1
|
Feng Y, Tang X, Fu H, Fan X, Wei J, Liu J, Wang H, Bi H, Chen Z, Wei X, Zheng Y. Mechanistic insights into carbon black-activated AKT/TMEM175 cascade impairing macrophage-epithelial cross-talk and airway epithelial proliferation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 372:126076. [PMID: 40107486 DOI: 10.1016/j.envpol.2025.126076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/27/2025] [Accepted: 03/16/2025] [Indexed: 03/22/2025]
Abstract
Carbon black nanoparticles (CB) has been linked to respiratory epithelial damage, a precursor to various respiratory diseases. Although the mechanisms by which CB induce cellular damage are well understood, the initial molecular events driving this process remain poorly characterized. In this study, we aim to elucidate the cellular responses triggered by CB exposure, focusing on the molecular conformational changes, organelle damage, and the disruption of crosstalk between macrophages and airway epithelial cells. Specifically, upon the phagocytosis of CB by macrophages, a reduction in the acidic environment of intracellular lysosomes, accompanied by decreased extracellular levels of arginine and glutamate. This change triggers the inhibition of airway epithelial proliferation. Additional, we identified TMEM175 as the key molecular target through which CB diminishes lysosomal acidity. Molecular dynamics simulations revealed that the π-π interactions between CB and AKT serve as the initiating event, leading to the inhibition of TMEM175 activation. These findings represent a critical mechanism in the health assessment of carbon-based pollutants, providing valuable insights into the atomic-level processes underlying airway epithelial injury, a primary cause of respiratory diseases associated with NPs exposure. Furthermore, the AKT/TMEM175 could serve as a promising tool for assessing airway epithelial damage induced by other carbon-contained pollutants.
Collapse
Affiliation(s)
- Yawen Feng
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, 266071, China
| | - Xiaowen Tang
- Department of Medical Chemistry, School of Pharmacy, Qingdao University, Qingdao, 266071, China
| | - Hongying Fu
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, 266071, China
| | - Xiaobo Fan
- Department of Radiology, People's Hospital Affiliated to Shandong First Medical University (People's Hospital of Jinan City), Jinan, 271199, Shandong Province, China
| | - Juntong Wei
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, 266071, China
| | - Jianying Liu
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, 266071, China
| | - Hongmei Wang
- Department of Pulmonary and Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266003, China
| | - Huanhuan Bi
- Department of Pulmonary and Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266003, China
| | - Ziyan Chen
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, 266071, China
| | - Xiaoran Wei
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, 266071, China.
| | - Yuxin Zheng
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, 266071, China
| |
Collapse
|
2
|
Dhapola R, Kumari S, Sharma P, Vellingiri B, HariKrishnaReddy D. Advancements in autophagy perturbations in Alzheimer's disease: Molecular aspects and therapeutics. Brain Res 2025; 1851:149494. [PMID: 39922409 DOI: 10.1016/j.brainres.2025.149494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/11/2024] [Accepted: 02/02/2025] [Indexed: 02/10/2025]
Abstract
Emerging evidences suggest that autophagy, a key cellular process responsible for degrading and recycling damaged organelles and proteins, plays a crucial role in maintaining neuronal health. Dysfunctional autophagy has been linked to the pathogenesis of Alzheimer's disease (AD), contributing to the accumulation of misfolded proteins and cellular debris. Molecular mechanisms underlying autophagy dysfunction in AD involve amyloid-beta (Aβ) and tau accumulation, neuroinflammation, mitochondrial dysfunction, oxidative stress and endoplasmic reticulum stress. Disrupted signaling pathways such as TRIB3, Nmnat and BAG3 that regulate key processes like autophagosome initiation, lysosome function, and protein homeostasis also play a crucial role in the pathogenesis. Restoration of autophagy by modulating these molecular and signaling pathways may be an effective therapeutic strategy for AD. Studies have found few drugs targeting autophagy dysregulation in AD. These drugs include metformin that has been found to modulate the expression of TRIB3 for autophagy regulation. Another drug, resveratrol has been reported to augment the activity of Nmnat thus, increases autophagy flux. BACE1 and mTOR inhibitors like arctigenin, nilvadipine and dapagliflozin were also found to restore autophagy. This study elaborates recent advances in signaling and molecular pathways and discusses current and emerging therapeutic interventions targeting autophagy dysfunction in AD.
Collapse
Affiliation(s)
- Rishika Dhapola
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda 151401 Punjab, India
| | - Sneha Kumari
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda 151401 Punjab, India
| | - Prajjwal Sharma
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda 151401 Punjab, India
| | - Balachandar Vellingiri
- Human Cytogenetics and Stem Cell Laboratory, Department of Zoology, School of Basic Sciences, Central University of Punjab 151401 Bathinda, Punjab, India.
| | - Dibbanti HariKrishnaReddy
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda 151401 Punjab, India.
| |
Collapse
|
3
|
Udoekong EC, Ramirez-Lopez CJ, Silva Okano D, Barros E, Pereira Vidigal PM, Ribeiro IM, Rodrigues Carvalho RP, Machado-Neves M, Guimarães JD, Facioni Guimarães SE. Proteomic Alterations and Oxidative Stress in Seminal Plasma of Nellore Bulls Under Sexual Rest. Int J Mol Sci 2025; 26:2457. [PMID: 40141101 PMCID: PMC11942078 DOI: 10.3390/ijms26062457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/04/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
Sexual rest (SR) in bulls leads to the accumulation of senescent spermatozoa in the extragonadal reserves, potentially affecting semen quality and reproductive efficiency. Therefore, this study aimed to investigate the impact of SR on the seminal plasma proteome and oxidative status of Nellore bulls. Six adult bulls were subjected to 195 days of SR and sequential semen collections using the electroejaculation method. The ejaculates were analyzed to assess sperm quality. Seminal plasma from the first and last ejaculates was evaluated for oxidative status and proteomic profile using LC-MS. The results revealed significant improvements in sperm motility, vigor, and antioxidant enzyme activity (superoxide dismutase and catalase) in the last ejaculate compared to the first. Conversely, higher levels of oxidative markers, such as malondialdehyde and carbonyl proteins, were observed in the first ejaculate. Proteomic analysis identified 156 proteins, with 28 differentially abundant between ejaculates. The first ejaculate showed a higher abundance of proteins linked to acrosomal exocytosis and energy metabolism, while proteins associated with sperm motility and immune modulation were elevated in the last ejaculate. These findings suggest that SR induces oxidative stress and proteomic alterations in seminal plasma, negatively affecting sperm quality, emphasizing the need for strategic reproductive management in bulls.
Collapse
Affiliation(s)
- Ekaette Chris Udoekong
- Laboratory of Animal Biotechnology, Department of Animal Science, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil; (E.C.U.); (S.E.F.G.)
| | - Camilo Jose Ramirez-Lopez
- Laboratory of Animal Biotechnology, Department of Animal Science, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil; (E.C.U.); (S.E.F.G.)
| | - Denise Silva Okano
- Laboratory of Animal Reproduction, Department of Veterinary Medicine, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil; (D.S.O.); (J.D.G.)
| | - Edvaldo Barros
- Núcleo de Análise de Biomoléculas, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil; (E.B.); (P.M.P.V.)
| | | | - Iara Magalhães Ribeiro
- Laboratory of Structural Biology, Department of Biology, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil; (I.M.R.); (R.P.R.C.); (M.M.-N.)
| | - Renner Philipe Rodrigues Carvalho
- Laboratory of Structural Biology, Department of Biology, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil; (I.M.R.); (R.P.R.C.); (M.M.-N.)
| | - Mariana Machado-Neves
- Laboratory of Structural Biology, Department of Biology, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil; (I.M.R.); (R.P.R.C.); (M.M.-N.)
| | - José Domingos Guimarães
- Laboratory of Animal Reproduction, Department of Veterinary Medicine, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil; (D.S.O.); (J.D.G.)
| | - Simone Eliza Facioni Guimarães
- Laboratory of Animal Biotechnology, Department of Animal Science, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil; (E.C.U.); (S.E.F.G.)
| |
Collapse
|
4
|
Cao H, Jiang J, Chen L, Gao L. Mimicomes: Mimicking Multienzyme System by Artificial Design. Adv Healthc Mater 2025; 14:e2402372. [PMID: 39380346 DOI: 10.1002/adhm.202402372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/05/2024] [Indexed: 10/10/2024]
Abstract
Enzymes are widely distributed in organelles of cells, which are capable of carrying out specific catalytic reactions. In general, several enzymes collaborate to facilitate complex reactions and engage in vital biochemical processes within cells, which are also called cascade systems. The cascade systems are highly efficient, and their dysfunction is associated with a multitude of endogenous diseases. The advent of nanotechnology makes it possible to mimic these cascade systems in nature and realize partial functions of natural biological processes both in vitro and in vivo. To emphasize the significance of artificial cascade systems, mimicomes is first proposed, a new concept that refers to the artificial cascade catalytic systems. Typically, mimicomes are able to mimic specific natural biochemical catalytic processes or facilitate the overall catalytic efficiency of cascade systems. Subsequently, the evolution and development of different types of mimicomes in recent decades are elucidated exhaustedly, from the natural enzyme-based mimicomes (immobilized enzyme and vesicle mimicomes) to the nanozyme-based mimicomes and enzyme-nanozyme hybrid mimicomes. In conclusion, the remaining challenges in the design of multifunctional mimicomes and their potential applications are summarized, offering insights into their future prospects.
Collapse
Affiliation(s)
- Haolin Cao
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jing Jiang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lei Chen
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, 450052, China
| | - Lizeng Gao
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, 450052, China
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| |
Collapse
|
5
|
Hu X, Feng J, Pan C, Sun Z, Liu J, Xie S, Xiao D, Ma X, Zheng Q, Chen W. HMGB1 Promotes Lysosome-Dependent Cell Death Induced Via Dry Eye by Disrupting Lysosomal Homeostasis. Invest Ophthalmol Vis Sci 2025; 66:5. [PMID: 39903181 PMCID: PMC11801392 DOI: 10.1167/iovs.66.2.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 01/07/2025] [Indexed: 02/06/2025] Open
Abstract
Purpose Hypertonic stress can induce apoptosis, inflammation, and dry eye disease (DED) through the upregulation of HMGB1 expression. However, its role in mediating and maintaining lysosomal homeostasis and suppressing DED development in living and in vitro models is unclear. Methods Immunofluorescence, nucleoplasmic separation, and electron microscopic analysis were used to compare the effects of hypertonic stress on lysosomal function, nuclear HGMB1 expression, and lysosomal localization in three different dry eye models. The live model was established by the subcutaneous injection of scopolamine (SCOP) into C57BL/6J female mice, and the in vitro model used human corneal epithelial cell (HCEC) cultures that were maintained at a hyperosmotic level of 450 milliosmolar (mOsm). RNAi technology was used to knockdown HMGB1 expression levels, altering hyperosmotic stress-induced changes in survival and autophagy of corneal epithelial cells in vitro. Lysosomal protease inhibitors were applied to suppress the increase of corneal tissue inflammation in the dry eye mouse model. Results This hypertrophic stress upregulated karyoplasmic HMGB1 expression in HCECs. This change disrupted lysosomal structural and functional integrity, which facilitated the release of HMGB1 into the cytoplasm. SiRNAs downregulated HMGB1 expression levels and reversed increases in HMGB1 transfer from the nucleus to the cytoplasm and lysosomal alkalinizing function. These changes promoted increases in cathepsin leakage from lysosomes and increased mouse corneal epithelial apoptosis, whereas autophagy decreased. In a mouse model, administration of a cathepsin inhibitor reduced both ocular inflammation and other aspects of dry eye symptomology. Conclusions Hyperosmotic-induced HMGB1 upregulation and increased HMGB1 transfer into the cytoplasm from the nucleus underlie the loss of lysosomal membrane integrity, which increases both cathepsin release and corneal epithelial apoptosis. HMGB1 downregulation instead ameliorated these pathogenic responses.
Collapse
Affiliation(s)
- Xiaojuan Hu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jiayao Feng
- Ningbo Eye Hospital, Wenzhou Medical University, Ningbo, China
| | - Chengjie Pan
- Ophthalmology Department, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Zhenzhen Sun
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jiechen Liu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Shuang Xie
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Decheng Xiao
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xiaoyin Ma
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Qinxiang Zheng
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Wei Chen
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
6
|
Hashemi P, Mardani P, Eghbali Raz Z, Saedi A, Fatahi E, Izapanah E, Ahmadi S. Alpha-Pinene Decreases the Elevated Levels of Astrogliosis, Pyroptosis, and Autophagy Markers in the Hippocampus Triggered by Kainate in a Rat Model of Temporal Lobe Epilepsy. Mol Neurobiol 2025; 62:2264-2276. [PMID: 39096444 DOI: 10.1007/s12035-024-04407-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/28/2024] [Indexed: 08/05/2024]
Abstract
The development and progression of temporal lobe epilepsy (TLE) are heavily influenced by inflammation, excessive activation of glial cells, and neuronal cell death. This study aimed to investigate the effects of treatment with alpha-pinene (APN) on pro-and anti-inflammatory cytokine levels, astrogliosis, pyroptosis, and autophagy markers in the hippocampus in a rat model of TLE induced by kainic acid (KA). Male Wistar rats were employed, and TLE was induced by intracerebroventricular injection of KA. APN (50 mg/kg) was intraperitoneally administered for 19 days, including two weeks before and five days after the administration of KA. After full recovery from anesthesia and KA injection, the seizure-related behavioral expressions were evaluated. On day 19, the hippocampal levels of IL-1β, TNF-α, progranulin, IL-10, ERK1/2, phospho-ERK1/2, NF-κB, GFAP, S100-B, NLRP1, NLRP3, caspase-1, and becline-1 were examined. The results revealed that treatment with APN significantly diminished the heightened levels of IL-1β, TNF-α, progranulin, ERK1/2, and NF-κB and reversed the reduced levels of the anti-inflammatory cytokine, IL-10, in the hippocampus caused by KA. Furthermore, administration of APN significantly reduced the levels of astrogliosis, pyroptosis, and autophagy markers in the hippocampus that were elevated by KA. It can be concluded that treatment with APN for 19 days alleviated neuroinflammation by inhibiting ERK1/2 and NF-κB signaling pathways and prevented increases in astrogliosis, pyroptosis, and autophagy markers in the hippocampus in a rat model of TLE.
Collapse
Affiliation(s)
- Paria Hashemi
- Department of Biological Science, Faculty of Science, University of Kurdistan, P.O. Box 416, Sanandaj, Iran
| | | | - Zabihollah Eghbali Raz
- Department of Biological Science, Faculty of Science, University of Kurdistan, P.O. Box 416, Sanandaj, Iran
| | - Ali Saedi
- Department of Biological Science, Faculty of Science, University of Kurdistan, P.O. Box 416, Sanandaj, Iran
| | - Ehsan Fatahi
- Department of Biological Science, Faculty of Science, University of Kurdistan, P.O. Box 416, Sanandaj, Iran
| | - Esmael Izapanah
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Shamseddin Ahmadi
- Department of Biological Science, Faculty of Science, University of Kurdistan, P.O. Box 416, Sanandaj, Iran.
| |
Collapse
|
7
|
Fung TKH, Cheung KK, Wang X, Lau BWM, Ngai SPC. Transcriptomic Profiling Reveals Differences in Slow-Twitch and Fast-Twitch Muscles of a Cigarette Smoke-Exposed Rat Model. J Cachexia Sarcopenia Muscle 2025; 16:e13633. [PMID: 39611217 DOI: 10.1002/jcsm.13633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 10/03/2024] [Accepted: 10/11/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND Cigarette smoking is known to affect muscle function and exercise capacity, including muscle fatigue resistance. Most studies showed diminished cross-sectional area and fibre type shifting in slow-twitch muscles such as the soleus, while effects on fast-twitch muscles were seldom reported and the differential responses between muscle types in response to exposure to cigarette smoke (CS) were largely unknown. This study aimed to elucidate the histomorphological, biochemical and transcriptomic changes induced by CS on both slow-twitch and fast-twitch muscles. METHOD Male Sprague-Dawley rats were randomly divided into two groups: sham air (SA) and CS. The rats were exposed to CS for 8 weeks using an exposure chamber system to mimic smoking conditions. Histomorphological analyses on muscle fibre type and cross-sectional area were determined in soleus and extensor digitorum longus (EDL). Transcriptomic profiles were investigated for identifying differentially expressed genes (DEGs) and potential mechanistic pathways involved. Inflammatory responses in terms of the macrophage population and the level of inflammatory cytokines were measured. Markers for muscle-specific proteolysis were also examined. RESULT Soleus muscle, but not in EDL, exhibited a significant increase in Type IIa fibres (SA: 9.0 ± 3.3%; CS: 19.8 ± 2.4%, p = 0.002) and decrease in Type I fibres (SA: 90.1 ± 3.6%; CS: 77.9 ± 3.3%, p = 0.003) after CS exposure. RNA sequencing revealed 165 identified DEGs in soleus including upregulation of 'Cd68', 'Ccl2' and 'Ucp2' as well as downregulation of 'Ucp3', etc. Pathways enrichment analysis revealed that the upregulated pathways in soleus were related to immune system and cellular response, while the downregulated pathways were related to oxidative metabolism. Only 10 DEGs were identified in EDL with less enriched pathways. The soleus also showed elevated pro-inflammatory cytokines, and the total macrophage marker CD68 was significantly higher in soleus of CS compared to the SA group (CD68+/no. of fibre: SA = 60.3 ± 39.3%; CS = 106.5 ± 27.2%, p = 0.0039), while the two groups in EDL muscle showed no significant difference. The expression of E3 ubiquitin ligase atrogin-1 associated with muscle degradation pathways was 1.63-fold higher in the soleus after CS, while no significant differences were observed in the EDL. CONCLUSION The CS-induced inflammatory responses on soleus muscle are likely mediated via targeting mitochondrial-related signalling, resulting in mitochondrial dysfunction and impaired oxidative capacity. The presumably less active mitochondrial-related signalling in EDL renders it less susceptible to changes towards CS, accounting for differential impacts between muscle types.
Collapse
Affiliation(s)
- Timothy K H Fung
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Kwok Kuen Cheung
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Xia Wang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, China
| | - Benson W M Lau
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Shirley P C Ngai
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| |
Collapse
|
8
|
Feng Y, Fu H, Zhang X, Liu S, Wei X. Lysosome toxicities induced by nanoparticle exposure and related mechanisms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117215. [PMID: 39427537 DOI: 10.1016/j.ecoenv.2024.117215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/01/2024] [Accepted: 10/16/2024] [Indexed: 10/22/2024]
Abstract
Nanoparticles (NPs) have achieved extensive utilization across diverse domains, highlighting their unavoidable impact on health. The internalization of NPs carries the potential to trigger inflammation and instigate ailments by selectively targeting lysosomes, thereby posing significant public health concern. Lysosomes, essential organelles responsible for the degradation of biological macromolecules within cells, are crucial for cellular homeostasis and participate in key biological processes, including inter-organelle communication, signal transduction, plasma membrane repair, and immune responses. Consequently, a thorough understanding of lysosomal function is essential for elucidating the mechanisms underlying NPs-mediated toxicity. NPs-induced lysosomal dysfunction primarily involves disruptions in the acidic microenvironment of lysosomes, lysosomal membrane rupture, and membrane permeabilization. Additionally, potential molecular mechanisms contributing to the increased risk of lysosomal damage caused by NPs have been described, particularly concerning ion channel proteins such as V-ATPase, TRPM2, CLC-7, and LAMPs. This review aims to detail the alterations in lysosomal functionality induced by NPs and their associated mechanisms. By providing a theoretical framework, this review aims to support the potential application of NPs in biomedical fields.
Collapse
Affiliation(s)
- Yawen Feng
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Hongying Fu
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Xing Zhang
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Suqin Liu
- Centre for Reproductive Medicine, Qingdao Woman and Children's Hospital, Qingdao University, Qingdao, China.
| | - Xiaoran Wei
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
9
|
Zhang W, Zhang M, Li M, Wang X, Li P, Tang B. Glutathione and viscosity double-locked response fluorescent probe for imaging and surgical navigation of hepatocellular carcinoma. Chem Commun (Camb) 2024; 60:10021-10024. [PMID: 39188187 DOI: 10.1039/d4cc03582h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Early diagnosis and precise treatment of hepatocellular carcinoma (HCC) are crucial for human health. Therefore, addressing the potential markers of HCC, glutathione (GSH) and viscosity, we constructed a fluorescent probe (PG-V) activated cascadically by GSH/viscosity. PG-V possessed excellent photophysical properties and biocompatibility, and could specifically illuminate tumor tissue, achieving fluorescence imaging of HCC, and imaging-guided tumor resection.
Collapse
Affiliation(s)
- Wen Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, Shandong, People's Republic of China.
| | - Min Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, Shandong, People's Republic of China.
| | - Mengmei Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, Shandong, People's Republic of China.
| | - Xin Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, Shandong, People's Republic of China.
| | - Ping Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, Shandong, People's Republic of China.
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, Shandong, People's Republic of China.
- Laoshan Laboratory, Qingdao 266237, Shandong, People's Republic of China
| |
Collapse
|
10
|
Liu H, Xie Z, Gao X, Wei L, Li M, Lin Z, Huang X. Lysosomal dysfunction-derived autophagy impairment of gingival epithelial cells in diabetes-associated periodontitis with altered protein acetylation. Cell Signal 2024; 121:111273. [PMID: 38950874 DOI: 10.1016/j.cellsig.2024.111273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/08/2024] [Accepted: 06/23/2024] [Indexed: 07/03/2024]
Abstract
Diabetes-associated periodontitis (DP) presents severe inflammation and resistance to periodontal conventional treatment, presenting a significant challenge in clinical management. In this study, we investigated the underlying mechanism driving the hyperinflammatory response in gingival epithelial cells (GECs) of DP patients. Our findings indicate that lysosomal dysfunction under high glucose conditions leads to the blockage of autophagy flux, exacerbating inflammatory response in GECs. Single-cell RNA sequencing and immunohistochemistry analyses of clinical gingival epithelia revealed dysregulation in the lysosome pathway characterized by reduced levels of lysosome-associated membrane glycoprotein 2 (LAMP2) and V-type proton ATPase 16 kDa proteolipid subunit c (ATP6V0C) in subjects with DP. In vitro stimulation of human gingival epithelial cells (HGECs) with a hyperglycemic microenvironment showed elevated release of proinflammatory cytokines, compromised lysosomal acidity and blocked autophagy. Moreover, HGECs with deficiency in ATP6V0C demonstrated impaired autophagy and heightened inflammatory response, mirroring the effects of high glucose stimulation. Proteomic analysis of acetylation modifications identified altered acetylation levels in 28 autophagy-lysosome pathway-related proteins and 37 sites in HGECs subjected to high glucose stimulation or siATP6V0C. Overall, our finding highlights the pivotal role of lysosome impairment in autophagy obstruction in DP and suggests a potential impact of altered acetylation of relevant proteins on the interplay between lysosome dysfunction and autophagy blockage. These insights may pave the way for the development of effective therapeutic strategies against DP.
Collapse
Affiliation(s)
- Hui Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, 510055, P. R. China
| | - Zhuo Xie
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, 510055, P. R. China
| | - Xianling Gao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, 510055, P. R. China
| | - Linhesheng Wei
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, 510055, P. R. China
| | - Mengdi Li
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Zhengmei Lin
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, 510055, P. R. China.
| | - Xin Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, 510055, P. R. China.
| |
Collapse
|
11
|
Domingues N, Catarino S, Cristóvão B, Rodrigues L, Carvalho FA, Sarmento MJ, Zuzarte M, Almeida J, Ribeiro-Rodrigues T, Correia-Rodrigues Â, Fernandes F, Rodrigues-Santos P, Aasen T, Santos NC, Korolchuk VI, Gonçalves T, Milosevic I, Raimundo N, Girão H. Connexin43 promotes exocytosis of damaged lysosomes through actin remodelling. EMBO J 2024; 43:3627-3649. [PMID: 39044100 PMCID: PMC11377567 DOI: 10.1038/s44318-024-00177-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/25/2024] Open
Abstract
A robust and efficient cellular response to lysosomal membrane damage prevents leakage from the lysosome lumen into the cytoplasm. This response is understood to happen through either lysosomal membrane repair or lysophagy. Here we report exocytosis as a third response mechanism to lysosomal damage, which is further potentiated when membrane repair or lysosomal degradation mechanisms are impaired. We show that Connexin43 (Cx43), a protein canonically associated with gap junctions, is recruited from the plasma membrane to damaged lysosomes, promoting their secretion and accelerating cell recovery. The effects of Cx43 on lysosome exocytosis are mediated by a reorganization of the actin cytoskeleton that increases plasma membrane fluidity and decreases cell stiffness. Furthermore, we demonstrate that Cx43 interacts with the actin nucleator Arp2, the activity of which was shown to be necessary for Cx43-mediated actin rearrangement and lysosomal exocytosis following damage. These results define a novel mechanism of lysosomal quality control whereby Cx43-mediated actin remodelling potentiates the secretion of damaged lysosomes.
Collapse
Affiliation(s)
- Neuza Domingues
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- Univ Coimbra, Faculty of Medicine, Coimbra, Portugal
- Univ Coimbra, Centre for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical and Academic Centre of Coimbra, Coimbra, Portugal
- Multidisciplinary Institute of Ageing, University of Coimbra, Coimbra, Portugal
| | - Steve Catarino
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- Univ Coimbra, Faculty of Medicine, Coimbra, Portugal
- Univ Coimbra, Centre for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical and Academic Centre of Coimbra, Coimbra, Portugal
| | - Beatriz Cristóvão
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- Univ Coimbra, Faculty of Medicine, Coimbra, Portugal
- Univ Coimbra, Centre for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical and Academic Centre of Coimbra, Coimbra, Portugal
| | - Lisa Rodrigues
- Univ Coimbra, Center for Neurosciences and Cell Biology (CNC), Coimbra, Portugal
| | - Filomena A Carvalho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Maria João Sarmento
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Mónica Zuzarte
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- Univ Coimbra, Faculty of Medicine, Coimbra, Portugal
- Univ Coimbra, Centre for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical and Academic Centre of Coimbra, Coimbra, Portugal
| | - Jani Almeida
- Univ Coimbra, Faculty of Medicine, Coimbra, Portugal
- Univ Coimbra, Centre for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical and Academic Centre of Coimbra, Coimbra, Portugal
- Univ Coimbra, Center for Neurosciences and Cell Biology (CNC), Coimbra, Portugal
| | - Teresa Ribeiro-Rodrigues
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- Univ Coimbra, Faculty of Medicine, Coimbra, Portugal
- Univ Coimbra, Centre for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical and Academic Centre of Coimbra, Coimbra, Portugal
| | - Ânia Correia-Rodrigues
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- Univ Coimbra, Faculty of Medicine, Coimbra, Portugal
- Univ Coimbra, Centre for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical and Academic Centre of Coimbra, Coimbra, Portugal
| | - Fábio Fernandes
- Institute for Bioengineering and Biosciences (IBB) and Associate Laboratory i4HB-Institute for Health and Bioeconomy, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Paulo Rodrigues-Santos
- Univ Coimbra, Faculty of Medicine, Coimbra, Portugal
- Univ Coimbra, Centre for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical and Academic Centre of Coimbra, Coimbra, Portugal
- Univ Coimbra, Center for Neurosciences and Cell Biology (CNC), Coimbra, Portugal
| | - Trond Aasen
- Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Nuno C Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Viktor I Korolchuk
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
| | - Teresa Gonçalves
- Univ Coimbra, Faculty of Medicine, Coimbra, Portugal
- Univ Coimbra, Centre for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Univ Coimbra, Center for Neurosciences and Cell Biology (CNC), Coimbra, Portugal
| | - Ira Milosevic
- Multidisciplinary Institute of Ageing, University of Coimbra, Coimbra, Portugal
- University of Oxford, Centre for Human Genetics, Nuffield Department of Medicine, Oxford, UK
| | - Nuno Raimundo
- Multidisciplinary Institute of Ageing, University of Coimbra, Coimbra, Portugal
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, USA
| | - Henrique Girão
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal.
- Univ Coimbra, Faculty of Medicine, Coimbra, Portugal.
- Univ Coimbra, Centre for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal.
- Clinical and Academic Centre of Coimbra, Coimbra, Portugal.
| |
Collapse
|
12
|
Chen L, Zhang J, Xu W, Chen J, Tang Y, Xiong S, Li Y, Zhang H, Li M, Liu Z. Cholesterol-rich lysosomes induced by respiratory syncytial virus promote viral replication by blocking autophagy flux. Nat Commun 2024; 15:6311. [PMID: 39060258 PMCID: PMC11282085 DOI: 10.1038/s41467-024-50711-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Respiratory syncytial virus (RSV) hijacks cholesterol or autophagy pathways to facilitate optimal replication. However, our understanding of the associated molecular mechanisms remains limited. Here, we show that RSV infection blocks cholesterol transport from lysosomes to the endoplasmic reticulum by downregulating the activity of lysosomal acid lipase, activates the SREBP2-LDLR axis, and promotes uptake and accumulation of exogenous cholesterol in lysosomes. High cholesterol levels impair the VAP-A-binding activity of ORP1L and promote the recruitment of dynein-dynactin, PLEKHM1, or HOPS VPS39 to Rab7-RILP, thereby facilitating minus-end transport of autophagosomes and autolysosome formation. Acidification inhibition and dysfunction of cholesterol-rich lysosomes impair autophagy flux by inhibiting autolysosome degradation, which promotes the accumulation of RSV fusion protein. RSV-F storage is nearly abolished after cholesterol depletion or knockdown of LDLR. Most importantly, the knockout of LDLR effectively inhibits RSV infection in vivo. These findings elucidate the molecular mechanism of how RSV co-regulates lysosomal cholesterol reprogramming and autophagy and reveal LDLR as a novel target for anti-RSV drug development.
Collapse
Affiliation(s)
- Lifeng Chen
- State Key Laboratory of Bioactive Molecules and Druggability Assessment & College of Pharmacy, Jinan University, Guangzhou, China
- Department of Dermatology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Jingjing Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment & College of Pharmacy, Jinan University, Guangzhou, China
| | - Weibin Xu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment & College of Pharmacy, Jinan University, Guangzhou, China
| | - Jiayi Chen
- State Key Laboratory of Bioactive Molecules and Druggability Assessment & College of Pharmacy, Jinan University, Guangzhou, China
| | - Yujun Tang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment & College of Pharmacy, Jinan University, Guangzhou, China
| | - Si Xiong
- State Key Laboratory of Bioactive Molecules and Druggability Assessment & College of Pharmacy, Jinan University, Guangzhou, China
| | - Yaolan Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment & College of Pharmacy, Jinan University, Guangzhou, China
| | - Hong Zhang
- Department of Dermatology, The First Affiliated Hospital, Jinan University, Guangzhou, China.
| | - Manmei Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment & College of Pharmacy, Jinan University, Guangzhou, China.
| | - Zhong Liu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment & College of Pharmacy, Jinan University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Bioengineering Medicine & College of Life Science and Technology, Jinan University, Guangzhou, China.
| |
Collapse
|
13
|
Ma C, Li H, Lu S, Li X. Thyroid-associated ophthalmopathy: the role of oxidative stress. Front Endocrinol (Lausanne) 2024; 15:1400869. [PMID: 39055057 PMCID: PMC11269105 DOI: 10.3389/fendo.2024.1400869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/28/2024] [Indexed: 07/27/2024] Open
Abstract
Thyroid-associated ophthalmopathy (TAO) is an autoimmune condition affecting the eyes, characterized by proptosis, extraocular muscle involvement, and in severe cases, vision impairment including diplopia, optic neuropathy, and potential blindness. The exact etiology of TAO remains elusive; however, increased oxidative stress and decreased antioxidant capacity are pivotal in its pathogenesis. Elevated oxidative stress not only directly damages orbital tissues but also influences thyroid function and autoimmune responses, exacerbating tissue destruction. This review explores the role of oxidative stress in TAO, elucidates its mechanisms, and evaluates the efficacy and limitations of antioxidant therapies in managing TAO. The findings aim to enhance understanding of oxidative stress mechanisms in TAO and propose potential antioxidant strategies for future therapeutic development.
Collapse
Affiliation(s)
- Chao Ma
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Haoyu Li
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Clinical Research Centre of Ophthalmic Disease, Changsha, Hunan, China
| | - Shuwen Lu
- Department of Ophthalmology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xian Li
- Manchester Royal Eye Hospital, Manchester University NHS Foundation Trust, Manchester, United Kingdom
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
14
|
Lin Y, Ke S, Ye W, Xie B, Huang Z. Non-Apoptotic Programmed Cell Death as Targets for Diabetic Retinal Neurodegeneration. Pharmaceuticals (Basel) 2024; 17:837. [PMID: 39065688 PMCID: PMC11279440 DOI: 10.3390/ph17070837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/10/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Diabetic retinopathy (DR) remains the leading cause of blindness among the global working-age population. Emerging evidence underscores the significance of diabetic retinal neurodegeneration (DRN) as a pivotal biomarker in the progression of vasculopathy. Inflammation, oxidative stress, neural cell death, and the reduction in neurotrophic factors are the key determinants in the pathophysiology of DRN. Non-apoptotic programmed cell death (PCD) plays a crucial role in regulating stress response, inflammation, and disease management. Therapeutic modalities targeting PCD have shown promising potential for mitigating DRN. In this review, we highlight recent advances in identifying the role of various PCD types in DRN, with specific emphasis on necroptosis, pyroptosis, ferroptosis, parthanatos, and the more recently characterized PANoptosis. In addition, the therapeutic agents aimed at the regulation of PCD for addressing DRN are discussed.
Collapse
Affiliation(s)
- Yingjia Lin
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China; (Y.L.); (S.K.); (W.Y.); (B.X.)
- Fifth Clinical Institute of Shantou University Medical College, Shantou 515041, China
| | - Shuping Ke
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China; (Y.L.); (S.K.); (W.Y.); (B.X.)
- Fifth Clinical Institute of Shantou University Medical College, Shantou 515041, China
| | - Weiqing Ye
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China; (Y.L.); (S.K.); (W.Y.); (B.X.)
- Fifth Clinical Institute of Shantou University Medical College, Shantou 515041, China
| | - Biyao Xie
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China; (Y.L.); (S.K.); (W.Y.); (B.X.)
- Fifth Clinical Institute of Shantou University Medical College, Shantou 515041, China
| | - Zijing Huang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China; (Y.L.); (S.K.); (W.Y.); (B.X.)
| |
Collapse
|
15
|
Stanton AE, Bubnys A, Agbas E, James B, Park DS, Jiang A, Pinals RL, Liu L, Truong N, Loon A, Staab C, Cerit O, Wen HL, Kellis M, Blanchard JW, Langer R, Tsai LH. Engineered 3D Immuno-Glial-Neurovascular Human miBrain Model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.15.553453. [PMID: 37645757 PMCID: PMC10461996 DOI: 10.1101/2023.08.15.553453] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Patient-specific, human-based cellular models integrating a biomimetic blood-brain barrier (BBB), immune, and myelinated neuron components are critically needed to enable accelerated, translationally relevant discovery of neurological disease mechanisms and interventions. By engineering a novel brain-mimicking 3D hydrogel and co-culturing all six major brain cell types derived from patient iPSCs, we have constructed, characterized, and utilized a multicellular integrated brain (miBrain) immuno-glial-neurovascular model with in vivo- like hallmarks inclusive of neuronal activity, functional connectivity, barrier function, myelin-producing oligodendrocyte engagement with neurons, multicellular interactions, and transcriptomic profiles. We implemented the model to study Alzheimer's Disease pathologies associated with APOE4 genetic risk. APOE4 miBrains differentially exhibit amyloid aggregation, tau phosphorylation, and astrocytic GFAP. Unlike the co-emergent fate specification of glia and neurons in organoids, miBrains integrate independently differentiated cell types, a feature we harnessed to identify that APOE4 in astrocytes promotes neuronal tau pathogenesis and dysregulation through crosstalk with microglia.
Collapse
|
16
|
Yeo XY, Kwon S, Rinai KR, Lee S, Jung S, Park R. A Consolidated Understanding of the Contribution of Redox Dysregulation in the Development of Hearing Impairment. Antioxidants (Basel) 2024; 13:598. [PMID: 38790703 PMCID: PMC11118506 DOI: 10.3390/antiox13050598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/26/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
The etiology of hearing impairment is multifactorial, with contributions from both genetic and environmental factors. Although genetic studies have yielded valuable insights into the development and function of the auditory system, the contribution of gene products and their interaction with alternate environmental factors for the maintenance and development of auditory function requires further elaboration. In this review, we provide an overview of the current knowledge on the role of redox dysregulation as the converging factor between genetic and environmental factor-dependent development of hearing loss, with a focus on understanding the interaction of oxidative stress with the physical components of the peripheral auditory system in auditory disfunction. The potential involvement of molecular factors linked to auditory function in driving redox imbalance is an important promoter of the development of hearing loss over time.
Collapse
Affiliation(s)
- Xin Yi Yeo
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
- Department of Medical Science, College of Medicine, CHA University, Seongnam 13488, Republic of Korea;
| | - Soohyun Kwon
- Department of Medical Science, College of Medicine, CHA University, Seongnam 13488, Republic of Korea;
- Department of BioNanotechnology, Gachon University, Seongnam 13120, Republic of Korea
| | - Kimberley R. Rinai
- Department of Life Science, College of Medicine, CHA University, Seongnam 13488, Republic of Korea;
| | - Sungsu Lee
- Department of Otolaryngology-Head and Neck Surgery, Chonnam National University Hospital and Medical School, Gwangju 61469, Republic of Korea;
| | - Sangyong Jung
- Department of Medical Science, College of Medicine, CHA University, Seongnam 13488, Republic of Korea;
| | - Raekil Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science & Technology (GIST), Gwangju 61005, Republic of Korea
| |
Collapse
|
17
|
Ulhaq ZS, You MS, Jiang YJ, Tse WKF. p53 inhibitor or antioxidants reduce the severity of ethmoid plate deformities in zebrafish Type 3 Treacher Collins syndrome model. Int J Biol Macromol 2024; 266:131216. [PMID: 38556235 DOI: 10.1016/j.ijbiomac.2024.131216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Treacher Collins syndrome-3 (TCS-3) is a rare congenital craniofacial disorder attributed to variants in the RNA pol I subunit C (POLR1C). The pathogenesis of TCS-3 linked to polr1c involves the activation of apoptosis-dependent p53 pathways within neural crest cells (NCCs). This occurs due to disruptions in ribosome biogenesis, and the restoration of polr1c expression in early embryogenesis effectively rescues the observed craniofacial phenotype in polr1c-deficient zebrafish. Clinical variability in TCS patients suggests interactions between genes and factors like oxidative stress. Elevated production of reactive oxygen species (ROS) in epithelial cells may worsen phenotypic outcomes in TCS individuals. Our study confirmed excessive ROS production in facial regions, inducing apoptosis and altering p53 pathways. Deregulated cell-cycle and epithelial-to-mesenchymal transition (EMT) genes were also detected in the TCS-3 model. Utilizing p53 inhibitor (Pifithrin-α; PFT-α) or antioxidants (Glutathione; GSH and N-Acetyl-L-cysteine; NAC) effectively corrected migrated NCC distribution in the pharyngeal arch (PA), suppressed oxidative stress, prevented cell death, and modulated EMT inducers. Crucially, inhibiting p53 activation or applying antioxidants within a specific time window, notably within 30 h post-fertilization (hpf), successfully reversed phenotypic effects induced by polr1c MO.
Collapse
Affiliation(s)
- Zulvikar Syambani Ulhaq
- Laboratory of Developmental Disorders and Toxicology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan; Research Center for Pre-clinical and Clinical Medicine, National Research and Innovation Agency, Cibinong 16911, Indonesia.
| | - May-Su You
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County 350, Taiwan
| | - Yun-Jin Jiang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County 350, Taiwan
| | - William Ka Fai Tse
- Laboratory of Developmental Disorders and Toxicology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan.
| |
Collapse
|
18
|
Xu Z, Liu S, Xu L, Li Z, Zhang X, Kang H, Liu Y, Yu J, Jing J, Niu G, Zhang X. A novel ratiometric fluorescent probe with high selectivity for lysosomal nitric oxide imaging. Anal Chim Acta 2024; 1297:342303. [PMID: 38438223 DOI: 10.1016/j.aca.2024.342303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 01/21/2024] [Accepted: 01/28/2024] [Indexed: 03/06/2024]
Abstract
Nitric oxide (NO) plays critical roles in both physiology and pathology, serving as a significant signaling molecule. Recent investigations have uncovered the pivotal role of lysosome as a critical organelle where intracellular NO exists and takes function. In this study, we developed a novel ratiometric fluorescent probe called XL-NO and modified it with a morpholine unit, which followed the intramolecular charge transfer (ICT) mechanism. The probe could detect lysosomal nitric oxide with high selectivity and sensitivity. The probe XL-NO contained a secondary amine moiety that could readily react with NO in lysosomes, leading to the formation of the N-nitrosation product. The N-nitroso structure enhanced the capability in push-pull electron, which obviously led to the change of fluorescence from 621 nm to 521 nm. In addition, XL-NO was discovered to have some evident advantages, such as significant ratiometric signal (I521/I621) change, strong anti-interference ability, good biocompatibility, and a low detection limit (LOD = 44.3 nM), which were crucial for the detection of lysosomal NO. To evaluate the practical application of XL-NO, NO imaging experiments were performed in both living cells and zebrafish. The results from these experiments confirmed the feasibility and reliability of XL-NO for exogenous/endogenous NO imaging and lysosome targeting.
Collapse
Affiliation(s)
- Zhiling Xu
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials, Analytical and Testing Center, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Songtao Liu
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials, Analytical and Testing Center, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Liren Xu
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials, Analytical and Testing Center, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Zichun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials, Analytical and Testing Center, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Xiaoli Zhang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials, Analytical and Testing Center, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China; School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Hao Kang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials, Analytical and Testing Center, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Yifan Liu
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials, Analytical and Testing Center, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Jin Yu
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials, Analytical and Testing Center, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Jing Jing
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials, Analytical and Testing Center, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China; School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Guangle Niu
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials, Analytical and Testing Center, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Xiaoling Zhang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials, Analytical and Testing Center, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China; School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, PR China.
| |
Collapse
|
19
|
Kim MS, Lee YH, Lee Y, Byeon E, Kim DH, Wang M, Hagiwara A, Aranda M, Wu RSS, Park HG, Lee JS. Transgenerational adaptation to ocean acidification determines the susceptibility of filter-feeding rotifers to nanoplastics. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132593. [PMID: 37776776 DOI: 10.1016/j.jhazmat.2023.132593] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/17/2023] [Accepted: 09/19/2023] [Indexed: 10/02/2023]
Abstract
The adaptation of marine organisms to the impending challenges presented by ocean acidification (OA) is essential for their future survival, and mechanisms underlying OA adaptation have been reported in several marine organisms. In the natural environment, however, marine organisms are often exposed to a combination of environmental stressors, and the interactions between adaptive responses have yet to be elucidated. Here, we investigated the susceptibility of filter-feeding rotifers to short-term (ST) and long-term (LT) (≥180 generations) high CO2 conditions coupled with nanoplastic (NPs) exposure (ST+ and LT+). Adaptation of rotifers to elevated CO2 caused differences in ingestion and accumulation of NPs, resulting in a significantly different mode of action on in vivo endpoints between the ST+ and LT+ groups. Moreover, microRNA-mediated epigenetic regulation was strongly correlated with the varied adaptive responses between the ST+ and LT+ groups, revealing novel regulatory targets and pathways. Our results indicate that pre-exposure history to increased CO2 levels is an important factor in the susceptibility of rotifers to NPs.
Collapse
Affiliation(s)
- Min-Sub Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Young Hwan Lee
- Department of Marine Ecology and Environment, College of Life Sciences, Gangneung-Wonju National University, Gangneung 25457, South Korea
| | - Yoseop Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Eunjin Byeon
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Duck-Hyun Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Minghua Wang
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Atsushi Hagiwara
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| | - Manuel Aranda
- Marine Science Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Rudolf Shiu Sun Wu
- Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong Special Administrative region of China; State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region of China
| | - Heum Gi Park
- Department of Marine Ecology and Environment, College of Life Sciences, Gangneung-Wonju National University, Gangneung 25457, South Korea
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
20
|
Jeong J, Kim OH, Shim J, Keum S, Hwang YE, Song S, Kim JW, Choi JH, Lee HJ, Rhee S. Microtubule acetylation induced by oxidative stress regulates subcellular distribution of lysosomal vesicles for amyloid-beta secretion. J Cell Physiol 2023; 238:2812-2826. [PMID: 37801327 DOI: 10.1002/jcp.31131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 09/04/2023] [Accepted: 09/19/2023] [Indexed: 10/07/2023]
Abstract
Excessive production and accumulation of amyloid-beta (Aβ) in the brain are one of the hallmarks of Alzheimer's disease (AD). Although oxidative stress is known to trigger and promote the progression of AD, the molecular relationship between oxidative stress and Aβ production is not yet fully understood. In this study, we demonstrate that microtubule acetylation induced by oxidative stress plays a critical role in Aβ production and secretion by altering the subcellular distribution of Aβ precursor protein (APP)-containing lysosomal vesicles. Under oxidative stress, both H4-APPSwe/Ind and HEK293T-APPSwe/Ind cell lines showed increased microtubule acetylation and Aβ secretion. Knockdown (KD) of alpha-tubulin N-acetyltransferase 1 (ATAT1) by using a lentiviral shRNA not only inhibited the generation of intermediate APP fragments, such as β-CTF and AICD, but also suppressed Aβ secretion. Oxidative stress promoted the dispersion of LAMP1-positive vesicles to the periphery of the cell through microtubule acetylation, leading to the formation of neutralized lysosomal vesicles (NLVs), which was inhibited by ATAT1 KD. Treatment of the cells with the dynein ATPase inhibitor EHNA or downregulation of LIS1, a regulator of dynein-mediated intracellular transport, increased the peripheral localization of NLVs and promoted Aβ secretion, whereas KD of ADP ribosylation factor like GTPase 8B showed the opposite result. ATAT1 KD in the hippocampal region of the 5×FAD AD mouse model also showed significant reductions in Aβ plaque accumulation and memory loss. Taken together, these findings suggest that oxidative stress-induced microtubule acetylation promotes the peripheral localization of lysosomal vesicles to form NLVs, thereby enhancing Aβ secretion.
Collapse
Affiliation(s)
- Jangho Jeong
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Ok-Hyeon Kim
- Department of Anatomy and Cell Biology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Jaeyeoung Shim
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Seula Keum
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Ye Eun Hwang
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Seongeun Song
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Jung-Woong Kim
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Jee-Hye Choi
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Hyun Jung Lee
- Department of Anatomy and Cell Biology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Republic of Korea
| | - Sangmyung Rhee
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
21
|
Herzeg A, Borges B, Lianoglou BR, Gonzalez-Velez J, Canepa E, Munar D, Young SP, Bali D, Gelb MH, Chakraborty P, Kishnani PS, Harmatz P, Cohen JL, MacKenzie TC. Intrauterine enzyme replacement therapies for lysosomal storage disorders: Current developments and promising future prospects. Prenat Diagn 2023; 43:1638-1649. [PMID: 37955580 PMCID: PMC11155627 DOI: 10.1002/pd.6460] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 11/14/2023]
Abstract
Lysosomal storage disorders (LSDs) are a group of monogenic condition, with many characterized by an enzyme deficiency leading to the accumulation of an undegraded substrate within the lysosomes. For those LSDs, postnatal enzyme replacement therapy (ERT) represents the standard of care, but this treatment has limitations when administered only postnatally because, at that point, prenatal disease sequelae may be irreversible. Furthermore, most forms of ERT, specifically those administered systemically, are currently unable to access certain tissues, such as the central nervous system (CNS), and furthermore, may initiate an immune response. In utero enzyme replacement therapy (IUERT) is a novel approach to address these challenges evaluated in a first-in-human clinical trial for IUERT in LSDs (NCT04532047). IUERT has numerous advantages: in-utero intervention may prevent early pathology; the CNS can be accessed before the blood-brain barrier forms; and the unique fetal immune system enables exposure to new proteins with the potential to prevent an immune response and may induce sustained tolerance. However, there are challenges and limitations for any fetal procedure that involves two patients. This article reviews the current state of IUERT for LSDs, including its advantages, limitations, and potential future directions for definitive therapies.
Collapse
Affiliation(s)
- Akos Herzeg
- Center for Maternal-Fetal Precision Medicine, University of California, San Francisco, California, USA
- Department of Surgery, University of California, San Francisco, California, USA
| | - Beltran Borges
- Center for Maternal-Fetal Precision Medicine, University of California, San Francisco, California, USA
- Department of Surgery, University of California, San Francisco, California, USA
| | - Billie R. Lianoglou
- Center for Maternal-Fetal Precision Medicine, University of California, San Francisco, California, USA
- Department of Surgery, University of California, San Francisco, California, USA
| | - Juan Gonzalez-Velez
- Center for Maternal-Fetal Precision Medicine, University of California, San Francisco, California, USA
- Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, California, USA
| | - Emma Canepa
- Center for Maternal-Fetal Precision Medicine, University of California, San Francisco, California, USA
- Department of Surgery, University of California, San Francisco, California, USA
| | - Dane Munar
- Center for Maternal-Fetal Precision Medicine, University of California, San Francisco, California, USA
| | - Sarah P. Young
- Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, North Carolina, USA
| | - Deeksha Bali
- Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, North Carolina, USA
| | - Michel H. Gelb
- Department of Chemistry, University of Washington, Seattle, Washington, USA
| | - Pranesh Chakraborty
- Department of Pediatrics, Children’s Hospital of Eastern Ontario and University of Ottawa, Ottawa, Ontario, Canada
| | - Priya S. Kishnani
- Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, North Carolina, USA
| | - Paul Harmatz
- Benioff Children’s Hospital, University of California, San Francisco, California, USA
| | - Jennifer L. Cohen
- Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, North Carolina, USA
| | - Tippi C. MacKenzie
- Center for Maternal-Fetal Precision Medicine, University of California, San Francisco, California, USA
- Department of Surgery, University of California, San Francisco, California, USA
- Benioff Children’s Hospital, University of California, San Francisco, California, USA
| |
Collapse
|
22
|
Attia SA, Truong AT, Phan A, Lee SJ, Abanmai M, Markanovic M, Avila H, Luo H, Ali A, Sreekumar PG, Kannan R, MacKay JA. αB-Crystallin Peptide Fused with Elastin-like Polypeptide: Intracellular Activity in Retinal Pigment Epithelial Cells Challenged with Oxidative Stress. Antioxidants (Basel) 2023; 12:1817. [PMID: 37891896 PMCID: PMC10604459 DOI: 10.3390/antiox12101817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Oxidative stress-induced retinal degeneration is among the main contributing factors of serious ocular pathologies that can lead to irreversible blindness. αB-crystallin (cry) is an abundant component of the visual pathway in the vitreous humor, which modulates protein and cellular homeostasis. Within this protein exists a 20 amino acid fragment (mini-cry) with both chaperone and antiapoptotic activity. This study fuses this mini-cry peptide to two temperature-sensitive elastin-like polypeptides (ELP) with the goal of prolonging its activity in the retina. METHODS The biophysical properties and chaperone activity of cry-ELPs were confirmed by mass spectrometry, cloud-point determination, and dynamic light scattering 'DLS'. For the first time, this work compares a simpler ELP architecture, cry-V96, with a previously reported ELP diblock copolymer, cry-SI. Their relative mechanisms of cellular uptake and antiapoptotic potential were tested using retinal pigment epithelial cells (ARPE-19). Oxidative stress was induced with H2O2 and comparative internalization of both cry-ELPs was made using 2D and 3D culture models. We also explored the role of lysosomal membrane permeabilization by confocal microscopy. RESULTS The results indicated successful ELP fusion, cellular association with both 2D and 3D cultures, which were enhanced by oxidative stress. Both constructs suppressed apoptotic signaling (cleaved caspase-3); however, cry-V96 exhibited greater lysosomal escape. CONCLUSIONS ELP architecture is a critical factor to optimize delivery of therapeutic peptides, such as the anti-apoptotic mini-cry peptide; furthermore, the protection of mini-cry via ELPs is enhanced by lysosomal membrane permeabilization.
Collapse
Affiliation(s)
- Sara Aly Attia
- Department of Pharmacology and Pharmaceutical Sciences, Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (S.A.A.); (A.T.T.); (A.P.); (M.A.); (M.M.); (H.A.); (H.L.); (A.A.)
| | - Anh Tan Truong
- Department of Pharmacology and Pharmaceutical Sciences, Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (S.A.A.); (A.T.T.); (A.P.); (M.A.); (M.M.); (H.A.); (H.L.); (A.A.)
| | - Alvin Phan
- Department of Pharmacology and Pharmaceutical Sciences, Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (S.A.A.); (A.T.T.); (A.P.); (M.A.); (M.M.); (H.A.); (H.L.); (A.A.)
| | - Shin-Jae Lee
- Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA;
| | - Manal Abanmai
- Department of Pharmacology and Pharmaceutical Sciences, Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (S.A.A.); (A.T.T.); (A.P.); (M.A.); (M.M.); (H.A.); (H.L.); (A.A.)
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Marinella Markanovic
- Department of Pharmacology and Pharmaceutical Sciences, Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (S.A.A.); (A.T.T.); (A.P.); (M.A.); (M.M.); (H.A.); (H.L.); (A.A.)
| | - Hugo Avila
- Department of Pharmacology and Pharmaceutical Sciences, Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (S.A.A.); (A.T.T.); (A.P.); (M.A.); (M.M.); (H.A.); (H.L.); (A.A.)
| | - Haozhong Luo
- Department of Pharmacology and Pharmaceutical Sciences, Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (S.A.A.); (A.T.T.); (A.P.); (M.A.); (M.M.); (H.A.); (H.L.); (A.A.)
| | - Atham Ali
- Department of Pharmacology and Pharmaceutical Sciences, Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (S.A.A.); (A.T.T.); (A.P.); (M.A.); (M.M.); (H.A.); (H.L.); (A.A.)
| | | | - Ram Kannan
- Doheny Eye Institute, Pasadena, CA 91103, USA; (P.G.S.); (R.K.)
- Stein Eye Institute, Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - J. Andrew MacKay
- Department of Pharmacology and Pharmaceutical Sciences, Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (S.A.A.); (A.T.T.); (A.P.); (M.A.); (M.M.); (H.A.); (H.L.); (A.A.)
- Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA;
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
23
|
He X, Li X, Tian W, Li C, Li P, Zhao J, Yang S, Li S. The role of redox-mediated lysosomal dysfunction and therapeutic strategies. Biomed Pharmacother 2023; 165:115121. [PMID: 37418979 DOI: 10.1016/j.biopha.2023.115121] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 07/09/2023] Open
Abstract
Redox homeostasis refers to the dynamic equilibrium between oxidant and reducing agent in the body which plays a crucial role in maintaining normal physiological activities of the body. The imbalance of redox homeostasis can lead to the development of various human diseases. Lysosomes regulate the degradation of cellular proteins and play an important role in influencing cell function and fate, and lysosomal dysfunction is closely associated with the development of various diseases. In addition, several studies have shown that redox homeostasis plays a direct or indirect role in regulating lysosomes. Therefore, this paper systematically reviews the role and mechanisms of redox homeostasis in the regulation of lysosomal function. Therapeutic strategies based on the regulation of redox exerted to disrupt or restore lysosomal function are further discussed. Uncovering the role of redox in the regulation of lysosomes helps to point new directions for the treatment of many human diseases.
Collapse
Affiliation(s)
- Xiaomeng He
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xuening Li
- Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Wei Tian
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Chenyu Li
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Pengfei Li
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jingyuan Zhao
- The First Affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Shilei Yang
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Shuai Li
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
24
|
Hood EM, Lipinski RAJ, Lipinski DM. Downregulation of lysosomal trafficking in ARPE19 cells leads to decreased transfection efficiency at high passage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.26.550695. [PMID: 37546846 PMCID: PMC10402107 DOI: 10.1101/2023.07.26.550695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
PURPOSE ARPE19 cells are a commonly used cell culture model for the study of retinal pigment epithelial cell biology and pathologies. However, numerous studies have demonstrated that ARPE19 undergo morphologic, transcriptomic and genomic alterations over time and with increasing passage number. Herein, we explore the mechanisms underlying increased resistance to the delivery of exogenous genetic material via transfection in ARPE19 cells using mass spectrometry. METHODS ARPE19 cells (N=5 wells/reagent) were seeded in 6-well plates at passages 24 through 30. At 70% confluency an mCherry reporter construct was delivered via transfection using Lipofectamine 3000, Lipofectamine LTX, Lipofectamine Stem, or PEI (polyethylenimine) reagents. After 72 hours, transfection efficiency was quantified by fluorescence microscopy and flow cytometry. Mass spectrometry and immunofluorescence of ARPE19 cells were performed at passages 24 and 30 to evaluate altered protein synthesis and localization between passage numbers. RESULTS ARPE19 transfection showed a maximum transfection efficiency of 32.4% at P26 using Lipofectamine 3000 reagent. All lipofectamine based reagents demonstrated statistically significant decreases in transfection efficiency between passages 24 and 30. Mass spectrometry analysis revealed 18 differentially expressed proteins, including down-regulation of clathrin light chain B (CLTB) and legumain (LGMN) that was confirmed via immunofluorescence imaging, which indicated altered intracellular localization. CONCLUSIONS ARPE19 cells demonstrate passage number dependent changes in lipofectamine-based transfection efficiency. Mass spectrometry and immunofluorescence indicates the observed decrease in transfection efficiency involves the dysregulation of endocytosis and intracellular endolysosomal trafficking at later passages. TRANSLATIONAL RELEVANCE This study contributes to mounting evidence for changes in ARPE19 cell physiology with increasing passage number. This information is of value for the continued use of ARPE19 cells as a model system for RPE biology and the development of therapeutics.
Collapse
Affiliation(s)
- Erika M.S. Hood
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, WI, USA
| | | | - Daniel M. Lipinski
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, WI, USA
- Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, WI, USA
| |
Collapse
|
25
|
Lysosomes as a Target of Anticancer Therapy. Int J Mol Sci 2023; 24:ijms24032176. [PMID: 36768500 PMCID: PMC9916765 DOI: 10.3390/ijms24032176] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/14/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
Lysosomes are organelles containing acidic hydrolases that are responsible for lysosomal degradation and the maintenance of cellular homeostasis. They play an important role in autophagy, as well as in various cell death pathways, such as lysosomal and apoptotic death. Various agents, including drugs, can induce lysosomal membrane permeability, resulting in the translocation of acidic hydrolases into the cytoplasm, which promotes lysosomal-mediated death. This type of death may be of great importance in anti-cancer therapy, as both cancer cells with disturbed pathways leading to apoptosis and drug-resistant cells can undergo it. Important compounds that damage the lysosomal membrane include lysosomotropic compounds, antihistamines, immunosuppressants, DNA-damaging drugs, chemotherapeutics, photosensitizers and various plant compounds. An interesting approach in the treatment of cancer and the search for ways to overcome the chemoresistance of cancer cells may also be combining lysosomotropic compounds with targeted modulators of autophagy to induce cell death. These compounds may be an alternative in oncological treatment, and lysosomes may become a promising therapeutic target for many diseases, including cancer. Understanding the functional relationships between autophagy and apoptosis and the possibilities of their regulation, both in relation to normal and cancer cells, can be used to develop new and more effective anticancer therapies.
Collapse
|
26
|
Kobayashi S, Hahn Y, Silverstein B, Singh M, Fleitz A, Van J, Chen H, Liang Q. Lysosomal dysfunction in diabetic cardiomyopathy. FRONTIERS IN AGING 2023; 4:1113200. [PMID: 36742461 PMCID: PMC9894896 DOI: 10.3389/fragi.2023.1113200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/10/2023] [Indexed: 01/21/2023]
Abstract
Diabetes is a major risk factor for a variety of cardiovascular complications, while diabetic cardiomyopathy, a disease specific to the myocardium independent of vascular lesions, is an important causative factor for increased risk of heart failure and mortality in diabetic populations. Lysosomes have long been recognized as intracellular trash bags and recycling facilities. However, recent studies have revealed that lysosomes are sophisticated signaling hubs that play remarkably diverse roles in adapting cell metabolism to an ever-changing environment. Despite advances in our understanding of the physiological roles of lysosomes, the events leading to lysosomal dysfunction and how they relate to the overall pathophysiology of the diabetic heart remain unclear and are under intense investigation. In this review, we summarize recent advances regarding lysosomal injury and its roles in diabetic cardiomyopathy.
Collapse
|
27
|
Zhang Y, Liu C, Liu J, Liu X, Tu Z, Zheng Y, Xu J, Fan H, Wang Y, Hu M. Multi-omics reveals response mechanism of liver metabolism of hybrid sturgeon under ship noise stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158348. [PMID: 36055508 DOI: 10.1016/j.scitotenv.2022.158348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/17/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Underwater noise from ship engines can affect the metabolism and immune system of various fish species. Meanwhile, changes in the metabolic pathways in liver are important for fish to adapt to adverse environments. We used a combined multi-omics analysis to investigate the response mechanism of hybrid sturgeon to continuously played ship noise. A control group and a noise group (simulated ship noise: 12 h) were set up, and liver tissues were extracted for high-throughput transcriptome and metabolome sequencing. The results show that a total of 588 differentially expressed genes (DEGs) and 58 DEGs metabolites were detected. The joint analysis of transcriptome and metabolome showed that under noise stress, apoptosis and cell motility were intensified, DNA replication, RNA transcription and translation, and protein synthesis were inhibited, and lipid metabolism, nucleotide metabolism, and vitamin D3 metabolic pathways were also inhibited. Interestingly, the initiation of a partial immune responses ensured their normal immunity abilities. Moreover, material and energy requirements of the organism under noise stress were guaranteed by upregulation of carbohydrate and amino acid metabolic pathways.
Collapse
Affiliation(s)
- Yong Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Chunhua Liu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Jiehao Liu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Ximei Liu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Zhihan Tu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Yueping Zheng
- Joint Laboratory for Monitoring and Conservation of Aquatic Living Resources in the Yangtze Estuary, Shanghai 200092, China; Shanghai Aquatic Wildlife Conservation and Research Center, Shanghai 200003, China
| | - Jianan Xu
- Joint Laboratory for Monitoring and Conservation of Aquatic Living Resources in the Yangtze Estuary, Shanghai 200092, China; Shanghai Aquatic Wildlife Conservation and Research Center, Shanghai 200003, China
| | - Houyong Fan
- Joint Laboratory for Monitoring and Conservation of Aquatic Living Resources in the Yangtze Estuary, Shanghai 200092, China; Shanghai Aquatic Wildlife Conservation and Research Center, Shanghai 200003, China
| | - Youji Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Menghong Hu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
28
|
Zinc and selenium mitigated heavy metals mixture (Pb, Al, Hg and Mn) mediated hepatic-nephropathy via modulation of oxido-inflammatory status and NF‑kB signaling in female albino rats. Toxicology 2022; 481:153350. [DOI: 10.1016/j.tox.2022.153350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/19/2022] [Accepted: 10/07/2022] [Indexed: 11/18/2022]
|
29
|
Liu J, Zhang W, Zhou C, Li M, Wang X, Zhang W, Liu Z, Wu L, James TD, Li P, Tang B. Precision Navigation of Hepatic Ischemia-Reperfusion Injury Guided by Lysosomal Viscosity-Activatable NIR-II Fluorescence. J Am Chem Soc 2022; 144:13586-13599. [PMID: 35793548 PMCID: PMC9354259 DOI: 10.1021/jacs.2c03832] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Hepatic ischemia-reperfusion injury (HIRI) is responsible for postoperative liver dysfunction and liver failure. Precise and rapid navigation of HIRI lesions is critical for early warning and timely development of pretreatment plans. Available methods for assaying liver injury fail to provide the exact location of lesions in real time intraoperatively. HIRI is intimately associated with oxidative stress which impairs lysosomal degradative function, leading to significant changes in lysosomal viscosity. Therefore, lysosomal viscosity is a potential biomarker for the precise targeting of HIRI. Hence, we developed a viscosity-activatable second near-infrared window fluorescent probe (NP-V) for the detection of lysosomal viscosity in hepatocytes and mice during HIRI. A reactive oxygen species-malondialdehyde-cathepsin B signaling pathway during HIRI was established. We further conducted high signal-to-background ratio NIR-II fluorescence imaging of HIRI mice. The contour and boundary of liver lesions were delineated, and as such the precise intraoperative resection of the lesion area was implemented. This research demonstrates the potential of NP-V as a dual-functional probe for the elucidation of HIRI pathogenesis and the direct navigation of HIRI lesions in clinical applications.
Collapse
Affiliation(s)
- Jihong Liu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Wen Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Chunmiao Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Mengmei Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Xin Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Wei Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Zhenzhen Liu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Luling Wu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China.,Department of Chemistry, University of Bath, Bath BA2 7AY, U.K
| | - Tony D James
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China.,Department of Chemistry, University of Bath, Bath BA2 7AY, U.K.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, People's Republic of China
| | - Ping Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| |
Collapse
|
30
|
Abbaszadeh F, Jorjani M, Joghataei MT, Mehrabi S. Astaxanthin Modulates Autophagy, Apoptosis, and Neuronal Oxidative Stress in a Rat Model of Compression Spinal Cord Injury. Neurochem Res 2022; 47:2043-2051. [PMID: 35435619 DOI: 10.1007/s11064-022-03593-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 10/18/2022]
Abstract
The effects of astaxanthin (AST) were evaluated on oxidative mediators, neuronal apoptosis, and autophagy in functional motor recovery after spinal cord injury (SCI). Rats were divided into three groups of sham, SCI + DMSO (dimethyl sulfoxide), and SCI + AST. Rats in the sham group only underwent a laminectomy at thoracic 8-9. While, the SCI + DMSO and SCI + AST groups had a compression SCI with an aneurysm clip. Then, this groups received an intrathecal (i.t.) injection of 5% DMSO and AST (10 μl of 0.005 mg/kg), respectively. The rat motor functions were assessed weekly until the 28th day using a combined behavioral score (CBS). Total antioxidant capacity (TAC), malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione peroxidase (GPx) were measured in spinal tissue to evaluate oxidative stress-related parameters. Besides, autophagy-related proteins (P62, LC3B, and Beclin1) and apoptosis-associated proteins (Bax and Bcl2) were determined using western blotting on the 1st and 7th days after surgery. Hematoxylin-eosin and Fluoro-Jade B staining were performed to detect the histological alterations and neuronal degeneration. As the result, treatment with AST potentially attenuated rat CBS scores (p < 0.001) towards a better motor performance. AST significantly reduced the spinal level of oxidative stress by increasing TAC, SOD, and GPx, while decreasing MDA (p < 0.001). Furthermore, AST treatment remarkably upregulated expression of LC3B (p < 0.001), and Beclin1 (p < 0.05) in the spinal cord, but downregulated P62 (p < 0.05) and the Bax/Bcl2 ratio (p < 0.001). Consequently, AST reduced SCI-induced histological alterations and neuronal degeneration (p < 0.001). In conclusion, AST can improve motor function after SCI by reducing oxidative stress/apoptosis and increasing neuronal autophagy.
Collapse
Affiliation(s)
- Fatemeh Abbaszadeh
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Science, Tehran, Iran
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Jorjani
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Taghi Joghataei
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Science, Tehran, Iran.
| | - Soraya Mehrabi
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Science, Tehran, Iran
| |
Collapse
|
31
|
Song A, Wen AQ, Wen YE, Dzieciatkowska M, Kellems RE, Juneja HS, D'Alessandro A, Xia Y. p97 dysfunction underlies a loss of quality control of damaged membrane proteins and promotes oxidative stress and sickling in sickle cell disease. FASEB J 2022; 36:e22246. [PMID: 35405035 DOI: 10.1096/fj.202101500rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/19/2022] [Accepted: 02/23/2022] [Indexed: 11/11/2022]
Abstract
Sickling is the central pathogenic process of sickle cell disease (SCD), one of the most prevalent inherited hemolytic disorders. Having no easy access to antioxidants in the cytosol, elevated levels of reactive oxygen species (ROS) residing at the plasma membrane in sickle red blood cells (sRBCs) easily oxidize membrane proteins and thus contribute to sickling. Although the ubiquitin-proteasome system (UPS) is essential to rapidly clear ROS-damaged membrane proteins and maintain cellular homeostasis, the function and regulatory mechanism of the UPS for their clearance in sRBCs remains unidentified. Elevated levels of polyubiquitinated membrane-associated proteins in human sRBCs are reported here. High throughput and untargeted proteomic analyses of membrane proteins immunoprecipitated by ubiquitin antibodies detected elevated levels of ubiquitination of a series of proteins including cytoskeletal proteins, transporters, ROS-related proteins, and UPS machinery components in sRBCs. Polyubiquitination of membrane-associated catalase was increased in sRBCs, associated with decreased catalase activity and elevated ROS. Surprisingly, shuttling of p97 (ATP-dependent valosin-containing chaperone protein), a key component of the UPS to shuttle polyubiquitinated proteins from the membrane to cytosol for proteasomal degradation, was significantly impaired, resulting in significant accumulation of p97 along with polyubiquitinated proteins in the membrane of human sRBCs. Functionally, inhibition of p97 directly promoted accumulation of polyubiquitinated membrane-associated proteins, excessive ROS levels, and sickling in response to hypoxia. Overall, we revealed that p97 dysfunction underlies impaired UPS and contributes to oxidative stress in sRBCs.
Collapse
Affiliation(s)
- Anren Song
- Department of Biochemistry and Molecular Biology, the University of Texas McGovern Medical School, Houston, Texas, USA
| | - Alexander Q Wen
- Department of Biochemistry and Molecular Biology, the University of Texas McGovern Medical School, Houston, Texas, USA.,University of California at San Diego, La Jolla, California, USA
| | - Y Edward Wen
- Department of Biochemistry and Molecular Biology, the University of Texas McGovern Medical School, Houston, Texas, USA.,University of Texas Southwestern Medical School, Dallas, Texas, USA
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Rodney E Kellems
- Department of Biochemistry and Molecular Biology, the University of Texas McGovern Medical School, Houston, Texas, USA.,Graduate Program in Biochemistry and Cell Biology, University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Harinder S Juneja
- Department of Internal Medicine, Divison of Hematology, the University of Texas McGovern Medical School, Houston, Texas, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Yang Xia
- Department of Biochemistry and Molecular Biology, the University of Texas McGovern Medical School, Houston, Texas, USA.,Graduate Program in Biochemistry and Cell Biology, University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
| |
Collapse
|
32
|
Usategui-Martín R, Puertas-Neyra K, Galindo-Cabello N, Hernández-Rodríguez LA, González-Pérez F, Rodríguez-Cabello JC, González-Sarmiento R, Pastor JC, Fernandez-Bueno I. Retinal Neuroprotective Effect of Mesenchymal Stem Cells Secretome Through Modulation of Oxidative Stress, Autophagy, and Programmed Cell Death. Invest Ophthalmol Vis Sci 2022; 63:27. [PMID: 35486068 PMCID: PMC9055551 DOI: 10.1167/iovs.63.4.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
Purpose Degenerative mechanisms of retinal neurodegenerative diseases (RND) share common cellular and molecular signalization pathways. Curative treatment does not exist and cell-based therapy, through the paracrine properties of mesenchymal stem cells (MSC), is a potential unspecific treatment for RND. This study aimed to evaluate the neuroprotective capability of human bone marrow (bm) MSC secretome and its potential to modulate retinal responses to neurodegeneration. Methods An in vitro model of spontaneous retinal neurodegeneration was used to compare three days of monocultured neuroretina (NR), NR cocultured with bmMSC, and NR cultured with bmMSC secretome. We evaluated retinal morphology markers (Lectin peanut agglutinin, rhodopsin, protein kinase C α isoform, neuronal-specific nuclear protein, glial fibrillary acidic protein, TdT-mediated dUTP nick-end labeling, and vimentin) and proteins involved in apoptosis (apoptosis-inductor factor, caspase-3), necroptosis (MLKL), and autophagy (p62). Besides, we analyzed the relative mRNA expression through qPCR of genes involved in apoptosis (BAX, BCL2, CASP3, CASP8, CASP9), necroptosis (MLKL, RIPK1, RIPK3), autophagy (ATG7, BCLIN1, LC3B, mTOR, SQSTM1), oxidative stress (COX2, CYBA, CYBB, GPX6, SOD1, TXN2, TXNRD1) and inflammation (IL1, IL6, IL10, TGFb1, TNFa). Results The bmMSC secretome preserves retinal morphology, limits pro-apoptotic- and pro-necroptotic-related gene and protein expression, modulates autophagy-related genes and proteins, and stimulates the activation of antioxidant-associated genes. Conclusions The neuroprotective ability of the bmMSC secretome is associated with activation of antioxidant machinery, modulation of autophagy, and inhibition of apoptosis and necroptosis during retinal degeneration. The neuroprotective effect of bmMSC secretomes in the presence/absence of MSC looks similar. Our current results reinforce the hypothesis that the human bmMSC secretome slows retinal neurodegeneration and may be a therapeutic option for treating RND.
Collapse
Affiliation(s)
- Ricardo Usategui-Martín
- Instituto Universitario de Oftalmobiología Aplicada, Retina Group, Universidad de Valladolid, Valladolid, Spain.,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Valladolid, Spain.,Red Temática de Investigación Cooperativa en Salud, Oftared, Instituto de Salud Carlos III, Valladolid, Spain.,RetiBrain (RED2018-102499-T), Ministerio de Ciencia, Innovación y Universidades, Valladolid, Spain
| | - Kevin Puertas-Neyra
- Instituto Universitario de Oftalmobiología Aplicada, Retina Group, Universidad de Valladolid, Valladolid, Spain
| | - Nadia Galindo-Cabello
- Instituto Universitario de Oftalmobiología Aplicada, Retina Group, Universidad de Valladolid, Valladolid, Spain.,Postgraduate Unit, Faculty of Biological Sciences, National University of San Marcos, Lima, Peru
| | | | - Fernando González-Pérez
- Group for Advanced Materials and Nanobiotechnology (GIR BIOFORGE), CIBER-BBN, Edificio LUCIA, Universidad de Valladolid, Paseo Belén 19, Valladolid, Spain
| | - José Carlos Rodríguez-Cabello
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Valladolid, Spain.,Group for Advanced Materials and Nanobiotechnology (GIR BIOFORGE), CIBER-BBN, Edificio LUCIA, Universidad de Valladolid, Paseo Belén 19, Valladolid, Spain
| | - Rogelio González-Sarmiento
- Molecular Medicine Unit, Department of Medicine, University of Salamanca, Salamanca, Spain.,Institute of Biomedical Research of Salamanca, Salamanca, Spain.,Institute of Molecular and Cellular Biology of Cancer, University of Salamanca-CSIC, Salamanca, Spain
| | - José Carlos Pastor
- Instituto Universitario de Oftalmobiología Aplicada, Retina Group, Universidad de Valladolid, Valladolid, Spain.,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Valladolid, Spain.,Red Temática de Investigación Cooperativa en Salud, Oftared, Instituto de Salud Carlos III, Valladolid, Spain.,RetiBrain (RED2018-102499-T), Ministerio de Ciencia, Innovación y Universidades, Valladolid, Spain
| | - Ivan Fernandez-Bueno
- Instituto Universitario de Oftalmobiología Aplicada, Retina Group, Universidad de Valladolid, Valladolid, Spain.,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Valladolid, Spain.,Red Temática de Investigación Cooperativa en Salud, Oftared, Instituto de Salud Carlos III, Valladolid, Spain.,RetiBrain (RED2018-102499-T), Ministerio de Ciencia, Innovación y Universidades, Valladolid, Spain
| |
Collapse
|
33
|
Usategui-Martín R, Pérez-Castrillón JL, Mansego ML, Lara-Hernández F, Manzano I, Briongos L, Abadía-Otero J, Martín-Vallejo J, García-García AB, Martín-Escudero JC, Chaves FJ. Association between genetic variants in oxidative stress-related genes and osteoporotic bone fracture. The Hortega follow-up study. Gene 2022; 809:146036. [PMID: 34688818 DOI: 10.1016/j.gene.2021.146036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 11/20/2022]
Abstract
The most widely accepted etiopathogenesis hypothesis of the origin of osteoporosis and its complications is that they are a consequence of bone aging and other environmental factors, together with a genetic predisposition. Evidence suggests that oxidative stress is crucial in bone pathologies associated with aging. The aim of this study was to determine whether genetic variants in oxidative stress-related genes modified the risk of osteoporotic fracture. We analysed 221 patients and 354 controls from the HORTEGA sample after 12-14 years of follow up. We studied the genotypic and allelic distribution of 53 SNPs in 24 genes involved in oxidative stress. The results showed that being a carrier of the variant allele of the SNP rs4077561 within TXNRD1 was the principal genetic risk factor associated with osteoporotic fracture and that variant allele of the rs1805754 M6PR, rs4964779 TXNRD1, rs406113 GPX6, rs2281082 TXN2 and rs974334 GPX6 polymorphisms are important genetic risk factors for fracture. This study provides information on the genetic factors associated with oxidative stress which are involved in the risk of osteoporotic fracture and reinforces the hypothesis that genetic factors are crucial in the etiopathogenesis of osteoporosis and its complications.
Collapse
Affiliation(s)
- Ricardo Usategui-Martín
- IOBA, University of Valladolid, Valladolid. Spain; Cooperative Health Network for Research (RETICS), Oftared, National Institute of Health Carlos III, ISCIII, Madrid. Spain.
| | - José Luis Pérez-Castrillón
- Department of Internal Medicine, Rio Hortega Universitary Hospital, Valladolid, Spain; Department of Medicine. Faculty of Medicine. University of Valladolid, Valladolid, Spain.
| | - María L Mansego
- Genomic and Genetic Diagnosis Unit, INCLIVA Biomedical Research Institute, Valencia, Spain; Department of Bioinformatics. Making Genetics S.L. Pamplona. Spain
| | | | - Iris Manzano
- Genomic and Genetic Diagnosis Unit, INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Laisa Briongos
- Department of Internal Medicine, Rio Hortega Universitary Hospital, Valladolid, Spain; Department of Medicine. Faculty of Medicine. University of Valladolid, Valladolid, Spain
| | - Jesica Abadía-Otero
- Department of Internal Medicine, Rio Hortega Universitary Hospital, Valladolid, Spain
| | - Javier Martín-Vallejo
- Department of Statistics. University of Salamanca. Salamanca Biomedical Research Institute (IBSAL), Salamanca. Spain
| | - Ana B García-García
- Genomic and Genetic Diagnosis Unit, INCLIVA Biomedical Research Institute, Valencia, Spain; CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid. Spain
| | - Juan Carlos Martín-Escudero
- Department of Internal Medicine, Rio Hortega Universitary Hospital, Valladolid, Spain; Department of Medicine. Faculty of Medicine. University of Valladolid, Valladolid, Spain
| | - Felipe J Chaves
- Genomic and Genetic Diagnosis Unit, INCLIVA Biomedical Research Institute, Valencia, Spain; CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid. Spain
| |
Collapse
|
34
|
Yue J, Shen Y, Liang C, Shi W, Xu W, Xu S. Investigating Lysosomal Autophagy via Surface-Enhanced Raman Scattering Spectroscopy. Anal Chem 2021; 93:13038-13044. [PMID: 34519497 DOI: 10.1021/acs.analchem.1c02939] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Autophagy plays a critical role in many vitally important physiological and pathological processes, such as the removal of damaged and aged organelles and redundant proteins. Although autophagy is mainly a protective process for cells, it can also cause cell death. In this study, we employed in situ and ex situ surface-enhanced Raman scattering (SERS) spectroscopies to obtain chemical information of lysosomes of HepG2 cells. Results reveal that the SERS profiles of the isolated lysosomes are different from the in situ spectra, indicating that lysosomes lie in different microenvironments in these two cases. We further investigated the molecular changes of isolated lysosomes according to the autophagy induced by starvation via ex situ SERS. During autophagy, the conformation of proteins and the structures of lipids have been affected, and autophagy-related molecular evidence is given for the first time in the living lysosomes. We expect that this study will provide a reference for understanding the cell autophagy mechanism.
Collapse
Affiliation(s)
- Jing Yue
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China.,Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yanting Shen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China.,Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Chongyang Liang
- Institute of Frontier Medical Science, Jilin University, Changchun 130021, P. R. China
| | - Wei Shi
- Key Lab for Molecular Enzymology & Engineering of Ministry of Education, Jilin University, Changchun 130012, P. R. China
| | - Weiqing Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China.,Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Shuping Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China.,Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
35
|
Targeting Lysosomes to Reverse Hydroquinone-Induced Autophagy Defects and Oxidative Damage in Human Retinal Pigment Epithelial Cells. Int J Mol Sci 2021; 22:ijms22169042. [PMID: 34445748 PMCID: PMC8396439 DOI: 10.3390/ijms22169042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 01/09/2023] Open
Abstract
In age-related macular degeneration (AMD), hydroquinone (HQ)-induced oxidative damage in retinal pigment epithelium (RPE) is believed to be an early event contributing to dysregulation of inflammatory cytokines and vascular endothelial growth factor (VEGF) homeostasis. However, the roles of antioxidant mechanisms, such as autophagy and the ubiquitin-proteasome system, in modulating HQ-induced oxidative damage in RPE is not well-understood. This study utilized an in-vitro AMD model involving the incubation of human RPE cells (ARPE-19) with HQ. In comparison to hydrogen peroxide (H2O2), HQ induced fewer reactive oxygen species (ROS) but more oxidative damage as characterized by protein carbonyl levels, mitochondrial dysfunction, and the loss of cell viability. HQ blocked the autophagy flux and increased proteasome activity, whereas H2O2 did the opposite. Moreover, the lysosomal membrane-stabilizing protein LAMP2 and cathepsin D levels declined with HQ exposure, suggesting loss of lysosomal membrane integrity and function. Accordingly, HQ induced lysosomal alkalization, thereby compromising the acidic pH needed for optimal lysosomal degradation. Pretreatment with MG132, a proteasome inhibitor and lysosomal stabilizer, upregulated LAMP2 and autophagy and prevented HQ-induced oxidative damage in wildtype RPE cells but not cells transfected with shRNA against ATG5. This study demonstrated that lysosomal dysfunction underlies autophagy defects and oxidative damage induced by HQ in human RPE cells and supports lysosomal stabilization with the proteasome inhibitor MG132 as a potential remedy for oxidative damage in RPE and AMD.
Collapse
|
36
|
Chen YD, Huang PY, Chiang CS, Huang YS, Tang SC. Generation and Role of Calpain-Cleaved 17-kDa Tau Fragment in Acute Ischemic Stroke. Mol Neurobiol 2021; 58:5814-5825. [PMID: 34414533 DOI: 10.1007/s12035-021-02519-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 08/03/2021] [Indexed: 01/04/2023]
Abstract
Stroke is the leading cause of permanent disability and death in the world. The therapy for acute stroke is still limited due to the complex mechanisms underlying stroke-induced neuronal death. The generation of a 17-kDa neurotoxic tau fragment was reported in Alzheimer's disease but it has not been well studied in stroke. In this study, we observed the accumulation of 17-kDa tau fragment in cultured primary neurons and media after oxygen-glucose deprivation/reperfusion (OGD/R) treatment that could be diminished by the presence of a calpain inhibitor. This calpain-mediated proteolytic tau fragment was also detected in brain tissues from middle cerebral artery occlusion-injured rats and acute ischemic stroke patients receiving strokectomy, and human plasma samples collected within 48 h after the onset of stroke. The mass spectrometry analysis of this 17-kDa fragment identified 2 peptide sequences containing 195-224 amino acids of tau, which agrees with the previously reported tau45-230 or tau125-230 as the calpain-cleaved tau fragment. Ectopic expression of tau45-230-GFP but not tau125-230-GFP in cultured neurons induced the formation of tortuous processes without evident cell death. In summary, the 17-kDa tau fragment is a novel stroke biomarker and may play a pathophysiological role to affect post-stroke neuronal health.
Collapse
Affiliation(s)
- Ying-Da Chen
- Stroke Center and Department of Neurology, National Taiwan University Hospital, Taipei, 100, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Po-Yuan Huang
- Stroke Center and Department of Neurology, National Taiwan University Hospital, Taipei, 100, Taiwan
| | - Chien-Sung Chiang
- Stroke Center and Department of Neurology, National Taiwan University Hospital, Taipei, 100, Taiwan
| | - Yi-Shuian Huang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan. .,Neuroscience Program of Academia Sinica, Academia Sinica, Taipei, 11529, Taiwan.
| | - Sung-Chun Tang
- Stroke Center and Department of Neurology, National Taiwan University Hospital, Taipei, 100, Taiwan.
| |
Collapse
|
37
|
Feng L, Liang L, Zhang S, Yang J, Yue Y, Zhang X. HMGB1 downregulation in retinal pigment epithelial cells protects against diabetic retinopathy through the autophagy-lysosome pathway. Autophagy 2021; 18:320-339. [PMID: 34024230 PMCID: PMC8942416 DOI: 10.1080/15548627.2021.1926655] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Diabetic retinopathy (DR) is a serious complication of diabetes mellitus and currently one of the major causes of blindness. Several previous studies have demonstrated that autophagy, which is regulated by HMGB1 (high mobility group box 1), is involved in DR development. However, the role of autophagy in DR is quite complicated in that it promotes pericyte survival in early DR, whereas excessive autophagy causes excess stress and leads to necrosis. Therefore, this study aimed to investigate the relationship between HMGB1, the macroautophagy/autophagy-lysosome pathway, and DR, as well as their underlying molecular mechanisms. In brief, the relationship between high glucose (HG) and the autophagy-lysosome pathway was examined in retinal pigment epithelial (RPE) cells. The relationship was studied by detecting classical autophagic features, and siRNAs targeting HMGB1 and pharmacological regulators were used to explore the role of the autophagy-lysosome pathway in DR development. The results demonstrated that HG inhibited autophagy and diminished the degradative capacity of autophagy due to lysosome membrane permeabilization (LMP). In addition, HMGB1 was found to be involved in LMP via the CTSB (cathepsin B)-dependent pathway, but not the CTSL (cathepsin L)-dependent pathway. Knockdown of HMGB1 expression rescued LMP, restored the degradative capacity of autophagy, decreased the expression of inflammatory factors and VEGF (vascular endothelial growth factor), and protected against apoptosis in RPE cells in the early stages of DR.
Collapse
Affiliation(s)
- Lujia Feng
- Chongqing Key Lab of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, P. R. China
| | - Liang Liang
- Chongqing Key Lab of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, P. R. China
| | - Shaochong Zhang
- Shenzhen Key Laboratory of Ophthalmology, Ophthalmology, Shenzhen Eye Hospital, Shenzhen, Guangdong, China
| | - Jinglu Yang
- Chongqing Key Lab of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, P. R. China
| | - Yanan Yue
- Chongqing Key Lab of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, P. R. China
| | - Xuedong Zhang
- Chongqing Key Lab of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, P. R. China
| |
Collapse
|
38
|
Wei Y, Liu Y, He Y, Wang Y. Mitochondria and lysosome-targetable fluorescent probes for hydrogen peroxide. J Mater Chem B 2021; 9:908-920. [PMID: 33346307 DOI: 10.1039/d0tb02440f] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Hydrogen peroxide (H2O2), as a key member of the reactive oxygen species (ROS), has a certain regulatory effect on many physiological processes, such as cell proliferation, differentiation and migration. However, abnormal production of H2O2 can cause diseases including cancer, Alzheimer's disease, cardiovascular disease, and so on. Therefore, it is important to detect changes in H2O2 at the subcellular level. In recent years, many fluorescent probes for H2O2 have been developed and used in living cells. In this review, we introduce some typical fluorescent probes for H2O2 with mitochondrial and lysosomal targeting. This review contains targeting strategies, detection mechanisms, optical characteristics and cell imaging of these probes.
Collapse
Affiliation(s)
- Yongchun Wei
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, Shandong, China.
| | | | | | | |
Collapse
|
39
|
Zhu S, Ying Y, Ye L, Ying W, Ye J, Wu Q, Chen M, Zhu H, Li X, Dou H, Xu H, Wang Z, Xu J. Systemic Administration of Fibroblast Growth Factor 21 Improves the Recovery of Spinal Cord Injury (SCI) in Rats and Attenuates SCI-Induced Autophagy. Front Pharmacol 2021; 11:628369. [PMID: 33584310 PMCID: PMC7873052 DOI: 10.3389/fphar.2020.628369] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/30/2020] [Indexed: 12/30/2022] Open
Abstract
Protecting the death of nerve cells is an essential tactic for spinal cord injury (SCI) repair. Recent studies show that nerve growth factors can reduce the death of nerve cells and promote the healing of nerve injury. To investigate the conducive effect of fibroblast growth factor 21 (FGF21) on SCI repair. FGF21 proteins were systemically delivered into rat model of SCI via tail vein injection. We found that administration of FGF21 significantly promoted the functional recovery of SCI as assessed by BBB scale and inclined plane test, and attenuated cell death in the injured area by histopathological examination with Nissl staining. This was accompanied with increased expression of NeuN, GAP43 and NF200, and deceased expression of GFAP. Interestingly, FGF21 was found to attenuate the elevated expression level of the autophagy marker LC3-II (microtubules associated protein 1 light chain 3-II) induced by SCI in a dose-dependent manner. These data show that FGF21 promotes the functional recovery of SCI via restraining injury-induced cell autophagy, suggesting that systemic administration of FGF21 could have a therapeutic potential for SCI repair.
Collapse
Affiliation(s)
- Sipin Zhu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yibo Ying
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Lin Ye
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Weiyang Ying
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Jiahui Ye
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Qiuji Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Min Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Hui Zhu
- Spinal Cord Injury Treatment Center, Kunming Tongren Hospital, Kunming, China
| | - Xiaoyang Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Haicheng Dou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huazi Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhouguang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Jiake Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
40
|
Khan A, Fahad TM, Akther T, Zaman T, Hasan MF, Islam Khan MR, Islam MS, Kishi S. Carbofuran accelerates the cellular senescence and declines the life span of spns1 mutant zebrafish. J Cell Mol Med 2020; 25:1048-1059. [PMID: 33277797 PMCID: PMC7812278 DOI: 10.1111/jcmm.16171] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/03/2020] [Accepted: 11/17/2020] [Indexed: 12/16/2022] Open
Abstract
Carbofuran is a carbamate pesticide, widely used in agricultural practices to increase crop productivity. In mammals, carbofuran is known to cause several untoward effects, such as apoptosis in the hippocampal neuron, oxidative stress, loss of memory and chromosomal anomalies. Most of these effects are implicated with cellular senescence. Therefore, the present study aimed to determine the effect of carbofuran on cellular senescence and biological ageing. Spinster homolog 1 (Spns1) is a transmembrane transporter, regulates autolysosomal biogenesis and plays a role in cellular senescence and survival. Using senescence‐associated β‐galactosidase staining, we found that carbofuran accelerates the cellular senescence in spns1 mutant zebrafish. The yolk opaqueness, a premature ageing phenotype in zebrafish embryos, was accelerated by carbofuran treatment. In the survival study, carbofuran shortened the life span of spns1 mutant zebrafish. Autophagy is the cellular lysosomal degradation, usually up‐regulated in the senescent cells. To know the impact of carbofuran exposure on autophagy progress, we established a double‐transgenic zebrafish line, harbouring EGFP‐tagged LC3‐II and mCherry‐tagged Lamp1 on spns1 mutant background, whereas we found, carbofuran exposure synergistically accelerates autolysosome formation with insufficient lysosome‐mediated degradation. Our data collectively suggest that carbofuran exposure synergistically accelerates the cellular senescence and affects biological ageing in spns1 defective animals.
Collapse
Affiliation(s)
- Alam Khan
- Department of Pharmacy, University of Rajshahi, Rajshahi, Bangladesh.,Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, USA
| | | | - Tanjima Akther
- Department of Pharmacy, University of Rajshahi, Rajshahi, Bangladesh
| | - Tanjeena Zaman
- Department of Fisheries, University of Rajshahi, Rajshahi, Bangladesh.,Department of Biology, University of Hail, Hail, Saudi Arabia
| | - Md Faruk Hasan
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | | | | | - Shuji Kishi
- S&J Kishi Research Corporation, Jupiter, FL, USA
| |
Collapse
|
41
|
Rodrigo C, Nawarathne P, Jayasinghe S. Chronic interstitial nephritis in agricultural communities (CINAC) and lysosomal tubulopathy: Is there a place for anti-oxidants? Med Hypotheses 2020; 146:110414. [PMID: 33268000 DOI: 10.1016/j.mehy.2020.110414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 11/19/2020] [Indexed: 12/21/2022]
Abstract
Chronic Interstitial Nephritis in Agricultural Communities (CINAC) continues to attract controversy in the scientific community. It was previously known as Chronic Kidney Disease of Unknown Etiology (CKDu) and is not associated with the common aetiological factors such as diabetes. There is general acceptance that it is an environmentally induced disorder due to a combination of toxicities: heavy metals from food, fluoride in drinking water, hard water, heat stress and pesticides. The recent findings of a lysosomal inclusion body tubulopathy is of great interest to those attempting to find therapeutic agents to slow or eliminate its renal damage. The paper argues that despite these new findings, oxidative stress could play a key role and proposes that anti-oxidants such as Vitamin C and E be repurposed for treatment.
Collapse
Affiliation(s)
- Chathuri Rodrigo
- Research Assistants, Faculty of Medicine of University of Colombo, Sri Lanka
| | | | - Saroj Jayasinghe
- Professor of Medicine, Faculty of Medicine of University of Colombo, Kynsey Road, Colombo 00800, Sri Lanka.
| |
Collapse
|
42
|
Unsaturated mannuronate oligosaccharide ameliorates β-amyloid pathology through autophagy in Alzheimer's disease cell models. Carbohydr Polym 2020; 251:117124. [PMID: 33142656 DOI: 10.1016/j.carbpol.2020.117124] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/07/2020] [Accepted: 09/15/2020] [Indexed: 01/08/2023]
Abstract
Unsaturated mannuronate oligosaccharide (MOS) is an enzymatic depolymerization product from alginate-derived polymannuronate (PM). In this study, we investigated for the first time the potential therapeutic effect of MOS on Alzheimer's disease (AD) and its molecular mechanism in N2a-sw cells and 3×Tg-AD primary cortex neurons. Our results showed that MOS ranges from mannuronate dimer to mannuronate undecamer (M2-M11) with an unsaturated nonreducing terminal structure and with a double bond and 1,4-glycosidic linkages. It significantly inhibited the aggregation of amyloid-β (Aβ)1-42 oligomer, decreased expression of Aβ1-42 and reduced levels of amyloid precursor protein (APP) and BACE1. It promoted the autophagy, which involves the inactivation of mTOR signaling pathway and the facilitation of the fusion of autophagosomes and lysosomes. Finally, autophagy inhibitors blocked MOS' anti-AD actions, confirming the involvement of autophagy. In conclusion, MOS from seaweed alginate might be a promising nutraceutical or natural medicine for AD therapy.
Collapse
|
43
|
Ornatowski W, Lu Q, Yegambaram M, Garcia AE, Zemskov EA, Maltepe E, Fineman JR, Wang T, Black SM. Complex interplay between autophagy and oxidative stress in the development of pulmonary disease. Redox Biol 2020; 36:101679. [PMID: 32818797 PMCID: PMC7451718 DOI: 10.1016/j.redox.2020.101679] [Citation(s) in RCA: 246] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/20/2020] [Accepted: 08/04/2020] [Indexed: 12/16/2022] Open
Abstract
The autophagic pathway involves the encapsulation of substrates in double-membraned vesicles, which are subsequently delivered to the lysosome for enzymatic degradation and recycling of metabolic precursors. Autophagy is a major cellular defense against oxidative stress, or related conditions that cause accumulation of damaged proteins or organelles. Selective forms of autophagy can maintain organelle populations or remove aggregated proteins. Dysregulation of redox homeostasis under pathological conditions results in excessive generation of reactive oxygen species (ROS), leading to oxidative stress and the associated oxidative damage of cellular components. Accumulating evidence indicates that autophagy is necessary to maintain redox homeostasis. ROS activates autophagy, which facilitates cellular adaptation and diminishes oxidative damage by degrading and recycling intracellular damaged macromolecules and dysfunctional organelles. The cellular responses triggered by oxidative stress include the altered regulation of signaling pathways that culminate in the regulation of autophagy. Current research suggests a central role for autophagy as a mammalian oxidative stress response and its interrelationship to other stress defense systems. Altered autophagy phenotypes have been observed in lung diseases such as chronic obstructive lung disease, acute lung injury, cystic fibrosis, idiopathic pulmonary fibrosis, and pulmonary arterial hypertension, and asthma. Understanding the mechanisms by which ROS regulate autophagy will provide novel therapeutic targets for lung diseases. This review highlights our current understanding on the interplay between ROS and autophagy in the development of pulmonary disease.
Collapse
Affiliation(s)
- Wojciech Ornatowski
- Department of Medicine, The University of Arizona Health Sciences, Tucson, AZ, USA
| | - Qing Lu
- Department of Medicine, The University of Arizona Health Sciences, Tucson, AZ, USA
| | | | - Alejandro E Garcia
- Department of Medicine, The University of Arizona Health Sciences, Tucson, AZ, USA
| | - Evgeny A Zemskov
- Department of Medicine, The University of Arizona Health Sciences, Tucson, AZ, USA
| | - Emin Maltepe
- Department of Pediatrics, The University of California, San Francisco, San Francisco, CA, USA
| | - Jeffrey R Fineman
- Department of Pediatrics, The University of California, San Francisco, San Francisco, CA, USA; Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Ting Wang
- Department of Internal Medicine, The University of Arizona Health Sciences, Phoenix, AZ, USA
| | - Stephen M Black
- Department of Medicine, The University of Arizona Health Sciences, Tucson, AZ, USA.
| |
Collapse
|
44
|
Yang L, Zhao J, Wang J, Han G, Liu B, Zhang W, Fu Y, Han MY, Wang Z, Zhang Z. An azacyclo-localizing fluorescent probe for the specific labeling of lysosome and autolysosome. Talanta 2020; 216:120941. [DOI: 10.1016/j.talanta.2020.120941] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/11/2020] [Accepted: 03/16/2020] [Indexed: 12/15/2022]
|
45
|
Porte Alcon S, Gorojod RM, Kotler ML. Kinetic and protective role of autophagy in manganese-exposed BV-2 cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118787. [PMID: 32592735 DOI: 10.1016/j.bbamcr.2020.118787] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/01/2020] [Accepted: 06/22/2020] [Indexed: 12/14/2022]
Abstract
Manganese (Mn) plays an important role in many physiological processes. Nevertheless, Mn accumulation in the brain can cause a parkinsonian-like syndrome known as manganism. Unfortunately, the therapeutic options for this disease are scarce and of limited efficacy. For this reason, a great effort is being made to understand the cellular and molecular mechanisms involved in Mn toxicity in neuronal and glial cells. Even though evidence indicates that Mn activates autophagy in microglia, the consequences of this activation in cell death remain unknown. In this study, we demonstrated a key role of reactive oxygen species in Mn-induced damage in microglial cells. These species generated by Mn2+ induce lysosomal alterations, LMP, cathepsins release and cell death. Besides, we described for the first time the kinetic of Mn2+-induced autophagy in BV-2 microglial cells and its relevance to cell fate. We found that Mn promotes a time-dependent increase in LC3-II and p62 expression levels, suggesting autophagy activation. Possibly, cells trigger autophagy to neutralize the risks associated with lysosomal rupture. In addition, pre-treatment with both Rapamycin and Melatonin enhanced autophagy and retarded Mn2+ cytotoxicity. In summary, our results demonstrated that, despite the damage inflicted on a subset of lysosomes, the autophagic pathway plays a protective role in Mn-induced microglial cell death. We propose that 2 h Mn2+ exposure will not induce disturbances in the autophagic flux. However, as time passes, the accumulated damage inside the cell could trigger a dysfunction of this mechanism. These findings may represent a valuable contribution to future research concerning manganism therapies.
Collapse
Affiliation(s)
- Soledad Porte Alcon
- CONICET- Universidad de Buenos Aires. Instituto de Química Biológica Ciencias Exactas y Naturales (IQUIBICEN). Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Disfunción Celular en Enfermedades Neurodegenerativas y Nanomedicina. Ciudad Autónoma de Buenos Aires, Argentina.
| | - Roxana Mayra Gorojod
- CONICET- Universidad de Buenos Aires. Instituto de Química Biológica Ciencias Exactas y Naturales (IQUIBICEN). Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Disfunción Celular en Enfermedades Neurodegenerativas y Nanomedicina. Ciudad Autónoma de Buenos Aires, Argentina.
| | - Mónica Lidia Kotler
- CONICET- Universidad de Buenos Aires. Instituto de Química Biológica Ciencias Exactas y Naturales (IQUIBICEN). Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Disfunción Celular en Enfermedades Neurodegenerativas y Nanomedicina. Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
46
|
Rakshit J, Mallick A, Roy S, Sarbajna A, Dutta M, Bandyopadhyay J. Iron-Induced Apoptotic Cell Death and Autophagy Dysfunction in Human Neuroblastoma Cell Line SH-SY5Y. Biol Trace Elem Res 2020; 193:138-151. [PMID: 30835084 DOI: 10.1007/s12011-019-01679-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 02/14/2019] [Indexed: 12/23/2022]
Abstract
Iron accumulation plays a major role in neuronal cell death which has severe effects on mental health like neurodegenerative disorders. The present work aims to explore the involvement of molecular pathways involved in iron-mediated neuronal cell death using Ferric Ammonium Citrate (FAC) as a source of iron to treat neuroblastoma SH-SY5Y cells. In this study, it was found that cytotoxicity induced by iron treatment is highly correlated with enhanced intracellular reactive oxygen species (ROS) generation and loss of mitochondrial integrity. Appearance of early and late apoptotic cells with altered nuclear morphology and increased expression of effector proteins, i.e., cleaved Caspase 3 and cleaved PARP (Poly-ADP-ribose Polymerase), clearly confirmed iron-induced apoptotic cell deaths. Furthermore, excess accumulation of acidic vesicles and microtubule-associated protein 1 light chain 3 (LC3) puncta and LC3II/I expressions were observed. Simultaneously, ultrastructural studies of SH-SY5Y cells demonstrated the accumulation of a large number of autophagosomes, autophagic vacuolization, and swollen mitochondria which further confirmed the induction of autophagy concomitant with mitochondrial damage. Furthermore, increased incorporation of lysosome-specific dye, LysoTracker Deep Red, and the red fluorescence retention of LC3-GFP-RFP constructs indicates the incomplete autophagy or autophagy dysfunction due to altered lysosomal activity. Hence, the present work unveiled the interruption in autophagy progression caused by the plausible suppression of lysosomal activity due to iron treatment resulting in autophagic cell death in SH-SY5Y cell lines. In general, both apoptotic and autophagic pathways were prominent and each of the pathways played their prospective roles, in iron-mediated neuronal cell death.
Collapse
Affiliation(s)
- Jyotirmoy Rakshit
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, West Bengal, NH 12, Haringhata, West Bengal, 741249, India
| | - Arijit Mallick
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, West Bengal, NH 12, Haringhata, West Bengal, 741249, India
| | - Susmita Roy
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, West Bengal, NH 12, Haringhata, West Bengal, 741249, India
| | - Arpita Sarbajna
- Division of Electron Microscopy, ICMR-National Institute of Cholera and Enteric Diseases, Beliaghata, Kolkata, West Bengal, 700010, India
| | - Moumita Dutta
- Division of Electron Microscopy, ICMR-National Institute of Cholera and Enteric Diseases, Beliaghata, Kolkata, West Bengal, 700010, India
| | - Jaya Bandyopadhyay
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, West Bengal, NH 12, Haringhata, West Bengal, 741249, India.
| |
Collapse
|
47
|
The triazole linked galactose substituted dicyano compound can induce autophagy in NSCLC cell lines. Gene 2019; 712:143935. [DOI: 10.1016/j.gene.2019.06.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 03/11/2019] [Accepted: 06/13/2019] [Indexed: 02/07/2023]
|
48
|
Feng C, Li D, Chen M, Jiang L, Liu X, Li Q, Geng C, Sun X, Yang G, Zhang L, Yao X. Citreoviridin induces myocardial apoptosis through PPAR-γ-mTORC2-mediated autophagic pathway and the protective effect of thiamine and selenium. Chem Biol Interact 2019; 311:108795. [PMID: 31419397 DOI: 10.1016/j.cbi.2019.108795] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 07/30/2019] [Accepted: 08/13/2019] [Indexed: 12/25/2022]
Abstract
Citreoviridin (CIT), a mycotoxin and ATP synthase inhibitor, is regarded as one of aetiology factors of cardiac beriberi and Keshan disease. Thiamine (VB1) and selenium (Se) improve the recovery of these two diseases respectively. The underlying mechanisms of cardiotoxic effect of CIT and cardioprotective effect of VB1 and Se have not been fully elucidated. In this study, we found that ectopic ATP synthase was more sensitive to CIT treatment than mitochondrial ATP synthase in H9c2 cardiomyocytes. CIT inhibited the transcriptional activity of peroxisome proliferator activated receptor gamma (PPAR-γ) in mice hearts and H9c2 cells. PPAR-γ agonist attenuated the inhibitory effect of CIT on mechanistic target of rapamycin complex 2 (mTORC2) and stimulatory effect of CIT on autophagy in cardiomyocytes. CIT induced apoptosis through lysosomal-mitochondrial axis in cardiomyocytes. PPAR-γ agonist and autophagy inhibitor alleviated CIT-induced apoptosis and accelerated cardiac biomarker. VB1 and Se accelerated the basal transcriptional activity of PPAR-γ in mice hearts and H9c2 cells. Furthermore, VB1 and Se reversed the effect of CIT on PPAR-γ, autophagy and apoptosis. Our findings defined PPAR-γ-mTORC2-autophagy pathway as the key link between CIT cardiotoxicity and cardioprotective effect of VB1 and Se. The present study would shed new light on the pathogenesis of cardiomyopathy and the cardioprotective mechanism of micronutrients.
Collapse
Affiliation(s)
- Chang Feng
- Department of Preventive Medicine, Dalian Medical University, 9 W Lushun South Road, Dalian, 116044, China
| | - Dandan Li
- Department of Preventive Medicine, Dalian Medical University, 9 W Lushun South Road, Dalian, 116044, China
| | - Min Chen
- Department of Preventive Medicine, Dalian Medical University, 9 W Lushun South Road, Dalian, 116044, China
| | - Liping Jiang
- Department of Preventive Medicine, Dalian Medical University, 9 W Lushun South Road, Dalian, 116044, China
| | - Xiaofang Liu
- Department of Preventive Medicine, Dalian Medical University, 9 W Lushun South Road, Dalian, 116044, China
| | - Qiujuan Li
- Department of Preventive Medicine, Dalian Medical University, 9 W Lushun South Road, Dalian, 116044, China
| | - Chengyan Geng
- Department of Preventive Medicine, Dalian Medical University, 9 W Lushun South Road, Dalian, 116044, China
| | - Xiance Sun
- Department of Preventive Medicine, Dalian Medical University, 9 W Lushun South Road, Dalian, 116044, China
| | - Guang Yang
- Department of Preventive Medicine, Dalian Medical University, 9 W Lushun South Road, Dalian, 116044, China
| | - Lianchun Zhang
- Department of Nursing, The Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116023, China
| | - Xiaofeng Yao
- Department of Preventive Medicine, Dalian Medical University, 9 W Lushun South Road, Dalian, 116044, China.
| |
Collapse
|
49
|
Niu F, Dong J, Xu X, Zhang B, Liu B. Mitochondrial Division Inhibitor 1 Prevents Early-Stage Induction of Mitophagy and Accelerated Cell Death in a Rat Model of Moderate Controlled Cortical Impact Brain Injury. World Neurosurg 2019; 122:e1090-e1101. [DOI: 10.1016/j.wneu.2018.10.236] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/29/2018] [Accepted: 10/31/2018] [Indexed: 11/29/2022]
|
50
|
Morris G, Berk M, Maes M, Puri BK. Could Alzheimer's Disease Originate in the Periphery and If So How So? Mol Neurobiol 2019; 56:406-434. [PMID: 29705945 PMCID: PMC6372984 DOI: 10.1007/s12035-018-1092-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 04/17/2018] [Indexed: 12/11/2022]
Abstract
The classical amyloid cascade model for Alzheimer's disease (AD) has been challenged by several findings. Here, an alternative molecular neurobiological model is proposed. It is shown that the presence of the APOE ε4 allele, altered miRNA expression and epigenetic dysregulation in the promoter region and exon 1 of TREM2, as well as ANK1 hypermethylation and altered levels of histone post-translational methylation leading to increased transcription of TNFA, could variously explain increased levels of peripheral and central inflammation found in AD. In particular, as a result of increased activity of triggering receptor expressed on myeloid cells 2 (TREM-2), the presence of the apolipoprotein E4 (ApoE4) isoform, and changes in ANK1 expression, with subsequent changes in miR-486 leading to altered levels of protein kinase B (Akt), mechanistic (previously mammalian) target of rapamycin (mTOR) and signal transducer and activator of transcription 3 (STAT3), all of which play major roles in microglial activation, proliferation and survival, there is activation of microglia, leading to the subsequent (further) production of cytokines, chemokines, nitric oxide, prostaglandins, reactive oxygen species, inducible nitric oxide synthase and cyclooxygenase-2, and other mediators of inflammation and neurotoxicity. These changes are associated with the development of amyloid and tau pathology, mitochondrial dysfunction (including impaired activity of the electron transport chain, depleted basal mitochondrial potential and oxidative damage to key tricarboxylic acid enzymes), synaptic dysfunction, altered glycogen synthase kinase-3 (GSK-3) activity, mTOR activation, impairment of autophagy, compromised ubiquitin-proteasome system, iron dyshomeostasis, changes in APP translation, amyloid plaque formation, tau hyperphosphorylation and neurofibrillary tangle formation.
Collapse
Affiliation(s)
- Gerwyn Morris
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, P.O. Box 291, Geelong, Victoria, Australia
| | - Michael Berk
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, P.O. Box 291, Geelong, Victoria, Australia
- Department of Psychiatry, Level 1 North, Main Block, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
- Florey Institute for Neuroscience and Mental Health, Kenneth Myer Building, University of Melbourne, 30 Royal Parade, Parkville, Victoria, Australia
- Orygen, The National Centre of Excellence in Youth Mental Health, 35 Poplar Rd, Parkville, Victoria, Australia
| | - Michael Maes
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, P.O. Box 291, Geelong, Victoria, Australia
- Department of Psychiatry, Chulalongkorn University, Bangkok, Thailand
| | - Basant K Puri
- Department of Medicine, Hammersmith Hospital, Imperial College London, London, UK.
| |
Collapse
|