1
|
Lin H, Sui H, Yu Y, Xie C, Shen Y, Cheng L, Wang J, Yu Y, Xie C, Cui R. Dihydrotanshinone I potentiates the anti-tumor activity of cisplatin by activating ROS-mediated ER stress through targeting HSPD1 in lung cancer cells. Eur J Pharmacol 2025; 994:177378. [PMID: 39952584 DOI: 10.1016/j.ejphar.2025.177378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/20/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Lung cancer represents one of the most lethal malignancies, characterized by the highest incidence and mortality rates globally. Cisplatin-based chemotherapy exerts powerful anti-tumor activities in lung cancer, whereas its clinical application was limited due to the severe side effects. Dihydrotanshinone I (DHTS), a root extract from Salvia miltiorrhiza, exhibits diverse biological functions, encompassing liver protection, anti-inflammatory properties, promotion of osteoclast differentiation, and induction of apoptosis in tumor cells. DHTS exerts anti-tumor effects in various cancers, however, its biological functions in lung cancer are largely unknown. We demonstrated that DHTS synergistically increased the tumor suppressive effects of cisplatin in lung cancer cells by activating reactive oxygen species (ROS)-mediated endoplasmic reticulum stress (ER stress) and c-Jun N-terminal kinase (JNK) signaling pathways, both in vitro and in vivo. Additionally, DHTS induced excessive ROS accumulation by inhibiting the expression of Heat Shock Proteins 60 (HSPD1). Silencing HSPD1 augmented the anti-tumor effects of DHTS in lung cancer cells, primarily through the stimulation of ROS-mediated ER stress and JNK pathways. Our study suggests that DHTS possesses druggable potential, and combined therapy with DHTS and cisplatin may be a promising therapeutic strategy for certain lung cancer patients.
Collapse
Affiliation(s)
- Haizhen Lin
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China; Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Hehuan Sui
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Ying Yu
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Chenjun Xie
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yiwei Shen
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Liyuan Cheng
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Jiaying Wang
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yun Yu
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Congying Xie
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China; Wenzhou Key Laboratory of Basic Science and Translational Research of Radiation Oncology, Wenzhou, Zhejiang, 325000, China.
| | - Ri Cui
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China; Wenzhou Key Laboratory of Basic Science and Translational Research of Radiation Oncology, Wenzhou, Zhejiang, 325000, China.
| |
Collapse
|
2
|
Nurxat N, Wang Q, Zhao N, Guo Y, Zhang X, Wang Y, Jian Y, Wang H, Yang S, Li M, Liu Q. Endogenous nitric oxide promotes Staphylococcus aureus virulence by activating autophagy. mBio 2025; 16:e0400624. [PMID: 39998210 PMCID: PMC11980563 DOI: 10.1128/mbio.04006-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 02/03/2025] [Indexed: 02/26/2025] Open
Abstract
Endogenous nitric oxide (NO) is a small molecule that has been demonstrated to affect the physiology and survival of bacteria. The role of endogenous NO for Staphylococcus aureus survival inside host cells remains unclear. Here, we show that the production of endogenous NO by bacterial nitrate reductase (NR) is affected by molybdopterin biosynthesis protein A (MoeA), which is essential for molybdenum cofactor synthesis in S. aureus. During the infection, the production of endogenous NO promotes S. aureus survival inside macrophages by initiating cellular autophagy. Mechanistically, bacterial endogenous NO can modify the host regulatory protein thioredoxin vis S-nitrosylation, subsequently triggering the phosphorylation of the JNK-Bcl-2 pathway and promoting the initiation of autophagy through the release of Beclin1. Moreover, we confirmed the critical role of MoeA in bacterial survival in vivo by using bloodstream infection, pneumonia, and skin abscess model on both wild-type and autophagy-deficient mice. Interestingly, we observed the significantly increased production of NO and activation of cellular autophagy of sequence type (ST)5 compared with ST239, suggesting that the initiation of autophagy is involved in the clone shift of S. aureus. Our data offered new insights on the role of bacterial endogenous NO in regulating the host signal pathway during infection inside host cells.IMPORTANCEUnderstanding the mechanism underlying Staphylococcus aureus pathogenesis is essential for developing innovative strategies for the prevention and treatment of infection. In this study, we underscore the critical role of molybdopterin biosynthesis protein A and nitric oxide (NO) in inducing autophagy during S. aureus survival within macrophage and in vivo infection. We demonstrate that host regulatory protein can be modified by bacterial metabolites, which may influence cellular processes. Furthermore, our findings indicated that increased endogenous NO production may contribute to the stable prevalence of S. aureus ST5 in the healthcare-associated environment. These findings highlight the significance of bacterial metabolism in modulating the host immune system, thereby facilitating S. aureus survival and persistence.
Collapse
Affiliation(s)
- Nadira Nurxat
- Department of Laboratory Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qichen Wang
- Department of Laboratory Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Na Zhao
- Department of Laboratory Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yanan Guo
- Department of Laboratory Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xilong Zhang
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanan Wang
- Department of Laboratory Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Jian
- Department of Laboratory Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hua Wang
- Department of Laboratory Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shengbing Yang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Li
- Department of Laboratory Medicine, Shanghai Jiao Tong University, Shanghai, China
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Liu
- Department of Laboratory Medicine, Shanghai Jiao Tong University, Shanghai, China
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Kaltsas A, Giannakas T, Stavropoulos M, Kratiras Z, Chrisofos M. Oxidative Stress in Benign Prostatic Hyperplasia: Mechanisms, Clinical Relevance and Therapeutic Perspectives. Diseases 2025; 13:53. [PMID: 39997060 PMCID: PMC11854834 DOI: 10.3390/diseases13020053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/05/2025] [Accepted: 02/10/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND/OBJECTIVES Benign prostatic hyperplasia (BPH) is among the most common conditions affecting men as they age, resulting in lower urinary tract symptoms (LUTS) that can profoundly impact quality of life. While historically attributed primarily to androgenic imbalances, current evidence implicates additional factors-particularly oxidative stress (OS) and chronic inflammation-in BPH pathogenesis. This review aims to synthesize research on the interplay between OS, inflammation, and hormonal regulation in BPH, emphasizing their clinical relevance and potential therapeutic implications. METHODS A comprehensive review of peer-reviewed literature was conducted focusing on mechanistic studies, clinical trials, and observational reports. Searches included data on ROS generation, antioxidant capacity, inflammatory mediators, and their contribution to pathological prostatic overgrowth. Potential interventions targeting OS-such as antioxidant supplementation, anti-inflammatory drugs, vitamin D receptor agonists, and phytotherapeutics-were also evaluated for their efficacy and safety profiles. RESULTS Chronic inflammation and OS were consistently identified within hyperplastic prostate tissue. Excessive ROS production, diminished antioxidant defense, and sustained cytokine release create a proproliferative and antiapoptotic environment, accelerating disease progression. Metabolic comorbidities (e.g., obesity, insulin resistance) further exacerbate these imbalances. Standard therapies (α-blockers and 5-ARIs) effectively relieve symptoms but do not directly address the oxidative-inflammatory axis. Emerging evidence suggests that pharmacological and dietary approaches targeting OS and inflammation may reduce prostate volume expansion and alleviate LUTS. CONCLUSIONS Findings indicate that OS and inflammation are key contributors to BPH progression. Incorporating antioxidant and anti-inflammatory strategies alongside conventional treatments holds promise for improving clinical outcomes and patient quality of life. Future research should focus on validating OS-specific biomarkers and optimizing personalized therapy regimens.
Collapse
Affiliation(s)
| | | | | | | | - Michael Chrisofos
- Third Department of Urology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.K.); (T.G.); (M.S.); (Z.K.)
| |
Collapse
|
4
|
Zhang W, Shen M, Chu P, Wang T, Ji J, Ning X, Yin S, Zhang K. Molecular characterization of CIRBP from Takifugu fasciatus and its potential roles in cold-induced liver damage. Int J Biol Macromol 2024; 281:136492. [PMID: 39393746 DOI: 10.1016/j.ijbiomac.2024.136492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/29/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
As a potent stressor, environmental cold stress induces severe mitochondrial dysfunction with the overproduction of reactive oxygen species (ROS) in fish, resulting in liver damage. However, the molecular mechanisms underlying the cold-induced liver damage remain unclear. In the present study, the cold-inducible RNA-binding protein (CIRBP) from Takifugu fasciatus was characterized, and its role in cold-induced oxidative stress damage was investigated. An acute liver injury model was constructed by exposing T. fasciatus individuals to temperatures of 25, 19, and 13 °C. Cold exposure markedly induced histomorphological liver injury and triggered endogenous apoptosis and NLRP3 inflammatory response. Cold treatment significantly increased CIRBP gene expression. A similar expression pattern was detected for thioredoxin (TRX), suggesting that these two proteins play a role in the establishment of cold adaptation. CIRBP binds directly to the 3'-UTR of TRX. Furthermore, in vivo experiment showed that, when CIRBP expression in T. fasciatus is knocked down, the time to loss equilibrium significantly shortened at 13 °C. Taken together, our study revealed that CIRBP is a critical protective factor against cold induced liver damage and that the CIRBP/TRX pathway could function as an underlying mechanism for cold adaptation in teleosts.
Collapse
Affiliation(s)
- Wenwen Zhang
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China
| | - Minghao Shen
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China
| | - Peng Chu
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China
| | - Tao Wang
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China; Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang, Jiangsu 222005, China
| | - Jie Ji
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China; Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang, Jiangsu 222005, China
| | - Xianhui Ning
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China; Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang, Jiangsu 222005, China
| | - Shaowu Yin
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China; Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang, Jiangsu 222005, China.
| | - Kai Zhang
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China; Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang, Jiangsu 222005, China.
| |
Collapse
|
5
|
Wang Z, Lin J, Wang Q, Fu Y, Gu L, Tian X, Yu B, Fu X, Zheng H, Li C, Zhao G. Rosmarinic acid alleviates fungal keratitis caused by Aspergillus fumigatus by inducing macrophage autophagy. Exp Eye Res 2024; 244:109944. [PMID: 38797260 DOI: 10.1016/j.exer.2024.109944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Fungal keratitis (FK) is an infectious keratopathy can cause serious damage to vision. Its severity is related to the virulence of fungus and response of inflammatory. Rosmarinic acid (RA) extracted from Rosmarinus officinalis exhibits antioxidant, anti-inflammatory and anti-viral properties. The aim of this study was to investigate the effect of RA on macrophage autophagy and its therapeutic effect on FK. In this study, we demonstrated that RA reduced expression of proinflammatory cytokine, lessened the recruitment of inflammatory cells in FK. The relative contents of autophagy markers, such as LC3 and Beclin-1, were significantly up-regulated in RAW 264.7 cells and FK. In addition, RA restored mitochondrial membrane potential (MMP) of macrophage to normal level. RA not only reduced the production of intracellular reactive oxygen species (ROS) but also mitochondria ROS (mtROS) in macrophage. At the same time, RA induced macrophage to M2 phenotype and down-regulated the mRNA expression of IL-6, IL-1β, TNF-α. All the above effects could be offset by the autophagy inhibitor 3-Methyladenine (3-MA). Besides, RA promote phagocytosis of RAW 264.7 cells and inhibits spore germination, biofilm formation and conidial adherence, suggesting a potential therapeutic role for RA in FK.
Collapse
Affiliation(s)
- Ziyi Wang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Jing Lin
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Qian Wang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Yudong Fu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Lingwen Gu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Xue Tian
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Bing Yu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Xueyun Fu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Hengrui Zheng
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Cui Li
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China.
| | - Guiqiu Zhao
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China.
| |
Collapse
|
6
|
Cai H, Meng Z, Yu F. The involvement of ROS-regulated programmed cell death in hepatocellular carcinoma. Crit Rev Oncol Hematol 2024; 197:104361. [PMID: 38626849 DOI: 10.1016/j.critrevonc.2024.104361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/11/2024] [Accepted: 04/10/2024] [Indexed: 04/21/2024] Open
Abstract
Reactive oxidative species (ROS) is a crucial factor in the regulation of cellular biological activity and function, and aberrant levels of ROS can contribute to the development of a variety of diseases, particularly cancer. Numerous discoveries have affirmed that this process is strongly associated with "programmed cell death (PCD)," which refers to the suicide protection mechanism initiated by cells in response to external stimuli, such as apoptosis, autophagy, ferroptosis, etc. Research has demonstrated that ROS-induced PCD is crucial for the development of hepatocellular carcinoma (HCC). These activities serve a dual function in both facilitating and inhibiting cancer, suggesting the existence of a delicate balance within healthy cells that can be disrupted by the abnormal generation of reactive oxygen species (ROS), thereby influencing the eventual advancement or regression of a tumor. In this review, we summarize how ROS regulates PCD to influence the tumorigenesis and progression of HCC. Studying how ROS-induced PCD affects the progression of HCC at a molecular level can help develop better prevention and treatment methods and facilitate the design of more effective preventative and therapeutic strategies.
Collapse
Affiliation(s)
- Hanchen Cai
- The First Afliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Ziqi Meng
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China; The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Fujun Yu
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China.
| |
Collapse
|
7
|
Ni L, Zhu X, Zhao Q, Shen Y, Tao L, Zhang J, Lin H, Zhuge W, Cho YC, Cui R, Zhu W. Dihydroartemisinin, a potential PTGS1 inhibitor, potentiated cisplatin-induced cell death in non-small cell lung cancer through activating ROS-mediated multiple signaling pathways. Neoplasia 2024; 51:100991. [PMID: 38507887 PMCID: PMC10965827 DOI: 10.1016/j.neo.2024.100991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 03/22/2024]
Abstract
Dihydroartemisinin (DHA) exerts an anti-tumor effect in multiple cancers, however, the molecular mechanism of DHA and whether DHA facilitates the anti-tumor efficacy of cisplatin in non-small cell lung cancer (NSCLC) are unclear. Here, we found that DHA potentiated the anti-tumor effects of cisplatin in NSCLC cells by stimulating reactive oxygen species (ROS)-mediated endoplasmic reticulum (ER) stress, C-Jun-amino-terminal kinase (JNK) and p38 MAPK signaling pathways both in vitro and in vivo. Of note, we demonstrated for the first time that DHA inhibits prostaglandin G/H synthase 1 (PTGS1) expression, resulting in enhanced ROS production. Importantly, silencing PTGS1 sensitized DHA-induced cell death by increasing ROS production and activating ER-stress, JNK and p38 MAPK signaling pathways. In summary, our findings provided new experimental basis and therapeutic prospect for the combined therapy with DHA and cisplatin in some NSCLC patients.
Collapse
Affiliation(s)
- Lianli Ni
- Cellular and Molecular Biology Laboratory, Affiliated Zhoushan Hospital of Wenzhou Medical University, Zhoushan, Zhejiang 316020, China;; Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China;; Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju 61186, South Korea
| | - Xinping Zhu
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Qi Zhao
- Cellular and Molecular Biology Laboratory, Affiliated Zhoushan Hospital of Wenzhou Medical University, Zhoushan, Zhejiang 316020, China;; Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yiwei Shen
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Lu Tao
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Ji Zhang
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Han Lin
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Weishan Zhuge
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Young-Chang Cho
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju 61186, South Korea.
| | - Ri Cui
- Cellular and Molecular Biology Laboratory, Affiliated Zhoushan Hospital of Wenzhou Medical University, Zhoushan, Zhejiang 316020, China;; Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China;.
| | - Wangyu Zhu
- Cellular and Molecular Biology Laboratory, Affiliated Zhoushan Hospital of Wenzhou Medical University, Zhoushan, Zhejiang 316020, China;; Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China;.
| |
Collapse
|
8
|
Tang F, Liu D, Zhang L, Xu LY, Zhang JN, Zhao XL, Ao H, Peng C. Targeting endothelial cells with golden spice curcumin: A promising therapy for cardiometabolic multimorbidity. Pharmacol Res 2023; 197:106953. [PMID: 37804925 DOI: 10.1016/j.phrs.2023.106953] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/20/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Cardiometabolic multimorbidity (CMM) is an increasingly significant global public health concern. It encompasses the coexistence of multiple cardiometabolic diseases, including hypertension, stroke, heart disease, atherosclerosis, and T2DM. A crucial component to the development of CMM is the disruption of endothelial homeostasis. Therefore, therapies targeting endothelial cells through multi-targeted and multi-pathway approaches hold promise for preventing and treatment of CMM. Curcumin, a widely used dietary supplement derived from the golden spice Carcuma longa, has demonstrated remarkable potential in treatment of CMM through its interaction with endothelial cells. Numerous studies have identified various molecular targets of curcumin (such as NF-κB/PI3K/AKT, MAPK/NF-κB/IL-1β, HO-1, NOs, VEGF, ICAM-1 and ROS). These findings highlight the efficacy of curcumin as a therapeutic agent against CMM through the regulation of endothelial function. It is worth noting that there is a close relationship between the progression of CMM and endothelial damage, characterized by oxidative stress, inflammation, abnormal NO bioavailability and cell adhesion. This paper provides a comprehensive review of curcumin, including its availability, pharmacokinetics, pharmaceutics, and therapeutic application in treatment of CMM, as well as the challenges and future prospects for its clinical translation. In summary, curcumin shows promise as a potential treatment option for CMM, particularly due to its ability to target endothelial cells. It represents a novel and natural lead compound that may offer significant therapeutic benefits in the management of CMM.
Collapse
Affiliation(s)
- Fei Tang
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Dong Liu
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Li Zhang
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Li-Yue Xu
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Jing-Nan Zhang
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Xiao-Lan Zhao
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Hui Ao
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Cheng Peng
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
9
|
Er H, Gemici A, Tas GG, Sati L, Zengin G, Bilmen S, Derin N, Kelek SE. Acetyl-L-carnitine attenuates chronic ethanol-induced oxidative stress, ER stress and apoptosis in rat gastric tissue. Alcohol 2023; 112:51-59. [PMID: 37499932 DOI: 10.1016/j.alcohol.2023.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023]
Abstract
Consuming alcohol affects almost all organs. Acetaldehyde, formed as the main product as a result of alcohol metabolism, causes the production of free superoxide radicals when oxidized, and accordingly oxidative and apoptotic processes are triggered. There are studies showing that carnitine has effects on oxidative and apoptotic processes that occur in various conditions. However, the mechanisms showing the effects of L-carnitine on these effects of alcohol have not been fully elucidated. In our study, the effects of acetyl-L-carnitine administration on the molecular mechanisms of oxidative stress, endoplasmic reticulum stress, and apoptotic parameters in gastric tissue of rats chronically exposed to alcohol were investigated. Hematoxylin-eosin staining was used for histopathological studies. Endoplasmic reticulum stress markers were detected with immunohistochemical staining and western blotting. Apoptotic index was evaluated by terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay. Total oxidant and antioxidant status were examined by ELISA. Our results showed that chronic alcohol administration caused a significant increase in TOS levels, an indicator of oxidative stress, the levels of ER-stress-associated proteins XBP1, GRP78, and CHOP, and % apoptotic index values in rat gastric tissues. Additionally, it was determined that acetyl-L-carnitine administration caused an improvement in those values. Based on our data, we can conclude that acetyl-L-carnitine has a tissue protective effect by scavenging free oxygen radicals and reducing ER stress-related proteins XBP1, GRP78, and CHOP and apoptosis in chronic ethanol-administered rats, and that this natural antioxidant may be beneficial in the treatment of oxidative stress-induced diseases.
Collapse
Affiliation(s)
- Hakan Er
- Department of Medical Imaging Techniques, Vocational School of Health Services, Akdeniz University, Antalya, Turkey; Department of Biophysics, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Ayşegül Gemici
- Akdeniz University, Medical School, Department of Biophysics, Antalya, Turkey
| | - Gizem Gamze Tas
- Akdeniz University, Medical School, Department of Histology and Embryology, Antalya, Turkey
| | - Leyla Sati
- Akdeniz University, Medical School, Department of Histology and Embryology, Antalya, Turkey
| | - Gamze Zengin
- Akdeniz University, Medical School, Department of Histology and Embryology, Antalya, Turkey
| | - Süreyya Bilmen
- Department of Medical Laboratory Techniques, Vocational School of Health Services, Akdeniz University, Antalya, Turkey
| | - Narin Derin
- Akdeniz University, Medical School, Department of Biophysics, Antalya, Turkey
| | - Sevim Ercan Kelek
- Department of Medical Laboratory Techniques, Vocational School of Health Services, Akdeniz University, Antalya, Turkey.
| |
Collapse
|
10
|
Morris MT, Jain A, Sun B, Kurbatov V, Muca E, Zeng Z, Jin Y, Roper J, Lu J, Paty PB, Johnson CH, Khan SA. Multi-omic analysis reveals metabolic pathways that characterize right-sided colon cancer liver metastasis. Cancer Lett 2023; 574:216384. [PMID: 37716465 PMCID: PMC10620771 DOI: 10.1016/j.canlet.2023.216384] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/31/2023] [Accepted: 09/08/2023] [Indexed: 09/18/2023]
Abstract
There are well demonstrated differences in tumor cell metabolism between right sided (RCC) and left sided (LCC) colon cancer, which could underlie the robust differences observed in their clinical behavior, particularly in metastatic disease. As such, we utilized liquid chromatography-mass spectrometry to perform an untargeted metabolomics analysis comparing frozen liver metastasis (LM) biobank samples derived from patients with RCC (N = 32) and LCC (N = 58) to further elucidate the unique biology of each. We also performed an untargeted RNA-seq and subsequent network analysis on samples derived from an overlapping subset of patients (RCC: N = 10; LCC: N = 18). Our biobank redemonstrates the inferior survival of patients with RCC-derived LM (P = 0.04), a well-established finding. Our metabolomic results demonstrate increased reactive oxygen species associated metabolites and bile acids in RCC. Conversely, carnitines, indicators of fatty acid oxidation, are relatively increased in LCC. The transcriptomic analysis implicates increased MEK-ERK, PI3K-AKT and Transcription Growth Factor Beta signaling in RCC LM. Our multi-omic analysis reveals several key differences in cellular physiology which taken together may be relevant to clinical differences in tumor behavior between RCC and LCC liver metastasis.
Collapse
Affiliation(s)
- Montana T Morris
- Department of Surgery/Surgical Oncology, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
| | - Abhishek Jain
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College Street, New Haven, CT, 06510, USA
| | - Boshi Sun
- Department of Surgery/Surgical Oncology, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
| | - Vadim Kurbatov
- Department of Surgery/Surgical Oncology, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
| | - Engjel Muca
- Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| | - Zhaoshi Zeng
- Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| | - Ying Jin
- Department of Surgery/Surgical Oncology, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
| | - Jatin Roper
- Department of Medicine/Gastroenterology, Duke University School of Medicine, 124 Davison Building, Durham, NC, 27710, USA
| | - Jun Lu
- Department of Genetics, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06378, USA
| | - Philip B Paty
- Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| | - Caroline H Johnson
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College Street, New Haven, CT, 06510, USA.
| | - Sajid A Khan
- Department of Surgery/Surgical Oncology, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA.
| |
Collapse
|
11
|
4-oxoquinoline-3-carboxamide acyclonucleoside phosphonates hybrids: human MCF-7 breast cancer cell death induction by oxidative stress-promoting and in silico ADMET studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Liu ZM, Shen PC, Lu CC, Chou SH, Tien YC. Suramin enhances chondrogenic properties by regulating the p67 phox/PI3K/AKT/SOX9 signalling pathway. Bone Joint Res 2022; 11:723-738. [PMID: 36222195 PMCID: PMC9582866 DOI: 10.1302/2046-3758.1110.bjr-2022-0013.r2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Aims Autologous chondrocyte implantation (ACI) is a promising treatment for articular cartilage degeneration and injury; however, it requires a large number of human hyaline chondrocytes, which often undergo dedifferentiation during in vitro expansion. This study aimed to investigate the effect of suramin on chondrocyte differentiation and its underlying mechanism. Methods Porcine chondrocytes were treated with vehicle or various doses of suramin. The expression of collagen, type II, alpha 1 (COL2A1), aggrecan (ACAN); COL1A1; COL10A1; SRY-box transcription factor 9 (SOX9); nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX); interleukin (IL)-1β; tumour necrosis factor alpha (TNFα); IL-8; and matrix metallopeptidase 13 (MMP-13) in chondrocytes at both messenger RNA (mRNA) and protein levels was determined by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) and western blot. In addition, the supplementation of suramin to redifferentiation medium for the culture of expanded chondrocytes in 3D pellets was evaluated. Glycosaminoglycan (GAG) and collagen production were evaluated by biochemical analyses and immunofluorescence, as well as by immunohistochemistry. The expression of reactive oxygen species (ROS) and NOX activity were assessed by luciferase reporter gene assay, immunofluorescence analysis, and flow cytometry. Mutagenesis analysis, Alcian blue staining, reverse transcriptase polymerase chain reaction (RT-PCR), and western blot assay were used to determine whether p67phox was involved in suramin-enhanced chondrocyte phenotype maintenance. Results Suramin enhanced the COL2A1 and ACAN expression and lowered COL1A1 synthesis. Also, in 3D pellet culture GAG and COL2A1 production was significantly higher in pellets consisting of chondrocytes expanded with suramin compared to controls. Surprisingly, suramin also increased ROS generation, which is largely caused by enhanced NOX (p67phox) activity and membrane translocation. Overexpression of p67phox but not p67phoxAD (deleting amino acid (a.a) 199 to 212) mutant, which does not support ROS production in chondrocytes, significantly enhanced chondrocyte phenotype maintenance, SOX9 expression, and AKT (S473) phosphorylation. Knockdown of p67phox with its specific short hairpin (sh) RNA (shRNA) abolished the suramin-induced effects. Moreover, when these cells were treated with the phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) inhibitor LY294002 or shRNA of AKT1, p67phox-induced COL2A1 and ACAN expression was significantly inhibited. Conclusion Suramin could redifferentiate dedifferentiated chondrocytes dependent on p67phox activation, which is mediated by the PI3K/AKT/SOX9 signalling pathway. Cite this article: Bone Joint Res 2022;11(10):723–738.
Collapse
Affiliation(s)
- Zi-Miao Liu
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Po-Chih Shen
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Cheng-Chang Lu
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan,Department of Orthopedics, Faculty of Medical School, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan,Department of Orthopaedic Surgery, Kaohsiung Municipal Siaogang Hospital, Kaohsiung, Taiwan,Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shih-Hsiang Chou
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yin-Chun Tien
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan,Department of Orthopedics, Faculty of Medical School, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, Yin-Chun Tien. E-mail:
| |
Collapse
|
13
|
Yu Y, Chen D, Wu T, Lin H, Ni L, Sui H, Xiao S, Wang C, Jiang S, Pan H, Li S, Jin X, Xie C, Cui R. Dihydroartemisinin enhances the anti-tumor activity of oxaliplatin in colorectal cancer cells by altering PRDX2-reactive oxygen species-mediated multiple signaling pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 98:153932. [PMID: 35104762 DOI: 10.1016/j.phymed.2022.153932] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/12/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Globally, colorectal cancer (CRC) is one of the leading causes of cancer-related deaths. Oxaliplatin based treatments are frequently used as chemotherapeutic methods for CRC, however, associated side effects and drug resistance often limit their clinical application. Dihydroartemisinin (DHA) induces apoptosis in various cancer cells by increasing reactive oxygen species (ROS) production. However, the direct target of DHA and underlying molecular mechanisms in oxaliplatin-mediated anti-tumor activities against CRC are unclear. METHODS We used 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT), flow cytometry, and colony formation assays to investigate cell phenotype alterations and ROS generation. We also used quantitative Real-Time PCR (qRT-PCR) and western blotting to measure relative gene and protein expression. Finally, an in vivo mouse xenograft model was used to assess the anti-tumor activity of oxaliplatin and DHA alone, and combinations. RESULTS DHA synergistically enhanced the anti-tumor activity of oxaliplatin in colon cancer cells by regulating ROS-mediated ER stress, signal transducer and activator of transcription 3 (STAT3), C-Jun-amino-terminal kinase (JNK), and p38 signaling pathways. Mechanistically, DHA increased ROS levels by inhibiting peroxiredoxin 2 (PRDX2) expression, and PRDX2 knockdown sensitized DHA-mediated cell growth inhibition and ROS production in CRC cells. A mouse xenograft model showed strong anti-tumor effects from combination treatments when compared with single agents. CONCLUSIONS We demonstrated an improved therapeutic strategy for CRC patients by combining DHA and oxaliplatin treatments.
Collapse
Affiliation(s)
- Yun Yu
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Department of Radiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Wenzhou University-Wenzhou Medical University Collaborative Innovation Center of Biomedical, Wenzhou 325035, China
| | - Didi Chen
- Department of Radiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Wenzhou key Laboratory of basic science and translational research of radiation oncology, Wenzhou, Zhejiang 325000, China
| | - Tao Wu
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Wenzhou University-Wenzhou Medical University Collaborative Innovation Center of Biomedical, Wenzhou 325035, China
| | - Haizhen Lin
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Department of Radiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Wenzhou key Laboratory of basic science and translational research of radiation oncology, Wenzhou, Zhejiang 325000, China
| | - Lianli Ni
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Wenzhou University-Wenzhou Medical University Collaborative Innovation Center of Biomedical, Wenzhou 325035, China
| | - Hehuan Sui
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Wenzhou University-Wenzhou Medical University Collaborative Innovation Center of Biomedical, Wenzhou 325035, China
| | - Sisi Xiao
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Canwei Wang
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Suping Jiang
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Wenzhou University-Wenzhou Medical University Collaborative Innovation Center of Biomedical, Wenzhou 325035, China
| | - Huanle Pan
- Department of Radiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Wenzhou key Laboratory of basic science and translational research of radiation oncology, Wenzhou, Zhejiang 325000, China
| | - Shaotang Li
- Department of Radiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Xiance Jin
- Department of Radiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Wenzhou key Laboratory of basic science and translational research of radiation oncology, Wenzhou, Zhejiang 325000, China
| | - Congying Xie
- Department of Radiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Wenzhou key Laboratory of basic science and translational research of radiation oncology, Wenzhou, Zhejiang 325000, China.
| | - Ri Cui
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Department of Radiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Wenzhou University-Wenzhou Medical University Collaborative Innovation Center of Biomedical, Wenzhou 325035, China.
| |
Collapse
|
14
|
Pituitary Adenylate Cyclase-Activating Polypeptide Protects Corneal Epithelial Cells against UV-B-Induced Apoptosis via ROS/JNK Pathway Inhibition. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12073435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PACAP is widely expressed throughout the body. It exerts a beneficial role in the eye, including the cornea. The corneal epithelium is regularly exposed to diverse types of insults, including ultraviolet B (UV-B) radiation. Previously, we showed the protective role played by PACAP in counteracting UV-B ray insults in human corneal endothelial cells; however, its involvement in corneal epithelium protection against ROS induced by UV-B radiation, and the underlying mechanisms, remain to be determined. Here, we demonstrated that the peptide treatment reduced UV-B-induced ROS generation by playing an anti-apoptotic role via JNK-signaling pathway inhibition. Overall, our results can provide guidance in the therapeutic use of PACAP for the treatment of epithelial corneal damage.
Collapse
|
15
|
Yang MH, Baek SH, Hwang ST, Um JY, Ahn KS. Corilagin exhibits differential anticancer effects through the modulation of STAT3/5 and MAPKs in human gastric cancer cells. Phytother Res 2022; 36:2449-2462. [PMID: 35234310 DOI: 10.1002/ptr.7419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 12/24/2022]
Abstract
Corilagin (CLG) is a hydrolyzable tannin and possesses various pharmacological activities. Here, we investigated the impact of CLG as an anti-tumor agent against human gastric tumor cells. We observed that CLG could cause negative regulation of JAKs-Src-STAT3/5 signaling axis in SNU-1 cells, but did not affect these pathways in SNU-16 cells. Interestingly, CLG promoted the induction of mitogen-activated protein kinases (MAPKs) signaling pathways in only SNU-16 cells, but not in the SNU-1 cells. CLG exhibited apoptotic effects that caused an increased accumulation of the cells in sub-G1 phase and caspase-3 activation in both SNU-1 and SNU-16 cell lines. We also noticed that CLG and docetaxel co-treatment could exhibit significantly enhanced apoptotic effects against SNU-1 cells. Moreover, the combinations treatment of CLG and docetaxel markedly inhibited cell growth, phosphorylation of JAK-Src-STAT3 and induced substantial apoptosis. Additionally, pharmacological inhibition of JNK, p38, and ERK substantially blocked CLG-induced activation of MAPKs, cell viability, and apoptosis, thereby implicating the pivotal role of MAPKs in the observed anti-cancer effects of CLG. Taken together, our data suggest that CLG could effectively block constitutive STAT3/5 activation in SNU-1 cells but induce sustained MAPKs activation in SNU-16 cells.
Collapse
Affiliation(s)
- Min Hee Yang
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, Republic of Korea.,Department of Science in Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Seung Ho Baek
- College of Korean Medicine, Dongguk University, Goyang-si, South Korea
| | - Sun Tae Hwang
- Department of Science in Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jae-Young Um
- Department of Science in Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Kwang Seok Ahn
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, Republic of Korea.,Department of Science in Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
16
|
Activity-Dependent Neuroprotective Protein (ADNP)-Derived Peptide (NAP) Counteracts UV-B Radiation-Induced ROS Formation in Corneal Epithelium. Antioxidants (Basel) 2022; 11:antiox11010128. [PMID: 35052632 PMCID: PMC8773440 DOI: 10.3390/antiox11010128] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/03/2022] [Accepted: 01/05/2022] [Indexed: 02/06/2023] Open
Abstract
The corneal epithelium, the outermost layer of the cornea, acts as a dynamic barrier preventing access to harmful agents into the intraocular space. It is subjected daily to different insults, and ultraviolet B (UV-B) irradiation represents one of the main causes of injury. In our previous study, we demonstrated the beneficial effects of pituitary adenylate cyclase-activating polypeptide (PACAP) against UV-B radiation damage in the human corneal endothelium. Some of its effects are mediated through the activation of the intracellular factor, known as the activity-dependent protein (ADNP). In the present paper, we have investigated the role of ADNP and the small peptide derived from ADNP, known as NAP, in the corneal epithelium. Here, we have demonstrated, for the first time, ADNP expression in human and rabbit corneal epithelium as well as its protective effect by treating the corneal epithelial cells exposed to UV-B radiations with NAP. Our results showed that NAP treatment prevents ROS formation by reducing UV-B-irradiation-induced apoptotic cell death and JNK signalling pathway activation. Further investigations are needed to deeply investigate the possible therapeutic use of NAP to counteract corneal UV-B damage.
Collapse
|
17
|
Research Progress on Fumonisin B1 Contamination and Toxicity: A Review. Molecules 2021; 26:molecules26175238. [PMID: 34500671 PMCID: PMC8434385 DOI: 10.3390/molecules26175238] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 12/19/2022] Open
Abstract
Fumonisin B1 (FB1), belonging to the member of fumonisins, is one of the most toxic mycotoxins produced mainly by Fusarium proliferatum and Fusarium verticillioide. FB1 has caused extensive contamination worldwide, mainly in corn, rice, wheat, and their products, while it also poses a health risk and is toxic to animals and human. It has been shown to cause oxidative stress, endoplasmic reticulum stress, cellular autophagy, and apoptosis. This review focuses on the current stage of FB1 contamination, its toxic effects of acute toxicity, immunotoxicity, organ toxicity, and reproductive toxicity on animals and humans. The potential toxic mechanisms of FB1 are discussed. One of the main aims of the work is to provide a reliable reference strategy for understanding the occurrence and toxicity of FB1.
Collapse
|
18
|
Extracellular Vesicles under Oxidative Stress Conditions: Biological Properties and Physiological Roles. Cells 2021; 10:cells10071763. [PMID: 34359933 PMCID: PMC8306565 DOI: 10.3390/cells10071763] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/04/2021] [Accepted: 07/09/2021] [Indexed: 12/14/2022] Open
Abstract
Under physio-pathological conditions, cells release membrane-surrounded structures named Extracellular Vesicles (EVs), which convey their molecular cargo to neighboring or distant cells influencing their metabolism. Besides their involvement in the intercellular communication, EVs might represent a tool used by cells to eliminate unnecessary/toxic material. Here, we revised the literature exploring the link between EVs and redox biology. The first proof of this link derives from evidence demonstrating that EVs from healthy cells protect target cells from oxidative insults through the transfer of antioxidants. Oxidative stress conditions influence the release and the molecular cargo of EVs that, in turn, modulate the redox status of target cells. Oxidative stress-related EVs exert both beneficial or harmful effects, as they can carry antioxidants or ROS-generating enzymes and oxidized molecules. As mediators of cell-to-cell communication, EVs are also implicated in the pathophysiology of oxidative stress-related diseases. The review found evidence that numerous studies speculated on the role of EVs in redox signaling and oxidative stress-related pathologies, but few of them unraveled molecular mechanisms behind this complex link. Thus, the purpose of this review is to report and discuss this evidence, highlighting that the analysis of the molecular content of oxidative stress-released EVs (reminiscent of the redox status of originating cells), is a starting point for the use of EVs as diagnostic and therapeutic tools in oxidative stress-related diseases.
Collapse
|
19
|
Chen Y, Liu Q, Liu J, Wei P, Li B, Wang N, Liu Z, Wang Z. Revealing the Modular Similarities and Differences Among Alzheimer's Disease, Vascular Dementia, and Parkinson's Disease in Genomic Networks. Neuromolecular Med 2021; 24:125-138. [PMID: 34117614 DOI: 10.1007/s12017-021-08670-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 05/31/2021] [Indexed: 02/05/2023]
Abstract
Alzheimer's disease (AD), vascular dementia (VD), and Parkinson's disease (PD) exert increasingly lethal or disabling effects on humans, but the associations among these diseases at the molecular level remain unclear. In our research, lists of genes related to these three diseases were acquired from public databases. We constructed gene-gene networks of the lists of disease-related genes using the STRING database and selected the plug-in MCODE as the most suitable method to divide the three disease-associated networks into modules through an entropy calculation. Notably, 1173 AD-related, 203 VD-related, and 722 PD-related genes as well as 72 overlapping genes were observed among the three diseases. By dividing the modules from the gene network, we divided the AD-related gene network into 27 modules, the VD-related gene network into 8 modules, and the PD-related gene network into 17 modules. After the enrichment analysis of each disease-related gene, 146 overlapping biological processes and 32 overlapping pathways were identified. Ultimately, through similarity analysis of the genes, biological processes, and pathways, we found that AD and VD were the most closely related at the biological process and pathway levels, with similarity coefficients of 0.2784 and 0.3626, respectively. After analyzing the overlapping gene network, we found that INS might play an important role in the network and that insulin and its signaling pathways may play a key role in these neurodegenerative diseases. Our research illustrates a new method for in-depth research on the three diseases, which may accelerate the progress of developing new therapeutics and may be applied to prevent neurodegenerative diseases.
Collapse
Affiliation(s)
- Yafei Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiong Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jun Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Penglu Wei
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Bing Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Nongyun Wang
- State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Sichuan, China
| | - Zhenquan Liu
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China.
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.
| | - Zhong Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
20
|
Zhang XX, Wang HY, Yang XF, Lin ZQ, Shi N, Chen CJ, Yao LB, Yang XM, Guo J, Xia Q, Xue P. Alleviation of acute pancreatitis-associated lung injury by inhibiting the p38 mitogen-activated protein kinase pathway in pulmonary microvascular endothelial cells. World J Gastroenterol 2021; 27:2141-2159. [PMID: 34025070 PMCID: PMC8117735 DOI: 10.3748/wjg.v27.i18.2141] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 02/06/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Previous reports have suggested that the p38 mitogen-activated protein kinase signaling pathway is involved in the development of severe acute pancreatitis (SAP)-related acute lung injury (ALI). Inhibition of p38 by SB203580 blocked the inflammatory responses in SAP-ALI. However, the precise mechanism associated with p38 is unclear, particularly in pulmonary microvascular endothelial cell (PMVEC) injury.
AIM To determine its role in the tumor necrosis factor-alpha (TNF-α)-induced inflammation and apoptosis of PMVECs in vitro. We then conducted in vivo experiments to confirm the effect of SB203580-mediated p38 inhibition on SAP-ALI.
METHODS In vitro, PMVEC were transfected with mitogen-activated protein kinase kinase 6 (Glu), which constitutively activates p38, and then stimulated with TNF-α. Flow cytometry and western blotting were performed to detect the cell apoptosis and inflammatory cytokine levels, respectively. In vivo, SAP-ALI was induced by 5% sodium taurocholate and three different doses of SB203580 (2.5, 5.0 or 10.0 mg/kg) were intraperitoneally injected prior to SAP induction. SAP-ALI was assessed by performing pulmonary histopathology assays, measuring myeloperoxidase activity, conducting arterial blood gas analyses and measuring TNF-α, interleukin (IL)-1β and IL-6 levels. Lung microvascular permeability was measured by determining bronchoalveolar lavage fluid protein concentration, Evans blue extravasation and ultrastructural changes in PMVECs. The apoptotic death of pulmonary cells was confirmed by performing a terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling analysis and examining the Bcl2, Bax, Bim and cle-caspase3 levels. The proteins levels of P-p38, NFκB, IκB, P-signal transducer and activator of transcription-3, nuclear factor erythroid 2-related factor 2, HO-1 and Myd88 were detected in the lungs to further evaluate the potential mechanism underlying the protective effect of SB203580.
RESULTS In vitro, mitogen-activated protein kinase (Glu) transfection resulted in higher apoptotic rates and cytokine (IL-1β and IL-6) levels in TNF-α-treated PMVECs. In vivo, SB2035080 attenuated lung histopathological injury, decreased inflammatory activity (TNF-α, IL-1β, IL-6 and myeloperoxidase) and preserved pulmonary function. Furthermore, SB203580 significantly reversed changes in the bronchoalveolar lavage fluid protein concentration, Evans blue accumulation, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling-positive cell numbers, apoptosis-related proteins (cle-caspase3, Bim and Bax) and endothelial microstructure. Moreover, SB203580 significantly reduced the pulmonary P-p38, NFκB, P-signal transducer and activator of transcription-3 and Myd88 levels but increased the IκB and HO-1 levels.
CONCLUSION p38 inhibition may protect against SAP-ALI by alleviating inflammation and the apoptotic death of PMVECs.
Collapse
Affiliation(s)
- Xiao-Xin Zhang
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Hao-Yang Wang
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Xue-Fei Yang
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Zi-Qi Lin
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Na Shi
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Chan-Juan Chen
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Lin-Bo Yao
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Xin-Min Yang
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Jia Guo
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Qing Xia
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Ping Xue
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
21
|
Sohn E, Kim YJ, Jeong SJ. Korean traditional herbal formula Soshiho-tang attenuates memory impairment and neuronal damage in mice with amyloid-beta-induced Alzheimer's disease. Integr Med Res 2021; 10:100723. [PMID: 33898246 PMCID: PMC8059063 DOI: 10.1016/j.imr.2021.100723] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 02/05/2021] [Accepted: 03/17/2021] [Indexed: 11/10/2022] Open
Abstract
Background Soshiho-tang (SST), also known as Xiaochaihu-tang in China and Sho-saiko-to in Japan, is an Oriental herbal formula traditionally used to treat febrile diseases. Recently, several in vitro and in vivo studies have reported the anti-cancer, anti-liver disease, and anti-inflammatory activities of SST. However, there is little evidence of its effects on neurological diseases. We previously reported the inhibitory effects of SST on in vitro acetylcholinesterase (AChE) activation and amyloid-β (Aβ) aggregation, which are crucial hallmarks of Alzheimer's disease (AD). In the present study, we report that SST has preventive effects on memory impairment and neuronal cell changes in an Aβ-induced AD-like mouse model. Methods Male mice underwent injection of Aβ aggregates and administered SST (500, 1,000, or 2,000 mg/kg/day) for 20 days. Behavioral tests (passive avoidance task [PAT] and Morris water maze [MWM] test) were conducted. Lastly, brain sections were obtained from sacrificed mice for quantitative analysis. Results Intracerebroventricular (ICV) injection of Aβ aggregates significantly decreased the latency time in the PAT and MWM test compared to normal control. In contrast, SST administration markedly reversed the latency caused by Aβ injection. Additionally, our data revealed that SST-mediated improvements in memory impairment are related to its neuroprotective and anti-neuroinflammatory effects. On histological analysis, SST treatment protected neuronal loss and damage as well as microglial activation, and ameliorated amount of Aβ in brain of mouse model of AD. Conclusion Our findings suggest that SST may be a promising candidate for the development of novel drugs for AD.
Collapse
Affiliation(s)
- Eunjin Sohn
- Clinical Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Yu Jin Kim
- Clinical Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Soo-Jin Jeong
- Clinical Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| |
Collapse
|
22
|
Akhigbe R, Ajayi A. The impact of reactive oxygen species in the development of cardiometabolic disorders: a review. Lipids Health Dis 2021; 20:23. [PMID: 33639960 PMCID: PMC7916299 DOI: 10.1186/s12944-021-01435-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 01/26/2021] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress, an alteration in the balance between reactive oxygen species (ROS) generation and antioxidant buffering capacity, has been implicated in the pathogenesis of cardiometabolic disorders (CMD). At physiological levels, ROS functions as signalling mediators, regulates various physiological functions such as the growth, proliferation, and migration endothelial cells (EC) and smooth muscle cells (SMC); formation and development of new blood vessels; EC and SMC regulated death; vascular tone; host defence; and genomic stability. However, at excessive levels, it causes a deviation in the redox state, mediates the development of CMD. Multiple mechanisms account for the rise in the production of free radicals in the heart. These include mitochondrial dysfunction and uncoupling, increased fatty acid oxidation, exaggerated activity of nicotinamide adenine dinucleotide phosphate oxidase (NOX), reduced antioxidant capacity, and cardiac metabolic memory. The purpose of this study is to discuss the link between oxidative stress and the aetiopathogenesis of CMD and highlight associated mechanisms. Oxidative stress plays a vital role in the development of obesity and dyslipidaemia, insulin resistance and diabetes, hypertension via various mechanisms associated with ROS-led inflammatory response and endothelial dysfunction.
Collapse
Affiliation(s)
- Roland Akhigbe
- Department of Physiology, College of Medicine, Ladoke Akintola University of Technology, Ogbomoso, Oyo State Nigeria
- Reproductive Biology and Toxicology Research Laboratories, Oasis of Grace Hospital, Osogbo, Osun State Nigeria
- Department of Chemical Sciences, Kings University, Odeomu, Osun Nigeria
| | - Ayodeji Ajayi
- Department of Physiology, College of Medicine, Ladoke Akintola University of Technology, Ogbomoso, Oyo State Nigeria
| |
Collapse
|
23
|
The neurotoxic effect of long-term use of high-dose Pregabalin and the role of alpha tocopherol in amelioration: implication of MAPK signaling with oxidative stress and apoptosis. Naunyn Schmiedebergs Arch Pharmacol 2020; 393:1635-1648. [DOI: 10.1007/s00210-020-01875-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 04/17/2020] [Indexed: 12/31/2022]
|
24
|
The Role of Reactive Oxygen Species in the Life Cycle of the Mitochondrion. Int J Mol Sci 2020; 21:ijms21062173. [PMID: 32245255 PMCID: PMC7139706 DOI: 10.3390/ijms21062173] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/12/2020] [Accepted: 03/19/2020] [Indexed: 02/07/2023] Open
Abstract
Currently, it is known that, in living systems, free radicals and other reactive oxygen and nitrogen species play a double role, because they can cause oxidative damage and tissue dysfunction and serve as molecular signals activating stress responses that are beneficial to the organism. It is also known that mitochondria, because of their capacity to produce free radicals, play a major role in tissue oxidative damage and dysfunction and provide protection against excessive tissue dysfunction through several mechanisms, including the stimulation of permeability transition pore opening. This process leads to mitoptosis and mitophagy, two sequential processes that are a universal route of elimination of dysfunctional mitochondria and is essential to protect cells from the harm due to mitochondrial disordered metabolism. To date, there is significant evidence not only that the above processes are induced by enhanced reactive oxygen species (ROS) production, but also that such production is involved in the other phases of the mitochondrial life cycle. Accumulating evidence also suggests that these effects are mediated through the regulation of the expression and the activity of proteins that are engaged in processes such as genesis, fission, fusion, and removal of mitochondria. This review provides an account of the developments of the knowledge on the dynamics of the mitochondrial population, examining the mechanisms governing their genesis, life, and death, and elucidating the role played by free radicals in such processes.
Collapse
|
25
|
Cho KB, Park CH, Kim J, Tin TD, Kwak SH. Protective role of curcumin against lipopolysaccharide-induced inflammation and apoptosis in human neutrophil. Anesth Pain Med (Seoul) 2020; 15:41-48. [PMID: 33329788 PMCID: PMC7713868 DOI: 10.17085/apm.2020.15.1.41] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/23/2019] [Accepted: 10/04/2019] [Indexed: 11/17/2022] Open
Abstract
Background Sepsis, an uncontrolled host response to infection, may be life-threatening organ injury. Neutrophils play a critical role in regulation of host immune response to infection. Curcumin, known as a spice and food coloring agent, possesses anti-inflammatory properties. In this study, we investigated the effects of curcumin on lipopolysaccharide (LPS)-induced neutrophil activation with its signaling pathways. Methods Isolated human neutrophils were incubated without or with LPS and curcumin, and the expression of pro-inflammatory cytokines, such as tumor necrosis factor alpha (TNF-α), interleukin (IL)-6, and IL-8 were assessed by enzyme-linked immunosorbent assays. The expression of mitogen-activated protein kinases such as p38, extracellularsignal-regulated kinase (ERK)1/2, and c-Jun N-terminal kinase (JNK) were evaluated by Western blot analysis. Neutrophil apoptosis was also measured by fluorescence-activated cell sorting (annexin V/propidium iodide) in LPS-stimulated neutrophils under treatment with curcumin. Results Curcumin attenuated expression of TNF-α, IL-6, and IL-8 and the phosphorylation levels of p38 and JNK, but not ERK1/2, in LPS-stimulated neutrophils. Additionally, curcumin restored the delayed neutrophil apoptosis by LPS-stimulated neutrophils(19.7 ± 3.2 to 38.2 ± 0.5%, P < 0.05). Conclusions Our results reveal the underlying mechanism of how curcumin attenuate neutrophil activation and suggest potential clinic applications of curcumin supplementation for patients with severe sepsis and septic shock. Additional clinical studies are required to confirm these in vitro findings.
Collapse
Affiliation(s)
- Kyu Bum Cho
- Department of Anesthesiology and Pain Medicine, Kwangju Christian Hospital, Gwangju, Korea
| | - Cheon Hee Park
- Department of Anesthesiology and Pain Medicine, Kwangju Christian Hospital, Gwangju, Korea
| | - Joungmin Kim
- Department of Anesthesiology and Pain Medicine, Chonnam National University Medical School and Hospital, Gwangju, Korea
| | - Tran Duc Tin
- Brain Korea 21 Project, Center for Creative Biomedical Scientists at Chonnam National University, Gwangju, Korea
| | - Sang-Hyun Kwak
- Department of Anesthesiology and Pain Medicine, Chonnam National University Medical School and Hospital, Gwangju, Korea.,Brain Korea 21 Project, Center for Creative Biomedical Scientists at Chonnam National University, Gwangju, Korea
| |
Collapse
|
26
|
Balakrishnan R, Vijayraja D, Jo SH, Ganesan P, Su-Kim I, Choi DK. Medicinal Profile, Phytochemistry, and Pharmacological Activities of Murraya koenigii and its Primary Bioactive Compounds. Antioxidants (Basel) 2020; 9:E101. [PMID: 31991665 PMCID: PMC7070712 DOI: 10.3390/antiox9020101] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/12/2020] [Accepted: 01/13/2020] [Indexed: 12/13/2022] Open
Abstract
The discovery of several revitalizing molecules that can stop or reduce the pathology of a wide range of diseases will be considered a major breakthrough of the present time. Available synthetic compounds may provoke side effects and health issues, which heightens the need for molecules from plants and other natural resources under discovery as potential methods of replacing synthetic compounds. In traditional medicinal therapies, several plant extracts and phytochemicals have been reported to impart remedial effects as better alternatives. Murraya koenigii (M. koenigii) belongs to the Rutaceae family, which is commonly used as a medicinally important herb of Indian origin in the Ayurvedic system of medicine. Previous reports have demonstrated that the leaves, roots, and bark of this plant are rich sources of carbazole alkaloids, which produce potent biological activities and pharmacological effects. These include antioxidant, antidiabetic, anti-inflammatory, antitumor, and neuroprotective activities. The present review provides insight into the major components of M. koenigii and their pharmacological activities against different pathological conditions. The review also emphasizes the need for more research on the molecular basis of such activity in various cellular and animal models to validate the efficacy of M. koenigii and its derivatives as potent therapeutic agents.
Collapse
Affiliation(s)
- Rengasamy Balakrishnan
- Department of Applied Life Sciences and Integrated Bioscience, Graduate School, Konkuk University, Chungju 27478, Korea; (R.B.); (S.-H.J.)
| | - Dhanraj Vijayraja
- Department of Biochemistry, Rev. Jacob Memorial Christian College, Ambilikkai 624612, Tamilnadu, India;
| | - Song-Hee Jo
- Department of Applied Life Sciences and Integrated Bioscience, Graduate School, Konkuk University, Chungju 27478, Korea; (R.B.); (S.-H.J.)
| | - Palanivel Ganesan
- Department of Integrated Bio Science and Biotechnology, College of Biomedical and Health Science, Nanotechnology Research Center, Konkuk University, Chungju 27478, Korea;
| | - In Su-Kim
- Department of Applied Life Sciences and Integrated Bioscience, Graduate School, Konkuk University, Chungju 27478, Korea; (R.B.); (S.-H.J.)
| | - Dong-Kug Choi
- Department of Applied Life Sciences and Integrated Bioscience, Graduate School, Konkuk University, Chungju 27478, Korea; (R.B.); (S.-H.J.)
- Department of Integrated Bio Science and Biotechnology, College of Biomedical and Health Science, Nanotechnology Research Center, Konkuk University, Chungju 27478, Korea;
| |
Collapse
|
27
|
Satish S, Perlin DS. Echinocandin Resistance in Aspergillus fumigatus Has Broad Implications for Membrane Lipid Perturbations That Influence Drug-Target Interactions. Microbiol Insights 2019; 12:1178636119897034. [PMID: 35185336 PMCID: PMC8855445 DOI: 10.1177/1178636119897034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/13/2019] [Indexed: 01/13/2023] Open
Abstract
Echinocandin drugs target the fungal enzyme β-(1,3)-glucan synthase (GS), which is required for the synthesis of cell wall component β-(1,3)-d-glucan. They are first-line therapy for Candida infections but are increasingly used as second-line therapy for Aspergillus infections. Resistance to echinocandins has been mainly studied in Candida and occurs due to mutations in FKS genes encoding GS. In our recent report, we identified a novel mechanism of echinocandin resistance in Aspergillus fumigatus. We showed that caspofungin exposure modifies GS, rendering it insensitive to echinocandins. This mechanism of resistance involved alteration of the GS lipid microenvironment and was mediated via an off-target effect on mitochondria leading to increased reactive oxygen species (ROS). We hypothesized that caspofungin-induced ROS alters the lipid composition around GS, changing its conformation and making it insensitive to echinocandins. In this commentary, we review both fks1-dependent and fks1-independent mechanisms of echinocandin resistance in A fumigatus. We believe this new resistance mechanism is also conserved among Candida spp. with implications for drug tolerance and/or resistance. Furthermore, we propose that ROS acts as a signaling molecule regulating lipid biogenesis, which impacts the structure-function of membrane proteins with implications for other types of drug-target interactions.
Collapse
Affiliation(s)
- Shruthi Satish
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - David S Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| |
Collapse
|
28
|
Shahid M, Hermes EL, Chandra D, Tauseef M, Siddiqui MR, Faridi MH, Wu MX. Emerging Potential of Immediate Early Response Gene X-1 in Cardiovascular and Metabolic Diseases. J Am Heart Assoc 2019; 7:e009261. [PMID: 30373431 PMCID: PMC6404175 DOI: 10.1161/jaha.118.009261] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mohd Shahid
- Department of Pharmaceutical SciencesChicago State University College of PharmacyChicagoIL
| | - Erin L. Hermes
- Department of Pharmaceutical SciencesChicago State University College of PharmacyChicagoIL
| | - David Chandra
- The Wellman Center for PhotomedicineDepartment of DermatologyMassachusetts General HospitalHarvard Medical SchoolBostonMA
| | - Mohammad Tauseef
- Department of Pharmaceutical SciencesChicago State University College of PharmacyChicagoIL
| | - M. Rizwan Siddiqui
- Department of PediatricsNorthwestern University Feinberg School of MedicineChicagoIL
| | - M. Hafeez Faridi
- Department of Pharmaceutical SciencesChicago State University College of PharmacyChicagoIL
| | - Mei X. Wu
- The Wellman Center for PhotomedicineDepartment of DermatologyMassachusetts General HospitalHarvard Medical SchoolBostonMA
- Division of Health Sciences and TechnologyHarvard‐Massachusetts Institute of TechnologyBostonMA
| |
Collapse
|
29
|
The Role of Signaling Pathways of Inflammation and Oxidative Stress in Development of Senescence and Aging Phenotypes in Cardiovascular Disease. Cells 2019; 8:cells8111383. [PMID: 31689891 PMCID: PMC6912541 DOI: 10.3390/cells8111383] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/24/2019] [Accepted: 10/28/2019] [Indexed: 12/28/2022] Open
Abstract
The ASK1-signalosome→p38 MAPK and SAPK/JNK signaling networks promote senescence (in vitro) and aging (in vivo, animal models and human cohorts) in response to oxidative stress and inflammation. These networks contribute to the promotion of age-associated cardiovascular diseases of oxidative stress and inflammation. Furthermore, their inhibition delays the onset of these cardiovascular diseases as well as senescence and aging. In this review we focus on whether the (a) ASK1-signalosome, a major center of distribution of reactive oxygen species (ROS)-mediated stress signals, plays a role in the promotion of cardiovascular diseases of oxidative stress and inflammation; (b) The ASK1-signalosome links ROS signals generated by dysfunctional mitochondrial electron transport chain complexes to the p38 MAPK stress response pathway; (c) the pathway contributes to the sensitivity and vulnerability of aged tissues to diseases of oxidative stress; and (d) the importance of inhibitors of these pathways to the development of cardioprotection and pharmaceutical interventions. We propose that the ASK1-signalosome regulates the progression of cardiovascular diseases. The resultant attenuation of the physiological characteristics of cardiomyopathies and aging by inhibition of the ASK1-signalosome network lends support to this conclusion. Importantly the ROS-mediated activation of the ASK1-signalosome p38 MAPK pathway suggests it is a major center of dissemination of the ROS signals that promote senescence, aging and cardiovascular diseases. Pharmacological intervention is, therefore, feasible through the continued identification of potent, non-toxic small molecule inhibitors of either ASK1 or p38 MAPK activity. This is a fruitful future approach to the attenuation of physiological aspects of mammalian cardiomyopathies and aging.
Collapse
|
30
|
Resistance Training, Antioxidant Status, and Antioxidant Supplementation. Int J Sport Nutr Exerc Metab 2019; 29:539-547. [PMID: 30859847 DOI: 10.1123/ijsnem.2018-0339] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 02/08/2019] [Accepted: 02/21/2019] [Indexed: 11/18/2022]
Abstract
Resistance training is known to promote the generation of reactive oxygen species. Although this can likely upregulate the natural, endogenous antioxidant defense systems, high amounts of reactive oxygen species can cause skeletal muscle damage, fatigue, and impair recovery. To prevent these, antioxidant supplements are commonly consumed along with exercise. Recently, it has been shown that these reactive oxygen species are important for the cellular adaptation process, acting as redox signaling molecules. However, most of the research regarding antioxidant status and antioxidant supplementation with exercise has focused on endurance training. In this review, the authors discuss the evidence for resistance training modulating the antioxidant status. They also highlight the effects of combining antioxidant supplementation with resistance training on training-induced skeletal muscle adaptations.
Collapse
|
31
|
Liu X, Wang J, Fan Y, Xu Y, Xie M, Yuan Y, Li H, Qian X. Particulate Matter Exposure History Affects Antioxidant Defense Response of Mouse Lung to Haze Episodes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:9789-9799. [PMID: 31328514 DOI: 10.1021/acs.est.9b01068] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Few studies have focused on the association between previous particulate matter (PM) exposure and antioxidant defense response to a haze challenge. In this study, a combined exposure model was used to investigate whether and how PM exposure history affected the antioxidant defense response to haze episodes. At first, C57BL/6 male mice were randomly assigned to three groups and exposed for 5 weeks to whole ambient air, ambient air containing a low (≤75 μg/m3) PM concentration, and filtered air, which simulated different exposure history of high, relatively low, and almost zero PM concentrations. Thereafter, all mice underwent a 3-day haze exposure followed by a 7-day exposure to filtered air. The indexes involved in the primary and secondary antioxidant defense response were determined after pre-exposure and haze exposure, as well as 1 day, 3 days, and 7 days after haze exposure. Our research demonstrated repeated exposure to a high PM concentration compromised the antioxidant defense response and was accompanied by an increased susceptibility to a haze challenge. Conversely, mice with a lower PM exposure developed an oxidative stress adaption that protected them against haze challenge more efficiently and in a more timely manner than was the case in mice without PM exposure history.
Collapse
Affiliation(s)
- Xuemei Liu
- State Key Laboratory of Pollution Control and Resources Reuse , School of the Environment, Nanjing University , Nanjing 210023 , P. R. China
- Huaiyin Institute of Technology , School of Chemical Engineering , Huaian 223001 , P. R. China
| | - Jinhua Wang
- State Key Laboratory of Pollution Control and Resources Reuse , School of the Environment, Nanjing University , Nanjing 210023 , P. R. China
| | - Yifan Fan
- State Key Laboratory of Pollution Control and Resources Reuse , School of the Environment, Nanjing University , Nanjing 210023 , P. R. China
| | - Yue Xu
- State Key Laboratory of Pollution Control and Resources Reuse , School of the Environment, Nanjing University , Nanjing 210023 , P. R. China
| | - Mengxing Xie
- State Key Laboratory of Pollution Control and Resources Reuse , School of the Environment, Nanjing University , Nanjing 210023 , P. R. China
| | - Yu Yuan
- State Key Laboratory of Pollution Control and Resources Reuse , School of the Environment, Nanjing University , Nanjing 210023 , P. R. China
| | - Huiming Li
- School of Environment , Nanjing Normal University , Nanjing 210023 , P. R. China
| | - Xin Qian
- State Key Laboratory of Pollution Control and Resources Reuse , School of the Environment, Nanjing University , Nanjing 210023 , P. R. China
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET) , Nanjing University of Information Science & Technology , Nanjing 210044 , P. R. China
| |
Collapse
|
32
|
The roles of p38 MAPK → COX2 and NF-κB → COX2 signal pathways in age-related testosterone reduction. Sci Rep 2019; 9:10556. [PMID: 31332209 PMCID: PMC6646396 DOI: 10.1038/s41598-019-46794-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 01/31/2019] [Indexed: 12/17/2022] Open
Abstract
In our study, we explored changes in the redox status and inflammatory response in the testes of the SAMP8 model of varying ages (2, 4, 8, 10 months old) compared with control mice SAMR1 by the methods of immunohistochemical staining, Western blotting, RT-PCR and Luminex multi-analyte cytokine profiling. We found that as ROS and inflammation levels increased during aging, steroidogenic enzymes (StAR and P450scc) reduced and led to the decline of testosterone production eventually. The pathways of P38 MAPK → COX2 and NF-κB → COX2 were detected by using specific inhibitors of SB203580 and Bay 11-7082 in isolated Leydig cells. These results indicated that activation of both p38 MAPK → COX2 and NF-κB → COX2 signaling pathways are functionally linked to the oxidative stress response and chronic inflammation during aging, and mediate their inhibitory effects on testosterone production.
Collapse
|
33
|
Di Meo S, Napolitano G, Venditti P. Mediators of Physical Activity Protection against ROS-Linked Skeletal Muscle Damage. Int J Mol Sci 2019; 20:E3024. [PMID: 31226872 PMCID: PMC6627449 DOI: 10.3390/ijms20123024] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/12/2019] [Accepted: 06/17/2019] [Indexed: 12/24/2022] Open
Abstract
Unaccustomed and/or exhaustive exercise generates excessive free radicals and reactive oxygen and nitrogen species leading to muscle oxidative stress-related damage and impaired contractility. Conversely, a moderate level of free radicals induces the body's adaptive responses. Thus, a low oxidant level in resting muscle is essential for normal force production, and the production of oxidants during each session of physical training increases the body's antioxidant defenses. Mitochondria, NADPH oxidases and xanthine oxidases have been identified as sources of free radicals during muscle contraction, but the exact mechanisms underlying exercise-induced harmful or beneficial effects yet remain elusive. However, it is clear that redox signaling influences numerous transcriptional activators, which regulate the expression of genes involved in changes in muscle phenotype. The mitogen-activated protein kinase family is one of the main links between cellular oxidant levels and skeletal muscle adaptation. The family components phosphorylate and modulate the activities of hundreds of substrates, including transcription factors involved in cell response to oxidative stress elicited by exercise in skeletal muscle. To elucidate the complex role of ROS in exercise, here we reviewed the literature dealing on sources of ROS production and concerning the most important redox signaling pathways, including MAPKs that are involved in the responses to acute and chronic exercise in the muscle, particularly those involved in the induction of antioxidant enzymes.
Collapse
Affiliation(s)
- Sergio Di Meo
- Dipartimento di Biologia, Università di Napoli Federico II, Complesso Universitario Monte Sant'Angelo, Via Cinthia, I-80126 Napoli, Italy.
| | - Gaetana Napolitano
- Dipartimento di Scienze e Tecnologie, Università degli Studi di Napoli Parthenope, via Acton n. 38-I-80133 Napoli, Italy.
| | - Paola Venditti
- Dipartimento di Biologia, Università di Napoli Federico II, Complesso Universitario Monte Sant'Angelo, Via Cinthia, I-80126 Napoli, Italy.
| |
Collapse
|
34
|
Deng Z, Shi F, Zhou Z, Sun F, Sun MH, Sun Q, Chen L, Li D, Jiang CY, Zhao RZ, Cui D, Wang XJ, Jing YF, Xia SJ, Han BM. M1 macrophage mediated increased reactive oxygen species (ROS) influence wound healing via the MAPK signaling in vitro and in vivo. Toxicol Appl Pharmacol 2019; 366:83-95. [PMID: 30690042 DOI: 10.1016/j.taap.2019.01.022] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 01/21/2019] [Accepted: 01/24/2019] [Indexed: 01/08/2023]
Abstract
Thulium laser resection of the prostate (TmLRP), a major treatment for benign prostatic hyperplasia (BPH), has several postoperative complications that affect the patients' quality of life. The aim of this study was to investigate the effect of the M1 macrophage-secreted reactive oxygen species (ROS) on prostatic wound healing, and the role of MAPK signaling in this process. A co-culture model in vitro was established using macrophages and prostate epithelial or stromal cells. Cell proliferation, migration, apoptosis, MAPK pathway-related gene expression levels were evaluated by standard assays. In addition, an in vivo model of prostatectomy was established in beagles by subjecting them to TmLRP, and were either treated with N-acetyl-L-cysteine (NAC) and or placebo. Wound healing and re-epithelialization were analyzed histopathologically in both groups, in addition to macrophage polarization, oxidative stress levels and MAPK pathway-related proteins expressions. Intracellular ROS levels were significantly increased in the prostate epithelial and stromal cells following co-culture with M1-like macrophages and H2O2 exposure via MAPK activation, which affected their proliferation, migration and apoptosis, and delayed the wound healing process. The cellular functions and wound healing capacity of the prostate cells were restored by blocking or clearing the macrophage-secreted ROS. In the beagle model, increased ROS levels impaired cellular functions, and appropriate removing ROS accelerated the wound healing process.
Collapse
Affiliation(s)
- Zheng Deng
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Fei Shi
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Zheng Zhou
- Department of Urology, Shanghai General Hospital Affiliated to Nanjing Medical University, Shanghai 200080, China
| | - Feng Sun
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; Institute of Urology, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Meng-Hao Sun
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; Institute of Urology, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Qian Sun
- Department of Urology, Shanghai General Hospital Affiliated to Nanjing Medical University, Shanghai 200080, China
| | - Lei Chen
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Deng Li
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Chen-Yi Jiang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Rui-Zhe Zhao
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Di Cui
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; Institute of Urology, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Xing-Jie Wang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; Institute of Urology, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Yi-Feng Jing
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; Institute of Urology, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Shu-Jie Xia
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; Institute of Urology, Shanghai Jiao Tong University, Shanghai 200080, China.
| | - Bang-Min Han
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; Institute of Urology, Shanghai Jiao Tong University, Shanghai 200080, China.
| |
Collapse
|
35
|
Su GY, Li ZY, Wang R, Lu YZ, Nan JX, Wu YL, Zhao YQ. Signaling pathways involved in p38-ERK and inflammatory factors mediated the anti-fibrosis effect of AD-2 on thioacetamide-induced liver injury in mice. Food Funct 2019; 10:3992-4000. [DOI: 10.1039/c8fo02405g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ginseng is a type of medicinal and edible homologous plant that is very common in medicine, food and even cosmetics.
Collapse
Affiliation(s)
- Guang-Yue Su
- School of Functional Food and Wine
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Zhi-Yao Li
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Rui Wang
- Department of Pharmacy
- The First Hospital of Jilin University
- Changchun
- China
| | - Ye-Zhi Lu
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Ji-Xing Nan
- College of Pharmacy
- Yanbian University
- Yanji 133002
- China
| | - Yan-Ling Wu
- College of Pharmacy
- Yanbian University
- Yanji 133002
- China
| | - Yu-Qing Zhao
- School of Functional Food and Wine
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| |
Collapse
|
36
|
Wang L, Cui S, Liu Z, Ping Y, Qiu J, Geng X. Inhibition of mitochondrial respiration under hypoxia and increased antioxidant activity after reoxygenation of Tribolium castaneum. PLoS One 2018; 13:e0199056. [PMID: 29902250 PMCID: PMC6002095 DOI: 10.1371/journal.pone.0199056] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/30/2018] [Indexed: 12/25/2022] Open
Abstract
Regulating the air in low-oxygen environments protects hermetically stored grains from storage pests damage. However, pests that can tolerate hypoxic stress pose a huge challenge in terms of grain storage. We used various biological approaches to determine the fundamental mechanisms of Tribolium castaneum to cope with hypoxia. Our results indicated that limiting the available oxygen to T. castaneum increased glycolysis and inhibited the Krebs cycle, and that accumulated pyruvic acid was preferentially converted to lactic acid via anaerobic metabolism. Mitochondrial aerobic respiration was markedly suppressed for beetles under hypoxia, which also might have led to mitochondrial autophagy. The enzymatic activity of citrate synthase decreased in insects under hypoxia but recovered within 12 h, which suggested that the beetles recovered from the hypoxia. Moreover, hypoxia-reperfusion resulted in severe oxidative damage to insects, and antioxidant levels increased to defend against the high level of reactive oxygen species. In conclusion, our findings show that mitochondria were the main target in T. castaneum in response to low oxygen. The beetles under hypoxia inhibited mitochondrial respiration and increased antioxidant activity after reoxygenation. Our research advances the field of pest control and makes it possible to develop more efficient strategies for hermetic storage.
Collapse
Affiliation(s)
- Lei Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Sufen Cui
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Zhicheng Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Yong Ping
- Bio-X institutes, Shanghai Jiao Tong University, Shanghai, PR China
| | - Jiangping Qiu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Xueqing Geng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
- * E-mail:
| |
Collapse
|
37
|
Zheng N, Zhang H, Li S, Wang J, Liu J, Ren H, Gao Y. Lactoferrin inhibits aflatoxin B1- and aflatoxin M1-induced cytotoxicity and DNA damage in Caco-2, HEK, Hep-G2, and SK-N-SH cells. Toxicon 2018; 150:77-85. [PMID: 29753785 DOI: 10.1016/j.toxicon.2018.04.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 04/02/2018] [Accepted: 04/22/2018] [Indexed: 11/16/2022]
Abstract
Aflatoxins, including aflatoxin B1 (AFB1) and M1 (AFM1), are natural potent carcinogens produced by Aspergillus spp. These compounds, which can often be detected in dairy foods, can cause diseases in human beings. However, the molecular mechanisms involved in cytotoxicity, as well as methods for intervention, remain largely unexplored. For example, it is unclear whether lactoferrin (LF), a major antioxidant in milk, can inhibit the cytotoxicity of AFB1 and AFM1. In this study, we assessed AFB1- and AFM1-induced cell toxicity by measuring cell viability, membrane permeability, and genotoxicity, and then investigated the ability of LF to protect cells against AFB1 and AFM1. In Caco-2, HEK, Hep-G2, and SK-N-SH cells, 4 μg/mL AFB1 or AFM1 significantly inhibited cell growth, increased the level of lactate dehydrogenase, induced genetic damage, and increased the levels of signal-regulated kinase (ERK1/2) and c-Jun N-terminal kinase (JNK) (p < 0.05). AFB1 was more genotoxic than AFM1 in all four cell lines, especially in Hep-G2. In Caco-2, Hep-G2, and SK-N-SH, incubation of AF-treated cells with 1000 μg/mL LF significantly decreased cytotoxicity, oxidation level, DNA damage, and levels of ERK1/2 and JNK (p < 0.05). Our data demonstrate that AFB1 or AFM1 induced cytotoxicity and DNA damage in these four cell lines, and that LF alleviated toxicity by decreasing oxidative stress mediated by mitogen-activated protein kinase pathways.
Collapse
Affiliation(s)
- Nan Zheng
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China; Milk and Dairy Product Inspection Center of Ministry of Agriculture, Beijing 100193, PR China; State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| | - Huan Zhang
- Department of Food Science and Engineering, Jilin University, Changchun 130000, PR China
| | - Songli Li
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China; Milk and Dairy Product Inspection Center of Ministry of Agriculture, Beijing 100193, PR China; State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Jiaqi Wang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China; Milk and Dairy Product Inspection Center of Ministry of Agriculture, Beijing 100193, PR China; State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Jia Liu
- China National Research Institute of Food and Fermentation Industries, Beijing 100027, PR China
| | - Hui Ren
- Department of Food Science and Engineering, Jilin University, Changchun 130000, PR China
| | - Yanan Gao
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China; Milk and Dairy Product Inspection Center of Ministry of Agriculture, Beijing 100193, PR China; State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| |
Collapse
|
38
|
Markitantova YV, Akberova SI, Ryabtseva AA, Stroeva OG. The Effect of para-Aminobenzoic Acid on Apoptosis Processes in the Adult Rat Conjunctiva and Corneal Epithelium in vivo after Hypobaric Hypoxia. BIOL BULL+ 2018. [DOI: 10.1134/s1062359018020061] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Apoptosis signal-regulating kinase 1 mediates the inhibitory effect of hepatocyte nuclear factor-4α on hepatocellular carcinoma. Oncotarget 2017; 7:27408-21. [PMID: 27050273 PMCID: PMC5053659 DOI: 10.18632/oncotarget.8478] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 03/16/2016] [Indexed: 12/24/2022] Open
Abstract
Previous studies provided substantial evidence of a striking suppressive effect of hepatocyte nuclear factor 4α (HNF4α) on hepatocellular carcinoma (HCC). Apoptosis signal-regulating kinase 1 (ASK1) is involved in death receptor-mediated apoptosis and may acts as a tumor suppressor in hepatocarcinogenesis. However, the status and function of ASK1 during HCC progression are unclear. In this study, we found that HNF4α increased ASK1 expression by directly binding to its promoter. ASK1 expression was dramatically suppressed and correlated with HNF4α levels in HCC tissues. Reduced ASK1 expression was associated with aggressive tumors and poor prognosis for human HCC. Moreover, ASK1 inhibited the malignant phenotype of HCC cells in vitro. Intratumoral ASK1 injection significantly suppressed the growth of subcutaneous HCC xenografts in nude mice. More interestingly, systemic ASK1 delivery strikingly inhibited the growth of orthotopic HCC nodules in NOD/SCID mice. In addition, inhibition of endogenous ASK1 partially reversed the suppressive effects of HNF4α on HCC. Collectively, this study highlights the suppressive effect of ASK1 on HCC and its biological significance in HCC development. These outcomes broaden the knowledge of ASK1 function in HCC progression, and provide a novel potential prognostic biomarker and therapeutic target for advanced HCC.
Collapse
|
40
|
Matsuzawa A. Physiological roles of ASK family members in innate immunity and their involvement in pathogenesis of immune diseases. Adv Biol Regul 2017; 66:46-53. [PMID: 29122554 DOI: 10.1016/j.jbior.2017.10.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 10/16/2017] [Accepted: 10/16/2017] [Indexed: 06/07/2023]
Abstract
Cells are always exposed to various types of stress, including physical, chemical, and biological stresses, and are required to sense immediately and respond appropriately to these stresses. The apoptosis signal-regulating kinase (ASK) family members are stress-responsive kinases, which are activated by not only physicochemical stresses, such as oxidative stress, osmotic pressure, calcium overload, and anti-cancer drugs, but also biological stresses, such as inflammatory cytokines and pathogen infection. Recently, we found that ASK1, a member of ASK family, is activated by bacterial components, such as lipopolysaccharide, in a reactive oxygen species (ROS)-dependent manner, demonstrating that ASK1 is required for the innate immune response and plays a critical role in the regulation of innate immune signaling. Moreover, our findings indicate that ROS are common mediators in physicochemical stress signaling, including redox signaling, and biological stress signaling, including innate immune signaling. This review especially focuses on the roles of ASK family in innate immunity and provides recent progress in our knowledge on activation mechanisms and physiological functions of ASK family kinases in innate immune responses.
Collapse
Affiliation(s)
- Atsushi Matsuzawa
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan.
| |
Collapse
|
41
|
D'Alpino PHP, Moura GEDDD, Barbosa SCDA, Marques LDA, Eberlin MN, Nascimento FD, Tersariol ILDS. Differential cytotoxic effects on odontoblastic cells induced by self-adhesive resin cements as a function of the activation protocol. Dent Mater 2017; 33:1402-1415. [DOI: 10.1016/j.dental.2017.09.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 07/19/2017] [Accepted: 09/20/2017] [Indexed: 11/15/2022]
|
42
|
Xiong W, Zhang W, Yuan W, Du H, Ming K, Yao F, Bai J, Chen Y, Liu J, Wang D, Hu Y, Wu Y. Phosphorylation of Icariin Can Alleviate the Oxidative Stress Caused by the Duck Hepatitis Virus A through Mitogen-Activated Protein Kinases Signaling Pathways. Front Microbiol 2017; 8:1850. [PMID: 29018425 PMCID: PMC5622922 DOI: 10.3389/fmicb.2017.01850] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 09/11/2017] [Indexed: 12/02/2022] Open
Abstract
The duck virus hepatitis (DVH) caused by the duck hepatitis virus A (DHAV) has produced extensive economic losses to the duck industry. The currently licensed commercial vaccine has shown some defects and does not completely prevent the DVH. Accordingly, a new alternative treatment for this disease is urgently needed. Previous studies have shown that icariin (ICA) and its phosphorylated derivative (pICA) possessed good anti-DHAV effects through direct and indirect antiviral pathways, such as antioxidative stress. But the antioxidant activity showed some differences between ICA and pICA. The aim of this study is to prove that ICA and pICA attenuate oxidative stress caused by DHAV in vitro and in vivo, and to investigate their mechanism of action to explain their differences in antioxidant activities. In vivo, the dynamic deaths, oxidative evaluation indexes and hepatic pathological change scores were detected. When was added the hinokitiol which showed the pro-oxidative effect as an intervention method, pICA still possessed more treatment effect than ICA. The strong correlation between mortality and oxidative stress proves that ICA and pICA alleviate oxidative stress caused by DHAV. This was also demonstrated by the addition of hydrogen peroxide (H2O2) as an intervention method in vitro. pICA can be more effective than ICA to improve duck embryonic hepatocytes (DEHs) viability and reduce the virulence of DHAV. The strong correlation between TCID50 and oxidative stress demonstrates that ICA and pICA can achieve anti-DHAV effects by inhibiting oxidative stress. In addition, the superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) of ICA and pICA showed significant difference. pICA could significantly inhibit the phosphorylation of p38, extra cellular signal regulated Kinase (ERK 1/2) and c-Jun N-terminal kinase (JNK), which were related to mitogen-activated protein kinases (MAPKs) signaling pathways. Ultimately, compared to ICA, pICA exhibited more antioxidant activity that could regulate oxidative stress-related indicators, and inhibited the phosphorylation of MAPKs signaling pathway.
Collapse
Affiliation(s)
- Wen Xiong
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Wei Zhang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Wenjuan Yuan
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Hongxu Du
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Ke Ming
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Fangke Yao
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jingying Bai
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yun Chen
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jiaguo Liu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Deyun Wang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yuanliang Hu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yi Wu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
43
|
Bundalo M, Romic S, Tepavcevic S, Stojiljkovic M, Stankovic A, Zivkovic M, Koricanac G. Fructose-rich diet and insulin action in female rat heart: Estradiol friend or foe? Eur J Pharmacol 2017; 811:141-147. [PMID: 28601616 DOI: 10.1016/j.ejphar.2017.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/26/2017] [Accepted: 06/06/2017] [Indexed: 01/01/2023]
Abstract
Increased intake of fructose in humans and laboratory animals is demonstrated to be a risk factor for development of metabolic disorders (insulin resistance, metabolic syndrome, type 2 diabetes) and cardiovascular diseases. On the other hand, estradiol is emphasized as a cardioprotective agent. The main goal of this review is to summarize recent findings on damaging cardiac effects of fructose-rich diet in females, mostly experimental animals, and to evaluate protective capacity of estradiol. Published results of our and other research groups indicate mostly detrimental effects of fructose-rich diet on cardiac insulin signaling molecules, glucose and fatty acid metabolism, nitric oxide production and ion transport, as well as renin-angiotensin system and inflammation. Some of these processes are involved in cardiac insulin signal transmission, others are regulated by insulin or have an influence on insulin action. Administration of estradiol to ovariectomized female rats, exposed to increased intake of fructose, was mostly beneficial to the heart, but sometimes it was ineffective or even detrimental, depending on the particular processes. We believe that these data, carefully translated to human population, could be useful for clinicians dealing with postmenopausal women susceptible to metabolic diseases and hormone replacement therapy.
Collapse
Affiliation(s)
- Maja Bundalo
- Laboratory for Radiobiology and Molecular Genetics, Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Snjezana Romic
- Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Snezana Tepavcevic
- Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Mojca Stojiljkovic
- Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Stankovic
- Laboratory for Radiobiology and Molecular Genetics, Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Maja Zivkovic
- Laboratory for Radiobiology and Molecular Genetics, Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Goran Koricanac
- Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
44
|
Lin HC, Su SL, Lu CY, Lin AH, Lin WC, Liu CS, Yang YC, Wang HM, Lii CK, Chen HW. Andrographolide inhibits hypoxia-induced HIF-1α-driven endothelin 1 secretion by activating Nrf2/HO-1 and promoting the expression of prolyl hydroxylases 2/3 in human endothelial cells. ENVIRONMENTAL TOXICOLOGY 2017; 32:918-930. [PMID: 27297870 DOI: 10.1002/tox.22293] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/22/2016] [Accepted: 05/22/2016] [Indexed: 06/06/2023]
Abstract
Andrographolide, the main bioactive component of the medicinal plant Andrographis paniculata, has been shown to possess potent anti-inflammatory activity. Endothelin 1 (ET-1), a potent vasoconstrictor peptide produced by vascular endothelial cells, displays proinflammatory property. Hypoxia-inducible factor 1α (HIF-1α), the regulatory member of the transcription factor heterodimer HIF-1α/β, is one of the most important molecules that responds to hypoxia. Changes in cellular HIF-1α protein level are the result of altered gene transcription and protein stability, with the latter being dependent on prolyl hydroxylases (PHDs). In this study, inhibition of pro-inflammatory ET-1 expression and changes of HIF-1α gene transcription and protein stability under hypoxia by andrographolide in EA.hy926 endothelial-like cells were investigated. Hypoxic conditions were created using the hypoxia-mimetic agent CoCl2. We found that hypoxia stimulated the production of reactive oxygen species (ROS), the expression of HIF-1α mRNA and protein, and the expression and secretion of ET-1. These effects, however, were attenuated by co-exposure to andrographolide, bilirubin, and RuCO. Silencing Nrf2 and heme oxygenase 1 (HO-1) reversed the inhibitory effects of andrographolide on hypxoia-induced HIF-1α mRNA and protein expression. Moreover, andrographolide increased the expression of prolyl hydroxylases (PHD) 2/3, which hydroxylate HIF-1α and promotes HIF-1α proteasome degradation, with an increase in HIF-1α hydroxylation was noted under hypoxia. Inhibition of p38 MAPK abrogated the hypoxia-induced increases in HIF-1α mRNA and protein expression as well as ET-1 mRNA expression and secretion. Taken together, these results suggest that andrographolide suppresses hypoxia-induced pro-inflammatory ET-1 expression by activating Nrf2/HO-1, inhibiting p38 MAPK signaling, and promoting PHD2/3 expression. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 918-930, 2017.
Collapse
Affiliation(s)
- Hung-Chih Lin
- Division of Neonatology, College of Medicine and Department of Pediatrics, Children's Hospital of China Medical University and China Medical University Hospital, Taichung, Taiwan
| | - Shih-Li Su
- Changhua Christian Hospital, Vascular and Genomic Center, Changhua, Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chia-Yang Lu
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Ai-Hsuan Lin
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Wan-Chun Lin
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Chin-San Liu
- Changhua Christian Hospital, Vascular and Genomic Center, Changhua, Taiwan
- Department of Neurology, Changhua Christian Hospital, Changhua, Taiwan
| | - Ya-Chen Yang
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| | - Hsiu-Miao Wang
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Chong-Kuei Lii
- Department of Nutrition, China Medical University, Taichung, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| | - Haw-Wen Chen
- Department of Nutrition, China Medical University, Taichung, Taiwan
| |
Collapse
|
45
|
Fluctuation of ROS regulates proliferation and mediates inhibition of migration by reducing the interaction between DLC1 and CAV-1 in breast cancer cells. In Vitro Cell Dev Biol Anim 2017; 53:354-362. [PMID: 28130753 DOI: 10.1007/s11626-016-0123-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 12/14/2016] [Indexed: 12/30/2022]
Abstract
The aim of our present study was to elucidate the effects of up-regulation and down-regulation of intracellular reactive oxygen species (ROS) level on proliferation, migration, and related molecular mechanism. Breast cancer cells were treated by catalase or H2O2. MTT, colony formation assay, and Hoechst/PI staining were used to evaluate proliferation and apoptosis. The level of intracellular ROS was measured by dichlorodihydrofluorescein diacetate probes. The ability of migration was detected by wound healing. Western blotting and coimmunoprecipitation (co-IP) were used to determine the expression of DLC1 and CAV-1 and their interaction. Our data indicated that up-regulation of intracellular ROS induced by H2O2 significantly inhibited proliferation and induced apoptosis accompanying G1 cell cycle arrest and elevated expression of p53. For cell migration, either up-regulation or down-regulation of ROS induced migration inhibition with reduction of interaction between DLC1 and CAV-1. Our results suggested that up-regulation of intracellular ROS inhibited proliferation by promoting expression of p53 and induced G1 cycle arrest and apoptosis. Fluctuation of ROS inhibited migration through reducing the interaction between DLC1 and CAV-1.
Collapse
|
46
|
Meng J, Lv Z, Qiao X, Li X, Li Y, Zhang Y, Chen C. The decay of Redox-stress Response Capacity is a substantive characteristic of aging: Revising the redox theory of aging. Redox Biol 2016; 11:365-374. [PMID: 28043053 PMCID: PMC5219648 DOI: 10.1016/j.redox.2016.12.026] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 12/23/2016] [Indexed: 01/17/2023] Open
Abstract
Aging is tightly associated with redox events. The free radical theory of aging indicates that redox imbalance may be an important factor in the aging process. Most studies about redox and aging focused on the static status of oxidative stress levels, there has been little research investigating differential responses to redox challenge during aging. In this study, we used Caenorhabditis elegans and human fibroblasts as models to compare differential responses to oxidative stress challenge in young and old individuals. In response to paraquat stress, young individuals generated more ROS and activated signaling pathways including p-ERK, p-AKT and p-AMPKα/β. After the initial response, young individuals then promoted NRF2 translocation and induced additional antioxidant enzymes and higher expression of phase II enzymes, including SOD, CAT, GPX, HO-1, GSTP-1and others, to maintain redox homeostasis. Moreover, young individuals also demonstrated a better ability to degrade damaged proteins by up-regulating the expression of chaperones and improving proteasome activity. Based on these data, we propose a new concept "Redox-stress Response Capacity (RRC)", which suggests cells or organisms are capable of generating dynamic redox responses to activate cellular signaling and maintain cellular homeostasis. The decay of RRC is the substantive characteristic of aging, which gives a new understand of the redox theory of aging.
Collapse
Affiliation(s)
- Jiao Meng
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | - Zhenyu Lv
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Xinhua Qiao
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Xiaopeng Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Yazi Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Yuying Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | - Chang Chen
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing 100049, China; Beijing Institute for Brain Disorders, 10 Xitoutiao, Youanmen, Beijing 100069, China.
| |
Collapse
|
47
|
LOX-1 and TLR4 affect each other and regulate the generation of ROS in A. fumigatus keratitis. Int Immunopharmacol 2016; 40:392-399. [PMID: 27694040 DOI: 10.1016/j.intimp.2016.09.027] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 08/29/2016] [Accepted: 09/27/2016] [Indexed: 11/24/2022]
Abstract
PURPOSE To explore the relationship between LOX-1 and TLR4 in Aspergillus fumigatus (A. fumigatus) keratitis. To determine LOX-1 and TLR4 can affect each other and regulate inflammation through regulation of the generation of reactive oxygen species (ROS) in A. fumigatus keratitis. METHODS The cornea and abdominal cavity extracted neutrophils of susceptible C57BL/6 mice were infected with A. fumigatus. The cornea and neutrophils were pretreated with LOX-1 neutralizing antibody, Polyinosinic acid (Poly(I)) (the inhibitor of LOX-1) or CLI-095 (the inhibitor of TLR4) separately before infection. LOX-1, TLR4 and IL-1β expression were detected in normal and infected cornea by PCR and Western Blot, while ROS was detected in the neutrophils by flow cytometry. RESULTS LOX-1, TLR4, IL-1β mRNA and protein levels were up-regulated in C57BL/6 cornea after infection. LOX-1 neutralizing antibody or Poly(I) pretreatment decreased the expression of LOX-1, TLR4 and IL-1β in C57BL/6 cornea after infection and CLI-095 pretreatment decreased the expression of LOX-1, TLR4 and IL-1β in C57BL/6 cornea after infection. ROS generation was increased in C57BL/6 neutrophils after infection, however, ROS generation was decreased in C57BL/6 neutrophils after infection by LOX-1 neutralizing antibody or Poly(I) or CLI-095 pretreatment. CONCLUSION LOX-1, TLR4 and IL-1β expression and ROS generation are increased after infection. LOX-1 and TLR4 can affect each other and regulate the generation of ROS in A. fumigatus keratitis. Inhibition of LOX-1 and TLR4 can reduce ROS generation.
Collapse
|
48
|
Wang D, Qu X, Zhuang X, Geng G, Hou J, Xu N, Li W, Hu T, Chen YS. Seed Oil ofBrucea javanicaInduces Cell Cycle Arrest and Apoptosis via Reactive Oxygen Species-Mediated Mitochondrial Dysfunction in Human Lung Cancer Cells. Nutr Cancer 2016; 68:1394-1403. [DOI: 10.1080/01635581.2016.1224362] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
49
|
Ko H, Kim SJ, Shim SH, Chang H, Ha CH. Shikonin Induces Apoptotic Cell Death via Regulation of p53 and Nrf2 in AGS Human Stomach Carcinoma Cells. Biomol Ther (Seoul) 2016; 24:501-9. [PMID: 27257011 PMCID: PMC5012875 DOI: 10.4062/biomolther.2016.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 02/22/2016] [Accepted: 04/05/2016] [Indexed: 11/05/2022] Open
Abstract
Shikonin, which derives from Lithospermum erythrorhizon, has been traditionally used against a variety of diseases, including cancer, in Eastern Asia. Here we determined that shikonin inhibits proliferation of gastric cancer cells by inducing apoptosis. Shikonin’s biological activity was validated by observing cell viability, caspase 3 activity, reactive oxygen species (ROS) generation, and apoptotic marker expressions in AGS stomach cancer cells. The concentration range of shikonin was 35–250 nM with the incubation time of 6 h. Protein levels of Nrf2 and p53 were evaluated by western blotting and confirmed by real-time PCR. Our results revealed that shikonin induced the generation of ROS as well as caspase 3-dependent apoptosis. c-Jun-N-terminal kinases (JNK) activity was significantly elevated in shikonin-treated cells, thereby linking JNK to apoptosis. Furthermore, our results revealed that shikonin induced p53 expression but repressed Nrf2 expression. Moreover, our results suggested that there may be a co-regulation between p53 and Nrf2, in which transfection with siNrf2 induced the p53 expression. We demonstrated for the first time that shikonin activated cell apoptosis in AGS cells via caspase 3- and JNK-dependent pathways, as well as through the p53-Nrf2 mediated signal pathway. Our study validates in partly the contribution of shikonin as a new therapeutic approaches/ agent for cancer chemotherapy.
Collapse
Affiliation(s)
- Hyeonseok Ko
- Laboratory of Molecular Oncology, Cheil General Hospital and Women's Healthcare Center, Dankook University College of Medicine, Seoul 04619, Republic of Korea
| | - Sun-Joong Kim
- College of Life Sciences & Biotechnology, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - So Hee Shim
- Department of Microbiology, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - HyoIhl Chang
- College of Life Sciences & Biotechnology, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Chang Hoon Ha
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea
| |
Collapse
|
50
|
Mantzaris MD, Bellou S, Skiada V, Kitsati N, Fotsis T, Galaris D. Intracellular labile iron determines H2O2-induced apoptotic signaling via sustained activation of ASK1/JNK-p38 axis. Free Radic Biol Med 2016; 97:454-465. [PMID: 27387771 DOI: 10.1016/j.freeradbiomed.2016.07.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/15/2016] [Accepted: 07/04/2016] [Indexed: 01/14/2023]
Abstract
Hydrogen peroxide (H2O2) acts as a second messenger in signal transduction participating in several redox regulated pathways, including cytokine and growth factor stimulated signals. However, the exact molecular mechanisms underlying these processes remain poorly understood and require further investigation. In this work, using Jurkat T lymphoma cells and primary human umbilical vein endothelial cells, it was observed that changes in intracellular "labile iron" were able to modulate signal transduction in H2O2-induced apoptosis. Chelation of intracellular labile iron by desferrioxamine rendered cells resistant to H2O2-induced apoptosis. In order to identify the exact points of iron action, we investigated selected steps in H2O2-mediated apoptotic pathway, focusing on mitogen activated protein kinases (MAPKs) JNK, p38 and ERK. It was observed that spatiotemporal changes in intracellular labile iron, induced by H2O2, influenced the oxidation pattern of the upstream MAP3K ASK1 and promoted the sustained activation of JNK-p38 axis in a defined time-dependent context. Moreover, we indicate that H2O2 induced spatiotemporal changes in intracellular labile iron, at least in part, by triggering the destabilization of lysosomal compartments, promoting a concomitant early response in proteins of iron homeostasis. These results raise the possibility that iron-mediated oxidation of distinct proteins may be implicated in redox signaling processes. Since labile iron can be pharmacologically modified in vivo, it may represent a promising target for therapeutic interventions in related pathological conditions.
Collapse
Affiliation(s)
- M D Mantzaris
- Laboratory of Biological Chemistry, School of Health Sciences, Faculty of Medicine, University of Ioannina, Greece
| | - S Bellou
- Foundation for Research & Technology-Hellas, Institute of Molecular Biology & Biotechnology, Department of Biomedical Research, Ioannina, Greece
| | - V Skiada
- Laboratory of Biological Chemistry, School of Health Sciences, Faculty of Medicine, University of Ioannina, Greece
| | - N Kitsati
- Laboratory of Biological Chemistry, School of Health Sciences, Faculty of Medicine, University of Ioannina, Greece
| | - T Fotsis
- Laboratory of Biological Chemistry, School of Health Sciences, Faculty of Medicine, University of Ioannina, Greece; Foundation for Research & Technology-Hellas, Institute of Molecular Biology & Biotechnology, Department of Biomedical Research, Ioannina, Greece
| | - D Galaris
- Laboratory of Biological Chemistry, School of Health Sciences, Faculty of Medicine, University of Ioannina, Greece.
| |
Collapse
|