1
|
Upadhayay V, Gu W, Yu Q. Enhancing mRNA Interactions by Engineering the Arc Protein with Nucleocapsid Domain. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:23473-23482. [PMID: 39433292 DOI: 10.1021/acs.langmuir.4c03151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Activity-regulated cytoskeleton-associated protein (Arc) forms virus-like capsids for mRNA transport between neurons. Unlike HIV-1 Group-specific Antigen (Gag), which uses its Nucleocapsid (NC) domain to bind HIV-1 genomic mRNA, mammalian Arc lacks the NC domain, and their direct mRNA binding interactions remain underexplored. This study examined rat Arc's binding to rat Arc 5' UTR (A5U), HIV-1 5' UTR (H5U), and GFP mRNAs, revealing weak binding with no significant preference. Adding the HIV-1 NC domain to rArc's C-terminus significantly improved binding to H5U, while also showing substantial binding to A5U at about 60% of its H5U level and exhibiting twice the affinity for A5U over GFP mRNA. Importantly, rArc-NC binds 3.4 times more A5U and H5U than GST-NC, indicating that rArc NTD-CA aids mRNA binding by HIV-1 NC. These findings suggest a conserved Gag protein-mRNA interaction mechanism, highlighting the potential for developing mRNA delivery systems that combine endogenous Gag NTD-CA with retroviral NC and UTRs.
Collapse
Affiliation(s)
- Vaibhav Upadhayay
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Wenchao Gu
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Qiuming Yu
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
2
|
Raghunath G, Abbott EH, Marin M, Wu H, Reyes Ballista JM, Brindley MA, Melikyan GB. Disruption of Transmembrane Phosphatidylserine Asymmetry by HIV-1 Incorporated SERINC5 Is Not Responsible for Virus Restriction. Biomolecules 2024; 14:570. [PMID: 38785977 PMCID: PMC11118262 DOI: 10.3390/biom14050570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/26/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
Host restriction factor SERINC5 (SER5) incorporates into the HIV-1 membrane and inhibits infectivity by a poorly understood mechanism. Recently, SER5 was found to exhibit scramblase-like activity leading to the externalization of phosphatidylserine (PS) on the viral surface, which has been proposed to be responsible for SER5's antiviral activity. This and other reports that document modulation of HIV-1 infectivity by viral lipid composition prompted us to investigate the role of PS in regulating SER5-mediated HIV-1 restriction. First, we show that the level of SER5 incorporation into virions correlates with an increase in PS levels in the outer leaflet of the viral membrane. We developed an assay to estimate the PS distribution across the viral membrane and found that SER5, but not SER2, which lacks antiviral activity, abrogates PS asymmetry by externalizing this lipid. Second, SER5 incorporation diminished the infectivity of pseudoviruses produced from cells lacking a flippase subunit CDC50a and, therefore, exhibited a higher baseline level of surface-accessible PS. Finally, exogenous manipulation of the viral PS levels utilizing methyl-alpha-cyclodextrin revealed a lack of correlation between external PS and virion infectivity. Taken together, our study implies that the increased PS exposure to SER5-containing virions itself is not directly linked to HIV-1 restriction.
Collapse
Affiliation(s)
- Gokul Raghunath
- Department of Pediatrics, Division of Infectious Diseases, School of Medicine, Emory University, Atlanta, GA 30322, USA; (G.R.); (M.M.); (H.W.)
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Elizabeth H. Abbott
- Emory College of Arts and Sciences, Emory University, Atlanta, GA 30322, USA
| | - Mariana Marin
- Department of Pediatrics, Division of Infectious Diseases, School of Medicine, Emory University, Atlanta, GA 30322, USA; (G.R.); (M.M.); (H.W.)
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Hui Wu
- Department of Pediatrics, Division of Infectious Diseases, School of Medicine, Emory University, Atlanta, GA 30322, USA; (G.R.); (M.M.); (H.W.)
| | - Judith Mary Reyes Ballista
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (J.M.R.B.); (M.A.B.)
| | - Melinda A. Brindley
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (J.M.R.B.); (M.A.B.)
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Gregory B. Melikyan
- Department of Pediatrics, Division of Infectious Diseases, School of Medicine, Emory University, Atlanta, GA 30322, USA; (G.R.); (M.M.); (H.W.)
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| |
Collapse
|
3
|
Bouton L, Ecoutin A, Malard F, Campagne S. Small molecules modulating RNA splicing: a review of targets and future perspectives. RSC Med Chem 2024; 15:1109-1126. [PMID: 38665842 PMCID: PMC11042171 DOI: 10.1039/d3md00685a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/03/2024] [Indexed: 04/28/2024] Open
Abstract
In eukaryotic cells, RNA splicing is crucial for gene expression. Dysregulation of this process can result in incorrect mRNA processing, leading to aberrant gene expression patterns. Such abnormalities are implicated in many inherited diseases and cancers. Historically, antisense oligonucleotides, which bind to specific RNA targets, have been used to correct these splicing abnormalities. Despite their high specificity of action, these oligonucleotides have drawbacks, such as lack of oral bioavailability and the need for chemical modifications to enhance cellular uptake and stability. As a result, recent efforts focused on the development of small organic molecules that can correct abnormal RNA splicing event under disease conditions. This review discusses known and potential targets of these molecules, including RNA structures, trans-acting splicing factors, and the spliceosome - the macromolecular complex responsible for RNA splicing. We also rely on recent advances to discuss therapeutic applications of RNA-targeting small molecules in splicing correction. Overall, this review presents an update on strategies for RNA splicing modulation, emphasizing the therapeutic promise of small molecules.
Collapse
Affiliation(s)
- Léa Bouton
- Inserm U1212, CNRS UMR5320, ARNA Laboratory, University of Bordeaux 146 rue Léo Saignat 33076 Bordeaux Cedex France
- Institut Européen de Chimie et de Biologie F-33600 Pessac France
| | - Agathe Ecoutin
- Inserm U1212, CNRS UMR5320, ARNA Laboratory, University of Bordeaux 146 rue Léo Saignat 33076 Bordeaux Cedex France
- Institut Européen de Chimie et de Biologie F-33600 Pessac France
| | - Florian Malard
- Inserm U1212, CNRS UMR5320, ARNA Laboratory, University of Bordeaux 146 rue Léo Saignat 33076 Bordeaux Cedex France
- Institut Européen de Chimie et de Biologie F-33600 Pessac France
| | - Sébastien Campagne
- Inserm U1212, CNRS UMR5320, ARNA Laboratory, University of Bordeaux 146 rue Léo Saignat 33076 Bordeaux Cedex France
- Institut Européen de Chimie et de Biologie F-33600 Pessac France
| |
Collapse
|
4
|
Yu R, Abdullah SMU, Sun Y. HMMPolish: a coding region polishing tool for TGS-sequenced RNA viruses. Brief Bioinform 2023; 24:bbad264. [PMID: 37478372 PMCID: PMC10516367 DOI: 10.1093/bib/bbad264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/05/2023] [Accepted: 06/29/2023] [Indexed: 07/23/2023] Open
Abstract
Access to accurate viral genomes is important to downstream data analysis. Third-generation sequencing (TGS) has recently become a popular platform for virus sequencing because of its long read length. However, its per-base error rate, which is higher than next-generation sequencing, can lead to genomes with errors. Polishing tools are thus needed to correct errors either before or after sequence assembly. Despite promising results of available polishing tools, there is still room to improve the error correction performance to perform more accurate genome assembly. The errors, particularly those in coding regions, can hamper analysis such as linage identification and variant monitoring. In this work, we developed a novel pipeline, HMMPolish, for correcting (polishing) errors in protein-coding regions of known RNA viruses. This tool can be applied to either raw TGS reads or the assembled sequences of the target virus. By utilizing profile Hidden Markov Models of protein families/domains in known viruses, HMMPolish can correct errors that are ignored by available polishers. We extensively validated HMMPolish on 34 datasets that covered four clinically important viruses, including HIV-1, influenza-A, norovirus, and severe acute respiratory syndrome coronavirus 2. These datasets contain reads with different properties, such as sequencing depth and platforms (PacBio or Nanopore). The benchmark results against popular/representative polishers show that HMMPolish competes favorably on error correction in coding regions of known RNA viruses.
Collapse
Affiliation(s)
- Runzhou Yu
- Electrical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | | | - Yanni Sun
- Electrical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| |
Collapse
|
5
|
Qian Y, Evans D, Mishra B, Fu Y, Liu ZH, Guo S, Johnson ME. Temporal control by cofactors prevents kinetic trapping in retroviral Gag lattice assembly. Biophys J 2023; 122:3173-3190. [PMID: 37393432 PMCID: PMC10432227 DOI: 10.1016/j.bpj.2023.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/03/2023] Open
Abstract
For retroviruses like HIV to proliferate, they must form virions shaped by the self-assembly of Gag polyproteins into a rigid lattice. This immature Gag lattice has been structurally characterized and reconstituted in vitro, revealing the sensitivity of lattice assembly to multiple cofactors. Due to this sensitivity, the energetic criterion for forming stable lattices is unknown, as are their corresponding rates. Here, we use a reaction-diffusion model designed from the cryo-ET structure of the immature Gag lattice to map a phase diagram of assembly outcomes controlled by experimentally constrained rates and free energies, over experimentally relevant timescales. We find that productive assembly of complete lattices in bulk solution is extraordinarily difficult due to the large size of this ∼3700 monomer complex. Multiple Gag lattices nucleate before growth can complete, resulting in loss of free monomers and frequent kinetic trapping. We therefore derive a time-dependent protocol to titrate or "activate" the Gag monomers slowly within the solution volume, mimicking the biological roles of cofactors. This general strategy works remarkably well, yielding productive growth of self-assembled lattices for multiple interaction strengths and binding rates. By comparing to the in vitro assembly kinetics, we can estimate bounds on rates of Gag binding to Gag and the cellular cofactor IP6. Our results show that Gag binding to IP6 can provide the additional time delay necessary to support smooth growth of the immature lattice with relatively fast assembly kinetics, mostly avoiding kinetic traps. Our work provides a foundation for predicting and disrupting formation of the immature Gag lattice via targeting specific protein-protein binding interactions.
Collapse
Affiliation(s)
- Yian Qian
- TC Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland
| | - Daniel Evans
- TC Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland
| | - Bhavya Mishra
- Department of Physics, and Center for Cellular and Biomolecular Machines, University of California, Merced, California
| | - Yiben Fu
- TC Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland
| | - Zixiu Hugh Liu
- TC Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland
| | - Sikao Guo
- TC Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland
| | - Margaret E Johnson
- TC Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland.
| |
Collapse
|
6
|
Santos P, Almeida F. Exosome-Based Vaccines: History, Current State, and Clinical Trials. Front Immunol 2021; 12:711565. [PMID: 34335627 PMCID: PMC8317489 DOI: 10.3389/fimmu.2021.711565] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/30/2021] [Indexed: 12/23/2022] Open
Abstract
Extracellular vesicles (EVs) are released by most cell types as part of an intracellular communication system in crucial processes such as inflammation, cell proliferation, and immune response. However, EVs have also been implicated in the pathogenesis of several diseases, such as cancer and numerous infectious diseases. An important feature of EVs is their ability to deliver a wide range of molecules to nearby targets or over long distances, which allows the mediation of different biological functions. This delivery mechanism can be utilized for the development of therapeutic strategies, such as vaccination. Here, we have highlighted several studies from a historical perspective, with respect to current investigations on EV-based vaccines. For example, vaccines based on exosomes derived from dendritic cells proved to be simpler in terms of management and cost-effectiveness than dendritic cell vaccines. Recent evidence suggests that EVs derived from cancer cells can be leveraged for therapeutics to induce strong anti-tumor immune responses. Moreover, EV-based vaccines have shown exciting and promising results against different types of infectious diseases. We have also summarized the results obtained from completed clinical trials conducted on the usage of exosome-based vaccines in the treatment of cancer, and more recently, coronavirus disease.
Collapse
Affiliation(s)
- Patrick Santos
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Fausto Almeida
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
7
|
Nano-Microparticle Platforms in Developing Next-Generation Vaccines. Vaccines (Basel) 2021; 9:vaccines9060606. [PMID: 34198865 PMCID: PMC8228777 DOI: 10.3390/vaccines9060606] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/03/2021] [Accepted: 06/03/2021] [Indexed: 12/13/2022] Open
Abstract
The first vaccines ever made were based on live-attenuated or inactivated pathogens, either whole cells or fragments. Although these vaccines required the co-administration of antigens with adjuvants to induce a strong humoral response, they could only elicit a poor CD8+ T-cell response. In contrast, next-generation nano/microparticle-based vaccines offer several advantages over traditional ones because they can induce a more potent CD8+ T-cell response and, at the same time, are ideal carriers for proteins, adjuvants, and nucleic acids. The fact that these nanocarriers can be loaded with molecules able to modulate the immune response by inducing different effector functions and regulatory activities makes them ideal tools for inverse vaccination, whose goal is to shut down the immune response in autoimmune diseases. Poly (lactic-co-glycolic acid) (PLGA) and liposomes are biocompatible materials approved by the Food and Drug Administration (FDA) for clinical use and are, therefore, suitable for nanoparticle-based vaccines. Recently, another candidate platform for innovative vaccines based on extracellular vesicles (EVs) has been shown to efficiently co-deliver antigens and adjuvants. This review will discuss the potential use of PLGA-NPs, liposomes, and EVs as carriers of peptides, adjuvants, mRNA, and DNA for the development of next-generation vaccines against endemic and emerging viruses in light of the recent COVID-19 pandemic.
Collapse
|
8
|
Yadavar-Nikravesh MS, Milani A, Vahabpour R, Khoobi M, Bakhshandeh H, Bolhassani A. In vitro Anti-HIV-1 Activity of the Recombinant HIV-1 TAT Protein Along With Tenofovir Drug. Curr HIV Res 2021; 19:138-146. [PMID: 33045968 DOI: 10.2174/1570162x18666201012152600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/19/2020] [Accepted: 09/01/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND HIV-1 TAT protein is essential for the regulation of viral genome transcription. The first exon of TAT protein has a fundamental role in the stimulation of the extrinsic and intrinsic apoptosis pathways, but its anti-HIV activity is not clear yet. METHODS In the current study, we firstly cloned the first exon of the TAT coding sequence in the pET-24a expression vector and then protein expression was done in the Rosetta expression host. Next, the expressed TAT protein was purified by Ni-NTA column under native conditions. After that, the protein yield was determined by Bradford kit and NanoDrop spectrophotometry. Finally, the cytotoxicity effect and anti-Scr-HIV-1 activity of the recombinant TAT protein alone and along with Tenofovir drug were assessed by MTT and ELISA, respectively. RESULTS The recombinant TAT protein was successfully generated in E. coli, as confirmed by 13.5% SDS-PAGE and western blotting. The protein yield was ~150-200 μg/ml. In addition, the recombinant TAT protein at a certain dose with low toxicity could suppress Scr-HIV replication in the infected HeLa cells (~30%) that was comparable with a low toxic dose of Tenofovir drug (~40%). It was interesting that the recombinant TAT protein could enhance anti-HIV potency of Tenofovir drug up to 66%. CONCLUSION Generally, a combination of TAT protein and Tenofovir drug could significantly inhibit HIV-1 replication. It will be required to determine their mechanism of action in the next studies.
Collapse
Affiliation(s)
| | - Alireza Milani
- Department of Hepatitis, AIDS and Blood Borne Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Rouhollah Vahabpour
- Department of Medical Lab Technology, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences; Tehran, Iran
| | - Mehdi Khoobi
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center (MBRC), Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Haleh Bakhshandeh
- Nanobiotechnology Department, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis, AIDS and Blood Borne Diseases, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
9
|
Pai S, Mudgal J, Kamath BV, Pai KSR. An insight on promising strategies hoping to cure HIV-1 infection by targeting Rev protein—short review. Pharmacol Rep 2021; 73:1265-1272. [PMID: 33840054 PMCID: PMC8460518 DOI: 10.1007/s43440-021-00257-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 01/23/2023]
Abstract
Human immunodeficiency virus-1 (HIV-1) infection remains to be one of the major threats throughout the world. Many researchers are working in this area to find a cure for HIV-1. The group of the FDA approved drugs which are currently used against HIV-1 in the clinical practice include nucleoside reverse transcriptase inhibitors (NRTIs), non-nucleoside reverse transcriptase inhibitors (NNRTIs), integrase inhibitors (InIs), and protease inhibitors (PIs). Fixed dose combinations (FDCs) of these drugs are available and are used as per the anti-retroviral therapy (ART) guidelines. Despite these, unfortunately, there is no cure for HIV1 infection to date. The present review is focused upon describing the importance of a post-transcriptional regulatory protein “Rev”, responsible for latent HIV-1 infection as a possible, and promising therapeutic target against HIV-1.
Collapse
Affiliation(s)
- Sahana Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - Jayesh Mudgal
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - B. Venkatesh Kamath
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - K. Sreedhara Ranganath Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| |
Collapse
|
10
|
Datir R, Kemp S, El Bouzidi K, Mlchocova P, Goldstein R, Breuer J, Towers GJ, Jolly C, Quiñones-Mateu ME, Dakum PS, Ndembi N, Gupta RK. In Vivo Emergence of a Novel Protease Inhibitor Resistance Signature in HIV-1 Matrix. mBio 2020; 11:e02036-20. [PMID: 33144375 PMCID: PMC7642677 DOI: 10.1128/mbio.02036-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/21/2020] [Indexed: 12/16/2022] Open
Abstract
Protease inhibitors (PIs) are the second- and last-line therapy for the majority of HIV-infected patients worldwide. Only around 20% of individuals who fail PI regimens develop major resistance mutations in protease. We sought to explore the role of mutations in gag-pro genotypic and phenotypic changes in viruses from six Nigerian patients who failed PI-based regimens without known drug resistance-associated protease mutations in order to identify novel determinants of PI resistance. Target enrichment and next-generation sequencing (NGS) with the Illumina MiSeq system were followed by haplotype reconstruction. Full-length Gag-protease gene regions were amplified from baseline (pre-PI) and virologic failure (VF) samples, sequenced, and used to construct gag-pro-pseudotyped viruses. Phylogenetic analysis was performed using maximum-likelihood methods. Susceptibility to lopinavir (LPV) and darunavir (DRV) was measured using a single-cycle replication assay. Western blotting was used to analyze Gag cleavage. In one of six participants (subtype CRF02_AG), we found 4-fold-lower LPV susceptibility in viral clones during failure of second-line treatment. A combination of four mutations (S126del, H127del, T122A, and G123E) in the p17 matrix of baseline virus generated a similar 4-fold decrease in susceptibility to LPV but not darunavir. These four amino acid changes were also able to confer LPV resistance to a subtype B Gag-protease backbone. Western blotting demonstrated significant Gag cleavage differences between sensitive and resistant isolates in the presence of drug. Resistant viruses had around 2-fold-lower infectivity than sensitive clones in the absence of drug. NGS combined with haplotype reconstruction revealed that resistant, less fit clones emerged from a minority population at baseline and thereafter persisted alongside sensitive fitter viruses. We used a multipronged genotypic and phenotypic approach to document emergence and temporal dynamics of a novel protease inhibitor resistance signature in HIV-1 matrix, revealing the interplay between Gag-associated resistance and fitness.
Collapse
Affiliation(s)
| | - Steven Kemp
- University College London, London, United Kingdom
| | | | - Petra Mlchocova
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | | | - Judy Breuer
- University College London, London, United Kingdom
| | | | - Clare Jolly
- University College London, London, United Kingdom
| | | | - Patrick S Dakum
- Institute for Human Virology, Abuja, Nigeria
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Nicaise Ndembi
- Institute for Human Virology, Abuja, Nigeria
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Ravindra K Gupta
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- Africa Health Research Institute, Durban, South Africa
| |
Collapse
|
11
|
Nouri R, Jiang Y, Lian XL, Guan W. Sequence-Specific Recognition of HIV-1 DNA with Solid-State CRISPR-Cas12a-Assisted Nanopores (SCAN). ACS Sens 2020; 5:1273-1280. [PMID: 32370494 DOI: 10.1021/acssensors.0c00497] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Nucleic acid detection methods are crucial for many fields such as pathogen detection and genotyping. Solid-state nanopore sensors represent a promising platform for nucleic acid detection due to its unique single molecule sensitivity and label-free electronic sensing. Here, we demonstrated the use of the glass nanopore for highly sensitive quantification of single-stranded circular DNAs (reporters), which could be degraded under the trans-cleavage activity of the target-specific CRISPR-Cas12a. We developed and optimized the Cas12a assay for HIV-1 analysis. We validated the concept of the solid-state CRISPR-Cas12a-assisted nanopores (SCAN) to specifically detect the HIV-1 DNAs. We showed that the glass nanopore sensor is effective in monitoring the cleavage activity of the target DNA-activated Cas12a. We developed a model to predict the total experimental time needed for making a statistically confident positive/negative call in a qualitative test. The SCAN concept combines the much-needed specificity and sensitivity into a single platform, and we anticipate that the SCAN would provide a compact, rapid, and low-cost method for nucleic acid detection at the point of care.
Collapse
Affiliation(s)
- Reza Nouri
- Department of Electrical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Yuqian Jiang
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Xiaojun Lance Lian
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Weihua Guan
- Department of Electrical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
12
|
Murphy RE, Saad JS. The Interplay between HIV-1 Gag Binding to the Plasma Membrane and Env Incorporation. Viruses 2020; 12:E548. [PMID: 32429351 PMCID: PMC7291237 DOI: 10.3390/v12050548] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/14/2020] [Accepted: 05/14/2020] [Indexed: 12/21/2022] Open
Abstract
Advancement in drug therapies and patient care have drastically improved the mortality rates of HIV-1 infected individuals. Many of these therapies were developed or improved upon by using structure-based techniques, which underscore the importance of understanding essential mechanisms in the replication cycle of HIV-1 at the structural level. One such process which remains poorly understood is the incorporation of the envelope glycoprotein (Env) into budding virus particles. Assembly of HIV particles is initiated by targeting of the Gag polyproteins to the inner leaflet of the plasma membrane (PM), a process mediated by the N-terminally myristoylated matrix (MA) domain and phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2). There is strong evidence that formation of the Gag lattice on the PM is a prerequisite for the incorporation of Env into budding particles. It is also suggested that Env incorporation is mediated by an interaction between its cytoplasmic tail (gp41CT) and the MA domain of Gag. In this review, we highlight the latest developments and current efforts to understand the interplay between gp41CT, MA, and the membrane during assembly. Elucidation of the molecular determinants of Gag-Env-membrane interactions may help in the development of new antiviral therapeutic agents that inhibit particle assembly, Env incorporation and ultimately virus production.
Collapse
Affiliation(s)
| | - Jamil S. Saad
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| |
Collapse
|
13
|
Effects of an HIV-1 maturation inhibitor on the structure and dynamics of CA-SP1 junction helices in virus-like particles. Proc Natl Acad Sci U S A 2020; 117:10286-10293. [PMID: 32341150 DOI: 10.1073/pnas.1917755117] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
HIV-1 maturation involves conversion of the immature Gag polyprotein lattice, which lines the inner surface of the viral membrane, to the mature capsid protein (CA) lattice, which encloses the viral RNA. Maturation inhibitors such as bevirimat (BVM) bind within six-helix bundles, formed by a segment that spans the junction between the CA and spacer peptide 1 (SP1) subunits of Gag, and interfere with cleavage between CA and SP1 catalyzed by the HIV-1 protease (PR). We report solid-state NMR (ssNMR) measurements on spherical virus-like particles (VLPs), facilitated by segmental isotopic labeling, that provide information about effects of BVM on the structure and dynamics of CA-SP1 junction helices in the immature lattice. Although BVM strongly blocks PR-catalyzed CA-SP1 cleavage in VLPs and blocks conversion of VLPs to tubular CA assemblies, 15N and 13C ssNMR chemical shifts of segmentally labeled VLPs with and without BVM are very similar, indicating that interaction with BVM does not alter the six-helix bundle structure appreciably. Only the 15N chemical shift of A280 (the first residue of SP1) changes significantly, consistent with BVM binding to an internal ring of hydrophobic side chains of L279 residues. Measurements of transverse 15N spin relaxation rates reveal a reduction in the amplitudes and/or timescales of backbone N-H bond motions, corresponding to a rigidification of the six-helix bundles. Overall, our data show that inhibition of HIV-1 maturation by BVM involves changes in structure and dynamics that are surprisingly subtle, but still sufficient to produce a large effect on CA-SP1 cleavage.
Collapse
|
14
|
Dang LVP, Pham HV, Dinh TT, Vu PT, Nguyen LV, Le HT, Larsson M, Olson L. Molecular genotypes of gag sequences in HIV-1 infected children treated with antiretroviral therapy in Vietnam. Ther Adv Infect Dis 2020; 7:2049936120958536. [PMID: 32994994 PMCID: PMC7502858 DOI: 10.1177/2049936120958536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 08/18/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Gag protein of human immunodeficiency virus (HIV) has been reported to play a crucial role in establishing infection, viral replication, and disease progression; thus, gag might be related to treatment response. The objective of this study was to investigate molecular genotypes of the gag gene, particularly the important functional binding domains in relation to treatment outcomes. METHODS HIV-infected children enrolled and treated at Vietnam National Children's Hospital were recruited in the study. A total of 25 gag sequences were generated and used to construct phylogenetic trees and aligned with a reference sequence comparing 17 functional domains. RESULTS We found that all patients in a treatment failure (TF) group belonged to one cluster of the phylogenetic tree. In addition, the rate of mutations was significantly higher in TF compared with a treatment success (TS) group, specifically the PIP2 recognition motif, and the nucleocapsid basic and zinc motif 2 domains [median and (interquartile range (IQR): 12.5 (6.25-12.5) versus 50 (25-50), p < 0.01; 0 (0-0) versus 0 (0-21.43), p = 0.03 and 0 (0-7.14) versus 7.14 (7.14-7.14), p = 0.04, respectively]. When analyzing gag sequences at different time points in seven patients, we did not observe a consistent mutation pattern related to treatment response. CONCLUSION Gag mutations in certain domains might be associated with increased viral load; therefore, studying the molecular genotype of the gag gene might be beneficial in monitoring treatment response in HIV-infected children.
Collapse
Affiliation(s)
- Linh Vu Phuong Dang
- Laboratory Centre, Hanoi University of Public Health, 1 Duc Thang, North Tu Liem, Hanoi, Vietnam
| | | | | | - Phuong Thi Vu
- Dinh Tien Hoang Institute of Medicine, Hanoi, Vietnam
| | | | - Hai Thanh Le
- Vietnam National Children’s Hospital, Hanoi, Vietnam
| | - Mattias Larsson
- Training and Research Academic Collaboration (TRAC), Sweden, Vietnam
- Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden
| | - Linus Olson
- Training and Research Academic Collaboration (TRAC), Sweden, Vietnam
- Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden
- Department of Woman’s and Child’s Health, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
15
|
Lin C, Mendoza-Espinosa P, Rouzina I, Guzmán O, Moreno-Razo JA, Francisco JS, Bruinsma R. Specific inter-domain interactions stabilize a compact HIV-1 Gag conformation. PLoS One 2019; 14:e0221256. [PMID: 31437199 PMCID: PMC6705756 DOI: 10.1371/journal.pone.0221256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 08/04/2019] [Indexed: 01/01/2023] Open
Abstract
HIV-1 Gag is a large multidomain poly-protein with flexible unstructured linkers connecting its globular subdomains. It is compact when in solution but assumes an extended conformation when assembled within the immature HIV-1 virion. Here, we use molecular dynamics (MD) simulations to quantitatively characterize the intra-domain interactions of HIV-1 Gag. We find that the matrix (MA) domain and the C-terminal subdomain CActd of the CA capsid domain can form a bound state. The bound state, which is held together primarily by interactions between complementary charged and polar residues, stabilizes the compact state of HIV-1 Gag. We calculate the depth of the attractive free energy potential between the MA/ CActd sites and find it to be about three times larger than the dimerization interaction between the CActd domains. Sequence analysis shows high conservation within the newly-found intra-Gag MA/CActd binding site, as well as its spatial proximity to other well known elements of Gag -such as CActd's SP1 helix region, its inositol hexaphosphate (IP6) binding site and major homology region (MHR), as well as the MA trimerization site. Our results point to a high, but yet undetermined, functional significance of the intra-Gag binding site. Recent biophysical experiments that address the binding specificity of Gag are interpreted in the context of the MA/CActd bound state, suggesting an important role in selective packaging of genomic RNA by Gag.
Collapse
Affiliation(s)
- Chen Lin
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, United States of America
| | - Paola Mendoza-Espinosa
- Departamento de Física, Universidad Autónoma Metropolitana, Iztapalapa, Ciudad de México, México
| | - Ioulia Rouzina
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, United States of America
| | - Orlando Guzmán
- Departamento de Física, Universidad Autónoma Metropolitana, Iztapalapa, Ciudad de México, México
| | - José Antonio Moreno-Razo
- Departamento de Física, Universidad Autónoma Metropolitana, Iztapalapa, Ciudad de México, México
| | - Joseph S. Francisco
- Department of Chemistry, The University of Pennsylvania, Philadelphia, PA, United States of America
| | - Robijn Bruinsma
- Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, CA, United States of America
| |
Collapse
|
16
|
Allosteric Regulation of HIV-1 Capsid Structure for Gag Assembly, Virion Production, and Viral Infectivity by a Disordered Interdomain Linker. J Virol 2019; 93:JVI.00381-19. [PMID: 31189701 DOI: 10.1128/jvi.00381-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 06/04/2019] [Indexed: 12/12/2022] Open
Abstract
The retroviral Gag capsid (Gag-CA) interdomain linker is an unstructured peptide segment connecting structured N-terminal and C-terminal domains. Although the region is reported to play roles in virion morphogenesis and infectivity, underlying molecular mechanisms remain unexplored. To address this issue, we determined biological and molecular phenotypes of HIV-1 CA linker mutants by experimental and in silico approaches. Among the nine linker mutants tested, eight exhibited attenuation of viral particle production to various extents mostly in parallel with a reduction in viral infectivity. Sucrose density gradient, confocal microscopy, and live-cell protein interaction analyses indicated that the defect is accompanied by attenuation of Gag-Gag interactions following Gag plasma membrane targeting in the cells. In silico analyses revealed distinct distributions of interaction-prone hydrophobic patches between immature and mature CA proteins. Molecular dynamics simulations predicted that the linker mutations can allosterically alter structural fluctuations, including the interaction surfaces apart from the mutation sites in both the immature and mature CA proteins. These results suggest that the HIV-1 CA interdomain linker is a cis-modulator of the CA interaction surfaces to optimize efficiency of Gag assembly, virion production, and viral infectivity.IMPORTANCE HIV-1 particle production and infection are highly ordered processes. Viral Gag proteins play a central role in the assembly and disassembly of viral molecules. Of these, capsid protein (CA) is a major contributor to the Gag-Gag interactions. CA consists of two structured domains, i.e., N-terminal (NTD) and C-terminal (CTD) domains, connected by an unstructured domain named the interdomain linker. While multiple regions in the NTD and CTD are reported to play roles in virion morphogenesis and infectivity, the roles of the linker region in Gag assembly and virus particle formation remain elusive. In this study, we showed by biological and molecular analyses that the linker region functions as an intramolecular modulator to tune Gag assembly, virion production, and viral infectivity. Our study thus illustrates a hitherto-unrecognized mechanism, an allosteric regulation of CA structure by the disordered protein element, for HIV-1 replication.
Collapse
|
17
|
Di Giorgio A, Duca M. Synthetic small-molecule RNA ligands: future prospects as therapeutic agents. MEDCHEMCOMM 2019; 10:1242-1255. [PMID: 31534649 PMCID: PMC6748380 DOI: 10.1039/c9md00195f] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 04/30/2019] [Indexed: 12/17/2022]
Abstract
RNA is one of the most intriguing and promising biological targets for the discovery of innovative drugs in many pathologies and various biologically relevant RNAs that could serve as drug targets have already been identified. Among the most important ones, one can mention prokaryotic ribosomal RNA which is the target of several marketed antibiotics, viral RNAs or oncogenic microRNAs that are tightly involved in the development and progression of various cancers. Oligonucleotides are efficient and specific RNA targeting agents but suffer from poor pharmacodynamic and pharmacokinetic properties. For this reason, a number of synthetic small-molecule ligands have been identified and studied upon screening of chemical libraries or focused design of RNA binders. In this review, we report the most relevant examples of synthetic compounds bearing sufficient selectivity to envisage clinical studies and future therapeutic applications with a particular attention for the main strategies that can be undertaken toward the improvement of selectivity and biological activity.
Collapse
Affiliation(s)
- A Di Giorgio
- Université Côte d'Azur , CNRS , Institute of Chemistry of Nice (ICN) , Nice , France .
| | - M Duca
- Université Côte d'Azur , CNRS , Institute of Chemistry of Nice (ICN) , Nice , France .
| |
Collapse
|
18
|
CA Mutation N57A Has Distinct Strain-Specific HIV-1 Capsid Uncoating and Infectivity Phenotypes. J Virol 2019; 93:JVI.00214-19. [PMID: 30814280 DOI: 10.1128/jvi.00214-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 02/15/2019] [Indexed: 12/20/2022] Open
Abstract
The ability of human immunodeficiency virus type 1 (HIV-1) to transduce nondividing cells is key to infecting terminally differentiated macrophages, which can serve as a long-term reservoir of HIV-1 infection. The mutation N57A in the viral CA protein renders HIV-1 cell cycle dependent, allowing examination of HIV-1 infection of nondividing cells. Here, we show that the N57A mutation confers a postentry infectivity defect that significantly differs in magnitude between the common lab-adapted molecular clones HIV-1NL4-3 (>10-fold) and HIV-1LAI (2- to 5-fold) in multiple human cell lines and primary CD4+ T cells. Capsid permeabilization and reverse transcription are altered when N57A is incorporated into HIV-1NL4-3 but not HIV-1LAI The N57A infectivity defect is significantly exacerbated in both virus strains in the presence of cyclosporine (CsA), indicating that N57A infectivity is dependent upon CA interacting with host factor cyclophilin A (CypA). Adaptation of N57A HIV-1LAI selected for a second CA mutation, G94D, which rescued the N57A infectivity defect in HIV-1LAI but not HIV-1NL4-3 The rescue of N57A by G94D in HIV-1LAI is abrogated by CsA treatment in some cell types, demonstrating that this rescue is CypA dependent. An examination of over 40,000 HIV-1 CA sequences revealed that the four amino acids that differ between HIV-1NL4-3 and HIV-1LAI CA are polymorphic, and the residues at these positions in the two strains are widely prevalent in clinical isolates. Overall, a few polymorphic amino acid differences between two closely related HIV-1 molecular clones affect the phenotype of capsid mutants in different cell types.IMPORTANCE The specific mechanisms by which HIV-1 infects nondividing cells are unclear. A mutation in the HIV-1 capsid protein abolishes the ability of the virus to infect nondividing cells, serving as a tool to examine cell cycle dependence of HIV-1 infection. We have shown that two widely used HIV-1 molecular clones exhibit significantly different N57A infectivity phenotypes due to fewer than a handful of CA amino acid differences and that these clones are both represented in HIV-infected individuals. As such minor differences in closely related HIV-1 strains may impart significant infectivity differences, careful consideration should be given to drawing conclusions from one particular HIV-1 clone. This study highlights the potential for significant variation in results with the use of multiple strains and possible unanticipated effects of natural polymorphisms.
Collapse
|
19
|
Insight into the mechanism of action of EP-39, a bevirimat derivative that inhibits HIV-1 maturation. Antiviral Res 2019; 164:162-175. [PMID: 30825471 DOI: 10.1016/j.antiviral.2019.02.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/19/2019] [Accepted: 02/22/2019] [Indexed: 12/15/2022]
Abstract
Maturation of human immunodeficiency virus type 1 (HIV-1) particles is a key step for viral infectivity. This process can be blocked using maturation inhibitors (MIs) that affect the cleavage of the capsid-spacer peptide 1 (CA-SP1) junction. Here, we investigated the mechanisms underlying the activity of EP-39, a bevirimat (BVM) derivative with better hydrosolubility. To this aim, we selected in vitro EP-39- and BVM-resistant mutants. We found that EP-39-resistant viruses have four mutations within the CA domain (CA-A194T, CA-T200N, CA-V230I, and CA-V230A) and one in the first residue of SP1 (SP1-A1V). We also identified six mutations that confer BVM resistance (CA-A194T, CA-L231F, CA-L231M, SP1-A1V, SP1-S5N and SP1-V7A). To characterize the EP-39 and BVM-resistant mutants, we studied EP-39 effects on mutant virus replication and performed a biochemical analysis with both MIs. We observed common and distinct characteristics, suggesting that, although EP-39 and BVM share the same chemical skeleton, they could interact in a different way with the Gag polyprotein precursor (Pr55Gag). Using an in silico approach, we observed that EP-39 and BVM present different predicted positions on the hexameric crystal structure of the CACTD-SP1 Gag fragment. To clearly understand the relationship between assembly and maturation, we investigated the impact of all identified mutations on virus assembly by expressing Pr55Gag mutants. Finally, using NMR, we have shown that the interaction of EP-39 with a peptide carrying the SP1-A1V mutation (CA-SP1(A1V)-NC) is almost suppressed in comparison with the wild type peptide. These results suggest that EP-39 and BVM could interact differently with the Pr55Gag lattice and that the mutation of the first SP1 residue induces a loss of interaction between Pr55Gag and EP-39.
Collapse
|
20
|
Inamdar K, Floderer C, Favard C, Muriaux D. Monitoring HIV-1 Assembly in Living Cells: Insights from Dynamic and Single Molecule Microscopy. Viruses 2019; 11:v11010072. [PMID: 30654596 PMCID: PMC6357049 DOI: 10.3390/v11010072] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/31/2018] [Accepted: 01/12/2019] [Indexed: 12/20/2022] Open
Abstract
The HIV-1 assembly process is a multi-complex mechanism that takes place at the host cell plasma membrane. It requires a spatio-temporal coordination of events to end up with a full mature and infectious virus. The molecular mechanisms of HIV-1 assembly have been extensively studied during the past decades, in order to dissect the respective roles of the structural and non-structural viral proteins of the viral RNA genome and of some host cell factors. Nevertheless, the time course of HIV-1 assembly was observed in living cells only a decade ago. The very recent revolution of optical microscopy, combining high speed and high spatial resolution, in addition to improved fluorescent tags for proteins, now permits study of HIV-1 assembly at the single molecule level within living cells. In this review, after a short description of these new approaches, we will discuss how HIV-1 assembly at the cell plasma membrane has been revisited using advanced super resolution microscopy techniques and how it can bridge the study of viral assembly from the single molecule to the entire host cell.
Collapse
Affiliation(s)
- Kaushik Inamdar
- IRIM, CNRS UMR9004, CNRS & University of Montpellier, 34293 Montpellier, France.
| | - Charlotte Floderer
- IRIM, CNRS UMR9004, CNRS & University of Montpellier, 34293 Montpellier, France.
| | - Cyril Favard
- IRIM, CNRS UMR9004, CNRS & University of Montpellier, 34293 Montpellier, France.
| | - Delphine Muriaux
- IRIM, CNRS UMR9004, CNRS & University of Montpellier, 34293 Montpellier, France.
| |
Collapse
|
21
|
Zhang Z, He M, Bai S, Zhang F, Jiang J, Zheng Q, Gao S, Yan X, Li S, Gu Y, Xia N. T = 4 Icosahedral HIV-1 Capsid As an Immunogenic Vector for HIV-1 V3 Loop Epitope Display. Viruses 2018; 10:v10120667. [PMID: 30486318 PMCID: PMC6316451 DOI: 10.3390/v10120667] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/21/2018] [Accepted: 11/23/2018] [Indexed: 11/19/2022] Open
Abstract
The HIV-1 mature capsid (CA) assumes an amorphous, fullerene conical configuration due to its high flexibility. How native CA self-assembles is still unclear despite having well-defined structures of its pentamer and hexamer building blocks. Here we explored the self-assembly of an engineered capsid protein built through artificial disulfide bonding (CA N21C/A22C) and determined the structure of one fraction of the globular particles. CA N21C/A22C was found to self-assemble into particles in relatively high ionic solutions. These particles contained disulfide-bonding hexamers as determined via non-reducing SDS-PAGE, and exhibited two major components of 57.3 S and 80.5 S in the sedimentation velocity assay. Particles had a globular morphology, approximately 40 nm in diameter, in negative-staining TEM. Through cryo-EM 3-D reconstruction, we determined a novel T = 4 icosahedral structure of CA, comprising 12 pentamers and 30 hexamers at 25 Å resolution. We engineered the HIV-1 V3 loop to the CA particles, and found the resultant particles resembled the morphology of their parental particles in TEM, had a positive reaction with V3-specific neutralizing antibodies, and conferred neutralization immunogenicity in mice. Our results shed light on HIV CA assembly and provide a particulate CA for epitope display.
Collapse
Affiliation(s)
- Zhiqing Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Maozhou He
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Shimeng Bai
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China.
| | - Feng Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Jie Jiang
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China.
| | - Qingbing Zheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Shuangquan Gao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Xiaodong Yan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China.
- Department of Chemistry and Biochemistry and Division of Biological Sciences, University of California-San Diego, San Diego, CA 92093-0378, USA.
| | - Shaowei Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China.
| | - Ying Gu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China.
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
22
|
Parveen N, Borrenberghs D, Rocha S, Hendrix J. Single Viruses on the Fluorescence Microscope: Imaging Molecular Mobility, Interactions and Structure Sheds New Light on Viral Replication. Viruses 2018; 10:E250. [PMID: 29748498 PMCID: PMC5977243 DOI: 10.3390/v10050250] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/24/2018] [Accepted: 05/04/2018] [Indexed: 12/13/2022] Open
Abstract
Viruses are simple agents exhibiting complex reproductive mechanisms. Decades of research have provided crucial basic insights, antiviral medication and moderately successful gene therapy trials. The most infectious viral particle is, however, not always the most abundant one in a population, questioning the utility of classic ensemble-averaging virology. Indeed, viral replication is often not particularly efficient, prone to errors or containing parallel routes. Here, we review different single-molecule sensitive fluorescence methods that we employ routinely to investigate viruses. We provide a brief overview of the microscopy hardware needed and discuss the different methods and their application. In particular, we review how we applied (i) single-molecule Förster resonance energy transfer (smFRET) to probe the subviral human immunodeficiency virus (HIV-1) integrase (IN) quaternary structure; (ii) single particle tracking to study interactions of the simian virus 40 with membranes; (iii) 3D confocal microscopy and smFRET to quantify the HIV-1 pre-integration complex content and quaternary structure; (iv) image correlation spectroscopy to quantify the cytosolic HIV-1 Gag assembly, and finally; (v) super-resolution microscopy to characterize the interaction of HIV-1 with tetherin during assembly. We hope this review is an incentive for setting up and applying similar single-virus imaging studies in daily virology practice.
Collapse
Affiliation(s)
- Nagma Parveen
- Laboratory for Photochemistry and Spectroscopy, Molecular Imaging and Photonics Division, Chemistry Department, KU Leuven, B-3001 Leuven, Belgium.
| | - Doortje Borrenberghs
- Laboratory for Photochemistry and Spectroscopy, Molecular Imaging and Photonics Division, Chemistry Department, KU Leuven, B-3001 Leuven, Belgium.
| | - Susana Rocha
- Laboratory for Photochemistry and Spectroscopy, Molecular Imaging and Photonics Division, Chemistry Department, KU Leuven, B-3001 Leuven, Belgium.
| | - Jelle Hendrix
- Laboratory for Photochemistry and Spectroscopy, Molecular Imaging and Photonics Division, Chemistry Department, KU Leuven, B-3001 Leuven, Belgium.
- Dynamic Bioimaging Lab, Advanced Optical Microscopy Centre and Biomedical Research Institute (BIOMED), Hasselt University, B-3590 Diepenbeek, Belgium.
| |
Collapse
|
23
|
Zhang Z, Wang L, Bai S, Qiao J, Shen H, Huang F, Gao S, Li S, Li S, Gu Y, Xia N. Expression, Purification and Characterization of Hiv-1 Capsid Precursor Protein p41. Protein J 2018; 37:194-202. [PMID: 29508209 DOI: 10.1007/s10930-018-9763-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) has been a global epidemic since 1983; yet, the virology and immunology related to HIV-1 remain elusive. Furthermore, as there is still no effective chemoprophylaxis or vaccine to treat patients with HIV-1, most research focuses on strategies to prevent HIV-1 infection, such as with antiviral drugs, novel therapeutics, or improved diagnostic kits. The HIV-1 Gag precursor protein (p55)-comprising the matrix (MA/p17), capsid (CA/p24), and nucleocapsid (NC/p7) protein domains-is the main structural HIV-1 protein, and is uniquely responsible for virion assembly within the virus life cycle. Recently, the immature and mature capsid structures were solved; however, the precursor protein structure is still unknown. Here, we expressed two subtypes of HIV-1 MA-CA stretch of the Gag protein, referred to as p41, in a bacterial expression system. We characterized the purified p41 protein, and showed its superior antigenicity over that of p24, highlighting the potential influence of the p17 domain on p24 structure. We further showed that p41 has good immunogenicity to induce an antibody response in mice. These results will aid future investigations into the HIV-1 capsid precursor structure, and potentially contribute to improving the design of diagnostic kits.
Collapse
Affiliation(s)
- Zhiqing Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Lei Wang
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Shimeng Bai
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Jiaming Qiao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Honglin Shen
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Fang Huang
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Shuangquan Gao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Shaoyong Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Shaowei Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Ying Gu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen, 361102, China.
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
24
|
Ingemarsdotter CK, Zeng J, Long Z, Lever AML, Kenyon JC. An RNA-binding compound that stabilizes the HIV-1 gRNA packaging signal structure and specifically blocks HIV-1 RNA encapsidation. Retrovirology 2018. [PMID: 29540207 PMCID: PMC5853050 DOI: 10.1186/s12977-018-0407-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background NSC260594, a quinolinium derivative from the NCI diversity set II compound library, was previously identified in a target-based assay as an inhibitor of the interaction between the HIV-1 (ψ) stem-loop 3 (SL3) RNA and Gag. This compound was shown to exhibit potent antiviral activity. Here, the effects of this compound on individual stages of the viral lifecycle were examined by qRT-PCR, ELISA and Western blot, to see if its actions were specific to the viral packaging stage. The structural effects of NSC260594 binding to the HIV-1 gRNA were also examined by SHAPE and dimerization assays. Results Treatment of cells with NSC260594 did not reduce the number of integration events of incoming virus, and treatment of virus producing cells did not affect the level of intracellular Gag protein or viral particle release as determined by immunoblot. However, NSC260594 reduced the incorporation of gRNA into virions by up to 82%, without affecting levels of gRNA inside the cell. This reduction in packaging correlated closely with the reduction in infectivity of the released viral particles. To establish the structural effects of NSC260594 on the HIV-1 gRNA, we performed SHAPE analyses to pinpoint RNA structural changes. NSC260594 had a stabilizing effect on the wild type RNA that was not confined to SL3, but that was propagated across the structure. A packaging mutant lacking SL3 did not show this effect. Conclusions NSC260594 acts as a specific inhibitor of HIV-1 RNA packaging. No other viral functions are affected. Its action involves preventing the interaction of Gag with SL3 by stabilizing this small RNA stem-loop which then leads to stabilization of the global packaging signal region (psi or ψ). This confirms data, previously only shown in analyses of isolated SL3 oligonucleotides, that SL3 is structurally labile in the presence of Gag and that this is critical for the complete psi region to be able to adopt different conformations. Since replication is otherwise unaffected by NSC260594 the flexibility of SL3 appears to be a unique requirement for genome encapsidation and identifies this process as a highly specific drug target. This study is proof of principle that development of a new class of antiretroviral drugs that specifically target viral packaging by binding to the viral genomic RNA is achievable. Electronic supplementary material The online version of this article (10.1186/s12977-018-0407-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Carin K Ingemarsdotter
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, Box 157, Level 5, Hills Rd, Cambridge, CB2 0QQ, UK
| | - Jingwei Zeng
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, Box 157, Level 5, Hills Rd, Cambridge, CB2 0QQ, UK
| | - Ziqi Long
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, Box 157, Level 5, Hills Rd, Cambridge, CB2 0QQ, UK
| | - Andrew M L Lever
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, Box 157, Level 5, Hills Rd, Cambridge, CB2 0QQ, UK.,Department of Medicine, National University of Singapore, Singapore, Singapore
| | - Julia C Kenyon
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, Box 157, Level 5, Hills Rd, Cambridge, CB2 0QQ, UK. .,Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore. .,Homerton College, University of Cambridge, Cambridge, UK.
| |
Collapse
|
25
|
Che Nordin MA, Teow SY. Review of Current Cell-Penetrating Antibody Developments for HIV-1 Therapy. Molecules 2018; 23:molecules23020335. [PMID: 29415435 PMCID: PMC6017373 DOI: 10.3390/molecules23020335] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/06/2018] [Accepted: 01/08/2018] [Indexed: 12/22/2022] Open
Abstract
The discovery of highly active antiretroviral therapy (HAART) in 1996 has significantly reduced the global mortality and morbidity caused by the acquired immunodeficiency syndrome (AIDS). However, the therapeutic strategy of HAART that targets multiple viral proteins may render off-target toxicity and more importantly results in drug-resistant escape mutants. These have been the main challenges for HAART and refinement of this therapeutic strategy is urgently needed. Antibody-mediated treatments are emerging therapeutic modalities for various diseases. Most therapeutic antibodies have been approved by Food and Drug Administration (FDA) mainly for targeting cancers. Previous studies have also demonstrated the promising effect of therapeutic antibodies against HIV-1, but there are several limitations in this therapy, particularly when the viral targets are intracellular proteins. The conventional antibodies do not cross the cell membrane, hence, the pathogenic intracellular proteins cannot be targeted with this classical therapeutic approach. Over the years, the advancement of antibody engineering has permitted the therapeutic antibodies to comprehensively target both extra- and intra-cellular proteins in various infections and diseases. This review aims to update on the current progress in the development of antibody-based treatment against intracellular targets in HIV-1 infection. We also attempt to highlight the challenges and limitations in the development of antibody-based therapeutic modalities against HIV-1.
Collapse
Affiliation(s)
- Muhamad Alif Che Nordin
- Kulliyyah of Medicine and Health Sciences (KMHS), Kolej Universiti INSANIAH, 09300 Kuala Ketil, Kedah, Malaysia.
| | - Sin-Yeang Teow
- Sunway Institute for Healthcare Development (SIHD), School of Healthcare and Medical Sciences (SHMS), Sunway University, Jalan Universiti, Bandar Sunway, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
26
|
Gupta R, Polenova T. Magic angle spinning NMR spectroscopy guided atomistic characterization of structure and dynamics in HIV-1 protein assemblies. Curr Opin Colloid Interface Sci 2018. [DOI: 10.1016/j.cocis.2017.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
27
|
González VM, Martín ME, Fernández G, García-Sacristán A. Use of Aptamers as Diagnostics Tools and Antiviral Agents for Human Viruses. Pharmaceuticals (Basel) 2016; 9:78. [PMID: 27999271 PMCID: PMC5198053 DOI: 10.3390/ph9040078] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/12/2016] [Accepted: 12/13/2016] [Indexed: 02/05/2023] Open
Abstract
Appropriate diagnosis is the key factor for treatment of viral diseases. Time is the most important factor in rapidly developing and epidemiologically dangerous diseases, such as influenza, Ebola and SARS. Chronic viral diseases such as HIV-1 or HCV are asymptomatic or oligosymptomatic and the therapeutic success mainly depends on early detection of the infective agent. Over the last years, aptamer technology has been used in a wide range of diagnostic and therapeutic applications and, concretely, several strategies are currently being explored using aptamers against virus proteins. From a diagnostics point of view, aptamers are being designed as a bio-recognition element in diagnostic systems to detect viral proteins either in the blood (serum or plasma) or into infected cells. Another potential use of aptamers is for therapeutics of viral infections, interfering in the interaction between the virus and the host using aptamers targeting host-cell matrix receptors, or attacking the virus intracellularly, targeting proteins implicated in the viral replication cycle. In this paper, we review how aptamers working against viral proteins are discovered, with a focus on recent advances that improve the aptamers' properties as a real tool for viral infection detection and treatment.
Collapse
Affiliation(s)
- Víctor M González
- Departamento de Bioquímica-Investigación, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS)-Hospital Ramón y Cajal, 28034 Madrid, Spain.
| | - M Elena Martín
- Departamento de Bioquímica-Investigación, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS)-Hospital Ramón y Cajal, 28034 Madrid, Spain.
| | - Gerónimo Fernández
- Aptus Biotech SL, c/Faraday, 7, Parque Científico de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain.
| | - Ana García-Sacristán
- Aptus Biotech SL, c/Faraday, 7, Parque Científico de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
28
|
Spearman P. HIV-1 Gag as an Antiviral Target: Development of Assembly and Maturation Inhibitors. Curr Top Med Chem 2016; 16:1154-66. [PMID: 26329615 DOI: 10.2174/1568026615666150902102143] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 06/18/2015] [Accepted: 06/21/2015] [Indexed: 01/10/2023]
Abstract
HIV-1 Gag is the master orchestrator of particle assembly. The central role of Gag at multiple stages of the HIV lifecycle has led to efforts to develop drugs that directly target Gag and prevent the formation and release of infectious particles. Until recently, however, only the catalytic site protease inhibitors have been available to inhibit late stages of HIV replication. This review summarizes the current state of development of antivirals that target Gag or disrupt late events in the retrovirus lifecycle such as maturation of the viral capsid. Maturation inhibitors represent an exciting new series of antiviral compounds, including those that specifically target CA-SP1 cleavage and the allosteric integrase inhibitors that inhibit maturation by a completely different mechanism. Numerous small molecules and peptides targeting CA have been studied in attempts to disrupt steps in assembly. Efforts to target CA have recently gained considerable momentum from the development of small molecules that bind CA and alter capsid stability at the post-entry stage of the lifecycle. Efforts to develop antivirals that inhibit incorporation of genomic RNA or to inhibit late budding events remain in preliminary stages of development. Overall, the development of novel antivirals targeting Gag and the late stages in HIV replication appears much closer to success than ever, with the new maturation inhibitors leading the way.
Collapse
Affiliation(s)
- Paul Spearman
- Department of Pediatrics; Pediatric Infectious Diseases, Emory University, 2015 Uppergate Drive, Atlanta, GA 30322.
| |
Collapse
|
29
|
Roles of Capsid-Interacting Host Factors in Multimodal Inhibition of HIV-1 by PF74. J Virol 2016; 90:5808-5823. [PMID: 27076642 DOI: 10.1128/jvi.03116-15] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 04/02/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The viral capsid of HIV-1 interacts with a number of host factors to orchestrate uncoating and regulate downstream events, such as reverse transcription, nuclear entry, and integration site targeting. PF-3450074 (PF74), an HIV-1 capsid-targeting low-molecular-weight antiviral compound, directly binds to the capsid (CA) protein at a site also utilized by host cell proteins CPSF6 and NUP153. Here, we found that the dose-response curve of PF74 is triphasic, consisting of a plateau and two inhibitory phases of different slope values, consistent with a bimodal mechanism of drug action. High PF74 concentrations yielded a steep curve with the highest slope value among different classes of known antiretrovirals, suggesting a dose-dependent, cooperative mechanism of action. CA interactions with both CPSF6 and cyclophilin A (CypA) were essential for the unique dose-response curve. A shift of the steep curve at lower drug concentrations upon blocking the CA-CypA interaction suggests a protective role for CypA against high concentrations of PF74. These findings, highlighting the unique characteristics of PF74, provide a model in which its multimodal mechanism of action of both noncooperative and cooperative inhibition by PF74 is regulated by interactions of cellular proteins with incoming viral capsids. IMPORTANCE PF74, a novel capsid-targeting antiviral against HIV-1, shares its binding site in the viral capsid protein (CA) with the host factors CPSF6 and NUP153. This work reveals that the dose-response curve of PF74 consists of two distinct inhibitory phases that are differentially regulated by CA-interacting host proteins. PF74's potency depended on these CA-binding factors at low doses. In contrast, the antiviral activity of high PF74 concentrations was attenuated by cyclophilin A. These observations provide novel insights into both the mechanism of action of PF74 and the roles of host factors during the early steps of HIV-1 infection.
Collapse
|
30
|
Goh BC, Hadden JA, Bernardi RC, Singharoy A, McGreevy R, Rudack T, Cassidy CK, Schulten K. Computational Methodologies for Real-Space Structural Refinement of Large Macromolecular Complexes. Annu Rev Biophys 2016; 45:253-78. [PMID: 27145875 DOI: 10.1146/annurev-biophys-062215-011113] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The rise of the computer as a powerful tool for model building and refinement has revolutionized the field of structure determination for large biomolecular systems. Despite the wide availability of robust experimental methods capable of resolving structural details across a range of spatiotemporal resolutions, computational hybrid methods have the unique ability to integrate the diverse data from multimodal techniques such as X-ray crystallography and electron microscopy into consistent, fully atomistic structures. Here, commonly employed strategies for computational real-space structural refinement are reviewed, and their specific applications are illustrated for several large macromolecular complexes: ribosome, virus capsids, chemosensory array, and photosynthetic chromatophore. The increasingly important role of computational methods in large-scale structural refinement, along with current and future challenges, is discussed.
Collapse
Affiliation(s)
- Boon Chong Goh
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801.,Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Jodi A Hadden
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801.,Energy Biosciences Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Rafael C Bernardi
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801.,Energy Biosciences Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Abhishek Singharoy
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Ryan McGreevy
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Till Rudack
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - C Keith Cassidy
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801.,Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Klaus Schulten
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801.,Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801.,Energy Biosciences Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801.,Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801.,Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801;
| |
Collapse
|
31
|
Hendrix J, Baumgärtel V, Schrimpf W, Ivanchenko S, Digman MA, Gratton E, Kräusslich HG, Müller B, Lamb DC. Live-cell observation of cytosolic HIV-1 assembly onset reveals RNA-interacting Gag oligomers. J Cell Biol 2015; 210:629-46. [PMID: 26283800 PMCID: PMC4539982 DOI: 10.1083/jcb.201504006] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Analysis of the cytosolic HIV-1 Gag fraction in live cells via advanced fluctuation imaging methods reveals potential nucleation steps before membrane-assisted Gag assembly. Assembly of the Gag polyprotein into new viral particles in infected cells is a crucial step in the retroviral replication cycle. Currently, little is known about the onset of assembly in the cytosol. In this paper, we analyzed the cytosolic HIV-1 Gag fraction in real time in live cells using advanced fluctuation imaging methods and thereby provide detailed insights into the complex relationship between cytosolic Gag mobility, stoichiometry, and interactions. We show that Gag diffuses as a monomer on the subsecond timescale with severely reduced mobility. Reduction of mobility is associated with basic residues in its nucleocapsid (NC) domain, whereas capsid (CA) and matrix (MA) domains do not contribute significantly. Strikingly, another diffusive Gag species was observed on the seconds timescale that oligomerized in a concentration-dependent manner. Both NC- and CA-mediated interactions strongly assist this process. Our results reveal potential nucleation steps of cytosolic Gag fractions before membrane-assisted Gag assembly.
Collapse
Affiliation(s)
- Jelle Hendrix
- Physical Chemistry, Department of Chemistry, Ludwig Maximilian University of Munich, D-81377 Munich, Germany NanoSystems Initiative Munich (NIM), Ludwig Maximilian University of Munich, D-81377 Munich, Germany Munich Center for Integrated Protein Science (CiPSM), Ludwig Maximilian University of Munich, D-81377 Munich, Germany Center for Nanoscience (CeNS), Ludwig Maximilian University of Munich, D-81377 Munich, Germany
| | - Viola Baumgärtel
- Physical Chemistry, Department of Chemistry, Ludwig Maximilian University of Munich, D-81377 Munich, Germany NanoSystems Initiative Munich (NIM), Ludwig Maximilian University of Munich, D-81377 Munich, Germany Munich Center for Integrated Protein Science (CiPSM), Ludwig Maximilian University of Munich, D-81377 Munich, Germany Center for Nanoscience (CeNS), Ludwig Maximilian University of Munich, D-81377 Munich, Germany
| | - Waldemar Schrimpf
- Physical Chemistry, Department of Chemistry, Ludwig Maximilian University of Munich, D-81377 Munich, Germany NanoSystems Initiative Munich (NIM), Ludwig Maximilian University of Munich, D-81377 Munich, Germany Munich Center for Integrated Protein Science (CiPSM), Ludwig Maximilian University of Munich, D-81377 Munich, Germany Center for Nanoscience (CeNS), Ludwig Maximilian University of Munich, D-81377 Munich, Germany
| | - Sergey Ivanchenko
- Physical Chemistry, Department of Chemistry, Ludwig Maximilian University of Munich, D-81377 Munich, Germany NanoSystems Initiative Munich (NIM), Ludwig Maximilian University of Munich, D-81377 Munich, Germany Munich Center for Integrated Protein Science (CiPSM), Ludwig Maximilian University of Munich, D-81377 Munich, Germany Center for Nanoscience (CeNS), Ludwig Maximilian University of Munich, D-81377 Munich, Germany
| | - Michelle A Digman
- Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697 Development Biology Center Optical Biology Core Facility, University of California, Irvine, Irvine, CA 92697
| | - Enrico Gratton
- Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697 Development Biology Center Optical Biology Core Facility, University of California, Irvine, Irvine, CA 92697
| | - Hans-Georg Kräusslich
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, D-69120 Heidelberg, Germany
| | - Barbara Müller
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, D-69120 Heidelberg, Germany
| | - Don C Lamb
- Physical Chemistry, Department of Chemistry, Ludwig Maximilian University of Munich, D-81377 Munich, Germany NanoSystems Initiative Munich (NIM), Ludwig Maximilian University of Munich, D-81377 Munich, Germany Munich Center for Integrated Protein Science (CiPSM), Ludwig Maximilian University of Munich, D-81377 Munich, Germany Center for Nanoscience (CeNS), Ludwig Maximilian University of Munich, D-81377 Munich, Germany
| |
Collapse
|
32
|
Bocanegra R, Fuertes MÁ, Rodríguez-Huete A, Neira JL, Mateu MG. Biophysical analysis of the MHR motif in folding and domain swapping of the HIV capsid protein C-terminal domain. Biophys J 2015; 108:338-49. [PMID: 25606682 DOI: 10.1016/j.bpj.2014.11.3472] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 11/03/2014] [Accepted: 11/24/2014] [Indexed: 02/06/2023] Open
Abstract
Infection by human immunodeficiency virus (HIV) depends on the function, in virion morphogenesis and other stages of the viral cycle, of a highly conserved structural element, the major homology region (MHR), within the carboxyterminal domain (CTD) of the capsid protein. In a modified CTD dimer, MHR is swapped between monomers. While no evidence for MHR swapping has been provided by structural models of retroviral capsids, it is unknown whether it may occur transiently along the virus assembly pathway. Whatever the case, the MHR-swapped dimer does provide a novel target for the development of anti-HIV drugs based on the concept of trapping a nonnative capsid protein conformation. We have carried out a thermodynamic and kinetic characterization of the domain-swapped CTD dimer in solution. The analysis includes a dissection of the role of conserved MHR residues and other amino acids at the dimerization interface in CTD folding, stability, and dimerization by domain swapping. The results revealed some energetic hotspots at the domain-swapped interface. In addition, many MHR residues that are not in the protein hydrophobic core were nevertheless found to be critical for folding and stability of the CTD monomer, which may dramatically slow down the swapping reaction. Conservation of MHR residues in retroviruses did not correlate with their contribution to domain swapping, but it did correlate with their importance for stable CTD folding. Because folding is required for capsid protein function, this remarkable MHR-mediated conformational stabilization of CTD may help to explain the functional roles of MHR not only during immature capsid assembly but in other processes associated with retrovirus infection. This energetic dissection of the dimerization interface in MHR-swapped CTD may also facilitate the design of anti-HIV compounds that inhibit capsid assembly by conformational trapping of swapped CTD dimers.
Collapse
Affiliation(s)
- Rebeca Bocanegra
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Madrid, Spain
| | - Miguel Ángel Fuertes
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Madrid, Spain
| | - Alicia Rodríguez-Huete
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Madrid, Spain
| | - José Luis Neira
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, and Instituto de Biocomputación y Física de los Sistemas Complejos, Zaragoza, Spain
| | - Mauricio G Mateu
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Madrid, Spain.
| |
Collapse
|
33
|
Goh BC, Perilla JR, England MR, Heyrana KJ, Craven RC, Schulten K. Atomic Modeling of an Immature Retroviral Lattice Using Molecular Dynamics and Mutagenesis. Structure 2015; 23:1414-1425. [PMID: 26118533 PMCID: PMC4526393 DOI: 10.1016/j.str.2015.05.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 05/18/2015] [Accepted: 05/25/2015] [Indexed: 10/23/2022]
Abstract
Defining the molecular interaction between Gag proteins in an assembled hexagonal lattice of immature retrovirus particles is crucial for elucidating the mechanisms of virus assembly and maturation. Recent advances in cryo-electron microscopy have yielded subnanometer structural information on the morphology of immature Gag lattices, making computational modeling and simulations feasible for investigating the Gag-Gag interactions at the atomic level. We have examined the structure of Rous sarcoma virus (RSV) using all-atom molecular dynamics simulations and in vitro assembly, to create the first all-atom model of an immature retroviral lattice. Microseconds-long replica exchange molecular dynamics simulation of the spacer peptide (SP)-nucleocapsid (NC) subdomains results in a six-helix bundle with amphipathic properties. The resulting model of the RSV Gag lattice shows features and dynamics of the capsid protein with implications for the maturation process, and confirms the stabilizing role of the upstream and downstream regions of Gag, namely p10 and SP-NC.
Collapse
Affiliation(s)
- Boon Chong Goh
- Department of Physics and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Juan R Perilla
- Department of Physics and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Matthew R England
- Department of Microbiology and Immunology, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - Katrina J Heyrana
- Department of Microbiology and Immunology, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - Rebecca C Craven
- Department of Microbiology and Immunology, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - Klaus Schulten
- Department of Physics and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
34
|
Mori M, Kovalenko L, Lyonnais S, Antaki D, Torbett BE, Botta M, Mirambeau G, Mély Y. Nucleocapsid Protein: A Desirable Target for Future Therapies Against HIV-1. Curr Top Microbiol Immunol 2015; 389:53-92. [PMID: 25749978 PMCID: PMC7122173 DOI: 10.1007/82_2015_433] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The currently available anti-HIV-1 therapeutics is highly beneficial to infected patients. However, clinical failures occur as a result of the ability of HIV-1 to rapidly mutate. One approach to overcome drug resistance is to target HIV-1 proteins that are highly conserved among phylogenetically distant viral strains and currently not targeted by available therapies. In this respect, the nucleocapsid (NC) protein, a zinc finger protein, is particularly attractive, as it is highly conserved and plays a central role in virus replication, mainly by interacting with nucleic acids. The compelling rationale for considering NC as a viable drug target is illustrated by the fact that point mutants of this protein lead to noninfectious viruses and by the inability to select viruses resistant to a first generation of anti-NC drugs. In our review, we discuss the most relevant properties and functions of NC, as well as recent developments of small molecules targeting NC. Zinc ejectors show strong antiviral activity, but are endowed with a low therapeutic index due to their lack of specificity, which has resulted in toxicity. Currently, they are mainly being investigated for use as topical microbicides. Greater specificity may be achieved by using non-covalent NC inhibitors (NCIs) targeting the hydrophobic platform at the top of the zinc fingers or key nucleic acid partners of NC. Within the last few years, innovative methodologies have been developed to identify NCIs. Though the antiviral activity of the identified NCIs needs still to be improved, these compounds strongly support the druggability of NC and pave the way for future structure-based design and optimization of efficient NCIs.
Collapse
Affiliation(s)
- Mattia Mori
- Dipartimento di Biotecnologie Chimica e Farmacia, Università degli Studi di Siena, via A. Moro 2, 53100, Siena, Italy
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Li G, Theys K, Verheyen J, Pineda-Peña AC, Khouri R, Piampongsant S, Eusébio M, Ramon J, Vandamme AM. A new ensemble coevolution system for detecting HIV-1 protein coevolution. Biol Direct 2015; 10:1. [PMID: 25564011 PMCID: PMC4332441 DOI: 10.1186/s13062-014-0031-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 12/02/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND A key challenge in the field of HIV-1 protein evolution is the identification of coevolving amino acids at the molecular level. In the past decades, many sequence-based methods have been designed to detect position-specific coevolution within and between different proteins. However, an ensemble coevolution system that integrates different methods to improve the detection of HIV-1 protein coevolution has not been developed. RESULTS We integrated 27 sequence-based prediction methods published between 2004 and 2013 into an ensemble coevolution system. This system allowed combinations of different sequence-based methods for coevolution predictions. Using HIV-1 protein structures and experimental data, we evaluated the performance of individual and combined sequence-based methods in the prediction of HIV-1 intra- and inter-protein coevolution. We showed that sequence-based methods clustered according to their methodology, and a combination of four methods outperformed any of the 27 individual methods. This four-method combination estimated that HIV-1 intra-protein coevolving positions were mainly located in functional domains and physically contacted with each other in the protein tertiary structures. In the analysis of HIV-1 inter-protein coevolving positions between Gag and protease, protease drug resistance positions near the active site mostly coevolved with Gag cleavage positions (V128, S373-T375, A431, F448-P453) and Gag C-terminal positions (S489-Q500) under selective pressure of protease inhibitors. CONCLUSIONS This study presents a new ensemble coevolution system which detects position-specific coevolution using combinations of 27 different sequence-based methods. Our findings highlight key coevolving residues within HIV-1 structural proteins and between Gag and protease, shedding light on HIV-1 intra- and inter-protein coevolution.
Collapse
Affiliation(s)
- Guangdi Li
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Clinical and Epidemiological Virology, Leuven, Belgium.
| | - Kristof Theys
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Clinical and Epidemiological Virology, Leuven, Belgium.
| | - Jens Verheyen
- Institute of Virology, University hospital, University Duisburg-Essen, Essen, Germany.
| | - Andrea-Clemencia Pineda-Peña
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Clinical and Epidemiological Virology, Leuven, Belgium. .,Clinical and Molecular Infectious Disease Group, Faculty of Sciences and Mathematics, Universidad del Rosario, Bogotá, Colombia.
| | - Ricardo Khouri
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Clinical and Epidemiological Virology, Leuven, Belgium.
| | - Supinya Piampongsant
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Clinical and Epidemiological Virology, Leuven, Belgium.
| | - Mónica Eusébio
- Centro de Malária e Outras Doenças Tropicais and Unidade de Microbiologia, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisboa, Portugal.
| | - Jan Ramon
- Department of Computer Science, KU Leuven - University of Leuven, Leuven, Belgium.
| | - Anne-Mieke Vandamme
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Clinical and Epidemiological Virology, Leuven, Belgium. .,Centro de Malária e Outras Doenças Tropicais and Unidade de Microbiologia, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisboa, Portugal.
| |
Collapse
|
36
|
Abstract
Illustrations of the HIV Life Cycle. The illustrations include proteins, nucleic acids and membranes; small molecules and water are omitted for clarity. Host cell molecules are shown in shades of blue and green and blood plasma proteins are shown in shades of tan and brown. HIV proteins are shown in red and magenta, HIV RNA is in yellow and HIV DNA is in yellow-green. The 3D model of the mature virion was generated using CellPACK by Graham Johnson Illustrations of the major steps of HIV life cycle are presented that integrate information from structural and biophysical studies. The illustrations depict HIV and its interaction with its cellular host at a magnification that reveals all macromolecules. This report describes the sources of scientific support for the structures and processes shown in the illustrations.
Collapse
Affiliation(s)
- David S Goodsell
- Department of Integrative Structural and Computational Biology and RCSB Protein Data Bank, The Scripps Research Institute, La Jolla, 92037, CA, USA,
| |
Collapse
|
37
|
Chamontin C, Rassam P, Ferrer M, Racine PJ, Neyret A, Lainé S, Milhiet PE, Mougel M. HIV-1 nucleocapsid and ESCRT-component Tsg101 interplay prevents HIV from turning into a DNA-containing virus. Nucleic Acids Res 2014; 43:336-47. [PMID: 25488808 PMCID: PMC4288153 DOI: 10.1093/nar/gku1232] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
HIV-1, the agent of the AIDS pandemic, is an RNA virus that reverse transcribes its RNA genome (gRNA) into DNA, shortly after its entry into cells. Within cells, retroviral assembly requires thousands of structural Gag proteins and two copies of gRNA as well as cellular factors, which converge to the plasma membrane in a finely regulated timeline. In this process, the nucleocapsid domain of Gag (GagNC) ensures gRNA selection and packaging into virions. Subsequent budding and virus release require the recruitment of the cellular ESCRT machinery. Interestingly, mutating GagNC results into the release of DNA-containing viruses, by promo-ting reverse transcription (RTion) prior to virus release, through an unknown mechanism. Therefore, we explored the biogenesis of these DNA-containing particles, combining live-cell total internal-reflection fluorescent microscopy, electron microscopy, trans-complementation assays and biochemical characterization of viral particles. Our results reveal that DNA virus production is the consequence of budding defects associated with Gag aggregation at the plasma membrane and deficiency in the recruitment of Tsg101, a key ESCRT-I component. Indeed, targeting Tsg101 to virus assembly sites restores budding, restricts RTion and favors RNA packaging into viruses. Altogether, our results highlight the role of GagNC in the spatiotemporal control of RTion, via an ESCRT-I-dependent mechanism.
Collapse
Affiliation(s)
- Célia Chamontin
- CPBS, UMR5236 CNRS, University of Montpellier, 34293 Montpellier, France
| | - Patrice Rassam
- Centre de Biochimie Structurale, UMR5048 CNRS, University of Montpellier, 34090 Montpellier, France
| | - Mireia Ferrer
- CPBS, UMR5236 CNRS, University of Montpellier, 34293 Montpellier, France
| | - Pierre-Jean Racine
- CPBS, UMR5236 CNRS, University of Montpellier, 34293 Montpellier, France
| | - Aymeric Neyret
- CPBS, UMR5236 CNRS, University of Montpellier, 34293 Montpellier, France
| | - Sébastien Lainé
- CPBS, UMR5236 CNRS, University of Montpellier, 34293 Montpellier, France
| | - Pierre-Emmanuel Milhiet
- Centre de Biochimie Structurale, UMR5048 CNRS, University of Montpellier, 34090 Montpellier, France U1054 INSERM, 30090 Montpellier, France
| | - Marylène Mougel
- CPBS, UMR5236 CNRS, University of Montpellier, 34293 Montpellier, France
| |
Collapse
|
38
|
The N-terminus of murine leukaemia virus p12 protein is required for mature core stability. PLoS Pathog 2014; 10:e1004474. [PMID: 25356837 PMCID: PMC4214797 DOI: 10.1371/journal.ppat.1004474] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 09/15/2014] [Indexed: 12/02/2022] Open
Abstract
The murine leukaemia virus (MLV) gag gene encodes a small protein called p12 that is essential for the early steps of viral replication. The N- and C-terminal regions of p12 are sequentially acting domains, both required for p12 function. Defects in the C-terminal domain can be overcome by introducing a chromatin binding motif into the protein. However, the function of the N-terminal domain remains unknown. Here, we undertook a detailed analysis of the effects of p12 mutation on incoming viral cores. We found that both reverse transcription complexes and isolated mature cores from N-terminal p12 mutants have altered capsid complexes compared to wild type virions. Electron microscopy revealed that mature N-terminal p12 mutant cores have different morphologies, although immature cores appear normal. Moreover, in immunofluorescent studies, both p12 and capsid proteins were lost rapidly from N-terminal p12 mutant viral cores after entry into target cells. Importantly, we determined that p12 binds directly to the MLV capsid lattice. However, we could not detect binding of an N-terminally altered p12 to capsid. Altogether, our data imply that p12 stabilises the mature MLV core, preventing premature loss of capsid, and that this is mediated by direct binding of p12 to the capsid shell. In this manner, p12 is also retained in the pre-integration complex where it facilitates tethering to mitotic chromosomes. These data also explain our previous observations that modifications to the N-terminus of p12 alter the ability of particles to abrogate restriction by TRIM5alpha and Fv1, factors that recognise viral capsid lattices. All retroviral genomes contain a gag gene that codes for the Gag polyprotein. Gag is cleaved upon viral maturation to release individual proteins, including matrix, capsid and nucleocapsid, providing the structural components of the virion. In murine leukaemia virus (MLV), Gag cleavage releases an additional protein, named p12, required for both early and late stages of the viral life cycle. The role of p12 during early events is poorly understood, and it is the only MLV protein without a function-associated name. Here, we show that p12 binds to the capsid shell of the viral core and stabilises it. Mutations that give rise to N-terminally altered p12 proteins result in a rapid loss of both p12 and capsid from viral cores, leading to abnormal core morphologies and abolishing the ability of particles to abrogate restriction by cellular factors that target viral capsid lattices. Understanding how the mature retroviral core forms and how it disassembles during infection is important as this determines the infectivity of all retroviruses, including HIV-1. Furthermore, altering core stability has recently become a novel target for HIV-1 therapeutics.
Collapse
|
39
|
Johnson GT, Goodsell DS, Autin L, Forli S, Sanner MF, Olson AJ. 3D molecular models of whole HIV-1 virions generated with cellPACK. Faraday Discuss 2014; 169:23-44. [PMID: 25253262 PMCID: PMC4569901 DOI: 10.1039/c4fd00017j] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 03/19/2014] [Indexed: 12/31/2022]
Abstract
As knowledge of individual biological processes grows, it becomes increasingly useful to frame new findings within their larger biological contexts in order to generate new systems-scale hypotheses. This report highlights two major iterations of a whole virus model of HIV-1, generated with the cellPACK software. cellPACK integrates structural and systems biology data with packing algorithms to assemble comprehensive 3D models of cell-scale structures in molecular detail. This report describes the biological data, modeling parameters and cellPACK methods used to specify and construct editable models for HIV-1. Anticipating that cellPACK interfaces under development will enable researchers from diverse backgrounds to critique and improve the biological models, we discuss how cellPACK can be used as a framework to unify different types of data across all scales of biology.
Collapse
|
40
|
Valiente-Echeverría F, Melnychuk L, Vyboh K, Ajamian L, Gallouzi IE, Bernard N, Mouland AJ. eEF2 and Ras-GAP SH3 domain-binding protein (G3BP1) modulate stress granule assembly during HIV-1 infection. Nat Commun 2014; 5:4819. [PMID: 25229650 PMCID: PMC4978539 DOI: 10.1038/ncomms5819] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 07/28/2014] [Indexed: 12/26/2022] Open
Abstract
Stress granules (SG) are translationally silent sites of RNA triage induced by environmental stresses including viral infection. Here we show that HIV-1 Gag blocks SG assembly irrespective of eIF2α phosphorylation and even when SG assembly is forced by overexpression of Ras-GAP SH3 domain-binding protein (G3BP1) or TIAR. The overexposed loops in the amino-terminal capsid domain of Gag and host eukaryotic elongation factor 2 (eEF2) are found to be critical for the SG blockade via interaction. Moreover, cyclophilin A (CypA) stabilizes the Gag-eEF2 association. eEF2 depletion not only lifts the SG blockade but also results in impaired virus production and infectivity. Gag also disassembles preformed SGs by recruiting G3BP1, thereby displacing eEF2, revealing another unsuspected virus-host interaction involved in the HIV-1-imposed SG blockade. Understanding how HIV-1 counters anti-viral stress responses will lay the groundwork for new therapeutic strategies to bolster host cell immune defences against HIV-1 and other pathogens.
Collapse
Affiliation(s)
- Fernando Valiente-Echeverría
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, Québec H3T 1E2, Canada
- Department of Medicine, McGill University, Montréal, Québec H3A 0G4, Canada
| | - Luca Melnychuk
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, Québec H3T 1E2, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, Québec H3A 0G4, Canada
| | - Kishanda Vyboh
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, Québec H3T 1E2, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, Québec H3A 0G4, Canada
| | - Lara Ajamian
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, Québec H3T 1E2, Canada
- Department of Medicine, McGill University, Montréal, Québec H3A 0G4, Canada
| | | | - Nicole Bernard
- Department of Medicine, McGill University, Montréal, Québec H3A 0G4, Canada
- Research Institute of the McGill University Health Centre, Montréal, Québec H3H 2R9, Canada
| | - Andrew J. Mouland
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, Québec H3T 1E2, Canada
- Department of Medicine, McGill University, Montréal, Québec H3A 0G4, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, Québec H3A 0G4, Canada
| |
Collapse
|
41
|
Pachulska-Wieczorek K, Stefaniak AK, Purzycka KJ. Similarities and differences in the nucleic acid chaperone activity of HIV-2 and HIV-1 nucleocapsid proteins in vitro. Retrovirology 2014; 11:54. [PMID: 24992971 PMCID: PMC4227088 DOI: 10.1186/1742-4690-11-54] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 06/23/2014] [Indexed: 01/22/2023] Open
Abstract
Background The nucleocapsid domain of Gag and mature nucleocapsid protein (NC) act as nucleic acid chaperones and facilitate folding of nucleic acids at critical steps of retroviral replication cycle. The basic N-terminus of HIV-1 NC protein was shown most important for the chaperone activity. The HIV-2 NC (NCp8) and HIV-1 NC (NCp7) proteins possess two highly conserved zinc fingers, flanked by basic residues. However, the NCp8 N-terminal domain is significantly shorter and contains less positively charged residues. This study characterizes previously unknown, nucleic acid chaperone activity of the HIV-2 NC protein. Results We have comparatively investigated the in vitro nucleic acid chaperone properties of the HIV-2 and HIV-1 NC proteins. Using substrates derived from the HIV-1 and HIV-2 genomes, we determined the ability of both proteins to chaperone nucleic acid aggregation, annealing and strand exchange in duplex structures. Both NC proteins displayed comparable, high annealing activity of HIV-1 TAR DNA and its complementary nucleic acid. Interesting differences between the two NC proteins were discovered when longer HIV substrates, particularly those derived from the HIV-2 genome, were used in chaperone assays. In contrast to NCp7, NCp8 weakly facilitates annealing of HIV-2 TAR RNA to its complementary TAR (−) DNA. NCp8 is also unable to efficiently stimulate tRNALys3 annealing to its respective HIV-2 PBS motif. Using truncated NCp8 peptide, we demonstrated that despite the fact that the N-terminus of NCp8 differs from that of NCp7, this domain is essential for NCp8 activity. Conclusion Our data demonstrate that the HIV-2 NC protein displays reduced nucleic acid chaperone activity compared to that of HIV-1 NC. We found that NCp8 activity is limited by substrate length and stability to a greater degree than that of NCp7. This is especially interesting in light of the fact that the HIV-2 5′UTR is more structured than that of HIV-1. The reduced chaperone activity observed with NCp8 may influence the efficiency of reverse transcription and other key steps of the HIV-2 replication cycle.
Collapse
|
42
|
Cryo-electron microscopy of tubular arrays of HIV-1 Gag resolves structures essential for immature virus assembly. Proc Natl Acad Sci U S A 2014; 111:8233-8. [PMID: 24843179 DOI: 10.1073/pnas.1401455111] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The assembly of HIV-1 is mediated by oligomerization of the major structural polyprotein, Gag, into a hexameric protein lattice at the plasma membrane of the infected cell. This leads to budding and release of progeny immature virus particles. Subsequent proteolytic cleavage of Gag triggers rearrangement of the particles to form mature infectious virions. Obtaining a structural model of the assembled lattice of Gag within immature virus particles is necessary to understand the interactions that mediate assembly of HIV-1 particles in the infected cell, and to describe the substrate that is subsequently cleaved by the viral protease. An 8-Å resolution structure of an immature virus-like tubular array assembled from a Gag-derived protein of the related retrovirus Mason-Pfizer monkey virus (M-PMV) has previously been reported, and a model for the arrangement of the HIV-1 capsid (CA) domains has been generated based on homology to this structure. Here we have assembled tubular arrays of a HIV-1 Gag-derived protein with an immature-like arrangement of the C-terminal CA domains and have solved their structure by using hybrid cryo-EM and tomography analysis. The structure reveals the arrangement of the C-terminal domain of CA within an immature-like HIV-1 Gag lattice, and provides, to our knowledge, the first high-resolution view of the region immediately downstream of CA, which is essential for assembly, and is significantly different from the respective region in M-PMV. Our results reveal a hollow column of density for this region in HIV-1 that is compatible with the presence of a six-helix bundle at this position.
Collapse
|
43
|
Gao W, Li M, Zhang J. Tandem immunoprecipitation approach to identify HIV-1 Gag associated host factors. J Virol Methods 2014; 203:116-9. [PMID: 24690621 DOI: 10.1016/j.jviromet.2014.03.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 03/06/2014] [Accepted: 03/11/2014] [Indexed: 10/25/2022]
Abstract
HIV-1 Gag by itself is able to assemble and release from host cells and thus serves as a simplified model to identify host factors involved in this stage of the HIV-1 life cycle. In this study, a tandem immunoprecipitation approach is taken to immunoprecipitate Gag-interacting host proteins from transfected 293T cells. It is demonstrated that with the tandem immunoprecipitation method Gag-interacting host factors can be precipitated more efficiently than by single-step immunoprecipitation. Gag proteins are found to interact with multiple RNA-binding proteins such as hnRNPs, nucleolin, EF1a and ribosomal proteins. Such interactions are mediated by cellular RNAs and the Gag Nuclear Capsid (NC) domain. Deletion of the NC domain results in removal of most of the RNA-binding proteins, as well as a reduction of the Gag releasing capability, which can be restored by replacing the deleted NC domain with another multimerization motif. Importantly, interactions between Gag and host factors are relevant functionally, as evidenced by significantly increased nucleolin protein in the cytoplasm where it is recruited into the Gag complex, and enhanced Gag release when nucleolin is over-expressed.
Collapse
Affiliation(s)
- Wei Gao
- Liaoning Medical University, First Affiliated Hospital, Jinzhou, Liaoning 121001, China
| | - Min Li
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jingxin Zhang
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
44
|
Torrecilla E, Llácer Delicado T, Holguín Á. New findings in cleavage sites variability across groups, subtypes and recombinants of human immunodeficiency virus type 1. PLoS One 2014; 9:e88099. [PMID: 24516589 PMCID: PMC3917854 DOI: 10.1371/journal.pone.0088099] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 01/08/2014] [Indexed: 12/20/2022] Open
Abstract
Background Polymorphisms at cleavage sites (CS) can influence Gag and Pol proteins processing by the viral protease (PR), restore viral fitness and influence the virological outcome of specific antiretroviral drugs. However, data of HIV-1 variant-associated CS variability is scarce. Methods In this descriptive research, we examine the effect of HIV-1 variants on CS conservation using all 9,028 gag and 3,906 pol HIV-1 sequences deposited in GenBank, focusing on the 110 residues (10 per site) involved at 11 CS: P17/P24, P24/P2, P2/P7, P7/P1, P1/P6gag, NC/TFP, TFP/P6pol, P6pol/PR, PR/RTp51, RTp51/RTp66 and RTp66/IN. CS consensus amino acid sequences across HIV-1 groups (M, O, N, P), group M 9 subtypes and 51 circulating recombinant forms (CRF) were inferred from our alignments and compared to the HIV-1 consensus-of-consensuses sequence provided by GenBank. Results In all HIV-1 variants, the most conserved CS were PR/RTp51, RTp51/RTp66, P24/P2 and RTp66/IN and the least P2/P7 and P6pol/PR. Conservation was significantly lower in subtypes vs. recombinants in P2/P7 and TFP/P6pol and higher in P17/P24. We found a significantly higher conservation rate among Group M vs. non-M Groups HIV-1. The late processing sites at Gag (P7/P1) and GagPol precursors (PR/RTp51) presented a significantly higher conservation vs. the first CS (P2/P7) in the 4 HIV-1 groups. Here we show 52 highly conserved residues across HIV-1 variants in 11 CS and the amino acid consensus sequence in each HIV-1 group and HIV-1 group M variant for each 11 CS. Conclusions This is the first study to describe the CS conservation level across all HIV-1 variants and 11 sites in one of the largest available sequence HIV-1 dataset. These results could help other researchers for the future design of both novel antiretroviral agents acting as maturation inhibitors as well as for vaccine targeting CS.
Collapse
Affiliation(s)
- Esther Torrecilla
- HIV-1 Molecular Epidemiology Laboratory, Dept. of Microbiology, Hospital Ramón y Cajal- IRYCIS and CIBERESP, Madrid, Spain
| | - Teresa Llácer Delicado
- HIV-1 Molecular Epidemiology Laboratory, Dept. of Microbiology, Hospital Ramón y Cajal- IRYCIS and CIBERESP, Madrid, Spain
| | - África Holguín
- HIV-1 Molecular Epidemiology Laboratory, Dept. of Microbiology, Hospital Ramón y Cajal- IRYCIS and CIBERESP, Madrid, Spain
- * E-mail:
| |
Collapse
|
45
|
Deshmukh L, Ghirlando R, Clore GM. Investigation of the structure and dynamics of the capsid-spacer peptide 1-nucleocapsid fragment of the HIV-1 gag polyprotein by solution NMR spectroscopy. Angew Chem Int Ed Engl 2014; 53:1025-8. [PMID: 24338988 PMCID: PMC4049115 DOI: 10.1002/anie.201309127] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Indexed: 11/12/2022]
Abstract
Structural studies of HIV-1 Gag, the primary structural polyprotein involved in retroviral assembly, have been challenging, owing to its flexibility and conformational heterogeneity. Using residual dipolar couplings, we show that the four structural units of the capsid (CA)-spacer peptide 1 (SP1)-nucleocapsid (NC) fragment of HIV-1 Gag (namely, the N- and C-terminal domains of capsid, and the N- and C-terminal Zn knuckles of nucleocapsid) have the same structures as their individually isolated counterparts, and tumble semi-independently of one another in the absence of nucleic acids. Nucleic acids bind exclusively to the nucleocapsid domain and fix the orientation of the two Zn knuckles relative to one another so that the nucleocapsid domain/nucleic acid complex behaves as a single structural unit. The low (15) N-{(1) H} heteronuclear NOE values (≤0.4), the close to zero values for the residual dipolar couplings of the backbone amides, and minimal deviations from random-coil chemical shifts for the C-terminal tail of capsid and SP1, both in the absence and presence of nucleic acids, indicate that these regions are intrinsically disordered in the context of CA-SP1-NC.
Collapse
Affiliation(s)
- Lalit Deshmukh
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, U.S.A
| | - Rodolfo Ghirlando
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, U.S.A
| | - G. Marius Clore
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, U.S.A., Fax: (+1) (301) 496 0825. National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, U.S.A
| |
Collapse
|
46
|
Deshmukh L, Ghirlando R, Clore GM. Investigation of the Structure and Dynamics of the Capsid-Spacer Peptide 1-Nucleocapsid Fragment of the HIV-1 Gag Polyprotein by Solution NMR Spectroscopy. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201309127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
47
|
Bell NM, L'Hernault A, Murat P, Richards JE, Lever AML, Balasubramanian S. Targeting RNA-protein interactions within the human immunodeficiency virus type 1 lifecycle. Biochemistry 2013; 52:9269-74. [PMID: 24358934 PMCID: PMC3928988 DOI: 10.1021/bi401270d] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
RNA–protein
interactions are vital throughout the HIV-1
life cycle for the successful production of infectious virus particles.
One such essential RNA–protein interaction occurs between the
full-length genomic viral RNA and the major structural protein of
the virus. The initial interaction is between the Gag polyprotein
and the viral RNA packaging signal (psi or Ψ), a highly conserved
RNA structural element within the 5′-UTR of the HIV-1 genome,
which has gained attention as a potential therapeutic target. Here,
we report the application of a target-based assay to identify small
molecules, which modulate the interaction between Gag and Ψ.
We then demonstrate that one such molecule exhibits potent inhibitory
activity in a viral replication assay. The mode of binding of the
lead molecules to the RNA target was characterized by 1H NMR spectroscopy.
Collapse
Affiliation(s)
- Neil M Bell
- Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge, CB2 1EW, U.K
| | | | | | | | | | | |
Collapse
|
48
|
Han Y, Hou G, Suiter CL, Ahn J, Byeon IJL, Lipton AS, Burton S, Hung I, Gor'kov PL, Gan Z, Brey W, Rice D, Gronenborn AM, Polenova T. Magic angle spinning NMR reveals sequence-dependent structural plasticity, dynamics, and the spacer peptide 1 conformation in HIV-1 capsid protein assemblies. J Am Chem Soc 2013; 135:17793-803. [PMID: 24164646 DOI: 10.1021/ja406907h] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A key stage in HIV-1 maturation toward an infectious virion requires sequential proteolytic cleavage of the Gag polyprotein leading to the formation of a conical capsid core that encloses the viral RNA genome and a small complement of proteins. The final step of this process involves severing the SP1 peptide from the CA-SP1 maturation intermediate, which triggers the condensation of the CA protein into the capsid shell. The details of the overall mechanism, including the conformation of the SP1 peptide in CA-SP1, are still under intense debate. In this report, we examine tubular assemblies of CA and the CA-SP1 maturation intermediate using magic angle spinning (MAS) NMR spectroscopy. At magnetic fields of 19.9 T and above, outstanding quality 2D and 3D MAS NMR spectra were obtained for tubular CA and CA-SP1 assemblies, permitting resonance assignments for subsequent detailed structural characterization. Dipolar- and scalar-based correlation experiments unequivocally indicate that SP1 peptide is in a random coil conformation and mobile in the assembled CA-SP1. Analysis of two CA protein sequence variants reveals that, unexpectedly, the conformations of the SP1 tail, the functionally important CypA loop, and the loop preceding helix 8 are modulated by residue variations at distal sites. These findings provide support for the role of SP1 as a trigger of the disassembly of the immature CA capsid for its subsequent de novo reassembly into mature cores and establish the importance of sequence-dependent conformational plasticity in CA assembly.
Collapse
Affiliation(s)
- Yun Han
- Department of Chemistry and Biochemistry, University of Delaware , Newark, Delaware 19716, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Li G, Verheyen J, Rhee SY, Voet A, Vandamme AM, Theys K. Functional conservation of HIV-1 Gag: implications for rational drug design. Retrovirology 2013; 10:126. [PMID: 24176092 PMCID: PMC4228425 DOI: 10.1186/1742-4690-10-126] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Accepted: 10/21/2013] [Indexed: 11/25/2022] Open
Abstract
Background HIV-1 replication can be successfully blocked by targeting gag gene products, offering a promising strategy for new drug classes that complement current HIV-1 treatment options. However, naturally occurring polymorphisms at drug binding sites can severely compromise HIV-1 susceptibility to gag inhibitors in clinical and experimental studies. Therefore, a comprehensive understanding of gag natural diversity is needed. Findings We analyzed the degree of functional conservation in 10862 full-length gag sequences across 8 major HIV-1 subtypes and identified the impact of natural variation on known drug binding positions targeted by more than 20 gag inhibitors published to date. Complete conservation across all subtypes was detected in 147 (29%) out of 500 gag positions, with the highest level of conservation observed in capsid protein. Almost half (41%) of the 136 known drug binding positions were completely conserved, but all inhibitors were confronted with naturally occurring polymorphisms in their binding sites, some of which correlated with HIV-1 subtype. Integration of sequence and structural information revealed one drug binding pocket with minimal genetic variability, which is situated at the N-terminal domain of the capsid protein. Conclusions This first large-scale analysis of full-length HIV-1 gag provided a detailed mapping of natural diversity across major subtypes and highlighted the considerable variation in current drug binding sites. Our results contribute to the optimization of gag inhibitors in rational drug design, given that drug binding sites should ideally be conserved across all HIV-1 subtypes.
Collapse
Affiliation(s)
- Guangdi Li
- Rega Institute for Medical Research, Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium.
| | | | | | | | | | | |
Collapse
|
50
|
Bocanegra R, Alfonso C, Rodríguez-Huete A, Fuertes MÁ, Jiménez M, Rivas G, Mateu MG. Association equilibrium of the HIV-1 capsid protein in a crowded medium reveals that hexamerization during capsid assembly requires a functional C-domain dimerization interface. Biophys J 2013; 104:884-93. [PMID: 23442967 DOI: 10.1016/j.bpj.2012.12.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 12/14/2012] [Accepted: 12/19/2012] [Indexed: 01/12/2023] Open
Abstract
Polymerization of the intact capsid protein (CA) of HIV-1 into mature capsidlike particles at physiological ionic strength in vitro requires macromolecularly crowded conditions that approach those inside the virion, where the mature capsid is assembled in vivo. The capsid is organized as a hexameric lattice. CA subunits in each hexamer are connected through interfaces that involve the CA N-terminal domain (NTD); pairs of CA subunits belonging to different hexamers are connected through a different interface that involves the C-terminal domain (CTD). At physiological ionic strength in noncrowded conditions, CA subunits homodimerize through this CTD-CTD interface, but do not hexamerize through the other interfaces (those involving the NTD). Here we have investigated whether macromolecular crowding conditions are able to promote hexamerization of the isolated NTD and/or full-length CA (with an inactive CTD-CTD interface to prevent polymerization). The oligomerization state of the proteins was determined using analytical ultracentrifugation in the absence or presence of high concentrations of an inert macromolecular crowding agent. Under the same conditions that promoted efficient assembly of intact CA dimers, neither NTD nor CA with an inactive CTD-CTD interface showed any tendency to form hexamers or any other oligomer. This inability to hexamerize was observed even in macromolecularly crowded conditions. The results indicate that a functional CTD-CTD interface is strictly required for hexamerization of HIV-1 CA through the other interfaces. Together with previous results, these observations suggest that establishment of NTD-CTD interactions involved in CA hexamerization during mature HIV-1 capsid assembly requires a homodimerization-dependent conformational switching of CTD.
Collapse
Affiliation(s)
- Rebeca Bocanegra
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|