1
|
Identification of Novel Structural Determinants in MW965 Env That Regulate the Neutralization Phenotype and Conformational Masking Potential of Primary HIV-1 Isolates. J Virol 2018; 92:JVI.01779-17. [PMID: 29237828 DOI: 10.1128/jvi.01779-17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 11/28/2017] [Indexed: 11/20/2022] Open
Abstract
The subtype C HIV-1 isolate MW965.26 is a highly neutralization-sensitive tier 1a primary isolate that is widely used in vaccine studies, but the basis for the sensitive neutralization phenotype of this isolate is not known. Substituting the MW965.26 V1/V2 domain into a neutralization-sensitive SF162 Env clone resulted in high resistance to standard anti-V3 monoclonal antibodies, demonstrating that this region possesses strong masking activity in a standard Env backbone and indicating that determinants elsewhere in MW965.26 Env are responsible for its unusual neutralization sensitivity. Key determinants for this phenotype were mapped by generating chimeric Envs between MW965.26 Env and a typical resistant Env clone, the consensus C (ConC) clone, and localized to two residues, Cys384 in the C3 domain and Asn502 in the C5 domain. Substituting the sensitizing mutations Y384C and K502N at these positions into several resistant primary Envs resulted in conversion to neutralization-sensitive phenotypes, demonstrating the generalizability of this effect. In contrast to the sensitizing effects of these substitutions on normally masked epitopes, these mutations reduced the sensitivity of VRC01-like epitopes overlapping the CD4-binding domain, while they had no effect on several other classes of broadly neutralizing epitopes, including members of several lineages of V2-dependent quaternary epitopes and representatives of N332 glycan-dependent epitopes (PGT121) and quaternary, cleavage-dependent epitopes centered at the gp41-gp120 interface on intact HIV-1 Env trimers (PGT151). These results identify novel substitutions in gp120 that regulate the expression of alternative conformations of Env and differentially affect the exposure of different classes of epitopes, thereby influencing the neutralization phenotype of primary HIV-1 isolates.IMPORTANCE A better understanding of the mechanisms that determine the wide range of neutralization sensitivity of circulating primary HIV-1 isolates would provide important information about the natural structural and conformational diversity of HIV-1 Env and how this affects the neutralization phenotype. A useful way of studying this is to determine the molecular basis for the unusually high neutralization sensitivities of the limited number of available tier 1a viruses. This study localized the neutralization sensitivity of MW965.26, an extremely sensitive subtype C-derived primary isolate, to two rare substitutions in the C3 and C5 domains and demonstrated that the sequences at these positions differentially affect the presentation of epitopes recognized by different classes of standard and conformation-dependent broadly neutralizing antibodies. These results provide novel insight into how these regions regulate the neutralization phenotype and provide tools for controlling the Env conformation that could have applications both for structural studies and in vaccine design.
Collapse
|
2
|
Specific sequences commonly found in the V3 domain of HIV-1 subtype C isolates affect the overall conformation of native Env and induce a neutralization-resistant phenotype independent of V1/V2 masking. Virology 2013; 448:363-74. [PMID: 24314667 DOI: 10.1016/j.virol.2013.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 08/23/2013] [Accepted: 10/03/2013] [Indexed: 11/21/2022]
Abstract
Primary HIV-1 isolates are relatively resistant to neutralization by antibodies commonly induced after infection or vaccination. This is generally attributed to masking of sensitive epitopes by the V1/V2 domain and/or glycans situated at various positions in Env. Here we identified a novel masking effect mediated by subtype C-specific V3 sequences that contributes to the V1/V2-independent and glycan-independent neutralization resistance of chimeric and primary Envs to antibodies directed against multiple neutralization domains. Positions at several conserved charged and hydrophobic sites in the V3 crown and stem were also shown to affect neutralization phenotype. These results indicated that substitutions typically present in subtype C and related V3 sequences influence the overall conformation of native Env in a way that occludes multiple neutralization targets located both within and outside of the V3 domain, and may reflect an alternative mechanism for neutralization resistance that is particularly active in subtype C and related isolates.
Collapse
|
3
|
Characterization of structural features and diversity of variable-region determinants of related quaternary epitopes recognized by human and rhesus macaque monoclonal antibodies possessing unusually potent neutralizing activities. J Virol 2011; 85:10730-40. [PMID: 21835798 DOI: 10.1128/jvi.00365-11] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
A series of potently neutralizing monoclonal antibodies (MAbs) that target quaternary epitopes on the native Env trimer have recently been described. A common feature shared by these antibodies is the critical involvement of sites in both the V2 and V3 variable domains in antibody recognition. In this study the gp120 variable-region determinants were mapped for eight rhesus macaque monoclonal antibodies (RhMAbs) possessing potently neutralizing activity specific for a quaternary target in SF162 Env and compared to those originally identified for human MAb 2909. These studies showed that determinants for the epitopes defined by the RhMAbs differed in both the V2 (positions 160, 167, and 169) and V3 (positions 313 and 315) regions from 2909, and in a number of cases, from each other. Attempts to reconstitute expression of these epitopes on the cell surface by cotransfecting Envs containing either the V2 or the V3 determinant of the epitope were not successful, suggesting that these epitopes were expressed on individual protomers in a trimer-dependent manner. Several of the V2 positions found to be critical for expression of these quaternary epitopes also significantly affected exposure and neutralization sensitivity of targets in the V3 and CD4-binding domains. These results demonstrated a considerable diversity in the fine structure of this class of epitopes and further suggested a potentially important relationship between the expression of such quaternary epitopes and V1/V2-mediated masking of immunodominant epitopes.
Collapse
|
4
|
Swetnam J, Shmelkov E, Zolla-Pazner S, Cardozo T. Comparative magnitude of cross-strain conservation of HIV variable loop neutralization epitopes. PLoS One 2010; 5:e15994. [PMID: 21209919 PMCID: PMC3012121 DOI: 10.1371/journal.pone.0015994] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 12/02/2010] [Indexed: 01/17/2023] Open
Abstract
Although the sequence variable loops of the human immunodeficiency virus' (HIV-1) surface envelope glycoprotein (gp120) can exhibit good immunogenicity, characterizing conserved (invariant) cross-strain neutralization epitopes within these loops has proven difficult. We recently developed a method to derive sensitive and specific signature motifs for the three-dimensional (3D) shapes of the HIV-1 neutralization epitopes in the third variable (V3) loop of gp120 that are recognized by human monoclonal antibodies (mAbs). We used the signature motif method to estimate the conservation of these epitopes across circulating worldwide HIV-1 strains. The epitope targeted by the anti-V3 loop neutralizing mAb 3074 is present in 87% of circulating strains, distributed nearly evenly among all subtypes. The results for other anti-V3 Abs are: 3791, present in 63% of primarily non-B subtypes; 2219, present in 56% of strains across all subtypes; 2557, present in 52% across all subtypes; 447-52D, present in 11% of primarily subtype B strains; 537-10D, present in 9% of primarily subtype B strains; and 268-D, present in 5% of primarily subtype B strains. The estimates correlate with in vitro tests of these mAbs against diverse viral panels. The mAb 3074 thus targets an epitope that is nearly completely conserved among circulating HIV-1 strains, demonstrating the presence of an invariant structure hidden in the dynamic and sequence-variable V3 loop in gp120. Since some variable loop regions are naturally immunogenic, designing immunogens to mimic their conserved epitopes may be a promising vaccine discovery approach. Our results suggest one way to quantify and compare the magnitude of the conservation.
Collapse
Affiliation(s)
- James Swetnam
- Department of Pharmacology, New York University School of Medicine, New York, New York, United States of America
| | - Evgeny Shmelkov
- Department of Pharmacology, New York University School of Medicine, New York, New York, United States of America
| | - Susan Zolla-Pazner
- Department of Pathology, New York University School of Medicine, New York, New York, United States of America
- New York Veterans Affairs Medical Center, New York, New York, United States of America
| | - Timothy Cardozo
- Department of Pharmacology, New York University School of Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
5
|
Hioe CE, Visciano ML, Kumar R, Liu J, Mack EA, Simon RE, Levy DN, Tuen M. The use of immune complex vaccines to enhance antibody responses against neutralizing epitopes on HIV-1 envelope gp120. Vaccine 2009; 28:352-60. [PMID: 19879224 DOI: 10.1016/j.vaccine.2009.10.040] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Revised: 10/03/2009] [Accepted: 10/12/2009] [Indexed: 11/27/2022]
Abstract
The capacity of immune complexes to augment antibody (Ab) responses is well established. The enhancing effects of immune complexes have been attributed mainly to Fc-mediated adjuvant activity, while the ability of Abs to induce antigenic alterations of specific epitopes as a result of immune complex formation has been less well studied. Previously we have shown that the interaction of anti-CD4-binding site (CD4bs) Abs with HIV-1 gp120 induces conformation changes that lead to enhanced antigenicity and immunogenicity of neutralizing epitopes in the V3 loop. The present study shows that significant increases in the antigenicity of the V3 and C1 regions of gp120 were attained for several subtype B gp120s and a subtype C gp120 upon immune complex formation with the anti-CD4bs monoclonal Ab (mAb) 654-D. Such enhancement was observed with immune complexes made with other anti-CD4bs mAbs and anti-V2 mAbs, but not with anti-C2 mAbs, indicating this activity is determined by antigen specificity of the mAb that formed the immune complex. When immune complexes of gp120(LAI)/654-D and gp120(JRFL)/654-D were tested as immunogens in mice, serum Abs to gp120 and V3 were generated at significantly higher titers than those induced by the respective uncomplexed gp120s. Notably, the anti-V3 Ab responses had distinct fine specificities; gp120(JRFL)/654-D stimulated more cross-reactive anti-V3 Abs than gp120(LAI)/654-D. Neutralizing activities against viruses with heterologous envelope were also detected in sera of mice immunized with gp120(JRFL)/654-D, although the neutralization breadth was still limited. Overall this study shows the potential use of gp120/Ab complexes to augment the immunogenicity of HIV-1 envelope gp120, but further improvements are needed to elicit virus-neutralizing Ab responses with higher potency and breadth.
Collapse
Affiliation(s)
- Catarina E Hioe
- Department of Pathology, New York University School of Medicine, New York, NY 10010, United States.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Wilkinson RA, Evans JR, Jacobs JM, Slunaker D, Pincus SH, Pinter A, Parkos CA, Burritt JB, Teintze M. Peptides selected from a phage display library with an HIV-neutralizing antibody elicit antibodies to HIV gp120 in rabbits, but not to the same epitope. AIDS Res Hum Retroviruses 2007; 23:1416-27. [PMID: 18184085 DOI: 10.1089/aid.2007.0027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Monoclonal antibodies specific for the conserved CD4 binding site region of the HIV envelope protein gp120 were used to select phage from two different random peptide display libraries. Synthetic peptides were made with sequences corresponding to those displayed on the selected phage, and peptide-protein fusions were expressed that contained the selected phage-displayed peptide sequence and either the N-terminal domain of the phage pIII protein or the small heat shock protein of Methanococcus jannaschii or both. For monoclonal antibody 5145A, these constructs containing the selected peptide sequences were all capable of specifically inhibiting the binding of 5145A to HIV-1 gp120. Rabbits immunized with peptide-protein fusions produced antisera that bound to recombinant HIV-1 gp120, but did not bind to HIV-infected cells nor neutralize HIV. The antisera also did not compete with CD4 or antibodies to the CD4 binding site for binding to gp120.
Collapse
Affiliation(s)
- Royce A. Wilkinson
- Departments of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717
| | - Jody R. Evans
- Departments of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717
| | - Jon M. Jacobs
- Departments of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington
| | - Dustin Slunaker
- Departments of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717
| | - Seth H. Pincus
- The Research Institute for Children, Children's Hospital, LSU Health Sciences Center, New Orleans, Louisiana 70118
| | - Abraham Pinter
- Laboratory of Retroviral Biology, Public Health Research Institute, Newark, New Jersey 071031
| | - Charles A. Parkos
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia 30022
| | - James B. Burritt
- Department of Microbiology, Montana State University, Bozeman, Montana 59717
| | - Martin Teintze
- Departments of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717
| |
Collapse
|
7
|
Prabakaran P, Gan J, Wu YQ, Zhang MY, Dimitrov DS, Ji X. Structural mimicry of CD4 by a cross-reactive HIV-1 neutralizing antibody with CDR-H2 and H3 containing unique motifs. J Mol Biol 2006; 357:82-99. [PMID: 16426633 DOI: 10.1016/j.jmb.2005.12.062] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Revised: 12/13/2005] [Accepted: 12/15/2005] [Indexed: 11/18/2022]
Abstract
Human immunodeficiency virus (HIV) entry into cells is initiated by the binding of its envelope glycoprotein (Env) gp120 to receptor CD4. Antibodies that bind to epitopes overlapping the CD4-binding site (CD4bs) on gp120 can prevent HIV entry by competing with cell-associated CD4; their ability to outcompete CD4 is a major determinant of their neutralizing potency and is proportional to their avidity. The breadth of neutralization and the likelihood of the emergence of antibody-resistant virus are critically dependent on the structure of their epitopes. Because CD4bs is highly conserved, it is reasonable to hypothesize that antibodies closely mimicking CD4 could exhibit relatively broad cross-reactivity and a high probability of preventing the emergence of resistant viruses. Previously, in a search for antibodies that mimic CD4 or the co-receptor, we identified and characterized a broadly cross-reactive HIV-neutralizing CD4bs human monoclonal antibody (hmAb), m18. Here, we describe the crystal structure of Fab m18 at 2.03 A resolution, which reveals unique conformations of heavy chain complementarity-determining regions (CDRs) 2 and 3 (H2 and H3). H2 is highly bulged and lacks cross-linking interstrand hydrogen bonds observed in all four canonical structures. H3 is 17.5 A long and rigid, forming an extended beta-sheet decorated with an alpha-turn motif bearing a phenylalanine-isoleucine fork at the apex. It shows striking similarity to the Ig CDR2-like C'C'' region of the CD4 first domain D1 that dominates the binding of CD4 to gp120. Docking simulations suggest significant similarity between the m18 epitope and the CD4bs on gp120. Fab m18 does not enhance binding of CD4-induced (CD4i) antibodies, nor does it induce CD4-independent fusion mediated by the HIV Env. Thus, vaccine immunogens based on the m18 epitope structure are unlikely to elicit antibodies that could enhance infection. The structure can also serve as a basis for the design of novel, highly efficient inhibitors of HIV entry.
Collapse
Affiliation(s)
- Ponraj Prabakaran
- Protein Interactions Group, Center for Cancer Research Nanobiology Program, National Cancer Institute, NIH, Frederick, MD 21702, USA
| | | | | | | | | | | |
Collapse
|
8
|
Tuen M, Visciano ML, Chien PC, Cohen S, Chen PD, Robinson J, He Y, Pinter A, Gorny MK, Hioe CE. Characterization of antibodies that inhibit HIV gp120 antigen processing and presentation. Eur J Immunol 2005; 35:2541-51. [PMID: 16106369 DOI: 10.1002/eji.200425859] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Antibodies to the CD4-binding site (CD4bs) of HIV-1 envelope gp120 have been shown to inhibit MHC class II presentation of this antigen, but the mechanism is not fully understood. To define the key determinants contributing to the inhibitory activity of these antibodies, a panel of anti-CD4bs monoclonal antibodies with different affinities was studied and compared to antibodies specific for the chemokine receptor-binding site or other gp120 regions. Anti-CD4bs antibodies that completely obstruct gp120 presentation exhibit three common properties: relatively high affinity for gp120, acid-stable interaction with gp120, and the capacity to slow the kinetics of gp120 proteolytic processing. None of these antibodies prevents gp120 internalization into APC. Notably, the broadly virus-neutralizing anti-CD4bs IgG1b12 does not block gp120 presentation as strongly, because although IgG1b12 has a relatively high affinity, it dissociates from gp120 more readily at acidic pH and only moderately retards gp120 proteolysis. Other anti-gp120 antibodies, regardless of their affinities, do not affect gp120 presentation. Hence, high-affinity anti-CD4bs antibodies that do not dissociate from gp120 at endolysosomal pH obstruct gp120 processing and prevent MHC class II presentation of this antigen. The presence of such antibodies could contribute to the dearth of anti-gp120 T helper responses in chronically HIV-1-infected patients.
Collapse
Affiliation(s)
- Michael Tuen
- Department of Pathology, New York University School of Medicine, and Veterans Affairs New York Harbor Healthcare System, New York, NY 10010, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Pinter A, Honnen WJ, He Y, Gorny MK, Zolla-Pazner S, Kayman SC. The V1/V2 domain of gp120 is a global regulator of the sensitivity of primary human immunodeficiency virus type 1 isolates to neutralization by antibodies commonly induced upon infection. J Virol 2004; 78:5205-15. [PMID: 15113902 PMCID: PMC400352 DOI: 10.1128/jvi.78.10.5205-5215.2004] [Citation(s) in RCA: 211] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A major problem hampering the development of an effective vaccine against human immunodeficiency virus type 1 (HIV-1) is the resistance of many primary viral isolates to antibody-mediated neutralization. To identify factors responsible for this resistance, determinants of the large differences in neutralization sensitivities of HIV-1 pseudotyped with Env proteins derived from two prototypic clade B primary isolates were mapped. SF162 Env pseudotypes were neutralized very potently by a panel of sera from HIV-infected individuals, while JR-FL Env pseudotypes were neutralized by only a small fraction of these sera. This differential sensitivity to neutralization was also observed for a number of monoclonal antibodies (MAbs) directed against sites in the V2, V3, and CD4 binding domains, despite often similar binding affinities of these MAbs towards the two soluble rgp120s. The neutralization phenotypes were switched for chimeric Envs in which the V1/V2 domains of these two sequences were exchanged, indicating that the V1/V2 region regulated the overall neutralization sensitivity of these Envs. These results suggested that the inherent neutralization resistance of JR-FL, and presumably of related primary isolates, is to a great extent mediated by gp120 V1/V2 domain structure rather than by sequence variations at the target sites. Three MAbs (immunoglobulin G-b12, 2G12, and 2F5) previously reported to possess broad neutralizing activity for primary HIV-1 isolates neutralized JR-FL virus at least as well as SF162 virus and were not significantly affected by the V1/V2 domain exchanges. The rare antibodies capable of neutralizing a broad range of primary isolates thus appeared to be targeted to exceptional epitopes that are not sensitive to V1/V2 domain regulation of neutralization sensitivity.
Collapse
Affiliation(s)
- Abraham Pinter
- Laboratory of Retroviral Biology, Public Health Research Institute, 225 Warren Street, Newark, NJ 07103, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Abstract
As with most pathogens, HIV-1 induces a polyclonal antibody response to a wide array of epitopes on different viral proteins. Studies of polyclonal sera have helped to identify several epitopes on HIV-1 envelope glycoproteins that induce protective antibodies. Antibodies to several constant regions of the virus envelope induce neutralizing antibodies, but because of the poor immunogenicity of some of these epitopes, the rare structure of neutralizing antibodies to these epitopes, or the preponderance of antibodies to particular epitopes that are non-neutralizing rather than neutralizing, targeting each of these epitopes with vaccine constructs presents difficult challenges. Antibodies to variable regions of gp120, such as V1, V2 and V3, have long been considered irrelevant to vaccine design. However, there are conserved features in the stem of the V1/V2 loop and in the V3 loop that have crucial functions in virus infectivity and explain how antibodies to these regions can be crossreactive. These conserved elements within the variable regions might therefore be relevant targets for vaccines. HIV-1 strains exist that are not neutralized by monoclonal antibodies but are neutralized by pooled sera from HIV-1+ individuals. This indicates that there might be neutralizing epitopes that have not yet been identified. Present vaccine protocols induce antibodies to many epitopes rather than focusing the immune response on epitopes that will induce protective antibodies. Given that several neutralizing epitopes in gp120 and gp41 have been identified, it might be advantageous to direct the antibody response to these protective epitopes. It is highly unlikely that a single construct will protect against all subtypes of HIV-1. Given the continuing evolution of the virus and the spread of subtypes throughout the world, the question is how to choose which strains, and how many, need to be represented in a vaccine to give maximum protection.
During the past 20 years, the pendulum of opinion in the HIV-1 vaccine field has swung between two extremes, initially favouring the induction of antibodies only, and subsequently favouring the induction of cell-mediated immune responses only. At present, the consensus seems to be that induction of both humoral and cellular immunity by an HIV-1 vaccine will be required to achieve maximum protection. One obstacle to the development of an effective HIV-1 vaccine has been the difficulty in inducing broadly reactive, potent antibodies with protective functions. Defining epitopes and designing immunogens that will induce these antibodies is one of the main challenges that now confronts the HIV-1 vaccine field.
Collapse
Affiliation(s)
- Susan Zolla-Pazner
- New York Veterans Affairs Medical Center and NYU School of Medicine, New York 10016, USA.
| |
Collapse
|
11
|
Abstract
To study HIV-1 primary isolate neutralization, we have used DH012 as a model to study the immunogenicity of several DH012 immunogens and determine the potential neutralization epitopes in the virus envelope glycoprotein. Previously, we identified that DH012 infected animals mount potent neutralizing activity against a conformational epitope (CEV) that involves multiple variable regions. In this study, we show that the conformational epitope can be reconstituted with one gp120 recombinant fragment containing sequences from the V1/V2 loop and the bridging sheet of gp120 and a V3 peptide. In contrast to DH012 infection, we previously demonstrated that animals immunized with DH012 gp120 induced potent neutralizing antibodies directed at the V3 domain of gp120. In this study, a second neutralizing activity against the V1/V2 region of gp120 was identified from the same guinea pig sera. In summary, several neutralization epitopes are identified on DH012, including the CEV, V1/V2, V3, 17b, IgG1b12, and 2G12 epitopes. Infectious DH012 virus carrying oligomeric envelope appears to raise primarily neutralizing antibodies that recognize a discontinuous conformationally dependent epitope whereas the monomeric gp120 induces antibodies that are primarily directed at epitopes in the V3 and V1/V2 domains. The DH012 neutralizing epitopes, such as V1/V2 and V3, are either cryptic or poorly immunogenic in chimpanzees. However, immunogens, such as gp120, could be designed to induce neutralizing activity against epitopes that are poorly immunogenic, such as V1/V2 of DH012, in the native envelope glycoproteins.
Collapse
Affiliation(s)
- Chongbin Zhu
- Department of Microbiology, Meharry Medical College, 1005 D.B. Todd Blvd., Nashville, TN, 37208, USA
| | | | | |
Collapse
|
12
|
Burkhart MD, Kayman SC, He Y, Pinter A. Distinct mechanisms of neutralization by monoclonal antibodies specific for sites in the N-terminal or C-terminal domain of murine leukemia virus SU. J Virol 2003; 77:3993-4003. [PMID: 12634359 PMCID: PMC150638 DOI: 10.1128/jvi.77.7.3993-4003.2003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The epitope specificities and functional activities of monoclonal antibodies (MAbs) specific for the murine leukemia virus (MuLV) SU envelope protein subunit were determined. Neutralizing antibodies were directed towards two distinct sites in MuLV SU: one overlapping the major receptor-binding pocket in the N-terminal domain and the other involving a region that includes the most C-terminal disulfide-bonded loop. Two other groups of MAbs, reactive with distinct sites in the N-terminal domain or in the proline-rich region (PRR), did not neutralize MuLV infectivity. Only the neutralizing MAbs specific for the receptor-binding pocket were able to block binding of purified SU and MuLV virions to cells expressing the ecotropic MuLV receptor, mCAT-1. Whereas the neutralizing MAbs specific for the C-terminal domain did not interfere with the SU-mCAT-1 interaction, they efficiently inhibited cell-to-cell fusion mediated by MuLV Env, indicating that they interfered with a postattachment event necessary for fusion. The C-terminal domain MAbs displayed the highest neutralization titers and binding activities. However, the nonneutralizing PRR-specific MAbs bound to intact virions with affinities similar to those of the neutralizing receptor-binding pocket-specific MAbs, indicating that epitope exposure, while necessary, is not sufficient for viral neutralization by MAbs. These results identify two separate neutralization domains in MuLV SU and suggest a role for the C-terminal domain in a postattachment step necessary for viral fusion.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Monoclonal
- Antibodies, Viral
- Antigens, Viral/chemistry
- Antigens, Viral/genetics
- Binding Sites
- Cell Line
- Cricetinae
- Epitope Mapping
- Epitopes/chemistry
- Epitopes/genetics
- Friend murine leukemia virus/genetics
- Friend murine leukemia virus/immunology
- Humans
- Hybridomas/immunology
- Leukemia Virus, Murine/genetics
- Leukemia Virus, Murine/immunology
- Membrane Glycoproteins/immunology
- Mice
- Molecular Sequence Data
- Neutralization Tests
- Protein Structure, Tertiary
- Rats
- Receptors, Virus/immunology
- Retroviridae Proteins, Oncogenic/chemistry
- Retroviridae Proteins, Oncogenic/genetics
- Retroviridae Proteins, Oncogenic/immunology
- Viral Envelope Proteins/chemistry
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/immunology
Collapse
Affiliation(s)
- Michael Dominic Burkhart
- Laboratory of Retroviral Biology, Public Health Research Institute, Newark, New Jersey 07103-3535, USA
| | | | | | | |
Collapse
|
13
|
He Y, Honnen WJ, Krachmarov CP, Burkhart M, Kayman SC, Corvalan J, Pinter A. Efficient isolation of novel human monoclonal antibodies with neutralizing activity against HIV-1 from transgenic mice expressing human Ig loci. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:595-605. [PMID: 12077293 DOI: 10.4049/jimmunol.169.1.595] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Despite considerable interest in the isolation of mAbs with potent neutralization activity against primary HIV-1 isolates, both for identifying useful targets for vaccine development and for the development of therapeutically useful reagents against HIV-1 infection, a relatively limited number of such reagents have been isolated to date. Human mAbs (hu-mAbs) are preferable to rodent mAbs for treatment of humans, but isolation of hu-mAbs from HIV-infected subjects by standard methods of EBV transformation of B cells or phage display of Ig libraries is inefficient and limited by the inability to control or define the original immunogen. An alternative approach for the isolation of hu-mAbs has been provided by the development of transgenic mice that produce fully hu-mAbs. In this report, we show that immunizing the XenoMouse G2 strain with native recombinant gp120 derived from HIV(SF162) resulted in robust humoral Ab responses against gp120 and allowed the efficient isolation of hybridomas producing specific hu-mAbs directed against multiple regions and epitopes of gp120. hu-mAbs possessing strong neutralizing activity against the autologous HIV(SF162) strain were obtained. The epitopes recognized were located in three previously described neutralization domains, the V2-, V3- and CD4-binding domains, and in a novel neutralization domain, the highly variable C-terminal region of the V1 loop. This is the first report of neutralizing mAbs directed at targets in the V1 region. Furthermore, the V2 and V3 epitopes recognized by neutralizing hu-mAbs were distinct from those of previously described human and rodent mAbs and included an epitope requiring a full length V3 loop peptide for effective presentation. These results further our understanding of neutralization targets for primary, R5 HIV-1 viruses and demonstrate the utility of the XenoMouse system for identifying new and interesting epitopes on HIV-1.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Anti-HIV Agents/chemistry
- Anti-HIV Agents/isolation & purification
- Anti-HIV Agents/pharmacology
- Antibodies, Heterophile/chemistry
- Antibodies, Heterophile/genetics
- Antibodies, Heterophile/isolation & purification
- Antibodies, Heterophile/pharmacology
- Antibodies, Monoclonal/biosynthesis
- Antibodies, Monoclonal/genetics
- Antibodies, Monoclonal/isolation & purification
- Antibodies, Monoclonal/pharmacology
- Antibody Specificity/genetics
- Binding, Competitive/genetics
- Binding, Competitive/immunology
- Conserved Sequence/immunology
- Epitope Mapping
- Epitopes/chemistry
- Epitopes/immunology
- Gene Expression Regulation/immunology
- Genes, Immunoglobulin
- Genetic Markers/immunology
- HIV Antibodies/biosynthesis
- HIV Antibodies/genetics
- HIV Antibodies/isolation & purification
- HIV Antibodies/pharmacology
- HIV Envelope Protein gp120/immunology
- HIV-1/immunology
- Humans
- Hybridomas
- Immunoglobulin Variable Region/chemistry
- Immunoglobulin Variable Region/genetics
- Mice
- Mice, Transgenic
- Molecular Sequence Data
- Neutralization Tests/methods
- Protein Structure, Tertiary/genetics
Collapse
Affiliation(s)
- Yuxian He
- Laboratory of Retroviral Biology, Public Health Research Institute, Newark, NJ 07103-3535, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Krachmarov CP, Kayman SC, Honnen WJ, Trochev O, Pinter A. V3-specific polyclonal antibodies affinity purified from sera of infected humans effectively neutralize primary isolates of human immunodeficiency virus type 1. AIDS Res Hum Retroviruses 2001; 17:1737-48. [PMID: 11788025 DOI: 10.1089/08892220152741432] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Although many human sera possess potent neutralizing activities for primary HIV-1 viruses, such activities are not efficiently induced by the current generation of vaccine candidates, and the epitopes mediating this neutralization are not known. The V3 loop of gp120 is believed to be the principal neutralization domain of laboratory-adapted viruses, but the importance of this region in neutralization of primary isolates is unclear. This question was explored using polyclonal anti-V3 antibodies purified by immunoaffinity methods from sera of HIV-1-infected patients. To include antibodies that might be directed against conformational and/or glycan-dependent epitopes not presented by synthetic peptides, the antibody isolations were performed with a fusion glycoprotein expressing the native V3 region of JR-CSF, a primary R5 isolate. V3-reactive antibody fractions from all eight sera examined showed potent neutralization of at least one of the three primary HIV-1 isolates tested; four of these antibody preparations neutralized all three primary viruses. For a number of serum-virus combinations 90% neutralization doses (ND(90)) between 1 and 5 microg/ml were obtained, and the most potent anti-V3 fraction had ND(50) values at or below 0.3 microg/ml for all three primary isolates. These neutralization activities against primary viruses were higher than those of potent monoclonal antibodies assayed in the same experiment. These data indicate that the V3 region can be an important neutralization target in primary isolates, and suggest that effective presentation of V3 epitopes in a vaccine formulation might induce protective humoral responses against natural infection by HIV-1.
Collapse
Affiliation(s)
- C P Krachmarov
- Laboratory of Retroviral Biology, Public Health Research Institute, New York, New York 10016, USA
| | | | | | | | | |
Collapse
|
15
|
Chen CH, Jin L, Zhu C, Holz-Smith S, Matthews TJ. Induction and characterization of neutralizing antibodies against a human immunodeficiency virus type 1 primary isolate. J Virol 2001; 75:6700-4. [PMID: 11413338 PMCID: PMC114394 DOI: 10.1128/jvi.75.14.6700-6704.2001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chimpanzees infected with the primary isolate DH012 mount potent neutralizing antibodies. This DH012 neutralizing activity is highly strain specific. Immune sera from guinea pigs immunized with recombinant DH012 gp120 could also neutralize this primary isolate. The neutralizing activity in chimpanzee and guinea pig sera against wild-type DH012 appears to be independent of a linear epitope in the V3 region of gp120. Interestingly, the neutralization escape mutant derived from growing DH012 in the presence of the potent neutralizing chimpanzee serum is at least 50-fold more sensitive than wild-type DH012 to neutralization by guinea pig immune sera. The unusually potent neutralizing activity against the DH012 neutralization-resistant virus is due to the presence of anti-V3 antibodies in guinea pig sera. These results suggested that recombinant gp120 could induce neutralizing antibodies against primary isolate DH012. The V3 of wild-type DH012 is poorly immunogenic in infected chimpanzees and is not accessible to neutralizing V3 antibodies. It is likely that this cryptic V3 region became exposed when the virus escaped the neutralizing activity of the chimpanzee serum.
Collapse
Affiliation(s)
- C H Chen
- Department of Microbiology, Meharry Medical College, 1005 D.B. Todd Blvd., Nashville, Tennessee 37208, USA.
| | | | | | | | | |
Collapse
|
16
|
Kayman SC, Park H, Saxon M, Pinter A. The hypervariable domain of the murine leukemia virus surface protein tolerates large insertions and deletions, enabling development of a retroviral particle display system. J Virol 1999; 73:1802-8. [PMID: 9971757 PMCID: PMC104419 DOI: 10.1128/jvi.73.3.1802-1808.1999] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/1998] [Accepted: 12/04/1998] [Indexed: 11/20/2022] Open
Abstract
The surface proteins (SU) of murine type-C retroviruses have a central hypervariable domain devoid of cysteine and rich in proline. This 41-amino-acid region of Friend ecotropic murine leukemia virus SU was shown to be highly tolerant of insertions and deletions. Viruses in which either the N-terminal 30 amino acids or the C-terminal 22 amino acids of this region were replaced by the 7-amino-acid sequence ASAVAGA were fully infectious. Insertions of this 7-amino-acid sequence at the N terminus, center, and the C terminus of the hypervariable domain had little effect on envelope protein (Env) function, while this insertion at a position 10 amino acids following the N terminus partially destabilized the association between the SU and transmembrane subunits of Env. Large, complex domains (either a 252-amino-acid single-chain antibody binding domain [scFv] or a 96-amino-acid V1/V2 domain of HIV-1 SU containing eight N-linked glycosylation sites and two disulfides) did not interfere with Env function when inserted in the center or C-terminal portions of the hypervariable domain. The scFv domain inserted into the C-terminal region of the hypervariable domain was shown to mediate binding of antigen to viral particles, demonstrating that it folded into the active conformation and was displayed on the surface of the virion. Both positive and negative enrichment of virions expressing the V1/V2 sequence were achieved by using a monoclonal antibody specific for a conformational epitope presented by the inserted sequence. These results indicated that the hypervariable domain of Friend ecotropic SU does not contain any specific sequence or structure that is essential for Env function and demonstrated that insertions into this domain can be used to extend particle display methodologies to complex protein domains that require expression in eukaryotic cells for glycosylation and proper folding.
Collapse
Affiliation(s)
- S C Kayman
- Laboratory of Retroviral Biology, Public Health Research Institute, New York, New York 10016, USA.
| | | | | | | |
Collapse
|
17
|
Chen H, Yip YK, George I, Tyorkin M, Salik E, Sperber K. Chronically HIV-1-Infected Monocytic Cells Induce Apoptosis in Cocultured T Cells. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.8.4257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
We have previously developed a human macrophage hybridoma model system to study the effect of HIV-1 infection on monocytic function. Upon coculture of one chronically (35 days postinfection) HIV-1-infected human macrophage hybridoma cell line, 43HIV, there was a dose-dependent decrease in the viability of cocultured Ag-stimulated T cells associated with an increase in DNA strand breaks. Enhanced apoptosis was determined by labeling with biotinylated dUTP and propidium iodide, increased staining with annexin V, increased side light scatter and expression of CD95, and decreased forward light scatter and expression of Bcl-2. There was also increased DNA strand breaks as determined by propidium iodide staining in unstimulated T cells cocultured with 43HIV and in T cells stimulated with anti-CD3 mAb and PHA. Pretreatment with 5145, a human polyclonal anti-gp120 Ab that recognizes the CD4 binding region, as well as with an anti-Fas ligand mAb blocked apoptosis in CD4+ T cells but not in CD8+ T cells. A soluble factor with a Mr below 10,000 Da was defined that induced apoptosis in CD4+ and CD8+ T cells and B cells. SDS-PAGE analysis of the active fractions revealed a band of 6000 Da that, after electroelution, had proapoptotic activity. The pI of the activity was estimated to be between 6.5 and 7.0. In conclusion, chronically HIV-1-infected monocytic cells induce apoptosis in bystander-, Ag-, anti-CD3-, and mitogen-stimulated T cells by multiple factors, which may contribute to the depletion of lymphocytes induced by HIV-1.
Collapse
Affiliation(s)
- Houchu Chen
- *Division of Clinical Immunology, Mount Sinai Medical Center, and
| | - Y. K. Yip
- †Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10029
| | - Italas George
- *Division of Clinical Immunology, Mount Sinai Medical Center, and
| | - Max Tyorkin
- *Division of Clinical Immunology, Mount Sinai Medical Center, and
| | - Erez Salik
- *Division of Clinical Immunology, Mount Sinai Medical Center, and
| | - Kirk Sperber
- *Division of Clinical Immunology, Mount Sinai Medical Center, and
| |
Collapse
|
18
|
Alsmadi O, Tilley SA. Antibody-dependent cellular cytotoxicity directed against cells expressing human immunodeficiency virus type 1 envelope of primary or laboratory-adapted strains by human and chimpanzee monoclonal antibodies of different epitope specificities. J Virol 1998; 72:286-93. [PMID: 9420226 PMCID: PMC109375 DOI: 10.1128/jvi.72.1.286-293.1998] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The characteristics of antibody-dependent cellular cytotoxicity (ADCC) directed by a panel of human and chimpanzee antienvelope (anti-Env) monoclonal antibodies (MAbs) of different epitope specificities were studied; this was accomplished by using target cells expressing human immunodeficiency virus type 1 (HIV-1) Envs of either primary or laboratory-adapted strains. Human MAbs of similar apparent affinities (1 x 10(9) to 2 x 10(9) liters/mol) against either a "cluster II"-overlapping epitope of gp41 or against the CD4 binding site, V3 loop, or C5 domain of gp120 directed substantial and comparable levels of specific lysis against targets infected with laboratory-adapted strains of HIV-1. As expected, those MAbs specific for relatively conserved regions of Env generally exhibited ADCC activity against a broader range of HIV-1 strains than those directed against variable epitopes. Significant ADCC activities of selected MAbs against primary isolate Env-expressing cells were demonstrated. In addition, a new ADCC epitope in the V2 domain of gp120 was defined. CD56+ cells were demonstrated to be the effector cells in these studies by fluorescence-activated cell sorting followed by ADCC assays. Notably, all anti-Env MAbs tested in this study, including MAbs directed against each of the known neutralization epitope clusters in gp120, directed significant levels of ADCC against targets expressing Env of one or more HIV-1 strains. These results imply that many, if not most, HIV-1-neutralizing human Abs of high affinity (> or = 3 x 10(8) liters/mol in these studies) and of the immunoglobulin G1 (IgG1) subclass (i.e., the predominate IgG subclass) are capable of directing ADCC. Since neutralizing Abs have been associated with long-term survival following HIV-1 infection, this suggests that ADCC activity may be beneficial in vivo.
Collapse
Affiliation(s)
- O Alsmadi
- Public Health Research Institute, New York, New York 10016, USA
| | | |
Collapse
|
19
|
Kessler JA, McKenna PM, Emini EA, Chan CP, Patel MD, Gupta SK, Mark GE, Barbas CF, Burton DR, Conley AJ. Recombinant human monoclonal antibody IgG1b12 neutralizes diverse human immunodeficiency virus type 1 primary isolates. AIDS Res Hum Retroviruses 1997; 13:575-82. [PMID: 9135875 DOI: 10.1089/aid.1997.13.575] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The CD4-binding domain of human immunodeficiency virus type 1 (HIV-1) gp120 elicits antibodies that are present in infected human sera. Monoclonal antibodies that recognize the HIV-1 gp120 CD4-binding domain have been isolated. Some of these antibodies can neutralize laboratory-adapted strains of HIV-1 and probably mediate neutralization by interfering with virus binding to its cellular CD4 receptor. However, most anti-CD4 binding domain antibodies do not neutralize primary HIV-1 isolates. We used primary HIV-1 isolates in an infectivity reduction assay to test the uniquely derived anti-CD4 binding domain recombinant human monoclonal antibody, IgG1b12. All of the tested HIV-1 isolates were neutralized by this antibody. Additional studies indicated that neutralization of a primary isolate with MAb IgG1b12 did not require continuous exposure of human peripheral blood mononuclear cell cultures to the antibody. Finally, a complete IgG1 molecule of an in vitro-selected b12 FAb mutant with a > 400-fold increase in affinity was assembled, expressed in mammalian cells, and evaluated in the infectivity reduction assay in comparative studies with the parent IgG1b12 antibody. The mutant did not retain the level of primary isolate neutralization potency that was a property of the parent molecule. Thus, we confirm that recombinant IgG1b12 has a unique specificity, and that it can neutralize all primary isolates tested in human PBMC cultures in vitro.
Collapse
Affiliation(s)
- J A Kessler
- Department of Antiviral Research, Merck Research Laboratories, West Point, Pennsylvania 19486, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Alsmadi O, Herz R, Murphy E, Pinter A, Tilley SA. A novel antibody-dependent cellular cytotoxicity epitope in gp120 is identified by two monoclonal antibodies isolated from a long-term survivor of human immunodeficiency virus type 1 infection. J Virol 1997; 71:925-33. [PMID: 8995609 PMCID: PMC191140 DOI: 10.1128/jvi.71.2.925-933.1997] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Two monoclonal antibodies (MAbs), 42F and 43F, were isolated some 14 months apart from a single long-term survivor of human immunodeficiency virus type 1 (HIV-1) infection. These MAbs were found to be indistinguishable in terms of their isotypes, specificities, affinities, and biological activities. Both 42F and 43F directed substantial antibody-dependent cellular cytotoxicity (ADCC) against cells infected with four divergent lab-adapted strains of HIV-1, but no neutralizing activity against these strains was detectable. The ability of MAbs 42F and 43F, as well as that of MAbs against two other gp120 epitopes, to direct ADCC against uninfected CD4+ cells to which recombinant gp120SF2 had been adsorbed (i.e., "innocent bystanders") was demonstrated to be less efficient by at least an order of magnitude than their ability to direct ADCC against HIV-1-infected cells. Flow cytometry analyses showed that 42F and 43F also bind to native primary isolate Envs from clades B and E expressed on cell surfaces. By direct binding and competition assays, it was demonstrated that the 42F/43F epitope lies in a domain of gp120 outside the previously described CD4-binding site and V3 loop ADCC epitope clusters. Immunoblot analysis revealed that the 42F/43F epitope is not dependent on disulfide bonds or N-linked glycans in gp120. Epitope mapping of 42F and 43F by binding to linear peptides demonstrated specificity of these MAbs for a sequence of 10 amino acids in the C5 domain comprising residues 491 to 500 (Los Alamos National Laboratory numbering for the HXB2 strain). Thus, 42F and 43F define a new ADCC epitope in gp120. Because of the relative conservation of this epitope and the fact that it appears to have been significantly immunogenic in the individual from which these MAbs were derived, it may prove to be a useful component of HIV vaccines. Furthermore, these MAbs may be used as tools to probe the potential importance of ADCC as an antiviral activity in HIV-1 infection.
Collapse
Affiliation(s)
- O Alsmadi
- Public Health Research Institute, New York, New York 10016, USA
| | | | | | | | | |
Collapse
|
21
|
Chiang G, Sassaroli M, Louie M, Chen H, Stecher VJ, Sperber K. Inhibition of HIV-1 replication by hydroxychloroquine: mechanism of action and comparison with zidovudine. Clin Ther 1996; 18:1080-92. [PMID: 9001825 DOI: 10.1016/s0149-2918(96)80063-4] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We have previously described the inhibition of human immunodeficiency virus serotype 1 (HIV-1) using the antimalarial hydroxychloroquine (HCQ), a weak base that inhibits the posttranslational modification of glycoprotein 120 (gp 120) in T cells and monocytes. The mechanism of inhibition of gp 120 production was presumed to be the ability of HCQ to increase endosomal pH and therefore alter enzymes required for gp120 production. To further clarify this action, we have determined the effect of HCQ and its enantiomers on endosomal pH. Pretreatment of cells with HCQ and the levo- and dextro-enantiomers at concentrations demonstrated to suppress anti-HIV-1 activity increased endosomal pH to levels similar to increases seen with chloroquine and ammonium chloride, two other weak bases, and decreased gp 120 production. The dextro- and levo-enantiomers suppressed HIV-1 replication to a similar extent and were no more toxic than racemic HCQ. We next compared the anti-HIV-1 effect of HCQ with zidovudine (ZDV) in both newly and chronically HIV-1-infected T-cell and monocytic cell lines (63 and 63HIV). HCQ suppressed HIV-1 replication in a dose-dependent manner in both recently and chronically infected T-cell and monocytic cell lines. In contrast, ZDV pretreatment had potent anti-HIV-1 activity in the newly infected T and monocytic cells but not in chronically infected cells. An additive effect of HCQ with ZDV was observed in the newly infected T and monocytic cells but not in the chronically infected cells. Although the anti-HIV-1 effect of HCQ was less than that of ZDV, HCQ may still be potentially useful either as an alternative HIV-1 treatment or in combination with other anti-HIV-1 agents, especially in patients who have rheumatic manifestations of HIV-1 infection.
Collapse
|
22
|
Pincus SH, Wehrly K, Cole R, Fang H, Lewis GK, McClure J, Conley AJ, Wahren B, Posner MR, Notkins AL, Tilley SA, Pinter A, Eiden L, Teintze M, Dorward D, Tolstikov VV. In vitro effects of anti-HIV immunotoxins directed against multiple epitopes on HIV type 1 envelope glycoprotein 160. AIDS Res Hum Retroviruses 1996; 12:1041-51. [PMID: 8827220 DOI: 10.1089/aid.1996.12.1041] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We have used a panel of anti-gp160 MAbs to construct anti-HIV immunotoxins by coupling antibodies to ricin A chain (RAC). The ability of the immunotoxins to kill HIV-1-infected cells and halt the spread of infection was tested in tissue culture on persistently and acutely infected cell lines and primary lymphocyte cultures stimulated with phytohemagglutinin (PHA blasts). Laboratory strains and clinical isolates of HIV both were tested. The constitution and antigen-binding capacity of the immunotoxins were confirmed by ELISA and indirect immunofluorescence. Immunotoxins that bind epitopes exposed on the cell surface effectively killed persistently infected cells, although killing was not directly proportional to binding of immunotoxin to cell. The activity of anti-gp41, but not anti-gp120, immunotoxins was markedly enhanced in the presence of soluble CD4 or peptides corresponding to the CDR3 region of CD4. CD4-mediated enhancement of anti-gp41 immunotoxin activity was observed for laboratory strains neutralized by sCD4 and for clinical isolates that were resistant to neutralization by sCD4. Immunotoxin action was potentiated by brefeldin A, bafilomycin A1, cortisone, and an amphipathic fusion peptide, but not by cytochalasin D, nocodazol, monodansyl cadaverine, or trans-retinoic acid. Anti-HIV immunotoxins are useful tool with which to study the functional expression of gp120/gp41 antigens on the surface of HIV-infected cells, as well as potential AIDS therapeutics. Because these studies relate to the accessibility of viral antigens to antibody-mediated attack, these studies also have relevance for vaccine development.
Collapse
Affiliation(s)
- S H Pincus
- Laboratory of Microbial Structure and Function, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana 59840, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Vijh-Warrier S, Pinter A, Honnen WJ, Tilley SA. Synergistic neutralization of human immunodeficiency virus type 1 by a chimpanzee monoclonal antibody against the V2 domain of gp120 in combination with monoclonal antibodies against the V3 loop and the CD4-binding site. J Virol 1996; 70:4466-73. [PMID: 8676471 PMCID: PMC190381 DOI: 10.1128/jvi.70.7.4466-4473.1996] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Synergistic neutralization of human immunodeficiency virus type 1 (HIV-1) was observed in studies using a chimpanzee anti-V2 monoclonal antibody (MAb), C108G, in combination with anti-V3 loop and anti-CD4 binding-site (bs) MAbs of different epitope specificities. C108G paired with either of two anti-V3 loop MAbs or either of two anti-CD4 bs MAbs synergistically neutralized both the uncloned IIIB and clonal HXB2 strains of virus in H9 target cells. Synergism was quantitated by calculation of combination indices. Significant synergy with a given MAb pair was seen over a range of MAb ratios, with the optimal effect centering around the ratio at which the MAbs were equipotent for a given HIV-1 strain (on the basis of the 50% neutralization titer). In preliminary experiments with monocytotropic strains of HIV-1 in peripheral blood mononuclear cell targets, significant synergism was also observed between anti-V2-anti-V3 and anti-V2-anti-CD4 bs MAb pairs. Synergism by all MAb pairs tested was greater against heterogeneous isolates of HIV-1 (IIIB and Ba-L) than against clonal isolates (HXB2 and NLHXADA), suggesting that strain broadening may be a component of the synergism observed against the heterogeneous isolates. In addition, conformational changes in gp120 upon binding of one or both MAbs may result in increased affinity or exposure of the epitope of one or both MAbs. Finally, a three-MAb combination of C108G, an anti-V3 MAb, and an anti-CD4 bs MAb was more effective in neutralizing the HXB2 strain of HIV-1 than any of the three two-MAb combinations within this trio, as determined by the dose reduction indices of each MAb required to achieve a given level of neutralization. This is the first report of synergistic neutralization of HIV-1 by a three-MAb combination composed of MAbs directed against the three major neutralization epitope clusters in gp120. Implications for vaccine design and for immunoprophylaxis and immunotherapy with a combination of MAbs are discussed.
Collapse
Affiliation(s)
- S Vijh-Warrier
- Public Health Research Institute, New York, New York 10016, USA
| | | | | | | |
Collapse
|
24
|
Vijh-Warrier S, Murphy E, Yokoyama I, Tilley SA. Characterization of the variable regions of a chimpanzee monoclonal antibody with potent neutralizing activity against HIV-1. Mol Immunol 1995; 32:1081-92. [PMID: 8544858 DOI: 10.1016/0161-5890(95)00081-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The variable (V) regions of C108G, a potent neutralizing chimpanzee mAb against a glycan-dependent epitope in the V2 region of HIV-1 gp120, have been characterized for reactivity with human VH and VK family-specific antisera, and their nucleotide sequences have been determined and analysed. To our knowledge, this is the first study characterizing expressed chimpanzee VH and VK genes. Results show that C108G expresses members of the VH3 and VK1 families, the largest VH and VK families in humans, respectively. Nucleotide and amino acid sequence analyses reveal that C108G VH is most homologous to the human VH3 germline gene, hsigdp33 or V3-43, and the human JH4 minigene. The human germline VK1 gene that is most homologous to C108G VK, hsigk1012, was previously observed in unmutated form in a human autoantibody with anti-i red blood cell antigen specificity and in seven human Fabs and a mAb directed against epitopes overlapping the CD4-binding site of HIV-1 gp120. This germline gene was unmutated in three of the human Fabs and was somatically mutated in the other four Fabs and the mAb. In addition, the JK minigene was used in C108G VK, JK2, is apparently over-represented in anti-HIV-1 mAbs/Fabs; this minigene was used in 61% of the anti-gp120 human Fabs recently described and in three other anti-CD4-binding site human mAbs derived by EBV transformation. While the significance of these findings is unclear, they may suggest a bias in VK/JK gene usage and/or network regulation involving an hsigk1012/JK2 idiotope(s) in the antibody response to HIV-1. Both the C108G VH and VK genes showed evidence of somatic mutation and antigen selection that apparently occurred in vivo during chronic exposure to HIV-1 and its antigens. Surprisingly, this somatic mutation was most profound in the CDR3 region of C108G VK; this region shared only 48% nucleotide homology with hsigk1012 contrasted with a homology of 94% over the remainder of these two V gene sequences. Perhaps the most significant finding of this study is that the expressed VH and VK genes of chimpanzee mAb C108G are no more divergent from their most homologous human germline genes than are the expressed V genes of several recently characterized human anti-HIV-1 mAbs/Fabs from their apparent human germline genes. This suggests that chimpanzee mAbs are no more likely to elicit deleterious anti-immunoglobulin responses in humans than are human mAbs and emphasizes the potential for development of chimpanzee mAbs as immunotherapeutic agents.
Collapse
|
25
|
Abstract
Monoclonal and polyclonal antibodies with weak SIV neutralising activity bind to the V2 and V4 regions of gp120 or bind to the amino acids DWNND in gp41. Antibodies with the most potent neutralising activity recognise conformation-dependent epitopes involving the V3 and V4 regions of gp120. Monoclonal antibodies that map to the V3 region of SIVmac failed to neutralise. However, one antibody to SIV AGM neutralised but only in the presence of soluble CD4.
Collapse
Affiliation(s)
- K A Kent
- National Institute for Biological Standards and Controls, Herts, UK
| |
Collapse
|
26
|
Wu Z, Kayman SC, Honnen W, Revesz K, Chen H, Vijh-Warrier S, Tilley SA, McKeating J, Shotton C, Pinter A. Characterization of neutralization epitopes in the V2 region of human immunodeficiency virus type 1 gp120: role of glycosylation in the correct folding of the V1/V2 domain. J Virol 1995; 69:2271-8. [PMID: 7533854 PMCID: PMC188897 DOI: 10.1128/jvi.69.4.2271-2278.1995] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
A number of monoclonal antibodies (MAbs) with various levels of neutralizing activity that recognize epitopes in the V1/V2 domain of LAI-related gp120s have been described. These include rodent antibodies directed against linear and conformational epitopes and a chimpanzee MAb, C108G, with extremely potent neutralizing activity directed against a glycan-dependent epitope. A fusion glycoprotein expression system that expressed the isolated V1/V2 domain of gp120 in native form was used to analyze the structural characteristics of these epitopes. A number of MAbs (C108G, G3-4, 684-238, SC258, 11/68b, 38/66a, 38/66c, 38/62c, and CRA3) that did not bind with high affinity to peptides immunoprecipitated a fusion glycoprotein expressing the V1/V2 domain of HXB2 gp120 in the absence of other human immunodeficiency virus sequences, establishing that their epitopes were fully specified within this region. Biochemical analyses indicated that in the majority of V1/V2 fusion molecules only five of the six glycosylation signals in the V1/V2 domain were utilized, and the glycoforms were found to be differentially recognized by particular MAbs. Both C108G and MAbs directed against conformational epitopes reacted with large fractions of the fully glycosylated molecules but with only small fractions of the incompletely glycosylated molecules. Mutational analysis of the V1 and V2 glycosylation signals indicated that in most cases the unutilized site was located either at position 156 or at position 160, suggesting the occurrence of competition for glycan addition at these neighboring positions. Mutation of glycosylation site 160 destroyed the C108G epitope but increased the fraction of the molecules that presented the conformational epitopes, while mutation of the highly conserved glycosylation site at position 156 greatly diminished the expression of the conformational epitopes and increased expression of the C108G epitope. Similar heterogeneity in glycosylation was also observed when the HXB2 V1/V2 fusion glycoprotein was expressed without most of the gp70 carrier protein, and thus, this appeared to be an intrinsic property of the V1/V2 domain. Heterogeneity in expression of conformational and glycan-dependent epitopes was also observed for the natural viral env precursor, gPr160, but not for gp120. These results suggested that the closely spaced glycosylation sites 156 and 160 are often alternatively utilized and that the pattern of glycosylation at these positions affects the formation of the conformational structures needed for both expression of native epitopes in this region and processing of gPr160 to mature env products.
Collapse
Affiliation(s)
- Z Wu
- Public Health Research Institute, New York, New York 10016
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Pincus SH, Tolstikov VV. Anti-human immunodeficiency virus immunoconjugates. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 1995; 32:205-47. [PMID: 7748796 DOI: 10.1016/s1054-3589(08)61014-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- S H Pincus
- Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840, USA
| | | |
Collapse
|
28
|
Demaria S, Tilley SA, Pinter A, Bushkin Y. Bathophenanthroline disulfonate and soluble CD4 as probes for early events of HIV type 1 entry. AIDS Res Hum Retroviruses 1995; 11:127-39. [PMID: 7734186 DOI: 10.1089/aid.1995.11.127] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We report here that a metalloprotease inhibitor, bathophenanthroline disulfonate (Bphe-ds), neutralizes both laboratory-adapted and primary strains of HIV-1. Presaturation of Bphe-ds with zinc does not alter its neutralizing activity, suggesting that the metal-chelating ability of Bphe-ds is not required for neutralization. Bphe-ds blocks infection of CD4+ cells at the stage of viral entry, not through a direct viricidal effect, but by interfering with both binding and postbinding events. This drug interacts with HIV-1 envelope, blocking almost completely the binding of three MAbs that recognize epitopes overlapping the CD4-binding site on gp120, but has no effect on the binding of MAbs directed to the cellular receptor CD4. The exposure of epitopes in the V2 and V3 but not C5 domains of gp120 is partially decreased in the presence of Bphe-ds, suggesting that the drug induces conformational changes in the envelope glycoprotein(s). Binding of both virions and soluble gp120 to CD4+ cells is inhibited by this drug in a dose-dependent manner. This contrasted with the effects of soluble CD4, which actually increased binding of virions to cells at 4 degrees C, while inhibiting the binding of soluble gp120. Bphe-ds also increases shedding of gp120 from cells infected with HIV-1IIIB. Thus, Bphe-ds appears to be an envelope-directed inhibitor of HIV-1 that neutralizes HIV-1 infectivity via multiple mechanisms.
Collapse
Affiliation(s)
- S Demaria
- Public Health Research Institute, New York, New York 10016, USA
| | | | | | | |
Collapse
|
29
|
Moore JP, McCutchan FE, Poon SW, Mascola J, Liu J, Cao Y, Ho DD. Exploration of antigenic variation in gp120 from clades A through F of human immunodeficiency virus type 1 by using monoclonal antibodies. J Virol 1994; 68:8350-64. [PMID: 7525988 PMCID: PMC237304 DOI: 10.1128/jvi.68.12.8350-8364.1994] [Citation(s) in RCA: 113] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The reactivities of a panel of 14 monoclonal antibodies (MAbs) with monomeric gp120 derived from 67 isolates of human immunodeficiency virus type 1 of clades A through F were assessed by using an antigen-capture enzyme-linked immunosorbent assay. The MAbs used were all raised against gp120 or gp120 peptides from clade B viruses and were directed at a range of epitopes relevant to human immunodeficiency virus type 1 neutralization: the V2 and V3 loops, discontinuous epitopes overlapping the CD4-binding site, and two other discontinuous epitopes. Four of the five V3 MAbs showed modest cross-reactivity within clade B but very limited reactivity with gp120s from other clades. These reactivity patterns are consistent with the known primary sequence requirements for the binding of these MAbs. One V3 human MAb (19b), however, was much more broadly reactive than the others, binding to 19 of 29 clade B and 10 of 12 clade E gp120s. The 19b epitope is confined to the flanks of the V3 loop, and these sequences are relatively conserved in clade B and E viruses. In contrast to the limited reactivity of V3 MAbs, CD4-binding site MAbs were much more broadly reactive across clades, two of these MAbs (205-46-9 and 21h) being virtually pan-reactive across clades A through F. Another human MAb (A-32) to a discontinuous epitope was also pan-reactive. The CD4-binding site is strongly conserved between clades; but when considering the epitopes near the CD4-binding site, clade D gp120 appears to be the most closely related to clade B and clade E appears to be the least related. A tentative rank order for these epitopes is B/D-A/C-E/F. V2 MAbs reacted sporadically within and between clades, and no clear pattern was observable. While results from binding assays do not predict neutralization serotypes, they suggest that there may be antigenic subtypes related, but not identical, to the genetic subtypes.
Collapse
Affiliation(s)
- J P Moore
- Aaron Diamond AIDS Research Center, New York University School of Medicine, New York 10016
| | | | | | | | | | | | | |
Collapse
|
30
|
Warrier SV, Pinter A, Honnen WJ, Girard M, Muchmore E, Tilley SA. A novel, glycan-dependent epitope in the V2 domain of human immunodeficiency virus type 1 gp120 is recognized by a highly potent, neutralizing chimpanzee monoclonal antibody. J Virol 1994; 68:4636-42. [PMID: 7515975 PMCID: PMC236391 DOI: 10.1128/jvi.68.7.4636-4642.1994] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
An anti-gp120 monoclonal antibody (MAb), C108G (gamma 1, kappa), was isolated from a chimpanzee that had been infected with strain IIIB of human immunodeficiency virus type 1 (HIV-1IIIB) and subsequently immunized with the recombinant glycoprotein rgp160MN. This MAb is specific for the IIIB strain of HIV-1 and related clones and exhibits very potent neutralization of these viruses; e.g., 100% neutralization of approximately 8 x 10(3) infectious units of HXB2 was achieved with 125 ng of C108G per ml. Commensurate with this potent neutralizing activity, the apparent affinity of C108G for rgp160LAI was very high, i.e., approximately 3 x 10(10) liters/mol. The C108G epitope was not destroyed by reduction of gp120 disulfide bonds but was profoundly disrupted by removal of N-linked sugars from gp120. Despite the importance of a glycan(s) in forming the C108G epitope, specific binding of C108G to synthetic peptides overlapping in amino acids 162 to 169 of the V2 region was detected, albeit with an affinity approximately 2,000-fold lower than that of C108G's binding to glycosylated envelope protein. This epitope mapping correlated with results of competition assays using MAbs of known epitope specificities. To our knowledge, this is the first description of an anti-V2 MAb raised in response to HIV-1 infection. Its potent neutralizing activity and epitope specificity indicate that the V2 domain of gp120 may be an effective target of the protective immune response and, therefore, potentially an important component of HIV vaccines.
Collapse
Affiliation(s)
- S V Warrier
- Public Health Research Institute, New York, New York 10016
| | | | | | | | | | | |
Collapse
|