6) of the Arylsulfatase D gene. rs9605146 (G>A) causes a deleterious coding change (proline to leucine) in the XK, Kell blood group complex subunit-related family, member 3 gene. rs3848719 (G>A) is a synonymous SNP in the Zinc-Finger/Leucine-Zipper Co-Transducer NIF1 gene. rs78142040, rs9605146, and rs3848719 are associated significantly with susceptibility to ARDS. rs3848719 is associated with APACHE II score quartile. rs78142040 is associated with 60-day mortality in the overall ARDS patient population. Exome-seq is a powerful tool to identify potential new biomarkers for ARDS. We selectively validated three SNPs which have not been previously associated with ARDS and represent potential new genetic biomarkers for ARDS. Additional validation in larger patient populations and further exploration of underlying molecular mechanisms are warranted.
Collapse
Affiliation(s)
- Katherine Shortt
- Department of Pediatrics, Division of Experimental and Translational Genetics, Children's Mercy Hospital, University of Missouri - Kansas City School of Medicine, Kansas City, Missouri, United States of America
- Department of Biomedical and Health Informatics, University of Missouri - Kansas City School of Medicine, Kansas City, Missouri, United States of America
| | - Suman Chaudhary
- Department of Pediatrics, Division of Experimental and Translational Genetics, Children's Mercy Hospital, University of Missouri - Kansas City School of Medicine, Kansas City, Missouri, United States of America
| | - Dmitry Grigoryev
- Department of Pediatrics, Division of Experimental and Translational Genetics, Children's Mercy Hospital, University of Missouri - Kansas City School of Medicine, Kansas City, Missouri, United States of America
- Department of Biomedical and Health Informatics, University of Missouri - Kansas City School of Medicine, Kansas City, Missouri, United States of America
| | - Daniel P. Heruth
- Department of Pediatrics, Division of Experimental and Translational Genetics, Children's Mercy Hospital, University of Missouri - Kansas City School of Medicine, Kansas City, Missouri, United States of America
| | - Lakshmi Venkitachalam
- Department of Biomedical and Health Informatics, University of Missouri - Kansas City School of Medicine, Kansas City, Missouri, United States of America
| | - Li Q. Zhang
- Department of Pediatrics, Division of Experimental and Translational Genetics, Children's Mercy Hospital, University of Missouri - Kansas City School of Medicine, Kansas City, Missouri, United States of America
| | - Shui Q. Ye
- Department of Pediatrics, Division of Experimental and Translational Genetics, Children's Mercy Hospital, University of Missouri - Kansas City School of Medicine, Kansas City, Missouri, United States of America
- Department of Biomedical and Health Informatics, University of Missouri - Kansas City School of Medicine, Kansas City, Missouri, United States of America
- * E-mail:
| |
Collapse
|
6
|
Single nucleotide polymorphism within arylsulfatase D gene (ARSD) is associated with selected kinematic parameters of sperm motility in Holstein-Friesian bulls. Pol J Vet Sci 2014; 17:539-41. [DOI: 10.2478/pjvs-2014-0081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
The aim of the study was to find out whether the single nucleotide polymorphism (SNP) within arylsulfatase D (ARSD) gene is associated with kinematic parameters of sperm motility in Holstein- Friesian bulls. 367 Holstein-Friesian bulls kept in one AI center were included in the study. Point mutation C/T at position 139037255 on chromosome X (rs42207167) was identified by PCR-RFLP method (Pflm I). Significant associations were found between ARSD genotypes and CASA-derived sperm motility parameters: average TM (Total Motility), average VSL (Straight Velocity), average VCL (Curvilinear Velocity) and for fraction of sperms showing progressive motility (a) of sperms (VSLa, VCLa and BCFa -Beat Cross Frequency). Most significant differences were observed between alternative homozygotes (CC vs TT). Our results suggest new role of arylsulfatase D gene as being involved in sperm motility.
Collapse
|
7
|
Levy MA, Fernandes AD, Tremblay DC, Seah C, Bérubé NG. The SWI/SNF protein ATRX co-regulates pseudoautosomal genes that have translocated to autosomes in the mouse genome. BMC Genomics 2008; 9:468. [PMID: 18842153 PMCID: PMC2577121 DOI: 10.1186/1471-2164-9-468] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Accepted: 10/08/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pseudoautosomal regions (PAR1 and PAR2) in eutherians retain homologous regions between the X and Y chromosomes that play a critical role in the obligatory X-Y crossover during male meiosis. Genes that reside in the PAR1 are exceptional in that they are rich in repetitive sequences and undergo a very high rate of recombination. Remarkably, murine PAR1 homologs have translocated to various autosomes, reflecting the complex recombination history during the evolution of the mammalian X chromosome. RESULTS We now report that the SNF2-type chromatin remodeling protein ATRX controls the expression of eutherian ancestral PAR1 genes that have translocated to autosomes in the mouse. In addition, we have identified two potentially novel mouse PAR1 orthologs. CONCLUSION We propose that the ancestral PAR1 genes share a common epigenetic environment that allows ATRX to control their expression.
Collapse
Affiliation(s)
- Michael A Levy
- Department of Biochemistry, University of Western Ontario, London, N6A 4L6,
| | | | | | | | | |
Collapse
|
8
|
Ishida H, Sato N, Hosogi J, Tanaka H, Kuwabara T. Inactivation of recombinant human steroid sulfatase by KW-2581. J Steroid Biochem Mol Biol 2008; 108:17-22. [PMID: 17945483 DOI: 10.1016/j.jsbmb.2007.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2006] [Accepted: 06/13/2007] [Indexed: 11/22/2022]
Abstract
Steroid sulfatase (STS) catalyses the hydrolysis of the sulfate esters of 3-hydroxy steroids, which are inactive transport or precursor forms of the active 3-hydroxy steroids. STS inhibitors are expected to block the local production and, consequently to reduce the active steroid levels; therefore, they are considered as potential new therapeutic agents for the treatment of estrogen- and androgen-dependent disorders such as breast and prostate cancers. KW-2581 is a novel steroidal STS inhibitor. In the present study, we found KW-2581 inhibited recombinant human STS (rhSTS) activity with an IC(50) of 2.9 nM when estrone sulfate was used as a substrate. The potency of KW-2581 was approximately 5-fold higher than that of a non-steroidal STS inhibitor, 667 COUMATE. KW-2581 was able to equally inhibit rhSTS activity when dehydroepiandrosterone sulfate was used as another substrate. KW-2581 inhibited rhSTS activity in a time- and concentration-dependent manner (k(inact), 0.439 min(-1); K(i, app), 15 nM), suggesting that it is an active site-directed irreversible inhibitor. Both decrease of KW-2581 concentration and increase of the des-sulfamoylated form's concentration were simultaneously observed during the reaction in a time-dependent manner with corresponding to the decrease of STS activity. Our findings for the first time demonstrated the production of des-sulfamoylated form of the compound as a consequence of STS inactivation.
Collapse
Affiliation(s)
- Hiroyuki Ishida
- Pharmaceutical Research Center, Kyowa Hakko Kogyo Co. Ltd., 1188 Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka, Japan.
| | | | | | | | | |
Collapse
|
9
|
Hanson SR, Best MD, Wong CH. Sulfatases: Structure, Mechanism, Biological Activity, Inhibition, and Synthetic Utility. Angew Chem Int Ed Engl 2004; 43:5736-63. [PMID: 15493058 DOI: 10.1002/anie.200300632] [Citation(s) in RCA: 291] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Sulfatases, which cleave sulfate esters in biological systems, play a key role in regulating the sulfation states that determine the function of many physiological molecules. Sulfatase substrates range from small cytosolic steroids, such as estrogen sulfate, to complex cell-surface carbohydrates, such as the glycosaminoglycans. The transformation of these molecules has been linked with important cellular functions, including hormone regulation, cellular degradation, and modulation of signaling pathways. Sulfatases have also been implicated in the onset of various pathophysiological conditions, including hormone-dependent cancers, lysosomal storage disorders, developmental abnormalities, and bacterial pathogenesis. These findings have increased interest in sulfatases and in targeting them for therapeutic endeavors. Although numerous sulfatases have been identified, the wide scope of their biological activity is only beginning to emerge. Herein, accounts of the diversity and growing biological relevance of sulfatases are provided along with an overview of the current understanding of sulfatase structure, mechanism, and inhibition.
Collapse
Affiliation(s)
- Sarah R Hanson
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, BCC 357, La Jolla, California 92037, USA
| | | | | |
Collapse
|
10
|
Hanson SR, Best MD, Wong CH. Sulfatasen: Struktur, Mechanismus, biologische Aktivität, Inhibition, Anwendung in Synthesen. Angew Chem Int Ed Engl 2004. [DOI: 10.1002/ange.200300632] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
11
|
Ferrante P, Messali S, Ballabio A, Meroni G. Identification and biochemical characterization of an avian sulfatase homologous to the human ARSE, the gene for X-linked chondrodysplasia punctata. Gene 2004; 336:155-61. [PMID: 15246527 DOI: 10.1016/j.gene.2004.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2003] [Revised: 03/19/2004] [Accepted: 04/05/2004] [Indexed: 11/17/2022]
Abstract
Despite many efforts, the mouse homolog of ARSE, the gene implicated in X-linked recessive chondrodysplasia punctata, has not yet been identified. This absence has so far impaired a deep study of the role of this gene. For this reason, we searched the avian homolog and here report the identification of a chicken sulfatase, cARS, that shares high degree of homology with the cluster of sulfatases located on the short arm of the human X chromosome. cARS activity against a sulfated artificial substrate is heat labile and inhibited by warfarin, features that are characteristic of ARSE. The expression in pharyngeal arches, somites, and leg buds during chick development is consistent with cARS being the functional ortholog of ARSE, matching the tissues affected in this genetic disorder. The identification of the ARSE chicken gene is an important step for the study of its natural substrate and its role during development.
Collapse
Affiliation(s)
- Paola Ferrante
- Telethon Institute of Genetics and Medicine c/o Area della Ricerca del CNR, Via P. Castellino 111, Naples 80131, Italy
| | | | | | | |
Collapse
|
12
|
|
13
|
Kester MHA, Kaptein E, Van Dijk CH, Roest TJ, Tibboel D, Coughtrie MWH, Visser TJ. Characterization of iodothyronine sulfatase activities in human and rat liver and placenta. Endocrinology 2002; 143:814-9. [PMID: 11861502 DOI: 10.1210/endo.143.3.8686] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In conditions associated with high serum iodothyronine sulfate concentrations, e.g. during fetal development, desulfation of these conjugates may be important in the regulation of thyroid hormone homeostasis. However, little is known about which sulfatases are involved in this process. Therefore, we investigated the hydrolysis of iodothyronine sulfates by homogenates of V79 cells expressing the human arylsulfatases A (ARSA), B (ARSB), or C (ARSC; steroid sulfatase), as well as tissue fractions of human and rat liver and placenta. We found that only the microsomal fraction from liver and placenta hydrolyzed iodothyronine sulfates. Among the recombinant enzymes only the endoplasmic reticulum-associated ARSC showed activity toward iodothyronine sulfates; the soluble lysosomal ARSA and ARSB were inactive. Recombinant ARSC as well as human placenta microsomes hydrolyzed iodothyronine sulfates with a substrate preference for 3,3'-diiodothyronine sulfate (3,3'-T(2)S) approximately T(3) sulfate (T(3)S) >> rT(3)S approximately T(4)S, whereas human and rat liver microsomes showed a preference for 3,3'-T(2)S > T(3)S >> rT(3)S approximately T(4)S. ARSC and the tissue microsomal sulfatases were all characterized by high apparent K(m) values (>50 microM) for 3,3'-T(2)S and T(3)S. Iodothyronine sulfatase activity determined using 3,3'-T(2)S as a substrate was much higher in human liver microsomes than in human placenta microsomes, although ARSC is expressed at higher levels in human placenta than in human liver. The ratio of estrone sulfate to T(2)S hydrolysis in human liver microsomes (0.2) differed largely from that in ARSC homogenate (80) and human placenta microsomes (150). These results suggest that ARSC accounts for the relatively low iodothyronine sulfatase activity of human placenta, and that additional arylsulfatase(s) contributes to the high iodothyronine sulfatase activity in human liver. Further research is needed to identify these iodothyronine sulfatases, and to study the physiological importance of the reversible sulfation of iodothyronines in thyroid hormone metabolism.
Collapse
Affiliation(s)
- Monique H A Kester
- Department of Internal Medicine, Erasmus University Medical School, 3000 DR Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|