1
|
Pashmforosh M, Rajabi Vardanjani H, Khorsandi L, Shariati S, Mohtadi S, Khodayar MJ. Carvacrol protects rats against bleomycin-induced lung oxidative stress, inflammation, and fibrosis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:10075-10089. [PMID: 38976045 DOI: 10.1007/s00210-024-03273-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 07/01/2024] [Indexed: 07/09/2024]
Abstract
The main objective of this study was to investigate the potential efficacy of carvacrol (CAR) in mitigating bleomycin (BLM)-induced pulmonary fibrosis (PF). Sixty-six male Wistar rats were assigned into two main groups of 7 and 21 days. They were divided into the subgroups of control, BLM, CAR 80 (only for the 21-day group), and CAR treatment groups. The CAR treatment groups received CAR (20, 40, and 80 mg/kg, orally) for 7 or 21 days after an instillation of BLM (5 mg/kg, intratracheally). Results indicated that BLM significantly increased total cell count in bronchoalveolar lavage fluid and the percentages of neutrophils and lymphocytes, and reduced the percentage of macrophages. CAR dose-dependently decreased total cell count and the percentage of neutrophils and lymphocytes. CAR significantly reduced thiobarbituric acid reactive substances and hydroxyproline levels and elevated the total thiol level and catalase, superoxide dismutase, and glutathione peroxidase activities in BLM-exposed rats. Furthermore, CAR decreased the transforming growth factor-β1, connective transforming growth factor, and tumor necrosis factor-α on days 7 and 21. BLM increased interferon-γ on day 7 but decreased its level on day 21. However, CAR reversed interferon-γ levels on days 7 and 21. Based on histopathological findings, BLM induced inflammation on days 7 and 21, but for induction of fibrosis, 21-day study showed more fibrotic injuries than the 7-day group. CAR showed the improvement of fibrotic injuries. The effect of CAR against BLM-induced pulmonary fibrosis is possibly due to its antioxidant, anti-inflammatory, and antifibrotic activity.
Collapse
Affiliation(s)
| | - Hossein Rajabi Vardanjani
- Department of Pharmacology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Layasadat Khorsandi
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saeedeh Shariati
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shokooh Mohtadi
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Javad Khodayar
- Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
2
|
Lan YW, Chen CE, Huang TT, Huang TH, Chen CM, Chong KY. Antrodia cinnamomea extract alleviates bleomycin-induced pulmonary fibrosis in mice by inhibiting the mTOR pathway. Biomed J 2024; 47:100720. [PMID: 38679198 PMCID: PMC11550180 DOI: 10.1016/j.bj.2024.100720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/29/2024] [Accepted: 03/25/2024] [Indexed: 05/01/2024] Open
Abstract
BACKGROUND Pulmonary fibrosis is a progressive diffuse parenchymal lung disorder with a high mortality rate. Studies have indicated that injured lung tissues release various pro-inflammatory factors, and produce a large amount of nitric oxide. There is also accumulation of collagen and oxidative stress-induced injury, collectively leading to pulmonary fibrosis. Antrodia cinnamomea is an endemic fungal growth in Taiwan, and its fermented extracts exert anti-inflammatory effects to alleviate liver damages. Hence, we hypothesized and tested the feasibility of using A. cinnamomea extracts for treatment of pulmonary fibrosis. METHODS The TGF-β1-induced human lung fibroblast cells (MRC-5) in vitro cell assay were used to evaluate the effects of A. cinnamomea extracts on the collagen production in MRC-5. Eight-week-old ICR mice were intratracheally administered bleomycin and then fed with an A. cinnamomea extract on day 3 post-administration of bleomycin. At day 21 post-bleomycin administration, the pulmonary functional test, the expression level of inflammation- and fibrosis-related genes in the lung tissue, and the histopathological change were examined. RESULTS The A. cinnamomea extract significantly attenuated the expression level of collagen in the TGF-β1-induced MRC-5 cells. In the A. cinnamome-treated bleomycin-induced lung fibrotic mice, the bodyweight increased, pulmonary functions improved, the lung tissues expression level of inflammatory factor and the fibrotic indicator were decreased, and the histopathological results showed the reduction of thickening of the inter-alveolar septa. CONCLUSIONS The Antrodia cinnamomea extract significant protects mice against bleomycin-induced lung injuries through improvement of body weight gain and lung functions, and attenuation of expression of inflammatory and fibrotic indicators.
Collapse
Affiliation(s)
- Ying-Wei Lan
- Department of Child Health, Phoenix Children's Research Institute, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Chia-En Chen
- Department of Medical Biotechnology and Laboratory Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tsung-Teng Huang
- Department of Medical Biotechnology and Laboratory Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tse-Hung Huang
- Department of Traditional Chinese Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chuan-Mu Chen
- Department of Life Sciences, Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan; The IEGG and Animal Biotechnology Center and the Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Kowit-Yu Chong
- Department of Medical Biotechnology and Laboratory Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Graduate Institute of Biomedical Sciences Division of Biotechnology, Chang Gung University, Taoyuan, Taiwan; Department of Traditional Chinese Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan; Hyperbaric Oxygen Medical Research Lab, Bone and Joint Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan; Centre for Stem Cell Research, M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, Malaysia.
| |
Collapse
|
3
|
Tang C, Jia F, Wu M, Wang Y, Lu X, Li J, Ding Y, Chen W, Chen X, Han F, Xu H. Elastase-targeting biomimic nanoplatform for neurovascular remodeling by inhibiting NETosis mediated AlM2 inflammasome activation in ischemic stroke. J Control Release 2024; 375:404-421. [PMID: 39288890 DOI: 10.1016/j.jconrel.2024.09.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/03/2024] [Accepted: 09/12/2024] [Indexed: 09/19/2024]
Abstract
Neutrophil elastase (NE) is a protease released by activated neutrophils in the brain parenchyma after cerebral ischemia, which plays a pivotal role in the regulation of neutrophil extracellular traps (NETs) formation. The excess NETs could lead to blood-brain barrier (BBB) breakdown, overwhelming neuroinflammation, and neuronal injury. While the potential of targeting neutrophils and inhibiting NE activity to mitigate ischemic stroke (IS) pathology has been recognized, effective strategies that inhibit NETs formation remain under-explored. Herein, a biomimic multifunctional nanoplatform (HM@ST/TeTeLipos) was developed for active NE targeting and IS treatment. The core of the HM@ST/TeTeLipos consisted of sivelestat-loaded ditelluride-containing liposomes with ROS-responsive and NE-inhibiting properties. The outer shell was composed of platelet-neutrophil hybrid membrane vesicles (HMVs), which acted to hijack neutrophils and neutralize proinflammatory cytokines. Our studies revealed that HM@ST/TeTeLipos could effectively inhibit NE activity, thereby suppressing the release of NETs, impeding the activation of the AIM2 inflammasome, and consequently redirecting the immune response away from a pro-inflammatory M1 microglia phenotype. This resulted in enhanced neurovascular remodeling, reduced BBB disruption, and diminished neuroinflammation, ultimately promoting neuron survival. We believe that this innovative approach holds significant potential for improving the treatment of IS and various NE-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Chunming Tang
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Feng Jia
- Department of Neurosurgery, Yancheng NO.1 People's Hospital, The Affiliated Yancheng First Hospital of Nanjing University Medical School, 224008, China
| | - Min Wu
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yanling Wang
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Xiaowei Lu
- Department of Geriatric Neurology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jinyu Li
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yan Ding
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Weilin Chen
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China.
| | - Xufeng Chen
- Department of Emergency Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Feng Han
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China.
| | - Huae Xu
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
4
|
Higashino H, Karatsu A, Masuda T. Catalytic Antioxidant Activity of Two Diterpenoid Polyphenols of Rosemary, Carnosol, and Isorosmanol, against Lipid Oxidation in the Presence of Cysteine Thiol. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2193-2201. [PMID: 38254316 DOI: 10.1021/acs.jafc.3c08248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Lamiaceae herbs such as rosemary have excellent antioxidant properties, and lipidic diterpenoid constituents, such as carnosol, are known as characteristic components to exhibit strong antioxidant activity. This study investigates the effect of thiol compounds on the antioxidant properties of diterpenoid polyphenols. The results concerning the antioxidant activity of polyphenols in the presence of thiol showed that two polyphenols, namely, carnosol and isorosmanol, enhanced antioxidant capacity against the radical-induced oxidation of lipids. Further examination of the mechanism revealed that both polyphenols exhibit excellent catalytic antioxidant activity by using the thiol group as a reduction source. Using density functional theory calculations, we attempted to explain why only these two polyphenols exhibit catalytic antioxidant properties. The calculation results and the assumed reaction mechanism suggested that the orthoquinones produced in the antioxidant reactions of carnosol and isorosmanol are more unstable than the others and that the regioselectivity of their reactions with thiols contributes to their catalytic antioxidant properties.
Collapse
Affiliation(s)
- Hayate Higashino
- Graduate School of Human Life Science, Osaka Metropolitan University, Sumiyoshi, Osaka 558-8585, Japan
| | - Asuka Karatsu
- Graduate School of Human Life Science, Osaka Metropolitan University, Sumiyoshi, Osaka 558-8585, Japan
| | - Toshiya Masuda
- Graduate School of Human Life Science, Osaka Metropolitan University, Sumiyoshi, Osaka 558-8585, Japan
| |
Collapse
|
5
|
Hirkane PS, Verma UP, Verma AK, Singh P. Exploring the Relation Between Interstitial Lung Diseases and Chronic Periodontitis: A Systematic Review. Cureus 2024; 16:e53157. [PMID: 38420070 PMCID: PMC10901193 DOI: 10.7759/cureus.53157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
The objective of this systematic review is to determine the association between interstitial lung diseases and chronic periodontitis from various aspects such as microbial, biomarker, genetic, and environmental levels. A systematic review was carried out from 2000 to 2021 following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) recommendations including studies searched in PubMed-Medline, Google Scholar, and Cochrane databases. A total of more than 100 articles were obtained in the initial screening process. Out of these 42 studies fulfilled the inclusion criteria and were included in the study. According to the extracted data, there is mounting evidence suggesting the association between these two diseases. Our systematic review raises the prospect of a connection between chronic periodontitis and interstitial lung diseases, within the limitations of the studies we included.
Collapse
Affiliation(s)
| | - Umesh P Verma
- Periodontology, King George's Medical University, Lucknow, IND
| | - Ajay K Verma
- Respiratory Medicine, King George's Medical University, Lucknow, IND
| | - Pooja Singh
- Periodontology, King George's Medical University, Lucknow, IND
| |
Collapse
|
6
|
He X, Jarrell ZR, Smith MR, Ly VT, Hu X, Sueblinvong V, Liang Y, Orr M, Go YM, Jones DP. Low-dose vanadium pentoxide perturbed lung metabolism associated with inflammation and fibrosis signaling in male animal and in vitro models. Am J Physiol Lung Cell Mol Physiol 2023; 325:L215-L232. [PMID: 37310758 PMCID: PMC10396228 DOI: 10.1152/ajplung.00303.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/14/2023] Open
Abstract
Vanadium is available as a dietary supplement and also is known to be toxic if inhaled, yet little information is available concerning the effects of vanadium on mammalian metabolism when concentrations found in food and water. Vanadium pentoxide (V+5) is representative of the most common dietary and environmental exposures, and prior research shows that low-dose V+5 exposure causes oxidative stress measured by glutathione oxidation and protein S-glutathionylation. We examined the metabolic impact of V+5 at relevant dietary and environmental doses (0.01, 0.1, and 1 ppm for 24 h) in human lung fibroblasts (HLFs) and male C57BL/6J mice (0.02, 0.2, and 2 ppm in drinking water for 7 mo). Untargeted metabolomics using liquid chromatography-high-resolution mass spectrometry (LC-HRMS) showed that V+5 induced significant metabolic perturbations in both HLF cells and mouse lungs. We noted 30% of the significantly altered pathways in HLF cells, including pyrimidines and aminosugars, fatty acids, mitochondrial and redox pathways, showed similar dose-dependent patterns in mouse lung tissues. Alterations in lipid metabolism included leukotrienes and prostaglandins involved in inflammatory signaling, which have been associated with the pathogenesis of idiopathic pulmonary fibrosis (IPF) and other disease processes. Elevated hydroxyproline levels and excessive collagen deposition were also present in lungs from V+5-treated mice. Taken together, these results show that oxidative stress from environmental V+5, ingested at low levels, could alter metabolism to contribute to common human lung diseases.NEW & NOTEWORTHY We used relevant dietary and environmental doses of Vanadium pentoxide (V+5) to examine its metabolic impact in vitro and in vivo. Using liquid chromatography-high-resolution mass spectrometry (LC-HRMS), we found significant metabolic perturbations, with similar dose-dependent patterns observed in human lung fibroblasts and male mouse lungs. Alterations in lipid metabolism included inflammatory signaling, elevated hydroxyproline levels, and excessive collagen deposition were present in V+5-treated lungs. Our findings suggest that low levels of V+5 could trigger pulmonary fibrotic signaling.
Collapse
Affiliation(s)
- Xiaojia He
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, Georgia, United States
| | - Zachery R Jarrell
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, Georgia, United States
| | - Matthew Ryan Smith
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, Georgia, United States
- Atlanta Department of Veterans Affairs Healthcare System, Decatur, Georgia, United States
| | - ViLinh Thi Ly
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, Georgia, United States
| | - Xin Hu
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, Georgia, United States
| | - Viranuj Sueblinvong
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, Georgia, United States
| | - Yongliang Liang
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, Georgia, United States
| | - Michael Orr
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, Georgia, United States
| | - Young-Mi Go
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, Georgia, United States
| | - Dean P Jones
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, Georgia, United States
| |
Collapse
|
7
|
Brezovec N, Perdan-Pirkmajer K, Burja B, Rotar Ž, Osredkar J, Sodin-Šemrl S, Lakota K, Čučnik S. Disturbed Antioxidant Capacity in Patients with Systemic Sclerosis Associates with Lung and Gastrointestinal Symptoms. Biomedicines 2023; 11:2110. [PMID: 37626607 PMCID: PMC10452464 DOI: 10.3390/biomedicines11082110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
The correct balance between reactive oxygen species and antioxidant defense in an organism is disturbed in oxidative stress. To assess oxidative balance in 36 SSc patients and 26 healthy controls (HCs), we measured reactive oxidative metabolites (ROMs), total antioxidant capacity (TAC), lipid peroxidation (measuring 4-HNE), and DNA oxidative damage (measuring 8-OHdG) in serum. Furthermore, DNA breaks in leukocytes of 35 SSc patients and 32 HCs were evaluated using COMET. While we report high ROMs for both SSc patients and age/sex matched HC samples, there was a significant increase in TAC in SSc patients as compared to HCs, and thus also a significantly higher oxidative stress index in SSc patients. TAC was significantly higher in SSc patients with ILD and gastrointestinal involvement, as well as in patients with anti-topoisomerase antibodies. We observe no difference in serum lipid peroxidation status or oxidative DNA damage. However, SSc patients had significantly more leukocyte DNA breaks than HCs; the most damage was observed in patients treated with immunosuppressives. Thus, our study confirms presence of oxidative stress and increased DNA damage in leukocytes of SSc patients; however, it points toward increased antioxidant capacity, which needs to be further studied.
Collapse
Affiliation(s)
- Neža Brezovec
- Department of Rheumatology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (K.P.-P.); (B.B.); (Ž.R.); (S.S.-Š.); (K.L.)
| | - Katja Perdan-Pirkmajer
- Department of Rheumatology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (K.P.-P.); (B.B.); (Ž.R.); (S.S.-Š.); (K.L.)
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Blaž Burja
- Department of Rheumatology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (K.P.-P.); (B.B.); (Ž.R.); (S.S.-Š.); (K.L.)
| | - Žiga Rotar
- Department of Rheumatology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (K.P.-P.); (B.B.); (Ž.R.); (S.S.-Š.); (K.L.)
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Joško Osredkar
- Institute of Clinical Chemistry and Biochemistry, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia;
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Snežna Sodin-Šemrl
- Department of Rheumatology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (K.P.-P.); (B.B.); (Ž.R.); (S.S.-Š.); (K.L.)
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, 6000 Koper, Slovenia
| | - Katja Lakota
- Department of Rheumatology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (K.P.-P.); (B.B.); (Ž.R.); (S.S.-Š.); (K.L.)
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, 6000 Koper, Slovenia
| | - Saša Čučnik
- Department of Rheumatology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (K.P.-P.); (B.B.); (Ž.R.); (S.S.-Š.); (K.L.)
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
8
|
Jin S, Yoon SJ, Jung NY, Lee WS, Jeong J, Park YJ, Kim W, Oh DB, Seo J. Antioxidants prevent particulate matter-induced senescence of lung fibroblasts. Heliyon 2023; 9:e14179. [PMID: 36915477 PMCID: PMC10006845 DOI: 10.1016/j.heliyon.2023.e14179] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
Particulate matter (PM) contributes to human diseases, particularly lung disease; however, the molecular mechanism of its action is yet to be determined. Herein, we found that prolonged PM exposure induced the cellular senescence of normal lung fibroblasts via a DNA damage-mediated response. This PM-induced senescence (PM-IS) was only observed in lung fibroblasts but not in A549 lung adenocarcinoma cells. Mechanistic analysis revealed that reactive oxygen species (ROS) activate the DNA damage response signaling axis, increasing p53 phosphorylation, ultimately leading to cellular senescence via an increase in p21 expression without affecting the p16-pRB pathway. A549 cells, instead, were resistant to PM-IS due to the PM-induced ROS production suppression. Water-soluble antioxidants, such as vitamin C and N-Acetyl Cysteine, were found to alleviate PM-IS by suppressing ROS production, implying that antioxidants are a promising therapeutic intervention for PM-mediated lung pathogenesis.
Collapse
Affiliation(s)
- Sein Jin
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, South Korea
- Department of Biochemistry, Chungnam National University, Daejeon, 34134, South Korea
| | - Sung-Jin Yoon
- Environmental Disease Research Center, KRIBB, Daejeon, 34141, South Korea
| | - Na-Young Jung
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, South Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, 34113, South Korea
| | - Wang Sik Lee
- Environmental Disease Research Center, KRIBB, Daejeon, 34141, South Korea
| | - Jinyoung Jeong
- Environmental Disease Research Center, KRIBB, Daejeon, 34141, South Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, 34113, South Korea
| | - Young-Jun Park
- Environmental Disease Research Center, KRIBB, Daejeon, 34141, South Korea
- Department of Biomolecular Science, KRIBB School of Bioscience, UST, Daejeon, 34113, South Korea
| | - Wantae Kim
- Department of Biochemistry, Chungnam National University, Daejeon, 34134, South Korea
| | - Doo-Byoung Oh
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, South Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, 34113, South Korea
| | - Jinho Seo
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, South Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, 34113, South Korea
| |
Collapse
|
9
|
Fibrosis: Types, Effects, Markers, Mechanisms for Disease Progression, and Its Relation with Oxidative Stress, Immunity, and Inflammation. Int J Mol Sci 2023; 24:ijms24044004. [PMID: 36835428 PMCID: PMC9963026 DOI: 10.3390/ijms24044004] [Citation(s) in RCA: 110] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/15/2023] [Accepted: 01/19/2023] [Indexed: 02/19/2023] Open
Abstract
Most chronic inflammatory illnesses include fibrosis as a pathogenic characteristic. Extracellular matrix (ECM) components build up in excess to cause fibrosis or scarring. The fibrotic process finally results in organ malfunction and death if it is severely progressive. Fibrosis affects nearly all tissues of the body. The fibrosis process is associated with chronic inflammation, metabolic homeostasis, and transforming growth factor-β1 (TGF-β1) signaling, where the balance between the oxidant and antioxidant systems appears to be a key modulator in managing these processes. Virtually every organ system, including the lungs, heart, kidney, and liver, can be affected by fibrosis, which is characterized as an excessive accumulation of connective tissue components. Organ malfunction is frequently caused by fibrotic tissue remodeling, which is also frequently linked to high morbidity and mortality. Up to 45% of all fatalities in the industrialized world are caused by fibrosis, which can damage any organ. Long believed to be persistently progressing and irreversible, fibrosis has now been revealed to be a very dynamic process by preclinical models and clinical studies in a variety of organ systems. The pathways from tissue damage to inflammation, fibrosis, and/or malfunction are the main topics of this review. Furthermore, the fibrosis of different organs with their effects was discussed. Finally, we highlight many of the principal mechanisms of fibrosis. These pathways could be considered as promising targets for the development of potential therapies for a variety of important human diseases.
Collapse
|
10
|
He X, Jarrell ZR, Liang Y, Ryan Smith M, Orr ML, Marts L, Go YM, Jones DP. Vanadium pentoxide induced oxidative stress and cellular senescence in human lung fibroblasts. Redox Biol 2022; 55:102409. [PMID: 35870339 PMCID: PMC9307685 DOI: 10.1016/j.redox.2022.102409] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/30/2022] [Accepted: 07/12/2022] [Indexed: 11/25/2022] Open
Abstract
Both environmental exposure to vanadium pentoxide (V2O5, V+5 for its ionic counterparts) and fibroblast senescence are associated with pulmonary fibrosis, but whether V+5 causes fibroblast senescence remains unknown. We found in a dose-response study that 2-40 μM V+5 caused human lung fibroblasts (HLF) senescence with increased senescence-associated β-galactosidase activity and p16 expression, while cell death occurred at higher concentration (LC50, 82 μM V+5). Notably, measures of reactive oxygen species (ROS) production with fluorescence probes showed no association of ROS with V+5-dependent senescence. Preloading catalase (polyethylene-conjugated), a H2O2 scavenger, did not alleviate the cellular senescence induced by V+5. Analyses of the cellular glutathione (GSH) system showed that V+5 oxidized GSH, increased GSH biosynthesis, stimulated cellular GSH efflux and increased protein S-glutathionylation, and addition of N-acetyl cysteine inhibited V+5-elevated p16 expression, suggesting that thiol oxidation mediates V+5-caused senescence. Moreover, strong correlations between GSSG/GSH redox potential (Eh), protein S-glutathionylation, and cellular senescence (R2 > 0.99, p < 0.05) were present in V+5-treated cells. Studies with cell-free and enzyme-free solutions showed that V+5 directly oxidized GSH with formation of V+4 and GSSG in the absence of O2. Analyses of V+5 and V+4 in HLF and culture media showed that V+5 was reduced to V+4 in cells and that a stable V+4/V+5 ratio was rapidly achieved in extracellular media, indicating ongoing release of V+4 and reoxidation to V+5. Together, the results show that V+5-dependent fibroblast senescence is associated with a cellular/extracellular redox cycling mechanism involving the GSH system and occurring under conditions that do not cause cell death. These results establish a mechanism by which environmental vanadium from food, dietary supplements or drinking water, can cause or contribute to lung fibrosis in the absence of high-level occupational exposures and cytotoxic cell death.
Collapse
Affiliation(s)
- Xiaojia He
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Zachery R Jarrell
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Yongliang Liang
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Matthew Ryan Smith
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Michael L Orr
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Lucian Marts
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Young-Mi Go
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University, Atlanta, GA, 30322, USA.
| | - Dean P Jones
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
11
|
Tang M, Yang Z, Liu J, Zhang X, Guan L, Liu X, Zeng M. Combined intervention with N-acetylcysteine and desipramine alleviated silicosis development by regulating the Nrf2/HO-1 and ASMase/ceramide signaling pathways. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113914. [PMID: 35878501 DOI: 10.1016/j.ecoenv.2022.113914] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Silicosis is a systemic disease characterized by diffuse fibrosis of the lung tissue caused by long-term inhalation of large amounts of free silica (SiO2) dust. The pathogenesis of silicosis has not been fully elucidated, and there is a lack of effective treatment methods. N-acetylcysteine (NAC) can potentially treat pulmonary fibrosis by exerting antioxidant effects. Desipramine (DMI) can influence pulmonary fibrosis development by inhibiting acid sphingomyelinase (ASMase) activity and regulating ceramide concentrations. Both can interfere with pulmonary fibrosis through different mechanisms, but the intervention effects of NAC combined with DMI on silicosis fibrosis have not been reported. Therefore, this study established a rat silicosis model using a single tracheal drip of SiO2 dust suspension in Wistar rats to investigate the effect of NAC combined with DMI on SiO2 dust-induced silicosis and its related molecular mechanisms. The histopathological examination of the SiO2 dust-induced silicosis rats suggested that NAC and DMI alone or in combination could decrease the severity of pulmonary fibrosis in rats. The combined intervention had a better effect on reducing fibrosis than the individual interventions. NAC and DMI, alone or in combination, decreased the levels of markers related to pulmonary fibrosis in rats (smooth muscle α-actin (α-SMA), collagen (Col) I, Col III, hydroxyproline (HYP), inflammatory factors (transforming growth factor-β1 (TGF-β1) and tumor necrosis factor-α (TNF-α)), and lipid peroxidase malondialdehyde (MDA)). The nuclear factor-erythroid 2-related factor 2 (Nrf2)/heme-oxygenase-1 (HO-1) and ASMase/ceramide pathways were inhibited to some extent by increasing the superoxide dismutase (SOD) levels of antioxidant enzymes and 8-iso-prostaglandin F2α (8-iso-PGF2α) levels of lipid peroxides. The combined intervention and NAC alone inhibited the SiO2 dust-induced elevation of matrix metalloproteinase 1 (MMP-1) and tissue inhibitor matrix metalloproteinase 1 (TIMP-1), but the effect was not significant in the DMI-treated group. Combining DMI and NAC inhibited Col I deposition and reduced HO-1, TIMP-1, and ASMase levels in lung tissues compared to individual treatments. In summary, the SiO2 dust could induce oxidative stress and inflammation in rats, resulting in an imbalance in extracellular matrix (ECM) synthesis/catabolism and ASMase/ceramide signaling pathway activation, leading to silicosis development.The combined intervention of DMI and NAC may synergistically regulate the Nrf2/HO-1 pathway, maintain the anabolic balance of the ECM, inhibit ASMase/ceramide signaling pathway activation by suppressing the inflammatory response and effectively delay silicosis fibrosis progression.
Collapse
Affiliation(s)
- Meng Tang
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, Hunan Province, China
| | - Zhihui Yang
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, Hunan Province, China
| | - Jing Liu
- Tongxiang Center for Disease Control and Prevention, Jiaxing, Zhejiang Province, China
| | - Xiangfei Zhang
- Chengdu Longquanyi Disease Prevention and Control Center, Cheng Du, Si Chuan Province, China
| | - Lan Guan
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, Hunan Province, China
| | - Xinming Liu
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, Hunan Province, China
| | - Ming Zeng
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, Hunan Province, China.
| |
Collapse
|
12
|
Arora A, Bhuria V, Singh S, Pathak U, Mathur S, Hazari PP, Roy BG, Sandhir R, Soni R, Dwarakanath BS, Bhatt AN. Amifostine analog, DRDE-30, alleviates radiation induced lung damage by attenuating inflammation and fibrosis. Life Sci 2022; 298:120518. [PMID: 35367468 DOI: 10.1016/j.lfs.2022.120518] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/18/2022] [Accepted: 03/26/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Radiotherapy of thoracic neoplasms and accidental radiation exposure often results in pneumonitis and fibrosis of lungs. Here, we investigated the potential of amifostine analogs: DRDE-07, DRDE-30, and DRDE-35, in alleviating radiation-induced lung damage. METHODS C57BL/6 mice were exposed to 13.5 Gy thoracic irradiation, 30 min after intraperitoneal administration of the analogs, and assessed for modulation of the pathological response at 12 and 24 weeks. KEY FINDINGS DRDE-07, DRDE-30 and DRDE-35 increased the survival of irradiated mice from 20% to 30%, 80% and 70% respectively. Reduced parenchymal opacity (X-ray CT) in the lungs of DRDE-30 pre-treated mice corroborated well with the significant decrease in Ashcroft score (p < 0.01). Two-fold increase in SOD and catalase activities (p < 0.05), coupled with a 50% increase in GSH content and a 60% decrease in MDA content (p < 0.05) suggested restoration of the antioxidant defence system. A 20% to 40% decrease in radiation-induced apoptotic and mitotic death in the lung tissue (micronuclei: p < 0.01), resulted in attenuated lung and vascular permeability (FITC-Dextran leakage) by 50% (p < 0.01), and a commensurate reduction (~50%) in leukocyte infiltration in the injured tissue (p < 0.05). DRDE-30 abrogated the activation of pro-inflammatory NF-κB and p38/MAPK signaling cascades, suppressing the release of pro-inflammatory cytokines (IL-1β: p < 0.05; TNF-α: p < 0.05; IL-6: p < 0.05) and up-regulation of CAMs on the endothelial cell surface. Reduction in hydroxyproline content (p < 0.01) and collagen suggested inhibition of lung fibrosis which was associated with attenuation of TGF-β/Smad pathway-mediated-EMT. CONCLUSION DRDE-30 could be a potential prophylactic agent against radiation-induced lung injury.
Collapse
Affiliation(s)
- Aastha Arora
- Institute of Nuclear Medicine & Allied Sciences, Delhi, India; Department of Biochemistry, Panjab University, Chandigarh, India
| | - Vikas Bhuria
- Institute of Nuclear Medicine & Allied Sciences, Delhi, India
| | - Saurabh Singh
- Institute of Nuclear Medicine & Allied Sciences, Delhi, India
| | - Uma Pathak
- Defence Research and Development Establishment, Gwalior, India
| | - Sweta Mathur
- Defence Research and Development Establishment, Gwalior, India
| | - Puja P Hazari
- Institute of Nuclear Medicine & Allied Sciences, Delhi, India
| | - Bal G Roy
- Institute of Nuclear Medicine & Allied Sciences, Delhi, India
| | - Rajat Sandhir
- Department of Biochemistry, Panjab University, Chandigarh, India
| | - Ravi Soni
- Institute of Nuclear Medicine & Allied Sciences, Delhi, India
| | - Bilikere S Dwarakanath
- Institute of Nuclear Medicine & Allied Sciences, Delhi, India; Central Research Facility, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | | |
Collapse
|
13
|
Estornut C, Milara J, Bayarri MA, Belhadj N, Cortijo J. Targeting Oxidative Stress as a Therapeutic Approach for Idiopathic Pulmonary Fibrosis. Front Pharmacol 2022; 12:794997. [PMID: 35126133 PMCID: PMC8815729 DOI: 10.3389/fphar.2021.794997] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/10/2021] [Indexed: 01/19/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic interstitial lung disease characterized by an abnormal reepithelialisation, an excessive tissue remodelling and a progressive fibrosis within the alveolar wall that are not due to infection or cancer. Oxidative stress has been proposed as a key molecular process in pulmonary fibrosis development and different components of the redox system are altered in the cellular actors participating in lung fibrosis. To this respect, several activators of the antioxidant machinery and inhibitors of the oxidant species and pathways have been assayed in preclinical in vitro and in vivo models and in different clinical trials. This review discusses the role of oxidative stress in the development and progression of IPF and its underlying mechanisms as well as the evidence of oxidative stress in human IPF. Finally, we analyze the mechanism of action, the efficacy and the current status of different drugs developed to inhibit the oxidative stress as anti-fibrotic therapy in IPF.
Collapse
Affiliation(s)
- Cristina Estornut
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
- *Correspondence: Cristina Estornut, ; Javier Milara,
| | - Javier Milara
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
- Pharmacy Unit, University General Hospital Consortium, Valencia, Spain
- CIBERES, Health Institute Carlos III, Valencia, Spain
- *Correspondence: Cristina Estornut, ; Javier Milara,
| | - María Amparo Bayarri
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Nada Belhadj
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Julio Cortijo
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
- Pharmacy Unit, University General Hospital Consortium, Valencia, Spain
- CIBERES, Health Institute Carlos III, Valencia, Spain
- Research and Teaching Unit, University General Hospital Consortium, Valencia, Spain
| |
Collapse
|
14
|
Assayag M, Goldstein S, Samuni A, Berkman N. 3-Carbamoyl-proxyl nitroxide radicals attenuate bleomycin-induced pulmonary fibrosis in mice. Free Radic Biol Med 2021; 171:135-142. [PMID: 33989760 DOI: 10.1016/j.freeradbiomed.2021.05.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/31/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal interstitial lung disease with a poor prognosis and limited treatment options. Oxidative and nitrosative stress is implicated as one of the main pathogenic pathways in IPF. The rationale for the use of antioxidants to treat lung fibrosis is appealing, however to date a consistent beneficial effect for such an approach has not been observed. We have recently demonstrated that nitroxides, particularly 3-carbamoyl-proxyl (3-CP), markedly reduce airway inflammation, airway hyper-responsiveness, and protein nitration of the lung tissue in a mouse model of ovalbumin-induced acute asthma, thus prompting its use for the treatment of IPF. The present study investigates the effect of 3-CP on the development of lung fibrosis using the murine intratracheal bleomycin model. 3-CP was administered either intranasally or orally during the entire experiment or starting 7 days after induction of the lung injury. 3-CP was found to be both a preventive and a therapeutic drug reducing the lung fibrosis (histological score), the increase in collagen content, protein nitration, TGF-β levels, the degree of weight loss as well as inhibiting the impairment of lung function. Nitroxides are catalytic antioxidants that preferentially detoxify radicals, and therefore the effect of 3-CP on the severity of the disease supports the involvement of reactive oxygen and nitrogen species in the disease pathology.
Collapse
Affiliation(s)
- Miri Assayag
- Institute of Pulmonary Medicine, Hadassah Medical Center and Faculty of Medicine, Israel
| | - Sara Goldstein
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel.
| | - Amram Samuni
- Institute of Medical Research, Israel-Canada Medical School, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel
| | - Neville Berkman
- Institute of Pulmonary Medicine, Hadassah Medical Center and Faculty of Medicine, Israel
| |
Collapse
|
15
|
Motawi TMK, William MM, Nooh MM, Abd-Elgawad HM. Amelioration of cyclophosphamide toxicity via modulation of metabolizing enzymes by avocado (Persea americana) extract. J Pharm Pharmacol 2021; 74:367-376. [PMID: 34173661 DOI: 10.1093/jpp/rgab084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 05/13/2021] [Indexed: 11/14/2022]
Abstract
OBJECTIVES Cyclophosphamide (CPA) is highly effective in treating several human tumours and autoimmune disorders; but, it triggers deleterious side effects. Avocado, Persea americana (Mill.), is a widely consumed fruit with pronounced nutritional and medicinal value. Though many studies examined the protective mechanisms of natural products against CPA toxicity, almost none investigated the modulation of CPA metabolism as a potential underlying mechanism for protection. Here, we investigated the modulating effect of avocado extract (AE) on certain CPA metabolizing enzymes and its correlation with the extent of CPA-induced pulmonary toxicity and urotoxicity. METHODS Rats received oral AE (0.9 g/kg body weight/day) 7 days before a single CPA injection (150 mg/kg body weight) and continued AE intake for 2, 7 or 28 days to study three phases of CPA-induced urotoxicity and pulmonary toxicity. KEY FINDINGS CPA acutely elevated then reduced hepatic microsomal cytochrome P450 2B6 (CYP2B6) content and significantly suppressed bladder and lung glutathione-S-transferase activity. Furthermore, CPA elevated lung myeloperoxidase activity, DNA content and hydroxyproline level and bladder blood content. AE ameliorated CPA-induced derangements through suppression of CYP2B6 and myeloperoxidase and augmentation of glutathione-S-transferase activity in CPA-treated rats. CONCLUSIONS AE modulation of CPA metabolizing enzymes and potential anti-inflammatory effect may mitigate CPA-induced toxicity.
Collapse
Affiliation(s)
| | - Mira Magdy William
- Biochemistry Department, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | - Mohammed Mostafa Nooh
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt.,Biochemistry Department, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | | |
Collapse
|
16
|
Abiri R, Abdul-Hamid H, Sytar O, Abiri R, Bezerra de Almeida E, Sharma SK, Bulgakov VP, Arroo RRJ, Malik S. A Brief Overview of Potential Treatments for Viral Diseases Using Natural Plant Compounds: The Case of SARS-Cov. Molecules 2021; 26:molecules26133868. [PMID: 34202844 PMCID: PMC8270261 DOI: 10.3390/molecules26133868] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 12/12/2022] Open
Abstract
The COVID-19 pandemic, as well as the more general global increase in viral diseases, has led researchers to look to the plant kingdom as a potential source for antiviral compounds. Since ancient times, herbal medicines have been extensively applied in the treatment and prevention of various infectious diseases in different traditional systems. The purpose of this review is to highlight the potential antiviral activity of plant compounds as effective and reliable agents against viral infections, especially by viruses from the coronavirus group. Various antiviral mechanisms shown by crude plant extracts and plant-derived bioactive compounds are discussed. The understanding of the action mechanisms of complex plant extract and isolated plant-derived compounds will help pave the way towards the combat of this life-threatening disease. Further, molecular docking studies, in silico analyses of extracted compounds, and future prospects are included. The in vitro production of antiviral chemical compounds from plants using molecular pharming is also considered. Notably, hairy root cultures represent a promising and sustainable way to obtain a range of biologically active compounds that may be applied in the development of novel antiviral agents.
Collapse
Affiliation(s)
- Rambod Abiri
- Department of Forestry Science and Biodiversity, Faculty of Forestry and Environment, Universiti Putra Malaysia, Serdang 43400, Malaysia; or
| | - Hazandy Abdul-Hamid
- Department of Forestry Science and Biodiversity, Faculty of Forestry and Environment, Universiti Putra Malaysia, Serdang 43400, Malaysia; or
- Laboratory of Bioresource Management, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400, Malaysia
- Correspondence: (H.A.-H.); (V.P.B.); or (S.M.)
| | - Oksana Sytar
- Educational and Scientific Center “Institute of Biology and Medicine”, Department of Plant Biology, Taras Shevchenko National University of Kyiv, Volodymyrska 60, 01033 Kyiv, Ukraine;
- Department of Plant Physiology, Slovak University of Agriculture Nitra, A. Hlinku 2, 94976 Nitra, Slovakia
| | - Ramin Abiri
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah 6718773654, Iran;
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6718773654, Iran
| | - Eduardo Bezerra de Almeida
- Biological and Health Sciences Centre, Laboratory of Botanical Studies, Department of Biology, Federal University of Maranhão, São Luís 65080-805, MA, Brazil;
| | - Surender K. Sharma
- Department of Physics, Central University of Punjab, Bathinda 151401, India;
| | - Victor P. Bulgakov
- Department of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity (Institute of Biology and Soil Science), Far Eastern Branch of the Russian Academy of Sciences, 159 Stoletija Str., 690022 Vladivostok, Russia
- Correspondence: (H.A.-H.); (V.P.B.); or (S.M.)
| | - Randolph R. J. Arroo
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK;
| | - Sonia Malik
- Health Sciences Graduate Program, Biological & Health Sciences Centre, Federal University of Maranhão, São Luís 65080-805, MA, Brazil
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), University of Orléans, 1 Rue de Chartres-BP 6759, 45067 Orleans, France
- Correspondence: (H.A.-H.); (V.P.B.); or (S.M.)
| |
Collapse
|
17
|
Merarchi M, Dudha N, Das BC, Garg M. Natural products and phytochemicals as potential anti-SARS-CoV-2 drugs. Phytother Res 2021; 35:5384-5396. [PMID: 34132421 PMCID: PMC8441929 DOI: 10.1002/ptr.7151] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/16/2021] [Accepted: 04/22/2021] [Indexed: 12/12/2022]
Abstract
The current pandemic responsible for the crippling of the health care system is caused by the novel SARS‐CoV‐2 in 2019 and leading to coronavirus disease 2019 (COVID‐19). The virus enters into humans by attachment of its Spike protein (S) to the ACE receptor present on the lung epithelial cell surface followed by cleavage of S protein by the cellular transmembrane serine protease (TMPRSS2). After entry, the SARS‐CoV‐2 RNA genome is released into the cytosol, where it highjacks host replication machinery for viral replication, assemblage, as well as the release of new viral particles. The major drug targets that have been identified for SARS‐CoV‐2 through host‐virus interaction studies include 3CLpro, PLpro, RNA‐dependent RNA polymerase, and S proteins. Several reports of natural compounds along with synthetic products have displayed promising results and some of them are Tripterygium wilfordii, Pudilan Xiaoyan Oral Liquid, Saponin derivates, Artemisia annua, Glycyrrhiza glabra L., Jinhua Qinggan granules, Xuebijing, and Propolis. This review attempts to disclose the natural products identified as anti‐SARS‐CoV‐2 based on in silico prediction and the effect of a variety of phytochemicals either alone and/or in combination with conventional treatments along with their possible molecular mechanisms involved for both prevention and treatment of the SARS‐CoV‐2 disease.
Collapse
Affiliation(s)
- Myriam Merarchi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Namrata Dudha
- Department of Biotechnology and Microbiology, School of Sciences, Noida International University, Gautam Budh Nagar, India
| | - Bhudev C Das
- Amity Institute of Molecular Medicine and Stem cell Research (AIMMSCR), Amity University Uttar Pradesh, Noida, India
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem cell Research (AIMMSCR), Amity University Uttar Pradesh, Noida, India
| |
Collapse
|
18
|
Rackow AR, Nagel DJ, McCarthy C, Judge J, Lacy S, Freeberg MAT, Thatcher TH, Kottmann RM, Sime PJ. The self-fulfilling prophecy of pulmonary fibrosis: a selective inspection of pathological signalling loops. Eur Respir J 2020; 56:13993003.00075-2020. [PMID: 32943406 PMCID: PMC7931159 DOI: 10.1183/13993003.00075-2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 07/01/2020] [Indexed: 12/28/2022]
Abstract
Pulmonary fibrosis is a devastating, progressive disease and carries a prognosis worse than most cancers. Despite ongoing research, the mechanisms that underlie disease pathogenesis remain only partially understood. However, the self-perpetuating nature of pulmonary fibrosis has led several researchers to propose the existence of pathological signalling loops. According to this hypothesis, the normal wound-healing process becomes corrupted and results in the progressive accumulation of scar tissue in the lung. In addition, several negative regulators of pulmonary fibrosis are downregulated and, therefore, are no longer capable of inhibiting these feed-forward loops. The combination of pathological signalling loops and loss of a checks and balances system ultimately culminates in a process of unregulated scar formation. This review details specific signalling pathways demonstrated to play a role in the pathogenesis of pulmonary fibrosis. The evidence of detrimental signalling loops is elucidated with regard to epithelial cell injury, cellular senescence and the activation of developmental and ageing pathways. We demonstrate where these loops intersect each other, as well as common mediators that may drive these responses and how the loss of pro-resolving mediators may contribute to the propagation of disease. By focusing on the overlapping signalling mediators among the many pro-fibrotic pathways, it is our hope that the pulmonary fibrosis community will be better equipped to design future trials that incorporate the redundant nature of these pathways as we move towards finding a cure for this unrelenting disease.
Collapse
Affiliation(s)
- Ashley R Rackow
- Dept of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA.,Authors contributed equally to this work
| | - David J Nagel
- Division of Pulmonary Diseases and Critical Care, University of Rochester Medical Center, Rochester, NY, USA.,Authors contributed equally to this work
| | | | | | - Shannon Lacy
- US Army of Veterinary Corps, Fort Campbell, KY, USA
| | | | - Thomas H Thatcher
- Department of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - R Matthew Kottmann
- Division of Pulmonary Diseases and Critical Care, University of Rochester Medical Center, Rochester, NY, USA
| | - Patricia J Sime
- Division of Pulmonary Diseases and Critical Care, University of Rochester Medical Center, Rochester, NY, USA.,Department of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
19
|
Mehrzadi S, Hosseini P, Mehrabani M, Siahpoosh A, Goudarzi M, Khalili H, Malayeri A. Attenuation of Bleomycin-Induced Pulmonary Fibrosis in Wistar Rats by Combination Treatment of Two Natural Phenolic Compounds: Quercetin and Gallic Acid. Nutr Cancer 2020; 73:2039-2049. [PMID: 32933341 DOI: 10.1080/01635581.2020.1820053] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The present study aimed to investigate the protective effects of two potent natural antioxidants, gallic acid and quercetin as single or combination treatment against bleomycin-induced pulmonary fibrosis (PF). A total of 50 Wistar rats were randomly divided into 5 groups. Group 1 and 2 intratracheally received saline and bleomycin (7.5 UI/kg), respectively, on day 7, accompanied by oral saline administration for 28 day. Groups 3, 4, and 5 received a single dose of bleomycin on day 7, accompanied by oral administration of gallic acid, quercetin, and their combination, respectively, for 28 day. Finally, the lungs were removed for biochemical and histopathological tests. The combination treatment demonstrated a remarkable decrease in lung hydroxyproline and TNF-α level and increase in catalase activity as compared with both single phytochemical-treated groups. The combination treatment significantly enhanced lung SOD activity and GSH level and decreased NO and IL-6 levels as compared with quercetin-treated group. However, only combination treatment could decrease the lung index and completely reversed histopathological changes in the bleomycin-treated group. In sum, when compared to a single exposure, the combination treatment might be a more effective approach for PF treatment because of its superior efficacy in reversing lung histological changes in the bleomycin-treated group.
Collapse
Affiliation(s)
- Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Pooyan Hosseini
- Medicinal Plant Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehrnaz Mehrabani
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Amir Siahpoosh
- Medicinal Plant Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehdi Goudarzi
- Medicinal Plant Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hamidreza Khalili
- Department of Pharmacology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Malayeri
- Medicinal Plant Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Pharmacology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
20
|
Aesculetin Attenuates Alveolar Injury and Fibrosis Induced by Close Contact of Alveolar Epithelial Cells with Blood-Derived Macrophages via IL-8 Signaling. Int J Mol Sci 2020; 21:ijms21155518. [PMID: 32752252 PMCID: PMC7432571 DOI: 10.3390/ijms21155518] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 12/16/2022] Open
Abstract
Pulmonary fibrosis is a disease in which lung tissues become fibrous and thereby causes severe respiratory disturbances. Various stimuli induce infiltration of macrophages to the respiratory tract, secreting inflammatory cytokines, which subsequently leads to the development of pulmonary fibrosis. Aesculetin, a major component of the sancho tree and chicory, is known to biologically have antioxidant and anti-inflammatory effects. Human alveolar epithelial A549 cells were cultured for 24 h in conditioned media of THP-1 monocyte-derived macrophages (mCM) with 1–20 μM aesculetin. Micromolar aesculetin attenuated the cytotoxicity of mCM containing inflammatory tumor necrosis factor-α (TNF)-α and interleukin (IL)-8 as major cytokines. Aesculetin inhibited alveolar epithelial induction of the mesenchymal markers in mCM-exposed/IL-8-loaded A549 cells (≈47–51% inhibition), while epithelial markers were induced in aesculetin-treated cells subject to mCM/IL-8 (≈1.5–2.3-fold induction). Aesculetin added to mCM-stimulated A549 cells abrogated the collagen production and alveolar epithelial CXC-chemokine receptor 2 (CXCR2) induction. The production of matrix metalloproteinase (MMP) proteins in mCM-loaded A549 cells was reduced by aesculetin (≈52% reduction), in parallel with its increase in tissue inhibitor of metalloproteinases (TIMP) proteins (≈1.8-fold increase). In addition, aesculetin enhanced epithelial induction of tight junction proteins in mCM-/IL-8-exposed cells (≈2.3–2.5-fold induction). The inhalation of polyhexamethylene guanidine (PHMG) in mice accompanied neutrophil predominance in bronchoalveolar lavage fluid (BALF) and macrophage infiltration in alveoli, which was inhibited by orally administrating aesculetin to mice. Treating aesculetin to mice alleviated PHMG-induced IL-8-mediated subepithelial fibrosis and airway barrier disruption. Taken together, aesculetin may antagonize pulmonary fibrosis and alveolar epithelial barrier disruption stimulated by the infiltration of monocyte-derived macrophages, which is typical of PHMG toxicity, involving interaction of IL-8 and CXCR2. Aesculetin maybe a promising agent counteracting macrophage-mediated inflammation-associated pulmonary disorders.
Collapse
|
21
|
Adelmidrol: A New Promising Antioxidant and Anti-Inflammatory Therapeutic Tool in Pulmonary Fibrosis. Antioxidants (Basel) 2020; 9:antiox9070601. [PMID: 32660140 PMCID: PMC7402091 DOI: 10.3390/antiox9070601] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/08/2020] [Accepted: 07/08/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Chronic pulmonary diseases are characterized by airway remodeling due to complex multicellular responses and the production of free oxygen radicals. They lead to a progressive decline of pulmonary functions. Adelmidrol is an analogue of palmitoylethanolamide (PEA), which is a well-known anti-inflammatory and anti-oxidant compound. In this study, we investigated the efficacy of adelmidrol (10 mg/Kg) for bleomycin-induced pulmonary fibrosis in mice. METHODS Bleomycin intratracheal administration was performed on the first day and for the following twenty-one days, mice were treated with adelmidrol (10 mg/Kg). RESULTS The survival rate and body weight gain were recorded daily. At the end of the experiment, adelmidrol-administered animals showed reduced airway infiltration by inflammatory cells, Myeloperoxidase (MPO) activity, and pro-inflammatory cytokine overexpression (IL,6 IL-1β, TNF-α, and TGF-1β). Moreover, adelmidrol treatment was able to manage the significant incapacity of antioxidants and elevation of the oxidant burden, as shown by the MDA, SOD, and GSH levels and decreased nitric oxide production. It was also able to significantly modulate the JAK2/STAT3 and IκBα/NF-kB pathway. Histologic examination of the lung tissues showed reduced sample injury, mast cell degranulation, chymase activity, and collagen deposition. CONCLUSIONS In sum, our results propose adelmidrol as a therapeutic approach in the treatment of pulmonary fibrosis.
Collapse
|
22
|
Cheah IK, Halliwell B. Could Ergothioneine Aid in the Treatment of Coronavirus Patients? Antioxidants (Basel) 2020; 9:E595. [PMID: 32646061 PMCID: PMC7402156 DOI: 10.3390/antiox9070595] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/25/2020] [Accepted: 07/02/2020] [Indexed: 01/08/2023] Open
Abstract
Infection with SARS-CoV-2 causes the coronavirus infectious disease 2019 (COVID-19), a pandemic that has, at present, infected more than 11 million people globally. Some COVID-19 patients develop a severe and critical illness, spurred on by excessive inflammation that can lead to respiratory or multiorgan failure. Numerous studies have established the unique array of cytoprotective properties of the dietary amino acid ergothioneine. Based on studies in a range of in vitro and in vivo models, ergothioneine has exhibited the ability to modulate inflammation, scavenge free radicals, protect against acute respiratory distress syndrome, prevent endothelial dysfunction, protect against ischemia and reperfusion injury, protect against neuronal damage, counteract iron dysregulation, hinder lung and liver fibrosis, and mitigate damage to the lungs, kidneys, liver, gastrointestinal tract, and testis, amongst many others. When compiled, this evidence suggests that ergothioneine has a potential application in the treatment of the underlying pathology of COVID-19. We propose that ergothioneine could be used as a therapeutic to reduce the severity and mortality of COVID-19, especially in the elderly and those with underlying health conditions. This review presents evidence to support that proposal.
Collapse
Affiliation(s)
- Irwin K. Cheah
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore;
- Life Science Institute, Neurobiology Programme, Centre for Life Sciences, National University of Singapore, Singapore 117456, Singapore
| | - Barry Halliwell
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore;
- Life Science Institute, Neurobiology Programme, Centre for Life Sciences, National University of Singapore, Singapore 117456, Singapore
| |
Collapse
|
23
|
Haq FU, Roman M, Ahmad K, Rahman SU, Shah SMA, Suleman N, Ullah S, Ahmad I, Ullah W. Artemisia annua: Trials are needed for COVID-19. Phytother Res 2020; 34:2423-2424. [PMID: 32424845 PMCID: PMC7276816 DOI: 10.1002/ptr.6733] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 04/30/2020] [Accepted: 05/02/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Faiz Ul Haq
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan.,Department of Microbiology, University of Health Sciences Lahore, Lahore, Pakistan
| | - Muhammad Roman
- Department of Microbiology, University of Health Sciences Lahore, Lahore, Pakistan
| | - Kashif Ahmad
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan.,Department of Microbiology, Hazara University, Mansehra, Pakistan
| | - Saeed Ur Rahman
- Department of Nursing, University of Health Sciences Lahore, Lahore, Pakistan
| | | | - Naveed Suleman
- Department of Pharmacology, University of Health Sciences Lahore, Lahore, Pakistan
| | - Sami Ullah
- Department of Forensic Science, University of Health Sciences Lahore, Lahore, Pakistan
| | - Iftekhar Ahmad
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Wajahat Ullah
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| |
Collapse
|
24
|
Janssen-Heininger Y, Reynaert NL, van der Vliet A, Anathy V. Endoplasmic reticulum stress and glutathione therapeutics in chronic lung diseases. Redox Biol 2020; 33:101516. [PMID: 32249209 PMCID: PMC7251249 DOI: 10.1016/j.redox.2020.101516] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/20/2020] [Accepted: 03/20/2020] [Indexed: 02/07/2023] Open
Affiliation(s)
- Yvonne Janssen-Heininger
- Department of Pathology and Laboratory Medicine, University of Vermont, Larner College of Medicine, Burlington, VT, 05405, USA.
| | - Niki L Reynaert
- Department of Respiratory Medicine and School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center, Maastricht, the Netherlands
| | - Albert van der Vliet
- Department of Pathology and Laboratory Medicine, University of Vermont, Larner College of Medicine, Burlington, VT, 05405, USA
| | - Vikas Anathy
- Department of Pathology and Laboratory Medicine, University of Vermont, Larner College of Medicine, Burlington, VT, 05405, USA
| |
Collapse
|
25
|
Ahmad A, Alkharfy KM, Jan BL, Ahad A, Ansari MA, Al-Jenoobi FI, Raish M. Thymoquinone treatment modulates the Nrf2/HO-1 signaling pathway and abrogates the inflammatory response in an animal model of lung fibrosis. Exp Lung Res 2020; 46:53-63. [PMID: 32053036 DOI: 10.1080/01902148.2020.1726529] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The present study investigates the therapeutic potential of thymoquinone (TQ) in bleomycin-induced lung fibrosis (BMILF) and elucidates the target-signaling pathway for its effect. Lung fibrosis was induced in rats by a single intra-tracheal instillation of bleomycin (BM) (6.5 U/kg) followed by thymoquinone treatment (10 and 20 mg/kg p.o.) for 28 days. Control rats received saline instead of TQ. Changes in body weight, inflammatory cells count, cytokines levels, and biochemical parameters of the broncho-alveolar lavage fluid (BALF) were recorded. In addition, a histopathology examination and western blotting were performed on lung tissues. BM administration resulted in a significant weight loss, which was ameliorated by TQ treatment. BMILF was associated with a reduction in the antioxidant mechanisms and increased lipid peroxidation. Furthermore, elevated levels of inflammatory cytokines, MMP-7 expression, apoptotic markers (caspase 3, Bax, and Bcl-2), and fibrotic changes including TGF-β and hydroxyproline levels in lung tissues were evident. These abnormalities were diminished with TQ treatment. Likewise, altered total and differential cell count in BALF was significantly improved in rats treated with TQ. TQ also produced a dose-dependent reduction in the expressions of Nrf2, Ho-1 and TGF-β. These results propose that the Nrf2/Ho-1 signaling pathway is a principal target for TQ protective effect against BMILF in rats. Furthermore, TQ decreases inflammatory oxidative stress possibly through the modulation of nuclear factor Kappa-B (NF-κB) and thereby minimization of collagen deposition in the lung. Therefore, TQ can be developed as a potential therapeutic modularity in BMILF for human use.
Collapse
Affiliation(s)
- Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Khalid M Alkharfy
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Basit Latief Jan
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdul Ahad
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mushtaq Ahmad Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fahad I Al-Jenoobi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Raish
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
26
|
Mehrabani M, Goudarzi M, Mehrzadi S, Siahpoosh A, Mohammadi M, Khalili H, Malayeri A. Crocin: a protective natural antioxidant against pulmonary fibrosis induced by bleomycin. Pharmacol Rep 2020; 72:992-1001. [PMID: 31997260 DOI: 10.1007/s43440-019-00023-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/18/2019] [Accepted: 09/05/2019] [Indexed: 01/30/2023]
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a chronic and fibrotic lung disease of unknown causes. Given the crucial role of oxidative stress in the progression of IPF, antioxidant therapy may be speculated to be an efficient therapeutic approach. Therefore, the present study aimed to evaluate the protective effects of Crocin as a potent, natural antioxidant against Bleomycin-induced PF in male Wistar rats. METHODS Forty male Wistar rats were randomly divided into four groups. Group 1 received intratracheal saline on day 7 and oral gavage of saline for 28 days. Group 2 received a single dose of Bleomycin on day 7 and oral gavage of saline for 28 days. Groups 3 received a single dose of Bleomycin on day 7, accompanied with oral administration of Crocin for 28 days. Group 4 orally received Crocin for 28 days. Finally, the lungs were removed for measuring the biochemical and histopathological markers. RESULTS The results showed that Crocin therapy remarkably decreased TNF-α, MDA and NO levels in the lungs of Bleomycin-exposed rats. Furthermore, a significant increase was seen in lung GSH content, catalase, and GPx activities in the Crocin/Bleomycin-treated group as compared with Bleomycin-treated group. However, Crocin could not markedly change the lung index and SOD activity. Histopathological changes, fibrosis and hydroxyproline content of lungs also significantly decreased by Crocin therapy in the Crocin/Bleomycin-treated group. CONCLUSION In sum, Crocin therapy could modulate biochemical and histological changes induced by Bleomycin; therefore, it might be considered as an effective therapeutic approach against IPF.
Collapse
Affiliation(s)
- Mehrnaz Mehrabani
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehdi Goudarzi
- Medicinal Plant Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Siahpoosh
- Medicinal Plant Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Masoud Mohammadi
- Medicinal Plant Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hamidreza Khalili
- Department of Pharmacology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Malayeri
- Medicinal Plant Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran. .,Department of Pharmacology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
27
|
Gandhi KA, Goda JS, Gandhi VV, Sadanpurwala A, Jain VK, Joshi K, Epari S, Rane S, Mohanty B, Chaudhari P, Kembhavi S, Kunwar A, Gota V, Priyadarsini KI. Oral administration of 3,3'-diselenodipropionic acid prevents thoracic radiation induced pneumonitis in mice by suppressing NF-kB/IL-17/G-CSF/neutrophil axis. Free Radic Biol Med 2019; 145:8-19. [PMID: 31521664 DOI: 10.1016/j.freeradbiomed.2019.09.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 12/15/2022]
Abstract
The incidence of symptomatic radiation induced lung pneumonitis (RILP), a major dose limiting side effect of thoracic radiotherapy, is in the range of 15-40%. Therapeutic options for the prevention and treatment of RILP are limited. Hence there is a need for developing novel radioprotectors to prevent RILP which can be patient compliant. This study sought to evaluate the efficacy of oral 3,3'-diselenodipropionic acid (DSePA), a novel selenocystine derivative to prevent RILP. C3H/HeJ (pneumonitis responding) mice received a single dose of 18 Gy, whole thorax irradiation and a subset were treated with DSePA orally (2.5 mg/kg), three times per week beginning 2 h post irradiation and continued till 6 months. DSePA delayed onset of grade ≥ 2 RILP by 45 days compared to radiation control (~105 versus ~60 days). It also reversed the severity of pneumonitis in 3/10 radiation treated mice leading to significant improvement in asymptomatic survival compared to radiation control (~180 versus ~102 days). DSePA significantly (p < 0.05) reduced the radiation-mediated infiltration of polymorphonuclear neutrophils (PMN) and elevation in levels of cytokines such as IL1-β, ICAM-1, E-selectin, IL-17 and TGF-β in the bronchoalveolar lavage fluid. Moreover DSePA lowered PMN-induced oxidants, maintained glutathione peroxidase activity and suppressed NF-kB/IL-17/G-CSF/neutrophil axis in the lung of irradiated mice. Additionally, this compound did not protect A549 (lung cancer) derived xenograft tumor from radiation exposure in SCID mice. DSePA offers protection to normal lung against RILP without affecting radiation sensitivity of tumors. It has the potential to be developed as an oral agent for preventing RILP.
Collapse
Affiliation(s)
- K A Gandhi
- Department of Clinical Pharmacology, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
| | - J S Goda
- Department of Radiation Oncology, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400 094, India.
| | - V V Gandhi
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400 094, India
| | - A Sadanpurwala
- Department of Clinical Pharmacology, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
| | - V K Jain
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400 094, India; UM-DAE Centre for Excellence in Basic Sciences, Kalina Campus, Mumbai, 400098, India
| | - K Joshi
- Department of Radiation Oncology, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
| | - S Epari
- Department of Pathology, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
| | - S Rane
- Department of Pathology, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
| | - B Mohanty
- Department of Radio Diagnosis, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India; Animal Imaging Division, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
| | - P Chaudhari
- Department of Radio Diagnosis, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India; Animal Imaging Division, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
| | - S Kembhavi
- Department of Radio Diagnosis, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
| | - A Kunwar
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400 094, India.
| | - V Gota
- Department of Clinical Pharmacology, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400 094, India.
| | - K I Priyadarsini
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400 094, India.
| |
Collapse
|
28
|
Qi W, Li Z, Xia L, Dai J, Zhang Q, Wu C, Xu S. LncRNA GABPB1-AS1 and GABPB1 regulate oxidative stress during erastin-induced ferroptosis in HepG2 hepatocellular carcinoma cells. Sci Rep 2019; 9:16185. [PMID: 31700067 PMCID: PMC6838315 DOI: 10.1038/s41598-019-52837-8] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 10/23/2019] [Indexed: 02/06/2023] Open
Abstract
Ferroptosis is a non-apoptotic, iron-dependent oxidative form of cell death that is specifically induced by erastin in RAS mutant cancer cells. Ferroptotic cell death is the result of membrane lipid peroxide damage caused by the accumulation of hydroxyl radicals derived from H2O2 by the Fenton reaction. Peroxidases are key cellular antioxidant enzymes that block such damaging processes. Few studies have examined the roles of long non-coding RNAs (lncRNAs) in the regulation of cellular oxidative stress, especially in ferroptosis. Here, we demonstrated that erastin upregulated the lncRNA GABPB1-AS1, which downregulated GABPB1 protein levels by blocking GABPB1 translation, leading to the downregulation of the gene encoding Peroxiredoxin-5 (PRDX5) peroxidase and the eventual suppression of the cellular antioxidant capacity. Such effects critically inhibited the cellular antioxidant capacity and cell viability. Additionally, high expression levels of GABPB1 were correlated with poor prognosis of hepatocellular carcinoma (HCC) Patients, while high GABPB1-AS1 levels in HCC patients correlated with improved overall survival. Collectively, these data demonstrate a mechanistic link between GABPB1 and its antisense lncRNA GABPB1-AS1 in erastin-induced ferroptosis and establish GABPB1 and GABPB1-AS1 as attractive therapeutic targets for HCC.
Collapse
Affiliation(s)
- Wenchuan Qi
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065, Chengdu, Sichuan, P.R. China
| | - Zhenhua Li
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, 130117, Changchun, Jilin, P.R. China
| | - Longjiang Xia
- Chengdu University of Traditional Chinese Medicine, 611130, Chengdu, Sichuan, P.R. China
| | - Jiangshan Dai
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065, Chengdu, Sichuan, P.R. China
| | - Qiao Zhang
- China-Japan Union Hospital of Jilin University, 130033, Changchun, Jilin, P.R. China
| | - Chuanfang Wu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065, Chengdu, Sichuan, P.R. China
| | - Si Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065, Chengdu, Sichuan, P.R. China.
- Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, 610072, Chengdu, Sichuan, P.R. China.
| |
Collapse
|
29
|
Prashanth Goud M, Bale S, Pulivendala G, Godugu C. Therapeutic effects of Nimbolide, an autophagy regulator, in ameliorating pulmonary fibrosis through attenuation of TGF-β1 driven epithelial-to-mesenchymal transition. Int Immunopharmacol 2019; 75:105755. [DOI: 10.1016/j.intimp.2019.105755] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/05/2019] [Accepted: 07/10/2019] [Indexed: 02/07/2023]
|
30
|
Summer R, Shaghaghi H, Schriner D, Roque W, Sales D, Cuevas-Mora K, Desai V, Bhushan A, Ramirez MI, Romero F. Activation of the mTORC1/PGC-1 axis promotes mitochondrial biogenesis and induces cellular senescence in the lung epithelium. Am J Physiol Lung Cell Mol Physiol 2019; 316:L1049-L1060. [PMID: 30892080 DOI: 10.1152/ajplung.00244.2018] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cellular senescence is a biological process by which cells lose their capacity to proliferate yet remain metabolically active. Although originally considered a protective mechanism to limit the formation of cancer, it is now appreciated that cellular senescence also contributes to the development of disease, including common respiratory ailments such as chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. While many factors have been linked to the development of cellular senescence, mitochondrial dysfunction has emerged as an important causative factor. In this study, we uncovered that the mitochondrial biogenesis pathway driven by the mammalian target of rapamycin/peroxisome proliferator-activated receptor-γ complex 1α/β (mTOR/PGC-1α/β) axis is markedly upregulated in senescent lung epithelial cells. Using two different models, we show that activation of this pathway is associated with other features characteristic of enhanced mitochondrial biogenesis, including elevated number of mitochondrion per cell, increased oxidative phosphorylation, and augmented mitochondrial reactive oxygen species (ROS) production. Furthermore, we found that pharmacological inhibition of the mTORC1 complex with rapamycin not only restored mitochondrial homeostasis but also reduced cellular senescence to bleomycin in lung epithelial cells. Likewise, mitochondrial-specific antioxidant therapy also effectively inhibited mTORC1 activation in these cells while concomitantly reducing mitochondrial biogenesis and cellular senescence. In summary, this study provides a mechanistic link between mitochondrial biogenesis and cellular senescence in lung epithelium and suggests that strategies aimed at blocking the mTORC1/PGC-1α/β axis or reducing ROS-induced molecular damage could be effective in the treatment of senescence-associated lung diseases.
Collapse
Affiliation(s)
- Ross Summer
- Center for Translational Medicine and Jane and Leonard Korman Lung Center, Thomas Jefferson University , Philadelphia, Pennsylvania
| | - Hoora Shaghaghi
- Center for Translational Medicine and Jane and Leonard Korman Lung Center, Thomas Jefferson University , Philadelphia, Pennsylvania
| | - DeLeila Schriner
- Center for Translational Medicine and Jane and Leonard Korman Lung Center, Thomas Jefferson University , Philadelphia, Pennsylvania
| | - Willy Roque
- Center for Translational Medicine and Jane and Leonard Korman Lung Center, Thomas Jefferson University , Philadelphia, Pennsylvania
| | - Dominic Sales
- Center for Translational Medicine and Jane and Leonard Korman Lung Center, Thomas Jefferson University , Philadelphia, Pennsylvania
| | - Karina Cuevas-Mora
- Center for Translational Medicine and Jane and Leonard Korman Lung Center, Thomas Jefferson University , Philadelphia, Pennsylvania
| | - Vilas Desai
- Department of Pharmaceutical Sciences, Jefferson College of Pharmacy, Thomas Jefferson University , Philadelphia, Pennsylvania
| | - Alok Bhushan
- Department of Pharmaceutical Sciences, Jefferson College of Pharmacy, Thomas Jefferson University , Philadelphia, Pennsylvania
| | - Maria I Ramirez
- Center for Translational Medicine and Jane and Leonard Korman Lung Center, Thomas Jefferson University , Philadelphia, Pennsylvania
| | - Freddy Romero
- Center for Translational Medicine and Jane and Leonard Korman Lung Center, Thomas Jefferson University , Philadelphia, Pennsylvania
| |
Collapse
|
31
|
Grewal AK, Singh N, Singh TG. Neuroprotective effect of pharmacological postconditioning on cerebral ischaemia-reperfusion-induced injury in mice. ACTA ACUST UNITED AC 2019; 71:956-970. [PMID: 30809806 DOI: 10.1111/jphp.13073] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/01/2019] [Indexed: 12/31/2022]
Abstract
OBJECTIVES To investigate the mechanism of neuroprotection rendered via pharmacological postconditioning in cerebral ischaemia-reperfusion-induced injury in mice. METHODS Pharmacological postconditioning is strategy which either involves hindering deleterious pathway or inducing modest stress level which triggers intracellular defence pathway to sustain more vigorous insult leading to conditioning. Hence, in current research we explored the potentiality of CGS21680 (0.5 mg/kg; i.p), an adenosine A2 A receptor agonist and PTEN inhibitor, SF1670 (3 mg/kg; i.p.) to trigger postconditioning after inducing cerebral global ischaemia (17 min) and reperfusion (24 h)-induced injury via occlusion of both carotid arteries. Mice were also given treatment with LY294002 (1.5 mg/kg; i.p.), a PI3K inhibitor and adenosine A2 A receptor antagonist, Istradefylline (2 mg/kg; i.p.), to establish the precise mechanism of postconditioning. Various biochemical and behavioural parameters were assessed to examine the effect of pharmacological postconditioning. KEY FINDINGS Pharmacological postconditioning induced with CGS21680 and SF1670 attenuated the infarction along with improved behavioural and biochemical parameters in comparison with ischaemia-reperfusion control group. The outcome of postconditioning with CGS21680 and SF1670 was significantly reversed by LY294002 and Istradefylline, respectively. CONCLUSIONS The neuroprotective effects of CGS21680 and SF1670 postconditioning on cerebral ischaemia-reperfusion injury may be due to PI3K/Akt pathway activation.
Collapse
Affiliation(s)
- Amarjot Kaur Grewal
- Department of Pharmacology, Chitkara college of Pharmacy, Chitkara University, Patiala, India
| | - Nirmal Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | - Thakur Gurjeet Singh
- Department of Pharmacology, Chitkara college of Pharmacy, Chitkara University, Patiala, India
| |
Collapse
|
32
|
Kundumani-Sridharan V, Subramani J, Raghavan S, Maiti GP, Owens C, Walker T, Wasnick J, Idell S, Das KC. Short-duration hyperoxia causes genotoxicity in mouse lungs: protection by volatile anesthetic isoflurane. Am J Physiol Lung Cell Mol Physiol 2019; 316:L903-L917. [PMID: 30810065 DOI: 10.1152/ajplung.00142.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
High concentrations of oxygen (hyperoxia) are routinely used during anesthesia, and supplemental oxygen is also administered in connection with several other clinical conditions. Although prolonged hyperoxia is known to cause acute lung injury (ALI), whether short-duration hyperoxia causes lung toxicity remains unknown. We exposed mice to room air (RA or 21% O2) or 60% oxygen alone or in combination with 2% isoflurane for 2 h and determined the expression of oxidative stress marker genes, DNA damage and DNA repair genes, and expression of cell cycle regulatory proteins using quantitative PCR and Western analyses. Furthermore, we determined cellular apoptosis using TUNEL assay and assessed the DNA damage product 8-hydroxy-2'-deoxyguanosine (8-Oxo-dG) in the urine of 60% hyperoxia-exposed mice. Our study demonstrates that short-duration hyperoxia causes mitochondrial and nuclear DNA damage and that isoflurane abrogates this DNA damage and decreases apoptosis when used in conjunction with hyperoxia. In contrast, isoflurane mixed with RA caused significant 8-Oxo-dG accumulations in the mitochondria and nucleus. We further show that whereas NADPH oxidase is a major source of superoxide anion generated by isoflurane in normoxia, isoflurane inhibits superoxide generation in hyperoxia. Additionally, isoflurane also protected the mouse lungs against ALI (95% O2 for 36-h exposure). Our study established that short-duration hyperoxia causes genotoxicity in the lungs, which is abrogated when hyperoxia is used in conjunction with isoflurane, but isoflurane alone causes genotoxicity in the lung when delivered with ambient air.
Collapse
Affiliation(s)
| | - Jaganathan Subramani
- Department of Internal Medicine, Texas Tech University Health Sciences Center , Lubbock, Texas
| | - Somasundaram Raghavan
- Department of Internal Medicine, Texas Tech University Health Sciences Center , Lubbock, Texas
| | - Guru P Maiti
- Oklahoma Medical Research Foundation , Oklahoma City, Oklahoma
| | - Cade Owens
- Department of Anesthesiology, Texas Tech University Health Sciences Center , Lubbock, Texas
| | - Trevor Walker
- Department of Anesthesiology, Texas Tech University Health Sciences Center , Lubbock, Texas
| | - John Wasnick
- Department of Anesthesiology, Texas Tech University Health Sciences Center , Lubbock, Texas
| | - Steven Idell
- Department of Cellular and Molecular Biology, Texas Lung Injury Institute, The University of Texas Health Science Center at Tyler , Tyler, Texas
| | - Kumuda C Das
- Department of Internal Medicine, Texas Tech University Health Sciences Center , Lubbock, Texas
| |
Collapse
|
33
|
Mohamed HA, Elbastawisy YM, Elsaed WM. Attenuation of lipopolysaccharide-induced lung inflammation by ascorbic acid in rats: Histopathological and ultrastructural study. SAGE Open Med 2019; 7:2050312119828260. [PMID: 30783524 PMCID: PMC6365996 DOI: 10.1177/2050312119828260] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/10/2019] [Indexed: 12/30/2022] Open
Abstract
Introduction: Lipopolysaccharide is a bacterial endotoxin that induces acute lung injury in experimental animals, which is similar to acute respiratory distress syndrome in humans. The induced tissue trauma ends in fibrosis. Understanding the pathogenesis is important in the prevention and treatment of the complications. This study was assigned to investigate the long-term lipopolysaccharide-induced lung injury and the postulated protective effect of ascorbic acid on these changes. Materials and methods: Twenty-four adult male albino rats were divided into three groups. Group I was the controls, group II received lipopolysaccharide and group III received lipopolysaccharide and ascorbic acid. After 30 days of starting treatment, lung tissue samples were obtained. Results: Group II lung tissues showed marked thickening of the alveolar septa with collapsed alveolar sacs, detached bronchial epithelium, inflammatory cell infiltration and excessive deposition of collagen. Group III showed mild thickening of the alveolar walls, scanty inflammatory cell infiltration, mild parabronchial fibrosis and less marked collagen deposition. α-Smooth muscle actin staining of group II showed marked expression of the actin-positive cells. Less potential expression of the dye was found in group III. Ultrastructural examination of group II showed evident structural changes in pneumocytes with capillary basement membrane irregularity and interruption compared to uniform basement membrane in group III with less prominent intracellular changes in pneumocytes. Conclusion: Ascorbic acid attenuated the inflammatory response and fibrosis in the lungs of rats treated with lipopolysaccharide as evidenced by the histological, immunohistochemical and ultrastructural studies.
Collapse
Affiliation(s)
- Hazem Abdelhamid Mohamed
- Department of Anatomy and Embryology, Faculty of Medicine, Taibah University, Madinah, Saudi Arabia.,Department of Human Anatomy and Embryology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Yasser M Elbastawisy
- Department of Anatomy and Embryology, Faculty of Medicine, Taibah University, Madinah, Saudi Arabia.,Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Wael M Elsaed
- Department of Anatomy and Embryology, Faculty of Medicine, Taibah University, Madinah, Saudi Arabia.,Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
34
|
Sunil Gowda SN, Rajasowmiya S, Vadivel V, Banu Devi S, Celestin Jerald A, Marimuthu S, Devipriya N. Gallic acid-coated sliver nanoparticle alters the expression of radiation-induced epithelial-mesenchymal transition in non-small lung cancer cells. Toxicol In Vitro 2018; 52:170-177. [PMID: 29928970 DOI: 10.1016/j.tiv.2018.06.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 06/15/2018] [Accepted: 06/16/2018] [Indexed: 01/03/2023]
Abstract
BACKGROUND Radiotherapy is the most widely used treatment method for treating cancer with or without surgery and chemotherapy. In lung cancer, it is one of the important treatment steps in excising the tumor from the lung tissue; unfortunately, radiation can induce epithelial- mesenchymal transition (EMT), a typical physiological process in which cuboidal shaped epithelial cell loses its phenotype and acquires mesenchymal-like phenotype thus, increases the metastasis progression in the body. To prevent EMT mediated metastasis, we aimed to 1) synthesize silver nanoparticles by using Gallic acid, a potential antioxidant which acts as stabilizing and reducing agent in the form of silver nanoparticle (GA-AgNPs) 2) to analyze its effect on EMT markers during radiation-induced EMT in A549 cells. METHODS A549 cells were irradiated with 8Gy (X-ray) and treated with GA-AgNPs at a fixed concentration under in vitro condition. GA-AgNPs were prepared and characterized for absorption, potential stability, size and morphology by UV-Visible spectrophotometer, Zeta potential and Transmission electron microscopy respectively. After irradiation, the morphology changes were observed using an inverted microscope, the gene and protein expression of EMT markers were analyzed by RT-PCR and western blotting. RESULTS/CONCLUSION GA-AgNPs are in nano size with fair stability. The synthesized nanoparticles suppressed the EMT markers including Vimentin, N-cadherin, Snail-1 and increased E-cadherin expression which might inhibit cancer cells to acquire radio resistant metastasis potential.
Collapse
Affiliation(s)
- S N Sunil Gowda
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - S Rajasowmiya
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Vellingiri Vadivel
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - S Banu Devi
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - A Celestin Jerald
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - S Marimuthu
- Vishnu Cancer Center, Thanjavur, Tamil Nadu, India
| | - N Devipriya
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India.
| |
Collapse
|
35
|
Sinapic acid ameliorates bleomycin-induced lung fibrosis in rats. Biomed Pharmacother 2018; 108:224-231. [PMID: 30219680 DOI: 10.1016/j.biopha.2018.09.032] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 09/03/2018] [Accepted: 09/05/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Pulmonary fibrosis is a multifaceted disease with high mortality and morbidity, and it is commonly nonresponsive to conventional therapy. PURPOSE We explore the possible discourse of sinapic acid (SA) against the prevention of bleomycin (BLM)-instigated lung fibrosis in rats through modulation of Nrf2/HO-1 and NF-κB signaling pathways. DESIGN/METHODS Lung fibrosis was persuaded in Sprague-Dawley rats by a single intratracheal BLM (6.5 U/kg) injection. Then, these rats were treated with SA (10 and 20 mg/kg, p.o.) for 28 days. The normal control rats provided saline as a substitute of BLM. The lung function and biochemical, histopathological, and molecular alterations were studied in serum, bronchoalveolar lavage fluid (BALF), and the lungs tissues. RESULTS SA treatment significantly restored BLM-induced alterations in body weight index and serum biomarkers [lactate dehydrogenase (LDH) and alkaline phosphatase (ALP)]. SA (10 and 20 mg/kg) treatment appeared to show a pneumoprotective effect through upregulation of antioxidant status, downregulation of inflammatory cytokines and MMP-7 expression, and reduction of collagen accumulation (hydroxyproline). Nrf2, HO-1, and TGF-β expression was downregulated in BLM-induced fibrosis model, while the reduced expression levels were significantly and dose-dependently upregulated by SA (10 and 20 mg/kg) treatment. We demonstrated that SA ameliorates BLM-induced lung injuries through inhibition of apoptosis and induction of Nrf2/HO-1-mediated antioxidant enzymes via NF-κB inhibition. The histopathological findings also revealed that SA treatment (10 and 20 mg/kg) significantly ameliorated BLM-induced lung injury. CONCLUSION The present results showed the ability of SA to restore the antioxidant system and to inhibit oxidative stress, proinflammatory cytokines, extracellular matrix, and TGF-β. This is first report demonstrating that SA amoleriates BLM induced lung injuries through inhibition of apoptosis and induction of Nrf2 and HO-1 mediated antioxidant enzyme via NF-κB inhibition. The histopathological finding reveals that SA treatment (10 and 20 mg/kg) significantly ameliorates BLM induced lung injuries.
Collapse
|
36
|
López-Ramírez C, Suarez Valdivia L, Rodríguez Portal JA. Causes of Pulmonary Fibrosis in the Elderly. Med Sci (Basel) 2018; 6:medsci6030058. [PMID: 30042329 PMCID: PMC6164854 DOI: 10.3390/medsci6030058] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/16/2018] [Accepted: 07/16/2018] [Indexed: 01/19/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is the most common and most lethal type of idiopathic interstitial pneumonia. It is a chronic, aging-associated lung disease characterized by fibrotic foci and inflammatory infiltrates, with no cure and very limited therapeutic options. Although its etiology is unknown, several pathogenic pathways have been described that could explain this process, involving aging, environmental factors, genomic instability, loss of proteostasis, telomere attrition, epigenetic changes, mitochondrial dysfunction, cell senescence, and altered intercellular communication. One of the main prognostic factors for the development of IPF in broad epidemiological studies is age. The incidence increases with age, making this a disease that predominantly affects the elderly population, being exceptional under 45 years of age. However, the degree to which each of these mechanisms is involved in the etiology of the uncontrolled fibrogenesis that defines IPF is still unknown. Clarifying these questions is crucial to the development of points of intervention in the pathogenesis of the disease. This review briefly summarizes what is known about each possible etiological factor, and the questions that most urgently need to be addressed.
Collapse
Affiliation(s)
- Cecilia López-Ramírez
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla, 41013 Sevilla, Spain.
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Lionel Suarez Valdivia
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla, 41013 Sevilla, Spain.
| | - Jose Antonio Rodríguez Portal
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla, 41013 Sevilla, Spain.
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| |
Collapse
|
37
|
Jing T, Miao X, Jiang F, Guo M, Xing L, Zhang J, Zuo D, Lei H, Zhai X. Discovery and optimization of tetrahydropyrido[4,3-d]pyrimidine derivatives as novel ATX and EGFR dual inhibitors. Bioorg Med Chem 2018; 26:1784-1796. [PMID: 29496411 DOI: 10.1016/j.bmc.2018.02.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 02/08/2018] [Accepted: 02/15/2018] [Indexed: 10/18/2022]
Abstract
In order to discovery autotaxin (ATX) and EGFR dual inhibitors with potential therapeutic effect on IPF-LC, a series of novel tetrahydropyrido[4,3-d]pyrimidine derivatives possessing semicarbazones moiety were designed and synthesized. The preliminary investigation at the cellular level indicated six compounds (7h, 8a, 8c, 8d, 9a and 9d) displayed preferable anti-tumor activities against A549, H1975, MKN-45 and SGC cancer cells. Further enzymatic assay against EGFR kinase identified 8a and 9a as promising hits with IC50 values of 18.0 nM and 24.2 nM. Meanwhile, anti-inflammatory assessment against cardiac fibroblasts (CFs) cell and RAW264.7 macrophages led to the discovery of candidate 9a, which exhibited considerable potency both on inhibition rate of 77% towards CFs and on reducing NO production to 1.05 μM at 10 μg/mL. Simultaneously, 9a indicated preferable potency towards ATX with IC50 value of 29.1 nM. Significantly, a RT-PCR study revealed the function of 9a to down-regulate the mRNA expression of TGF-β and TNF-α in a dose-dependent manner. The molecular docking analysis together with the pharmacological studies validated 9a as a potential ATX and EGFR dual inhibitor for IPF-LC treatments.
Collapse
Affiliation(s)
- Tongfei Jing
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Xiuqi Miao
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Feng Jiang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Ming Guo
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Lingyun Xing
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Junlong Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Daiying Zuo
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Hongrui Lei
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Xin Zhai
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| |
Collapse
|
38
|
Diaphragm Muscle Weakness Following Acute Sustained Hypoxic Stress in the Mouse Is Prevented by Pretreatment with N-Acetyl Cysteine. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4805493. [PMID: 29670681 PMCID: PMC5836441 DOI: 10.1155/2018/4805493] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 10/29/2017] [Accepted: 12/12/2017] [Indexed: 12/18/2022]
Abstract
Oxygen deficit (hypoxia) is a major feature of cardiorespiratory diseases characterized by diaphragm dysfunction, yet the putative role of hypoxic stress as a driver of diaphragm dysfunction is understudied. We explored the cellular and functional consequences of sustained hypoxic stress in a mouse model. Adult male mice were exposed to 8 hours of normoxia, or hypoxia (FiO2 = 0.10) with or without antioxidant pretreatment (N-acetyl cysteine, 200 mg/kg i.p.). Ventilation and metabolism were measured. Diaphragm muscle contractile function, myofibre size and distribution, gene expression, protein signalling cascades, and oxidative stress (TBARS) were determined. Hypoxia caused pronounced diaphragm muscle weakness, unrelated to increased respiratory muscle work. Hypoxia increased diaphragm HIF-1α protein content and activated MAPK, mTOR, Akt, and FoxO3a signalling pathways, largely favouring protein synthesis. Hypoxia increased diaphragm lipid peroxidation, indicative of oxidative stress. FoxO3 and MuRF-1 gene expression were increased. Diaphragm 20S proteasome activity and muscle fibre size and distribution were unaffected by acute hypoxia. Pretreatment with N-acetyl cysteine substantially enhanced cell survival signalling, prevented hypoxia-induced diaphragm oxidative stress, and prevented hypoxia-induced diaphragm dysfunction. Hypoxia is a potent driver of diaphragm weakness, causing myofibre dysfunction without attendant atrophy. N-acetyl cysteine protects the hypoxic diaphragm and may have application as a potential adjunctive therapy.
Collapse
|
39
|
Klein D, Steens J, Wiesemann A, Schulz F, Kaschani F, Röck K, Yamaguchi M, Wirsdörfer F, Kaiser M, Fischer JW, Stuschke M, Jendrossek V. Mesenchymal Stem Cell Therapy Protects Lungs from Radiation-Induced Endothelial Cell Loss by Restoring Superoxide Dismutase 1 Expression. Antioxid Redox Signal 2017; 26:563-582. [PMID: 27572073 PMCID: PMC5393411 DOI: 10.1089/ars.2016.6748] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AIMS Radiation-induced normal tissue toxicity is closely linked to endothelial cell (EC) damage and dysfunction (acute effects). However, the underlying mechanisms of radiation-induced adverse late effects with respect to the vascular compartment remain elusive, and no causative radioprotective treatment is available to date. RESULTS The importance of injury to EC for radiation-induced late toxicity in lungs after whole thorax irradiation (WTI) was investigated using a mouse model of radiation-induced pneumopathy. We show that WTI induces EC loss as long-term complication, which is accompanied by the development of fibrosis. Adoptive transfer of mesenchymal stem cells (MSCs) either derived from bone marrow or aorta (vascular wall-resident MSCs) in the early phase after irradiation limited the radiation-induced EC loss and fibrosis progression. Furthermore, MSC-derived culture supernatants rescued the radiation-induced reduction in viability and long-term survival of cultured lung EC. We further identified the antioxidant enzyme superoxide dismutase 1 (SOD1) as a MSC-secreted factor. Importantly, MSC treatment restored the radiation-induced reduction of SOD1 levels after WTI. A similar protective effect was achieved by using the SOD-mimetic EUK134, suggesting that MSC-derived SOD1 is involved in the protective action of MSC, presumably through paracrine signaling. INNOVATION In this study, we explored the therapeutic potential of MSC therapy to prevent radiation-induced EC loss (late effect) and identified the protective mechanisms of MSC action. CONCLUSIONS Adoptive transfer of MSCs early after irradiation counteracts radiation-induced vascular damage and EC loss as late adverse effects. The high activity of vascular wall-derived MSCs for radioprotection may be due to their tissue-specific action. Antioxid. Redox Signal. 26, 563-582.
Collapse
Affiliation(s)
- Diana Klein
- 1 Institute of Cell Biology (Cancer Research), University Hospital, University of Duisburg-Essen , Essen, Germany
| | - Jennifer Steens
- 1 Institute of Cell Biology (Cancer Research), University Hospital, University of Duisburg-Essen , Essen, Germany
| | - Alina Wiesemann
- 1 Institute of Cell Biology (Cancer Research), University Hospital, University of Duisburg-Essen , Essen, Germany
| | - Florian Schulz
- 2 Department of Chemical Biology, Faculty of Biology, Center for Medical Biotechnology, University of Duisburg-Essen , Essen, Germany
| | - Farnusch Kaschani
- 2 Department of Chemical Biology, Faculty of Biology, Center for Medical Biotechnology, University of Duisburg-Essen , Essen, Germany
| | - Katharina Röck
- 3 Institute for Pharmacology, University Hospital, Heinrich-Heine-University , Düsseldorf, Germany
| | | | - Florian Wirsdörfer
- 1 Institute of Cell Biology (Cancer Research), University Hospital, University of Duisburg-Essen , Essen, Germany
| | - Markus Kaiser
- 2 Department of Chemical Biology, Faculty of Biology, Center for Medical Biotechnology, University of Duisburg-Essen , Essen, Germany
| | - Jens W Fischer
- 3 Institute for Pharmacology, University Hospital, Heinrich-Heine-University , Düsseldorf, Germany
| | - Martin Stuschke
- 5 Department of Radiotherapy, University of Duisburg-Essen, University Hospital , Essen, Germany
| | - Verena Jendrossek
- 1 Institute of Cell Biology (Cancer Research), University Hospital, University of Duisburg-Essen , Essen, Germany
| |
Collapse
|
40
|
Syntheses, characterization and antioxidant activity studies of mixed-ligand copper(II) complexes of 2,2′-bipyridine and glycine: The X-ray crystal structure of [Cu(BPy)(Gly)]ClO4. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2016.12.087] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
41
|
Odewumi CO, Latinwo LM, Ruden ML, Badisa VLD, Fils-Aime S, Badisa RB. Modulation of cytokines and chemokines expression by NAC in cadmium chloride treated human lung cells. ENVIRONMENTAL TOXICOLOGY 2016; 31:1612-1619. [PMID: 26138014 PMCID: PMC4698366 DOI: 10.1002/tox.22165] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 06/01/2015] [Accepted: 06/07/2015] [Indexed: 05/28/2023]
Abstract
Cadmium (Cd), is one of the most hazardous metals found in the environment. Cd exposure through inhalation has been linked to various diseases in lungs. It was shown that Cd induces proinflammatory cytokines through oxidative stress mechanism. In this report, we studied the immunomodulatory effect of a well known antioxidant, N-acetylcysteine (NAC) on cadmium chloride (CdCl2 ) treated human lung A549 cells through human cytokine array 6. The lung cells were treated with 0 or 75 µM CdCl2 alone, 2.5 mM NAC alone, or co-treated with 2.5 mM NAC and 75 µM CdCl2 for 24 h. The viability of cells was measured by crystal violet dye. The array results were validated by human IL-1alpha enzyme- linked immunosorbent assay (ELISA) kit. The viability of the 75 µM CdCl2 alone treated cells was decreased to 44.5%, while the viability of the co-treated cells with 2.5 mM NAC was increased to 84.1% in comparison with untreated cells. In the cell lysate of CdCl2 alone treated cells, 19 and 8 cytokines were up and down-regulated, while in the medium 15 and 3 cytokines were up and downregulated in comparison with the untreated cells. In the co-treated cells, all these cytokines expression was modulated by the NAC treatment. The IL-1α ELISA result showed the same pattern of cytokine expression as the cytokine array. This study clearly showed the modulatory effect of NAC on cytokines and chemokines expression in CdCl2- treated cells and suggests the use of NAC as protective agent against cadmium toxicity. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1612-1619, 2016.
Collapse
Affiliation(s)
- Caroline O Odewumi
- Department of Biological Sciences, College of Science and Technology, Florida A&M University, Tallahassee, Florida, USA.
| | - Lekan M Latinwo
- Department of Biological Sciences, College of Science and Technology, Florida A&M University, Tallahassee, Florida, USA
| | - Michael L Ruden
- Department of Biological Sciences, College of Science and Technology, Florida A&M University, Tallahassee, Florida, USA
| | - Veera L D Badisa
- Department of Biological Sciences, College of Science and Technology, Florida A&M University, Tallahassee, Florida, USA
| | - Sheila Fils-Aime
- Department of Biological Sciences, College of Science and Technology, Florida A&M University, Tallahassee, Florida, USA
| | - Ramesh B Badisa
- Department of Basic Sciences, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida, USA
| |
Collapse
|
42
|
Evaluating the influence of the diamine unit (ethylenediamine, piperazine and homopiperazine) on the molecular structure, physical chemical properties and superoxide dismutase activity of copper complexes. Inorganica Chim Acta 2016. [DOI: 10.1016/j.ica.2016.06.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
43
|
Tiron ameliorates oxidative stress and inflammation in a murine model of airway remodeling. Int Immunopharmacol 2016; 39:172-180. [PMID: 27485290 DOI: 10.1016/j.intimp.2016.07.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 07/13/2016] [Accepted: 07/25/2016] [Indexed: 01/01/2023]
Abstract
Airway remodeling includes lung structural changes that have a role in the irreversibility of pulmonary dysfunction shown in chronic bronchial asthmatics. The current experiment investigated the effect of the mitochondrial antioxidant, tiron in comparison with dexamethasone (DEXA) on airway remodeling in chronic asthma. Sensitized BALB/c mice were challenged with ovalbumin (OVA) aerosol for 8weeks, OVA sensitized-challenged mice were treated with either DEXA or tiron, respectively. After that, lung tissue and bronchoaveolar lavage fluid (BALF) were used for measurement of different biological markers. Lungs were examined for histopathological changes and immunohistochemistry. Upon comparing with vehicle treated animals, trion or DEXA treatment significantly reduced eosinophils, lymphocytes, neutrophils and macrophages count in the BALF. Both drugs significantly alleviated chronic OVA-induced oxidative stress as illustrated by decreased pulmonary malondialdenhyde (MDA) and increased glutathione (GSH) and superoxide dismutase (SOD) levels. Asthmatic mice exhibited elevated levels of NOx, IL-13 and TGF-β1 that were reduced by DEXA and tiron. Histopathological changes and increased immunoreactivity of nuclear factor-Kappa B (NF-κ B) in OVA-challenged mice were minimized by tiron and DEXA treatment. In conclusion, in this model of chronic asthma DEXA and tiron ameliorated airway remodeling and inflammation in experimental chronic asthma with no difference between the effect of tiron and DEXA. Tiron has a potential role as adjuvant treatment in chronic asthma.
Collapse
|
44
|
Richter K, Kietzmann T. Reactive oxygen species and fibrosis: further evidence of a significant liaison. Cell Tissue Res 2016; 365:591-605. [PMID: 27345301 PMCID: PMC5010605 DOI: 10.1007/s00441-016-2445-3] [Citation(s) in RCA: 222] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/02/2016] [Indexed: 02/06/2023]
Abstract
Age-related diseases such as obesity, diabetes, non-alcoholic fatty liver disease, chronic kidney disease and cardiomyopathy are frequently associated with fibrosis. Work within the last decade has improved our understanding of the pathophysiological mechanisms contributing to fibrosis development. In particular, oxidative stress and the antioxidant system appear to be crucial modulators of processes such as transforming growth factor-β1 (TGF-β1) signalling, metabolic homeostasis and chronic low-grade inflammation, all of which play important roles in fibrosis development and persistence. In the current review, we discuss the connections between reactive oxygen species, antioxidant enzymes and TGF-β1 signalling, together with functional consequences, reflecting a concept of redox-fibrosis that can be targeted in future therapies. ᅟ ![]()
Collapse
Affiliation(s)
- Kati Richter
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, Aapistie 7A, FI-90230, Oulu, Finland
| | - Thomas Kietzmann
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, Aapistie 7A, FI-90230, Oulu, Finland.
| |
Collapse
|
45
|
McMillan DH, van der Velden JL, Lahue KG, Qian X, Schneider RW, Iberg MS, Nolin JD, Abdalla S, Casey DT, Tew KD, Townsend DM, Henderson CJ, Wolf CR, Butnor KJ, Taatjes DJ, Budd RC, Irvin CG, van der Vliet A, Flemer S, Anathy V, Janssen-Heininger YM. Attenuation of lung fibrosis in mice with a clinically relevant inhibitor of glutathione- S-transferase π. JCI Insight 2016; 1:85717. [PMID: 27358914 PMCID: PMC4922427 DOI: 10.1172/jci.insight.85717] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 05/04/2016] [Indexed: 12/17/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a debilitating lung disease characterized by excessive collagen production and fibrogenesis. Apoptosis in lung epithelial cells is critical in IPF pathogenesis, as heightened loss of these cells promotes fibroblast activation and remodeling. Changes in glutathione redox status have been reported in IPF patients. S-glutathionylation, the conjugation of glutathione to reactive cysteines, is catalyzed in part by glutathione-S-transferase π (GSTP). To date, no published information exists linking GSTP and IPF to our knowledge. We hypothesized that GSTP mediates lung fibrogenesis in part through FAS S-glutathionylation, a critical event in epithelial cell apoptosis. Our results demonstrate that GSTP immunoreactivity is increased in the lungs of IPF patients, notably within type II epithelial cells. The FAS-GSTP interaction was also increased in IPF lungs. Bleomycin- and AdTGFβ-induced increases in collagen content, α-SMA, FAS S-glutathionylation, and total protein S-glutathionylation were strongly attenuated in Gstp-/- mice. Oropharyngeal administration of the GSTP inhibitor, TLK117, at a time when fibrosis was already apparent, attenuated bleomycin- and AdTGFβ-induced remodeling, α-SMA, caspase activation, FAS S-glutathionylation, and total protein S-glutathionylation. GSTP is an important driver of protein S-glutathionylation and lung fibrosis, and GSTP inhibition via the airways may be a novel therapeutic strategy for the treatment of IPF.
Collapse
Affiliation(s)
- David H. McMillan
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont, USA
| | - Jos L.J. van der Velden
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont, USA
| | - Karolyn G. Lahue
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont, USA
| | - Xi Qian
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont, USA
| | - Robert W. Schneider
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont, USA
| | - Martina S. Iberg
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont, USA
| | - James D. Nolin
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont, USA
| | - Sarah Abdalla
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont, USA
| | - Dylan T. Casey
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont, USA
| | - Kenneth D. Tew
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Danyelle M. Townsend
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Colin J. Henderson
- Division of Cancer Research, University of Dundee, Dundee, United Kingdom
| | - C. Roland Wolf
- Division of Cancer Research, University of Dundee, Dundee, United Kingdom
| | - Kelly J. Butnor
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont, USA
| | - Douglas J. Taatjes
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont, USA
| | | | | | - Albert van der Vliet
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont, USA
| | - Stevenson Flemer
- Department of Chemistry, University of Vermont, Burlington, Vermont, USA
| | - Vikas Anathy
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont, USA
| | | |
Collapse
|
46
|
Sharaf El-Din AAI, Abd Allah OM. Impact of Olmesartan Medoxomil on Amiodarone-Induced Pulmonary Toxicity in Rats: Focus on Transforming Growth Factor-ß1. Basic Clin Pharmacol Toxicol 2016; 119:58-67. [DOI: 10.1111/bcpt.12551] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 12/23/2015] [Indexed: 12/18/2022]
Affiliation(s)
| | - Omaima M. Abd Allah
- Department of Pharmacology and Therapeutics; Faculty of Medicine; Benha University; Benha Egypt
| |
Collapse
|
47
|
A Mechanistic Study on the Amiodarone-Induced Pulmonary Toxicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:6265853. [PMID: 26933474 PMCID: PMC4736964 DOI: 10.1155/2016/6265853] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 12/09/2015] [Indexed: 01/21/2023]
Abstract
Amiodarone- (AM-) induced pulmonary toxicity (AIPT) is still a matter of research and is poorly understood. In attempting to resolve this issue, we treated Sprague-Dawley rats with AM doses of 80 mg/kg/day/i.p. for one, two, three, and four weeks. The rats were weighed at days 7, 14, 21, and 28 and bronchoalveolar lavages (BAL) were obtained to determine total leukocyte count (TLC). For each group, lung weighing, histopathology, and homogenization were performed. Fresh homogenates were used for determination of ATP content, lipid peroxides, GSH, catalase, SOD, GPx, GR activities, NO, and hydroxyproline levels. The results showed a significant decrease in body weight and GSH depletion together with an increase in both lung weight and lung/body weight coefficient in the first week. Considerable increases in lung hydroxyproline level with some histopathological alterations were apparent. Treatment for two weeks produced a significant increase in BAL fluid, TLC, GR activity, and NO level in lung homogenate. The loss of cellular ATP and inhibition of most antioxidative protective enzymatic system appeared along with alteration in SOD activity following daily treatment for three weeks, while, in rats treated with AM for four weeks, more severe toxicity was apparent. Histopathological diagnosis was mostly granulomatous inflammation and interstitial pneumonitis in rats treated for three and four weeks, respectively. As shown, it is obvious that slow oedema formation is the only initiating factor of AIPT; all other mechanisms may occur as a consequence.
Collapse
|
48
|
Richter K, Konzack A, Pihlajaniemi T, Heljasvaara R, Kietzmann T. Redox-fibrosis: Impact of TGFβ1 on ROS generators, mediators and functional consequences. Redox Biol 2015; 6:344-352. [PMID: 26335400 PMCID: PMC4565043 DOI: 10.1016/j.redox.2015.08.015] [Citation(s) in RCA: 182] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 08/19/2015] [Accepted: 08/25/2015] [Indexed: 02/06/2023] Open
Abstract
Fibrosis is one of the most prevalent features of age-related diseases like obesity, diabetes, non-alcoholic fatty liver disease, chronic kidney disease, or cardiomyopathy and affects millions of people in all countries. Although the understanding about the pathophysiology of fibrosis has improved a lot during the recent years, a number of mechanisms still remain unknown. Although TGF-β1 signaling, loss of metabolic homeostasis and chronic low-grade inflammation appear to play important roles in the pathogenesis of fibrosis, recent evidence indicates that oxidative stress and the antioxidant system may also be crucial for fibrosis development and persistence. These findings point to a concept of a redox-fibrosis where the cellular oxidant and antioxidant system could be potential therapeutic targets. The current review aims to summarize the existing links between TGF-β1 signaling, generation and action of reactive oxygen species, expression of antioxidative enzymes, and functional consequences including epigenetic redox-mediated responses during fibrosis.
Collapse
Affiliation(s)
- Kati Richter
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Anja Konzack
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Taina Pihlajaniemi
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland; Center of Excellence in Cell-Extracellular Matrix Research, Finland
| | - Ritva Heljasvaara
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland; Center of Excellence in Cell-Extracellular Matrix Research, Finland
| | - Thomas Kietzmann
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland.
| |
Collapse
|
49
|
Escriche-Tur L, Corbella M, Font-Bardia M, Castro I, Bonneviot L, Albela B. Biomimetic Mn-Catalases Based on Dimeric Manganese Complexes in Mesoporous Silica for Potential Antioxidant Agent. Inorg Chem 2015; 54:10111-25. [DOI: 10.1021/acs.inorgchem.5b01425] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Luis Escriche-Tur
- Laboratoire de Chimie, ENS de Lyon, Université de Lyon, 46 Allée d’Italie, 69364 Lyon Cedex 07, France
| | | | | | - Isabel Castro
- Institut de Ciència Molecular, Universitat de València, C/Catedrático
José Beltrán 2, 46980 Paterna, Spain
| | - Laurent Bonneviot
- Laboratoire de Chimie, ENS de Lyon, Université de Lyon, 46 Allée d’Italie, 69364 Lyon Cedex 07, France
| | - Belén Albela
- Laboratoire de Chimie, ENS de Lyon, Université de Lyon, 46 Allée d’Italie, 69364 Lyon Cedex 07, France
| |
Collapse
|
50
|
Jayachandran M, Chandrasekaran B, Namasivayam N. Geraniol attenuates fibrosis and exerts anti-inflammatory effects on diet induced atherogenesis by NF-κB signaling pathway. Eur J Pharmacol 2015; 762:102-11. [DOI: 10.1016/j.ejphar.2015.05.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 05/15/2015] [Accepted: 05/20/2015] [Indexed: 11/26/2022]
|