1
|
Chen M, Cui R, Hong S, Zhu W, Yang Q, Li J, Nie Z, Zhang X, Ye Y, Xue Y, Wang D, Hong Y, Drlica K, Niu J, Zhao X. Broad-spectrum tolerance to disinfectant-mediated bacterial killing due to mutation of the PheS aminoacyl tRNA synthetase. Proc Natl Acad Sci U S A 2025; 122:e2412871122. [PMID: 39899725 PMCID: PMC11831201 DOI: 10.1073/pnas.2412871122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 12/17/2024] [Indexed: 02/05/2025] Open
Abstract
Disinfectants are essential tools for controlling infectious diseases and maintaining sterile conditions in many medical and food-industry settings. Recent work revealed that a deficiency in the carbohydrate phosphotransferase system (PTS) confers pan-tolerance to killing by diverse disinfectant types through its interaction with the cAMP-CRP regulatory network. The present work characterized a pan-tolerance mutant obtained by enrichment using phenol as a lethal probe and an Escherichia coli PTS null mutant as a parental strain. The resulting super-pan-tolerant mutant, which harbored an F158C substitution in PheS, inhibited bacterial killing by multiple disinfectant classes with surprisingly little effect on antimicrobial lethality. The PheS substitution, which was expected to lower substrate recognition efficiency and result in deacylated tRNAphe occupying the ribosomal A site, activated relA expression and synthesis of ppGpp, even in the absence of disinfectant exposure. ppGpp, along with DksA, increased RpoS function by activating promoters of dsrA and iraP, two genes whose products increase the expression and stability of RpoS. Subsequently, RpoS upregulated the expression of genes encoding a universal stress protein (UspB) and an oxidative stress peroxidase (KatE), which preconditioned bacteria to better survive a variety of disinfectants. Disinfectant-mediated accumulation of reactive oxygen species (ROS) and bacterial killing were abolished/reduced by exogenous dimethyl sulfoxide and by a PheS F158C substitution up-regulating genes encoding ROS-detoxifying enzymes (katE, sodA, oxyR, ahpC). These data identify a pheS mutation-triggered, ppGpp-stimulated transcriptional regulatory cascade that negates biocide-mediated lethality, thereby tying the stringent response to protection from ROS-mediated biocide lethality.
Collapse
Affiliation(s)
- Miaomiao Chen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang-An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province361102, China
| | - Runbo Cui
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang-An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province361102, China
| | - Shouqiang Hong
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang-An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province361102, China
| | - Weiwei Zhu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang-An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province361102, China
| | - Qiong Yang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang-An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province361102, China
| | - Jiahao Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang-An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province361102, China
| | - Zihan Nie
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang-An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province361102, China
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, Fujian Province361102, China
| | - Xue Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang-An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province361102, China
| | - Yanghui Ye
- Minister of Education Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, Institute of Molecular Enzymology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu Province215123, China
| | - Yunxin Xue
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang-An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province361102, China
| | - Dai Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang-An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province361102, China
| | - Yuzhi Hong
- Minister of Education Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, Institute of Molecular Enzymology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu Province215123, China
| | - Karl Drlica
- Public Health Research Institute and Department of Microbiology, Biochemistry & Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, NJ07103
| | - Jianjun Niu
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, Fujian Province361102, China
| | - Xilin Zhao
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang-An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province361102, China
| |
Collapse
|
2
|
Temiz Ö, Kargın D. Physiological responses of oxidative damage, genotoxicity and hematological parameters of the toxic effect of neonicotinoid-thiamethoxam in Oreochromis niloticus. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 106:104377. [PMID: 38272153 DOI: 10.1016/j.etap.2024.104377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/14/2024] [Accepted: 01/22/2024] [Indexed: 01/27/2024]
Abstract
The purpose of investigation assessed the impacts of neonicotinoid thiamethoxam (TMX) at sublethal concentrations in hematological profile and renal function of Oreochromis niloticus. In the experiment, fish were exposed to TMX in four groups (0, 50, 100 and 150 ppm) for 7 days. At the end of the experiment, biochemical analysis of blood samples showed that the parameters indicating renal function showed a significant increase in serum enzymes ALT, AST, ALP and metabolites (BUN, urea, uric acid, creatinine and cortisol) concentrations, while albumin concentration decreased in a dose-dependent manner compared to the control group. In parallel with the decrease in Na+, K+ and Ca+2 in blood ion levels, there was a significant decrease in the activity of Na+/K+ ATPase, Ca+2 ATPase and AChE enzyme, levels of GSH and HSP70 in kidney tissue in TMX groups compared to the control group. It was determined that the toxic effect of TMX caused a significant increase in TBARS, PC, 8-OHdG levels, respectively. In conclusion, our study shows that TMX causes dose-dependent toxic effects, with knock-on effects on physiological processes regarding the hematological profile and renal function of O. niloticus.
Collapse
Affiliation(s)
- Özge Temiz
- Vocational School of Health Services, Osmaniye Korkut Ata University, 80000 Osmaniye, Turkey.
| | - Dicle Kargın
- Faculty of Health Sciences, Marmara University, 34865 Istanbul, Turkey
| |
Collapse
|
3
|
Perluigi M, Di Domenico F, Butterfield DA. Oxidative damage in neurodegeneration: roles in the pathogenesis and progression of Alzheimer disease. Physiol Rev 2024; 104:103-197. [PMID: 37843394 PMCID: PMC11281823 DOI: 10.1152/physrev.00030.2022] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/30/2023] [Accepted: 05/24/2023] [Indexed: 10/17/2023] Open
Abstract
Alzheimer disease (AD) is associated with multiple etiologies and pathological mechanisms, among which oxidative stress (OS) appears as a major determinant. Intriguingly, OS arises in various pathways regulating brain functions, and it seems to link different hypotheses and mechanisms of AD neuropathology with high fidelity. The brain is particularly vulnerable to oxidative damage, mainly because of its unique lipid composition, resulting in an amplified cascade of redox reactions that target several cellular components/functions ultimately leading to neurodegeneration. The present review highlights the "OS hypothesis of AD," including amyloid beta-peptide-associated mechanisms, the role of lipid and protein oxidation unraveled by redox proteomics, and the antioxidant strategies that have been investigated to modulate the progression of AD. Collected studies from our groups and others have contributed to unraveling the close relationships between perturbation of redox homeostasis in the brain and AD neuropathology by elucidating redox-regulated events potentially involved in both the pathogenesis and progression of AD. However, the complexity of AD pathological mechanisms requires an in-depth understanding of several major intracellular pathways affecting redox homeostasis and relevant for brain functions. This understanding is crucial to developing pharmacological strategies targeting OS-mediated toxicity that may potentially contribute to slow AD progression as well as improve the quality of life of persons with this severe dementing disorder.
Collapse
Affiliation(s)
- Marzia Perluigi
- Department of Biochemical Sciences "A. Rossi Fanelli," Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Fabio Di Domenico
- Department of Biochemical Sciences "A. Rossi Fanelli," Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - D Allan Butterfield
- Department of Chemistry and Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States
| |
Collapse
|
4
|
Erzurum D, Osmaniye D, Sağlık BN, Levent S, Özkay Y, Kaplancıklı ZA. Design, synthesis, and biological activity studies of carbonic anhydrase inhibitors. Z NATURFORSCH C 2023; 78:421-432. [PMID: 37924267 DOI: 10.1515/znc-2023-0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/14/2023] [Indexed: 11/06/2023]
Abstract
Carbonic anhydrase (CA) enzymes are a common catalytic enzyme in many organisms. Vertebrates and invertebrates have different CA isoforms. Sixteen different isozymes of the α-CA isoform found in vertebrates have been identified so far. The main task of this enzyme is to catalyze the reversible conversion of carbon dioxide into bicarbonate and hydrogen ions in the body. It is widely distributed in many organs and tissues. They are involved in important physiological processes such as pH and CO2 homeostasis, biosynthetic reactions such as gluconeogenesis, lipogenesis, ureagenesis, bone resorption, calcification, tumorigenicity, and electrolyte secretion. As a result of the literature research, it has been determined that the most effective inhibitor of the carbonic anhydrase enzyme is sulfonamides. The R group in the general molecular structure of R-SO2-NH2 generally consists of aromatic or heteroaromatic ring systems. The sulfonamides interact strongly with the Zn2+ ions in the active site of the enzyme. In this study, 10 sulfonamide derivatives were synthesized. Analyses of the obtained compounds are evaluated by using 1H NMR, 13C NMR and HRMS spectroscopic methods. The inhibition effect of the obtained compounds on the carbonic anhydrase enzyme was investigated by means of in vitro kit method. For the selected compounds, docking studies were performed and the enzyme active sites and binding points were determined. It was revealed that the strongest interaction with CA enzymes (CA-I, CA-II, CA-IX, CA-XII) active sites was observed with the compound 2e.
Collapse
Affiliation(s)
- Delal Erzurum
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Anadolu University, 26470 Eskişehir, Türkiye
| | - Derya Osmaniye
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Anadolu University, 26470 Eskişehir, Türkiye
- Faculty of Pharmacy, Central Analysis Laboratory, Anadolu University, 26470 Eskişehir, Türkiye
| | - Begüm Nurpelin Sağlık
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Anadolu University, 26470 Eskişehir, Türkiye
- Faculty of Pharmacy, Central Analysis Laboratory, Anadolu University, 26470 Eskişehir, Türkiye
| | - Serkan Levent
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Anadolu University, 26470 Eskişehir, Türkiye
- Faculty of Pharmacy, Central Analysis Laboratory, Anadolu University, 26470 Eskişehir, Türkiye
| | - Yusuf Özkay
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Anadolu University, 26470 Eskişehir, Türkiye
- Faculty of Pharmacy, Central Analysis Laboratory, Anadolu University, 26470 Eskişehir, Türkiye
| | - Zafer Asım Kaplancıklı
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Anadolu University, 26470 Eskişehir, Türkiye
| |
Collapse
|
5
|
Mendonça-Soares S, Fortuna M, Freddo N, Varela ACC, Pompermaier A, Mozzato MT, Costa VC, Tamagno WA, Rossato-Grando LG, Barcellos LJG. Behavioral, biochemical, and endocrine responses of zebrafish to 30-min exposure with environmentally relevant concentrations of imidacloprid-based insecticide. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27667-x. [PMID: 37195604 DOI: 10.1007/s11356-023-27667-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 05/11/2023] [Indexed: 05/18/2023]
Abstract
The imidacloprid-based insecticides (IBIs) are among the most used insecticides worldwide, and chronic and acute toxic effects (days exposure protocols) have been reported in several species in studies of IBIs at lethal concentrations. However, there is little information on shorter time exposures and environmentally relevant concentrations. In this study, we investigated the effect of a 30-min exposure to environmentally relevant concentrations of IBI on the behavior, redox status, and cortisol levels of zebrafish. We showed that the IBI decreased fish locomotion and social and aggressive behaviors and induced an anxiolytic-like behavior. Furthermore, IBI increased cortisol levels and protein carbonylation and decreased nitric oxide levels. These changes were mostly observed at 0.013 and 0.0013 µg·L-1 of IBI. In an environmental context, these behavioral and physiological disbalances, which were immediately triggered by IBI, can impair the ability of fish to evade predators and, consequently, affect their survival.
Collapse
Affiliation(s)
- Suelen Mendonça-Soares
- Programa de Pós-Graduação Em Farmacologia, Universidade Federal de Santa Maria, Avenida Roraima, Bairro Camobi, Santa Maria, Rio Grande Do Sul, Brazil
| | - Milena Fortuna
- Programa de Pós-Graduação Em Farmacologia, Universidade Federal de Santa Maria, Avenida Roraima, Bairro Camobi, Santa Maria, Rio Grande Do Sul, Brazil
| | - Natália Freddo
- Programa de Pós-Graduação Em Bioexperimentação, Universidade de Passo Fundo, Bairro São José, Passo Fundo, Rio Grande Do Sul, Brazil
| | - Amanda Carolina Cole Varela
- Programa de Pós-Graduação Em Farmacologia, Universidade Federal de Santa Maria, Avenida Roraima, Bairro Camobi, Santa Maria, Rio Grande Do Sul, Brazil
| | - Aline Pompermaier
- Programa de Pós-Graduação Em Bioexperimentação, Universidade de Passo Fundo, Bairro São José, Passo Fundo, Rio Grande Do Sul, Brazil
| | - Mateus Timbola Mozzato
- Curso de Medicina Veterinária, Universidade de Passo Fundo, Bairro São José, Passo Fundo, Rio Grande Do Sul, Brazil
| | - Vitória Cadore Costa
- Curso de Medicina Veterinária, Universidade de Passo Fundo, Bairro São José, Passo Fundo, Rio Grande Do Sul, Brazil
| | - Wagner Antonio Tamagno
- Programa de Pós-Graduação Em Farmacologia, Universidade Federal de Santa Maria, Avenida Roraima, Bairro Camobi, Santa Maria, Rio Grande Do Sul, Brazil
| | - Luciana Grazziotin Rossato-Grando
- Programa de Pós-Graduação Em Bioexperimentação, Universidade de Passo Fundo, Bairro São José, Passo Fundo, Rio Grande Do Sul, Brazil
| | - Leonardo José Gil Barcellos
- Programa de Pós-Graduação Em Farmacologia, Universidade Federal de Santa Maria, Avenida Roraima, Bairro Camobi, Santa Maria, Rio Grande Do Sul, Brazil.
- Programa de Pós-Graduação Em Bioexperimentação, Universidade de Passo Fundo, Bairro São José, Passo Fundo, Rio Grande Do Sul, Brazil.
- Curso de Medicina Veterinária, Universidade de Passo Fundo, Bairro São José, Passo Fundo, Rio Grande Do Sul, Brazil.
| |
Collapse
|
6
|
Ladouce R, Combes GF, Trajković K, Drmić Hofman I, Merćep M. Oxime blot: A novel method for reliable and sensitive detection of carbonylated proteins in diverse biological systems. Redox Biol 2023; 63:102743. [PMID: 37207613 DOI: 10.1016/j.redox.2023.102743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 05/11/2023] [Indexed: 05/21/2023] Open
Abstract
Oxidative stress and oxidative protein damage occur in various biological processes and diseases. The carbonyl group on amino acid side chains is the most widely used protein oxidation biomarker. Carbonyl groups are commonly detected indirectly through their reaction with 2,4-dinitrophenylhydrazine (DNPH) and subsequent labeling with an anti-DNP antibody. However, the DNPH immunoblotting method lacks protocol standardization, exhibits technical bias, and has low reliability. To overcome these shortcomings, we have developed a new blotting method in which the carbonyl group reacts with the biotin-aminooxy probe to form a chemically stable oxime bond. The reaction speed and the extent of the carbonyl group derivatization are increased by adding a p-phenylenediamine (pPDA) catalyst under neutral pH conditions. These improvements are crucial since they ensure that the carbonyl derivatization reaction reaches a plateau within hours and increases the sensitivity and robustness of protein carbonyl detection. Furthermore, derivatization under pH-neutral conditions facilitates a good SDS-PAGE protein migration pattern, avoids protein loss by acidic precipitation, and is directly compatible with protein immunoprecipitation. This work describes the new Oxime blot method and demonstrates its use in detecting protein carbonylation in complex matrices from diverse biological samples.
Collapse
Affiliation(s)
- Romain Ladouce
- Mediterranean Institute for Life Sciences (MedILS), Meštrovićevo šetalište 45, 21000, Split, Croatia
| | - Guillaume Fabien Combes
- Mediterranean Institute for Life Sciences (MedILS), Meštrovićevo šetalište 45, 21000, Split, Croatia; Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM), Faculty of Science, University of Split, 21000, Split, Croatia.
| | - Katarina Trajković
- Mediterranean Institute for Life Sciences (MedILS), Meštrovićevo šetalište 45, 21000, Split, Croatia; Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM), Faculty of Science, University of Split, 21000, Split, Croatia
| | - Irena Drmić Hofman
- University Department of Health Studies, University of Split, 21000, Split, Croatia; School of Medicine, University of Split, 21000, Split, Croatia
| | - Mladen Merćep
- Mediterranean Institute for Life Sciences (MedILS), Meštrovićevo šetalište 45, 21000, Split, Croatia; Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000, Rijeka, Croatia; Zora Foundation, Ruđera Boškovića 21, 21000, Split, Croatia.
| |
Collapse
|
7
|
Mohan S, Nair A, Poornima MS, Raghu KG. Vanillic acid mitigates hyperinsulinemia induced ER stress mediated altered calcium homeostasis, MAMs distortion and surplus lipogenesis in HepG2 cells. Chem Biol Interact 2023; 375:110365. [PMID: 36764371 DOI: 10.1016/j.cbi.2023.110365] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/11/2022] [Accepted: 01/23/2023] [Indexed: 02/10/2023]
Abstract
Hyperinsulinemia (HI) induced insulin resistance (IR) and associated pathologies are the burning and unsolvable issues in diabetes treatment. The cellular, molecular and biochemical events associated with HI are not yet elucidated. Similarly, no focused research on designing therapeutic strategies with natural products for attenuation of HI are seen in literature. Keeping this in mind we planned the present study to evaluate the alterations occurring at ER/Ca2+ homeostasis/mitochondria associated endoplasmic reticulum membranes (MAMs) in HepG2 cells during HI and to evaluate the possible beneficial effect of vanillic acid (VA) to mitigate the complications. An in vitro model of HI was established by treating HepG2 cells with human insulin (1 μM) for 24 h. Then, ER stress, Ca2+ homeostasis, MAMs, IR and hepatic lipogenesis were studied at protein level. Various proteins critical to ER, Ca2+ homeostasis and MAMs such as p-IRE-1α, ATF6, p-PERK, p-eIF2α, CHOP, XBP1, p-CAMKII, InsP3R, SERCA, JNK, GRP78, VDAC, Cyp D, GRP75, MFN2, PTEN and mTORC were studied and found altered significantly causing ER stress, defect in Ca2+ movements and distortion of MAMs. The decreased expression of IRS2 and an unaltered expression of IRS1 confirmed the development of selective insulin resistance in hepatocytes during HI and this was the crucial factor for the progression of the hepatic lipid accumulation. We found simultaneous treatment of VA is beneficial up to a certain extent to protect HepG2 cells from the adverse effect of HI via its antioxidant, antilipogenic, mitochondrial and ER protection properties.
Collapse
Affiliation(s)
- Sreelekshmi Mohan
- Biochemistry and Molecular Mechanism Laboratory, Agro-processing and Technology Division, Council of Scientific and Industrial Research (CSIR) - National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Anupama Nair
- Biochemistry and Molecular Mechanism Laboratory, Agro-processing and Technology Division, Council of Scientific and Industrial Research (CSIR) - National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - M S Poornima
- Biochemistry and Molecular Mechanism Laboratory, Agro-processing and Technology Division, Council of Scientific and Industrial Research (CSIR) - National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - K G Raghu
- Biochemistry and Molecular Mechanism Laboratory, Agro-processing and Technology Division, Council of Scientific and Industrial Research (CSIR) - National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
8
|
Beygmoradi A, Homaei A, Hemmati R, Fernandes P. Recombinant protein expression: Challenges in production and folding related matters. Int J Biol Macromol 2023; 233:123407. [PMID: 36708896 DOI: 10.1016/j.ijbiomac.2023.123407] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/13/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023]
Abstract
Protein folding is a biophysical process by which proteins reach a specific three-dimensional structure. The amino acid sequence of a polypeptide chain contains all the information needed to determine the final three-dimensional structure of a protein. When producing a recombinant protein, several problems can occur, including proteolysis, incorrect folding, formation of inclusion bodies, or protein aggregation, whereby the protein loses its natural structure. To overcome such limitations, several strategies have been developed to address each specific issue. Identification of proper protein refolding conditions can be challenging, and to tackle this high throughput screening for different recombinant protein folding conditions can prove a sound solution. Different approaches have emerged to tackle refolding issues. One particular approach to address folding issues involves molecular chaperones, highly conserved proteins that contribute to proper folding by shielding folding proteins from other proteins that could hinder the process. Proper protein folding is one of the main prerequisites for post-translational modifications. Incorrect folding, if not dealt with, can lead to a buildup of protein misfoldings that damage cells and cause widespread abnormalities. Said post-translational modifications, widespread in eukaryotes, are critical for protein structure, function and biological activity. Incorrect post-translational protein modifications may lead to individual consequences or aggregation of therapeutic proteins. In this review article, we have tried to examine some key aspects of recombinant protein expression. Accordingly, the relevance of these proteins is highlighted, major problems related to the production of recombinant protein and to refolding issues are pinpointed and suggested solutions are presented. An overview of post-translational modification, their biological significance and methods of identification are also provided. Overall, the work is expected to illustrate challenges in recombinant protein expression.
Collapse
Affiliation(s)
- Azadeh Beygmoradi
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| | - Ahmad Homaei
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran.
| | - Roohullah Hemmati
- Department of Biology, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Pedro Fernandes
- DREAMS and Faculdade de Engenharia, Universidade Lusófona de Humanidades e Tecnologias, Av. Campo Grande 376, 1749-024 Lisboa, Portugal; iBB-Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
9
|
Xiao W, Chen Y, Wang C. Quantitative Chemoproteomic Methods for Reactive Cysteinome Profiling. Isr J Chem 2023. [DOI: 10.1002/ijch.202200100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Weidi Xiao
- Synthetic and Functional Biomolecules Center Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education College of Chemistry and Molecular Engineering Peking University 100871 Peking China
- Peking-Tsinghua Center for Life Sciences Academy for Advanced Interdisciplinary Studies Peking University Beijing 100871 China
| | - Ying Chen
- Synthetic and Functional Biomolecules Center Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education College of Chemistry and Molecular Engineering Peking University 100871 Peking China
- Peking-Tsinghua Center for Life Sciences Academy for Advanced Interdisciplinary Studies Peking University Beijing 100871 China
| | - Chu Wang
- Synthetic and Functional Biomolecules Center Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education College of Chemistry and Molecular Engineering Peking University 100871 Peking China
- Peking-Tsinghua Center for Life Sciences Academy for Advanced Interdisciplinary Studies Peking University Beijing 100871 China
| |
Collapse
|
10
|
Garcia-Rueda AL, Mascaro M, Rodriguez-Fuentes G, Caamal-Monsreal CP, Diaz F, Paschke K, Rosas C. Moderate hypoxia mitigates the physiological effects of high temperature on the tropical blue crab Callinectes sapidus. Front Physiol 2023; 13:1089164. [PMID: 36685188 PMCID: PMC9849389 DOI: 10.3389/fphys.2022.1089164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/15/2022] [Indexed: 01/07/2023] Open
Abstract
Dissolved oxygen (DO) and water temperature vary in coastal environments. In tropical regions, the ability of aquatic ectotherms to cope with hypoxia and high-temperature interactive effects is fundamental for their survival. The mechanisms underlying both hypoxia and thermal tolerance are known to be interconnected, therefore, the idea of cross-tolerance between both environmental stressors has been put forward. We investigated the combined role of hypoxia and temperature changes on the physiological responses of blue crab Callinectes sapidus living in the southern Gulf of Mexico. We measured oxygen consumption, plasmatic biochemical indicators, total hemocyte count (THC), and antioxidant activity biomarkers in muscle and gill tissues of blue crab acclimated to moderate hypoxia or normoxia and exposed to a thermal fluctuation or a constant temperature, the former including a temperature beyond the optimum range. Animals recovered their routine metabolic rate (RMR) after experiencing thermal stress in normoxia, reflecting physiological plasticity to temperature changes. In hypoxia, the effect of increasing temperature was modulated as reflected in the RMR and plasmatic biochemical indicators concentration, and the THC did not suggest significant alterations in the health status. In both DO, the antioxidant defense system was active against oxidative (OX) damage to lipids and proteins. However, hypoxia was associated with an increase in the amelioration of OX damage. These results show that C. sapidus can modulate its thermal response in a stringent dependency with DO, supporting the idea of local acclimatization to tropical conditions, and providing insights into its potential as invasive species.
Collapse
Affiliation(s)
- Adriana L. Garcia-Rueda
- Posgrado en Ciencias del Mar y Limnologia, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - Maite Mascaro
- Unidad Multidisciplinaria de Docencia e Investigacion Sisal (UMDI-Sisal), Facultad de Ciencias, Universidad Nacional Autonoma de Mexico, Sisal, Mexico
| | - Gabriela Rodriguez-Fuentes
- Unidad de Quimica Sisal, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, Sisal, Mexico,Laboratorio Nacional de Resiliencia Costera (LANRESC), Laboratorios Nacionales, CONACYT, Mexico City, Mexico
| | - Claudia P. Caamal-Monsreal
- Unidad Multidisciplinaria de Docencia e Investigacion Sisal (UMDI-Sisal), Facultad de Ciencias, Universidad Nacional Autonoma de Mexico, Sisal, Mexico
| | - Fernando Diaz
- Laboratorio de Ecofisiologia de Organismos Acuaticos, Departamento de Biotecnologia Marina, Centro de Investigacion Cientifica y de Educacion Superior de Ensenada (CICESE), Ensenada, Mexico
| | - Kurt Paschke
- Instituto de Acuicultura, Universidad Austral de Chile, Puerto Montt, Chile,Centro de Investigación de Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile,Instituto Milenio Biodiversidad de Ecosistemas Antárticos y Subantárticos (BASE), Valdivia, Chile
| | - Carlos Rosas
- Unidad Multidisciplinaria de Docencia e Investigacion Sisal (UMDI-Sisal), Facultad de Ciencias, Universidad Nacional Autonoma de Mexico, Sisal, Mexico,Laboratorio Nacional de Resiliencia Costera (LANRESC), Laboratorios Nacionales, CONACYT, Mexico City, Mexico,*Correspondence: Carlos Rosas,
| |
Collapse
|
11
|
Calorie Restriction Provides Kidney Ischemic Tolerance in Senescence-Accelerated OXYS Rats. Int J Mol Sci 2022; 23:ijms232315224. [PMID: 36499550 PMCID: PMC9735762 DOI: 10.3390/ijms232315224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/13/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Kidney diseases belong to a group of pathologies, which are most common among elderly people. With age, even outwardly healthy organisms start to exhibit some age-related changes in the renal tissue, which reduce the filtration function of kidneys and increase the susceptibility to injury. The therapy of acute kidney injury (AKI) is aggravated by the absence of targeted pharmacotherapies thus yielding high mortality of patients with AKI. In this study, we analyzed the protective effects of calorie restriction (CR) against ischemic AKI in senescence-accelerated OXYS rats. We observed that CR afforded OXYS rats with significant nephroprotection. To uncover molecular mechanisms of CR beneficial effects, we assessed the levels of anti- and proapoptotic proteins of the Bcl-2 family, COX IV, GAPDH, and mitochondrial deacetylase SIRT-3, as well as alterations in total protein acetylation and carbonylation, mitochondrial dynamics (OPA1, Fis1, Drp1) and kidney regeneration pathways (PCNA, GDF11). The activation of autophagy and mitophagy was analyzed by LC3 II/LC3 I ratio, beclin-1, PINK-1, and total mitochondrial protein ubiquitination. Among all considered protective pathways, the improvement of mitochondrial functioning may be suggested as one of the possible mechanisms for beneficial effects of CR.
Collapse
|
12
|
Li BB, Zhang SB, Lv YY, Wei S, Hu YS. Reactive oxygen species-induced protein carbonylation promotes deterioration of physiological activity of wheat seeds. PLoS One 2022; 17:e0263553. [PMID: 35358205 PMCID: PMC8970375 DOI: 10.1371/journal.pone.0263553] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/09/2022] [Indexed: 11/18/2022] Open
Abstract
During the seed aging process, reactive oxygen species (ROS) can induce the carbonylation of proteins, which changes their functional properties and affects seed vigor. However, the impact and regulatory mechanisms of protein carbonylation on wheat seed vigor are still unclear. In this study, we investigated the changes in wheat seed vigor, carbonyl protein content, ROS content and embryo cell structure during an artificial aging process, and we analyzed the correlation between protein carbonylation and seed vigor. During the artificial wheat-seed aging process, the activity levels of antioxidant enzymes and the contents of non-enzyme antioxidants decreased, leading to the accumulation of ROS and an increase in the carbonyl protein content, which ultimately led to a decrease in seed vigor, and there was a significant negative correlation between seed vigor and carbonyl protein content. Moreover, transmission electron microscopy showed that the contents of protein bodies in the embryo cells decreased remarkably. We postulate that during the wheat seed aging process, an imbalance in ROS production and elimination in embryo cells leads to the carbonylation of proteins, which plays a negative role in wheat seed vigor.
Collapse
Affiliation(s)
- Bang-Bang Li
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Shuai-Bing Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Yang-Yong Lv
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Shan Wei
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Yuan-Sen Hu
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
- * E-mail:
| |
Collapse
|
13
|
Ponchia R, Bruno A, Renzi A, Landi C, Shaba E, Luongo FP, Haxhiu A, Artini PG, Luddi A, Governini L, Piomboni P. Oxidative Stress Measurement in Frozen/Thawed Human Sperm: The Protective Role of an In Vitro Treatment with Myo-Inositol. Antioxidants (Basel) 2021; 11:antiox11010010. [PMID: 35052514 PMCID: PMC8773045 DOI: 10.3390/antiox11010010] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/14/2021] [Accepted: 12/20/2021] [Indexed: 12/15/2022] Open
Abstract
Despite its widespread use, sperm cryopreservation induces serious detrimental alterations in sperm function; indeed, it is commonly associated with decreased sperm viability and motility, and DNA fragmentation. Mechanisms of human sperm cryodamage are thought to be multifactorial, but oxidative stress seems to have a prominent role. A huge amount of data supported the cryoprotective effect of different antioxidants able to minimize the detrimental effects of reactive oxygen species (ROS) and improve the quality of spermatozoa. Among others, myo-inositol is one of the most powerful and has been reported to be effective in improving sperm quality and motility when used both in vivo and in vitro. This study aimed to determine the in vitro impact of myo-inositol in ameliorating sperm oxidative status during sperm cryopreservation. In particular, we demonstrated a significant improvement of sperm parameters (vitality and motility) when myo-inositol was added after sperm thawing (p < 0.05). Moreover, we showed that myo-inositol induces a significant increase in oxygen consumption, the main index of oxidative phosphorylation efficiency and ATP production. Finally, by means of 2D-electrophoresis, we demonstrated a significant decrease in the level of carbonyl groups, the main structural changes occurring in conditions of oxidative stress (p < 0.05). In conclusion, the sperm cryopreservation procedure we developed, assuring the reduction of ROS-induced sperm modifications, may improve the in vitro procedure currently used in ART laboratory for sperm cryostorage.
Collapse
Affiliation(s)
- Rosetta Ponchia
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (R.P.); (A.B.); (A.R.); (F.P.L.); (A.H.); (P.P.)
| | - Annunziata Bruno
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (R.P.); (A.B.); (A.R.); (F.P.L.); (A.H.); (P.P.)
| | - Asia Renzi
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (R.P.); (A.B.); (A.R.); (F.P.L.); (A.H.); (P.P.)
| | - Claudia Landi
- Department of Life Sciences, University of Siena, 53100 Siena, Italy; (C.L.); (E.S.)
| | - Enxhi Shaba
- Department of Life Sciences, University of Siena, 53100 Siena, Italy; (C.L.); (E.S.)
| | - Francesca Paola Luongo
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (R.P.); (A.B.); (A.R.); (F.P.L.); (A.H.); (P.P.)
| | - Alesandro Haxhiu
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (R.P.); (A.B.); (A.R.); (F.P.L.); (A.H.); (P.P.)
| | - Paolo Giovanni Artini
- Department of Experimental and Clinical Medicine, Division of Obstetrics and Gynecology, Pisa University, 56100 Pisa, Italy;
| | - Alice Luddi
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (R.P.); (A.B.); (A.R.); (F.P.L.); (A.H.); (P.P.)
- Correspondence: (A.L.); (L.G.); Tel.: +39-0577233521 (A.L.); +39-0577586810 (L.G.)
| | - Laura Governini
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (R.P.); (A.B.); (A.R.); (F.P.L.); (A.H.); (P.P.)
- Correspondence: (A.L.); (L.G.); Tel.: +39-0577233521 (A.L.); +39-0577586810 (L.G.)
| | - Paola Piomboni
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (R.P.); (A.B.); (A.R.); (F.P.L.); (A.H.); (P.P.)
| |
Collapse
|
14
|
Shi J, Xiong Z, Wang K, Yuan C, Huang Y, Xiao W, Meng X, Chen Z, Lv Q, Miao D, Liang H, Xu T, Xie K, Yang H, Zhang X. HIF2α promotes tumour growth in clear cell renal cell carcinoma by increasing the expression of NUDT1 to reduce oxidative stress. Clin Transl Med 2021; 11:e592. [PMID: 34841698 PMCID: PMC8567048 DOI: 10.1002/ctm2.592] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 09/13/2021] [Accepted: 09/17/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The key role of hypoxia-inducible factor 2alpha (HIF2α) in the process of renal cancer has been confirmed. In the field of tumour research, oxidative stress is also considered to be an important influencing factor. However, the relationship and biological benefits of oxidative stress and HIF2α in ccRCC remain unclear. This research attempts to explore the effect of oxidative stress on the cancer-promoting effect of HIF2α in ccRCC and reveal its mechanism of action. METHODS The bioinformatics analysis for ccRCC is based on whole transcriptome sequencing and TCGA database. The detection of the expression level of related molecules is realised by western blot and PCR. The expression of Nucleoside diphosphate-linked moiety X-type motif 1 (NUDT1) was knocked down by lentiviral infection technology. The functional role of NUDT1 were further investigated by CCK8 assays, transwell assays and cell oxidative stress indicator detection. The exploration of related molecular mechanisms is realised by Luciferase assays and Chromatin immunoprecipitation (ChIP) assays. RESULTS Molecular screening based on knockdown HIF2α sequencing data and oxidative stress related data sets showed that NUDT1 is considered to be an important molecule for the interaction of HIF2α with oxidative stress. Subsequent experimental results showed that NUDT1 can cooperate with HIF2α to promote the progression of ccRCC. And this biological effect was found to be caused by the oxidative stress regulated by NUDT1. Mechanistically, HIF2α transcription activates the expression of NUDT1, thereby inhibiting oxidative stress and promoting the progression of ccRCC. CONCLUSIONS This research clarified a novel mechanism by which HIF2α stabilises sirtuin 3 (SIRT3) through direct transcriptional activation of NUDT1, thereby inhibiting oxidative stress to promote the development of ccRCC. It provided the possibility for the selection of new therapeutic targets for ccRCC and the study of combination medication regimens.
Collapse
Affiliation(s)
- Jian Shi
- Department of UrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
- Institute of UrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
| | - Zhiyong Xiong
- Department of UrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
- Institute of UrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
| | - Keshan Wang
- Department of UrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
- Institute of UrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
| | - Changfei Yuan
- Department of UrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
- Institute of UrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
| | - Yu Huang
- Department of UrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
- Institute of UrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
| | - Wen Xiao
- Department of UrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
- Institute of UrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
| | - Xiangui Meng
- Department of UrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
- Institute of UrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
| | - Zhixian Chen
- Department of UrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
- Institute of UrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
| | - Qingyang Lv
- Department of UrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
- Institute of UrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
| | - Daojia Miao
- Department of UrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
- Institute of UrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
| | - Huageng Liang
- Department of UrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
- Institute of UrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
| | - Tianbo Xu
- Department of UrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
- Institute of UrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
| | - Kairu Xie
- Department of Pathogenic BiologySchool of Basic MedicineHuazhong University of Science and TechnologyWuhanHubeiP. R. China
| | - Hongmei Yang
- Department of Pathogenic BiologySchool of Basic MedicineHuazhong University of Science and TechnologyWuhanHubeiP. R. China
| | - Xiaoping Zhang
- Department of UrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
- Institute of UrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
| |
Collapse
|
15
|
Shoaib M, Kim N, Choudhary RC, Yin T, Shinozaki K, Becker LB, Kim J. Increased plasma disequilibrium between pro- and anti-oxidants during the early phase resuscitation after cardiac arrest is associated with increased levels of oxidative stress end-products. Mol Med 2021; 27:135. [PMID: 34689738 PMCID: PMC8543965 DOI: 10.1186/s10020-021-00397-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/12/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cardiac arrest (CA) results in loss of blood circulation to all tissues leading to oxygen and metabolite dysfunction. Return of blood flow and oxygen during resuscitative efforts is the beginning of reperfusion injury and is marked by the generation of reactive oxygen species (ROS) that can directly damage tissues. The plasma serves as a reservoir and transportation medium for oxygen and metabolites critical for survival as well as ROS that are generated. However, the complicated interplay among various ROS species and antioxidant counterparts, particularly after CA, in the plasma have not been evaluated. In this study, we assessed the equilibrium between pro- and anti-oxidants within the plasma to assess the oxidative status of plasma post-CA. METHODS In male Sprague-Dawley rats, 10 min asphyxial-CA was induced followed by cardiopulmonary resuscitation (CPR). Plasma was drawn immediately after achieving return of spontaneous circulation (ROSC) and after 2 h post-ROSC. Plasma was isolated and analyzed for prooxidant capacity (Amplex Red and dihydroethidium oxidation, total nitrate and nitrite concentration, xanthine oxidase activity, and iron concentration) and antioxidant capacity (catalase and superoxide dismutase activities, Total Antioxidant Capacity, and Iron Reducing Antioxidant Power Assay). The consequent oxidative products, such as 4-Hydroxyl-2-noneal, malondialdehyde, protein carbonyl, and nitrotyrosine were evaluated to determine the degree of oxidative damage. RESULTS After CA and resuscitation, two trends were observed: (1) plasma prooxidant capacity was lower during ischemia, but rapidly increased post-ROSC as compared to control, and (2) plasma antioxidant capacity was increased during ischemia, but either decreased or did not increase substantially post-ROSC as compared to control. Consequently, oxidation products were increased post-ROSC. CONCLUSION Our study evaluated the disbalance of pro- and anti-oxidants after CA in the plasma during the early phase after resuscitation. This disequilibrium favors the prooxidants and is associated with increased levels of downstream oxidative stress-induced end-products, which the body's antioxidant capacity is unable to directly mitigate. Here, we suggest that circulating plasma is a major contributor to oxidative stress post-CA and its management requires substantial early intervention for favorable outcomes.
Collapse
Affiliation(s)
- Muhammad Shoaib
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Laboratory for Critical Care Physiology, The Feinstein Institutes for Medical Research, 350 Community Dr., Manhasset, NY, 11030, USA
| | - Nancy Kim
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Rishabh C Choudhary
- Laboratory for Critical Care Physiology, The Feinstein Institutes for Medical Research, 350 Community Dr., Manhasset, NY, 11030, USA
- Department of Emergency Medicine, Northwell Health, NY, USA
| | - Tai Yin
- Laboratory for Critical Care Physiology, The Feinstein Institutes for Medical Research, 350 Community Dr., Manhasset, NY, 11030, USA
- Department of Emergency Medicine, Northwell Health, NY, USA
| | - Koichiro Shinozaki
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Laboratory for Critical Care Physiology, The Feinstein Institutes for Medical Research, 350 Community Dr., Manhasset, NY, 11030, USA
- Department of Emergency Medicine, Northwell Health, NY, USA
| | - Lance B Becker
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Laboratory for Critical Care Physiology, The Feinstein Institutes for Medical Research, 350 Community Dr., Manhasset, NY, 11030, USA
- Department of Emergency Medicine, Northwell Health, NY, USA
| | - Junhwan Kim
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
- Laboratory for Critical Care Physiology, The Feinstein Institutes for Medical Research, 350 Community Dr., Manhasset, NY, 11030, USA.
- Department of Emergency Medicine, Northwell Health, NY, USA.
| |
Collapse
|
16
|
Demasi M, Augusto O, Bechara EJH, Bicev RN, Cerqueira FM, da Cunha FM, Denicola A, Gomes F, Miyamoto S, Netto LES, Randall LM, Stevani CV, Thomson L. Oxidative Modification of Proteins: From Damage to Catalysis, Signaling, and Beyond. Antioxid Redox Signal 2021; 35:1016-1080. [PMID: 33726509 DOI: 10.1089/ars.2020.8176] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Significance: The systematic investigation of oxidative modification of proteins by reactive oxygen species started in 1980. Later, it was shown that reactive nitrogen species could also modify proteins. Some protein oxidative modifications promote loss of protein function, cleavage or aggregation, and some result in proteo-toxicity and cellular homeostasis disruption. Recent Advances: Previously, protein oxidation was associated exclusively to damage. However, not all oxidative modifications are necessarily associated with damage, as with Met and Cys protein residue oxidation. In these cases, redox state changes can alter protein structure, catalytic function, and signaling processes in response to metabolic and/or environmental alterations. This review aims to integrate the present knowledge on redox modifications of proteins with their fate and role in redox signaling and human pathological conditions. Critical Issues: It is hypothesized that protein oxidation participates in the development and progression of many pathological conditions. However, no quantitative data have been correlated with specific oxidized proteins or the progression or severity of pathological conditions. Hence, the comprehension of the mechanisms underlying these modifications, their importance in human pathologies, and the fate of the modified proteins is of clinical relevance. Future Directions: We discuss new tools to cope with protein oxidation and suggest new approaches for integrating knowledge about protein oxidation and redox processes with human pathophysiological conditions. Antioxid. Redox Signal. 35, 1016-1080.
Collapse
Affiliation(s)
- Marilene Demasi
- Laboratório de Bioquímica e Biofísica, Instituto Butantan, São Paulo, Brazil
| | - Ohara Augusto
- Departamento de Bioquímica and Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Etelvino J H Bechara
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Renata N Bicev
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Fernanda M Cerqueira
- CENTD, Centre of Excellence in New Target Discovery, Instituto Butantan, São Paulo, Brazil
| | - Fernanda M da Cunha
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ana Denicola
- Laboratorios Fisicoquímica Biológica-Enzimología, Facultad de Ciencias, Instituto de Química Biológica, Universidad de la República, Montevideo, Uruguay
| | - Fernando Gomes
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Sayuri Miyamoto
- Departamento de Bioquímica and Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Luis E S Netto
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Lía M Randall
- Laboratorios Fisicoquímica Biológica-Enzimología, Facultad de Ciencias, Instituto de Química Biológica, Universidad de la República, Montevideo, Uruguay
| | - Cassius V Stevani
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Leonor Thomson
- Laboratorios Fisicoquímica Biológica-Enzimología, Facultad de Ciencias, Instituto de Química Biológica, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
17
|
Akagawa M. Protein carbonylation: molecular mechanisms, biological implications, and analytical approaches. Free Radic Res 2021; 55:307-320. [DOI: 10.1080/10715762.2020.1851027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Mitsugu Akagawa
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| |
Collapse
|
18
|
Santillán Deiú A, Ondarza PM, Miglioranza KSB, de la Torre FR. Multibiomarker responses and bioaccumulation of fipronil in Prochilodus lineatus exposed to spiked sediments: Oxidative stress and antioxidant defenses. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 177:104876. [PMID: 34301349 DOI: 10.1016/j.pestbp.2021.104876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 04/19/2021] [Accepted: 05/17/2021] [Indexed: 06/13/2023]
Abstract
Fipronil is a current use pesticide, widely used in many crops, commonly adsorbed to sediments of aquatic environments. The purpose of this study was to evaluate the biomarker responses and fipronil distribution pattern in different matrixes (fish, sediment and water) after juveniles P. lineatus exposure at two environmental concentrations (5.5 and 82 μg kg--1) of fipronil-spiked sediments. The levels of oxidized proteins (PO), lipid peroxidation (LPO), and enzymatic activity of superoxide dismutase (SOD), reduced glutathione content (GSH), antioxidant capacity against peroxyls (ACAP) and acetylcholinesterase (AChE) were evaluated in liver, gills and brain. Concentrations of fipronil and its metabolites (f. desulfinyl, f sulphpHide and f. sulfone) were quantified by GC-ECD. F. desulfinyl was the major metabolite found in all matrixes, followed by f. sulphide in sediments, while f. sulfone was mainly accumulated in fish. Fipronil promoted oxidative stress in P. lineatus, as evidenced by the increases in LPO and PO levels and the decrease brain AChE activity. Fish exposed at both concentrations showed significant decrease in antioxidant capacity. Alterations in the antioxidant defenses system was evidenced in all organs. These results suggest that the occurrence of fipronil in aquatic environments can generate oxidative stress at different levels in P. lineatus, showing that this species is highly sensitive to the deleterious effects of fipronil and metabolites.
Collapse
Affiliation(s)
- Antonela Santillán Deiú
- Grupo de Estudios de Contaminación Antrópica de Peces (GECAP), Departamento de Ciencias Básicas e INEDES, Universidad Nacional de Luján (UNLu-CONICET), Rutas 5 y 7, Luján 6700, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Paola M Ondarza
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Laboratorio de Ecotoxicología y Contaminación Ambiental, Instituto de Investigaciones Marinas y Costeras (IIMyC-CONICET), Universidad Nacional de Mar del Plata, D Funes 3350, Mar del Plata 7600, Argentina
| | - Karina S B Miglioranza
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Laboratorio de Ecotoxicología y Contaminación Ambiental, Instituto de Investigaciones Marinas y Costeras (IIMyC-CONICET), Universidad Nacional de Mar del Plata, D Funes 3350, Mar del Plata 7600, Argentina
| | - Fernando R de la Torre
- Grupo de Estudios de Contaminación Antrópica de Peces (GECAP), Departamento de Ciencias Básicas e INEDES, Universidad Nacional de Luján (UNLu-CONICET), Rutas 5 y 7, Luján 6700, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| |
Collapse
|
19
|
Santillán Deiú A, Miglioranza KSB, Ondarza PM, de la Torre FR. Exposure to environmental concentrations of fipronil induces biochemical changes on a neotropical freshwater fish. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:43872-43884. [PMID: 33840019 DOI: 10.1007/s11356-021-13786-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
Fipronil is a broad-use insecticide with severe toxicity to fish. Biomarkers responses and bioaccumulation were evaluated on Prochilodus lineatus after exposure to environmentally relevant concentrations of fipronil (0.5 μg L-1, 9 μg L-1, and 100 μg L-1) in a prolonged flow-through assay and ex vivo gills short-term exposition. Lipid peroxidation (LPO), oxidatively modified proteins (PO), the activity of superoxide dismutase (SOD), the content of reduced glutathione (GSH), antioxidant capacity against peroxyles (ACAP), and acetylcholinesterase (AChE) were evaluated. Besides, levels of fipronil and metabolites were analyzed by GC-ECD. At the end of the flow-through assay, fipronil, Fp. sulfone and Fp. desulfinyl were detected in fish, being liver the target organ. Fipronil prolonged exposition promoted oxidative damage in lipids and proteins, alterations in the defense system and low-antioxidant capacity in organs of P. lineatus. The brain AChE activity was affected after prolonged exposition. Ex vivo gills exposition to fipronil promoted changes in antioxidant capacity and damage to lipids, providing a fast and suitable test to assess the pesticide exposure in fish. The results revealed that fipronil at environmental concentrations would be an inducer of oxidative stress in this fish, becoming a vulnerable species to the effects of fipronil in aquatic environments.
Collapse
Affiliation(s)
- Antonela Santillán Deiú
- Grupo de Estudios de Contaminación Antrópica en Peces (GECAP), Departamento de Ciencias Básicas e Instituto de Ecología y Desarrollo Sustentable (INEDES), Universidad Nacional de Luján (UNLu-CONICET), Ruta 5 y Avenida Constitución, B6700ZBA, Luján, Argentina
| | - Karina S B Miglioranza
- Laboratorio de Ecotoxicología y Contaminación Ambiental, Instituto de Investigaciones Marinas y Costeras (IIMyC), Universidad Nacional de Mar del Plata-CONICET, Dean Funes 3350, 7600, Mar del Plata, Argentina
| | - Paola M Ondarza
- Laboratorio de Ecotoxicología y Contaminación Ambiental, Instituto de Investigaciones Marinas y Costeras (IIMyC), Universidad Nacional de Mar del Plata-CONICET, Dean Funes 3350, 7600, Mar del Plata, Argentina
| | - Fernando R de la Torre
- Grupo de Estudios de Contaminación Antrópica en Peces (GECAP), Departamento de Ciencias Básicas e Instituto de Ecología y Desarrollo Sustentable (INEDES), Universidad Nacional de Luján (UNLu-CONICET), Ruta 5 y Avenida Constitución, B6700ZBA, Luján, Argentina.
| |
Collapse
|
20
|
Liu J, Tian J, Sodhi K, Shapiro JI. The Na/K-ATPase Signaling and SGLT2 Inhibitor-Mediated Cardiorenal Protection: A Crossed Road? J Membr Biol 2021; 254:513-529. [PMID: 34297135 PMCID: PMC8595165 DOI: 10.1007/s00232-021-00192-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/06/2021] [Indexed: 12/17/2022]
Abstract
In different large-scale clinic outcome trials, sodium (Na+)/glucose co-transporter 2 (SGLT2) inhibitors showed profound cardiac- and renal-protective effects, making them revolutionary treatments for heart failure and kidney disease. Different theories are proposed according to the emerging protective effects other than the original purpose of glucose-lowering in diabetic patients. As the ATP-dependent primary ion transporter providing the Na+ gradient to drive other Na+-dependent transporters, the possible role of the sodium–potassium adenosine triphosphatase (Na/K-ATPase) as the primary ion transporter and its signaling function is not explored.
Collapse
Affiliation(s)
- Jiang Liu
- Department of Biomedical Sciences, JCE School of Medicine, Marshall University, Huntington, WV, USA.
| | - Jiang Tian
- Department of Biomedical Sciences, JCE School of Medicine, Marshall University, Huntington, WV, USA
| | - Komal Sodhi
- Department of Surgery, JCE School of Medicine, Marshall University, Huntington, WV, USA
| | - Joseph I Shapiro
- Departments of Medicine, JCE School of Medicine, Marshall University, Huntington, WV, USA
| |
Collapse
|
21
|
Tola AJ, Jaballi A, Missihoun TD. Protein Carbonylation: Emerging Roles in Plant Redox Biology and Future Prospects. PLANTS (BASEL, SWITZERLAND) 2021; 10:1451. [PMID: 34371653 PMCID: PMC8309296 DOI: 10.3390/plants10071451] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/26/2021] [Accepted: 07/09/2021] [Indexed: 12/15/2022]
Abstract
Plants are sessile in nature and they perceive and react to environmental stresses such as abiotic and biotic factors. These induce a change in the cellular homeostasis of reactive oxygen species (ROS). ROS are known to react with cellular components, including DNA, lipids, and proteins, and to interfere with hormone signaling via several post-translational modifications (PTMs). Protein carbonylation (PC) is a non-enzymatic and irreversible PTM induced by ROS. The non-enzymatic feature of the carbonylation reaction has slowed the efforts to identify functions regulated by PC in plants. Yet, in prokaryotic and animal cells, studies have shown the relevance of protein carbonylation as a signal transduction mechanism in physiological processes including hydrogen peroxide sensing, cell proliferation and survival, ferroptosis, and antioxidant response. In this review, we provide a detailed update on the most recent findings pertaining to the role of PC and its implications in various physiological processes in plants. By leveraging the progress made in bacteria and animals, we highlight the main challenges in studying the impacts of carbonylation on protein functions in vivo and the knowledge gap in plants. Inspired by the success stories in animal sciences, we then suggest a few approaches that could be undertaken to overcome these challenges in plant research. Overall, this review describes the state of protein carbonylation research in plants and proposes new research avenues on the link between protein carbonylation and plant redox biology.
Collapse
Affiliation(s)
| | | | - Tagnon D. Missihoun
- Groupe de Recherche en Biologie Végétale (GRBV), Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351 boul. des Forges, Trois-Rivières, QC G9A 5H7, Canada; (A.J.T.); (A.J.)
| |
Collapse
|
22
|
Gorbunov NV, Kiang JG. Brain Damage and Patterns of Neurovascular Disorder after Ionizing Irradiation. Complications in Radiotherapy and Radiation Combined Injury. Radiat Res 2021; 196:1-16. [PMID: 33979447 PMCID: PMC8297540 DOI: 10.1667/rade-20-00147.1] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 04/02/2021] [Indexed: 12/31/2022]
Abstract
Exposure to ionizing radiation, mechanical trauma, toxic chemicals or infections, or combinations thereof (i.e., combined injury) can induce organic injury to brain tissues, the structural disarrangement of interactive networks of neurovascular and glial cells, as well as on arrays of the paracrine and systemic destruction. This leads to subsequent decline in cognitive capacity and decompensation of mental health. There is an ongoing need for improvement in mitigating and treating radiation- or combined injury-induced brain injury. Cranial irradiation per se can cause a multifactorial encephalopathy that occurs in a radiation dose- and time-dependent manner due to differences in radiosensitivity among the various constituents of brain parenchyma and vasculature. Of particular concern are the radiosensitivity and inflammation susceptibility of: 1. the neurogenic and oligodendrogenic niches in the subependymal and hippocampal domains; and 2. the microvascular endothelium. Thus, cranial or total-body irradiation can cause a plethora of biochemical and cellular disorders in brain tissues, including: 1. decline in neurogenesis and oligodendrogenesis; 2. impairment of the blood-brain barrier; and 3. ablation of vascular capillary. These changes, along with cerebrovascular inflammation, underlie different stages of encephalopathy, from the early protracted stage to the late delayed stage. It is evident that ionizing radiation combined with other traumatic insults such as penetrating wound, burn, blast, systemic infection and chemotherapy, among others, can exacerbate the radiation sequelae (and vice versa) with increasing severity of neurogenic and microvascular patterns of radiation brain damage.
Collapse
Affiliation(s)
| | - Juliann G. Kiang
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| |
Collapse
|
23
|
Boucelha L, Abrous-Belbachir O, Djebbar R. Is protein carbonylation a biomarker of seed priming and ageing? FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:611-623. [PMID: 33617758 DOI: 10.1071/fp21001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
For a long time, it has been known that seed priming allows the improvement of plant production and tolerance to abiotic stresses. However, a negative effect on the longevity of the seeds thus primed was observed; these mechanisms are still poorly understood. In addition, it has been shown by several authors that seed ageing is associated with the oxidation and particularly with carbonylation of protein. Our work consisted in studying the AOPP and carbonyl protein at the different parts of the embryo from freshly primed seeds and from those that have been primed for 4 years (after storage). We subjected Vigna unguiculata (L.) Walp. seeds to a single or double hydropriming. Our study showed that hydropriming, and more particularly a double cycle of hydration-dehydration, makes it possible to attenuate the oxidation of the protein while it favours a certain threshold of carbonylation in the freshly dehydrated seeds in order to better trigger the germination process. On the other hand, after a storage period of 4 years, these dehydrated seeds are characterised by a strong accumulation of the products of oxidation and especially carbonylated protein, compared with the untreated seeds, which could explain the decrease of the longevity of these seeds.
Collapse
Affiliation(s)
- Lilya Boucelha
- University of Science and Technology Houari Boumediene (USTHB), Faculty of Biological Sciences, Laboratory of Biology and Physiology of Organisms, BP 32 El Alia, 16111 Bab Ezzouar Algiers (Algeria)
| | - Ouzna Abrous-Belbachir
- University of Science and Technology Houari Boumediene (USTHB), Faculty of Biological Sciences, Laboratory of Biology and Physiology of Organisms, BP 32 El Alia, 16111 Bab Ezzouar Algiers (Algeria)
| | - Réda Djebbar
- University of Science and Technology Houari Boumediene (USTHB), Faculty of Biological Sciences, Laboratory of Biology and Physiology of Organisms, BP 32 El Alia, 16111 Bab Ezzouar Algiers (Algeria); and Corresponding author.
| |
Collapse
|
24
|
Protein carbonylation associated with nickel liberation in orthodontic gingival overgrowth. Arch Oral Biol 2021; 125:105103. [PMID: 33721694 DOI: 10.1016/j.archoralbio.2021.105103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 02/23/2021] [Accepted: 02/28/2021] [Indexed: 11/21/2022]
Abstract
OBJECTIVE To determine nickel levels and their impact on protein carbonylation in gum samples from patients with gingival overgrowth by orthodontic treatment. DESIGN A retrospective observational study with 33 patients divided into three groups. Group 1 patients with gingival overgrowth by orthodontic appliances; group 2 patients without gingival overgrowth but with a history of orthodontic treatment; group 3 patients without overgrowth and history of orthodontic appliances. Nickel level in gingiva samples was measured by atomic absorption while protein carbonylation was determined by Western Blot. Furthermore, three proteins were identified in carbonylated protein bands by mass spectrometry. RESULTS Statistically significant differences (p < 0,05) in tissue nickel levels among groups were established (nickel levels group 1: 1.33 ± 1.52; group 2: 0.33 ± 0.44; group 3: 0.20 ± 0.22 μg Ni/g tissue). Protein carbonylation was higher in patients with gingival enlargement (group 1) and history of appliance use (group 2) than controls (group 3). It was observed that band A of the Western blots presented the highest intensity (Rf 0.23) with an average intensity of 4.133.830 ± 1.958.569 for group 1; 4.420.146 ± 1.594.679 for group 2 and 2.110. 727 ± 1.640.721 for group 3. Also, the proteins Teneurin-4, Bromodomain adjacent to zinc finger domain protein 2B, Lysine-specific demethylase 5B, and Serum albumin, were identified from oxidized bands. CONCLUSIONS The gum of patients with gingival overgrowth by orthodontic appliances contains higher nickel residues and carbonylation of its proteins.
Collapse
|
25
|
Altomare A, Baron G, Gianazza E, Banfi C, Carini M, Aldini G. Lipid peroxidation derived reactive carbonyl species in free and conjugated forms as an index of lipid peroxidation: limits and perspectives. Redox Biol 2021; 42:101899. [PMID: 33642248 PMCID: PMC8113032 DOI: 10.1016/j.redox.2021.101899] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/01/2021] [Accepted: 02/12/2021] [Indexed: 02/08/2023] Open
Abstract
Reactive carbonyl species (RCS) formed by lipidperoxidation as free forms or as enzymatic and non-enzymatic conjugates are widely used as an index of oxidative stress. Besides general measurements based on derivatizing reactions, more selective and sensitive MS based analyses have been proposed in the last decade. Untargeted and targeted methods for the measurement of free RCS and adducts have been described and their applications to in vitro and ex vivo samples have permitted the identification of many biological targets, reaction mechanisms and adducted moieties with a particular relevance to RCS protein adducts. The growing interest in protein carbonylation can be explained by considering that protein adducts are now recognized as being involved in the damaging action of oxidative stress so that their measurement is performed not only to obtain an index of lipid peroxidation but also to gain a deeper insight into the molecular mechanisms of oxidative stress. The aim of the review is to discuss the most novel analytical approaches and their application for profiling reactive carbonyl species and their enzymatic and non-enzymatic metabolites as an index of lipid-oxidation and oxidative stress. Limits and perspectives will be discussed.
Collapse
Affiliation(s)
- Alessandra Altomare
- Department of Pharmaceutical Sciences (DISFARM), Università Degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy
| | - Giovanna Baron
- Department of Pharmaceutical Sciences (DISFARM), Università Degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy
| | - Erica Gianazza
- Centro Cardiologico Monzino, IRCCS, Via Parea 4, 20138, Milan, Italy
| | - Cristina Banfi
- Centro Cardiologico Monzino, IRCCS, Via Parea 4, 20138, Milan, Italy
| | - Marina Carini
- Department of Pharmaceutical Sciences (DISFARM), Università Degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy
| | - Giancarlo Aldini
- Department of Pharmaceutical Sciences (DISFARM), Università Degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy.
| |
Collapse
|
26
|
Estaras M, Ameur FZ, Estévez M, Díaz-Velasco S, Gonzalez A. The lysine derivative aminoadipic acid, a biomarker of protein oxidation and diabetes-risk, induces production of reactive oxygen species and impairs trypsin secretion in mouse pancreatic acinar cells. Food Chem Toxicol 2020; 145:111594. [PMID: 32738373 DOI: 10.1016/j.fct.2020.111594] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 02/06/2023]
Abstract
We have examined the effects of α-aminoadipic acid, an oxidized derivative from the amino acid lysine, on the physiology of mouse pancreatic acinar cells. Changes in intracellular free-Ca2+ concentration, the generation of reactive oxygen species, the levels of carbonyls and thiobarbituric-reactive substances, cellular metabolic activity and trypsin secretion were studied. Stimulation of mouse pancreatic cells with cholecystokinin (1 nM) evoked a transient increase in [Ca2+]i. In the presence of α-amoniadipic acid increases in [Ca2+]i were observed. In the presence of the compound, cholecystokinin induced a Ca2+ response that was smaller compared with that observed when cholecystokinin was applied alone. Stimulation of cells with cholecystokinin in the absence of Ca2+ in the extracellular medium abolished further mobilization of Ca2+ by α-aminoadipic acid. In addition, potential pro-oxidant conditions, reflected as increases in ROS generation, oxidation of proteins and lipids, were noted in the presence of α-aminoadipic acid. Finally, the compound impaired trypsin secretion induced by the secretagogue cholecystokinin. We conclude that the oxidized derivative from the amino acid lysine induces pro-oxidative conditions and the impairment of enzyme secretion in pancreatic acinar cells. α-aminoadipic acid thus creates a situation that could potentially lead to disorders in the physiology of the pancreas.
Collapse
Affiliation(s)
- Matias Estaras
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Cáceres, Spain
| | - Fatma Z Ameur
- Laboratoire de Physiologie de la Nutrition et de Sécurité Alimentaire, Université d'Oran1 Ahmed BenBella, Algeria
| | - Mario Estévez
- IPROCAR Research Institute, TECAL Research Group, University of Extremadura, 10003, Cáceres, Spain
| | - Silvia Díaz-Velasco
- IPROCAR Research Institute, TECAL Research Group, University of Extremadura, 10003, Cáceres, Spain
| | - Antonio Gonzalez
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Cáceres, Spain.
| |
Collapse
|
27
|
Jara O, Minogue PJ, Berthoud VM, Beyer EC. Do Connexin Mutants Cause Cataracts by Perturbing Glutathione Levels and Redox Metabolism in the Lens? Biomolecules 2020; 10:E1418. [PMID: 33036381 PMCID: PMC7600092 DOI: 10.3390/biom10101418] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/01/2020] [Accepted: 10/03/2020] [Indexed: 02/06/2023] Open
Abstract
Cataracts of many different etiologies are associated with oxidation of lens components. The lens is protected by maintenance of a pool of reduced glutathione (GSH) and other antioxidants. Because gap junction channels made of the lens connexins, Cx46 and Cx50, are permeable to GSH, we tested whether mice expressing two different mutants, Cx46fs380 and Cx50D47A, cause cataracts by impairing lens glutathione metabolism and facilitating oxidative damage. Levels of GSH were not reduced in homogenates of whole mutant lenses. Oxidized glutathione (GSSG) and the GSSG/GSH ratio were increased in whole lenses of Cx50D47A, but not Cx46fs380 mice. The GSSG/GSH ratio was increased in the lens nucleus (but not cortex) of Cx46fs380 mice at 4.5 months of age, but it was not altered in younger animals. Carbonylated proteins were increased in Cx50D47A, but not Cx46fs380 lenses. Thus, both mouse lines have oxidizing lens environments, but oxidative modification is greater in Cx50D47A than in Cx46fs380 mice. The results suggest that GSH permeation through lens connexin channels is not a critical early event in cataract formation in these mice. Moreover, because oxidative damage was only detected in animals with significant cataracts, it cannot be an early event in their cataractogenesis.
Collapse
Affiliation(s)
| | | | | | - Eric C. Beyer
- Department of Pediatrics, University of Chicago, Chicago, IL 60637, USA; (O.J.); (P.J.M.); (V.M.B.)
| |
Collapse
|
28
|
Adav SS, Sze SK. Hypoxia-Induced Degenerative Protein Modifications Associated with Aging and Age-Associated Disorders. Aging Dis 2020; 11:341-364. [PMID: 32257546 PMCID: PMC7069466 DOI: 10.14336/ad.2019.0604] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/04/2019] [Indexed: 12/18/2022] Open
Abstract
Aging is an inevitable time-dependent decline of various physiological functions that finally leads to death. Progressive protein damage and aggregation have been proposed as the root cause of imbalance in regulatory processes and risk factors for aging and neurodegenerative diseases. Oxygen is a modulator of aging. The oxygen-deprived conditions (hypoxia) leads to oxidative stress, cellular damage and protein modifications. Despite unambiguous evidence of the critical role of spontaneous non-enzymatic Degenerative Protein Modifications (DPMs) such as oxidation, glycation, carbonylation, carbamylation, and deamidation, that impart deleterious structural and functional protein alterations during aging and age-associated disorders, the mechanism that mediates these modifications is poorly understood. This review summarizes up-to-date information and recent developments that correlate DPMs, aging, hypoxia, and age-associated neurodegenerative diseases. Despite numerous advances in the study of the molecular hallmark of aging, hypoxia, and degenerative protein modifications during aging and age-associated pathologies, a major challenge remains there to dissect the relative contribution of different DPMs in aging (either natural or hypoxia-induced) and age-associated neurodegeneration.
Collapse
Affiliation(s)
- Sunil S Adav
- School of Biological Sciences, Nanyang Technological University, Singapore
- Singapore Phenome Centre, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, Singapore
| |
Collapse
|
29
|
Kryvenko V, Wessendorf M, Morty RE, Herold S, Seeger W, Vagin O, Dada LA, Sznajder JI, Vadász I. Hypercapnia Impairs Na,K-ATPase Function by Inducing Endoplasmic Reticulum Retention of the β-Subunit of the Enzyme in Alveolar Epithelial Cells. Int J Mol Sci 2020; 21:E1467. [PMID: 32098115 PMCID: PMC7073107 DOI: 10.3390/ijms21041467] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/16/2020] [Accepted: 02/17/2020] [Indexed: 01/02/2023] Open
Abstract
Alveolar edema, impaired alveolar fluid clearance, and elevated CO2 levels (hypercapnia) are hallmarks of the acute respiratory distress syndrome (ARDS). This study investigated how hypercapnia affects maturation of the Na,K-ATPase (NKA), a key membrane transporter, and a cell adhesion molecule involved in the resolution of alveolar edema in the endoplasmic reticulum (ER). Exposure of human alveolar epithelial cells to elevated CO2 concentrations caused a significant retention of NKA-β in the ER and, thus, decreased levels of the transporter in the Golgi apparatus. These effects were associated with a marked reduction of the plasma membrane (PM) abundance of the NKA-α/β complex as well as a decreased total and ouabain-sensitive ATPase activity. Furthermore, our study revealed that the ER-retained NKA-β subunits were only partially assembled with NKA α-subunits, which suggests that hypercapnia modifies the ER folding environment. Moreover, we observed that elevated CO2 levels decreased intracellular ATP production and increased ER protein and, particularly, NKA-β oxidation. Treatment with α-ketoglutaric acid (α-KG), which is a metabolite that has been shown to increase ATP levels and rescue mitochondrial function in hypercapnia-exposed cells, attenuated the deleterious effects of elevated CO2 concentrations and restored NKA PM abundance and function. Taken together, our findings provide new insights into the regulation of NKA in alveolar epithelial cells by elevated CO2 levels, which may lead to the development of new therapeutic approaches for patients with ARDS and hypercapnia.
Collapse
Affiliation(s)
- Vitalii Kryvenko
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), 35392 Giessen, Germany; (V.K.); (M.W.); (R.E.M.); (S.H.); (W.S.)
- The Cardio-Pulmonary Institute (CPI), 35392 Giessen, Germany
| | - Miriam Wessendorf
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), 35392 Giessen, Germany; (V.K.); (M.W.); (R.E.M.); (S.H.); (W.S.)
| | - Rory E. Morty
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), 35392 Giessen, Germany; (V.K.); (M.W.); (R.E.M.); (S.H.); (W.S.)
- The Cardio-Pulmonary Institute (CPI), 35392 Giessen, Germany
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Susanne Herold
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), 35392 Giessen, Germany; (V.K.); (M.W.); (R.E.M.); (S.H.); (W.S.)
- The Cardio-Pulmonary Institute (CPI), 35392 Giessen, Germany
| | - Werner Seeger
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), 35392 Giessen, Germany; (V.K.); (M.W.); (R.E.M.); (S.H.); (W.S.)
- The Cardio-Pulmonary Institute (CPI), 35392 Giessen, Germany
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Olga Vagin
- Department of Physiology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA;
- Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - Laura A. Dada
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (L.A.D.); (J.I.S.)
| | - Jacob I. Sznajder
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (L.A.D.); (J.I.S.)
| | - István Vadász
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), 35392 Giessen, Germany; (V.K.); (M.W.); (R.E.M.); (S.H.); (W.S.)
- The Cardio-Pulmonary Institute (CPI), 35392 Giessen, Germany
| |
Collapse
|
30
|
Kültz D. Evolution of cellular stress response mechanisms. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 333:359-378. [PMID: 31970941 DOI: 10.1002/jez.2347] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/19/2019] [Accepted: 01/08/2020] [Indexed: 12/16/2022]
Abstract
The cellular stress response (CSR) is pervasive to all domains of life. It has shaped the interaction between organisms and their environment since the origin of the first cell. Although the CSR has been subject to a myriad of nuanced modifications in the various branches of life present today, its core features remain preserved. The scientific literature covering the CSR is enormous and the broad scope of this brief overview was challenging. However, it is critical to conceptually understand how cells respond to stress in a holistic sense and to point out how fundamental aspects of the CSR framework are integrated. It was necessary to be extremely selective and not feasible to even mention many interesting and important developments in this expansive field. The purpose of this overview is to sketch out general and emerging CSR concepts with an emphasis on the initial cellular strain resulting from stress (macromolecular damage) and the evolutionarily most highly conserved elements of the CSR. Examples emphasize fish and aquatic invertebrates to highlight what is known in organisms beyond mammals, yeast, and other common models. Nonetheless, select pioneering studies using canonical models are also considered and the concepts discussed are applicable to all cells. More detail on important aspects of the CSR in aquatic animals is provided in the accompanying articles of this special issue.
Collapse
Affiliation(s)
- Dietmar Kültz
- Department of Animal Sciences, University of California Davis, Davis, California
| |
Collapse
|
31
|
Sandalio LM, Gotor C, Romero LC, Romero-Puertas MC. Multilevel Regulation of Peroxisomal Proteome by Post-Translational Modifications. Int J Mol Sci 2019; 20:E4881. [PMID: 31581473 PMCID: PMC6801620 DOI: 10.3390/ijms20194881] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 09/24/2019] [Accepted: 09/26/2019] [Indexed: 01/10/2023] Open
Abstract
Peroxisomes, which are ubiquitous organelles in all eukaryotes, are highly dynamic organelles that are essential for development and stress responses. Plant peroxisomes are involved in major metabolic pathways, such as fatty acid β-oxidation, photorespiration, ureide and polyamine metabolism, in the biosynthesis of jasmonic, indolacetic, and salicylic acid hormones, as well as in signaling molecules such as reactive oxygen and nitrogen species (ROS/RNS). Peroxisomes are involved in the perception of environmental changes, which is a complex process involving the regulation of gene expression and protein functionality by protein post-translational modifications (PTMs). Although there has been a growing interest in individual PTMs in peroxisomes over the last ten years, their role and cross-talk in the whole peroxisomal proteome remain unclear. This review provides up-to-date information on the function and crosstalk of the main peroxisomal PTMs. Analysis of whole peroxisomal proteomes shows that a very large number of peroxisomal proteins are targeted by multiple PTMs, which affect redox balance, photorespiration, the glyoxylate cycle, and lipid metabolism. This multilevel PTM regulation could boost the plasticity of peroxisomes and their capacity to regulate metabolism in response to environmental changes.
Collapse
Affiliation(s)
- Luisa M Sandalio
- Department of Biochemistry and Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain.
| | - Cecilia Gotor
- Institute of Plant Biochemistry and Photosynthesis, CSIC and the University of Seville, 41092 Seville, Spain.
| | - Luis C Romero
- Institute of Plant Biochemistry and Photosynthesis, CSIC and the University of Seville, 41092 Seville, Spain.
| | - Maria C Romero-Puertas
- Department of Biochemistry and Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain.
| |
Collapse
|
32
|
Schwarzbacherová V, Wnuk M, Deregowska A, Holečková B, Lewinska A. In vitro exposure to thiacloprid-based insecticide formulation promotes oxidative stress, apoptosis and genetic instability in bovine lymphocytes. Toxicol In Vitro 2019; 61:104654. [PMID: 31533058 DOI: 10.1016/j.tiv.2019.104654] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/12/2019] [Accepted: 09/14/2019] [Indexed: 11/16/2022]
Abstract
A proprietary thiacloprid-based neonicotinoid insecticide formulation is widely used in agriculture to protect vegetables and fruit against various pests. However, its effect on animal cells has not been fully elucidated. In this study, bovine peripheral lymphocytes were incubated with different concentrations of this formulation (10; 30; 60; 120 and 240 μg.mL-1) for 4 h to address the potential cytotoxic and genotoxic effects of the insecticide. Insecticide formulation treatment resulted in decreased cell viability and proliferation, p53-mediated cell cycle arrest at the G0/G1 phase, and apoptosis induction accompanied by elevated levels of mitochondrial superoxide and protein carbonylation. Oxidant-based DNA damage and DNA damage response (DDR) were also observed, namely the formation of micronuclei, DNA double-strand breaks and slightly elevated recruitment of p53 binding protein (53BP1) foci. Our results contribute to the elucidation of insecticide effects on animal lymphocyte cultures after short-term exposure. Due to increased application of neonicotinoids worldwide, resulting in both higher yields and adverse effects on non-target animals and humans, further in vivo and in vitro experiments should be performed to confirm their cytotoxic and genotoxic activities during short-term exposure.
Collapse
Affiliation(s)
- Viera Schwarzbacherová
- Institute of Genetics, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovak Republic.
| | - Maciej Wnuk
- Department of Genetics, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
| | - Anna Deregowska
- Department of Genetics, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
| | - Beáta Holečková
- Institute of Genetics, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovak Republic
| | - Anna Lewinska
- Department of Cell Biochemistry, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
| |
Collapse
|
33
|
Label-Free Proteomics Revealed Oxidative Stress and Inflammation as Factors That Enhance Chemoresistance in Luminal Breast Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5357649. [PMID: 31485295 PMCID: PMC6702830 DOI: 10.1155/2019/5357649] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/22/2019] [Accepted: 07/01/2019] [Indexed: 12/29/2022]
Abstract
Breast cancer is the leading cause of cancer-associated death among women worldwide. Its high mortality rate is related to resistance towards chemotherapies, which is one of the major challenges of breast cancer research. In this study, we used label-free mass spectrometry- (MS-) based proteomics to investigate the differences between circulating proteins in the plasma of patients with chemoresponsive and chemoresistant luminal A breast cancer. MS analysis revealed 205 differentially expressed proteins. Furthermore, we used in silico tools to build protein-protein interaction networks. Most of the upregulated proteins in the chemoresistant group were closely related and tightly linked. The predominant networks were related to oxidative stress, the inflammatory response, and the complement cascade. Through this analysis, we identified inflammation and oxidative stress as central processes of breast cancer chemoresistance. Furthermore, we confirmed our hypothesis by evaluating oxidative stress and performing cytokine profiling in our cohort. The connections among oxidative stress, inflammation, and the complement system described in our study seem to indicate a pivotal axis in breast cancer chemoresistance. Hence, these findings will have significant clinical implications for improving therapies to bypass breast cancer chemoresistance in the future.
Collapse
|
34
|
Gonos ES, Kapetanou M, Sereikaite J, Bartosz G, Naparło K, Grzesik M, Sadowska-Bartosz I. Origin and pathophysiology of protein carbonylation, nitration and chlorination in age-related brain diseases and aging. Aging (Albany NY) 2019; 10:868-901. [PMID: 29779015 PMCID: PMC5990388 DOI: 10.18632/aging.101450] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 05/08/2018] [Indexed: 12/11/2022]
Abstract
Non-enzymatic protein modifications occur inevitably in all living systems. Products of such modifications accumulate during aging of cells and organisms and may contribute to their age-related functional deterioration. This review presents the formation of irreversible protein modifications such as carbonylation, nitration and chlorination, modifications by 4-hydroxynonenal, removal of modified proteins and accumulation of these protein modifications during aging of humans and model organisms, and their enhanced accumulation in age-related brain diseases.
Collapse
Affiliation(s)
- Efstathios S Gonos
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, Athens 11635, Greece
| | - Marianna Kapetanou
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, Athens 11635, Greece.,Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Athens, Athens 15701, Greece
| | - Jolanta Sereikaite
- Department of Chemistry and Bioengineering, Faculty of Fundamental Sciences, Vilnius Gediminas Technical University, Vilnius 2040, Lithuania
| | - Grzegorz Bartosz
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz 90-236, Poland
| | - Katarzyna Naparło
- Department of Analytical Biochemistry, Faculty of Biology and Agriculture, University of Rzeszow, Rzeszow 35-601, Poland
| | - Michalina Grzesik
- Department of Analytical Biochemistry, Faculty of Biology and Agriculture, University of Rzeszow, Rzeszow 35-601, Poland
| | - Izabela Sadowska-Bartosz
- Department of Analytical Biochemistry, Faculty of Biology and Agriculture, University of Rzeszow, Rzeszow 35-601, Poland
| |
Collapse
|
35
|
Aristizábal D, Rivas V, Cassab GI, Lledías F. Heat stress reveals high molecular mass proteasomes in Arabidopsis thaliana suspension cells cultures. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 140:78-87. [PMID: 31085449 DOI: 10.1016/j.plaphy.2019.04.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/01/2019] [Accepted: 04/26/2019] [Indexed: 06/09/2023]
Abstract
Because of their sessile nature, plants have evolved complex and robust mechanisms to respond to adverse environments. Stress conditions trigger an increase in protein turnover and degradation. Proteasomes are essential to the cell for removing, in a highly regulated manner, partially denatured or oxidized proteins thus minimizing their cytotoxicity. We observed that suspension cells of Arabidopsis thaliana treated with high temperature (37 °C) directed the assembly of high molecular mass proteasomes. The removal of a 75% of the original ubiquitin conjugates and the maintenance of protein carbonyls at basal levels correlated with a specific proteasome profiles. The profiles obtained by the separation of different proteasomes populations by Blue-Native Polyacrylamide Gel Electrophoresis and western blot analysis suggest that synthesis, assembly, and heavy ubiquitination of 20S (CP) subunits are promoted by heat stress.
Collapse
Affiliation(s)
- Daniel Aristizábal
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Mor, 62250, Mexico
| | - Viridiana Rivas
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Mor, 62250, Mexico
| | - Gladys I Cassab
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Mor, 62250, Mexico
| | - Fernando Lledías
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Mor, 62250, Mexico.
| |
Collapse
|
36
|
Alvim TT, Martinez CBDR. Genotoxic and oxidative damage in the freshwater teleost Prochilodus lineatus exposed to the insecticides lambda-cyhalothrin and imidacloprid alone and in combination. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 842:85-93. [DOI: 10.1016/j.mrgentox.2018.11.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 11/23/2018] [Accepted: 11/28/2018] [Indexed: 01/22/2023]
|
37
|
Tananyan AG, Balasanyan MG, Baykov AV, Hovsepyan LM, Ghazaryan GS. The Effect of Mesedin on the Content of Oxidative Stress Biomarkers in the Brain Tissue in Ischemia. NEUROCHEM J+ 2019. [DOI: 10.1134/s1819712419010173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
Gourzones C, Bellanger C, Lamure S, Gadacha OK, De Paco EG, Vincent L, Cartron G, Klein B, Moreaux J. Antioxidant Defenses Confer Resistance to High Dose Melphalan in Multiple Myeloma Cells. Cancers (Basel) 2019; 11:cancers11040439. [PMID: 30925767 PMCID: PMC6521290 DOI: 10.3390/cancers11040439] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/15/2019] [Accepted: 03/20/2019] [Indexed: 12/25/2022] Open
Abstract
Background: Multiple myeloma (MM) is the second most common hematological cancer after lymphoma. It is characterized by the accumulation of clonal malignant plasma cells within the bone marrow. The development of drug resistance remains a major problem for effective treatment of MM. Understand the mechanisms underlying drug resistance in MM is a focal point to improve MM treatment. Methods: In the current study, we analyzed further the role of redox imbalance induction in melphalan-induced toxicity both in human myeloma cell lines (HMCLs) and primary myeloma cells from patients. Results: We developed an in-vitro model of short-term resistance to high-dose melphalan and identified that pretreatment with physiological concentration of GSH protects HMCLs from melphalan-induced cell cycle arrest and cytotoxicity. We validated these results using primary MM cells from patients co-cultured with their bone marrow microenvironment. GSH did not affect the ability of melphalan to induce DNA damages in MM cells. Interestingly, melphalan induced reactive oxygen species, a significant decrease in GSH concentration, protein and lipd oxydation together with NRF2 (NF-E2-related factor 2) pathway activation. Conclusions: Our data demonstrate that antioxidant defenses confers resistance to high dose melphalan in MM cells, supporting that redox status in MM cells could be determinant for patients’ response to melphalan.
Collapse
Affiliation(s)
- Claire Gourzones
- IGH, CNRS, University of Montpellier, 34000 Montpellier, France.
| | - Céline Bellanger
- IGH, CNRS, University of Montpellier, 34000 Montpellier, France.
| | - Sylvain Lamure
- Department of Clinical Hematology, CHU Montpellier, 34395 Montpellier, France.
| | | | | | - Laure Vincent
- Department of Clinical Hematology, CHU Montpellier, 34395 Montpellier, France.
| | - Guillaume Cartron
- Department of Clinical Hematology, CHU Montpellier, 34395 Montpellier, France.
- Univ Montpellier, UFR de Médecine, 34000 Montpellier, France.
- Univ Montpellier, UMR CNRS 5235, 34000 Montpellier, France.
| | - Bernard Klein
- IGH, CNRS, University of Montpellier, 34000 Montpellier, France.
- Univ Montpellier, UFR de Médecine, 34000 Montpellier, France.
- Department of Biological Hematology, CHU Montpellier, 34295 Montpellier, France.
| | - Jérôme Moreaux
- IGH, CNRS, University of Montpellier, 34000 Montpellier, France.
- Univ Montpellier, UFR de Médecine, 34000 Montpellier, France.
- Department of Biological Hematology, CHU Montpellier, 34295 Montpellier, France.
| |
Collapse
|
39
|
Chienwichai P, Reamtong O, Boonyuen U, Pisitkun T, Somparn P, Tharnpoophasiam P, Worakhunpiset S, Topanurak S. Hepatic protein Carbonylation profiles induced by lipid accumulation and oxidative stress for investigating cellular response to non-alcoholic fatty liver disease in vitro. Proteome Sci 2019; 17:1. [PMID: 30962768 PMCID: PMC6438040 DOI: 10.1186/s12953-019-0149-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 03/11/2019] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is caused by excessive accumulation of fat within the liver, leading to further severe conditions such as non-alcoholic steatohepatitis (NASH). Progression of healthy liver to steatosis and NASH is not yet fully understood in terms of process and response. Hepatic oxidative stress is believed to be one of the factors driving steatosis to NASH. Oxidative protein modification is the major cause of protein functional impairment in which alteration of key hepatic enzymes is likely to be a crucial factor for NAFLD biology. In the present study, we aimed to discover carbonylated protein profiles involving in NAFLD biology in vitro. METHODS Hepatocyte cell line was used to induce steatosis with fatty acids (FA) in the presence and absence of menadione (oxidative stress inducer). Two-dimensional gel electrophoresis-based proteomics and dinitrophenyl hydrazine derivatization technique were used to identify carbonylated proteins. Sequentially, in order to view changes in protein carbonylation pathway, enrichment using Funrich algorithm was performed. The selected carbonylated proteins were validated with western blot and carbonylated sites were further identified by high-resolution LC-MS/MS. RESULTS Proteomic results and pathway analysis revealed that carbonylated proteins are involved in NASH pathogenesis pathways in which most of them play important roles in energy metabolisms. Particularly, carbonylation level of ATP synthase subunit α (ATP5A), a key protein in cellular respiration, was reduced after FA and FA with oxidative stress treatment, whereas its expression was not altered. Carbonylated sites on this protein were identified and it was revealed that these sites are located in nucleotide binding region. Modification of these sites may, therefore, disturb ATP5A activity. As a consequence, the lower carbonylation level on ATP5A after FA treatment solely or with oxidative stress can increase ATP production. CONCLUSIONS The reduction in carbonylated level of ATP5A might occur to generate more energy in response to pathological conditions, in our case, fat accumulation and oxidative stress in hepatocytes. This would imply the association between protein carbonylation and molecular response to development of steatosis and NASH.
Collapse
Affiliation(s)
- Peerut Chienwichai
- Faculty of Medicine and Public Health, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, 10210 Thailand
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400 Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400 Thailand
| | - Usa Boonyuen
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400 Thailand
| | - Trairak Pisitkun
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Poorichaya Somparn
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Prapin Tharnpoophasiam
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400 Thailand
| | - Suwalee Worakhunpiset
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400 Thailand
| | - Supachai Topanurak
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400 Thailand
- Center of Excellence of Antibody Research, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400 Thailand
| |
Collapse
|
40
|
Suzuki YJ. Oxidant-Mediated Protein Amino Acid Conversion. Antioxidants (Basel) 2019; 8:antiox8020050. [PMID: 30823521 PMCID: PMC6406366 DOI: 10.3390/antiox8020050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 02/20/2019] [Accepted: 02/25/2019] [Indexed: 11/16/2022] Open
Abstract
Biological oxidation plays important roles in the pathogenesis of various diseases and aging. Carbonylation is one mode of protein oxidation. It has been reported that amino acids that are susceptible to carbonylation are arginine (Arg), proline (Pro), lysine, and threonine residues. The carbonylation product of both Arg and Pro residues is glutamyl semialdehyde. While chemically the oxidation reactions of neither Pro to glutamyl semialdehyde nor Arg to glutamyl semialdehyde are reversible, experimental results from our laboratory suggest that the biological system may drive the reduction of glutamyl semialdehyde to Pro in the protein structure. Further, glutamyl semialdehyde can be oxidized to become glutamic acid (Glu). Therefore, I hypothesize that biological oxidation post-translationally converts Arg to Pro, Arg to Glu, and Pro to Glu within the protein structure. Our mass spectrometry experiments provided evidence that, in human cells, 5⁻10% of peroxiredoxin 6 protein molecules have Pro-45 replaced by Glu. This concept of protein amino acid conversion challenges the dogma that amino acid sequences are strictly defined by nucleic acid sequences. I propose that, in the biological system, amino acid replacements can occur post-translationally through redox regulation, and protein molecules with non-DNA coding sequences confer functions.
Collapse
Affiliation(s)
- Yuichiro J Suzuki
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC 20007, USA.
| |
Collapse
|
41
|
Lone SA, Mohanty TK, Baithalu RK, Yadav HP. Sperm protein carbonylation. Andrologia 2019; 51:e13233. [DOI: 10.1111/and.13233] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/22/2018] [Accepted: 12/14/2018] [Indexed: 12/26/2022] Open
Affiliation(s)
- Shabir Ahmad Lone
- Animal Reproduction, Gynaecology & Obstetrics ICAR‐National Dairy Research Institute Karnal India
| | - Tushar Kumar Mohanty
- Animal Reproduction, Gynaecology & Obstetrics ICAR‐National Dairy Research Institute Karnal India
| | - Rubina Kumari Baithalu
- Animal Reproduction, Gynaecology & Obstetrics ICAR‐National Dairy Research Institute Karnal India
| | - Hanuman Prasad Yadav
- Animal Reproduction, Gynaecology & Obstetrics ICAR‐National Dairy Research Institute Karnal India
| |
Collapse
|
42
|
Zhou R, Long H, Zhang B, Lao Z, Zheng Q, Wang T, Zhang Y, Wu Q, Lai X, Li G, Lin L. Salvianolic acid B, an antioxidant derived from Salvia militarize, protects mice against γ‑radiation‑induced damage through Nrf2/Bach1. Mol Med Rep 2018; 19:1309-1317. [PMID: 30535483 PMCID: PMC6323199 DOI: 10.3892/mmr.2018.9718] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 07/31/2017] [Indexed: 12/25/2022] Open
Abstract
Salvianolic acid B (SB) is an antioxidant derived from Salvia militarize, and is one of the most widely used herbs in traditional Chinese medicine. SB is a potent antioxidant that has been well documented as a scavenger of oxygen free radicals, and has been used for the prevention and treatment of atherosclerosis-associated disorders. To explore its potential therapeutic effects in treating radiation damage, in this study, mice were treated with SB at different doses of 5, 12.5 and 20 mg/kg, subsequent to receiving γ-irradiation. The effects of SB on peripheral blood, bone marrow nucleated cells, spleen and thymus indices, and oxidation resistance were evaluated in both radiated mice and control groups. The results indicated that SB significantly increased the counts of peripheral white blood cells, red blood cells and platelets. The number of nucleated cells in the bone marrow and the level of protein increased as well. In addition, improved spleen and thymus indices in the bone marrow were observed. SB treatment additionally reversed the deterioration of both the thymus and spleen indices, which is associated with increased serum superoxide dismutase activity and decreasing malondialdehyde levels via nuclear factor (erythroid-derived 2)-like 2 protein/BTB and CNC homology 1 mediated antioxidant effect. Furthermore, ROS levels and Bax protein expression were also suppressed by SB. The data suggested that SB is effective in protecting mice from γ-radiation injury, and could potentially be applicable for clinical use. Notably, the present study identified a promising candidate drug for enhancing the hematopoietic and immune systems.
Collapse
Affiliation(s)
- Ruifang Zhou
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Haishan Long
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Bei Zhang
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Zhizhao Lao
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Quanyu Zheng
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Tiancheng Wang
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Yongxin Zhang
- Department of Pharmacy, 458th Hospital of PLA, Guangzhou, Guangdong 510030, P.R. China
| | - Qingguang Wu
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Xiaoping Lai
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Geng Li
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Lizhu Lin
- Department of Medical Oncology, The First Hospital Affiliated to Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
43
|
Gorini G, Gamberi T, Fiaschi T, Mannelli M, Modesti A, Magherini F. Irreversible plasma and muscle protein oxidation and physical exercise. Free Radic Res 2018; 53:126-138. [PMID: 30513020 DOI: 10.1080/10715762.2018.1542141] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The imbalance between the reactive oxygen (ROS) and nitrogen (RNS) species production and their handling by the antioxidant machinery (low molecular weight antioxidant molecules and antioxidant enzymes), also known as oxidative stress, is a condition caused by physiological and pathological processes. Moreover, oxidative stress may be due to an overproduction of free radicals during physical exercise. Excess of radical species leads to the modification of molecules, such as proteins - the most susceptible to oxidative modification - lipids and DNA. With regard to the oxidation of proteins, carbonylation is an oxidative modification that has been widely described. Several studies have detected changes in the total amount of protein carbonyls following different types of physical exercise, but only few of these identified the specific amino acidic residues targets of such oxidation. In this respect, proteomic approaches allow to identify the proteins susceptible to carbonylation and in many cases, it is also possible to identify the specific protein carbonylation sites. This review focuses on the role of protein oxidation, and specifically carbonyl formation, for plasma and skeletal muscle proteins, following different types of physical exercise performed at different intensities. Furthermore, we focused on the proteomic strategies used to identify the specific protein targets of carbonylation. Overall, our analysis suggests that regular physical activity promotes a protection against protein carbonylation, due to the activation of the antioxidant defence or of the turnover of protein carbonyls. However, we can conclude that from the comprehensive bibliography analysed, there is no clearly defined specific physiological role about this post-translational modification of proteins.
Collapse
Affiliation(s)
- Giulia Gorini
- a Department of Biomedical, Experimental and Clinical Sciences "Mario Serio" , University of Florence , Florence , Italy
| | - Tania Gamberi
- a Department of Biomedical, Experimental and Clinical Sciences "Mario Serio" , University of Florence , Florence , Italy
| | - Tania Fiaschi
- a Department of Biomedical, Experimental and Clinical Sciences "Mario Serio" , University of Florence , Florence , Italy
| | - Michele Mannelli
- a Department of Biomedical, Experimental and Clinical Sciences "Mario Serio" , University of Florence , Florence , Italy
| | - Alessandra Modesti
- a Department of Biomedical, Experimental and Clinical Sciences "Mario Serio" , University of Florence , Florence , Italy
| | - Francesca Magherini
- a Department of Biomedical, Experimental and Clinical Sciences "Mario Serio" , University of Florence , Florence , Italy
| |
Collapse
|
44
|
Gobi N, Vaseeharan B, Rekha R, Vijayakumar S, Faggio C. Bioaccumulation, cytotoxicity and oxidative stress of the acute exposure selenium in Oreochromis mossambicus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 162:147-159. [PMID: 29990726 DOI: 10.1016/j.ecoenv.2018.06.070] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/19/2018] [Accepted: 06/24/2018] [Indexed: 05/12/2023]
Abstract
Selenium (Se) is an essential trace-element that becomes toxic when present at high concentrations for aquatic organisms. The knowledge about the mechanism of Se toxicity in freshwater ecosystem is still poorly studied. Thus the aim of the present study was to assess the impact of environmentally relevant concentrations of Se toxicity: 5, 10, 25, 50 and 100 µg/L or water only (control) for periods of 96 hour (h) to test for Se accumulation (gill, liver and brain), its effects on enzymatic and non-enzymatic antioxidant defenses (gill and liver), oxidative stress effects on lipid, protein (gill and liver), DNA (liver) and inhibition of AchE (brain) activity were measured in Mozambique tilapia, Oreochromis mossambicus. Our result showed that Se accumulation was observed in the gill, liver and brain tissues of fish exposed to different concentrations and accumulation varied upon different tissues. Enzymatic (SOD, CAT, GPx and GST) and non-enzymatic (GSH and MT) antioxidant enzymes such as superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione-s-transferase (GST) were significantly increased after 96 h exposure of higher concentrations Se in the gill and liver tissue with the exception of GST activity was significantly inhibited in liver after 96 h exposure of higher concentrations of Se. In contrast, catalase (CAT) activities were inhibited for both tissues of Se exposure at 96 h. Reduced glutathione (GSH) and Metallothionein (MT) levels were increased in the gill and liver tissues after exposure to Se for 96 h. We also observed that Se affected antioxidant defense, increasing oxidative stress indicator of lipid peroxidation (LPO) and protein carbonyl (PCO) in gill and liver tissues of fish exposed to Se for 96 h at the concentration dependent manner. Increased DNA damage scores observed in liver tissue of fish exposed to Se for concentrations dependent manner, indicating potential of Se on fish. We also observed inhibition of acetylcholine esterase (AchE) activity in brain tissue of fish exposed to Se for higher concentrations. The changes in these parameters can be used as suitable biomarkers for monitoring the toxicity of Se in the aquatic environment.
Collapse
Affiliation(s)
- Narayanan Gobi
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Science Campus 6(th) Floor, Karaikudi 630004, Tamil Nadu, India
| | - Baskaralingam Vaseeharan
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Science Campus 6(th) Floor, Karaikudi 630004, Tamil Nadu, India.
| | - Ravichandran Rekha
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Science Campus 6(th) Floor, Karaikudi 630004, Tamil Nadu, India
| | - Sekar Vijayakumar
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Science Campus 6(th) Floor, Karaikudi 630004, Tamil Nadu, India
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina-Viale Ferdinando Stagno d'Alcontres, 31 98166 S.Agata-Messina, Italy
| |
Collapse
|
45
|
Satour P, Youssef C, Châtelain E, Vu BL, Teulat B, Job C, Job D, Montrichard F. Patterns of protein carbonylation during Medicago truncatula seed maturation. PLANT, CELL & ENVIRONMENT 2018; 41:2183-2194. [PMID: 29543987 DOI: 10.1111/pce.13194] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 03/05/2018] [Accepted: 03/07/2018] [Indexed: 06/08/2023]
Abstract
Seeds mainly acquire their physiological quality during maturation, whereas oxidative conditions reign within cells triggering protein carbonylation. To better understand the role of this protein modification in legume seeds, we compared by proteomics patterns of carbonylated proteins in maturing seeds of Medicago truncatula naturally desiccated or prematurely dried, a treatment known to impair seed quality acquisition. In both cases, protein carbonylation increased in these seeds, accompanying water removal. We identified several proteins whose extent of carbonylation varied when comparing natural desiccation and premature drying and that could therefore be responsible for the impairment of seed quality acquisition or expression. In particular, we focused on PM34, a protein specific to seeds exhibiting a high sensitivity to carbonylation and of which function in dicotyledons was not known before. PM34 proved to have a cellulase activity presumably associated with cell elongation, a process required for germination and subsequent seedling growth. We discuss the possibility that PM34 (abundance or redox state) could be used to assess crop seed quality.
Collapse
Affiliation(s)
- Pascale Satour
- IRHS, Université d'Angers, INRA, Agrocampus-Ouest, SFR 4207 QUASAV, 49071, Beaucouzé, France
| | - Chvan Youssef
- IRHS, Université d'Angers, INRA, Agrocampus-Ouest, SFR 4207 QUASAV, 49071, Beaucouzé, France
| | - Emilie Châtelain
- IRHS, Université d'Angers, INRA, Agrocampus-Ouest, SFR 4207 QUASAV, 49071, Beaucouzé, France
| | - Benoît Ly Vu
- IRHS, Université d'Angers, INRA, Agrocampus-Ouest, SFR 4207 QUASAV, 49071, Beaucouzé, France
| | - Béatrice Teulat
- IRHS, Université d'Angers, INRA, Agrocampus-Ouest, SFR 4207 QUASAV, 49071, Beaucouzé, France
| | - Claudette Job
- Laboratoire mixte CNRS/Université Claude Bernard Lyon/INSA/Bayer CropScience-UMR 5240, Bayer CropScience-14, rue Pierre Baizet, 69263, Lyon cedex 9, France
| | - Dominique Job
- Laboratoire mixte CNRS/Université Claude Bernard Lyon/INSA/Bayer CropScience-UMR 5240, Bayer CropScience-14, rue Pierre Baizet, 69263, Lyon cedex 9, France
| | - Françoise Montrichard
- IRHS, Université d'Angers, INRA, Agrocampus-Ouest, SFR 4207 QUASAV, 49071, Beaucouzé, France
| |
Collapse
|
46
|
Bouallegui Y, Ben Younes R, Oueslati R, Sheehan D. Role of endocytotic uptake routes in impacting the ROS-related toxicity of silver nanoparticles to Mytilus galloprovincialis: A redox proteomic investigation. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 200:21-27. [PMID: 29705565 DOI: 10.1016/j.aquatox.2018.04.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/18/2018] [Accepted: 04/21/2018] [Indexed: 06/08/2023]
Abstract
Oxidative stress is often implicated in nanoparticle toxicity. Several studies have highlighted the role of internalization routes in determining nanotoxicity. Here, we investigate how two endocytotic mechanisms (clathrin- and caveolae-mediated) impact on redox balance in gill and digestive gland of the mussel, Mytilus galloprovincialis. Animals were exposed (for 3, 6 and 12 h) to two sizes of silver nanoparticles (AgNP: <50 nm and <100 nm) prior to and after blockade of two endocytic pathways (amantadine blocks clathrin-mediated endocytosis while nystatin blocks caveolae-mediated endocytosis). Redox-proteomic tools were used to determine effects. Our results demonstrate the ability of both sizes of AgNP (<50 and <100 nm) to cause protein thiol oxidation and/or protein carbonylation. However, blockade of endocytotic routes mitigated AgNP toxicity. Differential ROS-related toxicity of AgNP to mussel tissues seemed to be linked to tissue-specific mode of action requirements. Cell uptake mechanism strongly influences toxicity of AgNPs in this filter-feeder.
Collapse
Affiliation(s)
- Younes Bouallegui
- Research Unit of Immuno-Microbiology Environmental and Carcinogenesis, Sciences Faculty of Bizerte, University of Carthage, Tunisia.
| | - Ridha Ben Younes
- Research Unit of Immuno-Microbiology Environmental and Carcinogenesis, Sciences Faculty of Bizerte, University of Carthage, Tunisia
| | - Ridha Oueslati
- Research Unit of Immuno-Microbiology Environmental and Carcinogenesis, Sciences Faculty of Bizerte, University of Carthage, Tunisia
| | - David Sheehan
- Proteomic Research Group, School of Biochemistry and Cell Biology, University College Cork, Ireland; Dept of Chemistry, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
47
|
Sultan CS, Saackel A, Stank A, Fleming T, Fedorova M, Hoffmann R, Wade RC, Hecker M, Wagner AH. Impact of carbonylation on glutathione peroxidase-1 activity in human hyperglycemic endothelial cells. Redox Biol 2018; 16:113-122. [PMID: 29499564 PMCID: PMC5952877 DOI: 10.1016/j.redox.2018.02.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 02/19/2018] [Indexed: 12/14/2022] Open
Abstract
AIMS High levels of glucose and reactive carbonyl intermediates of its degradation pathway such as methylglyoxal (MG) may contribute to diabetic complications partly via increased generation of reactive oxygen species (ROS). This study focused on glutathione peroxidase-1 (GPx1) expression and the impact of carbonylation as an oxidative protein modification on GPx1 abundance and activity in human umbilical vein endothelial cells (HUVEC) under conditions of mild to moderate oxidative stress. RESULTS High extracellular glucose and MG enhanced intracellular ROS formation in HUVECs. Protein carbonylation was only transiently augmented pointing to an effective antioxidant defense in these cells. Nitric oxide synthase expression was decreased under hyperglycemic conditions but increased upon exposure to MG, whereas superoxide dismutase expression was not significantly affected. Increased glutathione peroxidase (GPx) activity seemed to compensate for a decrease in GPx1 protein due to enhanced degradation via the proteasome. Mass spectrometry analysis identified Lys-114 as a possible carbonylation target which provides a vestibule for the substrate H2O2 and thus enhances the enzymatic reaction. INNOVATION Oxidative protein carbonylation has so far been associated with functional inactivation of modified target proteins mainly contributing to aging and age-related diseases. Here, we demonstrate that mild oxidative stress and subsequent carbonylation seem to activate protective cellular redox signaling pathways whereas severe oxidative stress overwhelms the cellular antioxidant defense leading to cell damage. CONCLUSIONS This study may contribute to a better understanding of redox homeostasis and its role in the development of diabetes and related vascular complications.
Collapse
Affiliation(s)
- Cheryl S Sultan
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg D-69120, Germany
| | - Andrea Saackel
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg D-69120, Germany
| | - Antonia Stank
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Heidelberg D-69118, Germany; Heidelberg Graduate School of Mathematical and Computational Methods for the Sciences, Heidelberg D-69120, Germany
| | - Thomas Fleming
- Department of Medicine I and Clinical Chemistry, University Hospital Heidelberg, Heidelberg D-69120, Germany
| | - Maria Fedorova
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Center for Biotechnology and Biomedicine, Leipzig University, Leipzig D-04103, Germany
| | - Ralf Hoffmann
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Center for Biotechnology and Biomedicine, Leipzig University, Leipzig D-04103, Germany
| | - Rebecca C Wade
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Heidelberg D-69118, Germany; Interdisciplinary Center for Scientific Computing (IWR), Heidelberg D-69120, Germany; Center for Molecular Biology of the University of Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg D-69120, Germany
| | - Markus Hecker
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg D-69120, Germany
| | - Andreas H Wagner
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg D-69120, Germany.
| |
Collapse
|
48
|
From Physiological Redox Signalling to Oxidant Stress. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 967:335-342. [PMID: 29047097 DOI: 10.1007/978-3-319-63245-2_21] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Oxidant stress is strongly associated with cardiovascular disease, including pulmonary hypertension, but antioxidant therapies have so far proven ineffective. This is partly due to a lack of understanding of the key role played by reactive oxygen species (ROS) in physiological cell signalling, and partly to the complex interrelationships between generators of ROS (e.g. mitochondria and NADPH oxidases, NOX), cellular antioxidant systems and indeed Ca2+ signalling. At physiological levels ROS reversibly affect the function of numerous enzymes and transcription factors, most often via oxidation of specific protein thiols. Importantly, they also affect pathways that promote ROS generation by NOX or mitochondria (ROS-induced ROS release), which has an inherent propensity for positive feedback and uncontrolled oxidant production. The reason this does not occur under normal conditions reflects in part a high level of compartmentalisation of ROS signalling within the cell, akin to that for Ca2+. This article considers the physiological processes which regulate NOX and mitochondrial ROS production and degradation and their interactions with each other and Ca2+ signalling pathways, and discusses how loss of spatiotemporal constraints and activation of positive feedback pathways may impact on their dysregulation in pulmonary hypertension.
Collapse
|
49
|
Jiménez-Altayó F, Meirelles T, Crosas-Molist E, Sorolla MA, Del Blanco DG, López-Luque J, Mas-Stachurska A, Siegert AM, Bonorino F, Barberà L, García C, Condom E, Sitges M, Rodríguez-Pascual F, Laurindo F, Schröder K, Ros J, Fabregat I, Egea G. Redox stress in Marfan syndrome: Dissecting the role of the NADPH oxidase NOX4 in aortic aneurysm. Free Radic Biol Med 2018; 118:44-58. [PMID: 29471108 DOI: 10.1016/j.freeradbiomed.2018.02.023] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/12/2018] [Accepted: 02/15/2018] [Indexed: 11/16/2022]
Abstract
Marfan syndrome (MFS) is characterized by the formation of ascending aortic aneurysms resulting from altered assembly of extracellular matrix fibrillin-containing microfibrils and dysfunction of TGF-β signaling. Here we identify the molecular targets of redox stress in aortic aneurysms from MFS patients, and investigate the role of NOX4, whose expression is strongly induced by TGF-β, in aneurysm formation and progression in a murine model of MFS. Working models included aortae and cultured vascular smooth muscle cells (VSMC) from MFS patients, and a NOX4-deficient Marfan mouse model (Fbn1C1039G/+-Nox4-/-). Increased tyrosine nitration and reactive oxygen species levels were found in the tunica media of human aortic aneurysms and in cultured VSMC. Proteomic analysis identified nitrated and carbonylated proteins, which included smooth muscle α-actin (αSMA) and annexin A2. NOX4 immunostaining increased in the tunica media of human Marfan aorta and was transcriptionally overexpressed in VSMC. Fbn1C1039G/+-Nox4-/- mice aortas showed a reduction of fragmented elastic fibers, which was accompanied by an amelioration in the Marfan-associated enlargement of the aortic root. Increase in the contractile phenotype marker calponin in the tunica media of MFS mice aortas was abrogated in Fbn1C1039G/+-Nox4-/- mice. Endothelial dysfunction evaluated by myography in the Marfan ascending aorta was prevented by the absence of Nox4 or catalase-induced H2O2 decomposition. We conclude that redox stress occurs in MFS, whose targets are actin-based cytoskeleton members and regulators of extracellular matrix homeostasis. Likewise, NOX4 have an impact in the progression of the aortic dilation in MFS and in the structural organization of the aortic tunica media, the VSMC phenotypic modulation, and endothelial function.
Collapse
Affiliation(s)
- Francesc Jiménez-Altayó
- Departament de Farmacologia, Terapèutica i Toxicologia, Institut de Neurociències, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Thayna Meirelles
- Department de Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, and IDIBAPS, Barcelona, Spain
| | - Eva Crosas-Molist
- TGF-β and Cancer Group, Oncobell Program, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - M Alba Sorolla
- Institut de Recerca Biomèdica de Lleida (IRB Lleida), Lleida, Spain; Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, Lleida, Spain
| | - Darya Gorbenko Del Blanco
- Department de Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, and IDIBAPS, Barcelona, Spain
| | - Judit López-Luque
- TGF-β and Cancer Group, Oncobell Program, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | | | - Ana-Maria Siegert
- Department de Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, and IDIBAPS, Barcelona, Spain
| | - Fabio Bonorino
- Department de Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, and IDIBAPS, Barcelona, Spain
| | - Laura Barberà
- Department de Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, and IDIBAPS, Barcelona, Spain
| | - Carolina García
- Department of Pathology, Hospital de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Barcelona, and Department of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain
| | - Enric Condom
- Department of Pathology, Hospital de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Barcelona, and Department of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain
| | - Marta Sitges
- Cardiovascular Institute, Hospital Clinic, IDIBAPS-University of Barcelona, Barcelona, Spain
| | | | - Francisco Laurindo
- Heart Institute (InCor), University of São Paulo School of Medicine, São Paulo, Brazil
| | - Katrin Schröder
- German Center of Cardiovascular Research (DZHK), Partner site Rhein Main, Frankfurt am Main, Germany
| | - Joaquim Ros
- Institut de Recerca Biomèdica de Lleida (IRB Lleida), Lleida, Spain; Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, Lleida, Spain
| | - Isabel Fabregat
- TGF-β and Cancer Group, Oncobell Program, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain; Department de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Gustavo Egea
- Department de Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, and IDIBAPS, Barcelona, Spain.
| |
Collapse
|
50
|
Vieira CED, Pérez MR, Acayaba RD, Raimundo CCM, Dos Reis Martinez CB. DNA damage and oxidative stress induced by imidacloprid exposure in different tissues of the Neotropical fish Prochilodus lineatus. CHEMOSPHERE 2018; 195:125-134. [PMID: 29268171 DOI: 10.1016/j.chemosphere.2017.12.077] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/09/2017] [Accepted: 12/11/2017] [Indexed: 06/07/2023]
Abstract
Imidacloprid (IMI), a systemic neonicotinoid insecticide widely used in worldwide scale, is reported in freshwater bodies. Nevertheless, there is a lack of information about IMI sublethal effects on freshwater fish. Thus, the aim of this study was to identify the potential hazard of this insecticide to the South American fish Prochilodus lineatus exposed for 120 h to four IMI concentrations (1.25, 12.5, 125, and 1250 μg L-1). A set of biochemical, genotoxic and physiological biomarkers were evaluated in different organs of the fish. IMI exposure induced significant changes in the enzymatic profiles of P. lineatus, with alterations in the activity of biotransformation and antioxidant enzymes in different tissues. Redox balance of the tissues was affected, since oxidative damage such as lipoperoxidation (LPO) and protein carbonylation (PCC) were evidenced in the liver, gills, kidney and brain of fish exposed to different IMI concentrations. Fish exposed to all IMI concentrations showed decreased blood glucose indicating an increase of energetic demand. DNA damage was evidenced by the comet test, in the erythrocytes of fish all the concentrations evaluated. We integrated these results in the Integrated Biomarker Response (IBR) index, which evidenced that the organs most affected by IMI exposure were the liver and kidney, followed by the gills. Our results highlight the importance of investigating different target tissues after IMI exposure and show the sublethal effects of IMI in some of them; they also warn to the possible consequences that fish living in freshwater ecosystems can suffer due to IMI exposure.
Collapse
Affiliation(s)
- Carlos Eduardo Delfino Vieira
- Laboratório de Ecofisiologia Animal, Departamento de Ciências Fisiológicas, Universidade Estadual de Londrina, Paraná, Brazil.
| | - Maria Rita Pérez
- Laboratorio de Ictiología, Instituto Nacional de Limnología (CONICET-UNL), Santa Fe, Argentina
| | - Raphael D'Anna Acayaba
- Laboratório de Química Ambiental, Instituto de Química, Departamento de Química Analítica, Universidade de Campinas, São Paulo, Brazil
| | | | - Cláudia Bueno Dos Reis Martinez
- Laboratório de Ecofisiologia Animal, Departamento de Ciências Fisiológicas, Universidade Estadual de Londrina, Paraná, Brazil
| |
Collapse
|