1
|
Miwa T, Tarui A, Kouga T, Asai Y, Ogita H, Fujikawa T, Hakuba N. N 1-methylnicotinamide promotes age-related cochlear damage via the overexpression of SIRT1. Front Cell Neurosci 2025; 19:1542164. [PMID: 39959464 PMCID: PMC11825784 DOI: 10.3389/fncel.2025.1542164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 01/16/2025] [Indexed: 02/18/2025] Open
Abstract
Age-related hearing loss (ARHL) is a complex condition with genetic, aging, and environmental influences. Sirtuins, particularly SIRT1, are NAD-dependent protein deacetylases critical to aging and stress responses. SIRT1 is modulated by nicotinamide N-methyltransferase (NNMT) and its product, N1-methylnicotinamide (MNAM), which influence ARHL progression. While SIRT1 is protective under certain conditions, its overexpression may paradoxically exacerbate hearing loss. This study examines MNAM supplementation's impact on SIRT1 expression and ARHL in low-fat diet (LFD)-fed B6 and CBA mice. Mice were divided into LFD and LFD + MNAM groups and evaluated for auditory function, cochlear morphology, metabolic profiles, and SIRT1 expression at 3, 6, and 12 months of age. MNAM supplementation accelerated ARHL in both strains, with B6 mice showing more pronounced and earlier disease progression. Auditory brainstem response (ABR) thresholds were significantly elevated, and distortion-product otoacoustic emissions (DPOAE) indicated outer hair cell dysfunction. Cochlear histology revealed reduced hair cell and spiral ganglion cell counts, as well as decreased Na+/K+-ATPase α1 expression and endocochlear potential. MNAM increased SIRT1 protein levels in the cochlea without altering Sirt1 mRNA, suggesting post-transcriptional regulation. Metabolomic analysis revealed disrupted mitochondrial and oxidative pathways, including fatty acid oxidation and gluconeogenesis. Tricarboxylic acid (TCA) cycle dysregulation was evident, particularly in B6 mice, with elevated pyruvate, fumarate, and lactate levels. Despite similar metabolic trends in CBA mice, their slower aging profiles mitigated ARHL progression. These results suggest that while moderate SIRT1 expression protects against ARHL, overexpression disrupts metabolic homeostasis, accelerating cochlear aging and dysfunction. The dual role of SIRT1 emphasizes the need for precise modulation of its expression for effective therapeutic interventions. Future research should explore mechanisms underlying SIRT1-induced cochlear damage and strategies to maintain balanced SIRT1 expression. This study highlights MNAM's detrimental effects on ARHL, underscoring its significance for developing targeted approaches to delay ARHL onset and preserve auditory function.
Collapse
Affiliation(s)
- Toru Miwa
- Department of Otolaryngology, Teikyo University Hospital, Mizonokuchi, Kawasaki, Japan
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akihito Tarui
- Department of Otolaryngology, Teikyo University Hospital, Mizonokuchi, Kawasaki, Japan
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Teppei Kouga
- Department of Otolaryngology, Osaka Metropolitan University, Osaka, Japan
| | - Yasunori Asai
- Department of Otolaryngology, Teikyo University Hospital, Mizonokuchi, Kawasaki, Japan
- Department of Otolaryngology-Head and Neck Surgery, Fujita Health University, Toyoake, Japan
| | - Hideaki Ogita
- Department of Otolaryngology, Teikyo University Hospital, Mizonokuchi, Kawasaki, Japan
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Taro Fujikawa
- Department of Otolaryngology, Teikyo University Hospital, Mizonokuchi, Kawasaki, Japan
| | - Nobuhiro Hakuba
- Department of Otolaryngology, Teikyo University Hospital, Mizonokuchi, Kawasaki, Japan
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
2
|
Yang D, Xu Y, Mo L, Shi M, Wu N, Lu L, Xue F, Xu Q, Zhang C. Enhancing l-Malic Acid Production in Aspergillus niger via Natural Activation of sthA Gene Expression. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4869-4879. [PMID: 38407053 DOI: 10.1021/acs.jafc.3c09321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
The efficient production of l-malic acid using Aspergillus niger requires overcoming challenges in synthesis efficiency and excessive byproduct buildup. This study addresses these hurdles, improving the activity of NADH-dependent malate dehydrogenase (Mdh) in the early stages of the fermentation process. By employing a constitutive promoter to express the Escherichia coli sthA responsible for the transfer of reducing equivalents between NAD(H) and NADP(H) in A. niger, the l-malic acid production was significantly elevated. However, this resulted in conidiation defects of A. niger, limiting industrial viability. To mitigate this, we discovered and utilized the PmfsA promoter, enabling the specific expression of sthA during the fermentation stage. This conditional expression strain showed similar phenotypes to its parent strain while exhibiting exceptional performance in a 5 L fermenter. Notably, it achieved a 65.5% increase in productivity, reduced fermentation cycle by 1.5 days, and lowered succinic acid by 76.2%. This work marks a promising advancement in industrial l-malic acid synthesis via biological fermentation, showcasing the potential of synthetic biology in A. niger for broader applications.
Collapse
Affiliation(s)
- Dongdong Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Yingyan Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Li Mo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Man Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Na Wu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Ling Lu
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Feng Xue
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Qing Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Chi Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
3
|
Surger MJ, Mayer K, Shivaram K, Stibany F, Plum W, Schäffer A, Eiden S, Blank LM. Evaluating microbial contaminations of alternative heating oils. Eng Life Sci 2023; 23:e2300010. [PMID: 37275211 PMCID: PMC10235886 DOI: 10.1002/elsc.202300010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/20/2023] [Accepted: 04/13/2023] [Indexed: 06/07/2023] Open
Abstract
Since 2008, European and German legislative initiatives for climate protection and reduced dependency on fossil resources led to the introduction of biofuels as CO2-reduced alternatives in the heating oil sector. In the case of biodiesel, customers were confronted with accelerated microbial contaminations during storage. Since then, other fuel alternatives, like hydrogenated vegetable oils (HVOs), gas-to-liquid (GtL) products, or oxymethylene ether (OME) have been developed. In this study, we use online monitoring of microbial CO2 production and the simulation of onset of microbial contamination to investigate the contamination potential of fuel alternatives during storage. As references, fossil heating oil of German refineries are used. Biodiesel blends with fossil heating oils confirmed the promotion of microbial activity. In stark contrast, OMEs have an antimicrobial effect. The paraffinic Fischer-Tropsch products and biogenic hydrogenation products demonstrate to be at least as resistant to microbial contamination as fossil heating oils despite allowing a diversity of representative microbes. Through mass spectrometry, elemental analysis, and microbial sequencing, we can discuss fuel properties that affect microbial contaminations. In summary, novel, non-fossil heating oils show clear differences in microbial resistance during long-term storage. Designing blends with an intrinsic resistance against microbial contamination and hence reduced activity might be an option.
Collapse
Affiliation(s)
- Maximilian J. Surger
- Institute of Applied Microbiology (iAMB)Aachen Biology and Biotechnology (ABBt)RWTH Aachen UniversityAachenGermany
| | - Katharina Mayer
- Institute for Environmental ResearchRWTH Aachen UniversityAachenGermany
| | - Karthik Shivaram
- Institute of Applied Microbiology (iAMB)Aachen Biology and Biotechnology (ABBt)RWTH Aachen UniversityAachenGermany
| | - Felix Stibany
- Institute for Environmental ResearchRWTH Aachen UniversityAachenGermany
| | | | - Andreas Schäffer
- Institute for Environmental ResearchRWTH Aachen UniversityAachenGermany
| | | | - Lars M. Blank
- Institute of Applied Microbiology (iAMB)Aachen Biology and Biotechnology (ABBt)RWTH Aachen UniversityAachenGermany
| |
Collapse
|
4
|
Partipilo M, Claassens NJ, Slotboom DJ. A Hitchhiker's Guide to Supplying Enzymatic Reducing Power into Synthetic Cells. ACS Synth Biol 2023; 12:947-962. [PMID: 37052416 PMCID: PMC10127272 DOI: 10.1021/acssynbio.3c00070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Indexed: 04/14/2023]
Abstract
The construction from scratch of synthetic cells by assembling molecular building blocks is unquestionably an ambitious goal from a scientific and technological point of view. To realize functional life-like systems, minimal enzymatic modules are required to sustain the processes underlying the out-of-equilibrium thermodynamic status hallmarking life, including the essential supply of energy in the form of electrons. The nicotinamide cofactors NAD(H) and NADP(H) are the main electron carriers fueling reductive redox reactions of the metabolic network of living cells. One way to ensure the continuous availability of reduced nicotinamide cofactors in a synthetic cell is to build a minimal enzymatic module that can oxidize an external electron donor and reduce NAD(P)+. In the diverse world of metabolism there is a plethora of potential electron donors and enzymes known from living organisms to provide reducing power to NAD(P)+ coenzymes. This perspective proposes guidelines to enable the reduction of nicotinamide cofactors enclosed in phospholipid vesicles, while avoiding high burdens of or cross-talk with other encapsulated metabolic modules. By determining key requirements, such as the feasibility of the reaction and transport of the electron donor into the cell-like compartment, we select a shortlist of potentially suitable electron donors. We review the most convenient proteins for the use of these reducing agents, highlighting their main biochemical and structural features. Noting that specificity toward either NAD(H) or NADP(H) imposes a limitation common to most of the analyzed enzymes, we discuss the need for specific enzymes─transhydrogenases─to overcome this potential bottleneck.
Collapse
Affiliation(s)
- Michele Partipilo
- Department
of Biochemistry, Groningen Institute of Biomolecular Sciences &
Biotechnology, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Nico J. Claassens
- Laboratory
of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Dirk Jan Slotboom
- Department
of Biochemistry, Groningen Institute of Biomolecular Sciences &
Biotechnology, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
5
|
Partipilo M, Yang G, Mascotti ML, Wijma HJ, Slotboom DJ, Fraaije MW. A conserved sequence motif in the Escherichia coli soluble FAD-containing pyridine nucleotide transhydrogenase is important for reaction efficiency. J Biol Chem 2022; 298:102304. [PMID: 35933012 PMCID: PMC9460512 DOI: 10.1016/j.jbc.2022.102304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 11/06/2022] Open
Abstract
Soluble pyridine nucleotide transhydrogenases (STHs) are flavoenzymes involved in the redox homeostasis of the essential cofactors NAD(H) and NADP(H). They catalyze the reversible transfer of reducing equivalents between the two nicotinamide cofactors. The soluble transhydrogenase from Escherichia coli (SthA) has found wide use in both in vivo and in vitro applications to steer reducing equivalents toward NADPH-requiring reactions. However, mechanistic insight into SthA function is still lacking. In this work, we present a biochemical characterization of SthA, focusing for the first time on the reactivity of the flavoenzyme with molecular oxygen. We report on oxidase activity of SthA that takes place both during transhydrogenation and in the absence of an oxidized nicotinamide cofactor as an electron acceptor. We find that this reaction produces the reactive oxygen species hydrogen peroxide and superoxide anion. Furthermore, we explore the evolutionary significance of the well-conserved CXXXXT motif that distinguishes STHs from the related family of flavoprotein disulfide reductases in which a CXXXXC motif is conserved. Our mutational analysis revealed the cysteine and threonine combination in SthA leads to better coupling efficiency of transhydrogenation and reduced reactive oxygen species release compared to enzyme variants with mutated motifs. These results expand our mechanistic understanding of SthA by highlighting reactivity with molecular oxygen and the importance of the evolutionarily conserved sequence motif.
Collapse
Affiliation(s)
- Michele Partipilo
- Membrane Enzymology Group, Groningen Institute of Biomolecular Sciences & Biotechnology, University of Groningen, Groningen, The Netherlands
| | - Guang Yang
- Molecular Enzymology Group, Groningen Institute of Biomolecular Sciences & Biotechnology, University of Groningen, Groningen, The Netherlands
| | - Maria Laura Mascotti
- Molecular Enzymology Group, Groningen Institute of Biomolecular Sciences & Biotechnology, University of Groningen, Groningen, The Netherlands; IMIBIO-SL CONICET, Facultad de Química Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina
| | - Hein J Wijma
- Molecular Enzymology Group, Groningen Institute of Biomolecular Sciences & Biotechnology, University of Groningen, Groningen, The Netherlands
| | - Dirk Jan Slotboom
- Membrane Enzymology Group, Groningen Institute of Biomolecular Sciences & Biotechnology, University of Groningen, Groningen, The Netherlands.
| | - Marco W Fraaije
- Molecular Enzymology Group, Groningen Institute of Biomolecular Sciences & Biotechnology, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
6
|
Wang M, Zhou X, Wang Z, Chen Y. Enzyme-catalyzed allylic oxidation reactions: A mini-review. Front Chem 2022; 10:950149. [PMID: 36046724 PMCID: PMC9420900 DOI: 10.3389/fchem.2022.950149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Chiral allylic oxidized products play an increasingly important role in the pharmaceutical, agrochemical, and pharmaceutical industries. Biocatalytic C–H oxyfunctionalization to synthesize allylic oxidized products has attracted great attention in recent years, with the ability to simplify synthetic approaches toward complex compounds. As a result, scientists have found some new enzymes and mutants through techniques of gene mining and enzyme-directed evolution in recent years. This review summarizes the recent developments in biocatalytic selective oxidation of olefins by different kinds of biocatalysts.
Collapse
Affiliation(s)
- Maoyao Wang
- Key Laboratory of Biocatalysis and Chiral Drug Synthesis of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Xiaojian Zhou
- Key Laboratory of Biocatalysis and Chiral Drug Synthesis of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Zhongqiang Wang
- Key Laboratory of Biocatalysis and Chiral Drug Synthesis of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Yongzheng Chen
- Key Laboratory of Biocatalysis and Chiral Drug Synthesis of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- *Correspondence: Yongzheng Chen,
| |
Collapse
|
7
|
Mahor D, Cong Z, Weissenborn MJ, Hollmann F, Zhang W. Valorization of Small Alkanes by Biocatalytic Oxyfunctionalization. CHEMSUSCHEM 2022; 15:e202101116. [PMID: 34288540 DOI: 10.1002/cssc.202101116] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/18/2021] [Indexed: 06/13/2023]
Abstract
The oxidation of alkanes into valuable chemical products is a vital reaction in organic synthesis. This reaction, however, is challenging, owing to the inertness of C-H bonds. Transition metal catalysts for C-H functionalization are frequently explored. Despite chemical alternatives, nature has also evolved powerful oxidative enzymes (e. g., methane monooxygenases, cytochrome P450 oxygenases, peroxygenases) that are capable of transforming C-H bonds under very mild conditions, with only the use of molecular oxygen or hydrogen peroxide as electron acceptors. Although progress in alkane oxidation has been reviewed extensively, little attention has been paid to small alkane oxidation. The latter holds great potential for the manufacture of chemicals. This Minireview provides a concise overview of the most relevant enzyme classes capable of small alkanes (C<6 ) oxyfunctionalization, describes the essentials of the catalytic mechanisms, and critically outlines the current state-of-the-art in preparative applications.
Collapse
Affiliation(s)
- Durga Mahor
- National Innovation Center for Synthetic Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, P. R. China
- Indian Institute of Science Education and Research Berhampur, Odisha, 760010, India
| | - Zhiqi Cong
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences, Qingdao, Shandong, 266101, P. R. China
| | - Martin J Weissenborn
- Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle, Saale), Germany
| | - Frank Hollmann
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629HZ, Delft, The Netherlands
| | - Wuyuan Zhang
- National Innovation Center for Synthetic Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, P. R. China
| |
Collapse
|
8
|
Theodosiou E, Tüllinghoff A, Toepel J, Bühler B. Exploitation of Hetero- and Phototrophic Metabolic Modules for Redox-Intensive Whole-Cell Biocatalysis. Front Bioeng Biotechnol 2022; 10:855715. [PMID: 35497353 PMCID: PMC9043136 DOI: 10.3389/fbioe.2022.855715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Abstract
The successful realization of a sustainable manufacturing bioprocess and the maximization of its production potential and capacity are the main concerns of a bioprocess engineer. A main step towards this endeavor is the development of an efficient biocatalyst. Isolated enzyme(s), microbial cells, or (immobilized) formulations thereof can serve as biocatalysts. Living cells feature, beside active enzymes, metabolic modules that can be exploited to support energy-dependent and multi-step enzyme-catalyzed reactions. Metabolism can sustainably supply necessary cofactors or cosubstrates at the expense of readily available and cheap resources, rendering external addition of costly cosubstrates unnecessary. However, for the development of an efficient whole-cell biocatalyst, in depth comprehension of metabolic modules and their interconnection with cell growth, maintenance, and product formation is indispensable. In order to maximize the flux through biosynthetic reactions and pathways to an industrially relevant product and respective key performance indices (i.e., titer, yield, and productivity), existing metabolic modules can be redesigned and/or novel artificial ones established. This review focuses on whole-cell bioconversions that are coupled to heterotrophic or phototrophic metabolism and discusses metabolic engineering efforts aiming at 1) increasing regeneration and supply of redox equivalents, such as NAD(P/H), 2) blocking competing fluxes, and 3) increasing the availability of metabolites serving as (co)substrates of desired biosynthetic routes.
Collapse
Affiliation(s)
- Eleni Theodosiou
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Adrian Tüllinghoff
- Department of Solar Materials, Helmholtz Centre for Environmental Research GmbH—UFZ, Leipzig, Germany
| | - Jörg Toepel
- Department of Solar Materials, Helmholtz Centre for Environmental Research GmbH—UFZ, Leipzig, Germany
| | - Bruno Bühler
- Department of Solar Materials, Helmholtz Centre for Environmental Research GmbH—UFZ, Leipzig, Germany
| |
Collapse
|
9
|
Abstract
Biocatalysis has an enormous impact on chemical synthesis. The waves in which biocatalysis has developed, and in doing so changed our perception of what organic chemistry is, were reviewed 20 and 10 years ago. Here we review the consequences of these waves of development. Nowadays, hydrolases are widely used on an industrial scale for the benign synthesis of commodity and bulk chemicals and are fully developed. In addition, further enzyme classes are gaining ever increasing interest. Particularly, enzymes catalysing selective C-C-bond formation reactions and enzymes catalysing selective oxidation and reduction reactions are solving long-standing synthetic challenges in organic chemistry. Combined efforts from molecular biology, systems biology, organic chemistry and chemical engineering will establish a whole new toolbox for chemistry. Recent developments are critically reviewed.
Collapse
Affiliation(s)
- Ulf Hanefeld
- Biocatalysis, Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, The Netherlands.
| | - Frank Hollmann
- Biocatalysis, Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, The Netherlands.
| | - Caroline E Paul
- Biocatalysis, Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, The Netherlands.
| |
Collapse
|
10
|
Sathesh-Prabu C, Tiwari R, Kim D, Lee SK. Inducible and tunable gene expression systems for Pseudomonas putida KT2440. Sci Rep 2021; 11:18079. [PMID: 34508142 PMCID: PMC8433446 DOI: 10.1038/s41598-021-97550-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/23/2021] [Indexed: 12/23/2022] Open
Abstract
Inducible and tunable expression systems are essential for the microbial production of biochemicals. Five different carbon source- and substrate-inducible promoter systems were developed and further evaluated in Pseudomonas putida KT2440 by analyzing the expression of green fluorescent protein (GFP) as a reporter protein. These systems can be induced by low-cost compounds such as glucose, 3-hydroxypropionic acid (3HP), levulinic acid (LA), and xylose. 3HP-inducible HpdR/PhpdH was also efficiently induced by LA. LvaR/PlvaA and XutR/PxutA systems were induced even at low concentrations of LA (0.1 mM) and xylose (0.5 mM), respectively. Glucose-inducible HexR/Pzwf1 showed weak GFP expression. These inducer agents can be used as potent starting materials for both cell growth and the production of a wide range of biochemicals. The efficiency of the reported systems was comparable to that of conventional chemical-inducible systems. Hence, the newly investigated promoter systems are highly useful for the expression of target genes in the widely used synthetic biology chassis P. putida KT2440 for industrial and medical applications.
Collapse
Affiliation(s)
- Chandran Sathesh-Prabu
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Rameshwar Tiwari
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Doyun Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Sung Kuk Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea. .,Department of Energy Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| |
Collapse
|
11
|
Schlosser N, Espino-Martínez J, Kloss F, Meyer F, Bardl B, Rosenbaum MA, Regestein L. Host nutrition-based approach for biotechnological production of the antifungal cyclic lipopeptide jagaricin. J Biotechnol 2021; 336:1-9. [PMID: 34118330 DOI: 10.1016/j.jbiotec.2021.06.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/26/2021] [Accepted: 06/07/2021] [Indexed: 11/26/2022]
Abstract
In today's, society multi-resistant pathogens have become an emerging threat, which makes the search for novel anti-infectives more urgent than ever. A promising class of substances are cyclic lipopeptides like the antifungal jagaricin. Jagaricin is formed by the bacterial mushroom pathogen Janthinobacterium agaricidamnosum. It has shown antifungal activity against human pathogenic fungi like Candida albicans and Aspergillus fumigatus. In addition, jagaricin is nearly non-toxic for plants, which makes it a promising agent for agricultural applications. Cyclic lipopeptides formed by microorganisms originate from their secondary metabolism. This makes it very challenging to determine the inducing factor for product formation, especially for unknown microbial systems like J. agaricidamnosum. In the presented study, a biotechnological process for jagaricin formation was developed, investigating impact factors like the medium, oxygen availability, and phosphate. For this reason, experiments were conducted on microtiter plate, shake flask, and stirred tank bioreactor level. Ultimately, a final maximum jagaricin concentration of 251 mg L-1 (15.5 mgJagaricin∙gCDW-1) could be achieved, which is an increase of approximately 458 % in comparison to previous results in standard glucose medium. This concentration allows the production of significantly higher amounts of jagaricin and enables further experiments to investigate the potential of this substance.
Collapse
Affiliation(s)
- Nicolas Schlosser
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Adolf-Reichwein-Str. 23, 07745, Jena, Germany; Faculty of Biological Sciences, Friedrich Schiller University Jena, 07745, Jena, Germany
| | - Jordi Espino-Martínez
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Adolf-Reichwein-Str. 23, 07745, Jena, Germany
| | - Florian Kloss
- Transfer Group Anti-Infectives, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Adolf-Reichwein-Str. 23, 07745, Jena, Germany
| | - Florian Meyer
- Transfer Group Anti-Infectives, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Adolf-Reichwein-Str. 23, 07745, Jena, Germany
| | - Bettina Bardl
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Adolf-Reichwein-Str. 23, 07745, Jena, Germany
| | - Miriam A Rosenbaum
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Adolf-Reichwein-Str. 23, 07745, Jena, Germany; Faculty of Biological Sciences, Friedrich Schiller University Jena, 07745, Jena, Germany
| | - Lars Regestein
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Adolf-Reichwein-Str. 23, 07745, Jena, Germany.
| |
Collapse
|
12
|
Zhou Z, Zhu J, Jiang M, Sang L, Hao K, He H. The Combination of Cell Cultured Technology and In Silico Model to Inform the Drug Development. Pharmaceutics 2021; 13:pharmaceutics13050704. [PMID: 34065907 PMCID: PMC8151315 DOI: 10.3390/pharmaceutics13050704] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/29/2021] [Accepted: 05/05/2021] [Indexed: 12/12/2022] Open
Abstract
Human-derived in vitro models can provide high-throughput efficacy and toxicity data without a species gap in drug development. Challenges are still encountered regarding the full utilisation of massive data in clinical settings. The lack of translated methods hinders the reliable prediction of clinical outcomes. Therefore, in this study, in silico models were proposed to tackle these obstacles from in vitro to in vivo translation, and the current major cell culture methods were introduced, such as human-induced pluripotent stem cells (hiPSCs), 3D cells, organoids, and microphysiological systems (MPS). Furthermore, the role and applications of several in silico models were summarised, including the physiologically based pharmacokinetic model (PBPK), pharmacokinetic/pharmacodynamic model (PK/PD), quantitative systems pharmacology model (QSP), and virtual clinical trials. These credible translation cases will provide templates for subsequent in vitro to in vivo translation. We believe that synergising high-quality in vitro data with existing models can better guide drug development and clinical use.
Collapse
Affiliation(s)
- Zhengying Zhou
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China; (Z.Z.); (M.J.)
| | - Jinwei Zhu
- State Key Laboratory of Natural Medicines, Jiangsu Province Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China; (J.Z.); (L.S.)
| | - Muhan Jiang
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China; (Z.Z.); (M.J.)
| | - Lan Sang
- State Key Laboratory of Natural Medicines, Jiangsu Province Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China; (J.Z.); (L.S.)
| | - Kun Hao
- State Key Laboratory of Natural Medicines, Jiangsu Province Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China; (J.Z.); (L.S.)
- Correspondence: (K.H.); (H.H.)
| | - Hua He
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China; (Z.Z.); (M.J.)
- Correspondence: (K.H.); (H.H.)
| |
Collapse
|
13
|
Morrison CS, Paskaleva EE, Rios MA, Beusse TR, Blair EM, Lin LQ, Hu JR, Gorby AH, Dodds DR, Armiger WB, Dordick JS, Koffas MAG. Improved soluble expression and use of recombinant human renalase. PLoS One 2020; 15:e0242109. [PMID: 33180865 PMCID: PMC7660482 DOI: 10.1371/journal.pone.0242109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/26/2020] [Indexed: 12/04/2022] Open
Abstract
Electrochemical bioreactor systems have enjoyed significant attention in the past few decades, particularly because of their applications to biobatteries, artificial photosynthetic systems, and microbial electrosynthesis. A key opportunity with electrochemical bioreactors is the ability to employ cofactor regeneration strategies critical in oxidative and reductive enzymatic and cell-based biotransformations. Electrochemical cofactor regeneration presents several advantages over other current cofactor regeneration systems, such as chemoenzymatic multi-enzyme reactions, because there is no need for a sacrificial substrate and a recycling enzyme. Additionally, process monitoring is simpler and downstream processing is less costly. However, the direct electrochemical reduction of NAD(P)+ on a cathode may produce adventitious side products, including isomers of NAD(P)H that can act as potent competitive inhibitors to NAD(P)H-requiring enzymes such as dehydrogenases. To overcome this limitation, we examined how nature addresses the adventitious formation of isomers of NAD(P)H. Specifically, renalases are enzymes that catalyze the oxidation of 1,2- and 1,6-NAD(P)H to NAD(P)+, yielding an effective recycling of unproductive NAD(P)H isomers. We designed several mutants of recombinant human renalase isoform 1 (rhRen1), expressed them in E. coli BL21(DE3) to enhance protein solubility, and evaluated the activity profiles of the renalase variants against NAD(P)H isomers. The potential for rhRen1 to be employed in engineering applications was then assessed in view of the enzyme’s stability upon immobilization. Finally, comparative modeling was performed to assess the underlying reasons for the enhanced solubility and activity of the mutant enzymes.
Collapse
Affiliation(s)
- Clifford S. Morrison
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York, United States of America
| | - Elena E. Paskaleva
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, United States of America
| | - Marvin A. Rios
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York, United States of America
| | - Thomas R. Beusse
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York, United States of America
| | - Elaina M. Blair
- Department of Chemical Engineering, Brigham Young University, Provo, Utah, United States of America
| | - Lucy Q. Lin
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York, United States of America
| | - James R. Hu
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York, United States of America
| | - Aidan H. Gorby
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York, United States of America
| | - David R. Dodds
- BiochemInsights, Malvern, Pennsylvania, United States of America
| | | | - Jonathan S. Dordick
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York, United States of America
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York, United States of America
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York, United States of America
- * E-mail: (JSD); (MAGK)
| | - Mattheos A. G. Koffas
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York, United States of America
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York, United States of America
- * E-mail: (JSD); (MAGK)
| |
Collapse
|
14
|
Bator I, Karmainski T, Tiso T, Blank LM. Killing Two Birds With One Stone - Strain Engineering Facilitates the Development of a Unique Rhamnolipid Production Process. Front Bioeng Biotechnol 2020; 8:899. [PMID: 32850747 PMCID: PMC7427536 DOI: 10.3389/fbioe.2020.00899] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/13/2020] [Indexed: 12/13/2022] Open
Abstract
High-titer biosurfactant production in aerated fermenters using hydrophilic substrates is often hampered by excessive foaming. Ethanol has been shown to efficiently destabilize foam of rhamnolipids, a popular group of biosurfactants. To exploit this feature, we used ethanol as carbon source and defoamer, without introducing novel challenges for rhamnolipid purification. In detail, we engineered the non-pathogenic Pseudomonas putida KT2440 for heterologous rhamnolipid production from ethanol. To obtain a strain with high growth rate on ethanol as sole carbon source at elevated ethanol concentrations, adaptive laboratory evolution (ALE) was performed. Genome re-sequencing allowed to allocate the phenotypic changes to emerged mutations. Several genes were affected and differentially expressed including alcohol and aldehyde dehydrogenases, potentially contributing to the increased growth rate on ethanol of 0.51 h-1 after ALE. Further, mutations in genes were found, which possibly led to increased ethanol tolerance. The engineered rhamnolipid producer was used in a fed-batch fermentation with automated ethanol addition over 23 h, which resulted in a 3-(3-hydroxyalkanoyloxy)alkanoates and mono-rhamnolipids concentration of about 5 g L-1. The ethanol concomitantly served as carbon source and defoamer with the advantage of increased rhamnolipid and biomass production. In summary, we present a unique combination of strain and process engineering that facilitated the development of a stable fed-batch fermentation for rhamnolipid production, circumventing mechanical or chemical foam disruption.
Collapse
Affiliation(s)
- Isabel Bator
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany.,Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Jülich, Germany
| | - Tobias Karmainski
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany.,Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Jülich, Germany
| | - Till Tiso
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany.,Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Jülich, Germany
| | - Lars M Blank
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany.,Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
15
|
Trisrivirat D, Lawan N, Chenprakhon P, Matsui D, Asano Y, Chaiyen P. Mechanistic insights into the dual activities of the single active site of l-lysine oxidase/monooxygenase from Pseudomonas sp. AIU 813. J Biol Chem 2020; 295:11246-11261. [PMID: 32527725 DOI: 10.1074/jbc.ra120.014055] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/10/2020] [Indexed: 12/19/2022] Open
Abstract
l-Lysine oxidase/monooxygenase (l-LOX/MOG) from Pseudomonas sp. AIU 813 catalyzes the mixed bioconversion of l-amino acids, particularly l-lysine, yielding an amide and carbon dioxide by an oxidative decarboxylation (i.e. apparent monooxygenation), as well as oxidative deamination (hydrolysis of oxidized product), resulting in α-keto acid, hydrogen peroxide (H2O2), and ammonia. Here, using high-resolution MS and monitoring transient reaction kinetics with stopped-flow spectrophotometry, we identified the products from the reactions of l-lysine and l-ornithine, indicating that besides decarboxylating imino acids (i.e. 5-aminopentanamide from l-lysine), l-LOX/MOG also decarboxylates keto acids (5-aminopentanoic acid from l-lysine and 4-aminobutanoic acid from l-ornithine). The reaction of reduced enzyme and oxygen generated an imino acid and H2O2, with no detectable C4a-hydroperoxyflavin. Single-turnover reactions in which l-LOX/MOG was first reduced by l-lysine to form imino acid before mixing with various compounds revealed that under anaerobic conditions, only hydrolysis products are present. Similar results were obtained upon H2O2 addition after enzyme denaturation. H2O2 addition to active l-LOX/MOG resulted in formation of more 5-aminopentanoic acid, but not 5-aminopentamide, suggesting that H2O2 generated from l-LOX/MOG in situ can result in decarboxylation of the imino acid, yielding an amide product, and extra H2O2 resulted in decarboxylation only of keto acids. Molecular dynamics simulations and detection of charge transfer species suggested that interactions between the substrate and its binding site on l-LOX/MOG are important for imino acid decarboxylation. Structural analysis indicated that the flavoenzyme oxidases catalyzing decarboxylation of an imino acid all share a common plug loop configuration that may facilitate this decarboxylation.
Collapse
Affiliation(s)
- Duangthip Trisrivirat
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, Thailand.,School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Narin Lawan
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Pirom Chenprakhon
- Institute for Innovative Learning, Mahidol University, Nakhon Pathom, Thailand
| | - Daisuke Matsui
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Imizu, Japan.,Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Japan
| | - Yasuhisa Asano
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Imizu, Japan
| | - Pimchai Chaiyen
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, Thailand .,School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| |
Collapse
|
16
|
Chen X, Yi J, Song W, Liu J, Luo Q, Liu L. Chassis engineering of Escherichia coli for trans-4-hydroxy-l-proline production. Microb Biotechnol 2020; 14:392-402. [PMID: 32396278 PMCID: PMC7936311 DOI: 10.1111/1751-7915.13573] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/16/2020] [Accepted: 03/23/2020] [Indexed: 02/06/2023] Open
Abstract
Microbial production of trans-4-hydroxy-l-proline (Hyp) offers significant advantages over conventional chemical extraction. However, it is still challenging for industrial production of Hyp due to its low production efficiency. Here, chassis engineering was used for tailoring Escherichia coli cellular metabolism to enhance enzymatic production of Hyp. Specifically, four proline 4-hydroxylases (P4H) were selected to convert l-proline to Hyp, and the recombinant strain overexpressing DsP4H produced 32.5 g l-1 Hyp with α-ketoglutarate addition. To produce Hyp without α-ketoglutarate addition, α-ketoglutarate supply was enhanced by rewiring the TCA cycle and l-proline degradation pathway, and oxygen transfer was improved by fine-tuning heterologous haemoglobin expression. In a 5-l fermenter, the engineered strain E. coliΔsucCDΔputA-VHb(L) -DsP4H showed a significant increase in Hyp titre, conversion rate and productivity up to 49.8 g l-1 , 87.4% and 1.38 g l-1 h-1 respectively. This strategy described here provides an efficient method for production of Hyp, and it has a great potential in industrial application.
Collapse
Affiliation(s)
- Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China
| | - Juyang Yi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,Shaoxing Baiyin Biotechnology Co. Ltd, Shaoxing, 312000, China
| | - Wei Song
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China
| | - Jia Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China
| | - Qiuling Luo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
17
|
Feyza Özgen F, Runda ME, Burek BO, Wied P, Bloh JZ, Kourist R, Schmidt S. Artifizielle Lichtsammelkomplexe ermöglichen Rieske‐Oxygenase‐ katalysierte Hydroxylierungen in nicht‐photosynthetischen Zellen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- F. Feyza Özgen
- Institute für Molekulare Biotechnologie Technische Universität Graz Petersgasse 14/1 8010 Graz Österreich
| | - Michael E. Runda
- Institute für Molekulare Biotechnologie Technische Universität Graz Petersgasse 14/1 8010 Graz Österreich
| | - Bastien O. Burek
- DECHEMA-Forschungsinstitut Theodor-Heuss-Allee 25 60486 Frankfurt am Main Deutschland
| | - Peter Wied
- Institute für Molekulare Biotechnologie Technische Universität Graz Petersgasse 14/1 8010 Graz Österreich
| | - Jonathan Z. Bloh
- DECHEMA-Forschungsinstitut Theodor-Heuss-Allee 25 60486 Frankfurt am Main Deutschland
| | - Robert Kourist
- Institute für Molekulare Biotechnologie Technische Universität Graz Petersgasse 14/1 8010 Graz Österreich
| | - Sandy Schmidt
- Institute für Molekulare Biotechnologie Technische Universität Graz Petersgasse 14/1 8010 Graz Österreich
| |
Collapse
|
18
|
Feyza Özgen F, Runda ME, Burek BO, Wied P, Bloh JZ, Kourist R, Schmidt S. Artificial Light-Harvesting Complexes Enable Rieske Oxygenase Catalyzed Hydroxylations in Non-Photosynthetic cells. Angew Chem Int Ed Engl 2020; 59:3982-3987. [PMID: 31850622 PMCID: PMC7065155 DOI: 10.1002/anie.201914519] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Indexed: 01/27/2023]
Abstract
In this study, we coupled a well-established whole-cell system based on E. coli via light-harvesting complexes to Rieske oxygenase (RO)-catalyzed hydroxylations in vivo. Although these enzymes represent very promising biocatalysts, their practical applicability is hampered by their dependency on NAD(P)H as well as their multicomponent nature and intrinsic instability in cell-free systems. In order to explore the boundaries of E. coli as chassis for artificial photosynthesis, and due to the reported instability of ROs, we used these challenging enzymes as a model system. The light-driven approach relies on light-harvesting complexes such as eosin Y, 5(6)-carboxyeosin, and rose bengal and sacrificial electron donors (EDTA, MOPS, and MES) that were easily taken up by the cells. The obtained product formations of up to 1.3 g L-1 and rates of up to 1.6 mm h-1 demonstrate that this is a comparable approach to typical whole-cell transformations in E. coli. The applicability of this photocatalytic synthesis has been demonstrated and represents the first example of a photoinduced RO system.
Collapse
Affiliation(s)
- F. Feyza Özgen
- Institute of Molecular BiotechnologyGraz University of TechnologyPetersgasse 14/18010GrazAustria
| | - Michael E. Runda
- Institute of Molecular BiotechnologyGraz University of TechnologyPetersgasse 14/18010GrazAustria
| | - Bastien O. Burek
- DECHEMA-ForschungsinstitutTheodor-Heuss-Allee 2560486Frankfurt am MainGermany
| | - Peter Wied
- Institute of Molecular BiotechnologyGraz University of TechnologyPetersgasse 14/18010GrazAustria
| | - Jonathan Z. Bloh
- DECHEMA-ForschungsinstitutTheodor-Heuss-Allee 2560486Frankfurt am MainGermany
| | - Robert Kourist
- Institute of Molecular BiotechnologyGraz University of TechnologyPetersgasse 14/18010GrazAustria
| | - Sandy Schmidt
- Institute of Molecular BiotechnologyGraz University of TechnologyPetersgasse 14/18010GrazAustria
| |
Collapse
|
19
|
Tokic M, Hatzimanikatis V, Miskovic L. Large-scale kinetic metabolic models of Pseudomonas putida KT2440 for consistent design of metabolic engineering strategies. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:33. [PMID: 32140178 PMCID: PMC7048048 DOI: 10.1186/s13068-020-1665-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 01/22/2020] [Indexed: 05/15/2023]
Abstract
BACKGROUND Pseudomonas putida is a promising candidate for the industrial production of biofuels and biochemicals because of its high tolerance to toxic compounds and its ability to grow on a wide variety of substrates. Engineering this organism for improved performances and predicting metabolic responses upon genetic perturbations requires reliable descriptions of its metabolism in the form of stoichiometric and kinetic models. RESULTS In this work, we developed kinetic models of P. putida to predict the metabolic phenotypes and design metabolic engineering interventions for the production of biochemicals. The developed kinetic models contain 775 reactions and 245 metabolites. Furthermore, we introduce here a novel set of constraints within thermodynamics-based flux analysis that allow for considering concentrations of metabolites that exist in several compartments as separate entities. We started by a gap-filling and thermodynamic curation of iJN1411, the genome-scale model of P. putida KT2440. We then systematically reduced the curated iJN1411 model, and we created three core stoichiometric models of different complexity that describe the central carbon metabolism of P. putida. Using the medium complexity core model as a scaffold, we generated populations of large-scale kinetic models for two studies. In the first study, the developed kinetic models successfully captured the experimentally observed metabolic responses to several single-gene knockouts of a wild-type strain of P. putida KT2440 growing on glucose. In the second study, we used the developed models to propose metabolic engineering interventions for improved robustness of this organism to the stress condition of increased ATP demand. CONCLUSIONS The study demonstrates the potential and predictive capabilities of the kinetic models that allow for rational design and optimization of recombinant P. putida strains for improved production of biofuels and biochemicals. The curated genome-scale model of P. putida together with the developed large-scale stoichiometric and kinetic models represents a significant resource for researchers in industry and academia.
Collapse
Affiliation(s)
- Milenko Tokic
- Laboratory of Computational Systems Biotechnology (LCSB), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Vassily Hatzimanikatis
- Laboratory of Computational Systems Biotechnology (LCSB), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Ljubisa Miskovic
- Laboratory of Computational Systems Biotechnology (LCSB), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
20
|
Bator I, Wittgens A, Rosenau F, Tiso T, Blank LM. Comparison of Three Xylose Pathways in Pseudomonas putida KT2440 for the Synthesis of Valuable Products. Front Bioeng Biotechnol 2020; 7:480. [PMID: 32010683 PMCID: PMC6978631 DOI: 10.3389/fbioe.2019.00480] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/23/2019] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas putida KT2440 is a well-established chassis in industrial biotechnology. To increase the substrate spectrum, we implemented three alternative xylose utilization pathways, namely the Isomerase, Weimberg, and Dahms pathways. The synthetic operons contain genes from Escherichia coli and Pseudomonas taiwanensis. For isolating the Dahms pathway in P. putida KT2440 two genes (PP_2836 and PP_4283), encoding an endogenous enzyme of the Weimberg pathway and a regulator for glycolaldehyde degradation, were deleted. Before and after adaptive laboratory evolution, these strains were characterized in terms of growth and synthesis of mono-rhamnolipids and pyocyanin. The engineered strain using the Weimberg pathway reached the highest maximal growth rate of 0.30 h-1. After adaptive laboratory evolution the lag phase was reduced significantly. The highest titers of 720 mg L-1 mono-rhamnolipids and 30 mg L-1 pyocyanin were reached by the evolved strain using the Weimberg or an engineered strain using the Isomerase pathway, respectively. The different stoichiometries of the three xylose utilization pathways may allow engineering of tailored chassis for valuable bioproduct synthesis.
Collapse
Affiliation(s)
- Isabel Bator
- iAMB - Institute of Applied Microbiology, ABBt – Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Andreas Wittgens
- Institute for Pharmaceutical Biotechnology, Ulm-University, Ulm, Germany
- Ulm Center for Peptide Pharmaceuticals, Ulm, Germany
- Max-Planck-Institute for Polymer Research Mainz, Synthesis of Macromolecules, Mainz, Germany
| | - Frank Rosenau
- Institute for Pharmaceutical Biotechnology, Ulm-University, Ulm, Germany
- Ulm Center for Peptide Pharmaceuticals, Ulm, Germany
- Max-Planck-Institute for Polymer Research Mainz, Synthesis of Macromolecules, Mainz, Germany
| | - Till Tiso
- iAMB - Institute of Applied Microbiology, ABBt – Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Lars M. Blank
- iAMB - Institute of Applied Microbiology, ABBt – Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
21
|
Sathesh-Prabu C, Lee SK. Engineering the lva operon and Optimization of Culture Conditions for Enhanced Production of 4-Hydroxyvalerate from Levulinic Acid in Pseudomonas putida KT2440. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:2540-2546. [PMID: 30773878 DOI: 10.1021/acs.jafc.8b06884] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Monomeric 4-hydroxyvalerate is a versatile chemical used to produce various commodities and fine chemicals. In the present study, the lvaAB gene was deleted from the lva operon in Pseudomonas putida KT2440 and tesB, obtained from Escherichia coli, was overexpressed under the control of the lva operon system, which is induced by the substrate levulinic acid and the product 4-hydroxyvalerate to produce 4-hydroxyvalerate from levulinic acid. The lvaAB-deleted strain showed almost complete conversion of levulinic acid to 4-hydroxyvalerate, compared with 24% conversion in the wild-type strain. In addition, under optimized culture conditions, the final engineered strain produced a maximum of 50 g/L 4-hydroxyvalerate with 97% conversion from levulinic acid. The system presented here could be applied to produce high titers of 4-hydroxyvalerate in a cost-effective manner at a large scale from renewable cellulosic biomass.
Collapse
Affiliation(s)
- Chandran Sathesh-Prabu
- Department of Chemical Engineering , Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919 , Republic of Korea
| | - Sung Kuk Lee
- Department of Chemical Engineering , Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919 , Republic of Korea
- Department of Biomedical Engineering , Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919 , Republic of Korea
| |
Collapse
|
22
|
Volmer J, Lindmeyer M, Seipp J, Schmid A, Bühler B. Constitutively solvent‐tolerantPseudomonas taiwanensisVLB120∆C∆ttgVsupports particularly high‐styrene epoxidation activities when grown under glucose excess conditions. Biotechnol Bioeng 2019; 116:1089-1101. [DOI: 10.1002/bit.26924] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/17/2018] [Accepted: 01/06/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Jan Volmer
- Department of Biochemical and Chemical EngineeringTU Dortmund UniversityDortmund Germany
| | - Martin Lindmeyer
- Department of Biochemical and Chemical EngineeringTU Dortmund UniversityDortmund Germany
- Department of Solar MaterialsHelmholtz Centre for Environmental Research GmbH–UFZLeipzig Germany
| | - Julia Seipp
- Department of Biochemical and Chemical EngineeringTU Dortmund UniversityDortmund Germany
| | - Andreas Schmid
- Department of Solar MaterialsHelmholtz Centre for Environmental Research GmbH–UFZLeipzig Germany
| | - Bruno Bühler
- Department of Solar MaterialsHelmholtz Centre for Environmental Research GmbH–UFZLeipzig Germany
| |
Collapse
|
23
|
Oeggl R, Neumann T, Gätgens J, Romano D, Noack S, Rother D. Citrate as Cost-Efficient NADPH Regenerating Agent. Front Bioeng Biotechnol 2018; 6:196. [PMID: 30631764 PMCID: PMC6315136 DOI: 10.3389/fbioe.2018.00196] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 11/28/2018] [Indexed: 11/15/2022] Open
Abstract
The economically efficient utilization of NAD(P)H-dependent enzymes requires the regeneration of consumed reduction equivalents. Classically, this is done by substrate supplementation, and if necessary by addition of one or more enzymes. The simplest method thereof is whole cell NADPH regeneration. In this context we now present an easy-to-apply whole cell cofactor regeneration approach, which can especially be used in screening applications. Simply by applying citrate to a buffer or directly using citrate/-phosphate buffer NADPH can be regenerated by native enzymes of the TCA cycle, practically present in all aerobic living organisms. Apart from viable-culturable cells, this regeneration approach can also be applied with lyophilized cells and even crude cell extracts. This is exemplarily shown for the synthesis of 1-phenylethanol from acetophenone with several oxidoreductases. The mechanism of NADPH regeneration by TCA cycle enzymes was further investigated by a transient isotopic labeling experiment feeding [1,5-13C]citrate. This revealed that the regeneration mechanism can further be optimized by genetic modification of two competing internal citrate metabolism pathways, the glyoxylate shunt, and the glutamate dehydrogenase.
Collapse
Affiliation(s)
- Reinhard Oeggl
- Forschungszentrum Jülich GmbH, IBG-1: Biotechnology, Jülich, Germany.,Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Timo Neumann
- Forschungszentrum Jülich GmbH, IBG-1: Biotechnology, Jülich, Germany
| | - Jochem Gätgens
- Forschungszentrum Jülich GmbH, IBG-1: Biotechnology, Jülich, Germany
| | - Diego Romano
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Stephan Noack
- Forschungszentrum Jülich GmbH, IBG-1: Biotechnology, Jülich, Germany
| | - Dörte Rother
- Forschungszentrum Jülich GmbH, IBG-1: Biotechnology, Jülich, Germany.,Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
24
|
Zhang W, Hollmann F. Nonconventional regeneration of redox enzymes - a practical approach for organic synthesis? Chem Commun (Camb) 2018; 54:7281-7289. [PMID: 29714371 DOI: 10.1039/c8cc02219d] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oxidoreductases have become useful tools in the hands of chemists to perform selective and mild oxidation and reduction reactions. Instead of mimicking native catalytic cycles, generally involving costly and unstable nicotinamide cofactors, more direct, NAD(P)-independent methodologies are being developed. The promise of these approaches not only lies with simpler and cheaper reaction schemes but also with higher selectivity as compared to whole cell approaches and their mimics.
Collapse
Affiliation(s)
- Wuyuan Zhang
- Delft University of Technology, van der Maasweg 9, 2629HZ Delft, The Netherlands.
| | | |
Collapse
|
25
|
Dong J, Fernández‐Fueyo E, Hollmann F, Paul CE, Pesic M, Schmidt S, Wang Y, Younes S, Zhang W. Biocatalytic Oxidation Reactions: A Chemist's Perspective. Angew Chem Int Ed Engl 2018; 57:9238-9261. [PMID: 29573076 PMCID: PMC6099261 DOI: 10.1002/anie.201800343] [Citation(s) in RCA: 288] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Indexed: 01/25/2023]
Abstract
Oxidation chemistry using enzymes is approaching maturity and practical applicability in organic synthesis. Oxidoreductases (enzymes catalysing redox reactions) enable chemists to perform highly selective and efficient transformations ranging from simple alcohol oxidations to stereoselective halogenations of non-activated C-H bonds. For many of these reactions, no "classical" chemical counterpart is known. Hence oxidoreductases open up shorter synthesis routes based on a more direct access to the target products. The generally very mild reaction conditions may also reduce the environmental impact of biocatalytic reactions compared to classical counterparts. In this Review, we critically summarise the most important recent developments in the field of biocatalytic oxidation chemistry and identify the most pressing bottlenecks as well as promising solutions.
Collapse
Affiliation(s)
- JiaJia Dong
- Department of BiotechnologyDelft University of Technologyvan der Maasweg 92629HZDelftThe Netherlands
| | - Elena Fernández‐Fueyo
- Department of BiotechnologyDelft University of Technologyvan der Maasweg 92629HZDelftThe Netherlands
| | - Frank Hollmann
- Department of BiotechnologyDelft University of Technologyvan der Maasweg 92629HZDelftThe Netherlands
| | - Caroline E. Paul
- Department of BiotechnologyDelft University of Technologyvan der Maasweg 92629HZDelftThe Netherlands
| | - Milja Pesic
- Department of BiotechnologyDelft University of Technologyvan der Maasweg 92629HZDelftThe Netherlands
| | - Sandy Schmidt
- Department of BiotechnologyDelft University of Technologyvan der Maasweg 92629HZDelftThe Netherlands
| | - Yonghua Wang
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhou510640P. R. China
| | - Sabry Younes
- Department of BiotechnologyDelft University of Technologyvan der Maasweg 92629HZDelftThe Netherlands
| | - Wuyuan Zhang
- Department of BiotechnologyDelft University of Technologyvan der Maasweg 92629HZDelftThe Netherlands
| |
Collapse
|
26
|
Dong J, Fernández-Fueyo E, Hollmann F, Paul CE, Pesic M, Schmidt S, Wang Y, Younes S, Zhang W. Biokatalytische Oxidationsreaktionen - aus der Sicht eines Chemikers. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201800343] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- JiaJia Dong
- Department of Biotechnology; Delft University of Technology; van der Maasweg 9 2629HZ Delft Niederlande
| | - Elena Fernández-Fueyo
- Department of Biotechnology; Delft University of Technology; van der Maasweg 9 2629HZ Delft Niederlande
| | - Frank Hollmann
- Department of Biotechnology; Delft University of Technology; van der Maasweg 9 2629HZ Delft Niederlande
| | - Caroline E. Paul
- Department of Biotechnology; Delft University of Technology; van der Maasweg 9 2629HZ Delft Niederlande
| | - Milja Pesic
- Department of Biotechnology; Delft University of Technology; van der Maasweg 9 2629HZ Delft Niederlande
| | - Sandy Schmidt
- Department of Biotechnology; Delft University of Technology; van der Maasweg 9 2629HZ Delft Niederlande
| | - Yonghua Wang
- School of Food Science and Engineering; South China University of Technology; Guangzhou 510640 P. R. China
| | - Sabry Younes
- Department of Biotechnology; Delft University of Technology; van der Maasweg 9 2629HZ Delft Niederlande
| | - Wuyuan Zhang
- Department of Biotechnology; Delft University of Technology; van der Maasweg 9 2629HZ Delft Niederlande
| |
Collapse
|
27
|
Czarnotta E, Dianat M, Korf M, Granica F, Merz J, Maury J, Baallal Jacobsen SA, Förster J, Ebert BE, Blank LM. Fermentation and purification strategies for the production of betulinic acid and its lupane-type precursors in Saccharomyces cerevisiae. Biotechnol Bioeng 2017; 114:2528-2538. [DOI: 10.1002/bit.26377] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/02/2017] [Indexed: 12/25/2022]
Affiliation(s)
- Eik Czarnotta
- iAMB-Institute of Applied Microbiology; ABBt-Aachen Biology and Biotechnology; RWTH Aachen University; Aachen Germany
| | - Mariam Dianat
- iAMB-Institute of Applied Microbiology; ABBt-Aachen Biology and Biotechnology; RWTH Aachen University; Aachen Germany
| | - Marcel Korf
- APT-Laboratory of Plant and Process Design; Department of Biochemical and Chemical Engineering; TU Dortmund University; Dortmund Germany
| | - Fabian Granica
- APT-Laboratory of Plant and Process Design; Department of Biochemical and Chemical Engineering; TU Dortmund University; Dortmund Germany
| | - Juliane Merz
- APT-Laboratory of Plant and Process Design; Department of Biochemical and Chemical Engineering; TU Dortmund University; Dortmund Germany
| | - Jérôme Maury
- Technical University of Denmark; Novo Nordisk Foundation Center for Biosustainability; Kgs. Lyngby Denmark
| | - Simo A. Baallal Jacobsen
- Technical University of Denmark; Novo Nordisk Foundation Center for Biosustainability; Kgs. Lyngby Denmark
| | - Jochen Förster
- Technical University of Denmark; Novo Nordisk Foundation Center for Biosustainability; Kgs. Lyngby Denmark
| | - Birgitta E. Ebert
- iAMB-Institute of Applied Microbiology; ABBt-Aachen Biology and Biotechnology; RWTH Aachen University; Aachen Germany
| | - Lars M. Blank
- iAMB-Institute of Applied Microbiology; ABBt-Aachen Biology and Biotechnology; RWTH Aachen University; Aachen Germany
| |
Collapse
|
28
|
Farnberger JE, Lorenz E, Richter N, Wendisch VF, Kroutil W. In vivo plug-and-play: a modular multi-enzyme single-cell catalyst for the asymmetric amination of ketoacids and ketones. Microb Cell Fact 2017; 16:132. [PMID: 28754115 PMCID: PMC5534079 DOI: 10.1186/s12934-017-0750-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 07/24/2017] [Indexed: 11/24/2022] Open
Abstract
Background Transaminases have become a key tool in biocatalysis to introduce the amine functionality into a range of molecules like prochiral α-ketoacids and ketones. However, due to the necessity of shifting the equilibrium towards the product side (depending on the amine donor) an efficient amination system may require three enzymes. So far, this well-established transformation has mainly been performed in vitro by assembling all biocatalysts individually, which comes along with elaborate and costly preparation steps. We present the design and characterization of a flexible approach enabling a quick set-up of single-cell biocatalysts producing the desired enzymes. By choosing an appropriate co-expression strategy, a modular system was obtained, allowing for flexible plug-and-play combination of enzymes chosen from the toolbox of available transaminases and/or recycling enzymes tailored for the desired application. Results By using a two-plasmid strategy for the recycling enzyme and the transaminase together with chromosomal integration of an amino acid dehydrogenase, two enzyme modules could individually be selected and combined with specifically tailored E. coli strains. Various plug-and-play combinations of the enzymes led to the construction of a series of single-cell catalysts suitable for the amination of various types of substrates. On the one hand the fermentative amination of α-ketoacids coupled both with metabolic and non-metabolic cofactor regeneration was studied, giving access to the corresponding α-amino acids in up to 96% conversion. On the other hand, biocatalysts were employed in a non-metabolic, “in vitro-type” asymmetric reductive amination of the prochiral ketone 4-phenyl-2-butanone, yielding the amine in good conversion (77%) and excellent stereoselectivity (ee = 98%). Conclusions The described modularized concept enables the construction of tailored single-cell catalysts which provide all required enzymes for asymmetric reductive amination in a flexible fashion, representing a more efficient approach for the production of chiral amines and amino acids. Electronic supplementary material The online version of this article (doi:10.1186/s12934-017-0750-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Judith E Farnberger
- Austrian Centre of Industrial Biotechnology, ACIB GmbH, c/o University of Graz, Heinrichstrasse 28, 8010, Graz, Austria
| | - Elisabeth Lorenz
- Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, 33501, Bielefeld, Germany
| | - Nina Richter
- Austrian Centre of Industrial Biotechnology, ACIB GmbH, c/o University of Graz, Heinrichstrasse 28, 8010, Graz, Austria
| | - Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, 33501, Bielefeld, Germany.
| | - Wolfgang Kroutil
- Austrian Centre of Industrial Biotechnology, ACIB GmbH, c/o University of Graz, Heinrichstrasse 28, 8010, Graz, Austria. .,Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, Heinrichstrasse 28, 8010, Graz, Austria.
| |
Collapse
|
29
|
Han Q, Eiteman MA. Coupling xylitol dehydrogenase with NADH oxidase improves l-xylulose production in Escherichia coli culture. Enzyme Microb Technol 2017; 106:106-113. [PMID: 28859803 DOI: 10.1016/j.enzmictec.2017.07.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 07/06/2017] [Accepted: 07/21/2017] [Indexed: 11/30/2022]
Abstract
Escherichia coli expressing NAD-dependent xylitol-4-dehydrogenase (XDH) from Pantoea ananatis and growing on glucose or glycerol converts xylitol to the rare sugar l-xylulose. Although blocking potential l-xylulose consumption (l-xylulosekinase, lyxK) or co-expression of the glycerol facilitator (glpF) did not significantly affect l-xylulose formation, co-expressing XDH with water-forming NADH oxidase (NOX) from Streptococcus pneumoniae increased l-xylulose formation in shake flasks when glycerol was the carbon source. Controlled batch processes at the 1L scale demonstrated that the final equilibrium l-xylulose/xylitol ratio was correlated to the intracellular NAD+/NADH ratio, with 69% conversion of xylitol to l-xylulose and a yield of 0.88g l-xylulose/g xylitol consumed attained for MG1655/pZE12-xdh/pCS27-nox growing on glycerol. NADH oxidase was less effective at improving l-xylulose formation in the bioreactor than in shake flasks, likely as a result of an intrinsic maximum NAD+/NADH and l-xylulose/xylitol equilibrium ratio being attained. Intermittently feeding carbon source was ineffective at increasing the final l-xylulose concentration because introduction of carbon source was accompanied by a reduction in NAD+/NADH ratio. A batch process using 12g/L glycerol and 22g/L xylitol generated over 14g/L l-xylulose after 80h, corresponding to 65% conversion and a yield of 0.89g l-xylulose/g xylitol consumed.
Collapse
Affiliation(s)
- Qi Han
- School of Chemical, Materials and Biomedical Engineering University of Georgia, Athens, GA, 30602, USA
| | - Mark A Eiteman
- School of Chemical, Materials and Biomedical Engineering University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
30
|
Kadisch M, Willrodt C, Hillen M, Bühler B, Schmid A. Maximizing the stability of metabolic engineering-derived whole-cell biocatalysts. Biotechnol J 2017; 12. [DOI: 10.1002/biot.201600170] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 05/22/2017] [Accepted: 06/08/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Marvin Kadisch
- Department Solar Materials; Helmholtz Centre for Environmental Research - UFZ; Leipzig Germany
| | - Christian Willrodt
- Department Solar Materials; Helmholtz Centre for Environmental Research - UFZ; Leipzig Germany
| | - Michael Hillen
- Department Solar Materials; Helmholtz Centre for Environmental Research - UFZ; Leipzig Germany
| | - Bruno Bühler
- Department Solar Materials; Helmholtz Centre for Environmental Research - UFZ; Leipzig Germany
| | - Andreas Schmid
- Department Solar Materials; Helmholtz Centre for Environmental Research - UFZ; Leipzig Germany
| |
Collapse
|
31
|
Theodosiou E, Breisch M, Julsing MK, Falcioni F, Bühler B, Schmid A. An artificial TCA cycle selects for efficient α-ketoglutarate dependent hydroxylase catalysis in engineered Escherichia coli. Biotechnol Bioeng 2017; 114:1511-1520. [PMID: 28266022 DOI: 10.1002/bit.26281] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/13/2017] [Accepted: 03/01/2017] [Indexed: 01/24/2023]
Abstract
Amino acid hydroxylases depend directly on the cellular TCA cycle via their cosubstrate α-ketoglutarate (α-KG) and are highly useful for the selective biocatalytic oxyfunctionalization of amino acids. This study evaluates TCA cycle engineering strategies to force and increase α-KG flux through proline-4-hydroxylase (P4H). The genes sucA (α-KG dehydrogenase E1 subunit) and sucC (succinyl-CoA synthetase β subunit) were alternately deleted together with aceA (isocitrate lyase) in proline degradation-deficient Escherichia coli strains (ΔputA) expressing the p4h gene. Whereas, the ΔsucCΔaceAΔputA strain grew in minimal medium in the absence of P4H, relying on the activity of fumarate reductase, growth of the ΔsucAΔaceAΔputA strictly depended on P4H activity, thus coupling growth to proline hydroxylation. P4H restored growth, even when proline was not externally added. However, the reduced succinyl-CoA pool caused a 27% decrease of the average cell size compared to the wildtype strain. Medium supplementation partially restored the morphology and, in some cases, enhanced proline hydroxylation activity. The specific proline hydroxylation rate doubled when putP, encoding the Na+ /l-proline transporter, was overexpressed in the ΔsucAΔaceAΔputA strain. This is in contrast to wildtype and ΔputA single-knock out strains, in which α-KG availability obviously limited proline hydroxylation. Such α-KG limitation was relieved in the ΔsucAΔaceAΔputA strain. Furthermore, the ΔsucAΔaceAΔputA strain was used to demonstrate an agar plate-based method for the identification and selection of active α-KG dependent hydroxylases. This together with the possibility to waive selection pressure and overcome α-KG limitation in respective hydroxylation processes based on living cells emphasizes the potential of TCA cycle engineering for the productive application of α-KG dependent hydroxylases. Biotechnol. Bioeng. 2017;114: 1511-1520. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Eleni Theodosiou
- Department of Solar Materials, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, Leipzig 04318, Germany
| | - Marina Breisch
- Laboratory of Chemical Biotechnology, Department of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, Germany
| | - Mattijs K Julsing
- Laboratory of Chemical Biotechnology, Department of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, Germany
| | - Francesco Falcioni
- Laboratory of Chemical Biotechnology, Department of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, Germany
| | - Bruno Bühler
- Department of Solar Materials, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, Leipzig 04318, Germany
| | - Andreas Schmid
- Department of Solar Materials, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, Leipzig 04318, Germany
| |
Collapse
|
32
|
Chen X, Yang C, Wang P, Zhang X, Bao B, Li D, Shi R. Stereoselective biotransformation of racemic mandelic acid using immobilized laccase and (S)-mandelate dehydrogenase. BIORESOUR BIOPROCESS 2017; 4:2. [PMID: 28133593 PMCID: PMC5236080 DOI: 10.1186/s40643-016-0135-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 12/26/2016] [Accepted: 12/27/2016] [Indexed: 11/23/2022] Open
Abstract
Objectives (S)-Mandelate dehydrogenase (SMDH) and laccase were immobilized on chitosan. The bi-enzymatic system with immobilized SMDH and immobilized laccase was taken to catalyze the stereoselective transformation of racemic mandelic acid and (R)-mandelic acid was obtained from its racemic mixture. Results Characteristics of the immobilized enzymes were valuated. The optimum pH and temperature of the immobilized SMDH were found to be pH 3.4 and 45 °C, and these of the immobilized laccase were about pH 6.0 and 55 °C, respectively. The Km value of the immobilized SMDH for racemic mandelic acid was 0.27 mM and that of the immobilized laccase for ferrocyanide was 0.99 mM. The thermal and storage stabilities of these enzymes were improved with immobilization. The enantiomeric purity of the bi-enzymatically produced (R)-mandelic acid was determined to be over 99%. Conclusion The immobilized bi-enzymatic system for the stereoselective transformation of racemic mandelic acid showed higher productivity, faster reaction velocity, and more stable catalytic ability.. ![]()
Collapse
Affiliation(s)
- Xing Chen
- Department of Bioengineering, Nanjing University of Science and Technology, Xiaolingwei 200, Nanjing, 210094 People's Republic of China
| | - Chengli Yang
- Department of Bioengineering, Nanjing University of Science and Technology, Xiaolingwei 200, Nanjing, 210094 People's Republic of China
| | - Peng Wang
- Department of Bioengineering, Nanjing University of Science and Technology, Xiaolingwei 200, Nanjing, 210094 People's Republic of China
| | - Xuan Zhang
- Department of Bioengineering, Nanjing University of Science and Technology, Xiaolingwei 200, Nanjing, 210094 People's Republic of China
| | - Bingxin Bao
- Department of Bioengineering, Nanjing University of Science and Technology, Xiaolingwei 200, Nanjing, 210094 People's Republic of China
| | - Dali Li
- Department of Bioengineering, Nanjing University of Science and Technology, Xiaolingwei 200, Nanjing, 210094 People's Republic of China
| | - Ruofu Shi
- Department of Bioengineering, Nanjing University of Science and Technology, Xiaolingwei 200, Nanjing, 210094 People's Republic of China
| |
Collapse
|
33
|
Katzke N, Knapp A, Loeschcke A, Drepper T, Jaeger KE. Novel Tools for the Functional Expression of Metagenomic DNA. Methods Mol Biol 2017; 1539:159-196. [PMID: 27900689 DOI: 10.1007/978-1-4939-6691-2_10] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Functional expression of genes from metagenomic libraries is limited by various factors including inefficient transcription and/or translation of target genes as well as improper folding and assembly of the corresponding proteins caused by the lack of appropriate chaperones and cofactors. It is now well accepted that the use of different expression hosts of distinct phylogeny and physiology can dramatically increase the rate of success. In the following chapter, we therefore describe tools and protocols allowing for the comparative heterologous expression of genes in five bacterial expression hosts, namely Escherichia coli, Pseudomonas putida, Bacillus subtilis, Burkholderia glumae, and Rhodobacter capsulatus. Different broad-host-range shuttle vectors are described that allow activity-based screening of metagenomic DNA in these bacteria. Furthermore, we describe the newly developed transfer-and-expression system TREX which comprises genetic elements essential to allow for expression of large clusters of functionally coupled genes in different microbial species.
Collapse
Affiliation(s)
- Nadine Katzke
- Institute of Molecular Enzyme Technology, Forschungszentrum Jülich GmbH, Heinrich-Heine-University Düsseldorf, 52426, Jülich, Germany
| | - Andreas Knapp
- Institute of Molecular Enzyme Technology, Forschungszentrum Jülich GmbH, Heinrich-Heine-University Düsseldorf, 52426, Jülich, Germany
| | - Anita Loeschcke
- Institute of Molecular Enzyme Technology, Forschungszentrum Jülich GmbH, Heinrich-Heine-University Düsseldorf, 52426, Jülich, Germany
| | - Thomas Drepper
- Institute of Molecular Enzyme Technology, Forschungszentrum Jülich GmbH, Heinrich-Heine-University Düsseldorf, 52426, Jülich, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Forschungszentrum Jülich GmbH, Heinrich-Heine-University Düsseldorf, 52426, Jülich, Germany.
| |
Collapse
|
34
|
A whole cell biocatalyst for double oxidation of cyclooctane. ACTA ACUST UNITED AC 2016; 43:1641-1646. [DOI: 10.1007/s10295-016-1844-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 09/28/2016] [Indexed: 10/20/2022]
Abstract
Abstract
A novel whole cell cascade for double oxidation of cyclooctane to cyclooctanone was developed. The one-pot oxidation cascade requires only a minimum of reaction components: resting E. coli cells in aqueous buffered medium (=catalyst), the target substrate and oxygen as environmental friendly oxidant. Conversion of cyclooctane was catalysed with high efficiency (50% yield) and excellent selectivity (>94%) to cyclooctanone. The reported oxidation cascade represents a novel whole cell system for double oxidation of non-activated alkanes including an integrated cofactor regeneration. Notably, two alcohol dehydrogenases from Lactobacillus brevis and from Rhodococcus erythropolis with opposite cofactor selectivities and one monooxygenase P450 BM3 were produced in a coexpression system in one single host. The system represents the most efficient route with a TTN of up to 24363 being a promising process in terms of sustainability as well.
Collapse
|
35
|
Kadisch M, Julsing MK, Schrewe M, Jehmlich N, Scheer B, von Bergen M, Schmid A, Bühler B. Maximization of cell viability rather than biocatalyst activity improves whole-cell ω-oxyfunctionalization performance. Biotechnol Bioeng 2016; 114:874-884. [PMID: 27883174 DOI: 10.1002/bit.26213] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/11/2016] [Accepted: 10/31/2016] [Indexed: 11/11/2022]
Abstract
It is a common misconception in whole-cell biocatalysis to refer to an enzyme as the biocatalyst, thereby neglecting the structural and metabolic framework provided by the cell. Here, the low whole-cell biocatalyst stability, that is, the stability of specific biocatalyst activity, in a process for the terminal oxyfunctionalization of renewable fatty acid methyl esters was investigated. This reaction, which is difficult to achieve by chemical means, is catalyzed by Escherichia coli featuring the monooxygenase system AlkBGT and the uptake facilitator AlkL from Pseudomonas putida GPo1. Corresponding products, that is, terminal alcohols, aldehydes, and acids, constitute versatile bifunctional building blocks, which are of special interest for polymer synthesis. It could clearly be shown that extensive dodecanoic acid methyl ester uptake mediated by high AlkL levels leads to whole-cell biocatalyst toxification. Thus, cell viability constitutes the primary factor limiting biocatalyst stability and, as a result, process durability. Hence, a compromise had to be found between low biocatalyst activity due to restricted substrate uptake and poor biocatalyst stability due to AlkL-mediated toxification. This was achieved by the fine-tuning of heterologous alkL expression, which, furthermore, enabled the identification of the alkBGT expression level as another critical factor determining biocatalyst stability. Controlled synthesis of AlkL and reduced alkBGT expression finally enabled an increase of product titers by a factor of 4.3 up to 229 g Lorg-1 in a two-liquid phase bioprocess setup. Clearly, ω-oxyfunctionalization process performance was determined by cell viability and thus biocatalyst stability rather than the maximally achievable specific biocatalyst activity. Biotechnol. Bioeng. 2017;114: 874-884. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Marvin Kadisch
- Department of Solar Materials, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, 04318, Leipzig, Germany
| | - Mattijs K Julsing
- Laboratory of Chemical Biotechnology, Department of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, Germany
| | - Manfred Schrewe
- Department of Solar Materials, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, 04318, Leipzig, Germany
| | - Nico Jehmlich
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Benjamin Scheer
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Andreas Schmid
- Department of Solar Materials, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, 04318, Leipzig, Germany
| | - Bruno Bühler
- Department of Solar Materials, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, 04318, Leipzig, Germany
| |
Collapse
|
36
|
Galán B, Uhía I, García-Fernández E, Martínez I, Bahíllo E, de la Fuente JL, Barredo JL, Fernández-Cabezón L, García JL. Mycobacterium smegmatis is a suitable cell factory for the production of steroidic synthons. Microb Biotechnol 2016; 10:138-150. [PMID: 27804278 PMCID: PMC5270728 DOI: 10.1111/1751-7915.12429] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/19/2016] [Accepted: 09/21/2016] [Indexed: 01/05/2023] Open
Abstract
A number of pharmaceutical steroid synthons are currently produced through the microbial side-chain cleavage of natural sterols as an alternative to multi-step chemical synthesis. Industrially, these synthons have been usually produced through fermentative processes using environmental isolated microorganisms or their conventional mutants. Mycobacterium smegmatis mc2 155 is a model organism for tuberculosis studies which uses cholesterol as the sole carbon and energy source for growth, as other mycobacterial strains. Nevertheless, this property has not been exploited for the industrial production of steroidic synthons. Taking advantage of our knowledge on the cholesterol degradation pathway of M. smegmatis mc2 155 we have demonstrated that the MSMEG_6039 (kshB1) and MSMEG_5941 (kstD1) genes encoding a reductase component of the 3-ketosteroid 9α-hydroxylase (KshAB) and a ketosteroid Δ1 -dehydrogenase (KstD), respectively, are indispensable enzymes for the central metabolism of cholesterol. Therefore, we have constructed a MSMEG_6039 (kshB1) gene deletion mutant of M. smegmatis MS6039 that transforms efficiently natural sterols (e.g. cholesterol and phytosterols) into 1,4-androstadiene-3,17-dione. In addition, we have demonstrated that a double deletion mutant M. smegmatis MS6039-5941 [ΔMSMEG_6039 (ΔkshB1) and ΔMSMEG_5941 (ΔkstD1)] transforms natural sterols into 4-androstene-3,17-dione with high yields. These findings suggest that the catabolism of cholesterol in M. smegmatis mc2 155 is easy to handle and equally efficient for sterol transformation than other industrial strains, paving the way for valuating this strain as a suitable industrial cell factory to develop à la carte metabolic engineering strategies for the industrial production of pharmaceutical steroids.
Collapse
Affiliation(s)
- Beatriz Galán
- Department of Environmental Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Iria Uhía
- Department of Environmental Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040, Madrid, Spain.,MRC Centre for Molecular Bacteriology and Infection, Department of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - Esther García-Fernández
- Department of Environmental Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Igor Martínez
- Department of Environmental Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Esther Bahíllo
- Department of Biotechnology, Gadea Biopharma, Parque Tecnológico de León, Nicostrato Vela s/n, 24009, León, Spain
| | - Juan L de la Fuente
- Department of Biotechnology, Gadea Biopharma, Parque Tecnológico de León, Nicostrato Vela s/n, 24009, León, Spain
| | - José L Barredo
- Department of Biotechnology, Gadea Biopharma, Parque Tecnológico de León, Nicostrato Vela s/n, 24009, León, Spain
| | - Lorena Fernández-Cabezón
- Department of Environmental Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - José L García
- Department of Environmental Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040, Madrid, Spain
| |
Collapse
|
37
|
Zobel S, Kuepper J, Ebert B, Wierckx N, Blank LM. Metabolic response of Pseudomonas putida to increased NADH regeneration rates. Eng Life Sci 2016; 17:47-57. [PMID: 32624728 DOI: 10.1002/elsc.201600072] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 07/19/2016] [Accepted: 08/10/2016] [Indexed: 11/08/2022] Open
Abstract
Pseudomonas putida efficiently utilizes many different carbon sources without the formation of byproducts even under conditions of stress. This implies a high degree of flexibility to cope with conditions that require a significantly altered distribution of carbon to either biomass or energy in the form of NADH. In the literature, co-feeding of the reduced C1 compound formate to Escherichia coli heterologously expressing the NAD+-dependent formate dehydrogenase of the yeast Candida boidinii was demonstrated to boost various NADH-demanding applications. Pseudomonas putida as emerging biotechnological workhorse is inherently equipped with an NAD+-dependent formate dehydrogenase encouraging us to investigate the use of formate and its effect on P. putida's metabolism. Hence, this study provides a detailed insight into the co-utilization of formate and glucose by P. putida. Our results show that the addition of formate leads to a high increase in the NADH regeneration rate resulting in a very high biomass yield on glucose. Metabolic flux analysis revealed a significant flux rerouting from catabolism to anabolism. These metabolic insights argue further for P. putida as a host for redox cofactor demanding bioprocesses.
Collapse
Affiliation(s)
- Sebastian Zobel
- Institute of Applied Microbiology - iAMB RWTH Aachen University - ABBt Aachen Germany
| | - Jannis Kuepper
- Institute of Applied Microbiology - iAMB RWTH Aachen University - ABBt Aachen Germany
| | - Birgitta Ebert
- Institute of Applied Microbiology - iAMB RWTH Aachen University - ABBt Aachen Germany
| | - Nick Wierckx
- Institute of Applied Microbiology - iAMB RWTH Aachen University - ABBt Aachen Germany
| | - Lars M Blank
- Institute of Applied Microbiology - iAMB RWTH Aachen University - ABBt Aachen Germany
| |
Collapse
|
38
|
Kuepper J, Zobel S, Wierckx N, Blank LM. A rapid method to estimate NADH regeneration rates in living cells. J Microbiol Methods 2016; 130:92-94. [PMID: 27592588 DOI: 10.1016/j.mimet.2016.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 09/01/2016] [Indexed: 02/05/2023]
Abstract
We introduce a rapid whole cell assay for the estimation of NADH regeneration rates based on the fluorescent dye resazurin. A co-feed of formate and glucose, known to increase the intrinsic NADH regeneration rate of P. putida KT2440, was chosen as model system for the validation of this assay.
Collapse
Affiliation(s)
- Jannis Kuepper
- Institute of Applied Microbiology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Sebastian Zobel
- Institute of Applied Microbiology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Nick Wierckx
- Institute of Applied Microbiology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.
| | - Lars M Blank
- Institute of Applied Microbiology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| |
Collapse
|
39
|
Zhang MM, Wang Y, Ang EL, Zhao H. Engineering microbial hosts for production of bacterial natural products. Nat Prod Rep 2016; 33:963-87. [PMID: 27072804 PMCID: PMC4963277 DOI: 10.1039/c6np00017g] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Covering up to end 2015Microbial fermentation provides an attractive alternative to chemical synthesis for the production of structurally complex natural products. In most cases, however, production titers are low and need to be improved for compound characterization and/or commercial production. Owing to advances in functional genomics and genetic engineering technologies, microbial hosts can be engineered to overproduce a desired natural product, greatly accelerating the traditionally time-consuming strain improvement process. This review covers recent developments and challenges in the engineering of native and heterologous microbial hosts for the production of bacterial natural products, focusing on the genetic tools and strategies for strain improvement. Special emphasis is placed on bioactive secondary metabolites from actinomycetes. The considerations for the choice of host systems will also be discussed in this review.
Collapse
Affiliation(s)
- Mingzi M Zhang
- Metabolic Engineering Research Laboratory, Science and Engineering Institutes, Agency for Science, Technology and Research, Singapore
| | | | | | | |
Collapse
|
40
|
Holtmann D, Hollmann F. The Oxygen Dilemma: A Severe Challenge for the Application of Monooxygenases? Chembiochem 2016; 17:1391-8. [PMID: 27194219 PMCID: PMC5096067 DOI: 10.1002/cbic.201600176] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Indexed: 12/12/2022]
Abstract
Monooxygenases are promising catalysts because they in principle enable the organic chemist to perform highly selective oxyfunctionalisation reactions that are otherwise difficult to achieve. For this, monooxygenases require reducing equivalents, to allow reductive activation of molecular oxygen at the enzymes' active sites. However, these reducing equivalents are often delivered to O2 either directly or via a reduced intermediate (uncoupling), yielding hazardous reactive oxygen species and wasting valuable reducing equivalents. The oxygen dilemma arises from monooxygenases' dependency on O2 and the undesired uncoupling reaction. With this contribution we hope to generate a general awareness of the oxygen dilemma and to discuss its nature and some promising solutions.
Collapse
Affiliation(s)
- Dirk Holtmann
- DECHEMA Research Institute, Theodor-Heuss-Allee 25, 60486, Frankfurt am Main, Germany
| | - Frank Hollmann
- Department of Biotechnology, Delft University of Technology, Julianalaan 136, 2628BL, Delft, The Netherlands.
| |
Collapse
|
41
|
Nikel PI, Pérez-Pantoja D, de Lorenzo V. Pyridine nucleotide transhydrogenases enable redox balance of Pseudomonas putida during biodegradation of aromatic compounds. Environ Microbiol 2016; 18:3565-3582. [PMID: 27348295 DOI: 10.1111/1462-2920.13434] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 06/23/2016] [Indexed: 11/26/2022]
Abstract
The metabolic versatility of the soil bacterium Pseudomonas putida is reflected by its ability to execute strong redox reactions (e.g., mono- and di-oxygenations) on aromatic substrates. Biodegradation of aromatics occurs via the pathway encoded in the archetypal TOL plasmid pWW0, yet the effect of running such oxidative route on redox balance against the background metabolism of P. putida remains unexplored. To answer this question, the activity of pyridine nucleotide transhydrogenases (that catalyze the reversible interconversion of NADH and NADPH) was inspected under various physiological and oxidative stress regimes. The genome of P. putida KT2440 encodes a soluble transhydrogenase (SthA) and a membrane-bound, proton-pumping counterpart (PntAB). Mutant strains, lacking sthA and/or pntAB, were subjected to a panoply of genetic, biochemical, phenomic and functional assays in cells grown on customary carbon sources (e.g., citrate) versus difficult-to-degrade aromatic substrates. The results consistently indicated that redox homeostasis is compromised in the transhydrogenases-defective variant, rendering the mutant sensitive to oxidants. This metabolic deficiency was, however, counteracted by an increase in the activity of NADP+ -dependent dehydrogenases in central carbon metabolism. Taken together, these observations demonstrate that transhydrogenases enable a redox-adjusting mechanism that comes into play when biodegradation reactions are executed to metabolize unusual carbon compounds.
Collapse
Affiliation(s)
- Pablo I Nikel
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Danilo Pérez-Pantoja
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Concepción, 4030000 Concepción, Chile
| | - Víctor de Lorenzo
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain.
| |
Collapse
|
42
|
Tieves F, Erenburg IN, Mahmoud O, Urlacher VB. Synthesis of chiral 2-alkanols fromn-alkanes by aP. putidawhole-cell biocatalyst. Biotechnol Bioeng 2016; 113:1845-52. [DOI: 10.1002/bit.25953] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 02/08/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Florian Tieves
- Institute of Biochemistry; Heinrich-Heine University Düsseldorf; 40225 Düsseldorf Germany
| | - Isabelle N. Erenburg
- Institute of Biochemistry; Heinrich-Heine University Düsseldorf; 40225 Düsseldorf Germany
| | - Osama Mahmoud
- Institute of Biochemistry; Heinrich-Heine University Düsseldorf; 40225 Düsseldorf Germany
| | - Vlada B. Urlacher
- Institute of Biochemistry; Heinrich-Heine University Düsseldorf; 40225 Düsseldorf Germany
| |
Collapse
|
43
|
Pseudomonas putida-a versatile host for the production of natural products. Appl Microbiol Biotechnol 2015; 99:6197-214. [PMID: 26099332 PMCID: PMC4495716 DOI: 10.1007/s00253-015-6745-4] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 05/26/2015] [Accepted: 05/29/2015] [Indexed: 10/30/2022]
Abstract
The biosynthesis of natural products by heterologous expression of biosynthetic pathways in amenable production strains enables biotechnological access to a variety of valuable compounds by conversion of renewable resources. Pseudomonas putida has emerged as a microbial laboratory work horse, with elaborated techniques for cultivation and genetic manipulation available. Beyond that, this bacterium offers several particular advantages with regard to natural product biosynthesis, notably a versatile intrinsic metabolism with diverse enzymatic capacities as well as an outstanding tolerance to xenobiotics. Therefore, it has been applied for recombinant biosynthesis of several valuable natural products. This review provides an overview of applications of P. putida as a host organism for the recombinant biosynthesis of such natural products, including rhamnolipids, terpenoids, polyketides and non-ribosomal peptides, and other amino acid-derived compounds. The focus is on de novo natural product synthesis from intrinsic building blocks by means of heterologous gene expression and strain engineering. Finally, the future potential of the bacterium as a chassis organism for synthetic microbiology is pointed out.
Collapse
|
44
|
Holtmann D, Fraaije MW, Arends IWCE, Opperman DJ, Hollmann F. The taming of oxygen: biocatalytic oxyfunctionalisations. Chem Commun (Camb) 2015; 50:13180-200. [PMID: 24902635 DOI: 10.1039/c3cc49747j] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The scope and limitations of oxygenases as catalysts for preparative organic synthesis is discussed.
Collapse
Affiliation(s)
- Dirk Holtmann
- DECHEMA Research Institute, Theodor-Heuss-Allee 25, 60486 Frankfurt am Main, Germany
| | | | | | | | | |
Collapse
|
45
|
Bayer T, Milker S, Wiesinger T, Rudroff F, Mihovilovic MD. Designer Microorganisms for Optimized Redox Cascade Reactions - Challenges and Future Perspectives. Adv Synth Catal 2015. [DOI: 10.1002/adsc.201500202] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
46
|
Whole-Cell Biocatalytic Production of 2,5-Furandicarboxylic Acid. MICROORGANISMS IN BIOREFINERIES 2015. [DOI: 10.1007/978-3-662-45209-7_8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
47
|
Martínez-García E, Nikel PI, Aparicio T, de Lorenzo V. Pseudomonas 2.0: genetic upgrading of P. putida KT2440 as an enhanced host for heterologous gene expression. Microb Cell Fact 2014; 13:159. [PMID: 25384394 PMCID: PMC4230525 DOI: 10.1186/s12934-014-0159-3] [Citation(s) in RCA: 170] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 10/27/2014] [Indexed: 11/10/2022] Open
Abstract
Background Because of its adaptability to sites polluted with toxic chemicals, the model soil bacterium Pseudomonas putida is naturally endowed with a number of metabolic and stress-endurance qualities which have considerable value for hosting energy-demanding and redox reactions thereof. The growing body of knowledge on P. putida strain KT2440 has been exploited for the rational design of a derivative strain in which the genome has been heavily edited in order to construct a robust microbial cell factory. Results Eleven non-adjacent genomic deletions, which span 300 genes (i.e., 4.3% of the entire P. putida KT2440 genome), were eliminated; thereby enhancing desirable traits and eliminating attributes which are detrimental in an expression host. Since ATP and NAD(P)H availability – as well as genetic instability, are generally considered to be major bottlenecks for the performance of platform strains, a suite of functions that drain high-energy phosphate from the cells and/or consume NAD(P)H were targeted in particular, the whole flagellar machinery. Four prophages, two transposons, and three components of DNA restriction-modification systems were eliminated as well. The resulting strain (P. putida EM383) displayed growth properties (i.e., lag times, biomass yield, and specific growth rates) clearly superior to the precursor wild-type strain KT2440. Furthermore, it tolerated endogenous oxidative stress, acquired and replicated exogenous DNA, and survived better in stationary phase. The performance of a bi-cistronic GFP-LuxCDABE reporter system as a proxy of combined metabolic vitality, revealed that the deletions in P. putida strain EM383 brought about an increase of >50% in the overall physiological vigour. Conclusion The rationally modified P. putida strain allowed for the better functional expression of implanted genes by directly improving the metabolic currency that sustains the gene expression flow, instead of resorting to the classical genetic approaches (e.g., increasing the promoter strength in the DNA constructs of interest). Electronic supplementary material The online version of this article (doi:10.1186/s12934-014-0159-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Esteban Martínez-García
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, 28049, Madrid, Spain.
| | - Pablo I Nikel
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, 28049, Madrid, Spain.
| | - Tomás Aparicio
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, 28049, Madrid, Spain.
| | - Víctor de Lorenzo
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
48
|
Martínez-García E, Nikel PI, Aparicio T, de Lorenzo V. Pseudomonas 2.0: genetic upgrading of P. putida KT2440 as an enhanced host for heterologous gene expression. Microb Cell Fact 2014. [PMID: 25384394 DOI: 10.1186/s12934-014-0159-3.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Because of its adaptability to sites polluted with toxic chemicals, the model soil bacterium Pseudomonas putida is naturally endowed with a number of metabolic and stress-endurance qualities which have considerable value for hosting energy-demanding and redox reactions thereof. The growing body of knowledge on P. putida strain KT2440 has been exploited for the rational design of a derivative strain in which the genome has been heavily edited in order to construct a robust microbial cell factory. RESULTS Eleven non-adjacent genomic deletions, which span 300 genes (i.e., 4.3% of the entire P. putida KT2440 genome), were eliminated; thereby enhancing desirable traits and eliminating attributes which are detrimental in an expression host. Since ATP and NAD(P)H availability - as well as genetic instability, are generally considered to be major bottlenecks for the performance of platform strains, a suite of functions that drain high-energy phosphate from the cells and/or consume NAD(P)H were targeted in particular, the whole flagellar machinery. Four prophages, two transposons, and three components of DNA restriction-modification systems were eliminated as well. The resulting strain (P. putida EM383) displayed growth properties (i.e., lag times, biomass yield, and specific growth rates) clearly superior to the precursor wild-type strain KT2440. Furthermore, it tolerated endogenous oxidative stress, acquired and replicated exogenous DNA, and survived better in stationary phase. The performance of a bi-cistronic GFP-LuxCDABE reporter system as a proxy of combined metabolic vitality, revealed that the deletions in P. putida strain EM383 brought about an increase of >50% in the overall physiological vigour. CONCLUSION The rationally modified P. putida strain allowed for the better functional expression of implanted genes by directly improving the metabolic currency that sustains the gene expression flow, instead of resorting to the classical genetic approaches (e.g., increasing the promoter strength in the DNA constructs of interest).
Collapse
Affiliation(s)
- Esteban Martínez-García
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, 28049, Madrid, Spain.
| | - Pablo I Nikel
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, 28049, Madrid, Spain.
| | - Tomás Aparicio
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, 28049, Madrid, Spain.
| | - Víctor de Lorenzo
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
49
|
Müller CA, Dennig A, Welters T, Winkler T, Ruff AJ, Hummel W, Gröger H, Schwaneberg U. Whole-cell double oxidation of n-heptane. J Biotechnol 2014; 191:196-204. [PMID: 24925696 DOI: 10.1016/j.jbiotec.2014.06.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 05/25/2014] [Accepted: 06/02/2014] [Indexed: 10/25/2022]
Abstract
Biocascades allow one-pot synthesis of chemical building blocks omitting purification of reaction intermediates and expenses for downstream processing. Here we show the first whole cell double oxidation of n-heptane to produce chiral alcohols and heptanones. The concept of an artificial operon for co-expression of a monooxygenase from Bacillus megaterium (P450 BM3) and an alcohol dehydrogenase (RE-ADH) from Rhodococcus erythropolis is reported and compared to the widely used two-plasmid or Duet-vector expression systems. Both catalysts are co-expressed on a polycistronic constructs (single mRNA) that reduces recombinant DNA content and metabolic burden for the host cell, therefore increasing growth rate and expression level. Using the artificial operon system, the expression of P450 BM3 reached 81mgg(-1) cell dry weight. In addition, in situ cofactor regeneration through the P450 BM3/RE-ADH couple was enhanced by coupling to glucose oxidation by E. coli. Under optimized reaction conditions the artificial operon system displayed a product formation of 656mgL(-1) (5.7mM) of reaction products (heptanols+heptanones), which is 3-fold higher than the previously reported values for an in vitro oxidation cascade. In conjunction with the high product concentrations it was possible to obtain ee values of >99% for (S)-3-heptanol. Coexpression of a third alcohol dehydrogenase from Lactobacillus brevis (Lb-ADH) in the same host yielded complete oxidation of all heptanol isomers. Introduction of a second ADH enabled further to utilize both cofactors in the host cell (NADH and NADPH) which illustrates the simplicity and modular character of the whole cell oxidation concept employing an artificial operon system.
Collapse
Affiliation(s)
- Christina A Müller
- Institute of Biotechnology, RWTH Aachen, Worringerweg 3, 52074 Aachen, Germany
| | - Alexander Dennig
- Institute of Biotechnology, RWTH Aachen, Worringerweg 3, 52074 Aachen, Germany
| | - Tim Welters
- Institute of Biotechnology, RWTH Aachen, Worringerweg 3, 52074 Aachen, Germany
| | - Till Winkler
- Institute of Molecular Enzyme Technology at the Heinrich-Heine-University of Düsseldorf, Research Centre Jülich, Stetternicher Forst, 52426 Jülich, Germany
| | - Anna Joelle Ruff
- Institute of Biotechnology, RWTH Aachen, Worringerweg 3, 52074 Aachen, Germany
| | - Werner Hummel
- Institute of Molecular Enzyme Technology at the Heinrich-Heine-University of Düsseldorf, Research Centre Jülich, Stetternicher Forst, 52426 Jülich, Germany
| | - Harald Gröger
- Faculty of Chemistry, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen, Worringerweg 3, 52074 Aachen, Germany.
| |
Collapse
|
50
|
Mandelate Racemase and Mandelate Dehydrogenase Coexpressed RecombinantEscherichia coliin the Synthesis of Benzoylformate. Biosci Biotechnol Biochem 2014; 77:1236-9. [DOI: 10.1271/bbb.121012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|