1
|
Chen Y, Zhang W, Li Q, Xie H, Xing S, Lu X, Lyu W, Xiong B, Wang Y, Qu W, Liu W, Chi H, Zhang X, Feng F, Sun H. Discovery of 4-benzylpiperazinequinoline BChE inhibitor that suppresses neuroinflammation for the treatment of Alzheimer's disease. Eur J Med Chem 2024; 272:116463. [PMID: 38704944 DOI: 10.1016/j.ejmech.2024.116463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/24/2024] [Accepted: 04/27/2024] [Indexed: 05/07/2024]
Abstract
Butyrylcholinesterase (BChE) has attracted wide interest as a promising target in Alzheimer's disease (AD) investigation. BChE is considered to play a compensable role of hydrolyzing acetylcholine (ACh), and its positive correlation with β-amyloid (Aβ) deposition also promotes disease progression. Herein, we uncovered a selective potent BChE inhibitor S21-1011 (eqBChE IC50 = 0.059 ± 0.006 μM, hBChE IC50 = 0.162 ± 0.069 μM), which presented satisfactory druggability and therapeutic efficacy in AD models. In pharmacokinetics (PK) studies, S21-1011 showed excellent blood-brain barrier (BBB) permeability, metabolism stability and high oral-bioavailability. In pharmacodynamic (PD) studies, it protected neural cells from toxicity and inflammation stimulation in vitro. Besides, it also exerted anti-inflammatory effect and alleviated cognitive impairment in mice models induced by lipopolysaccharides (LPS) and Aβ. Generally, this compound has been confirmed to function as a neuroprotector and cognition improver in various AD pathology-like models. Therefore, S21-1011, a novel potent BChE inhibitor, could be considered as a potential anti-AD candidate worthy of more profound investigation.
Collapse
Affiliation(s)
- Ying Chen
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, China
| | - Weiting Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Qi Li
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Huanfang Xie
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Shuaishuai Xing
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Xin Lu
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Weiping Lyu
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Baichen Xiong
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yuanyuan Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Wei Qu
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Wenyuan Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Heng Chi
- Jiangsu Drug Development Engineering Center for Central Degenerative Disease, Jiangsu Food and Pharmaceuticals Science College, 223005, China
| | - Xiaolong Zhang
- Jiangsu Drug Development Engineering Center for Central Degenerative Disease, Jiangsu Food and Pharmaceuticals Science College, 223005, China
| | - Feng Feng
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China; Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, China.
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
2
|
Anirudhan A, Ahmad SF, Emran TB, Angulo-Bejarano PI, Sharma A, Ahmed SSSJ. Comparative Efficacy of Metformin and Glimepiride in Modulating Pharmacological Network to Increase BDNF Levels and Benefit Type 2 Diabetes-Related Cognitive Impairment. Biomedicines 2023; 11:2939. [PMID: 38001940 PMCID: PMC10669717 DOI: 10.3390/biomedicines11112939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Cognitive impairment is anotable complication of type 2 diabetes (T2DM), accompanied by reduced brain-derived neurotrophic factor (BDNF) in the brain and blood. Anti-diabetic drugs reduce hyperglycemia, yet their effect on cognitive improvement is unknown. We aimed to investigate the effect of anti-diabetic drugs regulating BDNF in T2DM through computational and case-control study design. We obtained T2DMproteins viatext-mining to construct a T2DMprotein network. From the T2DMnetwork, the metformin and glimepiride interactomes and their crucial shortest-path-stimulating BDNF were identified. Using qRTPCR, the genes encoding the shortest-path proteins were assessed in four groups (untreated-T2DM, metformin-treated, glimepiride-treated, and healthy controls). Finally, ELISA was used to assess serum BDNF levels to validate drug efficacy. As a result of this investigation, aT2DMnetwork was constructed with 3683 text-mined proteins. Then, the T2DMnetwork was explored to generate a metformin and glimepiride interactome that establishes the critical shortest-path for BDNF stimulation. Metformin stimulates BDNF via APP binding to the PRKAB1 receptor. Whereas, glimepiride increases BDNF by binding to KCNJ11 via AP2M1 and ESR1 proteins. Both drug shortest-path encoding genes differed significantly between the groups. Unlike metformin, BDNF gene and protein expression rise significantly with glimepiride. Overall, glimepiride can effectively increase BDNF, which could benefit T2DM patients with cognitive deterioration.
Collapse
Affiliation(s)
- Athira Anirudhan
- Central Research Laboratory, Believers Church Medical College Hospital, Kuttapuzha, Thiruvalla 689101, Kerala, India
| | - Sheikh F. Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Talha Bin Emran
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
- Legorreta Cancer Center, Brown University, Providence, RI 02912, USA
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Paola Isabel Angulo-Bejarano
- Regional Department of Bioengineering, NatProLab-Plant Innovation Lab, Tecnologico de Monterrey, Queretaro 76130, Mexico
| | - Ashutosh Sharma
- Regional Department of Bioengineering, NatProLab-Plant Innovation Lab, Tecnologico de Monterrey, Queretaro 76130, Mexico
| | - Shiek S. S. J. Ahmed
- Drug Discovery and Multi-Omics Laboratory, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Kelambakkam 603103, Tamil Nadu, India
| |
Collapse
|
3
|
Elseweidy MM, Mahrous M, Ali SI, Shaheen MA, Younis NN. Vitamin D alleviates cognitive dysfunction and brain damage induced by copper sulfate intake in experimental rats: focus on its combination with donepezil. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:1931-1942. [PMID: 36864348 PMCID: PMC10409850 DOI: 10.1007/s00210-023-02449-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 02/23/2023] [Indexed: 03/04/2023]
Abstract
This study aimed to demonstrate the potential benefits of donepezil (DPZ) and vitamin D (Vit D) in combination to counteract the neurodegenerative disorders induced by CuSO4 intake in experimental rats. Neurodegeneration (Alzheimer-like) was induced in twenty-four male Wistar albino rats by CuSO4 supplement to drinking water (10 mg/L) for 14 weeks. AD rats were divided into four groups: untreated AD group (Cu-AD) and three treated AD groups; orally treated for 4 weeks with either DPZ (10 mg/kg/day), Vit D (500 IU/kg/day), or DPZ + Vit D starting from the 10th week of CuSO4 intake. Another six rats were used as normal control (NC) group. The hippocampal tissue content of β-amyloid precursor protein cleaving enzyme 1 (BACE1), phosphorylated Tau (p-tau), clusterin (CLU), tumor necrosis factor-α (TNF-α), caspase-9 (CAS-9), Bax, and Bcl-2 and the cortical content of acetylcholine (Ach), acetylcholinesterase (AChE), total antioxidant capacity (TAC), and malondialdehyde (MDA) were measured. Cognitive function tests (Y-maze) and histopathology studies (hematoxylin and eosin and Congo red stains) and immunohistochemistry for neurofilament. Vit D supplementation alleviated CuSO4-induced memory deficits including significant reduction hippocampal BACE1, p-tau, CLU, CAS-9, Bax, and TNF-α and cortical AChE and MDA. Vit D remarkably increased cortical Ach, TAC, and hippocampal Bcl-2. It also improved neurobehavioral and histological abnormalities. The effects attained by Vit D treatment were better than those attained by DPZ. Furthermore, Vit D boosted the therapeutic potential of DPZ in almost all AD associated behavioral and pathological changes. Vit D is suggested as a potential therapy to retard neurodegeneration.
Collapse
Affiliation(s)
- Mohamed M Elseweidy
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| | - Mohamed Mahrous
- Department of Biochemistry, Faculty of Pharmacy, Port-Said University, Port-Said, 42526, Egypt
| | - Sousou I Ali
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Mohamed A Shaheen
- Department of Histology and Cell Biology, Faculty of Human Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Nahla N Younis
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
4
|
Jabłońska – Trypuć A, Wiater J. Protective effect of plant compounds in pesticides toxicity. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2022; 20:1035-1045. [PMID: 36406617 PMCID: PMC9672277 DOI: 10.1007/s40201-022-00823-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/27/2022] [Accepted: 08/09/2022] [Indexed: 06/16/2023]
Abstract
INTRODUCTION The relationship between pesticide exposure and the occurrence of many chronic diseases, including cancer, is confirmed by literature data. METHODS In this review, through the analysis of more than 70 papers, we explore an increase in oxidative stress level caused by exposure to environmental pollutants and the protective effects of plant-origin antioxidants. RESULTS AND DISCUSSION One of the molecular mechanisms, by which pesticides affect living organisms is the induction of oxidative stress. However, recently many plant-based dietary ingredients with antioxidant properties have been considered as a chemopreventive substances due to their ability to remove free radicals. Such a food component must meet several conditions: eliminate free radicals, be easily absorbed and function at an appropriate physiological level. Its main function is to maintain the redox balance and minimize the cellular damage caused by ROS. Therefore, it should be active in aqueous solutions and membrane domains. These properties are characteristic for phenolic compounds and selected plant hormones. Phenolic compounds have proven antioxidant properties, while increasing number of compounds from the group of plant hormones with a very diverse chemical structure turn out to act as antioxidants, being potential food ingredients that can eliminate negative effects of pesticides.
Collapse
Affiliation(s)
- Agata Jabłońska – Trypuć
- Faculty of Civil Engineering and Environmental Sciences, Division of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45E Street, 15-351 Białystok, Białystok, Poland
| | - Józefa Wiater
- Faculty of Civil Engineering and Environmental Sciences, Department of Agri-Food Engineering and Environmental Management, Bialystok University of Technology, Wiejska 45E Street, 15-351 Białystok, Białystok, Poland
| |
Collapse
|
5
|
Protective Effect and Potential Antioxidant Role of Kakadu Plum Extracts on Alcohol-Induced Oxidative Damage in HepG2 Cells. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app12010236] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Serial alcohol consumption causes alcoholic liver disease (ALD), which can lead to fatty liver, hepatitis, and cirrhosis. Terminalia ferdinandiana (Kakadu plum) is an indigenous fruit of Australia, which is utilized as a functional food. It is a commercially important antioxidant as it contains a more eloquent level of ascorbic acid than other oranges. In this study, we analyzed the chemical constituents of vitamin C, gallic acid, ellagic acid, and daidzin via High-performance liquid chromatography (HPLC) in the Kakadu plum from two different regions including the Northern Territory (NT) and Western Australia (WA), and compared their biochemical properties. The vitamin C content was much higher (almost 70%) in Kakadu plum (KKD) from the NT than WA. Moreover, ROS generation was inhibited significantly in HepG2 (human hepatoma) cells with the KKD-NT extract treatment when compared to the KKD-WA extract treatment. The cytotoxicity produced by ethanol was significantly suppressed in response to the treatment with both of the samples. In addition, our samples (KKD-NT and KKD-WA) increased the activity of two key enzymes involving alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) that metabolize ethanol. These results show the biochemical confirmation of the mechanism by which KKD exhibits its biological functions including relief from alcohol hangovers as well as protection of the liver cells by the suppression of ROS production and toxic insults.
Collapse
|
6
|
El Sayed NS, Kandil EA, Ghoneum MH. Enhancement of Insulin/PI3K/Akt Signaling Pathway and Modulation of Gut Microbiome by Probiotics Fermentation Technology, a Kefir Grain Product, in Sporadic Alzheimer's Disease Model in Mice. Front Pharmacol 2021; 12:666502. [PMID: 34366841 PMCID: PMC8346028 DOI: 10.3389/fphar.2021.666502] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/02/2021] [Indexed: 02/04/2023] Open
Abstract
Sporadic Alzheimer's disease (AD) is the most common neurodegenerative disorder with cognitive dysfunction. Remarkably, alteration in the gut microbiome and resultant insulin resistance has been shown to be connected to metabolic syndrome, the crucial risk factor for AD, and also to be implicated in AD pathogenesis. Thus, this study, we assessed the efficiency of probiotics fermentation technology (PFT), a kefir product, in enhancing insulin signaling via modulation of gut microbiota to halt the development of AD. We also compared its effectiveness to that of pioglitazone, an insulin sensitizer that has been confirmed to substantially treat AD. AD was induced in mice by a single injection of intracerebroventricular streptozotocin (STZ; 3 mg/kg). PFT (100, 200, 400 mg/kg) and pioglitazone (30 mg/kg) were administered orally for 3 weeks. Behavioral tests were conducted to assess cognitive function, and hippocampal levels of acetylcholine (Ach) and β-amyloid (Aβ1-42) protein were assessed along with histological examination. Moreover, the expression of the insulin receptor, insulin degrading enzyme (IDE), and the phosphorylated forms of phosphoinositide 3-kinase (PI3K), protein kinase B (Akt), glycogen synthase kinase-3β (GSK-3β), mammalian target of rapamycin (mTOR), and tau were detected. Furthermore, oxidative stress and inflammatory biomarkers were estimated. Treatment with PFT reversed STZ-induced neurodegeneration and cognitive impairment, enhanced hippocampal Ach levels, and reduced Aβ1-42 levels after restoration of IDE activity. PFT also improved insulin signaling, as evidenced by upregulation of insulin receptor expression and activation of PI3K/Akt signaling with subsequent suppression of GSK-3β and mTOR signaling, which result in the downregulation of hyperphosphorylated tau. Moreover, PFT significantly diminished oxidative stress and inflammation induced by STZ. These potential effects were parallel to those produced by pioglitazone. Therefore, PFT targets multiple mechanisms incorporated in the pathogenesis of AD and hence might be a beneficial therapy for AD.
Collapse
Affiliation(s)
| | - Esraa A. Kandil
- Department of Pharmacology and Toxicology, Cairo University, Cairo, Egypt
| | - Mamdooh H. Ghoneum
- Department of Surgery, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
| |
Collapse
|
7
|
|
8
|
Volkert MR, Crowley DJ. Preventing Neurodegeneration by Controlling Oxidative Stress: The Role of OXR1. Front Neurosci 2020; 14:611904. [PMID: 33384581 PMCID: PMC7770112 DOI: 10.3389/fnins.2020.611904] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/23/2020] [Indexed: 12/31/2022] Open
Abstract
Parkinson’s disease, diabetic retinopathy, hyperoxia induced retinopathy, and neuronal damage resulting from ischemia are among the notable neurodegenerative diseases in which oxidative stress occurs shortly before the onset of neurodegeneration. A shared feature of these diseases is the depletion of OXR1 (oxidation resistance 1) gene products shortly before the onset of neurodegeneration. In animal models of these diseases, restoration of OXR1 has been shown to reduce or eliminate the deleterious effects of oxidative stress induced cell death, delay the onset of symptoms, and reduce overall severity. Moreover, increasing OXR1 expression in cells further increases oxidative stress resistance and delays onset of disease while showing no detectable side effects. Thus, restoring or increasing OXR1 function shows promise as a therapeutic for multiple neurodegenerative diseases. This review examines the role of OXR1 in oxidative stress resistance and its impact on neurodegenerative diseases. We describe the potential of OXR1 as a therapeutic in light of our current understanding of its function at the cellular and molecular level and propose a possible cascade of molecular events linked to OXR1’s regulatory functions.
Collapse
Affiliation(s)
- Michael R Volkert
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, United States
| | - David J Crowley
- Department of Biological and Physical Sciences, Assumption University, Worcester, MA, United States
| |
Collapse
|
9
|
Rambaran TF. Nanopolyphenols: a review of their encapsulation and anti-diabetic effects. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-3110-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
AbstractPolyphenols are believed to possess numerous health benefits and can be grouped as phenolic acids, flavonoids or non-flavonoids. Research involving the synthesis of nanopolyphenols has attracted interest in the areas of functional food, nutraceutical and pharmaceutical development. This is in an effort to overcome current challenges which limit the application of polyphenols such as their rapid elimination, low water-solubility, instability at low pH, and their particle size. In the synthesis of nanopolyphenols, the type of nanocarrier used, the nanoencapsulation technique employed and the type of polymers that constitute the drug delivery system are crucial. For this review, all mentioned factors which can influence the therapeutic efficacy of nanopolyphenols were assessed. Their efficacy as anti-diabetic agents was also evaluated in 33 publications. Among these were phenolic acid (1), flavonoids (13), non-flavonoids (17) and polyphenol-rich extracts (2). The most researched polyphenols were quercetin and curcumin. Nanoparticles were the main nanocarrier and the size of the nanopolyphenols ranged from 15 to 333 nm with encapsulation efficiency and drug loading capacities of 56–97.7% and 4.2–53.2%, respectively. The quantity of nanomaterial administered orally ranged from 1 to 300 mg/kg/day with study durations of 1–70 days. Most studies compared the effect of the nanopolyphenol to its free-form and, in all but three cases, significantly greater effects of the former were reported. Assessment of the polyphenol to understand its properties and the subsequent synthesis of its nanoencapsulated form using suitable nanocarriers, polymers and encapsulation techniques can result in effective therapeutic agents for the treatment of diabetes.
Collapse
|
10
|
Ignatova M, Stoyanova N, Manolova N, Rashkov I, Kukeva R, Stoyanova R, Toshkova R, Georgieva A. Electrospun materials from polylactide and Schiff base derivative of Jeffamine ED® and 8-hydroxyquinoline-2-carboxaldehyde and its complex with Cu 2+: Preparation, antioxidant and antitumor activities. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111185. [PMID: 32806241 DOI: 10.1016/j.msec.2020.111185] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/03/2020] [Accepted: 06/10/2020] [Indexed: 12/15/2022]
Abstract
Novel fibrous materials from polylactide (PLA) and Schiff base from Jeffamine ED® and 8-hydroxyquinoline-2-carboxaldehyde (Jeff-8Q) or its complex with Cu2+ (Jeff-8Q.Cu2+) were successfully prepared by using one-pot electrospinning or electrospinning combined with dip-coating. These approaches enabled the fabrication of materials of diverse design: non-woven textile in which Jeff-8Q or Jeff-8Q.Cu2+ was predominantly in the fibers' bulk (type "in") or was deposited as a thin film on the surface of the fibers (type "on"). The morphology of the mats and chemical composition of their surface were analyzed by means of scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The coordination of Cu2+ ions in Jeff-8Q.Cu2+/inPLA and Jeff-8Q.Cu2+/onPLA mats was examined by electron paramagnetic resonance (EPR) spectroscopy. It was found that the in vitro release of Jeff-8Q (Jeff-8Q.Cu2+) from the type "on" mats was more rapid than that of the type "in" mats. Enhancement of the antioxidant activity of the Jeff-8Q.Cu2+-containing fibrous mats as compared to mats containing Jeff-8Q was observed. In contrast to the neat PLA mat, the Jeff-8Q- and Jeff-8Q.Cu2+-containing mats (both type "in" and "on") displayed high in vitro antitumor activity against human cervical HeLa cells. The obtained materials are promising for use in local tumor treatment.
Collapse
Affiliation(s)
- Milena Ignatova
- Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St, Bl. 103A, BG-1113 Sofia, Bulgaria.
| | - Nikoleta Stoyanova
- Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St, Bl. 103A, BG-1113 Sofia, Bulgaria
| | - Nevena Manolova
- Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St, Bl. 103A, BG-1113 Sofia, Bulgaria.
| | - Iliya Rashkov
- Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St, Bl. 103A, BG-1113 Sofia, Bulgaria
| | - Rositsa Kukeva
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev St, Bl. 11, BG-1113 Sofia, Bulgaria
| | - Radostina Stoyanova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev St, Bl. 11, BG-1113 Sofia, Bulgaria
| | - Reneta Toshkova
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Acad. G. Bonchev St, Bl. 25, BG-1113 Sofia, Bulgaria
| | - Ani Georgieva
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Acad. G. Bonchev St, Bl. 25, BG-1113 Sofia, Bulgaria
| |
Collapse
|
11
|
Chen Y, Li Q, Li Q, Xing S, Liu Y, Liu Y, Chen Y, Liu W, Feng F, Sun H. p62/SQSTM1, a Central but Unexploited Target: Advances in Its Physiological/Pathogenic Functions and Small Molecular Modulators. J Med Chem 2020; 63:10135-10157. [DOI: 10.1021/acs.jmedchem.9b02038] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ying Chen
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, People’s Republic of China
| | - Qi Li
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People’s Republic of China
| | - Qihang Li
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People’s Republic of China
| | - Shuaishuai Xing
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People’s Republic of China
| | - Yang Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People’s Republic of China
| | - Yijun Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People’s Republic of China
| | - Yao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People’s Republic of China
| | - Wenyuan Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People’s Republic of China
| | - Feng Feng
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, People’s Republic of China
- Jiangsu Food and Pharmaceuticals Science College, Institute of Food and Pharmaceuticals Research, Huaian 223005, People’s Republic of China
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People’s Republic of China
- Jiangsu Food and Pharmaceuticals Science College, Institute of Food and Pharmaceuticals Research, Huaian 223005, People’s Republic of China
| |
Collapse
|
12
|
Chronic Exposure to Fluoride Affects GSH Level and NOX4 Expression in Rat Model of This Element of Neurotoxicity. Biomolecules 2020; 10:biom10030422. [PMID: 32182821 PMCID: PMC7175316 DOI: 10.3390/biom10030422] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 12/15/2022] Open
Abstract
Exposure of neural cells to harmful and toxic factors promotes oxidative stress, resulting in disorders of metabolism, cell differentiation, and maturation. The study examined the brains of rats pre- and postnatally exposed to sodium fluoride (NaF 50 mg/L) and activity of NADPH oxidase 4 (NOX4), catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR), concentration of glutathione (GSH), and total antioxidant capacity (TAC) in the cerebellum, prefrontal cortex, hippocampus, and striatum were measured. Additionally, NOX4 expression was determined by qRT-PCR. Rats exposed to fluorides (F-) showed an increase in NOX4 activity in the cerebellum and hippocampus, a decrease in its activity in the prefrontal cortex and hippocampus, and upregulation of NOX4 expression in hippocampus and its downregulation in other brain structures. Analysis also showed significant changes in the activity of all antioxidant enzymes and a decrease in TAC in brain structures. NOX4 induction and decreased antioxidant activity in central nervous system (CNS) cells may be central mechanisms of fluoride neurotoxicity. NOX4 contributes to blood-brain barrier damage, microglial activation, and neuronal loss, leading to impairment of brain function. Fluoride-induced oxidative stress involves increased reactive oxygen speciaes (ROS) production, which in turn increases the expression of genes encoding pro-inflammatory cytokines.
Collapse
|
13
|
Meireles M, Losada-Barreiro S, Costa M, Paiva-Martins F, Bravo-Díaz C, Monteiro LS. Control of antioxidant efficiency of chlorogenates in emulsions: modulation of antioxidant interfacial concentrations. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:3917-3925. [PMID: 30697750 DOI: 10.1002/jsfa.9615] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/23/2018] [Accepted: 12/03/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Controlling the interfacial concentrations of antioxidants (AOs) in oil-in-water emulsions can be regarded as a unique approach for increasing the efficiency of AOs in inhibiting the oxidation of lipids. Classical methods to determine the AO distribution in binary systems cannot be employed and their distribution needs to be assessed in the intact emulsion. RESULTS We have employed a well-established kinetic method to determine the distribution of a homologous series of AOs derived of chlorogenic acid in olive oil-in-water emulsions and analyse the effects of AO hydrophobicity on their distributions and their efficiencies. Results indicate that variations in the efficiency of chlorogenates in emulsions are due to differences in their interfacial concentrations. Their interfacial concentrations AOI were much higher (20- to 150-fold) than their stoichiometric concentrations. On the other hand, their concentrations in the oil region were 1.5- to 0.1-fold. Results also show the complex effect of the oil-to-water ratio employed in the preparation of the emulsions on the (AOI ) values. CONCLUSION Results highlight the key role of the interfacial region and of its composition (interfacial AO molarity, emulsifier concentration, oil-to-water ratio) in interpreting the efficiency of AOs in inhibiting lipid oxidation in emulsions. Thus, a careful modulation of these parameters is necessary to ensure optimum AO efficiency. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mafalda Meireles
- REQUIMTE-LAQV, Department of Chemistry and Biochemistry, Faculty of Science, University of Porto, Porto, Portugal
| | - Sonia Losada-Barreiro
- REQUIMTE-LAQV, Department of Chemistry and Biochemistry, Faculty of Science, University of Porto, Porto, Portugal
- Department of Physical Chemistry, Faculty of Chemistry, University of Vigo, Vigo, Spain
| | - Marlene Costa
- REQUIMTE-LAQV, Department of Chemistry and Biochemistry, Faculty of Science, University of Porto, Porto, Portugal
| | - Fátima Paiva-Martins
- REQUIMTE-LAQV, Department of Chemistry and Biochemistry, Faculty of Science, University of Porto, Porto, Portugal
| | - Carlos Bravo-Díaz
- Department of Physical Chemistry, Faculty of Chemistry, University of Vigo, Vigo, Spain
| | - Luís S Monteiro
- Department of Chemistry, University of Minho, Campus de Gualtar, Braga, Portugal
| |
Collapse
|
14
|
Bartos M, Gumilar F, Gallegos CE, Bras C, Dominguez S, Mónaco N, Esandi MDC, Bouzat C, Cancela LM, Minetti A. Alterations in the memory of rat offspring exposed to low levels of fluoride during gestation and lactation: Involvement of the α7 nicotinic receptor and oxidative stress. Reprod Toxicol 2018; 81:108-114. [PMID: 30009953 DOI: 10.1016/j.reprotox.2018.07.078] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 07/03/2018] [Accepted: 07/12/2018] [Indexed: 10/28/2022]
Abstract
Daily exposure to fluoride (F) depends mainly on the intake of this element with drinking water. When administered during gestation and lactation, F has been associated with cognitive deficits in the offspring. However, the mechanisms underlying the neurotoxicity of F remain obscure. In the current study, we investigated the effects of oral exposure to low levels of F during the gestational and lactation periods, on the memory of adult female rat offspring. We also considered a possible underlying neurotoxic mechanism. Our results showed that this exposure reduced step-down latency in the inhibitory avoidance task, and decreased both mRNA expression of the α7 nicotinic receptor (nAChR) and catalase activity in hippocampus. Our data indicates that low F concentrations administrated during gestation and lactation decrease the memory of 90-day-old female offspring. This suggests that the mechanism might be connected with an α7 nAChR deficit in the hippocampus, induced by oxidative stress.
Collapse
Affiliation(s)
- Mariana Bartos
- Toxicology Laboratory, INBIOSUR, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-CONICET, 8000 Bahía Blanca, Buenos Aires, Argentina.
| | - Fernanda Gumilar
- Toxicology Laboratory, INBIOSUR, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-CONICET, 8000 Bahía Blanca, Buenos Aires, Argentina
| | - Cristina E Gallegos
- Toxicology Laboratory, INBIOSUR, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-CONICET, 8000 Bahía Blanca, Buenos Aires, Argentina
| | - Cristina Bras
- Toxicology Laboratory, INBIOSUR, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-CONICET, 8000 Bahía Blanca, Buenos Aires, Argentina
| | - Sergio Dominguez
- Toxicology Laboratory, INBIOSUR, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-CONICET, 8000 Bahía Blanca, Buenos Aires, Argentina
| | - Nina Mónaco
- Toxicology Laboratory, INBIOSUR, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-CONICET, 8000 Bahía Blanca, Buenos Aires, Argentina
| | - María Del Carmen Esandi
- INIBIBB, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-CONICET, 8000 Bahía Blanca, Buenos Aires, Argentina
| | - Cecilia Bouzat
- INIBIBB, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-CONICET, 8000 Bahía Blanca, Buenos Aires, Argentina
| | - Liliana M Cancela
- IFEC, Departamento de Farmacología, Universidad Nacional de Córdoba-CONICET, 5000, Córdoba, Argentina
| | - Alejandra Minetti
- Toxicology Laboratory, INBIOSUR, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-CONICET, 8000 Bahía Blanca, Buenos Aires, Argentina
| |
Collapse
|
15
|
Musa I, Khaza’ai H, Abdul Mutalib MS, Yusuf F, Sanusi J, Chang SK. Effects of oil palm tocotrienol rich fraction on the viability and morphology of astrocytes injured with glutamate. FOOD BIOSCI 2017. [DOI: 10.1016/j.fbio.2017.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
16
|
Di Domenico F, Tramutola A, Butterfield DA. Role of 4-hydroxy-2-nonenal (HNE) in the pathogenesis of alzheimer disease and other selected age-related neurodegenerative disorders. Free Radic Biol Med 2017; 111:253-261. [PMID: 27789292 DOI: 10.1016/j.freeradbiomed.2016.10.490] [Citation(s) in RCA: 188] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 10/20/2016] [Accepted: 10/22/2016] [Indexed: 01/21/2023]
Abstract
Oxidative stress is involved in various and numerous pathological states including several age-related neurodegenerative diseases. Peroxidation of the membrane lipid bilayer is one of the major sources of free radical-mediated injury that directly damages neurons causing increased membrane rigidity, decreased activity of membrane-bound enzymes, impairment of membrane receptors and altered membrane permeability and eventual cell death. Moreover, the peroxidation of polyunsaturated fatty acids leads to the formation of aldehydes, which can act as toxic by-products. One of the most abundant and cytotoxic lipid -derived aldehydes is 4-hydroxy 2-nonenal (HNE). HNE toxicity is mainly due to the alterations of cell functions by the formation of covalent adducts of HNE with proteins. A key marker of lipid peroxidation, HNE-protein adducts, were found to be elevated in brain tissues and body fluids of Alzheimer disease, Parkinson disease, Huntington disease and amyotrophic lateral sclerosis subjects and/or models of the respective age-related neurodegenerative diseases. Although only a few proteins were identified as common targets of HNE modification across all these listed disorders, a high overlap of these proteins occurs concerning the alteration of common pathways, such as glucose metabolism or mitochondrial function that are known to contribute to cognitive decline. Within this context, despite the different etiological and pathological mechanisms that lead to the onset of different neurodegenerative diseases, the formation of HNE-protein adducts might represent the shared leit-motif, which aggravates brain damage contributing to disease specific clinical presentation and decline in cognitive performance observed in each case.
Collapse
Affiliation(s)
- Fabio Di Domenico
- Department of Biochemical Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Antonella Tramutola
- Department of Biochemical Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - D Allan Butterfield
- Department of Chemistry and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506-0055, USA.
| |
Collapse
|
17
|
Kleniewska P, Pawliczak R. The participation of oxidative stress in the pathogenesis of bronchial asthma. Biomed Pharmacother 2017; 94:100-108. [PMID: 28756367 DOI: 10.1016/j.biopha.2017.07.066] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/13/2017] [Accepted: 07/14/2017] [Indexed: 12/11/2022] Open
Abstract
Reactive oxygen species are produced during oxygen reduction and are characterized by high reactivity. They participate in many important physiological processes, but if produced in high concentrations they lead to oxidative stress development and disturb pro-oxidative/anti-oxidative balance towards the oxidation reaction - leading to damage of lipids, proteins, carbohydrates or nucleic acids. Asthma is a chronic inflammatory disease of the airways of various pathogenesis and clinical symptoms, prevalence in recent years has increased significantly. Recently published literature point out the involvement of reactive oxygen species in the pathogenesis of asthma. Changes in the protein and lipid oxidation lead, among others, to pathological changes in the respiratory epithelial cells, an increase in vascular permeability, mucus overproduction, smooth muscle contraction or airway hyperresponsiveness (AHR). The aim of this study is to present the current state of knowledge on the influence of oxidative stress parameters on asthma development.
Collapse
Affiliation(s)
- Paulina Kleniewska
- Department of Immunopathology, Faculty of Biomedical Sciences and Postgraduate Training, Medical University of Lodz, 7/9 Zeligowskiego St, bldg 2 Rm 122, 90-752 Lodz, Poland
| | - Rafał Pawliczak
- Department of Immunopathology, Faculty of Biomedical Sciences and Postgraduate Training, Medical University of Lodz, 7/9 Zeligowskiego St, bldg 2 Rm 122, 90-752 Lodz, Poland.
| |
Collapse
|
18
|
Vitamin D 3 attenuates cognitive deficits and neuroinflammatory responses in ICV-STZ induced sporadic Alzheimer's disease. Inflammopharmacology 2017; 26:39-55. [PMID: 28702935 DOI: 10.1007/s10787-017-0372-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/01/2017] [Indexed: 10/19/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by intracellular neurofibrillary tangles and extracellular Aβ deposition. Growing experimental evidence indicate diverse biological effects of vitamin D3 including antioxidant, neuroprotective, anti-inflammatory and cardiovascular benefits. However, the underlying neuroprotective mechanism of vitamin D3 is still largely elusive. Therefore, the present study was aimed to investigate the neuroprotective effects of vitamin D3 on ICV-STZ induced sporadic AD. Our study demonstrated that vitamin D3 pretreatment significantly improved spatial learning and memory functions and effectively mitigated ICV-STZ mediated neuronal oxidative stress, mitochondrial aberrations and improved cholinergic functions. Moreover, vitamin D3 attenuated hippocampal neuroinflammatory response and reduced neuronal death in cortex and hippocampus. Our findings indicated that prophylactic vitamin D3 supplementation ameliorated ICV-STZ mediated neurobehavioral alterations, oxidative stress and neuroinflammation thereby improving cholinergic functions and reversed degenerative changes in brain. Thus, our study further provides evidence for its therapeutic supplementation for various neurodegenerative disorders including AD.
Collapse
|
19
|
Dec K, Łukomska A, Maciejewska D, Jakubczyk K, Baranowska-Bosiacka I, Chlubek D, Wąsik A, Gutowska I. The Influence of Fluorine on the Disturbances of Homeostasis in the Central Nervous System. Biol Trace Elem Res 2017; 177:224-234. [PMID: 27787813 PMCID: PMC5418325 DOI: 10.1007/s12011-016-0871-4] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 10/11/2016] [Indexed: 01/21/2023]
Abstract
Fluorides occur naturally in the environment, the daily exposure of human organism to fluorine mainly depends on the intake of this element with drinking water and it is connected with the geographical region. In some countries, we can observe the endemic fluorosis-the damage of hard and soft tissues caused by the excessive intake of fluorine. Recent studies showed that fluorine is toxic to the central nervous system (CNS). There are several known mechanisms which lead to structural brain damage caused by the excessive intake of fluorine. This element is able to cross the blood-brain barrier, and it accumulates in neurons affecting cytological changes, cell activity and ion transport (e.g. chlorine transport). Additionally, fluorine changes the concentration of non-enzymatic advanced glycation end products (AGEs), the metabolism of neurotransmitters (influencing mainly glutamatergic neurotransmission) and the energy metabolism of neurons by the impaired glucose transporter-GLUT1. It can also change activity and lead to dysfunction of important proteins which are part of the respiratory chain. Fluorine also affects oxidative stress, glial activation and inflammation in the CNS which leads to neurodegeneration. All of those changes lead to abnormal cell differentiation and the activation of apoptosis through the changes in the expression of neural cell adhesion molecules (NCAM), glial fibrillary acidic protein (GFAP), brain-derived neurotrophic factor (BDNF) and MAP kinases. Excessive exposure to this element can cause harmful effects such as permanent damage of all brain structures, impaired learning ability, memory dysfunction and behavioural problems. This paper provides an overview of the fluoride neurotoxicity in juveniles and adults.
Collapse
Affiliation(s)
- K Dec
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University in Szczecin, Broniewskiego street 24, 70-406, Szczecin, Poland
| | - A Łukomska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University in Szczecin, Broniewskiego street 24, 70-406, Szczecin, Poland
| | - D Maciejewska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University in Szczecin, Broniewskiego street 24, 70-406, Szczecin, Poland
| | - K Jakubczyk
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University in Szczecin, Broniewskiego street 24, 70-406, Szczecin, Poland
| | - I Baranowska-Bosiacka
- Department of Biochemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72 av., 71-111, Szczecin, Poland
| | - D Chlubek
- Department of Biochemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72 av., 71-111, Szczecin, Poland
| | - A Wąsik
- Institute of Pharmacology, Polish Academy of Sciences, Department of Neurochemistry, Smętna street 12, 31-343, Kraków, Poland
| | - I Gutowska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University in Szczecin, Broniewskiego street 24, 70-406, Szczecin, Poland.
| |
Collapse
|
20
|
Park E, Chun HS. Protective Effects of Curcumin on Manganese-Induced BV-2 Microglial Cell Death. Biol Pharm Bull 2017; 40:1275-1281. [PMID: 28529240 DOI: 10.1248/bpb.b17-00160] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Curcumin, a bioactive component in tumeric, has been shown to exert antioxidant, anti-inflammatory, anticarcinogenic, hepatoprotective, and neuroprotective effects, but the effects of curcumin against manganese (Mn)-mediated neurotoxicity have not been studied. This study examined the protective effects of curcumin on Mn-induced cytotoxicity in BV-2 microglial cells. Curcumin (0.1-10 µM) dose-dependently prevented Mn (250 µM)-induced cell death. Mn-induced mitochondria-related apoptotic characteristics, such as caspase-3 and -9 activation, cytochrome c release, Bax increase, and Bcl-2 decrease, were significantly suppressed by curcumin. In addition, curcumin significantly increased intracellular glutathione (GSH) and moderately potentiated superoxide dismutase (SOD), both which were diminished by Mn treatment. Curcumin pretreatment effectively suppressed Mn-induced upregulation of malondialdehyde (MDA), total reactive oxygen species (ROS). Moreover, curcumin markedly inhibited the Mn-induced mitochondrial membrane potential (MMP) loss. Furthermore, curcumin was able to induce heme oxygenase (HO)-1 expression. Curcumin-mediated inhibition of ROS, down-regulation of caspases, restoration of MMP, and recovery of cell viability were partially reversed by HO-1 inhibitor (SnPP). These results suggest the first evidence that curcumin can prevent Mn-induced microglial cell death through the induction of HO-1 and regulation of oxidative stress, mitochondrial dysfunction, and apoptotic events.
Collapse
Affiliation(s)
- Euteum Park
- Department of Biomedical Science, Chosun University
| | | |
Collapse
|
21
|
Losada-Barreiro S, Bravo-Díaz C. Free radicals and polyphenols: The redox chemistry of neurodegenerative diseases. Eur J Med Chem 2017; 133:379-402. [PMID: 28415050 DOI: 10.1016/j.ejmech.2017.03.061] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/21/2017] [Accepted: 03/24/2017] [Indexed: 02/06/2023]
Abstract
The oxidation of bioorganic materials by air and, particularly, the oxidative stress involved in the cell loss and other pathologies associated with neurodegenerative diseases (NDs) are of enormous social and economic importance. NDs generally involve free radical reactions, beginning with the formation of an initiating radical by some redox, thermal or photochemical process, causing nucleic acid, protein and lipid oxidations and the production of harmful oxidative products. Physically, persons afflicted by NDs suffer progressive loss of memory and thinking ability, mood swings, personality changes, and loss of independence. Therefore, the development of antioxidant strategies to retard or minimize the oxidative degradation of bioorganic materials has been, and still is, of paramount importance. While we are aware of the importance of investigating the biological and medical aspects of the diseases, elucidation of the associated chemistry is crucial to understanding their progression, heading to intelligent chemical intervention to find more efficient therapies to prevent or delay the onset of the diseases. Accordingly, this review aims to provide the reader with a chemical base to understand the behavior and properties of the reactive oxygen species involved and of typical radical scavengers such as polyphenolic antioxidants. Some discussion on the structures of the various species, their formation, chemical reactivities and lifetimes is included. The ultimate goal is to understand how, when and where they form, how far they travel prior to react, which molecules are their targets, and how we can, eventually, control their activity to minimize their impact by means of chemical methods. Recent strategies explore chemical modifications of the hydrophobicity of potent, natural antioxidants to improve their efficiency by fine-tuning their concentrations at the reaction site.
Collapse
Affiliation(s)
- Sonia Losada-Barreiro
- Universidad de Vigo, Fac. Química, Dpto Química Física, 36200, Vigo, Spain; Requimte, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007, Portugal
| | - Carlos Bravo-Díaz
- Universidad de Vigo, Fac. Química, Dpto Química Física, 36200, Vigo, Spain.
| |
Collapse
|
22
|
Di Domenico F, Barone E, Perluigi M, Butterfield DA. The Triangle of Death in Alzheimer's Disease Brain: The Aberrant Cross-Talk Among Energy Metabolism, Mammalian Target of Rapamycin Signaling, and Protein Homeostasis Revealed by Redox Proteomics. Antioxid Redox Signal 2017; 26:364-387. [PMID: 27626216 DOI: 10.1089/ars.2016.6759] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
SIGNIFICANCE Alzheimer's disease (AD) is a multifactorial neurodegenerative disorder and represents one of the most disabling conditions. AD shares many features in common with systemic insulin resistance diseases, suggesting that it can be considered as a metabolic disease, characterized by reduced insulin-stimulated growth and survival signaling, increased oxidative stress (OS), proinflammatory cytokine activation, mitochondrial dysfunction, impaired energy metabolism, and altered protein homeostasis. Recent Advances: Reduced glucose utilization and energy metabolism in AD have been associated with the buildup of amyloid-β peptide and hyperphosphorylated tau, increased OS, and the accumulation of unfolded/misfolded proteins. Mammalian target of rapamycin (mTOR), which is aberrantly activated in AD since early stages, plays a key role during AD neurodegeneration by, on one side, inhibiting insulin signaling as a negative feedback mechanism and, on the other side, regulating protein homeostasis (synthesis/clearance). CRITICAL ISSUES It is likely that the concomitant and mutual alterations of energy metabolism-mTOR signaling-protein homeostasis might represent a self-sustaining triangle of harmful events that trigger the degeneration and death of neurons and the development and progression of AD. Intriguingly, the altered cross-talk between the components of such a triangle of death, beyond altering the redox homeostasis of the neuron, is further exacerbated by increased levels of OS that target and impair key components of the pathways involved. Redox proteomic studies in human samples and animal models of AD-like dementia led to identification of oxidatively modified components of the pathways composing the triangle of death, therefore revealing the crucial role of OS in fueling this aberrant vicious cycle. FUTURE DIRECTIONS The identification of compounds able to restore the function of the pathways targeted by oxidative damage might represent a valuable therapeutic approach to slow or delay AD. Antioxid. Redox Signal. 26, 364-387.
Collapse
Affiliation(s)
- Fabio Di Domenico
- 1 Department of Biochemical Sciences, Sapienza University of Rome , Rome, Italy
| | - Eugenio Barone
- 1 Department of Biochemical Sciences, Sapienza University of Rome , Rome, Italy .,2 Facultad de Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile , Santiago, Chile
| | - Marzia Perluigi
- 1 Department of Biochemical Sciences, Sapienza University of Rome , Rome, Italy
| | - D Allan Butterfield
- 3 Department of Chemistry, Sanders-Brown Center of Aging, University of Kentucky , Lexington, Kentucky
| |
Collapse
|
23
|
Senapati R, Senapati NN, Dwibedi B. Molecular mechanisms of HPV mediated neoplastic progression. Infect Agent Cancer 2016; 11:59. [PMID: 27933097 PMCID: PMC5123406 DOI: 10.1186/s13027-016-0107-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 11/05/2016] [Indexed: 12/15/2022] Open
Abstract
Human Papillomavirus is the major etiological agent in the development of cervical cancer but not a sufficient cause. Despite significant research, the underlying mechanisms of progression from a low-grade squamous intraepithelial lesion to high grade squamous intraepithelial lesion are yet to be understood. Deregulation of viral gene expression and host genomic instability play a central role in virus-mediated carcinogenesis. Key events such as viral integration and epigenetic modifications may lead to the deregulation of viral and host gene expression. This review has summarized the available literature to describe the possible mechanism and role of viral integration in mediating carcinogenesis. HPV integration begins with DNA damage or double strand break induced either by oxidative stress or HPV proteins and the subsequent steps are driven by the DNA damage responses. Inflammation and oxidative stress could be considered as cofactors in stimulating viral integration and deregulation of cellular and viral oncogenes during the progression of cervical carcinoma. All these events together with the host and viral genetic and epigenetic modifications in neoplastic progression have also been reviewed which may be relevant in identifying a new preventive therapeutic strategy. In the absence of therapeutic intervention for HPV-infected individuals, future research focus should be directed towards preventing and reversing of HPV integration. DNA damage response, knocking out integrated HPV sequences, siRNA approach, modulating the selection mechanism of cells harboring integrated genomes and epigenetic modifiers are the possible therapeutic targets.
Collapse
Affiliation(s)
- Rashmirani Senapati
- Virology Division, Regional Medical Research centre (ICMR), Nalco square, Chandrasekharpur, Bhubaneswar, 751023 Odisha India
| | | | - Bhagirathi Dwibedi
- Virology Division, Regional Medical Research centre (ICMR), Nalco square, Chandrasekharpur, Bhubaneswar, 751023 Odisha India
| |
Collapse
|
24
|
Wang S, Zhang P, Liu R, Li Y, Liu C, Liao X. A DEHP plasticizer alters synaptic proteins via peroxidation. Toxicol Res (Camb) 2016; 6:89-97. [PMID: 30090480 DOI: 10.1039/c6tx00361c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 11/01/2016] [Indexed: 12/24/2022] Open
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is a widely used commercial plasticizer. DEHP exposure has a negative impact on brain development and cognition, but the mechanisms responsible for DEHP-induced neurotoxicity are not well understood. Here we showed that DEHP exposure increased maleic dialdehyde and reactive oxygen species contents and decreased endogenous superoxide dismutase activity in a mouse neuroblastoma cell line (N2a cell line). DEHP exposure not only induced reduction of neurite outgrowth, but also led to microtubule-associated protein tau hyperphosphorylation and dissociation from microtubules. Furthermore, DEHP exposure decreased the levels of synapsin-1 and postsynaptic density protein 95 (PSD95), which play critical roles in synaptic function. Antioxidant vitamin E pretreatment prevented DEHP-induced abnormalities in the cells. These results indicate that DEHP exposure could induce abnormal action of proteins including tau, synapsin-1 and PSD95, which play critical roles in the synaptic structure and function, and that these alterations might be mediated by peroxidative damage.
Collapse
Affiliation(s)
- Shaohui Wang
- School of Life Sciences , Central China Normal University , Hubei Key Lab of Genetic Regulation and Integrative Biology , Wuhan , P.R. China . ; ; Tel: +86 027 67867229
| | - Pengyan Zhang
- School of Life Sciences , Central China Normal University , Hubei Key Lab of Genetic Regulation and Integrative Biology , Wuhan , P.R. China . ; ; Tel: +86 027 67867229
| | - Ruifang Liu
- School of Life Sciences , Central China Normal University , Hubei Key Lab of Genetic Regulation and Integrative Biology , Wuhan , P.R. China . ; ; Tel: +86 027 67867229
| | - Yuan Li
- School of Life Sciences , Central China Normal University , Hubei Key Lab of Genetic Regulation and Integrative Biology , Wuhan , P.R. China . ; ; Tel: +86 027 67867229
| | - Chao Liu
- School of Life Sciences , Central China Normal University , Hubei Key Lab of Genetic Regulation and Integrative Biology , Wuhan , P.R. China . ; ; Tel: +86 027 67867229
| | - Xiaomei Liao
- School of Life Sciences , Central China Normal University , Hubei Key Lab of Genetic Regulation and Integrative Biology , Wuhan , P.R. China . ; ; Tel: +86 027 67867229
| |
Collapse
|
25
|
Turnaturi R, Oliveri V, Vecchio G. Biotin-8-hydroxyquinoline conjugates and their metal complexes: Exploring the chemical properties and the antioxidant activity. Polyhedron 2016. [DOI: 10.1016/j.poly.2016.02.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Pharmacological induction of hemeoxygenase-1 activity attenuates intracerebroventricular streptozotocin induced neurocognitive deficit and oxidative stress in rats. Eur J Pharmacol 2016; 772:43-50. [DOI: 10.1016/j.ejphar.2015.12.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 12/17/2015] [Accepted: 12/18/2015] [Indexed: 12/26/2022]
|
27
|
It Is All about (U)biquitin: Role of Altered Ubiquitin-Proteasome System and UCHL1 in Alzheimer Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:2756068. [PMID: 26881020 PMCID: PMC4736377 DOI: 10.1155/2016/2756068] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 11/26/2015] [Indexed: 02/07/2023]
Abstract
Free radical-mediated damage to macromolecules and the resulting oxidative modification of different cellular components are a common feature of aging, and this process becomes much more pronounced in age-associated pathologies, including Alzheimer disease (AD). In particular, proteins are particularly sensitive to oxidative stress-induced damage and these irreversible modifications lead to the alteration of protein structure and function. In order to maintain cell homeostasis, these oxidized/damaged proteins have to be removed in order to prevent their toxic accumulation. It is generally accepted that the age-related accumulation of “aberrant” proteins results from both the increased occurrence of damage and the decreased efficiency of degradative systems. One of the most important cellular proteolytic systems responsible for the removal of oxidized proteins in the cytosol and in the nucleus is the proteasomal system. Several studies have demonstrated the impairment of the proteasome in AD thus suggesting a direct link between accumulation of oxidized/misfolded proteins and reduction of this clearance system. In this review we discuss the impairment of the proteasome system as a consequence of oxidative stress and how this contributes to AD neuropathology. Further, we focus the attention on the oxidative modifications of a key component of the ubiquitin-proteasome pathway, UCHL1, which lead to the impairment of its activity.
Collapse
|
28
|
Pearson JN, Rowley S, Liang LP, White AM, Day BJ, Patel M. Reactive oxygen species mediate cognitive deficits in experimental temporal lobe epilepsy. Neurobiol Dis 2015; 82:289-297. [PMID: 26184893 PMCID: PMC4871280 DOI: 10.1016/j.nbd.2015.07.005] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/06/2015] [Accepted: 07/09/2015] [Indexed: 11/08/2022] Open
Abstract
Cognitive dysfunction is an important comorbidity of temporal lobe epilepsy (TLE). However, no targeted therapies are available and the mechanisms underlying cognitive impairment, specifically deficits in learning and memory associated with TLE remain unknown. Oxidative stress is known to occur in the pathogenesis of TLE but its functional role remains to be determined. Here, we demonstrate that oxidative stress and resultant processes contribute to cognitive decline associated with epileptogenesis. Using a synthetic catalytic antioxidant, we show that pharmacological removal of reactive oxygen species (ROS) prevents 1) oxidative stress, 2) deficits in mitochondrial oxygen consumption rates, 3) hippocampal neuronal loss and 4) cognitive dysfunction without altering the intensity of the initial status epilepticus (SE) or epilepsy development in a rat model of SE-induced TLE. Moreover, the effects of the catalytic antioxidant on cognition persisted beyond the treatment period suggestive of disease-modification. The data implicate oxidative stress as a novel mechanism by which cognitive dysfunction can arise during epileptogenesis and suggest a potential disease-modifying therapeutic approach to target it.
Collapse
Affiliation(s)
- Jennifer N Pearson
- Neuroscience Program, University of Colorado, Anschutz Medical Campus, 80045, USA
| | - Shane Rowley
- Neuroscience Program, University of Colorado, Anschutz Medical Campus, 80045, USA
| | - Li-Ping Liang
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, 80045, USA
| | - Andrew M White
- Department of Pediatrics, University of Colorado, Anschutz Medical Campus, 80045, USA
| | - Brian J Day
- National Jewish Health, Denver, CO 80206, USA
| | - Manisha Patel
- Neuroscience Program, University of Colorado, Anschutz Medical Campus, 80045, USA; Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, 80045, USA.
| |
Collapse
|
29
|
Redox proteomics analysis to decipher the neurobiology of Alzheimer-like neurodegeneration: overlaps in Down's syndrome and Alzheimer's disease brain. Biochem J 2014; 463:177-89. [PMID: 25242166 DOI: 10.1042/bj20140772] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Accumulation of oxidative damage is a common feature of neurodegeneration that, together with mitochondrial dysfunction, point to the fact that reactive oxygen species are major contributors to loss of neuronal homoeostasis and cell death. Among several targets of oxidative stress, free-radical-mediated damage to proteins is particularly important in aging and age-related neurodegenerative diseases. In the majority of cases, oxidative-stress-mediated post-translational modifications cause non-reversible modifications of protein structure that consistently lead to impaired function. Redox proteomics methods are powerful tools to unravel the complexity of neurodegeneration, by identifying brain proteins with oxidative post-translational modifications that are detrimental for protein function. The present review discusses the current literature showing evidence of impaired pathways linked to oxidative stress possibly involved in the neurodegenerative process leading to the development of Alzheimer-like dementia. In particular, we focus attention on dysregulated pathways that underlie neurodegeneration in both aging adults with DS (Down's syndrome) and AD (Alzheimer's disease). Since AD pathology is age-dependent in DS and shows similarities with AD, identification of common oxidized proteins by redox proteomics in both DS and AD can improve our understanding of the overlapping mechanisms that lead from normal aging to development of AD. The most relevant proteomics findings highlight that disturbance of protein homoeostasis and energy production are central mechanisms of neurodegeneration and overlap in aging DS and AD. Protein oxidation affects crucial intracellular functions and may be considered a 'leitmotif' of degenerating neurons. Therapeutic strategies aimed at preventing/reducing multiple components of processes leading to accumulation of oxidative damage will be critical in future studies.
Collapse
|
30
|
Yu L, Croze E, Yamaguchi KD, Tran T, Reder AT, Litvak V, Volkert MR. Induction of a unique isoform of the NCOA7 oxidation resistance gene by interferon β-1b. J Interferon Cytokine Res 2014; 35:186-99. [PMID: 25330068 DOI: 10.1089/jir.2014.0115] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We demonstrate that interferon (IFN)-β-1b induces an alternative-start transcript containing the C-terminal TLDc domain of nuclear receptor coactivator protein 7 (NCOA7), a member of the OXR family of oxidation resistance proteins. IFN-β-1b induces NCOA7-AS (alternative start) expression in peripheral blood mononuclear cells (PBMCs) obtained from healthy individuals and multiple sclerosis patients and human fetal brain cells, astrocytoma, neuroblastoma, and fibrosarcoma cells. NCOA7-AS is a previously undocumented IFN-β-inducible gene that contains only the last 5 exons of full-length NCOA7 plus a unique first exon (exon 10a) that is not found in longer forms of NCOA7. This exon encodes a domain closely related to an important class of bacterial aldo-keto oxido-reductase proteins that play a critical role in regulating redox activity. We demonstrate that NCOA7-AS is induced by IFN and LPS, but not by oxidative stress and exhibits, independently, oxidation resistance activity. We further demonstrate that induction of NCOA7-AS by IFN is dependent on IFN-receptor activation, the Janus kinase-signal transducers and activators of transcription (JAK-STAT) signaling pathway, and a canonical IFN-stimulated response element regulatory sequence upstream of exon 10a. We describe a new role for IFN-βs involving a mechanism of action that leads to an increase in resistance to inflammation-mediated oxidative stress.
Collapse
Affiliation(s)
- Lijian Yu
- 1 Department of Microbiology and Physiological Systems, University of Massachusetts Medical School , Worcester, Massachusetts
| | | | | | | | | | | | | |
Collapse
|
31
|
Di Curzio DL, Turner-Brannen E, Del Bigio MR. Oral antioxidant therapy for juvenile rats with kaolin-induced hydrocephalus. Fluids Barriers CNS 2014; 11:23. [PMID: 25324960 PMCID: PMC4199774 DOI: 10.1186/2045-8118-11-23] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 09/23/2014] [Indexed: 12/31/2022] Open
Abstract
Background Oxidative and nitrosylative changes have been shown to occur in conjunction with the hypoxic changes and cellular/axonal damage in hydrocephalic rodent brains. We hypothesized that antioxidant therapy would improve behavioral, neurophysiological, and/or neurobiochemical outcomes in juvenile rats following induction of hydrocephalus. Methods Three-week old rats received an injection of kaolin (aluminum silicate) into the cisterna magna. Magnetic resonance (MR) imaging was performed two weeks later to assess ventricle size and stratify rats to four treatment conditions. Rats were treated for two weeks daily with sham therapy of either oral canola oil or dextrose or experimental therapy of a low or high dose of an antioxidant mixture containing α-tocopherol, L-ascorbic acid, coenzyme Q10 (CoQ10), reduced glutathione, and reduced lipoic acid. Behavior was examined thrice weekly. Results All hydrocephalic groups lagged in weight gain in comparison to non-hydrocephalic controls, all developed significant ventriculomegaly, and all exhibited white matter destruction. Canola oil with or without the antioxidant mixture normalized antioxidant capacity in brain tissue, and the dextrose-treated rats had the greatest ventricular enlargement during the treatment period. However, there were no significant differences between the four treatment groups of hydrocephalic rats for the various behavioral tasks. Glial fibrillary acidic protein and myelin basic protein quantitation showed no differences between the treatment groups or with control rats. There was increased lipid peroxidation in the hydrocephalic rats compared to controls but no differences between treatment groups. Conclusion The antioxidant cocktail showed no therapeutic benefits for juvenile rats with kaolin-induced hydrocephalus although canola oil might have mild benefit.
Collapse
Affiliation(s)
- Domenico L Di Curzio
- Departments of Human Anatomy & Cell Science, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada ; Manitoba Institute of Child Health, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada
| | - Emily Turner-Brannen
- Manitoba Institute of Child Health, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada
| | - Marc R Del Bigio
- Manitoba Institute of Child Health, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada ; Department of Pathology, University of Manitoba, 727 McDermot Avenue, Winnipeg, R3E 3P5, Canada
| |
Collapse
|
32
|
Di Domenico F, Barone E, Perluigi M, Butterfield DA. Strategy to reduce free radical species in Alzheimer’s disease: an update of selected antioxidants. Expert Rev Neurother 2014; 15:19-40. [DOI: 10.1586/14737175.2015.955853] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
33
|
Butterfield DA, Gu L, Di Domenico F, Robinson RAS. Mass spectrometry and redox proteomics: applications in disease. MASS SPECTROMETRY REVIEWS 2014; 33:277-301. [PMID: 24930952 DOI: 10.1002/mas.21374] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 02/07/2013] [Accepted: 02/07/2013] [Indexed: 06/03/2023]
Abstract
Proteomics techniques are continuously being developed to further understanding of biology and disease. Many of the pathways that are relevant to disease mechanisms rely on the identification of post-translational modifications (PTMs) such as phosphorylation, acetylation, and glycosylation. Much attention has also been focused on oxidative PTMs which include protein carbonyls, protein nitration, and the incorporation of fatty acids and advanced glycation products to amino acid side chains, amongst others. The introduction of these PTMs in the cell can occur due to the attack of reactive oxygen and nitrogen species (ROS and RNS, respectively) on proteins. ROS and RNS can be present as a result of normal metabolic processes as well as external factors such as UV radiation, disease, and environmental toxins. The imbalance of ROS and RNS with antioxidant cellular defenses leads to a state of oxidative stress, which has been implicated in many diseases. Redox proteomics techniques have been used to characterize oxidative PTMs that result as a part of normal cell signaling processes as well as oxidative stress conditions. This review highlights many of the redox proteomics techniques which are currently available for several oxidative PTMs and brings to the reader's attention the application of redox proteomics for understanding disease pathogenesis in neurodegenerative disorders and others such as cancer, kidney, and heart diseases.
Collapse
Affiliation(s)
- D Allan Butterfield
- Department of Chemistry, Center of Membrane Sciences, Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, 40506
| | | | | | | |
Collapse
|
34
|
Elevated risk of type 2 diabetes for development of Alzheimer disease: a key role for oxidative stress in brain. Biochim Biophys Acta Mol Basis Dis 2014; 1842:1693-706. [PMID: 24949886 DOI: 10.1016/j.bbadis.2014.06.010] [Citation(s) in RCA: 286] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 06/05/2014] [Accepted: 06/09/2014] [Indexed: 12/23/2022]
Abstract
Alzheimer disease (AD) is the most common form of dementia among the elderly and is characterized by progressive loss of memory and cognition. Epidemiological data show that the incidence of AD increases with age and doubles every 5 years after 65 years of age. From a neuropathological point of view, amyloid-β-peptide (Aβ) leads to senile plaques, which, together with hyperphosphorylated tau-based neurofibrillary tangles and synapse loss, are the principal pathological hallmarks of AD. Aβ is associated with the formation of reactive oxygen (ROS) and nitrogen (RNS) species, and induces calcium-dependent excitotoxicity, impairment of cellular respiration, and alteration of synaptic functions associated with learning and memory. Oxidative stress was found to be associated with type 2 diabetes mellitus (T2DM), which (i) represents another prevalent disease associated with obesity and often aging, and (ii) is considered to be a risk factor for AD development. T2DM is characterized by high blood glucose levels resulting from increased hepatic glucose production, impaired insulin production and peripheral insulin resistance, which close resemble to the brain insulin resistance observed in AD patients. Furthermore, growing evidence suggests that oxidative stress plays a pivotal role in the development of insulin resistance and vice versa. This review article provides molecular aspects and the pharmacological approaches from both preclinical and clinical data interpreted from the point of view of oxidative stress with the aim of highlighting progresses in this field.
Collapse
|
35
|
The Janus face of the heme oxygenase/biliverdin reductase system in Alzheimer disease: it's time for reconciliation. Neurobiol Dis 2013; 62:144-59. [PMID: 24095978 DOI: 10.1016/j.nbd.2013.09.018] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 09/24/2013] [Indexed: 12/23/2022] Open
Abstract
Alzheimer disease (AD) is the most common form of dementia among the elderly and is characterized by progressive loss of memory and cognition. These clinical features are due in part to the increase of reactive oxygen and nitrogen species that mediate neurotoxic effects. The up-regulation of the heme oxygenase-1/biliverdin reductase-A (HO-1/BVR-A) system is one of the earlier events in the adaptive response to stress. HO-1/BVR-A reduces the intracellular levels of pro-oxidant heme and generates equimolar amounts of the free radical scavengers biliverdin-IX alpha (BV)/bilirubin-IX alpha (BR) as well as the pleiotropic gaseous neuromodulator carbon monoxide (CO) and ferrous iron. Two main and opposite hypotheses for a role of the HO-1/BVR-A system in AD propose that this system mediates neurotoxic and neuroprotective effects, respectively. This apparent controversy was mainly due to the fact that for over about 20years HO-1 was the only player on which all the analyses were focused, excluding the other important and essential component of the entire system, BVR. Following studies from the Butterfield laboratory that reported alterations in BVR activity along with decreased phosphorylation and increased oxidative/nitrosative post-translational modifications in the brain of subjects with AD and amnestic mild cognitive impairment (MCI) subjects, a debate was opened on the real pathophysiological and clinical significance of BVR-A. In this paper we provide a review of the main discoveries about the HO/BVR system in AD and MCI, and propose a mechanism that reconciles these two hypotheses noted above of neurotoxic and the neuroprotective aspects of this important stress responsive system.
Collapse
|
36
|
Proteomic quantification and identification of carbonylated proteins upon oxidative stress and during cellular aging. J Proteomics 2013; 92:63-70. [DOI: 10.1016/j.jprot.2013.05.008] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 04/09/2013] [Accepted: 05/07/2013] [Indexed: 12/24/2022]
|
37
|
JNK and NADPH oxidase involved in fluoride-induced oxidative stress in BV-2 microglia cells. Mediators Inflamm 2013; 2013:895975. [PMID: 24072958 PMCID: PMC3773420 DOI: 10.1155/2013/895975] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 07/08/2013] [Accepted: 07/11/2013] [Indexed: 11/25/2022] Open
Abstract
Excessive fluoride may cause central nervous system (CNS) dysfunction, and oxidative stress is a recognized mode of action of fluoride toxicity. In CNS, activated microglial cells can release more reactive oxygen species (ROS), and NADPH oxidase (NOX) is the major enzyme for the production of extracellular superoxide in microglia. ROS have been characterized as an important secondary messenger and modulator for various mammalian intracellular signaling pathways, including the MAPK pathways. In this study we examined ROS production and TNF-α, IL-1β inflammatory cytokines releasing, and the expression of MAPKs in BV-2 microglia cells treated with fluoride. We found that fluoride increased JNK phosphorylation level of BV-2 cells and pretreatment with JNK inhibitor SP600125 markedly reduced the levels of intracellular O2·− and NO. NOX inhibitor apocynin and iNOS inhibitor SMT dramatically decreased NaF-induced ROS and NO generations, respectively. Antioxidant melatonin (MEL) resulted in a reduction in JNK phosphorylation in fluoride-stimulated BV-2 microglia. The results confirmed that NOX and iNOS played an important role in fluoride inducing oxidative stress and NO production and JNK took part in the oxidative stress induced by fluoride and meanwhile also could be activated by ROS in fluoride-treated BV-2 cells.
Collapse
|
38
|
Olsen RHJ, Johnson LA, Zuloaga DG, Limoli CL, Raber J. Enhanced hippocampus-dependent memory and reduced anxiety in mice over-expressing human catalase in mitochondria. J Neurochem 2013; 125:303-13. [PMID: 23383735 PMCID: PMC3676474 DOI: 10.1111/jnc.12187] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 01/05/2013] [Accepted: 01/31/2013] [Indexed: 12/21/2022]
Abstract
Oxidative stress (OS) and reactive oxygen species (ROS) play a modulatory role in synaptic plasticity and signaling pathways. Mitochondria (MT), a major source of ROS because of their involvement in energy metabolism, are important for brain function. MT-generated ROS are proposed to be responsible for a significant proportion of OS and are associated with developmental abnormalities and aspects of cellular aging. The role of ROS and MT function in cognition of healthy individuals is relatively understudied. In this study, we characterized behavioral and cognitive performance of 5- to 6-month-old mice over-expressing mitochondrial catalase (MCAT). MCAT mice showed enhancements in hippocampus-dependent spatial learning and memory in the water maze and contextual fear conditioning, and reduced measures of anxiety in the elevated zero maze. Catalase activity was elevated in MCAT mice in all brain regions examined. Measures of oxidative stress (glutathione, protein carbonyl content, lipid peroxidation, and 8-hydroxyguanine) did not significantly differ between the groups. The lack of differences in these markers of oxidative stress suggests that the differences observed in this study may be due to altered redox signaling. Catalase over-expression might be sufficient to enhance cognition and reduce measures of anxiety even in the absence of alteration in levels of OS.
Collapse
Affiliation(s)
- Reid H J Olsen
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA
| | - Lance A Johnson
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA
| | - Damian G Zuloaga
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA
| | - Charles L Limoli
- Department of Radiation Oncology and Cancer Research Institute, University of California, Irvine, California, USA
| | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA
- Department of Neurology, Oregon Health & Science University, Portland, Oregon, USA
- Division of Neuroscience, ONPRC, Oregon Health & Science University, Beaverton, Oregon, USA
| |
Collapse
|
39
|
Jacob KD, Hooten NN, Trzeciak AR, Evans MK. Markers of oxidant stress that are clinically relevant in aging and age-related disease. Mech Ageing Dev 2013; 134:139-57. [PMID: 23428415 PMCID: PMC3664937 DOI: 10.1016/j.mad.2013.02.008] [Citation(s) in RCA: 176] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 02/06/2013] [Accepted: 02/09/2013] [Indexed: 11/20/2022]
Abstract
Despite the long held hypothesis that oxidant stress results in accumulated oxidative damage to cellular macromolecules and subsequently to aging and age-related chronic disease, it has been difficult to consistently define and specifically identify markers of oxidant stress that are consistently and directly linked to age and disease status. Inflammation because it is also linked to oxidant stress, aging, and chronic disease also plays an important role in understanding the clinical implications of oxidant stress and relevant markers. Much attention has focused on identifying specific markers of oxidative stress and inflammation that could be measured in easily accessible tissues and fluids (lymphocytes, plasma, serum). The purpose of this review is to discuss markers of oxidant stress used in the field as biomarkers of aging and age-related diseases, highlighting differences observed by race when data is available. We highlight DNA, RNA, protein, and lipid oxidation as measures of oxidative stress, as well as other well-characterized markers of oxidative damage and inflammation and discuss their strengths and limitations. We present the current state of the literature reporting use of these markers in studies of human cohorts in relation to age and age-related disease and also with a special emphasis on differences observed by race when relevant.
Collapse
Affiliation(s)
- Kimberly D. Jacob
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Nicole Noren Hooten
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Andrzej R. Trzeciak
- Molecular Neurobiology Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - Michele K. Evans
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| |
Collapse
|
40
|
Oxidative stress and HPV carcinogenesis. Viruses 2013; 5:708-31. [PMID: 23403708 PMCID: PMC3640522 DOI: 10.3390/v5020708] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 01/22/2013] [Accepted: 02/05/2013] [Indexed: 02/06/2023] Open
Abstract
Extensive experimental work has conclusively demonstrated that infection with certain types of human papillomaviruses, the so-called high-risk human papillomavirus (HR-HPV), represent a most powerful human carcinogen. However, neoplastic growth is a rare and inappropriate outcome in the natural history of HPV, and a number of other events have to concur in order to induce the viral infection into the (very rare) neoplastic transformation. From this perspective, a number of putative viral, host, and environmental co-factors have been proposed as potential candidates. Among them oxidative stress (OS) is an interesting candidate, yet comparatively underexplored. OS is a constant threat to aerobic organisms being generated during mitochondrial oxidative phosphorylation, as well as during inflammation, infections, ionizing irradiation, UV exposure, mechanical and chemical stresses. Epithelial tissues, the elective target for HPV infection, are heavily exposed to all named sources of OS. Two different types of cooperative mechanisms are presumed to occur between OS and HPV: I) The OS genotoxic activity and the HPV-induced genomic instability concur independently to the generation of the molecular damage necessary for the emergence of neoplastic clones. This first mode is merely a particular form of co-carcinogenesis; and II) OS specifically interacts with one or more molecular stages of neoplastic initiation and/or progression induced by the HPV infection. This manuscript was designed to summarize available data on this latter hypothesis. Experimental data and indirect evidences on promoting the activity of OS in viral infection and viral integration will be reviewed. The anti-apoptotic and pro-angiogenetic role of NO (nitric oxide) and iNOS (inducible nitric oxide synthase) will be discussed together with the OS/HPV cooperation in inducing cancer metabolism adaptation. Unexplored/underexplored aspects of the OS interplay with the HPV-driven carcinogenesis will be highlighted. The aim of this paper is to stimulate new areas of study and innovative approaches.
Collapse
|
41
|
Bazenet C, Lovestone S. Plasma biomarkers for Alzheimer's disease: much needed but tough to find. Biomark Med 2013; 6:441-54. [PMID: 22917146 DOI: 10.2217/bmm.12.48] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Alzheimer's disease is a complex age-dependent neurodegenerative disease where definitive diagnosis is only possible after autopsy and where there is a long prodromal or preclinical phase. Biomarkers for both early diagnosis and prediction of disease progression are needed and extensive efforts to discover them have been undertaken. In this article, we have attempted to summarize the findings of current studies using proteomics and metabolomics approaches. We are also discussing how the use of emerging technologies and better study designs can support the identification of the much-needed Alzheimer's disease plasma biomarkers.
Collapse
Affiliation(s)
- Chantal Bazenet
- King's College London, Department of Old Age Psychiatry, Institute of Psychiatry, De Crespigny Park, London, UK
| | | |
Collapse
|
42
|
Milic I, Hoffmann R, Fedorova M. Simultaneous Detection of Low and High Molecular Weight Carbonylated Compounds Derived from Lipid Peroxidation by Electrospray Ionization-Tandem Mass Spectrometry. Anal Chem 2012. [DOI: 10.1021/ac302356z] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Ivana Milic
- Institute
of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy and ‡Center for Biotechnology
and Biomedicine, Universität Leipzig, Deutscher Platz 5, Leipzig 04103, Germany
| | - Ralf Hoffmann
- Institute
of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy and ‡Center for Biotechnology
and Biomedicine, Universität Leipzig, Deutscher Platz 5, Leipzig 04103, Germany
| | - Maria Fedorova
- Institute
of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy and ‡Center for Biotechnology
and Biomedicine, Universität Leipzig, Deutscher Platz 5, Leipzig 04103, Germany
| |
Collapse
|
43
|
A role of fluoride on free radical generation and oxidative stress in BV-2 microglia cells. Mediators Inflamm 2012; 2012:102954. [PMID: 22933830 PMCID: PMC3425889 DOI: 10.1155/2012/102954] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 07/09/2012] [Accepted: 07/16/2012] [Indexed: 01/15/2023] Open
Abstract
The generation of ROS and lipid peroxidation has been considered to play an important role in the pathogenesis of chronic fluoride toxicity. In the present study, we observed that fluoride activated BV-2 microglia cell line by observing OX-42 expression in immunocytochemistry. Intracellular superoxide dismutase (SOD), glutathione (GSH), malondialdehyde (MDA), reactive oxygen species (ROS), superoxide anions (O2∙−), nitric oxide synthase (NOS), nitrotyrosine (NT) and nitric oxide (NO), NOS in cell medium were determined for oxidative stress assessment. Our study found that NaF of concentration from 5 to 20 mg/L can stimuli BV-2 cells to change into activated microglia displaying upregulated OX-42 expression. SOD activities significantly decreased in fluoride-treated BV-2 cells as compared with control, and MDA concentrations and contents of ROS and O2∙− increased in NaF-treated cells. Activities of NOS in cells and medium significantly increased with fluoride concentrations in a dose-dependent manner. NT concentrations also increased significantly in 10 and 50 mg/L NaF-treated cells compared with the control cells. Our present study demonstrated that toxic effects of fluoride on the central nervous system possibly partly ascribed to activiting of microglia, which enhanced oxidative stress induced by ROS and reactive nitrogen species.
Collapse
|
44
|
Todorovski T, Fedorova M, Hoffmann R. Identification of isomeric 5-hydroxytryptophan- and oxindolylalanine-containing peptides by mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2012; 47:453-459. [PMID: 22689620 DOI: 10.1002/jms.2058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Cells continuously produce reactive oxidative species that can modify all cellular components. In proteins, for example, cysteine, methionine, tryptophan (Trp), and tyrosine residues are particularly prone to oxidation. Here, we report two new approaches to distinguish two isomeric oxidation products of Trp residues, i.e. 5-hydroxytryptophan (5-HTP) and oxindolylalanine (Oia) residues, in peptides. First, 2-nitrobenzenesulfenyl chloride, known to derivatize Trp residues in position 2 of the indole ring, was used to label 5-HTP residues. The mass shift of 152.98 m/z units allowed identifying 5-HTP- besides Trp-containing peptides by mass spectrometry, whereas Oia residues were not labeled. Second, fragmentation of the Oia- and 5-HTP-derived immonium ions at m/z 175.08 produced ions characteristic for each residue that allowed their identification even in the presence of y(1) ions at m/z 175.12 derived from peptides with C-terminal arginine residues. The pseudo MS(3) spectra acquired on a quadrupole time-of-flight hybrid mass spectrometer displayed two signals at m/z 130.05 and m/z 132.05 characteristic for Oia-containing peptides and a group of six signals (m/z 103.04, 120.04, 130.04, 133.03, 146.04, and 148.04) for 5-HTP-cointaining peptides. In both cases, the relative signal intensities appeared to be independent of the sequence providing a specific fingerprint of each oxidative modification.
Collapse
Affiliation(s)
- Toni Todorovski
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, Leipzig, Germany
| | | | | |
Collapse
|
45
|
Gautier V, Le HT, Malki A, Messaoudi N, Caldas T, Kthiri F, Landoulsi A, Richarme G. YajL, the prokaryotic homolog of the Parkinsonism-associated protein DJ-1, protects cells against protein sulfenylation. J Mol Biol 2012; 421:662-70. [PMID: 22321799 DOI: 10.1016/j.jmb.2012.01.047] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 12/15/2011] [Accepted: 01/26/2012] [Indexed: 10/14/2022]
Abstract
YajL is the closest Escherichia coli homolog of the Parkinsonism-associated protein DJ-1, a multifunctional oxidative stress response protein whose biochemical function remains unclear. We recently described the oxidative-stress-dependent aggregation of proteins in yajL mutants and the oxidative-stress-dependent formation of mixed disulfides between YajL and members of the thiol proteome. We report here that yajL mutants display increased protein sulfenic acids levels and that formation of mixed disulfides between YajL and its protein substrates in vivo is inhibited by the sulfenic acid reactant dimedone, suggesting that YajL preferentially forms disulfides with sulfenylated proteins. YajL (but not YajL(C106A)) also forms mixed disulfides in vitro with the sulfenylated form of bovine serum albumin. The YajL-serum albumin disulfides can be subsequently reduced by glutathione or dihydrolipoic acid. We also show that DJ-1 can form mixed disulfides with sulfenylated E. coli proteins and with sulfenylated serum albumin. These results suggest that YajL and possibly DJ-1 function as covalent chaperones involved in the detection of sulfenylated proteins by forming mixed disulfides with them and that these disulfides are subsequently reduced by low-molecular-weight thiols.
Collapse
Affiliation(s)
- Valérie Gautier
- Stress Molecules, Institut Jacques Monod, Université Paris 7, 15 rue Hélène Brion, 75013 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Todorovski T, Fedorova M, Hoffmann R. Mass spectrometric characterization of peptides containing different oxidized tryptophan residues. JOURNAL OF MASS SPECTROMETRY : JMS 2011; 46:1030-1038. [PMID: 22012669 DOI: 10.1002/jms.1984] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The term reactive oxygen species refers to small molecules that can oxidize, for example, nearby proteins, especially cysteine, methionine, tryptophan, and tyrosine residues. Tryptophan oxidation is always irreversible in the cell and can yield several oxidation products, such as 5-hydroxy-tryptophan (5-HTP), oxindolylalanine (Oia), kynurenine (Kyn), and N-formyl-kynurenine (NFK). Because of the severe effects that oxidized tryptophan residues can have on proteins, there is a great need to develop generally applicable and highly sensitive techniques to identify the oxidized residue and the oxidation product. Here, the fragmentation behavior of synthetic peptides corresponding to sequences recently identified in three skeletal muscle proteins as containing oxidized tryptophan residues were studied using postsource decay and collision-induced dissociation (CID) in matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF)/TOF mass spectrometry (MS) and CID in an electrospray ionization (ESI) double quadrupole TOF-MS. For each sequence, a panel of five different peptides containing Trp, 5-HTP, Kyn, NFK, or Oia residue was studied. It was always possible to identify the modified positions by the y-series and also to distinguish the different oxidation products by characteristic fragment ions in the lower mass range by tandem MS. NFK- and Kyn-containing peptides displayed an intense signal at m/z 174.1, which could be useful in identifying accordingly modified peptides by a sensitive precursor ion scan. Most importantly, it was always possible to distinguish isomeric 5-HTP and Oia residues. In ESI- and MALDI-MS/MS, this was achieved by the signal intensity ratios of two signals obtained at m/z 130.1 and 146.1. In addition, high collision energy CID in the MALDI-TOF/TOF-MS also permitted the identification of these two isomeric residues by their v- and w-ions, respectively.
Collapse
Affiliation(s)
- Toni Todorovski
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, Leipzig, Germany
| | | | | |
Collapse
|
47
|
Todorovski T, Fedorova M, Hennig L, Hoffmann R. Synthesis of peptides containing 5-hydroxytryptophan, oxindolylalanine, N-formylkynurenine and kynurenine. J Pept Sci 2011; 17:256-62. [PMID: 21254311 DOI: 10.1002/psc.1322] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 09/17/2010] [Accepted: 10/04/2010] [Indexed: 01/05/2023]
Abstract
ROS, continuously produced in cells, can reversibly or irreversibly oxidize proteins, lipids, and DNA. At the protein level, cysteine, methionine, tryptophan, and tyrosine residues are particularly prone to oxidation. Here, we describe the solid phase synthesis of peptides containing four different oxidation products of tryptophan residues that can be formed by oxidation in proteins in vitro and in vivo: 5-HTP, Oia, Kyn, and NFK. First, we synthesized Oia and NFK by selective oxidation of tryptophan and then protected the α-amino group of both amino acids, and the commercially available 5-HTP, with Fmoc-succinimide. High yields of Fmoc-Kyn were obtained by acid hydrolysis of Fmoc-NFK. All four Fmoc derivatives were successfully incorporated, at high yields, into three different peptide sequences from skeletal muscle actin, creatin kinase (M-type), and β-enolase. The correct structure of all modified peptides was confirmed by tandem mass spectrometry. Interestingly, isobaric peptides containing 5-HTP and Oia were always well separated in an acetonitrile gradient with TFA as the ion-pair reagent on a C₁₈-phase. Such synthetic peptides should prove useful in future studies to distinguish isobaric oxidation products of tryptophan.
Collapse
Affiliation(s)
- Toni Todorovski
- Institute of Bioanalytical Chemistry, Center for Biotechnology and Biomedicine (BBZ), Faculty of Chemistry and Mineralogy, Universität Leipzig, Leipzig, Germany
| | | | | | | |
Collapse
|
48
|
Vivekanandan-Giri A, Byun J, Pennathur S. Quantitative analysis of amino Acid oxidation markers by tandem mass spectrometry. Methods Enzymol 2011; 491:73-89. [PMID: 21329795 PMCID: PMC3159149 DOI: 10.1016/b978-0-12-385928-0.00005-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Oxidative stress plays a central role in the pathogenesis of diverse chronic inflammatory disorders including diabetic complications, cardiovascular disease, aging, neurodegenerative disease, autoimmune disorders, and pulmonary fibrosis. Protein misfolding can lead to chronic endoplasmic reticulum (ER) stress which can exacerbate oxidative stress. This can trigger apoptotic cascades resulting in chronic inflammatory disorders. Despite intense interest in origins and magnitude of oxidative stress, ability to quantify oxidants has been limited because they are short lived. We have developed quantitative mass spectrometry (MS)-based analytical strategies to analyze stable end products of protein oxidation. These molecules provide quantitative and mechanistic assessment of degree of oxidative stress in cell cultures, tissues, and biofluids of animal models of disease and human samples. Our studies support the hypothesis that unique reactive intermediates generated in localized microenvironments of vulnerable tissues promote end-organ damage. The ability to quantify these changes and assess response to therapies will be pivotal in understanding disease mechanisms and monitoring efficacy of therapy.
Collapse
Affiliation(s)
- Anuradha Vivekanandan-Giri
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48105
| | - Jaeman Byun
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48105
| | - Subramaniam Pennathur
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48105
| |
Collapse
|
49
|
Sultana R, Butterfield DA. Brain Protein Oxidation and Modification for Good or for Bad in Alzheimer’s Disease. NEUROCHEMICAL MECHANISMS IN DISEASE 2011. [DOI: 10.1007/978-1-4419-7104-3_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
50
|
Basha PM, Madhusudhan N. Pre and Post Natal Exposure of Fluoride Induced Oxidative Macromolecular Alterations in Developing Central Nervous System of Rat and Amelioration by Antioxidants. Neurochem Res 2010; 35:1017-28. [DOI: 10.1007/s11064-010-0150-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2010] [Indexed: 11/29/2022]
|