1
|
Yu Y, Ma S. Galectin-1 regulates scar hyperplasia by modulating NASP variable splicing to generate ROS. FASEB J 2025; 39:e70478. [PMID: 40151963 DOI: 10.1096/fj.202403167r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/28/2025] [Accepted: 03/11/2025] [Indexed: 03/29/2025]
Abstract
Galectin-1, a constituent of the mammalian β-galactoside-binding lectin family, plays a pivotal regulatory role in fibrotic cascades. Dysregulated fibrogenic cellular activity has been implicated as a critical driver of hypertrophic scar (HS) pathogenesis. Nevertheless, the precise mechanistic contributions and molecular pathways through which Galectin-1 modulates HS development remain incompletely characterized. qRT-PCR and western blot techniques were employed to explore the expression of Galectin-1 in hypertrophic scar tissues and cells. The Galectin-1 knockdown cell line was established by utilizing the lentivirus approach, and the influences of Galectin-1 on cellular biological functions were examined. The molecular mechanism underlying Galectin-1 regulation was investigated via RNA-seq analysis, immunofluorescence, and Western blot. Subsequently, RNA-seq combined with RT-PCR was used to investigate Galectin-1's role in HS alternative splicing. Galectin-1 exhibits significant overexpression in pathological HS tissues and activated fibroblasts. Genetic silencing of Galectin-1 effectively attenuates hypertrophic scar fibroblast (HSF) cell proliferation, migration, and invasive capacities while downregulating fibrotic molecular markers. Transcriptomic and functional analyses reveal that Galectin-1 orchestrates concurrent PANoptosis and ferroptosis in fibrogenic cells. Galectin-1 regulates PANoptosis through the ROS pathway by modulating the ES alternative splicing of NASP, and this process depends on HNRNPL. Overall, Galectin-1 influences the PANoptosis process in HSF cells by modulating the alternative splicing of NASP, thereby regulating the fibrotic cascade. Our findings indicate that Galectin-1 is a critical regulator of HS formation, offering a novel therapeutic target and direction for HS treatment.
Collapse
Affiliation(s)
- Yang Yu
- Department of Plastic Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - ShaoLin Ma
- Department of Plastic Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| |
Collapse
|
2
|
Jing L, Zhao Y, Jiang L, Song F, An L, Qi E, Fu X, Chen J, Ma J. Unlocking the Potential of Curcumae Rhizoma Aqueous Extract in Stress Resistance and Extending Lifespan in Caenorhabditis elegans. Molecules 2025; 30:1668. [PMID: 40333562 PMCID: PMC12029441 DOI: 10.3390/molecules30081668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/27/2025] [Accepted: 04/03/2025] [Indexed: 05/09/2025] Open
Abstract
The enhancement of stress resistance is crucial for delaying aging and extending a healthy lifespan. Traditional Chinese medicine (TCM), a cherished treasure of Chinese heritage, has shown potential in mitigating stress and promoting longevity. This study integrates network pharmacology and in vivo analysis to investigate the mechanisms and effects of Curcumae Rhizoma (C. Rhizoma), known as "E Zhu" in Chinese. Ultra-Performance Liquid Chromatography-Tandem Mass Spectrometry (UPLC-MS/MS) identified 10 active compounds in its aqueous extract, interacting with 128 stress-related targets. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed pathways such as stress response, FoxO signaling, and insulin resistance. In Caenorhabditis elegans, 10 mg/mL of C. Rhizoma aqueous extract improved resistance to UV, thermal, oxidative, and pathogen-induced stress, extending lifespan in a dose-dependent manner. Mechanistically, it reduced reactive oxygen species (ROS), increased superoxide dismutase (SOD) activity, and enhanced UV resistance via the insulin/IGF-1 pathway and DAF-16 translocation. Molecular docking highlighted hexahydrocurcumin (HHC) and related compounds as key bioactives. Furthermore, we also observed that C. Rhizoma aqueous extract significantly extended both the lifespan and healthspan of nematodes. These findings highlight the potential of C. Rhizoma in stress mitigation and longevity promotion, offering valuable insights into the therapeutic applications of TCM.
Collapse
Affiliation(s)
- Linyao Jing
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China; (L.J.); (Y.Z.); (F.S.); (L.A.); (E.Q.); (X.F.)
| | - Yanlin Zhao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China; (L.J.); (Y.Z.); (F.S.); (L.A.); (E.Q.); (X.F.)
| | - Lijun Jiang
- Changchun Heber Biological Technology Co., Ltd., Changchun 130012, China;
| | - Fei Song
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China; (L.J.); (Y.Z.); (F.S.); (L.A.); (E.Q.); (X.F.)
| | - Lu An
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China; (L.J.); (Y.Z.); (F.S.); (L.A.); (E.Q.); (X.F.)
| | - Edmund Qi
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China; (L.J.); (Y.Z.); (F.S.); (L.A.); (E.Q.); (X.F.)
| | - Xueqi Fu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China; (L.J.); (Y.Z.); (F.S.); (L.A.); (E.Q.); (X.F.)
| | - Jing Chen
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China; (L.J.); (Y.Z.); (F.S.); (L.A.); (E.Q.); (X.F.)
| | - Junfeng Ma
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China; (L.J.); (Y.Z.); (F.S.); (L.A.); (E.Q.); (X.F.)
| |
Collapse
|
3
|
Verma M, Yadav K, Parihar R, Dutta D, Chaudhuri S, Sivakumar S. Active tumor targeting by core-shell PDMS-HA nanoparticles with sequential delivery of doxorubicin and quercetin to overcome P-glycoprotein efflux pump. NANOSCALE 2025; 17:5033-5055. [PMID: 40013710 DOI: 10.1039/d4nr03040k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
The therapeutic efficacy of chemotherapy in various malignancies and solid tumors is significantly limited when used as monotherapy. This study explored a combined treatment approach for breast cancer cells involving sequential delivery of doxorubicin followed by quercetin, both delivered via polydimethylsiloxane nanoparticles decorated with hyaluronic acid. Quercetin inhibits P-glycoprotein efflux action to enhance doxorubicin activity by increasing its intracellular accumulation; hence, both synergistically suppress cancer cell growth by promoting cytotoxicity and apoptosis. Quercetin reverses multidrug resistance, induces arrest in the cell cycle, and alters the mitochondrial membrane potential. The successful delivery and internalization of these drugs into breast cancer cells were confirmed through CD44 ligand recognition, inhibiting cell viability via apoptosis (caspase-induced) and cell arrest in the G2/M phase of the cell cycle. Furthermore, in an MCF-7 (breast cancer) cell-derived xenograft tumor model using NOD/SCID mice, the core-shell PDMS-HA nanoparticle system carrying quercetin and doxorubicin resulted in approximately 65% tumor volume reduction, outperforming the loaded single drug and free drug combination. These results were supported by the TUNEL assay and proliferation index by Ki-67 immunohistochemistry staining, which show substantial cell death and tissue necrosis in the tumor sections. Histological studies of tumor tissues confirm enhanced anticancer efficacy with negligible systemic toxicity to normal organs. Overall, the PDMS-HA delivery system efficiently transports quercetin and doxorubicin to tumor cells, enhancing the antitumor effects against the MCF-7 tumor xenograft model in mice without adverse effects. This study suggests that the targeted co-delivery of phytochemicals and anti-cancer agents can synergistically overcome many barriers associated with tumor treatment.
Collapse
Affiliation(s)
- Madhu Verma
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India.
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, West Bengal, India.
| | - Krishna Yadav
- Central Experimental Animal Facility, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Rashmi Parihar
- Central Experimental Animal Facility, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Debjani Dutta
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, West Bengal, India.
| | - Surabhi Chaudhuri
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, West Bengal, India.
| | - Sri Sivakumar
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India.
- Material Science Programme, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
- Centre for Environmental Science and Engineering, Center for Nanosciences, Mehta Family Centre for Engineering in Medicine, Gangwal School of Medical Sciences and Technology Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| |
Collapse
|
4
|
Liu M, Hua W, Yu C, Zhang S, Li W, Li C, Peng J, Liu R, Liu H, Qu J. Toxicity mechanism of microplastics on the growth traits and metabolic pathways of Vallisneria natans under different light environments. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117772. [PMID: 39947062 DOI: 10.1016/j.ecoenv.2025.117772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 03/03/2025]
Abstract
Freshwater plants are threatened by microplastics (MPs). While many studies have reported the effects of MPs on aquatic plants and animals, few have examined the effects of MPs on plant metabolism at different light intensities. We explore cellular, metabolic, and stress responses of Vallisneria natans at different light intensities (0, 20, 90, 160, 280 μmol·m-2·s-1), without and with (50 mg·L-1) MPs. The experiment showed that that the strong light promotes adsorption and accumulation of MPs on leaf and root tissues, affected growth rate, and changed metabolic pathways, inhibited photosynthetic processes, and enhanced oxidative stress responses in V. natans. Metabolomic analysis and experimental validation revealed that the combination of 280 μmol m-2·s-1 and MPs interfered most severely with plant carbon and nitrogen metabolism, lipid metabolism, and amino acid metabolism pathways compared with the combination of 90 μmol m-2·s-1 and MPs. This condition also significantly inhibited the activities of photosynthesis and energy transfer-related regulators and proteins, as well as stimulated oxidative stress-related pathways and exacerbated oxidative stress toxicity responses. The results of the research indicate that the highest light intensity tested can increase the accumulation of MPs, leading to V. natans cell damage, inhibition of photosynthetic metabolism, and the risk of oxidative toxic stress. Our results provide a basis for the analysis of the growth and metabolism processes and risk assessment of aquatic plants under the action of light and MPs.
Collapse
Affiliation(s)
- Meixuan Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Wei Hua
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Chungui Yu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Siyu Zhang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Wei Li
- Yangtze Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing 100038, China
| | - Chong Li
- Yangtze Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing 100038, China.
| | - Jianfeng Peng
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Yangtze Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing 100038, China.
| | - Ruiping Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Huijuan Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiuhui Qu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
5
|
Sun X, Zhou D, Sun Y, Zhao Y, Deng Y, Pang X, Liu Q, Zhou Z. Oxidative stress reprograms the transcriptional coactivator Yki to suppress cell proliferation. Cell Rep 2024; 43:114584. [PMID: 39106181 DOI: 10.1016/j.celrep.2024.114584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 08/09/2024] Open
Abstract
The transcriptional coactivator Yorkie (Yki) regulates organ size by promoting cell proliferation. It is unclear how cells control Yki activity when exposed to harmful stimuli such as oxidative stress. In this study, we show that oxidative stress inhibits the binding of Yki to Scalloped (Sd) but promotes the interaction of Yki with another transcription factor, forkhead box O (Foxo), ultimately leading to a halt in cell proliferation. Mechanistically, Foxo normally exhibits a low binding affinity for Yki, allowing Yki to form a complex with Sd and activate proliferative genes. Under oxidative stress, Usp7 deubiquitinates Foxo to promote its interaction with Yki, thereby activating the expression of proliferation suppressors. Finally, we show that Yki is essential for Drosophila survival under oxidative stress. In summary, these findings suggest that oxidative stress reprograms Yki from a proliferation-promoting factor to a proliferation suppressor, forming a self-protective mechanism.
Collapse
Affiliation(s)
- Xiaohan Sun
- Key Laboratory of Biodiversity Conservation and Bioresource Utilization of Jiangxi Province, College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China; School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China
| | - Dafa Zhou
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Yuanfei Sun
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Yunhe Zhao
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Yanran Deng
- Key Laboratory of Biodiversity Conservation and Bioresource Utilization of Jiangxi Province, College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
| | - Xiaolin Pang
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Qingxin Liu
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Zizhang Zhou
- Key Laboratory of Biodiversity Conservation and Bioresource Utilization of Jiangxi Province, College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China; College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
6
|
Na J, Ryu HG, Park H, Park H, Lee E, Nam Y, Kim H, Jang SM, Kim DY, Kim S. FoxO1 Alleviates the Mitochondrial ROS Levels Induced by α-Synuclein Preformed Fibrils in BV-2 Microglial Cells. Inflammation 2024:10.1007/s10753-024-02119-x. [PMID: 39145787 DOI: 10.1007/s10753-024-02119-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/16/2024] [Accepted: 07/31/2024] [Indexed: 08/16/2024]
Abstract
Parkinson's disease (PD) is a complex neurodegenerative disorder marked by the gradual deterioration of dopaminergic neurons, especially in the substantia nigra pars compacta (SNc). Dysregulation of the transcription factor FoxO1 is associated with various neurodegenerative conditions, including Alzheimer's disease and PD, though the specific mechanisms involved are not fully understood. This study explores the effects of α-Synuclein preformed fibrils (PFF) on BV-2 microglial cells, focusing on changes in molecular characteristics and their impact on neuronal degeneration. Our results demonstrate that PFF treatment significantly increases FoxO1 mRNA (p = 0.0443) and protein (p = 0.0216) levels, leading to its nuclear translocation (p = 0.0142) and enhanced expression of genes involved in the detoxification of reactive oxygen species (ROS), such as Catalase (Cat, p = 0.0249) and superoxide dismutase 2 (Sod2, p = 0.0313). Furthermore, we observed that PFF treatment elevates mitochondrial ROS levels. However, cells lacking FoxO1 or treated with FoxO1 inhibitors showed increased vulnerability to PFF-induced ROS, attributed to reduced expression of ROS detoxifying enzymes Cat and Sod2 (p < 0.0001). Besides enhancing ROS production, inhibiting FoxO1 also heightens neurotoxicity induced by PFF treatment in microglia-conditioned medium (p < 0.0001). Conversely, treatment with N-acetylcysteine or bacterial superoxide dismutase A mitigated the ROS increase induced by PFF (p < 0.0001). These findings suggest the essential role of FoxO1 in regulating ROS levels, which helps alleviate pathology in PFF-induced PD models. Our study provides insights into the genetic mechanisms of PD and suggests potential pathways for developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Jiyeon Na
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Hye Guk Ryu
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Haeun Park
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Hyeonwoo Park
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Eunmin Lee
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Younwoo Nam
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Hyerynn Kim
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Sang-Min Jang
- Department of Biochemistry, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Do-Yeon Kim
- Department of Pharmacology, School of Dentistry, Brain Science and Engineering Institute, Kyungpook National University, Daegu, 41940, Republic of Korea.
| | - Sangjune Kim
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea.
| |
Collapse
|
7
|
Guo N, Wang X, Xu M, Bai J, Yu H, Le Zhang. PI3K/AKT signaling pathway: Molecular mechanisms and therapeutic potential in depression. Pharmacol Res 2024; 206:107300. [PMID: 38992850 DOI: 10.1016/j.phrs.2024.107300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/13/2024]
Abstract
Depression is a serious global mental disorder. Numerous studies have found that depression may be closely related to decreased neurogenesis, neuroinflammation, neurotransmitter imbalance, and synaptic plasticity dysfunction. The pathogenesis of depression is complex and involves multiple signal transduction pathways and molecular changes. The PI3K/AKT pathway is an essential signaling pathways in neurons, which is widely expressed in emotion-related regions of the brain. Therefore, the PI3K/AKT pathway may play a moderating role in mood disorders. However, the role and mechanism of the PI3K/AKT signaling pathway in depression have not been fully described. This review systematically summarized the role of the PI3K/AKT signaling pathway in the pathogenesis of depression and discussed its potential in the treatment of depression. This will help in the treatment of depression and the development of antidepressants.
Collapse
Affiliation(s)
- Ningning Guo
- School of Mental Health, Jining Medical University, Jining, China
| | - Xin Wang
- Department of Radiation Therapy, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Muran Xu
- Clinical College, Jining Medical University, Jining, China
| | - Jie Bai
- Medical School, Kunming University of Science and Technology, Kunming, China.
| | - Hao Yu
- School of Mental Health, Jining Medical University, Jining, China.
| | - Le Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China.
| |
Collapse
|
8
|
Hao XD, Liu JX, Zhang JS. Longevity factor FOXO3a: A potential therapeutic target for age-related ocular diseases. Life Sci 2024; 350:122769. [PMID: 38848943 DOI: 10.1016/j.lfs.2024.122769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/22/2024] [Accepted: 06/02/2024] [Indexed: 06/09/2024]
Abstract
The forkhead box protein O3 (FOXO3a) belongs to the subgroup O of the forkhead transcription factor family and plays an important role in regulating the aging process by participating in the regulation of various life processes, including cell cycle arrest, apoptosis, autophagy, oxidative stress, and DNA repair. The eye is an organ that is affected by aging earlier. However, the functional role and potential clinical applications of FOXO3a in age-related eye diseases have not received widespread attention and lacked comprehensive and clear clarification. In this review, we demonstrated the relationship between FOXO3a and visual system health, summarized the functional roles of FOXO3a in various eye diseases, and potential ocular-related therapies and drugs targeting FOXO3a in visual system diseases through a review and summary of relevant literature. This review indicates that FOXO3a is an important factor in maintaining the normal function of various tissues in the eye, and is closely related to the occurrence and development of ophthalmic-related diseases. Based on its vital role in the normal function of the visual system, FOXO3a has potential clinical application value in related ophthalmic diseases. At present, multiple molecules and drugs targeting FOXO3a have been reported to have the potential for the treatment of related ophthalmic diseases, but further clinical trials are needed. In conclusion, this review can facilitate us to grasp the role of FOXO3a in the visual system and provide new views and bases for the treatment strategy research of age-related eye diseases.
Collapse
Affiliation(s)
- Xiao-Dan Hao
- Institute for Translational Medicine, the Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| | - Jin-Xiu Liu
- Institute for Translational Medicine, the Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Jing-Sai Zhang
- Institute for Translational Medicine, the Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| |
Collapse
|
9
|
Zhang R, Wen Y, Liu J, Hao J, Peng Y, Zhang M, Xie Y, Yang Z, Yin X, Shi Y, Bi H, Guo D. The miR-15b-5p/miR-379-3p-FOXO axis regulates cell cycle and apoptosis in scleral remodeling during experimental myopia. J Transl Med 2024; 22:710. [PMID: 39080755 PMCID: PMC11290304 DOI: 10.1186/s12967-024-05523-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/20/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Myopia is one of the most common eye diseases in children and adolescents worldwide, and scleral remodeling plays a role in myopia progression. However, the identity of the initiating factors and signaling pathways that induce myopia-associated scleral remodeling is still unclear. This study aimed to identify biomarkers of scleral remodeling to elucidate the pathogenesis of myopia. METHODS The gene expression omnibus (GEO) and comparative toxicogenomics database (CTD) mining were used to identify the miRNA-mRNA regulatory network related to scleral remodeling in myopia. Real-time quantitative PCR (RT-qPCR), Western blot, immunofluorescence, H&E staining, Masson staining, and flow cytometry were used to detect the changes in the FOXO signaling pathway, fibrosis, apoptosis, cell cycle, and other related factors in scleral remodeling. RESULTS miR-15b-5p/miR-379-3p can regulate the FOXO signaling pathway. Confirmatory studies confirmed that the axial length of the eye was significantly increased, the scleral thickness was thinner, the levels of miR-15b-5p, miR-379-3p, PTEN, p-PTEN, FOXO3a, cyclin-dependent kinase (CDK) inhibitor 1B (CDKN1B) were increased, and the levels of IGF1R were decreased in Len-induced myopia (LIM) group. CDK2, cyclin D1 (CCND1), and cell cycle block assessed by flow cytometry indicated G1/S cell cycle arrest in myopic sclera. The increase in BAX level and the decrease in BCL-2 level indicated enhanced apoptosis of the myopic sclera. In addition, we found that the levels of transforming growth factor-β1 (TGF-β1), collagen type 1 (COL-1), and α-smooth muscle actin (α-SMA) were decreased, suggesting scleral remodeling occurred in myopia. CONCLUSIONS miR-15b-5p/miR-379-3p can regulate the scleral cell cycle and apoptosis through the IGF1R/PTEN/FOXO signaling pathway, thereby promoting scleral remodeling in myopia progression.
Collapse
Affiliation(s)
- Ruixue Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Ying Wen
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, No. 48#, Yingxiongshan Road, Jinan, 250002, China
| | - Jinpeng Liu
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Jiawen Hao
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Yuan Peng
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Miao Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Yunxiao Xie
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, No. 48#, Yingxiongshan Road, Jinan, 250002, China
| | - Zhaohui Yang
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Xuewei Yin
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, No. 48#, Yingxiongshan Road, Jinan, 250002, China
| | - Yongwei Shi
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, No. 48#, Yingxiongshan Road, Jinan, 250002, China
| | - Hongsheng Bi
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, No. 48#, Yingxiongshan Road, Jinan, 250002, China.
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, No. 48#, Yingxiongshan Road, Jinan, 250002, China.
| | - Dadong Guo
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, No. 48#, Yingxiongshan Road, Jinan, 250002, China.
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Shandong Academy of Eye Disease Prevention and Therapy, Jinan, 250002, China.
| |
Collapse
|
10
|
Chen T. Unveiling the significance of inducible nitric oxide synthase: Its impact on cancer progression and clinical implications. Cancer Lett 2024; 592:216931. [PMID: 38701892 DOI: 10.1016/j.canlet.2024.216931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/14/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
The intricate role of inducible nitric oxide synthase (iNOS) in cancer pathophysiology has garnered significant attention, highlighting the complex interplay between tumorigenesis, immune response, and cellular metabolism. As an enzyme responsible for producing nitric oxide (NO) in response to inflammatory stimuli. iNOS is implicated in various aspects of cancer development, including DNA damage, angiogenesis, and evasion of apoptosis. This review synthesizes the current findings from both preclinical and clinical studies on iNOS across different cancer types, reflecting the variability depending on cellular context and tumor microenvironment. We explore the molecular mechanisms by which iNOS modulates cancer cell growth, survival, and metastasis, emphasizing its impact on immune surveillance and response to treatment. Additionally, the potential of targeting iNOS as a therapeutic strategy in cancer treatment is examined. By integrating insights from recent advances, this review aims to elucidate the significant role of iNOS in cancer and pave the way for novel diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Tong Chen
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH, 43210, USA; The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210, USA.
| |
Collapse
|
11
|
Lee HW, Karki R, Han JH. Inhibition of the RPS6KA1/FoxO1 signaling axis by hydroxycitric acid attenuates HFD-induced obesity through MCE suppression. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155551. [PMID: 38569293 DOI: 10.1016/j.phymed.2024.155551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/02/2023] [Accepted: 03/19/2024] [Indexed: 04/05/2024]
Abstract
BACKGROUND Because obesity is associated with a hyperplasia-mediated increase in adipose tissue, inhibiting cell proliferation during mitotic clonal expansion (MCE) is a leading strategy for preventing obesity. Although (-)-hydroxycitric acid (HCA) is used to control obesity, the molecular mechanisms underlying its effects on MCE are poorly understood. PURPOSE This study aimed to investigate the potential effects of HCA on MCE and underlying molecular mechanisms affecting adipogenesis and obesity improvements. METHODS Preadipocyte cell line, 3T3-L1, were treated with HCA; oil red O, cell proliferation, cell cycle, and related alterations in signaling pathways were examined. High-fat diet (HFD)-fed mice were administered HCA for 12 weeks; body and adipose tissues weights were evaluated, and the regulation of signaling pathways in epidydimal white adipose tissue were examined in vivo. RESULTS Here, we report that during MCE, HCA attenuates the proliferation of the preadipocyte cell line, 3T3-L1, by arresting the cell cycle at the G0/G1 phase. In addition, HCA markedly inhibits Forkhead Box O1 (FoxO1) phosphorylation, thereby inducing the expression of cyclin-dependent kinase inhibitor 1B and suppressing the levels of cyclin-dependent kinase 2, cyclin E1, proliferating cell nuclear antigen, and phosphorylated retinoblastoma. Importantly, we found that ribosomal protein S6 kinase A1 (RPS6KA1) influences HCA-mediated inactivation of FoxO1 and its nuclear exclusion. An animal model of obesity revealed that HCA reduced high-fat diet-induced obesity by suppressing adipocyte numbers as well as epididymal and mesenteric white adipose tissue mass, which is attributed to the regulation of RPS6KA1, FoxO1, CDKN1B and PCNA that had been consistently identified in vitro. CONCLUSIONS These findings provide novel insights into the mechanism by which HCA regulates adipogenesis and highlight the RPS6KA1/FoxO1 signaling axis as a therapeutic target for obesity.
Collapse
Affiliation(s)
- Hyung-Won Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Woosuk University, Wanju 55338, Republic of Korea
| | - Rajendra Karki
- Department of Biological Sciences, College of Natural Science, Seoul National University, Seoul 08826, South Korea; Nexus Institute of Research and Innovation (NIRI), Kathmandu, Nepal
| | - Joo-Hui Han
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Woosuk University, Wanju 55338, Republic of Korea.
| |
Collapse
|
12
|
Lee J, Hong SW, Kim MJ, Lim YM, Moon SJ, Kwon H, Park SE, Rhee EJ, Lee WY. Inhibition of Sodium-Glucose Cotransporter-2 during Serum Deprivation Increases Hepatic Gluconeogenesis via the AMPK/AKT/FOXO Signaling Pathway. Endocrinol Metab (Seoul) 2024; 39:98-108. [PMID: 38171209 PMCID: PMC10901661 DOI: 10.3803/enm.2023.1786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/25/2023] [Accepted: 10/17/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGRUOUND Sodium-dependent glucose cotransporter 2 (SGLT2) mediates glucose reabsorption in the renal proximal tubules, and SGLT2 inhibitors are used as therapeutic agents for treating type 2 diabetes mellitus. This study aimed to elucidate the effects and mechanisms of SGLT2 inhibition on hepatic glucose metabolism in both serum deprivation and serum supplementation states. METHODS Huh7 cells were treated with the SGLT2 inhibitors empagliflozin and dapagliflozin to examine the effect of SGLT2 on hepatic glucose uptake. To examine the modulation of glucose metabolism by SGLT2 inhibition under serum deprivation and serum supplementation conditions, HepG2 cells were transfected with SGLT2 small interfering RNA (siRNA), cultured in serum-free Dulbecco's modified Eagle's medium for 16 hours, and then cultured in media supplemented with or without 10% fetal bovine serum for 8 hours. RESULTS SGLT2 inhibitors dose-dependently decreased hepatic glucose uptake. Serum deprivation increased the expression levels of the gluconeogenesis genes peroxisome proliferator-activated receptor gamma co-activator 1 alpha (PGC-1α), glucose 6-phosphatase (G6pase), and phosphoenolpyruvate carboxykinase (PEPCK), and their expression levels during serum deprivation were further increased in cells transfected with SGLT2 siRNA. SGLT2 inhibition by siRNA during serum deprivation induces nuclear localization of the transcription factor forkhead box class O 1 (FOXO1), decreases nuclear phosphorylated-AKT (p-AKT), and p-FOXO1 protein expression, and increases phosphorylated-adenosine monophosphate-activated protein kinase (p-AMPK) protein expression. However, treatment with the AMPK inhibitor, compound C, reversed the reduction in the protein expression levels of nuclear p- AKT and p-FOXO1 and decreased the protein expression levels of p-AMPK and PEPCK in cells transfected with SGLT2 siRNA during serum deprivation. CONCLUSION These data show that SGLT2 mediates glucose uptake in hepatocytes and that SGLT2 inhibition during serum deprivation increases gluconeogenesis via the AMPK/AKT/FOXO1 signaling pathway.
Collapse
Affiliation(s)
- Jinmi Lee
- Institute of Medical Research, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seok-Woo Hong
- Institute of Medical Research, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Min-Jeong Kim
- Institute of Medical Research, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yu-Mi Lim
- Institute of Medical Research, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sun Joon Moon
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hyemi Kwon
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Se Eun Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Eun-Jung Rhee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Won-Young Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
13
|
Zehtabcheh S, Yousefi AM, Momeny M, Bashash D. C-Myc inhibition intensified the anti-leukemic properties of Imatinib in chronic myeloid leukemia cells. Mol Biol Rep 2023; 50:10157-10167. [PMID: 37924446 DOI: 10.1007/s11033-023-08832-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/19/2023] [Indexed: 11/06/2023]
Abstract
BACKGROUND Due to its remarkable efficacy in producing hematologic, cytogenetic, and molecular remissions, the FDA approved Imatinib as the first-line treatment for newly diagnosed Chronic Myeloid Leukemia (CML) patients. However, in some patients, failure to completely eradicate leukemic cells and the escape of these cells from death will lead to the development of resistance to Imatinib, and many are concerned about the prospects of this Tyrosine Kinase Inhibitor (TKI). It has been documented that the compensatory overexpression of c-Myc is among the most critical mechanisms that promote drug efflux and resistance in CML stem cells. METHODS In order to examine the potential of c-Myc inhibition through the use of 10058-F4 to enhance the anti-leukemic properties of Imatinib, we conducted trypan blue and MTT assays. Additionally, we employed flow cytometric analysis and qRT-PCR to assess the effects of this combination on cell cycle progression and apoptosis. RESULTS The findings of our study indicate that the combination of 10058-F4 and Imatinib exhibited significantly stronger anti-survival and anti-proliferative effects on CML-derived-K562 cells in comparison to either agent administered alone. It is noteworthy that these results were also validated in the CML-derived NALM-1 cell line. Molecular analysis of this synergistic effect revealed that the inhibition of c-Myc augmented the efficacy of Imatinib by modulating the expression of genes related to cell cycle, apoptosis, autophagy, and proteasome. CONCLUSIONS Taken together, the findings of this investigation have demonstrated that the suppression of the c-Myc oncoprotein through the use of 10058-F4 has augmented the effectiveness of Imatinib, suggesting that this amalgamation could offer a fresh perspective on an adjunctive treatment for individuals with CML. Nevertheless, additional scrutiny, encompassing in-vivo examinations and clinical trials, is requisite.
Collapse
MESH Headings
- Humans
- Imatinib Mesylate/pharmacology
- Imatinib Mesylate/therapeutic use
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Fusion Proteins, bcr-abl/genetics
- Drug Resistance, Neoplasm/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Apoptosis
Collapse
Affiliation(s)
- Sara Zehtabcheh
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir-Mohammad Yousefi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Momeny
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Tabnak P, Hasanzade Bashkandi A, Ebrahimnezhad M, Soleimani M. Forkhead box transcription factors (FOXOs and FOXM1) in glioma: from molecular mechanisms to therapeutics. Cancer Cell Int 2023; 23:238. [PMID: 37821870 PMCID: PMC10568859 DOI: 10.1186/s12935-023-03090-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/04/2023] [Indexed: 10/13/2023] Open
Abstract
Glioma is the most aggressive and malignant type of primary brain tumor, comprises the majority of central nervous system deaths, and is categorized into different subgroups according to its histological characteristics, including astrocytomas, oligodendrogliomas, glioblastoma multiforme (GBM), and mixed tumors. The forkhead box (FOX) transcription factors comprise a collection of proteins that play various roles in numerous complex molecular cascades and have been discovered to be differentially expressed in distinct glioma subtypes. FOXM1 and FOXOs have been recognized as crucial transcription factors in tumor cells, including glioma cells. Accumulating data indicates that FOXM1 acts as an oncogene in various types of cancers, and a significant part of studies has investigated its function in glioma. Although recent studies considered FOXO subgroups as tumor suppressors, there are pieces of evidence that they may have an oncogenic role. This review will discuss the subtle functions of FOXOs and FOXM1 in gliomas, dissecting their regulatory network with other proteins, microRNAs and their role in glioma progression, including stem cell differentiation and therapy resistance/sensitivity, alongside highlighting recent pharmacological progress for modulating their expression.
Collapse
Affiliation(s)
- Peyman Tabnak
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Imam Reza Hospital, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | | - Mohammad Ebrahimnezhad
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Imam Reza Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdieh Soleimani
- Imam Reza Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
15
|
Huang Y, Wang B, Hassounah F, Price SR, Klein J, Mohamed TMA, Wang Y, Park J, Cai H, Zhang X, Wang XH. The impact of senescence on muscle wasting in chronic kidney disease. J Cachexia Sarcopenia Muscle 2023; 14:126-141. [PMID: 36351875 PMCID: PMC9891952 DOI: 10.1002/jcsm.13112] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/29/2022] [Accepted: 09/19/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Muscle wasting is a common complication of chronic kidney disease (CKD) that is associated with higher mortality. Although the mechanisms of myofibre loss in CKD has been widely studied, the contribution of muscle precursor cell (MPC) senescence remains poorly understood. Senescent MPCs no longer proliferate and can produce proinflammatory factors or cytokines. In this study, we tested the hypothesis that the senescence associated secretory phenotype (SASP) of MPCs contributes to CKD-induced muscle atrophy and weakness. METHODS CKD was induced in mice by 5/6th nephrectomy. Kidney function, muscle size, and function were measured, and markers of atrophy, inflammation, and senescence were evaluated using immunohistochemistry, immunoblots, or qPCR. To study the impact of senescence, a senolytics cocktail of dasatinib + quercetin (D&Q) was given orally to mice for 8 weeks. To investigate CKD-induced senescence at the cellular level, primary MPCs were incubated with serum from CKD or control subjects. The roles of specific proteins in MPC senescence were studied using adenoviral transduction, siRNA, and plasmid transfection. RESULTS In the hindlimb muscles of CKD mice, (i) the senescence biomarker SA-β-gal was sharply increased (~30-fold); (ii) the DNA damage response marker γ-H2AX was increased 1.9-fold; and (iii) the senescence pathway markers p21 and p16INK4a were increased 1.99-fold and 2.82-fold, respectively (all values, P < 0.05), whereas p53 was unchanged. γ-H2AX, p21, and p16INK4A were negatively correlated at P < 0.05 with gastrocnemius weight, suggesting a causal relationship with muscle atrophy. Administration of the senolytics cocktail to CKD mice for 8 weeks eliminated the disease-related elevation of p21, p16INK4a , and γ-H2AX, abolished positive SA-β-gal, and depressed the high levels of the SASP cytokines, TNF-α, IL-6, IL-1β, and IFN (all values, P < 0.05). Skeletal muscle weight, myofibre cross-sectional area, and grip function were improved in CKD mice receiving D&Q. Markers of protein degradation, inflammation, and MPCs dysfunction were also attenuated by D&Q treatment compared with the vehicle treatment in 5/6th nephrectomy mice (all values, P < 0.05). Uraemic serum induced senescence in cultured MPCs. Overexpression of FoxO1a in MPCs increased the number of p21+ senescent cells, and p21 siRNA prevented uraemic serum-induced senescence (P < 0.05). CONCLUSIONS Senescent MPCs are likely to contribute to the development of muscle wasting during CKD by producing inflammatory cytokines. Limiting senescence with senolytics ameliorated muscle wasting and improved muscle strength in vivo and restored cultured MPC functions. These results suggest potential new therapeutic targets to improve muscle health and function in CKD.
Collapse
Affiliation(s)
- Ying Huang
- Renal Division, Department of Medicine, Emory University, Atlanta, Georgia, USA
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease, Changsha, China
| | - Bin Wang
- Renal Division, Department of Medicine, Emory University, Atlanta, Georgia, USA
- Institute of Nephrology, Zhong Da Hospital, Southeast University, Nanjing, China
| | - Faten Hassounah
- Renal Division, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - S Russ Price
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Janet Klein
- Renal Division, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Tamer M A Mohamed
- Institute of Molecular Cardiology, University of Louisville, Louisville, Kentucky, USA
| | - Yanhua Wang
- Renal Division, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Jeanie Park
- Renal Division, Department of Medicine, Emory University, Atlanta, Georgia, USA
- Nephrology Section, Atlanta VA Medical Center, Decatur, Georgia, USA
| | - Hui Cai
- Renal Division, Department of Medicine, Emory University, Atlanta, Georgia, USA
- Nephrology Section, Atlanta VA Medical Center, Decatur, Georgia, USA
| | - Xuemei Zhang
- Renal Division, Department of Medicine, Emory University, Atlanta, Georgia, USA
- Department of Pharmacology, Fudan University School of Pharmacy, Shanghai, China
| | - Xiaonan H Wang
- Renal Division, Department of Medicine, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
16
|
Nguyen TK, Phung HH, Choi WJ, Ahn HC. Network Pharmacology and Molecular Docking Study on the Multi-Target Mechanisms of Aloe vera for Non-Alcoholic Steatohepatitis Treatment. PLANTS (BASEL, SWITZERLAND) 2022; 11:3585. [PMID: 36559697 PMCID: PMC9783676 DOI: 10.3390/plants11243585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Non-alcoholic steatohepatitis (NASH) is a leading cause of chronic liver disease with limited treatment options. The widely distributed plant Aloe vera has shown protective effects against NASH in animals, yet the precise mechanism remains unknown. In this study, we investigated the potential mechanisms underlying the anti-NASH effects of Aloe vera using a network pharmacology and molecular docking approach. By searching online databases and analyzing the Gene Expression Omnibus dataset, we obtained 260 Aloe vera-NASH common targets. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses showed that the common targets were strongly associated with the key pathological processes implicated in NASH, including lipid and glucose metabolism, inflammation, apoptosis, oxidative stress, and liver fibrosis. Four core proteins, AKT serine/threonine kinase 1 (AKT1), tumor necrosis factor alpha (TNFα), transcription factor c-Jun, and tumor suppressor protein p53, were identified from compound-target-pathway and protein-protein interaction networks. Molecular docking analysis verified that the active ingredients of Aloe vera were able to interact with the core proteins, especially AKT1 and TNFα. The results demonstrate the multi-compound, multi-target, and multi-pathway mechanisms of Aloe vera against NASH. Our study has shown the scientific basis for further experiments in terms of the mechanism to develop Aloe vera-based natural products as complementary treatments for NASH. Furthermore, it identifies novel drug candidates based on the structures of Aloe vera's active compounds.
Collapse
|
17
|
Hu X, Jin X, Cao X, Liu B. The Anaphase-Promoting Complex/Cyclosome Is a Cellular Ageing Regulator. Int J Mol Sci 2022; 23:ijms232315327. [PMID: 36499653 PMCID: PMC9740938 DOI: 10.3390/ijms232315327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/11/2022] Open
Abstract
The anaphase-promoting complex/cyclosome (APC/C) is a complicated cellular component that plays significant roles in regulating the cell cycle process of eukaryotic organisms. The spatiotemporal regulation mechanisms of APC/C in distinct cell cycle transitions are no longer mysterious, and the components of this protein complex are gradually identified and characterized. Given the close relationship between the cell cycle and lifespan, it is urgent to understand the roles of APC/C in lifespan regulation, but this field still seems to have not been systematically summarized. Furthermore, although several reviews have reported the roles of APC/C in cancer, there are still gaps in the summary of its roles in other age-related diseases. In this review, we propose that the APC/C is a novel cellular ageing regulator based on its indispensable role in the regulation of lifespan and its involvement in age-associated diseases. This work provides an extensive review of aspects related to the underlying mechanisms of APC/C in lifespan regulation and how it participates in age-associated diseases. More comprehensive recognition and understanding of the relationship between APC/C and ageing and age-related diseases will increase the development of targeted strategies for human health.
Collapse
Affiliation(s)
- Xiangdong Hu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Xuejiao Jin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Xiuling Cao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
- Correspondence: (X.C.); (B.L.)
| | - Beidong Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390 Gothenburg, Sweden
- Correspondence: (X.C.); (B.L.)
| |
Collapse
|
18
|
Palanivel V, Gupta V, Mirshahvaladi SSO, Sharma S, Gupta V, Chitranshi N, Mirzaei M, Graham SL, Basavarajappa D. Neuroprotective Effects of Neuropeptide Y on Human Neuroblastoma SH-SY5Y Cells in Glutamate Excitotoxicity and ER Stress Conditions. Cells 2022; 11:cells11223665. [PMID: 36429093 PMCID: PMC9688085 DOI: 10.3390/cells11223665] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
Neuropeptide Y (NPY), a sympathetic neurotransmitter, is involved in various physiological functions, and its dysregulation is implicated in several neurodegenerative diseases. Glutamate excitotoxicity, endoplasmic reticulum (ER) stress, and oxidative stress are the common mechanisms associated with numerous neurodegenerative illnesses. The present study aimed to elucidate the protective effects of NPY against glutamate toxicity and tunicamycin-induced ER stress in the human neuroblastoma SH-SY5Y cell line. We exposed the SH-SY5Y cells to glutamate and tunicamycin for two different time points and analyzed the protective effects of NPY at different concentrations. The protective effects of NPY treatments were assessed by cell viability assay, and the signalling pathway changes were evaluated by biochemical techniques such as Western blotting and immunofluorescence assays. Our results showed that treatment of SH-SY5Y cells with NPY significantly increased the viability of the cells in both glutamate toxicity and ER stress conditions. NPY treatments significantly attenuated the glutamate-induced pro-apoptotic activation of ERK1/2 and JNK/BAD pathways. The protective effects of NPY were further evident against tunicamycin-induced ER stress. NPY treatments significantly suppressed the ER stress activation by downregulating BiP, phospho-eIF2α, and CHOP expression. In addition, NPY alleviated the Akt/FoxO3a pathway in acute oxidative conditions caused by glutamate and tunicamycin in SH-SY5Y cells. Our results demonstrated that NPY is neuroprotective against glutamate-induced cell toxicity and tunicamycin-induced ER stress through anti-apoptotic actions.
Collapse
Affiliation(s)
- Viswanthram Palanivel
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
- Correspondence: (V.P.); (D.B.)
| | - Vivek Gupta
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
| | - Seyed Shahab Oddin Mirshahvaladi
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
| | - Samridhi Sharma
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
| | - Veer Gupta
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia
| | - Nitin Chitranshi
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
| | - Mehdi Mirzaei
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
| | - Stuart L Graham
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
- Save Sight Institute, The University of Sydney, Sydney, NSW 2000, Australia
| | - Devaraj Basavarajappa
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
- Correspondence: (V.P.); (D.B.)
| |
Collapse
|
19
|
Mushroom Polysaccharides as Potential Candidates for Alleviating Neurodegenerative Diseases. Nutrients 2022; 14:nu14224833. [PMID: 36432520 PMCID: PMC9696021 DOI: 10.3390/nu14224833] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/09/2022] [Accepted: 11/12/2022] [Indexed: 11/17/2022] Open
Abstract
Neurodegenerative diseases (NDs) are a widespread and serious global public health burden, particularly among the older population. At present, effective therapies do not exist, despite the increasing understanding of the different mechanisms of NDs. In recent years, some drugs, such as galantamine, entacapone, riluzole, and edaravone, have been proposed for the treatment of different NDs; however, they mainly concentrate on symptom management and confer undesirable side effects and adverse reactions. Therefore, there is an urgent need to find novel drugs with fewer disadvantages and higher efficacy for the treatment of NDs. Mushroom polysaccharides are macromolecular complexes with multi-targeting bioactivities, low toxicity, and high safety. Some have been demonstrated to exhibit neuroprotective effects via their antioxidant, anti-amyloidogenic, anti-neuroinflammatory, anticholinesterase, anti-apoptotic, and anti-neurotoxicity activities, which have potential in the treatment of NDs. This review focuses on the different processes involved in ND development and progression, highlighting the neuroprotective activities and potential role of mushroom polysaccharides and summarizing the limitations and future perspectives of mushroom polysaccharides in the prevention and treatment of NDs.
Collapse
|
20
|
Honokiol Microemulsion Causes Stage-Dependent Toxicity Via Dual Roles in Oxidation-Reduction and Apoptosis through FoxO Signaling Pathway. Cells 2022; 11:cells11223562. [PMID: 36428991 PMCID: PMC9688712 DOI: 10.3390/cells11223562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Honokiol, the main bioactive extract of Magnolia officinalis, exhibits extensive therapeutic actions. Its treatment for advanced non-small cell lung cancer is undergoing clinical trials in China. However, the published safety evaluation studies have focused on extract mixtures of Magnolia officinalis in which the honokiol content was well below the reported clinical dose of the honokiol monomer. Therefore, safety assessment of the honokiol monomer is urgently needed. Our previous studies have already demonstrated that a high dose of the honokiol microemulsion (0.6 μg/mL) induces developmental toxicity in rats and zebrafish by inducing oxidative stress. By exploring the relationship between time and toxicity, we found that developmental toxic responses were stage-dependent. They mainly occurred within the first 24 h post fertilization (hpf) especially the first 12 hpf. In zebrafish, low doses of honokiol microemulsion (0.15, 0.21 μg/mL) significantly decreased the levels of reactive oxygen species (ROS) and malondialdehyde (MDA) and increased the mRNA expression of bcl-2. In contrast, high dose (0.6 μg/mL) increased the levels of ROS and MDA, decreased activities and mRNA expression of superoxide dismutase (SOD) and catalase (CAT), and increased mRNA expression of bax, c-jnk, p53 and bim. By acridine orange staining, we found that a high dose of honokiol microemulsion induced apoptosis mainly in zebrafish brain. In rat pheochromocytoma cells (PC12 cells), low doses of the honokiol microemulsion (1, 5, 10 µM) exerted a protective effect against H2O2-induced oxidative damage while high doses (≥20 µM) induced oxidative stress, which further confirms the dual effects of honokiol microemulsion on nerve cells. These dual roles of the honokiol microemulsion in oxidation-reduction reactions and apoptosis may be regulated by the forkhead box class O (FoxO) signaling pathway. Due to the potential of developmental toxicity, we recommend that the administration of high dose honokiol microemulsion in pregnant women should be considered with caution.
Collapse
|
21
|
Han R, Huang H, Xia W, Liu J, Luo H, Tang J, Xia Z. Perspectives for Forkhead box transcription factors in diabetic cardiomyopathy: Their therapeutic potential and possible effects of salvianolic acids. Front Cardiovasc Med 2022; 9:951597. [PMID: 36035917 PMCID: PMC9403618 DOI: 10.3389/fcvm.2022.951597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/27/2022] [Indexed: 11/15/2022] Open
Abstract
Diabetic cardiomyopathy (DCM) is the primary cause of morbidity and mortality in diabetic cardiovascular complications, which initially manifests as cardiac hypertrophy, myocardial fibrosis, dysfunctional remodeling, and diastolic dysfunction, followed by systolic dysfunction, and eventually end with acute heart failure. Molecular mechanisms underlying these pathological changes in diabetic hearts are complicated and multifactorial, including but not limited to insulin resistance, oxidative stress, lipotoxicity, cardiomyocytes apoptosis or autophagy, inflammatory response, and myocardial metabolic dysfunction. With the development of molecular biology technology, accumulating evidence illustrates that members of the class O of Forkhead box (FoxO) transcription factors are vital for maintaining cardiomyocyte metabolism and cell survival, and the functions of the FoxO family proteins can be modulated by a wide variety of post-translational modifications including phosphorylation, acetylation, ubiquitination, arginine methylation, and O-glycosylation. In this review, we highlight and summarize the most recent advances in two members of the FoxO family (predominately FoxO1 and FoxO3a) that are abundantly expressed in cardiac tissue and whose levels of gene and protein expressions change as DCM progresses, with the goal of providing valuable insights into the pathogenesis of diabetic cardiovascular complications and discussing their therapeutic potential and possible effects of salvianolic acids, a natural product.
Collapse
Affiliation(s)
- Ronghui Han
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Hemeng Huang
- Department of Emergency, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Weiyi Xia
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Department of Orthopaedics and Traumatology, The Univerisity of Hong Kong, Hong Kong, China
- *Correspondence: Weiyi Xia,
| | - Jingjin Liu
- Department of Cardiology, Shenzhen People’s Hospital and The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Hui Luo
- Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang, China
| | - Jing Tang
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhengyuan Xia
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine, The University of Hong Kong, Hong Kong, China
- Zhengyuan Xia,
| |
Collapse
|
22
|
Lv C, Sun Y, Zhang ZY, Aboelela Z, Qiu X, Meng ZX. β-cell dynamics in type 2 diabetes and in dietary and exercise interventions. J Mol Cell Biol 2022; 14:6656373. [PMID: 35929791 PMCID: PMC9710517 DOI: 10.1093/jmcb/mjac046] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/07/2022] [Accepted: 08/03/2022] [Indexed: 01/14/2023] Open
Abstract
Pancreatic β-cell dysfunction and insulin resistance are two of the major causes of type 2 diabetes (T2D). Recent clinical and experimental studies have suggested that the functional capacity of β-cells, particularly in the first phase of insulin secretion, is a primary contributor to the progression of T2D and its associated complications. Pancreatic β-cells undergo dynamic compensation and decompensation processes during the development of T2D, in which metabolic stresses such as endoplasmic reticulum stress, oxidative stress, and inflammatory signals are key regulators of β-cell dynamics. Dietary and exercise interventions have been shown to be effective approaches for the treatment of obesity and T2D, especially in the early stages. Whilst the targeted tissues and underlying mechanisms of dietary and exercise interventions remain somewhat vague, accumulating evidence has implicated the improvement of β-cell functional capacity. In this review, we summarize recent advances in the understanding of the dynamic adaptations of β-cell function in T2D progression and clarify the effects and mechanisms of dietary and exercise interventions on β-cell dysfunction in T2D. This review provides molecular insights into the therapeutic effects of dietary and exercise interventions on T2D, and more importantly, it paves the way for future research on the related underlying mechanisms for developing precision prevention and treatment of T2D.
Collapse
Affiliation(s)
- Chengan Lv
- Department of Pathology and Pathophysiology and Metabolic Research Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China,Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yuchen Sun
- Department of Pathology and Pathophysiology and Metabolic Research Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China,Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China,Zhejiang University–University of Edinburgh Institute (ZJE), Zhejiang University, Haining 314400, China
| | - Zhe Yu Zhang
- Department of Pathology and Pathophysiology and Metabolic Research Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China,Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zeyad Aboelela
- Department of Pathology and Pathophysiology and Metabolic Research Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China,Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China,Bachelors of Surgery, Bachelors of Medicine (MBBS), Zhejiang University School of Medicine, Hangzhou 310003, China
| | | | | |
Collapse
|
23
|
Sakai Y, Taguchi M, Morikawa Y, Suenami K, Yanase E, Takayama T, Ikari A, Matsunaga T. Lowering of brain endothelial cell barrier function by exposure to 4'-iodo-α-pyrrolidinononanophenone. Chem Biol Interact 2022; 364:110052. [PMID: 35872046 DOI: 10.1016/j.cbi.2022.110052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 06/22/2022] [Accepted: 07/13/2022] [Indexed: 11/03/2022]
Abstract
Overuse of pyrrolidinophenones (PPs) is known to cause damage to vascular and central nervous systems, but little is known about its effect on brain endothelial barrier function. In this study, we found that exposure to 4'-iodo-α-pyrrolidinononanophenone (I-α-PNP), one of the most potently cytotoxic PPs, at sublethal concentrations decreases trans-endothelial electrical resistance and increases paracellular permeability across a monolayer of human brain microvascular endothelial cells. Treatment with I-α-PNP also elevated the production of superoxide anion. Furthermore, the treatment reduced the expression and plasma membrane localization of a tight junction protein claudin-5 (CLDN5), which was almost restored by pretreatment with an antioxidant N-acetyl-l-cysteine. These results indicate that I-α-PNP treatment may down-regulate the plasma membrane-localized CLDN5 by elevating the production of reactive oxygen species (ROS). The treatment with I-α-PNP increased the nuclear translocation of Forkhead box protein O1 (FoxO1), an oxidative stress-responsive transcription factor, and pretreating with a FoxO1 inhibitor ameliorated the decrease in CLDN5 mRNA. In addition, I-α-PNP treatment up-regulated the expression and secretion of matrix metalloproteinase-2 (MMP2) and MMP9, and the addition of an MMP inhibitor reversed the degradation of CLDN5 by I-α-PNP. Moreover, I-α-PNP treatment facilitated the activation of 26S proteasome-based proteolytic activity and pretreatment with an inhibitor of 26S proteasome, but not autophagy, suppressed the CLDN5 degradation by I-α-PNP. Accordingly, it is suggested that the down-regulation of CLDN5 by exposure to I-α-PNP is ascribable to suppression of the gene transcription due to FoxO1 nuclear translocation through ROS production and to acceleration both of the MMPs (MMP2 and MMP9)- and 26S proteasome-based proteolysis.
Collapse
Affiliation(s)
- Yuji Sakai
- Forensic Science Laboratory, Gifu Prefectural Police Headquarters, Gifu, 500-8501, Japan.
| | - Maki Taguchi
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Yoshifumi Morikawa
- Forensic Science Laboratory, Gifu Prefectural Police Headquarters, Gifu, 500-8501, Japan
| | - Koichi Suenami
- Forensic Science Laboratory, Gifu Prefectural Police Headquarters, Gifu, 500-8501, Japan
| | - Emiko Yanase
- Faculty of Applied Biological Sciences, Gifu University, Gifu, 501-1112, Japan
| | - Tomohiro Takayama
- Forensic Science Laboratory, Gifu Prefectural Police Headquarters, Gifu, 500-8501, Japan
| | - Akira Ikari
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Toshiyuki Matsunaga
- Laboratory of Bioinformatics, Gifu Pharmaceutical University, Gifu, 502-8585, Japan
| |
Collapse
|
24
|
He X, Wu F, Wang L, Li L, Zhang G. Integrated application of transcriptomics and metabolomics provides insights into condition index difference mechanisms in the Pacific oyster (Crassostrea gigas). Genomics 2022; 114:110413. [PMID: 35716821 DOI: 10.1016/j.ygeno.2022.110413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/04/2022] [Accepted: 06/12/2022] [Indexed: 11/25/2022]
Abstract
The condition index (CI) is an economically important tool for assessing the quality of oysters, such as the Pacific oyster Crassostrea gigas. However, little is known about the mechanisms that underlie differences in CI between different C. gigas populations. In this study, we integrated transcriptomic and metabolomic profiling to investigate the mechanisms that underlie the differences between high- and low-CI groups in one- and two-year-old populations of C. gigas. The results indicate that differences in CI were associated with the regulation of growth-related genes, the FoxO signaling pathway, and the complex regulation of carbohydrate, lipid, amino acid, and energy metabolism. Moreover, the mechanisms underlying these differences differed between the populations. This study is the first to elucidate the molecular and chemical mechanisms associated with CI, and the results will be helpful for breeding higher quality oysters.
Collapse
Affiliation(s)
- Xin He
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100039, China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan 430072, China
| | - Fucun Wu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Luping Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Li Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, China
| | - Guofan Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, China
| |
Collapse
|
25
|
Identification of Peripheral Blood miRNA Biomarkers in First-Episode Drug-Free Schizophrenia Patients Using Bioinformatics Strategy. Mol Neurobiol 2022; 59:4730-4746. [DOI: 10.1007/s12035-022-02878-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 05/12/2022] [Indexed: 11/26/2022]
|
26
|
Dong Z, Zhang D, Wu X, Yin Y, Wan D. Ferrous Bisglycinate Supplementation Modulates Intestinal Antioxidant Capacity via the AMPK/FOXO Pathway and Reconstitutes Gut Microbiota and Bile Acid Profiles in Pigs. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4942-4951. [PMID: 35420025 DOI: 10.1021/acs.jafc.2c00138] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Multi-omics were applied to compare the risks and benefits of ferrous sulfate (FeSO4) and ferrous bisglycinate (FebisGly) in pigs in the current study. The FebisGly group showed reduced triglyceride (TG) and triglyceride/total cholesterol (TG/CHOL) values in the serum and reduced malondialdehyde (MDA) and increased glutathione (GSH) levels in the duodenum. Transcriptome analysis revealed that differentially expressed genes in the duodenum were enriched in oxidative phosphorylation, AMPK, and FOXO signaling pathways between FeSO4 and FebisGly groups. AMPK phosphorylation and FOXO3 protein expressions were significantly increased in the FebisGly group. Bacterial 16S rRNA gene sequence analysis revealed significantly reduced alpha diversity in the FeSO4 group and increased Firmicutes, reduced Bacteroidetes, and Proteobacteria abundances in the FebisGly group. Targeted metabolome revealed notably increased lithocholic acid (LCA), glycolithocholic acid (GLCA), hyodeoxycholic acid (HDCA), ursodeoxycholic acid (UDCA), and glycoursodeoxycholic acid (GUDCA) in the FebisGly group. RDA analysis indicated that Fusobacteria was positively correlated with TG and TG/high-density lipoprotein in the FeSO4 group while Christensenellaceae_R-7_group, Ruminococcaceae_UCG-002, and Ruminococcaceae_UCG-005 were positively correlated with UDCA and GLCA in the FebisGly group. According to the current study, FebisGly improves serum lipid metabolism, modulates intestinal antioxidant capacity via the AMPK/FOXO pathway, and reconstitutes gut microbiota and bile acid profiles in pigs.
Collapse
Affiliation(s)
- Zhenglin Dong
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Research Center of Livestock & Poultry Sciences, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Dongming Zhang
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Research Center of Livestock & Poultry Sciences, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Xin Wu
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Research Center of Livestock & Poultry Sciences, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Yulong Yin
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Research Center of Livestock & Poultry Sciences, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Dan Wan
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Research Center of Livestock & Poultry Sciences, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan 410125, China
| |
Collapse
|
27
|
Bekeschus S, Liebelt G, Menz J, Singer D, Wende K, Schmidt A. Cell cycle-related genes associate with sensitivity to hydrogen peroxide-induced toxicity. Redox Biol 2022; 50:102234. [PMID: 35063803 PMCID: PMC8783094 DOI: 10.1016/j.redox.2022.102234] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/31/2021] [Accepted: 01/11/2022] [Indexed: 12/12/2022] Open
Abstract
Reactive oxygen species (ROS) such as hydrogen peroxide (H2O2) are well-described agents in physiology and pathology. Chronic inflammation causes incessant H2O2 generation associated with disease occurrences such as diabetes, autoimmunity, and cancer. In cancer, conditioning of the tumor microenvironment, e.g., hypoxia and ROS generation, has been associated with disease outcomes and therapeutic efficacy. Many reports have investigated the roles of the action of H2O2 across many cell lines and disease models. The genes predisposing tumor cell lines to H2O2-mediated demise are less deciphered, however. To this end, we performed in-house transcriptional profiling of 35 cell lines and simultaneously investigated each cell line's H2O2 inhibitory concentration (IC25) based on metabolic activity. More than 100-fold differences were observed between the most resistant and sensitive cell lines. Correlation and gene ontology pathway analysis identified a rigid association with genes intertwined in cell cycle progression and proliferation, as such functional categories dominated the top ten significant processes. The ten most substantially correlating genes (Spearman r > 0.70 or < -0.70) were validated using qPCR, showing complete congruency with microarray analysis findings. Western blotting confirmed the correlation of cell cycle-related proteins negatively correlating with H2O2 IC25. Top genes related to ROS production or antioxidant defense were only modest in correlation (Spearman r > 0.40 or < -0.40). In conclusion, our in-house transcriptomic correlation analysis revealed a set of cell cycle-associated genes associated with a priori resistance or sensitivity to H2O2-induced cellular demise with the detailed and causative roles of individual genes remaining unclear.
Collapse
Affiliation(s)
- Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany.
| | - Grit Liebelt
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Jonas Menz
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany; Department of General, Visceral, Vascular, and Thorax Surgery, Greifswald University Medical Center, Felix-Hausdorff-Str. 2, 17475, Greifswald, Germany
| | - Debora Singer
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Kristian Wende
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Anke Schmidt
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| |
Collapse
|
28
|
Xia SL, Ma ZY, Wang B, Gao F, Yi CG, Zhou XX, Guo SY, Zhou L. In vitro anti-synovial sarcoma effect of diallyl trisulfide and mRNA profiling. Gene 2022; 816:146172. [PMID: 34995734 DOI: 10.1016/j.gene.2021.146172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/01/2021] [Accepted: 12/10/2021] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Synovial sarcoma (SS) is a malignant soft tissue sarcoma and its natural history is a long, indolent clinical course followed by high rate of local recurrence and distant metastasis. Current therapies are still limited in increasing satisfactory of 5-year survival, especially for patients with recurrence and metastasis. Accordingly, finding new therapeutic drug for SS treatment is clinically urgent need. Diallyl trisulfide (DATS), a bioactive compound derived from garlic, is reported as a promising anti-cancer agent for various carcinomas. However, its effect on anti-SS remains unknown. This study investigated the anti-SS effect of DATS in human synovial sarcoma SW982 cells. METHODS CCK-8 assay were used to examine the cell viability. High-content Imaging System was used to examine the apoptosis, intracellular ROS and autophagy. Flow cytometry was used to detect cell cycle. qPCR and Western blot were used to examine the expression of related mRNA and protein. High-throughput RNA-sequencing and bio-information analysis were used to investigate the mRNA profiling. RESULTS The results showed a suppressive effect of DATS on tumor biology of SW982 cells including inducing apoptosis, triggering G2/M cell cycle arrest, elevating intracellular ROS and damaging mitochondria. Further high-throughput RNA-sequencing analysis clarified a comprehensive molecular portrait for DATS-induced transcriptional regulation. Besides, protein-protein interaction (PPI) analysis demonstrated that a network consisted of FOXM1, CCNA2, CCNB1, MYBL2, PLK1 and CDK1 might be response for DATS-induced G2/M cell cycle arrest and increased intracellular ROS. Notably, protein feature analysis revealed structure enrichment in microtubule network like kinesin motors domain, and tubulin domain. Molecular function analysis suggested that DATS-induced dysfunction of microtubule network might be the major cause for its effect on cell cycle arrest and successive apoptosis. Furthermore, 28 hub genes (including KIF2C, PLK1, CDK1, BIRC5, CCNB2, CENPF, TPX2, TOP2A and so on) were determined. Finally, pathway analysis showed that DATS-induced differentially expressed genes were mainly involved in cell cycle. CONCLUSION Collectively, our findings for the first time provided the DATS-induced cellular response and transcriptional profiling of SW982 cells, which proposes that suppression of DATS on SS is multi-targeted and represent a therapeutic evidence for SS.
Collapse
MESH Headings
- Allyl Compounds/therapeutic use
- Antineoplastic Agents, Phytogenic/therapeutic use
- Autophagy/drug effects
- Cell Cycle/drug effects
- Cell Line, Tumor
- Cell Survival/drug effects
- Databases, Genetic
- Drug Screening Assays, Antitumor
- Flow Cytometry
- Garlic/chemistry
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Mitochondria/drug effects
- Protein Interaction Maps/drug effects
- RNA, Messenger
- RNA, Neoplasm/chemistry
- Reactive Oxygen Species/metabolism
- Sarcoma, Synovial/drug therapy
- Sarcoma, Synovial/genetics
- Sequence Analysis, RNA
- Sulfides/therapeutic use
- Transcriptome
Collapse
Affiliation(s)
- Sheng-Li Xia
- Department of Orthopedics, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, 1500 Zhouyuan Road, Pudong New Area, Shanghai 201318, China
| | - Zi-Yuan Ma
- Department of Orthopedics, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, 1500 Zhouyuan Road, Pudong New Area, Shanghai 201318, China
| | - Bin Wang
- Department of Orthopedics, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, 1500 Zhouyuan Road, Pudong New Area, Shanghai 201318, China
| | - Feng Gao
- Department of Orthopedics, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, 1500 Zhouyuan Road, Pudong New Area, Shanghai 201318, China
| | - Cun-Guo Yi
- Department of Orthopedics, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, 1500 Zhouyuan Road, Pudong New Area, Shanghai 201318, China
| | - Xiao-Xiao Zhou
- Department of Orthopedics, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, 1500 Zhouyuan Road, Pudong New Area, Shanghai 201318, China
| | - Sheng-Yang Guo
- Department of Orthopedics, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, 1500 Zhouyuan Road, Pudong New Area, Shanghai 201318, China
| | - Li Zhou
- Department of Oncology and Hematology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, 1500 Zhouyuan Road, Pudong New Area, Shanghai 201318, China.
| |
Collapse
|
29
|
Zhao SS, Su XL, Pan RJ, Lu LQ, Zheng GD, Zou SM. The transcriptomic responses of blunt snout bream (Megalobrama amblycephala) to acute hypoxia stress alone, and in combination with bortezomib. BMC Genomics 2022; 23:162. [PMID: 35216548 PMCID: PMC8876555 DOI: 10.1186/s12864-022-08399-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 02/16/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Blunt snout bream (Megalobrama amblycephala) is sensitive to hypoxia. A new blunt snout bream strain, "Pujiang No.2", was developed to overcome this shortcoming. As a proteasome inhibitor, bortezomib (PS-341) has been shown to affect the adaptation of cells to a hypoxic environment. In the present study, bortezomib was used to explore the hypoxia adaptation mechanism of "Pujiang No.2". We examined how acute hypoxia alone (hypoxia-treated, HN: 1.0 mg·L- 1), and in combination with bortezomib (hypoxia-bortezomib-treated, HB: Use 1 mg bortezomib for 1 kg fish), impacted the hepatic ultrastructure and transcriptome expression compared to control fish (normoxia-treated, NN). RESULTS Hypoxia tolerance was significantly decreased in the bortezomib-treated group (LOEcrit, loss of equilibrium, 1.11 mg·L- 1 and 1.32 mg·L- 1) compared to the control group (LOEcrit, 0.73 mg·L- 1 and 0.85 mg·L- 1). The HB group had more severe liver injury than the HN group. Specifically, the activities of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in the HB group (52.16 U/gprot, 32 U/gprot) were significantly (p < 0.01) higher than those in the HN group (32.85 U/gprot, 21. 68 U/gprot). In addition, more severe liver damage such as vacuoles, nuclear atrophy, and nuclear lysis were observed in the HB group. RNA-seq was performed on livers from the HN, HB and NN groups. KEGG pathway analysis disclosed that many DEGs (differently expressed genes) were enriched in the HIF-1, FOXO, MAPK, PI3K-Akt and AMPK signaling pathway and their downstream. CONCLUSION We explored the adaptation mechanism of "Pujiang No.2" to hypoxia stress by using bortezomib, and combined with transcriptome analysis, accurately captured the genes related to hypoxia tolerance advantage.
Collapse
Affiliation(s)
- Shan-Shan Zhao
- Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture, Shanghai, 201306, China.,Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai, 201306, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiao-Lei Su
- Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture, Shanghai, 201306, China.,Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai, 201306, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Rong-Jia Pan
- Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture, Shanghai, 201306, China.,Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai, 201306, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Li-Qun Lu
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Guo-Dong Zheng
- Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture, Shanghai, 201306, China. .,Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai, 201306, China. .,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China.
| | - Shu-Ming Zou
- Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture, Shanghai, 201306, China. .,Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai, 201306, China. .,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
30
|
Cross-Talking Pathways of Forkhead Box O1 (FOXO1) Are Involved in the Pathogenesis of Alzheimer’s Disease and Huntington’s Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7619255. [PMID: 35154571 PMCID: PMC8831070 DOI: 10.1155/2022/7619255] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 12/18/2021] [Accepted: 01/11/2022] [Indexed: 11/17/2022]
Abstract
Alzheimer's disease (AD) and Huntington's disease (HD) are destructive worldwide diseases. Efforts have been made to elucidate the process of these two diseases, yet the pathogenesis remains elusive as it involves a combination of multiple factors, including genetic and environmental ones. To explore the potential role of forkhead box O1 (FOXO1) in the development of AD and HD, we identified 1,853 differentially expressed genes (DEGs) from 19,414 background genes in both the AD&HD/control and FOXO1-low/high groups. Four coexpression modules were predicted by the weighted gene coexpression network analysis (WGCNA), among which blue and turquoise modules had the strongest correlation with AD&HD and high expression of FOXO1. Functional enrichment analysis showed that DEGs in these modules were enriched in phagosome, cytokine-cytokine receptor interaction, cellular senescence, FOXO signaling pathway, pathways of neurodegeneration, GABAergic synapse, and AGE-RAGE signaling pathway in diabetic complications. Furthermore, the cross-talking pathways of FOXO1 in AD and HD were jointly determined in a global regulatory network, such as the FOXO signaling pathway, cellular senescence, and AGE-RAGE signaling pathway in diabetic complications. Based on the performance evaluation of the area under the curve of 85.6%, FOXO1 could accurately predict the onset of AD and HD. We then identified the cross-talking pathways of FOXO1 in AD and HD, respectively. More specifically, FOXO1 was involved in the FOXO signaling pathway and cellular senescence in AD; correspondingly, FOXO1 participated in insulin resistance, insulin, and the FOXO signaling pathways in HD. Next, we use GSEA to validate the biological processes in AD&HD and FOXO1 expression. In GSEA analysis, regulation of protein maturation and regulation of protein processing were both enriched in the AD&HD and FOXO1-high groups, suggesting that FOXO1 may have implications in onset and progression of these two diseases through protein synthesis. Consequently, a high expression of FOXO1 is a potential pathogenic factor in both AD and HD involving mechanisms of the FOXO signaling pathway, AGE-RAGE signaling pathway in diabetic complications, and cellular senescence. Our findings provide a comprehensive perspective on the molecular function of FOXO1 in the pathogenesis of AD and HD.
Collapse
|
31
|
Zhou Z, Bai J, Zhong S, Zhang R, Kang K, Zhang X, Xu Y, Zhao C, Zhao M. Downregulation of PIK3CB Involved in Alzheimer's Disease via Apoptosis, Axon Guidance, and FoxO Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1260161. [PMID: 35096262 PMCID: PMC8794666 DOI: 10.1155/2022/1260161] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 01/08/2022] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To investigate the molecular function of phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit beta (PIK3CB) underlying Alzheimer's disease (AD). METHODS RNA sequencing data were used to filtrate differentially expressed genes (DEGs) in AD/nondementia control and PIK3CB-low/high groups. An unbiased coexpression network was established to evaluate module-trait relationships by using weight gene correlation network analysis (WGCNA). Global regulatory network was constructed to predict the protein-protein interaction. Further cross-talking pathways of PIK3CB were identified by functional enrichment analysis. RESULTS The mean expression of PIK3CB in AD patients was significantly lower than those in nondementia controls. We identified 2,385 DEGs from 16,790 background genes in AD/control and PIK3CB-low/high groups. Five coexpression modules were established using WGCNA, which participated in apoptosis, axon guidance, long-term potentiation (LTP), regulation of actin cytoskeleton, synaptic vesicle cycle, FoxO, mitogen-activated protein kinase (MAPK), and vascular endothelial growth factor (VEGF) signaling pathways. DEGs with strong relation to AD and low PIK3CB expression were extracted to construct a global regulatory network, in which cross-talking pathways of PIK3CB were identified, such as apoptosis, axon guidance, and FoxO signaling pathway. The occurrence of AD could be accurately predicted by low PIK3CB based on the area under the curve of 71.7%. CONCLUSIONS These findings highlight downregulated PIK3CB as a potential causative factor of AD, possibly mediated via apoptosis, axon guidance, and FoxO signaling pathway.
Collapse
Affiliation(s)
- Zhike Zhou
- Department of Geriatrics, The First Affiliated Hospital, China Medical University, Shenyang, 110001 Liaoning, China
| | - Jun Bai
- Cancer Systems Biology Center, The China-Japan Union Hospital, Jilin University, Changchun, 130033 Jilin, China
| | - Shanshan Zhong
- Department of Neurology, The First Affiliated Hospital, China Medical University, Shenyang, 110001 Liaoning, China
| | - Rongwei Zhang
- Department of Geriatrics, The First Affiliated Hospital, China Medical University, Shenyang, 110001 Liaoning, China
| | - Kexin Kang
- Department of Geriatrics, The First Affiliated Hospital, China Medical University, Shenyang, 110001 Liaoning, China
| | - Xiaoqian Zhang
- Department of Neurology, The First Affiliated Hospital, China Medical University, Shenyang, 110001 Liaoning, China
| | - Ying Xu
- Cancer Systems Biology Center, The China-Japan Union Hospital, Jilin University, Changchun, 130033 Jilin, China
- Computational Systems Biology Lab, Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, The University of Georgia, USA
| | - Chuansheng Zhao
- Department of Neurology, The First Affiliated Hospital, China Medical University, Shenyang, 110001 Liaoning, China
| | - Mei Zhao
- Department of Cardiology, The Shengjing Affiliated Hospital, China Medical University, Shenyang, 110004 Liaoning, China
| |
Collapse
|
32
|
Gupta R, Jha A, Ambasta RK, Kumar P. Regulatory mechanism of cyclins and cyclin-dependent kinases in post-mitotic neuronal cell division. Life Sci 2021; 285:120006. [PMID: 34606852 DOI: 10.1016/j.lfs.2021.120006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 12/18/2022]
Abstract
Neurodegenerative diseases (NDDs) are the most common life-threatening disease of the central nervous system and it cause the progressive loss of neuronal cells. The exact mechanism of the disease's progression is not clear and thus line of treatment for NDDs is a baffling issue. During the progression of NDDs, oxidative stress and DNA damage play an important regulatory function, and ultimately induces neurodegeneration. Recently, aberrant cell cycle events have been demonstrated in the progression of different NDDs. However, the pertinent role of signaling mechanism, for instance, post-translational modifications, oxidative stress, DNA damage response pathway, JNK/p38 MAPK, MEK/ERK cascade, actively participated in the aberrant cell cycle reentry induced neuronal cell death. Mounting evidence has demonstrated that aberrant cell cycle re-entry is a major contributing factor in the pathogenesis of NDDs rather than a secondary phenomenon. In the brain of AD patients with mild cognitive impairment, post miotic cell division can be seen in the early stage of the disease. However, in the brain of PD patients, response to various neurotoxic signals, the cell cycle re-entry has been observed that causes neuronal apoptosis. On contrary, the contributing factors that leads to the induction of cell cycle events in mature neurons in HD and ALS brain pathology is remain unclear. Various pharmacological drugs have been developed to reduce the pathogenesis of NDDs, but they are still not helpful in eliminating the cause of these NDDs.
Collapse
Affiliation(s)
- Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), India
| | - Ankita Jha
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), India.
| |
Collapse
|
33
|
Broussochalcone A Induces Apoptosis in Human Renal Cancer Cells via ROS Level Elevation and Activation of FOXO3 Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:2800706. [PMID: 34745413 PMCID: PMC8566040 DOI: 10.1155/2021/2800706] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/01/2021] [Accepted: 10/11/2021] [Indexed: 11/18/2022]
Abstract
Broussochalcone A (BCA) is a chalcone compound extracted from the cortex of Broussonetiapapyrifera (L.) Ventenat that exerts various effects, such as potent antioxidant, antiplatelet, and anticancer effects. However, the effects of BCA against cancers have been seldom studied. This study is aimed at demonstrating the apoptotic mechanisms of BCA in A498 and ACHN cells, which are two types of human renal cancer cell lines. MTT, cell counting, and colony formation assays indicated that BCA treatment inhibited cell viability and cell growth. Further, cell cycle analysis revealed that BCA induced cell cycle arrest at the G2/M phase. Annexin V/PI staining and TUNEL assays were performed to determine the apoptotic effects and DNA fragmentation after treatment with BCA. Based on western blot analysis, BCA induced the upregulation of cleaved PARP, FOXO3, Bax, p21, p27, p53, phosphorylated p53 (ser15, ser20, and ser46), and active forms of caspase-3, caspase-7, and caspase-9 proteins, but downregulated the proforms of the proteins. The expression levels of pAkt, Bcl-2, and Bcl-xL were also found to be downregulated. Western blot analysis of nuclear fractionation results revealed that BCA induced the nuclear translocation of FOXO3, which might be induced by DNA damage owing to the accumulation of reactive oxygen species (ROS). Elevated intracellular ROS levels were also found following BCA treatment. Furthermore, DNA damage was detected after BCA treatment using a comet assay. The purpose of this study was to elucidate the apoptotic effects of BCA against renal cancer A498 and ACHN cells. Collectively, our study findings revealed that the apoptotic effects of BCA against human renal cancer cells occur via the elevation of ROS level and activation of the FOXO3 signaling pathway.
Collapse
|
34
|
Moon KM, Lee MK, Hwang T, Choi CW, Kim MS, Kim HR, Lee B. The multi-functional roles of forkhead box protein O in skin aging and diseases. Redox Biol 2021; 46:102101. [PMID: 34418600 PMCID: PMC8385202 DOI: 10.1016/j.redox.2021.102101] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 12/11/2022] Open
Abstract
Forkhead box, class O (FoxO) family members are multifunctional transcription factors that are involved in several metabolic processes, including energy metabolism, apoptosis, DNA repair, and oxidative stress. However, their roles in skin health have not been well-documented. Recent studies have indicated that FoxOs are important factors to control skin homeostasis and health. The activation or deactivation of some FoxO family members is closely related to melanogenesis, wound healing, acne, and melanoma. In this review, we have discussed the recent findings that demonstrate the relationship between FoxOs and skin health as well as the underlying mechanisms associated with their functions.
Collapse
Affiliation(s)
- Kyoung Mi Moon
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Min-Kyeong Lee
- Department of Food Science and Nutrition, Pukyong National University, Nam-Gu, Busan, Republic of Korea
| | - Taehyeok Hwang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Chun Whan Choi
- Natural Product Research Team, Biocenter, Gyeonggido Business and Science Accelerator, Gyeonggi-Do, Republic of Korea
| | - Min Soo Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Hyeung-Rak Kim
- Department of Food Science and Nutrition, Pukyong National University, Nam-Gu, Busan, Republic of Korea
| | - Bonggi Lee
- Department of Food Science and Nutrition, Pukyong National University, Nam-Gu, Busan, Republic of Korea.
| |
Collapse
|
35
|
Wen DT, Zheng L, Lu K, Hou WQ. Physical exercise prevents age-related heart dysfunction induced by high-salt intake and heart salt-specific overexpression in Drosophila. Aging (Albany NY) 2021; 13:19542-19560. [PMID: 34383711 PMCID: PMC8386524 DOI: 10.18632/aging.203364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 07/17/2021] [Indexed: 12/21/2022]
Abstract
A long-term high-salt intake (HSI) seems to accelerate cardiac aging and age-related diseases, but the molecular mechanism is still not entirely clear. Exercise is an effective way to delay cardiac aging. However, it remains unclear whether long-term exercise (LTE) can protect heart from aging induced by high-salt stress. In this study, heart CG2196(salt) specific overexpression (HSSO) and RNAi (HSSR) was constructed by using the UAS/hand-Gal4 system in Drosophila. Flies were given exercise and a high-salt diet intervention from 1 to 5 weeks of age. Results showed that HSSR and LTE remarkably prevented heart from accelerated age-related defects caused by HSI and HSSO, and these defects included a marked increase in heart period, arrhythmia index, malondialdehyde (MDA) level, salt expression, and dTOR expression, and a marked decrease in fractional shortening, SOD activity level, dFOXO expression, PGC-1α expression, and the number of mitochondria and myofibrils. The combination of HSSR and LTE could better protect the aging heart from the damage of HSI. Therefore, current evidences suggested that LTE resisted HSI-induced heart presenility via blocking CG2196(salt)/TOR/oxidative stress and activating dFOXO/PGC-1α. LTE also reversed heart presenility induced by cardiac-salt overexpression via activating dFOXO/PGC-1α and blocking TOR/oxidative stress.
Collapse
Affiliation(s)
- Deng-Tai Wen
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha 410012, Hunan Province, China.,Ludong University, Yantai 264025, Shandong Province, China
| | - Lan Zheng
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha 410012, Hunan Province, China
| | - Kai Lu
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha 410012, Hunan Province, China
| | - Wen-Qi Hou
- Ludong University, Yantai 264025, Shandong Province, China
| |
Collapse
|
36
|
Su D, Wang W, Hou Y, Wang L, Yi X, Cao C, Wang Y, Gao H, Wang Y, Yang C, Liu B, Chen X, Wu X, Wu J, Yan D, Wei S, Han L, Liu S, Wang Q, Shi L, Shan L. Bimodal regulation of the PRC2 complex by USP7 underlies tumorigenesis. Nucleic Acids Res 2021; 49:4421-4440. [PMID: 33849069 PMCID: PMC8096222 DOI: 10.1093/nar/gkab209] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/01/2021] [Indexed: 12/27/2022] Open
Abstract
Although overexpression of EZH2, a catalytic subunit of the polycomb repressive complex 2 (PRC2), is an eminent feature of various cancers, the regulation of its abundance and function remains insufficiently understood. We report here that the PRC2 complex is physically associated with ubiquitin-specific protease USP7 in cancer cells where USP7 acts to deubiquitinate and stabilize EZH2. Interestingly, we found that USP7-catalyzed H2BK120ub1 deubiquitination is a prerequisite for chromatin loading of PRC2 thus H3K27 trimethylation, and this process is not affected by H2AK119 ubiquitination catalyzed by PRC1. Genome-wide analysis of the transcriptional targets of the USP7/PRC2 complex identified a cohort of genes including FOXO1 that are involved in cell growth and proliferation. We demonstrated that the USP7/PRC2 complex drives cancer cell proliferation and tumorigenesis in vitro and in vivo. We showed that the expression of both USP7 and EZH2 elevates during tumor progression, corresponding to a diminished FOXO1 expression, and the level of the expression of USP7 and EZH2 strongly correlates with histological grades and prognosis of tumor patients. These results reveal a dual role for USP7 in the regulation of the abundance and function of EZH2, supporting the pursuit of USP7 as a therapeutic target for cancer intervention.
Collapse
Affiliation(s)
- Dongxue Su
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.,State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Wenjuan Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yongqiang Hou
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Liyong Wang
- Core Facilities for Molecular Biology, Capital Medical University, Beijing 100069, China
| | - Xianfu Yi
- School of Biomedical Engineering, Tianjin Medical University, Tianjin 300070, China
| | - Cheng Cao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yuejiao Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Huan Gao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yue Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Chao Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Beibei Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xing Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xiaodi Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Jiajing Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Dong Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Shuqi Wei
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Lulu Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Shumeng Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Qian Wang
- Tianjin Medical University Cancer Institute and Hospital, Tianjin Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin 300060, China
| | - Lei Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Lin Shan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| |
Collapse
|
37
|
Perrault R, Molnar P, Poole J, Zahradka P. PDGF-BB-mediated activation of CREB in vascular smooth muscle cells alters cell cycling via Rb, FoxO1 and p27 kip1. Exp Cell Res 2021; 404:112612. [PMID: 33895117 DOI: 10.1016/j.yexcr.2021.112612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION & AIM The vascular response to injury leads to the secretion of several factors, including platelet-derived growth factor (PDGF-BB). PDGF-BB stimulates smooth muscle cell (SMC) conversion to the synthetic phenotype, thereby enhancing proliferation and migration, and contributing to neointimal hyperplasia. Likewise, the cAMP response element binding protein (CREB) transcription factor has been shown to mediate SMC proliferation in response to various mitogens. We therefore investigated the contribution of CREB to PDGF-BB-dependent proliferation of SMCs with the intention of identifying signaling pathways involved both up and downstream of CREB activation. METHODS & RESULTS Treatments were performed on vascular SMCs from a porcine coronary artery explant model. The role of CREB was examined via adenoviral expression of a dominant-negative CREB mutant (kCREB) as well as inhibition of CREB binding protein (CBP). Involvement of the p27kip1 pathway was determined using a constitutively expressing p27kip1 adenoviral vector. PDGF-BB stimulated transient CREB phosphorylation on Ser-133 via ERK1/2-, PI3-kinase- and Src-dependent pathways. Expression of kCREB decreased PDGF-BB-dependent cell proliferation. PCNA expression and Rb phosphorylation were also inhibited by kCREB. These cell cycle proteins are controlled via p27kip1 expression in response to CREB-dependent post-translational modification of FoxO1. kCREB had no effect on Cyclin D1 expression, but did prevent PDGF-BB-induced Cyclin D1 nuclear translocation. An interaction inhibitor of CBP confirmed that Cyclin D1 is downstream of PDGF-BB and CREB. CONCLUSION CREB phosphorylation is required for SMC proliferation in response to PDGF-BB. This phenotypic change requires CBP and is mediated by Cyclin D1 and p27kip as a result of changes in FoxO1 activity.
Collapse
Affiliation(s)
- Raissa Perrault
- Department of Physiology and Pathophysiology, University of Manitoba, Canada; Molecular Physiology Laboratory, St. Boniface Albrechtsen Research Centre, Canada; Department of Experimental Sciences, Université de Saint Boniface, Winnipeg, Manitoba, Canada
| | - Peter Molnar
- Department of Physiology and Pathophysiology, University of Manitoba, Canada; Molecular Physiology Laboratory, St. Boniface Albrechtsen Research Centre, Canada
| | - Jenna Poole
- Molecular Physiology Laboratory, St. Boniface Albrechtsen Research Centre, Canada
| | - Peter Zahradka
- Department of Physiology and Pathophysiology, University of Manitoba, Canada; Molecular Physiology Laboratory, St. Boniface Albrechtsen Research Centre, Canada.
| |
Collapse
|
38
|
Ji C, Zhang N, Jiang H, Meng X, Ge H, Yang X, Xu X, Qian K, Park Y, Zheng Y, Wang J. 20-hydroxyecdysone regulates expression of methioninesulfoxide reductases through transcription factor FOXO in the red flour beetle, Tribolium castaneum. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 131:103546. [PMID: 33548484 DOI: 10.1016/j.ibmb.2021.103546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 01/24/2021] [Accepted: 01/29/2021] [Indexed: 06/12/2023]
Abstract
The oxidation of methionine (Met) by reactive oxygen species (ROS) causes detrimental effects on the protein functions. Methionine sulfoxide reductase (Msr) is the secondary antioxidant enzyme involved in protein repair, and is divided into two distinct classes, MsrA and MsrB, although the mechanisms underlying the transcriptional regulation of Msrs remain largely unknown. In this study, the full-length cDNAs encoding MsrA and three alternatively spliced isoforms of MsrB were isolated from the red flour beetle, Tribolium castaneum. Exposure of female adults to oxidative, heat and cold stresses induced expressions of both MsrA and MsrB. RNAi-mediated knockdown of MsrA and MsrB resulted in increased sensitivity of T. castaneum to paraquat-induced oxidative stress. Treatment with 20-hydroxyecdysone (20E) increased expression levels of both MsrA and MsrB. Knockdown of transcription factor forkhead box O (FOXO) decreased both MsrA and MsrB mRNA levels and abolished the induction of MsrA and MsrB by paraquat. Luciferase reporter assays revealed that FOXO directly activates the promoters of both MsrA and MsrB. Moreover, paraquat treatment induced expression of two ecdysone biosynthesis genes, Shade and Phantom, 20E upregulated exoression of FOXO, promoted FOXO nuclear translocation,and knockdown of FOXO abolished induction of MsrA and MsrB expression by 20E, suggesting that regulation of MsrA and MsrB by 20E was mediated by FOXO. Overall, these results provide important insights into the transcriptional regulation of insect Msrs.
Collapse
Affiliation(s)
- Caihong Ji
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China; School of Horticulture and Landscape, Yangzhou Polytechnic College, Yangzhou, 225009, China
| | - Nan Zhang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Heng Jiang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Xiangkun Meng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Huichen Ge
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Xuemei Yang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Xin Xu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Kun Qian
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Yoonseong Park
- Department of Entomology, Kansas State University, Manhattan, KS, USA
| | - Yang Zheng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China.
| | - Jianjun Wang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture AndAgri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
39
|
Wang L, Guo Y, Pan M, Li X, Huang D, Liu Y, Wu C, Zhang W, Mai K. Functions of Forkhead Box O on Glucose Metabolism in Abalone Haliotis discus hannai and Its Responses to High Levels of Dietary Lipid. Genes (Basel) 2021; 12:genes12020297. [PMID: 33672704 PMCID: PMC7924355 DOI: 10.3390/genes12020297] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/05/2021] [Accepted: 02/17/2021] [Indexed: 12/23/2022] Open
Abstract
The forkhead box O (FoxO) subfamily is a member of the forkhead transcription factor family. It has regulation functions in glucose metabolism in mammals and fish. In the present study, a gene of the foxo homolog in abalone Haliotis discus hannai was cloned. A conservative forkhead (FH) domain and a transactivation (FoxO-TAD) domain were identified. Abalone foxo-specific siRNA (small interfering RNA) was injected to investigate the functions of foxo on glucose metabolism. Knockdown of foxo inhibited expression of phosphoenolpyruvate carboxykinase (pepck) and significantly increased expressions of hexokinase (hk) and pyruvate kinase (pk), but it failed to inhibit the relative mRNA level of glucose-6-phosphatase (g6pase). Then, a 100-day feeding trial was conducted to investigate the response of foxo and glucose metabolism in abalone fed with 1.57% (LFD, low-fat diet), 3.82% (MFD, middle-fat diet) and 6.72% (HFD, high-fat diet) of dietary lipid, respectively. The insulin-signaling pathway (AKT) was depressed and FoxO was activated by the HFD, but it did not inhibit glycolysis (hk) or improved gluconeogenesis significantly (pepck and g6pase). At the same time, impaired hepatopancreas glycogen storage raised hemolymph glucose levels. In conclusion, abalone foxo can be regulated by dietary lipid and can regulate gluconeogenesis or glycolysis in response to changes of dietary lipid levels, in which glycogen metabolism plays an important role.
Collapse
Affiliation(s)
- Liu Wang
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China; (L.W.); (Y.G.); (M.P.); (X.L.); (D.H.); (Y.L.); (K.M.)
| | - Yanlin Guo
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China; (L.W.); (Y.G.); (M.P.); (X.L.); (D.H.); (Y.L.); (K.M.)
| | - Mingzhu Pan
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China; (L.W.); (Y.G.); (M.P.); (X.L.); (D.H.); (Y.L.); (K.M.)
| | - Xinxin Li
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China; (L.W.); (Y.G.); (M.P.); (X.L.); (D.H.); (Y.L.); (K.M.)
| | - Dong Huang
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China; (L.W.); (Y.G.); (M.P.); (X.L.); (D.H.); (Y.L.); (K.M.)
| | - Yue Liu
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China; (L.W.); (Y.G.); (M.P.); (X.L.); (D.H.); (Y.L.); (K.M.)
| | - Chenglong Wu
- School of Life Science, Huzhou University, 759 East 2nd Road, Huzhou 313000, China
- Correspondence: (C.W.); (W.Z.); Tel.: +86-532-8203-2145 (W.Z.)
| | - Wenbing Zhang
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China; (L.W.); (Y.G.); (M.P.); (X.L.); (D.H.); (Y.L.); (K.M.)
- Correspondence: (C.W.); (W.Z.); Tel.: +86-532-8203-2145 (W.Z.)
| | - Kangsen Mai
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China; (L.W.); (Y.G.); (M.P.); (X.L.); (D.H.); (Y.L.); (K.M.)
| |
Collapse
|
40
|
Neuroprotective Effects of 2-Substituted 1, 3-Selenazole Amide Derivatives on Amyloid-Beta-Induced Toxicity in a Transgenic Caenorhabditis Elegans Model of Alzheimer's Disease. Neurotox Res 2021; 39:841-850. [PMID: 33400180 DOI: 10.1007/s12640-020-00321-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease is an age-related neurodegenerative disease, associated with the presence of extracellular amyloid-β (Aβ) plaques and neurofibrillary tangles. Although the pathogenesis of AD remains unclear, the characteristic feature of AD was reported to be the buildup of Aβ plaques. In this study, we extensively investigated the neuroprotective effects of 2-substituted 1,3-selenazole amide derivatives (CHF11) on Aβ1-42 transgenic Caenorhabditis elegans CL4176. Results showed that worms fed with CHF11 exhibited remarkably reduced paralysis, decreased levels of toxic Aβ oligomers and Aβ plaque deposition, as well as less ROS production in comparison with the untreated worms. The effective concentrations of CHF11 were arranged in the descending order of 100 µM > 10 µM > 1 µM. Real-time PCR analysis showed that there was no significant difference in Aβ expression between CHF11-administered group and the blank control group, suggesting that CHF11-induced reduction in toxic protein deposition may be regulated at the post-transcriptional level. In the meantime, the gene expressions of hsf-1 and its downstream target hsp-12.6 were significantly increased, indicating that CHF11 against Aβ toxicity may involve in HSF-1 signaling pathway in worms. In conclusion, CHF11 exhibits a significant protective effect against β-amyloid-induced toxicity in CL4176 by reducing β-amyloid aggregation and ROS production, which may involve in HSF-1 and downstream target HSP-12.6 pathway.
Collapse
|
41
|
Wang JJ, Ge W, Zhai QY, Liu JC, Sun XW, Liu WX, Li L, Lei CZ, Dyce PW, De Felici M, Shen W. Single-cell transcriptome landscape of ovarian cells during primordial follicle assembly in mice. PLoS Biol 2020; 18:e3001025. [PMID: 33351795 PMCID: PMC7787681 DOI: 10.1371/journal.pbio.3001025] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/06/2021] [Accepted: 12/03/2020] [Indexed: 02/06/2023] Open
Abstract
Primordial follicle assembly in the mouse occurs during perinatal ages and largely determines the ovarian reserve that will be available to support the reproductive life span. The development of primordial follicles is controlled by a complex network of interactions between oocytes and ovarian somatic cells that remain poorly understood. In the present research, using single-cell RNA sequencing performed over a time series on murine ovaries, coupled with several bioinformatics analyses, the complete dynamic genetic programs of germ and granulosa cells from E16.5 to postnatal day (PD) 3 were reported. Along with confirming the previously reported expression of genes by germ cells and granulosa cells, our analyses identified 5 distinct cell clusters associated with germ cells and 6 with granulosa cells. Consequently, several new genes expressed at significant levels at each investigated stage were assigned. By building single-cell pseudotemporal trajectories, 3 states and 1 branch point of fate transition for the germ cells were revealed, as well as for the granulosa cells. Moreover, Gene Ontology (GO) term enrichment enabled identification of the biological process most represented in germ cells and granulosa cells or common to both cell types at each specific stage, and the interactions of germ cells and granulosa cells basing on known and novel pathway were presented. Finally, by using single-cell regulatory network inference and clustering (SCENIC) algorithm, we were able to establish a network of regulons that can be postulated as likely candidates for sustaining germ cell-specific transcription programs throughout the period of investigation. Above all, this study provides the whole transcriptome landscape of ovarian cells and unearths new insights during primordial follicle assembly in mice.
Collapse
Affiliation(s)
- Jun-Jie Wang
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Wei Ge
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Qiu-Yue Zhai
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Jing-Cai Liu
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Xiao-Wen Sun
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Wen-Xiang Liu
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Lan Li
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Chu-Zhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Paul W. Dyce
- Department of Animal Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Massimo De Felici
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Wei Shen
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
42
|
Lan X, Liu F, Ma J, Chang Y, Lan X, Xiang L, Shen X, Zhou F, Zhao Q. Leukocyte immunoglobulin-like receptor A3 is increased in IBD patients and functions as an anti-inflammatory modulator. Clin Exp Immunol 2020; 203:286-303. [PMID: 33006756 PMCID: PMC7806419 DOI: 10.1111/cei.13529] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 12/19/2022] Open
Abstract
Growing evidence shows that a homozygous 6·7-kb deletion of the novel anti-inflammatory molecule leukocyte immunoglobulin-like receptor A3 (LILRA3) is associated with many autoimmune disorders. However, its effects on pathogenesis of inflammatory bowel disease (IBD) have yet not been clarified. LILRA3 is mainly expressed in monocytes, whereas its effects on biological behaviors of monocytes have not been systematically reported. In our study, to investigate the association between LILRA3 polymorphism and IBD susceptibility, LILRA3 polymorphism was assessed in 378 IBD patients and 509 healthy controls. Quantitative real time PCR (qRT-PCR), Western blot and immunohistochemistry (IHC) were employed to detect the LILRA3 expression in IBD patient blood and intestinal samples. The human U937 monocyte cell line was employed to establish LILRA3 over-expressing cells and the effects of LILRA3 on the biological behaviors of U937 cells were systematically explored. Although no association of the polymorphism with IBD development was found, LILRA3 expression was markedly increased in IBD patients compared with healthy controls. Over-expression of LILRA3 in monocytes led to significant decreases in secretion of interferon (IFN)-γ, tumor necrosis factor (TNF)-α and interleukin (IL)-6. Additionally, LILRA3 abated monocyte migration by reducing the expression of several chemokines and enhanced monocyte phagocytosis by increasing CD36 expression. Furthermore, LILRA3 promoted monocyte proliferation through a combination of Akt and extracellular receptor kinase/mitogen-activated protein kinase (Erk/MEK) signaling pathways. We report for the first time, to our knowledge, that LILRA3 is related to IBD and functions as an anti-inflammatory modulator in U937 cells.
Collapse
Affiliation(s)
- X Lan
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - F Liu
- Department of Gastroenterology, Xuhui District Central Hospital, Shanghai, China
| | - J Ma
- Department of Health Related Product Evaluation, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Y Chang
- Department of Gastroenterology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - X Lan
- Pathology department, National Shanghai Center for New Drug Safety Evaluation and Research, Shanghai, China
| | - L Xiang
- Department of Infectious Disease, Xiangxi Autonomous Prefecture People's Hospital, Xiangxi, China
| | - X Shen
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - F Zhou
- Department of Gastroenterology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Q Zhao
- Department of Gastroenterology, Zhongnan Hospital, Wuhan University, Wuhan, China
| |
Collapse
|
43
|
Luu BE, Zhang Y, Storey KB. The regulation of Akt and FoxO transcription factors during dehydration in the African clawed frog (Xenopus laevis). Cell Stress Chaperones 2020; 25:887-897. [PMID: 32451989 PMCID: PMC7591653 DOI: 10.1007/s12192-020-01123-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/12/2020] [Accepted: 05/15/2020] [Indexed: 12/11/2022] Open
Abstract
The African clawed frog (Xenopus laevis) naturally tolerates severe dehydration using biochemical adaptation, one of which is the elevation of antioxidant defenses during whole-body dehydration. The present study investigated the role and regulation of a pathway known to regulate oxidative stress response, the Akt-FoxO signaling pathway, in clawed frog skeletal muscle, responding to medium (15%) and high (30%) dehydration. Protein levels of total and phosphorylated Akt, FoxO1, and FoxO3 were assessed via immunoblotting, in addition to the levels of the E3 ubiquitin ligase known to be associated with muscle atrophy, MAFbx. Akt activity/phosphorylation in addition to its total protein levels were decreased in the skeletal muscle during dehydration, and this corresponded with decreases in the relative phosphorylation of FoxO1 and FoxO3 as well on several residues. Akt is an inhibitor of FoxO1 and FoxO3 activity via phosphorylation, suggesting that FoxO activities were increased during dehydration stress. Furthermore, MAFbx showed decreased protein expression during high dehydration as well, suggesting that the clawed frog may exhibit some natural resistance to skeletal muscle atrophy during severe dehydration conditions. In addition to identifying that the suppression of Akt could lead to an activation of FoxO transcription factors in X. laevis during dehydration, these investigations suggest that X. laevis dehydration may implicate FoxO1 and FoxO3 in controlling skeletal muscle atrophy in X. laevis exposed to dehydration. This study implicates the Akt signaling pathway, its regulation of FoxO transcription factors, and FoxO-controlled targets, in stress adaptation against dehydration.
Collapse
Affiliation(s)
- Bryan E Luu
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
- Faculty of Medicine, McGill University, Montréal, Québec, Canada
| | - Yichi Zhang
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Kenneth B Storey
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada.
| |
Collapse
|
44
|
Wan JZ, Wang R, Zhou ZY, Deng LL, Zhang CC, Liu CQ, Zhao HX, Yuan CF, He YM, Dun YY, Yuan D, Wang T. Saponins of Panax japonicus Confer Neuroprotection against Brain Aging through Mitochondrial Related Oxidative Stress and Autophagy in Rats. Curr Pharm Biotechnol 2020; 21:667-680. [PMID: 31840608 DOI: 10.2174/1389201021666191216114815] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 07/31/2019] [Accepted: 11/21/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Oxidative stress and mitochondrial dysfunction play a vital role in the pathogenesis of brain aging. Saponins from Panax japonicus (SPJ) have attracted much attention for their potential to attenuate age-related oxidative stress as the main ingredient in rhizomes of Panax japonicus. OBJECTIVE This study aimed to investigate the neuroprotective effects of SPJ on natural aging rats as well as the underlying mechanisms regarding oxidative stress and mitochondrial pathway. METHODS Sprague-Dawley rats were divided into control groups (3-, 9-, 15- and 24-month old groups) and SPJ-treated groups. For SPJ-treated groups, SPJ were orally administrated to 18-month old rats at doses of 10 mg/kg, 30 mg/kg and 60 mg/kg once daily. Control groups were given the same volume of saline. After the treatment with SPJ or saline for six months, the cortex and hippocampus were rapidly harvested and deposited at -80°C after the rats were decapitated under anesthesia. The neuroprotective effects of SPJ were estimated by histopathological observation, TUNEL detection, biochemical determination and western blotting. RESULTS SPJ improved pathomorphological changes in neuronal cells and decreased apoptosis in the cortex and hippocampus of aging rats, increased the activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), Na+/K+-ATPase, Ca2+-ATPase and Ca2+/Mg2+-ATPase whereas, decreased malondialdehyde (MDA) contents in the cortex of aging rats. Furthermore, the SPJ increased silent mating type information regulation 2 homolog-1 (SIRT1) protein expression, decreased acetylated level of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) in the cortex and hippocampus of aging rats, and reversed the aging-induced decline of Forkhead box O3 (Foxo3a), Superoxide Dismutase 2 (SOD2), microtubule-associated protein light chain 3 (LC3II) and Beclin1 levels in the cortex and hippocampus. CONCLUSION Our data showed that SPJ conferred neuroprotection partly through the regulation of oxidative stress and mitochondria-related pathways in aging rats.
Collapse
Affiliation(s)
- Jing-Zhi Wan
- College of Medical Science, Three Gorges University, Yichang, Hubei 443002, China
| | - Rui Wang
- College of Medical Science, Three Gorges University, Yichang, Hubei 443002, China
| | - Zhi-Yong Zhou
- College of Medical Science, Three Gorges University, Yichang, Hubei 443002, China
| | - Li-Li Deng
- College of Medical Science, Three Gorges University, Yichang, Hubei 443002, China
| | - Chang-Cheng Zhang
- College of Medical Science, Three Gorges University, Yichang, Hubei 443002, China
| | - Chao-Qi Liu
- College of Medical Science, Three Gorges University, Yichang, Hubei 443002, China
| | - Hai-Xia Zhao
- College of Medical Science, Three Gorges University, Yichang, Hubei 443002, China
| | - Cheng-Fu Yuan
- College of Medical Science, Three Gorges University, Yichang, Hubei 443002, China
| | - Yu-Min He
- College of Medical Science, Three Gorges University, Yichang, Hubei 443002, China
| | - Yao-Yan Dun
- College of Medical Science, Three Gorges University, Yichang, Hubei 443002, China
| | - Ding Yuan
- College of Medical Science, Three Gorges University, Yichang, Hubei 443002, China
| | - Ting Wang
- College of Medical Science, Three Gorges University, Yichang, Hubei 443002, China.,Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
45
|
Yuan L, Li L, Yu T, Yang Z, Jiang T, Ma Q, Qi J, Shi Y, Zhao P. The correlational study about neutrophil-to-lymphocyte ratio and exercise tolerance of chronic obstructive pulmonary disease patients. Medicine (Baltimore) 2020; 99:e21550. [PMID: 32872002 PMCID: PMC7437780 DOI: 10.1097/md.0000000000021550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/29/2020] [Accepted: 07/04/2020] [Indexed: 11/26/2022] Open
Abstract
To study the relationship between neutrophil to lymphocyte ratio (NLR) and exercise tolerance of patients with chronic obstructive pulmonary disease (COPD).235 patients with COPD were selected as the study subjects. Complete blood count, C reactive protein (CRP), pulmonary function tests, the 6-minute walk distance (6MWD), Modified Medical Respiratory Council, the COPD assessment test, and clinical COPD questionnaire were tested. Heart rate, oxygen saturation, and Borg scale were tested before or after 6MWD test.By the median of NLR, the subjects were divided into 2 groups, NLR ≥4.5 group and NLR <4.5 group. The white blood cell count (WBC), CRP and deoxygenation saturation in the NLR ≥4.5 group were higher than those in the NLR <4.5 group, while the age, body mass index (BMI), 6MWD, and heart rate variation were lower than those in the NLR <4.5 group. CRP, WBC, and deoxygenation saturation had positive effects on NLR, BMI, 6MWT, and heart rate variation had negative effects on NLR. The Pearson correlation analysis showed NLR was positively correlated with WBC, CRP, BMI index, 6MWT, and deoxygenation saturation, while it was negatively correlated with BMI and heart rate variation.NLR might associate with exercise tolerance and cardiorespiratory reserve of COPD patients, and could be used as an indicator of muscle function in COPD patients.
Collapse
|
46
|
Chen YN, Sha HH, Wang YW, Zhou Q, Bhuiyan P, Li NN, Qian YN, Dong HQ. Histamine 2/3 receptor agonists alleviate perioperative neurocognitive disorders by inhibiting microglia activation through the PI3K/AKT/FoxO1 pathway in aged rats. J Neuroinflammation 2020; 17:217. [PMID: 32698899 PMCID: PMC7374916 DOI: 10.1186/s12974-020-01886-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 07/03/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Microglia, the principal sentinel immune cells of the central nervous system (CNS), play an extensively vital role in neuroinflammation and perioperative neurocognitive disorders (PND). Histamine, a potent mediator of inflammation, can both promote and prevent microglia-related neuroinflammation by activating different histamine receptors. Rat microglia express four histamine receptors (H1R, H2R, H3R, and H4R), among which the histamine 1 and 4 receptors can promote microglia activation, whereas the role and cellular mechanism of the histamine 2 and 3 receptors have not been elucidated. Therefore, we evaluated the effects and potential cellular mechanisms of histamine 2/3 receptors in microglia-mediated inflammation and PND. METHODS This study investigated the role of histamine 2/3 receptors in microglia-induced inflammation and PND both in vivo and in vitro. In the in vivo experiments, rats were injected with histamine 2/3 receptor agonists in the right lateral ventricle and were then subjected to exploratory laparotomy. In the in vitro experiments, primary microglia were pretreated with histamine 2/3 receptor agonists before stimulation with lipopolysaccharide (LPS). Cognitive function, microglia activation, proinflammatory cytokine production, NF-κb expression, M1/M2 phenotypes, cell migration, and Toll-like receptor-4 (TLR4) expression were assessed. RESULTS In our study, the histamine 2/3 receptor agonists inhibited exploratory laparotomy- or LPS-induced cognitive decline, microglia activation, proinflammatory cytokine production, NF-κb expression, M1/M2 phenotype transformation, cell migration, and TLR4 expression through the PI3K/AKT/FoxO1 pathway. CONCLUSION Based on our findings, we conclude that histamine 2/3 receptors ameliorate PND by inhibiting microglia activation through the PI3K/AKT/FoxO1 pathway. Our results highlight histamine 2/3 receptors as potential therapeutic targets to treat neurological conditions associated with PND.
Collapse
Affiliation(s)
- Yi-Nan Chen
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Huan-Huan Sha
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Yi-Wei Wang
- Department of Anesthesiology, Wuxi People's Hospital, Wuxi, 214001, Jiangsu, People's Republic of China
| | - Qin Zhou
- Department of Anesthesiology, Jiangsu Cancer Hospital, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Piplu Bhuiyan
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Na-Na Li
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Yan-Ning Qian
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Hong-Quan Dong
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China.
| |
Collapse
|
47
|
Moon KM, Lee B, Kim DH, Chung HY. FoxO6 inhibits melanogenesis partly by elevating intracellular antioxidant capacity. Redox Biol 2020; 36:101624. [PMID: 32863230 PMCID: PMC7338776 DOI: 10.1016/j.redox.2020.101624] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/24/2020] [Accepted: 06/24/2020] [Indexed: 12/30/2022] Open
Abstract
Of the various transcription factors that play a role in controlling oxidative stress, the role of FoxO proteins in skin aging has recently become of interest. Unlike other FoxOs, FoxO6 remains in the nucleus due to the lack of nuclear export signal, so that it may respond sensitively to intracellular stimuli for the induction of target genes. However, the role of FoxO6 in melanogenesis and its related signaling pathways are unclear. We used UV exposed and intrinsically aged mice that exhibited skin aging. Our data showed that FoxO6 activation was markedly decreased in the skin of aging mice and UVB-exposed hairless mice that exhibited an increase in melanogenesis. The reduced FoxO6 activity was closely associated with the elevation of oxidative stress in the skin of these animal models. To our interest, siRNA-mediated FoxO6 knockdown markedly increased melanin content and related signaling pathways in B16F10 cells even without any stimulation. On the contrary, adenovirus-mediated FoxO6 activation significantly reduced melanin content in UVB-exposed B16F10 cells, which is closely associated with the induction of antioxidant genes including MnSOD and catalase, leading to a decrease in oxidative stress. Furthermore, vitamin C treatment reversed the elevated melanogenesis by the FoxO6 knockdown, indicating that the decreased antioxidant capacity greatly contributes to increased melanogenesis in the FoxO6 knockdown condition. For the upstream of a FoxO6 signaling pathway in melanocytes, FoxO6 phosphorylation by Akt appears to be essential evidenced by the reduction of FoxO6 activity and the increase in melanogenesis by PI3K/AKT inhibitor treatment. Our study suggests that FoxO6 is an antioxidant gene that prevents oxidative stress-induced melanogenesis.
Collapse
Affiliation(s)
- Kyoung Mi Moon
- Molecular Inflammation Research Center for Ageing Intervention (MRCA), Pusan National University, Busan, Republic of Korea; College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Bonggi Lee
- Department of Food Science and Nutrition, Pukyong National University, Daeyeon-dong, Busan, Republic of Korea
| | - Dae Hyun Kim
- Molecular Inflammation Research Center for Ageing Intervention (MRCA), Pusan National University, Busan, Republic of Korea; College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Hae Young Chung
- Molecular Inflammation Research Center for Ageing Intervention (MRCA), Pusan National University, Busan, Republic of Korea; College of Pharmacy, Pusan National University, Busan, Republic of Korea.
| |
Collapse
|
48
|
Liu J, Song G, Meng T, Zhao G. Identification of Differentially Expressed Genes and Signaling Pathways in Placenta Tissue of Early-Onset and Late-Onset Pre-Eclamptic Pregnancies by Integrated Bioinformatics Analysis. Med Sci Monit 2020; 26:e921997. [PMID: 32497025 PMCID: PMC7294845 DOI: 10.12659/msm.921997] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background Pre-eclampsia (PE) can be divided into 2 sub-groups: early-onset and late-onset PE. Although these sub-groups show overlapping molecular and cellular mechanisms and similar clinical manifestations, they are regarded as 2 different phenotypes with heterogeneous manifestations. The pathophysiological mechanisms underlying early-onset and late-onset PE still remain unclear. Therefore, the present study aimed to identify the key genes and pathways related to early-onset and late-onset PE, and to investigate the molecular mechanisms that are involved in gene regulation. Material/Methods Our analysis involved the Gene Expression Series (GSE) 74341 and GSE22526 from the National Center of Biotechnology Information (NCBI) Gene Expression Omnibus Database. These 2 microarray datasets included 15 patients with early-onset PE and 15 patients with late-onset PE. Results Our analyses identified 15 differentially expressed genes (DEGs), including CGA, EGR1, HBB, HBA2, LEP, and LHB. Gene Ontology (GO) functional annotation showed that the biological functions of these DEGs were mainly associated with steroid biosynthetic, oxidative stress, angiogenesis, and sex differentiation. Signaling pathway analyses showed that these DEGs were mainly involved in the prolactin signaling pathway, hormone metabolism, the AMPK signaling pathway, and the FoxO signaling pathway. Protein-protein interaction (PPI) network analysis identified 4 genes with the highest degree of interaction. The hub genes for this selection of DEGS were EGR1, LEP, and HBB. Conclusions Integrated bioinformatic analyses provide us with a new approach to further understand the pathophysiology and molecular mechanisms underlying early-onset and late-onset PE. The DEGs identified in this study represent potential biomarkers for the early diagnosis of PE and may provide significant options the treatment of these 2 subtypes of PE.
Collapse
Affiliation(s)
- Jing Liu
- Department of Obstetrics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Guang Song
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Tao Meng
- Department of Obstetrics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Ge Zhao
- Department of Obstetrics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| |
Collapse
|
49
|
Morshneva A, Gnedina O, Marusova T, Igotti M. Expression of Adenoviral E1A in Transformed Cells as an Additional Factor of HDACi-Dependent FoxO Regulation. Cells 2019; 9:E97. [PMID: 31906031 PMCID: PMC7016946 DOI: 10.3390/cells9010097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 12/27/2019] [Accepted: 12/28/2019] [Indexed: 12/28/2022] Open
Abstract
The adenoviral early region 1A (E1A) protein has proapoptotic and angiogenic activity, along with its chemosensitizing effect, making it the focus of increased interest in the context of cancer therapy. It was previously shown that E1A-induced chemosensitization to different drugs, including histone deacetylases inhibitors (HDACi), appears to be mediated by Forkhead box O (FoxO) transcription factors. In this study, we explore the relationship between E1A expression and the modulation of FoxO activity with HDACi sodium butyrate (NaBut). We show here that the basal FoxO level is elevated in E1A-expressing cells. Prolonged NaBut treatment leads to the inhibition of the FoxO expression and activity in E1A-expressing cells. However, in E1A-negative cells, NaBut promotes the transactivation ability of FoxO over time. A more detailed investigation revealed that the NaBut-induced decrease of FoxO activity in E1A-expressing cells is due to the NaBut-dependent decrease in E1A expression. Therefore, NaBut-induced inhibition of FoxO in E1A-positive cells can be overcome under unregulated overexpression of E1A. Remarkably, the CBP/p300-binding domain of E1Aad5 is responsible for stabilization of the FoxO protein. Collectively, these data show that the expression of E1A increases the FoxO stability but makes the FoxO level more sensitive to HDACi treatment.
Collapse
Affiliation(s)
| | | | | | - Maria Igotti
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (A.M.); (O.G.); (T.M.)
| |
Collapse
|
50
|
Narimiya T, Kanzaki H, Yamaguchi Y, Wada S, Katsumata Y, Tanaka K, Tomonari H. Nrf2 activation in osteoblasts suppresses osteoclastogenesis via inhibiting IL-6 expression. Bone Rep 2019; 11:100228. [PMID: 31763378 PMCID: PMC6861591 DOI: 10.1016/j.bonr.2019.100228] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 10/03/2019] [Accepted: 10/18/2019] [Indexed: 12/18/2022] Open
Abstract
ALA/SFC induced the activation of Nrf2 in osteoblasts. IL-6 and RANKL expression in osteoblasts was increased by LPS, but decreased by Nrf2 activation. LPS-mediated RANKL augmentation was dependent on IL-6 induction. Nrf2 activation in osteoblasts suppresses indirectly osteoclastogenesis via inhibiting the expression of IL-6.
Bone destructive diseases such as periodontitis and rheumatoid arthritis are caused by excessive activation of osteoclasts. Osteoclastogenesis is regulated by Receptor activator of nuclear factor kappa-β ligand (RANKL) produced by osteoclastogenesis supporting cells such as osteoblast and osteocyte. Previously, we reported that NF-E2-related factor-2 (Nrf2) activation in osteoclast precursors inhibited osteoclastogenesis and bone destruction via induction of anti-oxidation and thereby attenuated intracellular ROS signaling. However, it still remains unknown whether Nrf2 activation in cells other than osteoclasts give any negative influence on supporting property for osteoclastogenesis. Here we discovered that Nrf2 activation in osteoblasts suppresses indirectly osteoclastogenesis via inhibiting the expression of interleukin-6 (IL-6) which promotes osteoclastogenesis. In this study, 5-aminolevulinic acid hydrochloride (ALA) and sodium ferrous citrate (SFC) was used as the Nrf2 activator. in vitro experiments, using osteoblast cell line, MC3T3-E1, revealed that the expression of IL-6 was increased by LPS stimulation, but decreased after ALA/SFC treatment in mRNA and protein levels. Furthermore, RANKL expression was augmented by LPS, which was blocked by ALA/SFC treatment. Neutralizing antibody against IL-6 confirmed that LPS-mediated RANKL augmentation was dependent on IL-6 induction. in vivo experiments with LPS-mediated bone destruction in mice, confirmed that augmented IL-6 expression in osteoblasts by immunochemical analysis. ALA/SFC treatment attenuated LPS-mediated IL-6 upregulation. These results suggest that Nrf2 activation in osteoblasts suppress IL-6 and inflammatory bone destruction. The Nrf2 activator acts not only on osteoclasts but also on osteoblasts, in other word, Nrf2 activation indirectly suppresses osteoclastogenesis. In conclusion, the Nrf2 activator exhibits dual inhibitory effects via direct action on osteoclast and indirect action on osteoclast supporting cells.
Collapse
Affiliation(s)
- Tsuyoshi Narimiya
- Department of Orthodontics, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, Kanagawa pref., 230-8501, Japan
| | - Hiroyuki Kanzaki
- Department of Orthodontics, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, Kanagawa pref., 230-8501, Japan
| | - Yuki Yamaguchi
- Department of Orthodontics, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, Kanagawa pref., 230-8501, Japan
| | - Satoshi Wada
- Department of Orthodontics, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, Kanagawa pref., 230-8501, Japan
| | - Yuta Katsumata
- Department of Orthodontics, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, Kanagawa pref., 230-8501, Japan
| | - Ken Tanaka
- Department of Orthodontics, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, Kanagawa pref., 230-8501, Japan
| | - Hiroshi Tomonari
- Department of Orthodontics, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, Kanagawa pref., 230-8501, Japan
| |
Collapse
|