1
|
Li Z, Li W, Zhang C, Wang J, Geng X, Qu B, Yue Y, Li X. Fatty acid desaturase 2 (FADS2) affects the pluripotency of hESCs by regulating energy metabolism. Int J Biol Macromol 2025; 295:139449. [PMID: 39756764 DOI: 10.1016/j.ijbiomac.2024.139449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/16/2024] [Accepted: 12/31/2024] [Indexed: 01/07/2025]
Abstract
Human embryonic stem cells (hESCs) possess the ability to differentiate into various cell types, which is intricately linked to fatty acid synthesis and metabolism. Fatty acid desaturase 2 (FADS2) plays important role in fatty acid metabolism. In this study, we elucidate that the inhibition of FADS2 by SC-26196 enhances hESC pluripotency by upregulating key pluripotency genes such as POU5F1, NANOG, and KLF5. Moreover, SC-26196 treatment alters the fatty acid metabolic profile of hESCs, decreasing the synthesis of saturated fatty acids (SFAs) while increasing the content of monounsaturated fatty acids (MUFAs). Meanwhile, transcriptomic and proteomic analyses revealed that under FADS2 inhibition, hESCs maintain pluripotency primarily through enhanced oxidative phosphorylation and modified fatty acid metabolism. Knockdown and overexpression experiments confirm that FADS2 is a crucial regulator of these metabolic processes, and is essential for sustaining hESCs pluripotency. Collectively, this study unveils the pivotal role of FADS2 in the metabolic regulation of hESCs and provide new insights into the mechanisms governing pluripotency.
Collapse
Affiliation(s)
- Zihong Li
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China
| | - Wei Li
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China
| | - Chenchen Zhang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China
| | - Jing Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China
| | - Xiaoxiong Geng
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China
| | - Burong Qu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China
| | - Yongli Yue
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China
| | - Xueling Li
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China.
| |
Collapse
|
2
|
Dubey Y, Kanvah S. Multi-organelle imaging with dye combinations: targeting the ER, mitochondria, and plasma membrane. J Mater Chem B 2025; 13:2446-2456. [PMID: 39815810 DOI: 10.1039/d4tb02456g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Multi-organelle imaging allows the visualization of multiple organelles within a single cell, allowing monitoring of the cellular processes in real-time using various fluorescent probes that target specific organelles. However, the limited availability of fluorophores and potential spectral overlap present challenges, and many optimized designs are still in nascency. In this work, we synthesized various sulfonamide-based organic fluorophores that emit in the blue, green, and red regions to target different sub-cellular organelles. By utilizing binary mixtures, we successfully demonstrated multiple imaging of the sub-cellular organelles, such as the endoplasmic reticulum, plasma membrane, and mitochondria in HeLa cells, and dual imaging of the endoplasmic reticulum and mitochondria in A549 lung carcinoma cells with the help of blue and red-emitting fluorophores without any spectral spillover. Additionally, these photostable probes allowed precise cell staining and differentiation, structural features, and live cell dynamics. This approach of utilizing fluorescent mixtures can gain traction for various cellular studies and investigations.
Collapse
Affiliation(s)
- Yogesh Dubey
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, India.
| | - Sriram Kanvah
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, India.
| |
Collapse
|
3
|
Romero AH, Delgado F. 4-Aminoquinoline as a privileged scaffold for the design of leishmanicidal agents: structure-property relationships and key biological targets. Front Chem 2025; 12:1527946. [PMID: 39981131 PMCID: PMC11841433 DOI: 10.3389/fchem.2024.1527946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 12/26/2024] [Indexed: 02/22/2025] Open
Abstract
Leishmaniasis is one of the most important neglected tropical diseases, with more than two million new cases annually. It is endemic in several regions worldwide, representing a public health problem for more than 88 countries, in particular in the tropical and subtropical regions of developing countries. At the moment, there are neither approved vaccines nor effective drugs for the treatment of human leishmaniasis for any of its three typical clinical manifestations, and, importantly, the drugs of clinical use have several side effects, require complex administration regimens, present high cost, and are ineffective in many populations due to pathogen resistance. Moreover, beyond the pharmacological exigencies, there are other challenges concerning its parasitic nature, such as its great genetic plasticity and adaptability, enabling it to activate a battery of genes to develop resistance quickly. All these aspects demand the identification and development of new, safe, and effective chemical systems, which must not only be focused on medicinal chemistry and pharmacological aspects but also consider key aspects relative to parasite survival. In this sense, the quinolines and, in particular, 4-aminoquinoline, represent a privileged scaffold for the design of potential leishmanicidal candidates due not only to their versatility to generate highly active and selective compounds but also to their correlation with well-defined biological targets. These facts make it possible to generate safe leishmanicidal agents targeted at key aspects of parasite survival. The current review summarizes the most current examples of leishmanicidal agents based on 4-aminoquinolines focusing the analysis on two essential aspects: (i) structure-property relationship to identify the key pharmacophores and (ii) mode of action focused on key targets in parasite survival (e.g., depolarization of potential mitochondrial, accumulation into macrophage lysosome, and immunostimulation of host cells). With that information, we seek to give useful guidelines for interested researchers to face the drug discovery and development process for selective and potent leishmanicidal agents based on 4-aminoquinolines.
Collapse
Affiliation(s)
- Angel H. Romero
- Grupo de Química Orgánica Medicinal, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | | |
Collapse
|
4
|
Zou X, Wen S, Xu L, Gao L, Wang X, Hu X, Han J, Han S. Signal-Sustained Imaging of Mitophagy with an Enzyme-Activatable Metabolic Lipid Labeling Probe. Autophagy 2024; 20:2556-2570. [PMID: 38873937 PMCID: PMC11572071 DOI: 10.1080/15548627.2024.2367192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/28/2024] [Accepted: 06/08/2024] [Indexed: 06/15/2024] Open
Abstract
Imaging of mitophagy is of significance as aberrant mitophagy is engaged in multiple diseases. Mitophagy has been imaged with synthetic or biotic pH sensors by reporting pH acidification en route delivery into lysosomes. To circumvent uncertainty of acidity-dependent signals, we herein report an enzyme-activatable probe covalently attached on mitochondrial inner membrane (ECAM) for signal-persist mitophagy imaging. ECAM is operated via ΔΨm-driven accumulation of Mito-proGreen in mitochondria and covalent linking of the trapped probe with azidophospholipids metabolically incorporated into the mitochondrial inner membrane. Upon mitophagy, ECAM is delivered into lysosomes and hydrolyzed by LNPEP/leucyl aminopeptidase, yielding turn-on green fluorescence that is immune to lysosomal acidity changes and stably retained in fixed cells. With ECAM, phorbol-12-myristate-13-acetate (PMA) was identified as a highly potent inducer of mitophagy. Overcoming signal susceptibility of pH probes and liability of ΔΨm probes to dissipation from stressed mitochondria, ECAM offers an attractive tool to study mitophagy and mitophagy-inducing therapeutic agents.Abbreviations: Baf-A1, bafilomycin A1; CCCP, carbonyl cyanide m-chlorophenylhydrazone; DBCO, dibenzocyclooctyne; ECAM, enzyme-activated probe covalently attached on mitochondrial inner membrane; GFP, green fluorescent protein; LAMP2, lysosomal associated membrane protein 2; LNPEP/LAP, leucyl and cystinyl aminopeptidase; PMA, phorbol-12-myristate-13-acetate; ΔΨm, mitochondrial transmembrane potential; RFP, red fluorescent protein; TPP, triphenylphosphonium.
Collapse
Affiliation(s)
- Xiaoxue Zou
- The Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory for Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian Province, China
| | - Shixiong Wen
- State key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, China
| | - Lichun Xu
- The Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory for Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian Province, China
| | - Lei Gao
- The Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory for Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian Province, China
| | - Xunxiang Wang
- The Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory for Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian Province, China
| | - Xiao Hu
- The Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory for Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian Province, China
| | - Jiahuai Han
- State key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, China
| | - Shoufa Han
- The Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory for Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian Province, China
- Academician Workstation of Immune Cell Signal Transduction, School of Basic Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
5
|
Merlin JPJ, Crous A, Abrahamse H. Combining Photodynamic Therapy and Targeted Drug Delivery Systems: Enhancing Mitochondrial Toxicity for Improved Cancer Outcomes. Int J Mol Sci 2024; 25:10796. [PMID: 39409125 PMCID: PMC11477455 DOI: 10.3390/ijms251910796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 10/20/2024] Open
Abstract
Cancer treatment continues to be a substantial problem due to tumor complexities and persistence, demanding novel therapeutic techniques. This review investigates the synergistic potential of combining photodynamic therapy (PDT) and tailored medication delivery technologies to increase mitochondrial toxicity and improve cancer outcomes. PDT induces selective cellular damage and death by activating photosensitizers (PS) with certain wavelengths of light. However, PDT's efficacy can be hampered by issues such as poor light penetration and a lack of selectivity. To overcome these challenges, targeted drug delivery systems have emerged as a promising technique for precisely delivering therapeutic medicines to tumor cells while avoiding off-target effects. We investigate how these technologies can improve mitochondrial targeting and damage, which is critical for causing cancer cell death. The combination method seeks to capitalize on the advantages of both modalities: selective PDT activation and specific targeted drug delivery. We review current preclinical and clinical evidence supporting the efficacy of this combination therapy, focusing on case studies and experimental models. This review also addresses issues such as safety, distribution efficiency, resistance mechanisms, and costs. The prospects of further research include advances in photodynamic agents and medication delivery technology, with a focus on personalized treatment. In conclusion, combining PDT with targeted drug delivery systems provides a promising frontier in cancer therapy, with the ability to overcome current treatment limits and open the way for more effective, personalized cancer treatments.
Collapse
Affiliation(s)
- J. P. Jose Merlin
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, P.O. Box 17011, Johannesburg 2028, South Africa; (A.C.); (H.A.)
| | | | | |
Collapse
|
6
|
Shim G, Youn YS. Precise subcellular targeting approaches for organelle-related disorders. Adv Drug Deliv Rev 2024; 212:115411. [PMID: 39032657 DOI: 10.1016/j.addr.2024.115411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/14/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
Pharmacological research has expanded to the nanoscale level with advanced imaging technologies, enabling the analysis of drug distribution at the cellular organelle level. These advances in research techniques have contributed to the targeting of cellular organelles to address the fundamental causes of diseases. Beyond navigating the hurdles of reaching lesion tissues upon administration and identifying target cells within these tissues, controlling drug accumulation at the organelle level is the most refined method of disease management. This approach opens new avenues for the development of more potent therapeutic strategies by delving into the intricate roles and interplay of cellular organelles. Thus, organelle-targeted approaches help overcome the limitations of conventional therapies by precisely regulating functionally compartmentalized spaces based on their environment. This review discusses the basic concepts of organelle targeting research and proposes strategies to target diseases arising from organelle dysfunction. We also address the current challenges faced by organelle targeting and explore future research directions.
Collapse
Affiliation(s)
- Gayong Shim
- School of Systems Biomedical Science and Integrative Institute of Basic Sciences, Soongsil University, Seoul 06978, Republic of Korea
| | - Yu Seok Youn
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea.
| |
Collapse
|
7
|
Cabello MC, Chen G, Melville MJ, Osman R, Kumar GD, Domaille DW, Lippert AR. Ex Tenebris Lux: Illuminating Reactive Oxygen and Nitrogen Species with Small Molecule Probes. Chem Rev 2024; 124:9225-9375. [PMID: 39137397 DOI: 10.1021/acs.chemrev.3c00892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Reactive oxygen and nitrogen species are small reactive molecules derived from elements in the air─oxygen and nitrogen. They are produced in biological systems to mediate fundamental aspects of cellular signaling but must be very tightly balanced to prevent indiscriminate damage to biological molecules. Small molecule probes can transmute the specific nature of each reactive oxygen and nitrogen species into an observable luminescent signal (or even an acoustic wave) to offer sensitive and selective imaging in living cells and whole animals. This review focuses specifically on small molecule probes for superoxide, hydrogen peroxide, hypochlorite, nitric oxide, and peroxynitrite that provide a luminescent or photoacoustic signal. Important background information on general photophysical phenomena, common probe designs, mechanisms, and imaging modalities will be provided, and then, probes for each analyte will be thoroughly evaluated. A discussion of the successes of the field will be presented, followed by recommendations for improvement and a future outlook of emerging trends. Our objectives are to provide an informative, useful, and thorough field guide to small molecule probes for reactive oxygen and nitrogen species as well as important context to compare the ecosystem of chemistries and molecular scaffolds that has manifested within the field.
Collapse
Affiliation(s)
- Maidileyvis C Cabello
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Gen Chen
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Michael J Melville
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Rokia Osman
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - G Dinesh Kumar
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Dylan W Domaille
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Alexander R Lippert
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| |
Collapse
|
8
|
Wang X, Yang Y, Zhao S, Wu D, Li L, Zhao Z. Chitosan-based biomaterial delivery strategies for hepatocellular carcinoma. Front Pharmacol 2024; 15:1446030. [PMID: 39161903 PMCID: PMC11330802 DOI: 10.3389/fphar.2024.1446030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 07/23/2024] [Indexed: 08/21/2024] Open
Abstract
Background Hepatocellular carcinoma accounts for 80% of primary liver cancers, is the most common primary liver malignancy. Hepatocellular carcinoma is the third leading cause of tumor-related deaths worldwide, with a 5-year survival rate of approximately 18%. Chemotherapy, although commonly used for hepatocellular carcinoma treatment, is limited by systemic toxicity and drug resistance. Improving targeted delivery of chemotherapy drugs to tumor cells without causing systemic side effects is a current research focus. Chitosan, a biopolymer derived from chitin, possesses good biocompatibility and biodegradability, making it suitable for drug delivery. Enhanced chitosan formulations retain the anti-tumor properties while improving stability. Chitosan-based biomaterials promote hepatocellular carcinoma apoptosis, exhibit antioxidant and anti-inflammatory effects, inhibit tumor angiogenesis, and improve extracellular matrix remodeling for enhanced anti-tumor therapy. Methods We summarized published experimental papers by querying them. Results and Conclusions This review discusses the physicochemical properties of chitosan, its application in hepatocellular carcinoma treatment, and the challenges faced by chitosan-based biomaterials.
Collapse
Affiliation(s)
- Xianling Wang
- Department of Gastroenterology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Yan Yang
- Department of Gastroenterology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Shuang Zhao
- Endoscopy Center, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Di Wu
- First Digestive Endoscopy Department, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Le Li
- Department of Gastroenterology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhifeng Zhao
- Department of Gastroenterology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
9
|
Ogurlu B, Hamelink TL, Van Tricht IM, Leuvenink HGD, De Borst MH, Moers C, Pool MBF. Utilizing pathophysiological concepts of ischemia-reperfusion injury to design renoprotective strategies and therapeutic interventions for normothermic ex vivo kidney perfusion. Am J Transplant 2024; 24:1110-1126. [PMID: 38184242 DOI: 10.1016/j.ajt.2024.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/13/2023] [Accepted: 01/01/2024] [Indexed: 01/08/2024]
Abstract
Normothermic machine perfusion (NMP) has emerged as a promising tool for the preservation, viability assessment, and repair of deceased-donor kidneys prior to transplantation. These kidneys inevitably experience a period of ischemia during donation, which leads to ischemia-reperfusion injury when NMP is subsequently commenced. Ischemia-reperfusion injury has a major impact on the renal vasculature, metabolism, oxygenation, electrolyte balance, and acid-base homeostasis. With an increased understanding of the underlying pathophysiological mechanisms, renoprotective strategies and therapeutic interventions can be devised to minimize additional injury during normothermic reperfusion, ensure the safe implementation of NMP, and improve kidney quality. This review discusses the pathophysiological alterations in the vasculature, metabolism, oxygenation, electrolyte balance, and acid-base homeostasis of deceased-donor kidneys and delineates renoprotective strategies and therapeutic interventions to mitigate renal injury and improve kidney quality during NMP.
Collapse
Affiliation(s)
- Baran Ogurlu
- Department of Surgery - Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| | - Tim L Hamelink
- Department of Surgery - Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Isa M Van Tricht
- Department of Surgery - Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Henri G D Leuvenink
- Department of Surgery - Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Martin H De Borst
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Cyril Moers
- Department of Surgery - Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Merel B F Pool
- Department of Surgery - Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
10
|
Wang S, Liu J, Zhou L, Xu H, Zhang D, Zhang X, Wang Q, Zhou Q. Research progresses on mitochondrial-targeted biomaterials for bone defect repair. Regen Biomater 2024; 11:rbae082. [PMID: 39055307 PMCID: PMC11272180 DOI: 10.1093/rb/rbae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/23/2024] [Accepted: 06/15/2024] [Indexed: 07/27/2024] Open
Abstract
In recent years, the regulation of the cell microenvironment has opened up new avenues for bone defect repair. Researchers have developed novel biomaterials to influence the behavior of osteoblasts and immune cells by regulating the microenvironment, aiming to achieve efficient bone repair. Mitochondria, as crucial organelles involved in energy conversion, biosynthesis and signal transduction, play a vital role in maintaining bone integrity. Dysfunction of mitochondria can have detrimental effects on the transformation of the immune microenvironment and the differentiation of stem cells, thereby hindering bone tissue regeneration. Consequently, targeted therapy strategies focusing on mitochondria have emerged. This approach offers a wide range of applications and reliable therapeutic effects, thereby providing a new treatment option for complex and refractory bone defect diseases. In recent studies, more biomaterials have been used to restore mitochondrial function and promote positive cell differentiation. The main directions are mitochondrial energy metabolism, mitochondrial biogenesis and mitochondrial quality control. In this review, we investigated the biomaterials used for mitochondria-targeted treatment of bone defect repair in recent years from the perspective of progress and strategies. We also summarized the micro-molecular mechanisms affected by them. Through discussions on energy metabolism, oxidative stress regulation and autophagy regulation, we emphasized the opportunities and challenges faced by mitochondria-targeted biomaterials, providing vital clues for developing a new generation of bone repair materials.
Collapse
Affiliation(s)
- Shuze Wang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
| | - Jialin Liu
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
| | - Linxi Zhou
- Department of Orthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- National Center for Stomatology, Shanghai 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Hao Xu
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
| | - Dan Zhang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
| | - Xing Zhang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Qiang Wang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
| | - Qing Zhou
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
| |
Collapse
|
11
|
Marco A, Ashoo P, Hernández-García S, Martínez-Rodríguez P, Cutillas N, Vollrath A, Jordan D, Janiak C, Gandía-Herrero F, Ruiz J. Novel Re(I) Complexes as Potential Selective Theranostic Agents in Cancer Cells and In Vivo in Caenorhabditis elegans Tumoral Strains. J Med Chem 2024; 67:7891-7910. [PMID: 38451016 PMCID: PMC11129195 DOI: 10.1021/acs.jmedchem.3c01869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/08/2024]
Abstract
A series of rhenium(I) complexes of the type fac-[Re(CO)3(N^N)L]0/+, Re1-Re9, was synthesized, where N^N = benzimidazole-derived bidentate ligand with an ester functionality and L = chloride or pyridine-type ligand. The new compounds demonstrated potent activity toward ovarian A2780 cancer cells. The most active complexes, Re7-Re9, incorporating 4-NMe2py, exhibited remarkable activity in 3D HeLa spheroids. The emission in the red region of Re9, which contains an electron-deficient benzothiazole moiety, allowed its operability as a bioimaging tool for in vitro and in vivo visualization. Re9 effectivity was tested in two different C. elegans tumoral strains, JK1466 and MT2124, to broaden the oncogenic pathways studied. The results showed that Re9 was able to reduce the tumor growth in both strains by increasing the ROS production inside the cells. Moreover, the selectivity of the compound toward cancerous cells was remarkable as it did not affect neither the development nor the progeny of the nematodes.
Collapse
Affiliation(s)
- Alicia Marco
- Departamento
de Química Inorgánica, Universidad
de Murcia, and Institute for Bio-Health Research of Murcia (IMIB-Arrixaca), E-30100 Murcia, Spain
| | - Pezhman Ashoo
- Departamento
de Química Inorgánica, Universidad
de Murcia, and Institute for Bio-Health Research of Murcia (IMIB-Arrixaca), E-30100 Murcia, Spain
| | - Samanta Hernández-García
- Departamento
de Bioquímica y Biología Molecular A. Unidad Docente
de Biología, Facultad de Veterinaria, Universidad de Murcia, E-30100 Murcia, Spain
| | - Pedro Martínez-Rodríguez
- Departamento
de Bioquímica y Biología Molecular A. Unidad Docente
de Biología, Facultad de Veterinaria, Universidad de Murcia, E-30100 Murcia, Spain
| | - Natalia Cutillas
- Departamento
de Química Inorgánica, Universidad
de Murcia, and Institute for Bio-Health Research of Murcia (IMIB-Arrixaca), E-30100 Murcia, Spain
| | - Annette Vollrath
- Institut
für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | - Dustin Jordan
- Institut
für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | - Christoph Janiak
- Institut
für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | - Fernando Gandía-Herrero
- Departamento
de Bioquímica y Biología Molecular A. Unidad Docente
de Biología, Facultad de Veterinaria, Universidad de Murcia, E-30100 Murcia, Spain
| | - José Ruiz
- Departamento
de Química Inorgánica, Universidad
de Murcia, and Institute for Bio-Health Research of Murcia (IMIB-Arrixaca), E-30100 Murcia, Spain
| |
Collapse
|
12
|
Guiraud M, Ali LMA, Gabrieli-Magot E, Lichon L, Daurat M, Egron D, Gary-Bobo M, Peyrottes S. Probing the Use of Triphenyl Phosphonium Cation for Mitochondrial Nucleoside Delivery. ACS Med Chem Lett 2024; 15:418-422. [PMID: 38505859 PMCID: PMC10945795 DOI: 10.1021/acsmedchemlett.3c00568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/09/2024] [Accepted: 02/09/2024] [Indexed: 03/21/2024] Open
Abstract
Herein, we report the design, the synthesis, and the study of novel triphenyl phosphonium-based nucleoside conjugates. 2'-Deoxycytidine was chosen as nucleosidic cargo, as it allows the introduction of fluorescein on the exocyclic amine of the nucleobase and grafting of the vector was envisaged through the formation of a biolabile ester bond with the hydroxyl function at the 5'-position. Compound 3 was identified as a potential nucleoside prodrug, showing ability to be internalized efficiently into cells and to be co-localized with mitochondria.
Collapse
Affiliation(s)
- Mathis Guiraud
- Team
Nucleosides & Phosphorylated Effectors, IBMM, Pole Balard Recherche, University of Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | - Lamiaa M. A. Ali
- Team
Glyco & Nanovectors for Therapeutic Targeting, IBMM, Pole Balard
Recherche, University of Montpellier, CNRS,
ENSCM, 34293 Montpellier, France
- Department
of Biochemistry, Medical Research Institute, University of Alexandria, Alexandria 21561, Egypt
| | - Emma Gabrieli-Magot
- Team
Glyco & Nanovectors for Therapeutic Targeting, IBMM, Pole Balard
Recherche, University of Montpellier, CNRS,
ENSCM, 34293 Montpellier, France
| | - Laure Lichon
- Team
Glyco & Nanovectors for Therapeutic Targeting, IBMM, Pole Balard
Recherche, University of Montpellier, CNRS,
ENSCM, 34293 Montpellier, France
| | | | - David Egron
- Team
Nucleosides & Phosphorylated Effectors, IBMM, Pole Balard Recherche, University of Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | - Magali Gary-Bobo
- Team
Glyco & Nanovectors for Therapeutic Targeting, IBMM, Pole Balard
Recherche, University of Montpellier, CNRS,
ENSCM, 34293 Montpellier, France
| | - Suzanne Peyrottes
- Team
Nucleosides & Phosphorylated Effectors, IBMM, Pole Balard Recherche, University of Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| |
Collapse
|
13
|
Fielder EP, Ishaq A, Low E, Laws JA, Calista A, Castle J, von Zglinicki T, Miwa S. Mild Uncoupling of Mitochondria Synergistically Enhances Senolytic Specificity and Sensitivity of BH3 Mimetics. AGING BIOLOGY 2024; 1:20240022. [PMID: 40201599 PMCID: PMC7617571 DOI: 10.59368/agingbio.20240022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Despite immense potential as anti-aging interventions, applications of current senolytics are limited due to low sensitivity and specificity. We demonstrate the specific loss of complex I-linked coupled respiration and the inability to maintain mitochondrial membrane potential upon respiratory stimulation as a specific vulnerability of senescent cells. Further decreasing the mitochondrial membrane potential of senescent cells with a mitochondrial uncoupler synergistically enhances the in vitro senolytic efficacy of BH3 mimetic drugs, including Navitoclax, by up to two orders of magnitude, whereas non-senescent cells remain unaffected. Moreover, a short-term intervention combining the mitochondrial uncoupler BAM15 with Navitoclax at a dose two orders of magnitude lower than typically used rescues radiation-induced premature aging in an in vivo mouse model, as demonstrated by reduced frailty and improved cognitive function for at least eight months. Our study shows compromised mitochondrial functional capacity is a senescence-specific vulnerability that can be targeted by mild uncoupling in vitro and in vivo.
Collapse
Affiliation(s)
- Edward P. Fielder
- Newcastle University Biosciences Institute, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Abbas Ishaq
- Newcastle University Biosciences Institute, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Evon Low
- Newcastle University Biosciences Institute, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Joseph A. Laws
- Newcastle University Biosciences Institute, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Aisha Calista
- Newcastle University Biosciences Institute, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jemma Castle
- Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Thomas von Zglinicki
- Newcastle University Biosciences Institute, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Satomi Miwa
- Newcastle University Biosciences Institute, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
14
|
Singh D. A sojourn on mitochondria targeted drug delivery systems for cancer: Strategies, clinical and future prospects. Mitochondrion 2024; 74:101826. [PMID: 38092248 DOI: 10.1016/j.mito.2023.101826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/07/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
Mitochondria, often referred to as the powerhouses of the cell, have emerged as promising targets for cancer therapy due to their pivotal roles in cell survival, apoptosis, and energy metabolism. This sojourn emphasizes the significance of mitochondria-targeted drug delivery systems in cancer therapeutics. The unique characteristics of cancer cell mitochondria, such as altered membrane potential and distinct lipid composition, offer an avenue for selective drug targeting. Several strategies have been explored to exploit these features, including the use of lipophilic cations, mitochondria-penetrating peptides, and nanocarriers tailored for mitochondrial delivery. Mitochondria-targeted drug delivery systems have demonstrated enhanced therapeutic efficacy and reduced systemic toxicity in preclinical models. Some of these systems have made a successful transition to clinical trials, illustrating their potential in real-world oncology settings. However, there remain challenges like intracellular barriers, potential off-target effects, and the complexity of tumor heterogeneity that must be addressed to fully harness the potential of mitochondria-targeted drug delivery systems. As research progresses, it is anticipated that innovative approaches and technologies will be developed to improve the specificity and efficacy of mitochondrial targeting, paving the way for more effective and safer cancer treatments in the future. This review serves as a comprehensive guide to the current state of mitochondria-targeted drug delivery systems for cancer, highlighting key strategies, clinical progress, and prospective avenues for future research.
Collapse
Affiliation(s)
- Dilpreet Singh
- University Institute of Pharmaceutical Sciences, Chandigarh University, Mohali, India.
| |
Collapse
|
15
|
Li C, Zhao X, Yin F, Bi H, Wang Y, Xie P. Structural changes in DNA by binding mitochondrion-targeted monofunctional platinum(II) complexes using molecular dynamics simulation study. J Inorg Biochem 2023; 250:112419. [PMID: 39492371 DOI: 10.1016/j.jinorgbio.2023.112419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/12/2023] [Accepted: 10/21/2023] [Indexed: 11/05/2024]
Abstract
Triphenylphosphonium (Ph3P+, TPP) is a highly effective mitochondrial targeting group, an example of using which on mitochondrion-targeted monofunctional platinum(II) agent as anticancer drug was OPT, with the -CH2Ph3P+ group at ortho position of the pyriplatin pyridine ring. To study how carrier ligands might affect the efficacy of OPT, we constructed two platinum(II) agents with bulky bidentate ligands based on OPT. DNA structural changes caused by these three platinum(II) agents using molecular dynamics simulations were analysed. Data regarding DNA conformational changes including helical parameter, base stacking, average structure, and principal component analyses has been obtained. We found that TPP-based monofunctional platinum(II) complexes with bulky carrier ligands may induce more significant DNA conformational changes. These results are beneficial for developing highly efficient mitochondrion-targeted platinum anticancer drugs with carrier ligands of different steric hindrance.
Collapse
Affiliation(s)
- Chaoqun Li
- Hebei Key Laboratory of Heterocyclic Compounds, College of Chemistry, Chemical Engineering and Materials, Handan University, Handan, 056005, Hebei province, China.
| | - Xiaojia Zhao
- Hebei Key Laboratory of Heterocyclic Compounds, College of Chemistry, Chemical Engineering and Materials, Handan University, Handan, 056005, Hebei province, China.
| | - Fangqian Yin
- Hebei Key Laboratory of Heterocyclic Compounds, College of Chemistry, Chemical Engineering and Materials, Handan University, Handan, 056005, Hebei province, China
| | - Huimin Bi
- Hebei Key Laboratory of Heterocyclic Compounds, College of Chemistry, Chemical Engineering and Materials, Handan University, Handan, 056005, Hebei province, China
| | - Yan Wang
- College of Chemistry, Beijing Normal University, 19# Xinjiekouwai Street, Beijing 100875, China
| | - Pengtao Xie
- Hebei Key Laboratory of Heterocyclic Compounds, College of Chemistry, Chemical Engineering and Materials, Handan University, Handan, 056005, Hebei province, China
| |
Collapse
|
16
|
Prag HA, Murphy MP, Krieg T. Preventing mitochondrial reverse electron transport as a strategy for cardioprotection. Basic Res Cardiol 2023; 118:34. [PMID: 37639068 PMCID: PMC10462584 DOI: 10.1007/s00395-023-01002-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/04/2023] [Accepted: 08/06/2023] [Indexed: 08/29/2023]
Abstract
In the context of myocardial infarction, the burst of superoxide generated by reverse electron transport (RET) at complex I in mitochondria is a crucial trigger for damage during ischaemia/reperfusion (I/R) injury. Here we outline the necessary conditions for superoxide production by RET at complex I and how it can occur during reperfusion. In addition, we explore various pathways that are implicated in generating the conditions for RET to occur and suggest potential therapeutic strategies to target RET, aiming to achieve cardioprotection.
Collapse
Affiliation(s)
- Hiran A Prag
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK.
| | - Michael P Murphy
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK.
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, UK.
| | - Thomas Krieg
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
17
|
Darabedian N, Ji W, Fan M, Lin S, Seo HS, Vinogradova EV, Yaron TM, Mills EL, Xiao H, Senkane K, Huntsman EM, Johnson JL, Che J, Cantley LC, Cravatt BF, Dhe-Paganon S, Stegmaier K, Zhang T, Gray NS, Chouchani ET. Depletion of creatine phosphagen energetics with a covalent creatine kinase inhibitor. Nat Chem Biol 2023; 19:815-824. [PMID: 36823351 PMCID: PMC10330000 DOI: 10.1038/s41589-023-01273-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 01/30/2023] [Indexed: 02/25/2023]
Abstract
Creatine kinases (CKs) provide local ATP production in periods of elevated energetic demand, such as during rapid anabolism and growth. Thus, creatine energetics has emerged as a major metabolic liability in many rapidly proliferating cancers. Whether CKs can be targeted therapeutically is unknown because no potent or selective CK inhibitors have been developed. Here we leverage an active site cysteine present in all CK isoforms to develop a selective covalent inhibitor of creatine phosphagen energetics, CKi. Using deep chemoproteomics, we discover that CKi selectively engages the active site cysteine of CKs in cells. A co-crystal structure of CKi with creatine kinase B indicates active site inhibition that prevents bidirectional phosphotransfer. In cells, CKi and its analogs rapidly and selectively deplete creatine phosphate, and drive toxicity selectively in CK-dependent acute myeloid leukemia. Finally, we use CKi to uncover an essential role for CKs in the regulation of proinflammatory cytokine production in macrophages.
Collapse
Affiliation(s)
- Narek Darabedian
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Wenzhi Ji
- Department of Chemical and Systems Biology, CHEM-H and SCI, Stanford Medical School, Stanford University, Stanford, CA, USA
| | - Mengyang Fan
- Department of Chemical and Systems Biology, CHEM-H and SCI, Stanford Medical School, Stanford University, Stanford, CA, USA
| | - Shan Lin
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Hyuk-Soo Seo
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Ekaterina V Vinogradova
- Laboratory of Chemical Immunology and Proteomics, The Rockefeller University, New York, NY, USA
| | - Tomer M Yaron
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Evanna L Mills
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Haopeng Xiao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Kristine Senkane
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Emily M Huntsman
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Jared L Johnson
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Jianwei Che
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Lewis C Cantley
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Benjamin F Cravatt
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Sirano Dhe-Paganon
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Kimberly Stegmaier
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Tinghu Zhang
- Department of Chemical and Systems Biology, CHEM-H and SCI, Stanford Medical School, Stanford University, Stanford, CA, USA
| | - Nathanael S Gray
- Department of Chemical and Systems Biology, CHEM-H and SCI, Stanford Medical School, Stanford University, Stanford, CA, USA.
| | - Edward T Chouchani
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
18
|
Lee WE, Genetzakis E, Figtree GA. Novel Strategies in the Early Detection and Treatment of Endothelial Cell-Specific Mitochondrial Dysfunction in Coronary Artery Disease. Antioxidants (Basel) 2023; 12:1359. [PMID: 37507899 PMCID: PMC10376062 DOI: 10.3390/antiox12071359] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Although elevated cholesterol and other recognised cardiovascular risk factors are important in the development of coronary artery disease (CAD) and heart attack, the susceptibility of humans to this fatal process is distinct from other animals. Mitochondrial dysfunction of cells in the arterial wall, particularly the endothelium, has been strongly implicated in the pathogenesis of CAD. In this manuscript, we review the established evidence and mechanisms in detail and explore the potential opportunities arising from analysing mitochondrial function in patient-derived cells such as endothelial colony-forming cells easily cultured from venous blood. We discuss how emerging technology and knowledge may allow us to measure mitochondrial dysfunction as a potential biomarker for diagnosis and risk management. We also discuss the "pros and cons" of animal models of atherosclerosis, and how patient-derived cell models may provide opportunities to develop novel therapies relevant for humans. Finally, we review several targets that potentially alleviate mitochondrial dysfunction working both via direct and indirect mechanisms and evaluate the effect of several classes of compounds in the cardiovascular context.
Collapse
Affiliation(s)
- Weiqian E. Lee
- Kolling Institute, University of Sydney, Sydney, NSW 2006, Australia; (W.E.L.); (E.G.)
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Elijah Genetzakis
- Kolling Institute, University of Sydney, Sydney, NSW 2006, Australia; (W.E.L.); (E.G.)
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Gemma A. Figtree
- Kolling Institute, University of Sydney, Sydney, NSW 2006, Australia; (W.E.L.); (E.G.)
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
- Department of Cardiology, Royal North Shore Hospital, Northern Sydney Local Health District, Sydney, NSW 2065, Australia
| |
Collapse
|
19
|
Uno S, Harkiss AH, Chowdhury R, Caldwell ST, Prime TA, James AM, Gallagher B, Prudent J, Hartley RC, Murphy MP. Incorporating a Polyethyleneglycol Linker to Enhance the Hydrophilicity of Mitochondria-Targeted Triphenylphosphonium Constructs. Chembiochem 2023; 24:e202200774. [PMID: 36917207 PMCID: PMC10946768 DOI: 10.1002/cbic.202200774] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/22/2023] [Accepted: 03/14/2023] [Indexed: 03/15/2023]
Abstract
The targeting of bioactive molecules and probes to mitochondria can be achieved by coupling to the lipophilic triphenyl phosphonium (TPP) cation, which accumulates several hundred-fold within mitochondria in response to the mitochondrial membrane potential (Δψm ). Typically, a simple alkane links the TPP to its "cargo", increasing overall hydrophobicity. As it would be beneficial to enhance the water solubility of mitochondria-targeted compounds we explored the effects of replacing the alkyl linker with a polyethylene glycol (PEG). We found that the use of PEG led to compounds that were readily taken up by isolated mitochondria and by mitochondria inside cells. Within mitochondria the PEG linker greatly decreased adsorption of the TPP constructs to the matrix-facing face of the mitochondrial inner membrane. These findings will allow the distribution of mitochondria-targeted TPP compounds within mitochondria to be fine-tuned.
Collapse
Affiliation(s)
- Shinpei Uno
- MRC Mitochondrial Biology UnitUniversity of CambridgeCambridgeCB2 0XYUK
| | | | - Roy Chowdhury
- MRC Mitochondrial Biology UnitUniversity of CambridgeCambridgeCB2 0XYUK
| | | | - Tracy A. Prime
- MRC Mitochondrial Biology UnitUniversity of CambridgeCambridgeCB2 0XYUK
| | - Andrew M. James
- MRC Mitochondrial Biology UnitUniversity of CambridgeCambridgeCB2 0XYUK
| | | | - Julien Prudent
- MRC Mitochondrial Biology UnitUniversity of CambridgeCambridgeCB2 0XYUK
| | | | - Michael P. Murphy
- MRC Mitochondrial Biology UnitUniversity of CambridgeCambridgeCB2 0XYUK
- Department of MedicineUniversity of CambridgeCambridgeCB2 0QQUK
| |
Collapse
|
20
|
Phanindhar K, Mishra RK. Auxin-inducible degron system: an efficient protein degradation tool to study protein function. Biotechniques 2023; 74:186-198. [PMID: 37191015 DOI: 10.2144/btn-2022-0108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
Targeted protein degradation, with its rapid protein depletion kinetics, allows the measurement of acute changes in the cell. The auxin-inducible degron (AID) system, rapidly degrades AID-tagged proteins only in the presence of auxin. The AID system being inducible makes the study of essential genes and dynamic processes like cell differentiation, cell cycle and genome organization feasible. The AID degradation system has been adapted to yeast, protozoans, C. elegans, Drosophila, zebrafish, mouse and mammalian cell lines. Using the AID system, researchers have unveiled novel functions for essential proteins at developmental stages that were previously difficult to investigate due to early lethality. This comprehensive review discusses the development, advancements, applications and drawbacks of the AID system and compares it with other available protein degradation systems.
Collapse
Affiliation(s)
- Kundurthi Phanindhar
- CSIR-Centre for Cellular & Molecular Biology (CCMB), Uppal Road, Hyderabad, 500007, India
| | - Rakesh K Mishra
- CSIR-Centre for Cellular & Molecular Biology (CCMB), Uppal Road, Hyderabad, 500007, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
- Tata Institute for Genetics & Society (TIGS), Bangalore, 560065, India
| |
Collapse
|
21
|
Abstract
Mitochondria are involved in multiple cellular tasks, such as ATP synthesis, metabolism, metabolite and ion transport, regulation of apoptosis, inflammation, signaling, and inheritance of mitochondrial DNA. The majority of the correct functioning of mitochondria is based on the large electrochemical proton gradient, whose component, the inner mitochondrial membrane potential, is strictly controlled by ion transport through mitochondrial membranes. Consequently, mitochondrial function is critically dependent on ion homeostasis, the disturbance of which leads to abnormal cell functions. Therefore, the discovery of mitochondrial ion channels influencing ion permeability through the membrane has defined a new dimension of the function of ion channels in different cell types, mainly linked to the important tasks that mitochondrial ion channels perform in cell life and death. This review summarizes studies on animal mitochondrial ion channels with special focus on their biophysical properties, molecular identity, and regulation. Additionally, the potential of mitochondrial ion channels as therapeutic targets for several diseases is briefly discussed.
Collapse
Affiliation(s)
- Ildiko Szabo
- Department of Biology, University of Padova, Italy;
| | - Adam Szewczyk
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland;
| |
Collapse
|
22
|
Wang Y, Wang P, Li C. Fluorescence microscopic platforms imaging mitochondrial abnormalities in neurodegenerative diseases. Adv Drug Deliv Rev 2023; 197:114841. [PMID: 37088402 DOI: 10.1016/j.addr.2023.114841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/10/2023] [Accepted: 04/18/2023] [Indexed: 04/25/2023]
Abstract
Neurodegenerative diseases (NDs) are progressive disorders that cause the degeneration of neurons. Mitochondrial dysfunction is a common symptom in NDs and plays a crucial role in neuronal loss. Mitochondrial abnormalities can be observed in the early stages of NDs and evolve throughout disease progression. Visualizing mitochondrial abnormalities can help understand ND progression and develop new therapeutic strategies. Fluorescence microscopy is a powerful tool for dynamically imaging mitochondria due to its high sensitivity and spatiotemporal resolution. This review discusses the relationship between mitochondrial dysfunction and ND progression, potential biomarkers for imaging dysfunctional mitochondria, advances in fluorescence microscopy for detecting organelles, the performance of fluorescence probes in visualizing ND-associated mitochondria, and the challenges and opportunities for developing new generations of fluorescence imaging platforms for monitoring mitochondria in NDs.
Collapse
Affiliation(s)
- Yicheng Wang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy; Zhongshan Hospital, Fudan University, Shanghai, China
| | - Pengwei Wang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy; Zhongshan Hospital, Fudan University, Shanghai, China
| | - Cong Li
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy; Zhongshan Hospital, Fudan University, Shanghai, China; State Key Laboratory of Medical Neurobiology, Fudan University Shanghai 201203, China.
| |
Collapse
|
23
|
Liu X, Cao S, Gao Y, Luo S, Zhu Y, Wang L. Subcellular localization of DNA nanodevices and their applications. Chem Commun (Camb) 2023; 59:3957-3967. [PMID: 36883516 DOI: 10.1039/d2cc06017e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
The application of nanodevices based on DNA self-assembly in the field of cell biology has made significant progress in the past decade. In this study, the development of DNA nanotechnology is briefly reviewed. The subcellular localization of DNA nanodevices, and their new progress and applications in the fields of biological detection, subcellular and organ pathology, biological imaging, and other fields are reviewed. The future of subcellular localization and biological applications of DNA nanodevices is also discussed.
Collapse
Affiliation(s)
- Xia Liu
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuting Cao
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yue Gao
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shihua Luo
- Department of Traumatology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Ying Zhu
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China. .,The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lihua Wang
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China. .,The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
24
|
Rezaei A, Bahmani HR, Mafakheri S, Farshad A, Nazari P, Masoudi R. Protective effects of different doses of MitoQ separately and combined with trehalose on oxidative stress and sperm function of cryopreserved Markhoz goat semen. Cryobiology 2023; 110:36-43. [PMID: 36581061 DOI: 10.1016/j.cryobiol.2022.12.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/27/2022]
Abstract
The mitochondria-targeted antioxidant MitoQ has been regarded as an effective antioxidant agent against cryo-induced oxidative cellular damage. This study aimed to evaluate the use of different doses of MitoQ combined with trehalose to minimize mitochondrial impairment and oxidative stress during sperm cryopreservation of Markhoz goat. For this, semen samples (n = 50) were collected by electroejaculation every 5 days from 5 bucks in 10 replicates. On each collection day, 5 ejaculates (one ejaculate for each buck) were pooled and then diluted in eight different Tris-based extenders as follows: no additives (control), 20, 200, 2000 nM of MitoQ (MT20, MT200, MT 2000, respectively), 150 mM of trehalose (Tr), MT20+Tr, MT200+Tr, MT2000+Tr. The semen samples were frozen using a standard protocol, and sperm function and oxidative stress were evaluated after thawing. The semen extender supplemented with MT200+Tr had higher (P < 0.05) total and progressive motility, acrosome and membrane integrity, superoxide dismutase, glutathione peroxidase, total antioxidant capacity, and lower (P < 0.05) DNA fragmentation, malondialdehyde and intracellular hydrogen peroxide levels than the all other groups except MT200; meanwhile, MT200 was also improved (P < 0.05) in these parameters than in the control group. Furthermore, MT200 and MT200+Tr showed higher (P < 0.05) percentages of live cryopreserved sperm with high mitochondrial activity than other groups. However, abnormality percentage and catalase activity of frozen-thawed sperm were not affected by treatments (P > 0.05). To conclude, we have found that supplementation of 200 nM MitoQ alone or in combination with 150 mM trehalose to semen extender improved the quality of cryopreserved sperm in goats, which is associated with enhanced antioxidant enzymatic defense and mitochondrial activity and reduced DNA fragmentation.
Collapse
Affiliation(s)
- Ako Rezaei
- Department of Animal Science, Kurdistan Agricultural and Natural Resources Research and Education Center, AREEO, Sanandaj, 6616936311, Iran; Department of Animal Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, 661715175, Iran.
| | - Hamid Reza Bahmani
- Department of Animal Science, Kurdistan Agricultural and Natural Resources Research and Education Center, AREEO, Sanandaj, 6616936311, Iran.
| | - Shiva Mafakheri
- Department of Animal Science, Kurdistan Agricultural and Natural Resources Research and Education Center, AREEO, Sanandaj, 6616936311, Iran.
| | - Abbas Farshad
- Department of Animal Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, 661715175, Iran.
| | - Parisa Nazari
- Department of Animal Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, 661715175, Iran.
| | - Reza Masoudi
- Animal Science Research Institute of Iran (ASRI), Agricultural Research Education and Extension Organization (AREEO), Karaj, 3146618361, Iran.
| |
Collapse
|
25
|
Chang H, Hu X, Tang X, Tian S, Li Y, Lv X, Shang L. A Mitochondria-Targeted Fluorescent Probe for Monitoring NADPH Overproduction during Influenza Virus Infection. ACS Sens 2023; 8:829-838. [PMID: 36689687 DOI: 10.1021/acssensors.2c02458] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Reduced nicotinamide adenine dinucleotide phosphate (NADPH) is an important cofactor in the progress of antioxidant synthesis and biosynthesis, and an abnormal NADPH level has been observed in many viral infection processes. However, efficient tools to monitor NADPH in living cells after viral infection have not been reported. In this work, we present a fluorescent probe, NAFP4, that could detect NADPH ex vivo with a low detection limit of 3.66 nM and image mitochondrial NADPH level changes in living cells. The probe exhibits excellent cell permeability, rapid reactivity, and high selectivity with minimal cytotoxicity. Using NAFP4, we reveal that the NADPH is overproduced in the host cells infected by influenza virus, which was caused by an elevated level of G6PDH during the virus infection. Moreover, there was positive association between the G6PDH level and virus replication. With the proposed probe NAFP4, our study highlights that the virus infection would influence the host metabolism in NADPH production and also suggests that G6PDH is expected to be a promising target for antiviral therapy.
Collapse
Affiliation(s)
- Hao Chang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China.,Drug Discovery Center for Infectious Disease, Nankai University, 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China
| | - Xiao Hu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China.,Drug Discovery Center for Infectious Disease, Nankai University, 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China
| | - Xiaomei Tang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China.,Drug Discovery Center for Infectious Disease, Nankai University, 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China
| | - Shiwei Tian
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China.,Drug Discovery Center for Infectious Disease, Nankai University, 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China
| | - Yidan Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China.,Drug Discovery Center for Infectious Disease, Nankai University, 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China
| | - Xing Lv
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China.,Drug Discovery Center for Infectious Disease, Nankai University, 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China
| | - Luqing Shang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China.,Drug Discovery Center for Infectious Disease, Nankai University, 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China
| |
Collapse
|
26
|
Benfeito S, Fernandes C, Chavarria D, Barreiro S, Cagide F, Sequeira L, Teixeira J, Silva R, Remião F, Oliveira PJ, Uriarte E, Borges F. Modulating Cytotoxicity with Lego-like Chemistry: Upgrading Mitochondriotropic Antioxidants with Prototypical Cationic Carrier Bricks. J Med Chem 2023; 66:1835-1851. [PMID: 36716281 DOI: 10.1021/acs.jmedchem.2c01630] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Although the lipophilic triphenylphosphonium (TPP+) cation is widely used to target antioxidants to mitochondria, TPP+-based derivatives have shown cytotoxicity in several biological in vitro models. We confirmed that Mito.TPP is cytotoxic to both human neuronal (SH-SY5Y) and hepatic (HepG2) cells, decreasing intracellular adenosine triphosphate (ATP) levels, leading to mitochondrial membrane depolarization and reduced mitochondrial mass after 24 h. We surpassed this concern using nitrogen-derived cationic carriers (Mito.PICO, Mito.ISOQ, and Mito.IMIDZ). As opposed to Mito.TPP, these novel compounds were not cytotoxic to SH-SY5Y and HepG2 cells up to 50 μM and after 24 h of incubation. All of the cationic derivatives accumulated inside the mitochondrial matrix and acted as neuroprotective agents against iron(III), hydrogen peroxide, and tert-butyl hydroperoxide insults. The overall data showed that nitrogen-based cationic carriers can modulate the biological performance of mitochondria-directed antioxidants and are an alternative to the TPP cation.
Collapse
Affiliation(s)
- Sofia Benfeito
- CIQUP-IMS─Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, R. Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Carlos Fernandes
- CIQUP-IMS─Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, R. Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Daniel Chavarria
- CIQUP-IMS─Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, R. Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Sandra Barreiro
- CIQUP-IMS─Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, R. Campo Alegre s/n, 4169-007 Porto, Portugal
- Associate Laboratory i4HB─Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
- UCIBIO─Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Fernando Cagide
- CIQUP-IMS─Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, R. Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Lisa Sequeira
- CIQUP-IMS─Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, R. Campo Alegre s/n, 4169-007 Porto, Portugal
| | - José Teixeira
- CNC─Center for Neuroscience and Cell Biology, CIBB─Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Renata Silva
- Associate Laboratory i4HB─Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
- UCIBIO─Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Fernando Remião
- Associate Laboratory i4HB─Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
- UCIBIO─Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Paulo J Oliveira
- CNC─Center for Neuroscience and Cell Biology, CIBB─Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Eugenio Uriarte
- Departamento Química Orgánica, Facultad de Farmacia, Universidad de Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, Spain
- Instituto de Ciencias Químicas Aplicadas, Universidad Autonoma de Chile, Av. Libertador Bernardo O'Higgins, 7500912 Santiago de Chile, Chile
| | - Fernanda Borges
- CIQUP-IMS─Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, R. Campo Alegre s/n, 4169-007 Porto, Portugal
| |
Collapse
|
27
|
Qian Y, Wang J, Bu W, Zhu X, Zhang P, Zhu Y, Fan X, Wang C. Targeted implementation strategies of precise photodynamic therapy based on clinical and technical demands. Biomater Sci 2023; 11:704-718. [PMID: 36472233 DOI: 10.1039/d2bm01384c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
With the development of materials science, photodynamic-based treatments have gradually entered clinics. Photodynamic therapy is ideal for cancer treatment due to its non-invasive and spatiotemporal properties and is the first to be widely promoted in clinical practice. However, the shortcomings resulting from the gap between technical and clinical demands, such as phototoxicity, low tissue permeability, and tissue hypoxia, limit its wide applications. This article reviews the available data regarding the pharmacological and clinical factors affecting the efficacy of photodynamic therapy, such as photosensitizers and oxygen supply, disease diagnosis, and other aspects of photodynamic therapy. In addition, the synergistic treatment of photodynamic therapy with surgery and nanotechnology is also discussed, which is expected to provide inspiration for the design of photodynamic therapy strategies.
Collapse
Affiliation(s)
- Yun Qian
- Dermatologic Surgery Department, Institute of dermatology, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, China.
| | - Jialun Wang
- Department of Gastroenterology, Affiliated Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China.
| | - Wenbo Bu
- Dermatologic Surgery Department, Institute of dermatology, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, China.
| | - Xiaoyan Zhu
- Dermatologic Surgery Department, Institute of dermatology, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, China.
| | - Ping Zhang
- Dermatologic Surgery Department, Institute of dermatology, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, China.
| | - Yun Zhu
- Department of Gastroenterology, Affiliated Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China. .,Department of Pharmacy, Nanjing Affiliated Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China.,Nanjing Medical Center for Clinical Pharmacy, Nanjing 210008, Jiangsu Province, China
| | - Xiaoli Fan
- Dermatologic Surgery Department, Institute of dermatology, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, China.
| | - Cheng Wang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China.
| |
Collapse
|
28
|
Tellería F, Mansilla S, Méndez D, Sepúlveda M, Araya-Maturana R, Castro L, Trostchansky A, Fuentes E. The Use of Triphenyl Phosphonium Cation Enhances the Mitochondrial Antiplatelet Effect of the Compound Magnolol. Pharmaceuticals (Basel) 2023; 16:210. [PMID: 37259359 PMCID: PMC9958981 DOI: 10.3390/ph16020210] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 01/20/2023] [Accepted: 01/27/2023] [Indexed: 08/31/2023] Open
Abstract
Although platelets are anucleated cells, they have fully functional mitochondria, and currently, it is known that several processes that occur in the platelet require the action of mitochondria. There are plenty of mitochondrial-targeted compounds described in the literature related to cancer, however, only a small number of studies have approached their interaction with platelet mitochondria and/or their effects on platelet activity. Recent studies have shown that magnolia extract and mitochondria-targeted magnolol can inhibit mitochondrial respiration and cell proliferation in melanoma and oral cancer cells, respectively, and they can also induce ROS and mitophagy. In this study, the effect of triphenylphosphonium cation, linked by alkyl chains of different lengths, to the organic compound magnolol on human-washed platelets was evaluated. We demonstrated that the addition of triphenylphosphonium by a four-carbon linker to magnolol (MGN4) considerably enhanced the Magnolol antiplatelet effect by a 3-fold decrease in the IC50. Additionally, platelets exposed to MGN4 5 µM showed several differences from the control including increased basal respiration, collagen-induced respiration, ATP-independent respiration, and reduced ATP-dependent respiration and non-mitochondrial respiration.
Collapse
Affiliation(s)
- Francisca Tellería
- MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Department of Clinical Biochemistry and Immunohematology, Thrombosis Research Center, Medical Technology School, Faculty of Health Sciences, Universidad de Talca, Talca 3480094, Chile
| | - Santiago Mansilla
- Departamento de Métodos Cuantitativos and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Diego Méndez
- MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Department of Clinical Biochemistry and Immunohematology, Thrombosis Research Center, Medical Technology School, Faculty of Health Sciences, Universidad de Talca, Talca 3480094, Chile
| | - Magdalena Sepúlveda
- MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Department of Clinical Biochemistry and Immunohematology, Thrombosis Research Center, Medical Technology School, Faculty of Health Sciences, Universidad de Talca, Talca 3480094, Chile
| | - Ramiro Araya-Maturana
- MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Instituto de Química de Recursos Naturales, Universidad de Talca, Talca 3460000, Chile
| | - Laura Castro
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Andrés Trostchansky
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Eduardo Fuentes
- MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Department of Clinical Biochemistry and Immunohematology, Thrombosis Research Center, Medical Technology School, Faculty of Health Sciences, Universidad de Talca, Talca 3480094, Chile
| |
Collapse
|
29
|
Madder ( Rubia cordifolia L.) Alleviates Myocardial Ischemia-Reperfusion Injury by Protecting Endothelial Cells from Apoptosis and Inflammation. Mediators Inflamm 2023; 2023:5015039. [PMID: 36875688 PMCID: PMC9981279 DOI: 10.1155/2023/5015039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 02/25/2023] Open
Abstract
Objective Ischemia-reperfusion injury often occurs in organ transplantation, coronary heart disease, ischemic heart disease, and other diseases, which greatly reduces clinical efficacy. This study examined the effectiveness of madder as a medicine to treat ischemia-reperfusion injury. Methods The efficacy of madder was evaluated by measuring myocardial infarction size, coronary outflow volume, myocardial contraction rate, activation of inflammatory factors, autophagy factors, apoptosis factors, and related pathway genes in mice. Results The results indicated that treatment with madder can effectively reduce the area of myocardial infarction and restore arterial blood flow velocity and myocardial contractility in mice. Additionally, madder treatment inhibited the expression of inflammatory factors, autophagy factors, and apoptosis factors in mice and reduced the degree of myocardial cell injury. Studies have also shown that madder treatment can alleviate myocardial ischemia-reperfusion injury in mice and inhibit the occurrence of inflammatory response by inhibiting the activity of the NF-κB pathway. Conclusion The results showed that madder was effective against ischemia-reperfusion injury, thus showing potential as a clinical drug for treating ischemia-reperfusion injury.
Collapse
|
30
|
Wu Z, Liu Q, Wageh S, Sun Z, Al-Hartomy OA, Al-Sehemi AG, Yan L, Chen J, Zhang W, Yang J, Zhang H, Liu L. Novel photodynamic therapy using two-dimensional NiPS 3 nanosheets that target hypoxic microenvironments for precise cancer treatment. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:81-98. [PMID: 39633642 PMCID: PMC11501689 DOI: 10.1515/nanoph-2022-0520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/09/2022] [Indexed: 12/07/2024]
Abstract
Photodynamic therapy (PDT) is a highly promising modality against cancer, but its efficacy is severely limited by the low oxygen content in solid tumors. In this study, a smart photosensitive NiPS3 nanosheet was developed to solve the problem of low oxygen to allow PDT to be performed against tumors. The photosensitized ROS generation mechanism of NiPS3 is the photon-generated electron-hole pathway, which can generate O2 ·- and ·OH at the conduction band and valance band, respectively. More crucial is that ·OH generation doesn't need O2, and the O2 ·- can also work in a low O2 environment, and depleting oxygen in tumor cells. Modified with triphenylphosphine (TPP) and based on density functional theory (DFT) calculations and experimental data, the NiPS3@TPP nano-system underwent targeted action toward mitochondria. In vitro experiments demonstrated that the reactive oxygen species (ROS) produced by NiPS3@TPP altered mitochondrial membrane permeability, which not only prolonged the PDT effect but also resulted in mitochondria apoptosis pathways inducing an apoptosis cascade. In vivo experiments demonstrated the targeting capability with low toxicity of the NiPS3@TPP nano-system. Tumor targeting at the tested dose indicated that it represented a promising biocompatible photosensitizer for in vivo biomedical applications.
Collapse
Affiliation(s)
- Zongze Wu
- Division of Hepatobiliary and Pancreas Surgery, Department of General Surgery, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen518020, Guangdong, P. R. China
| | - Quan Liu
- Division of Hepatobiliary and Pancreas Surgery, Department of General Surgery, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen518020, Guangdong, P. R. China
| | - Swelm Wageh
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah21589, Saudi Arabia
| | - Zhe Sun
- Division of Hepatobiliary and Pancreas Surgery, Department of General Surgery, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen518020, Guangdong, P. R. China
| | - Omar A. Al-Hartomy
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah21589, Saudi Arabia
| | - Abdullah G. Al-Sehemi
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha61413, Saudi Arabia
- Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha61413, Saudi Arabia
| | - Lesen Yan
- Division of Hepatobiliary and Pancreas Surgery, Department of General Surgery, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen518020, Guangdong, P. R. China
| | - Jiaojuan Chen
- Division of Hepatobiliary and Pancreas Surgery, Department of General Surgery, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen518020, Guangdong, P. R. China
| | - Wenjian Zhang
- Division of Hepatobiliary and Pancreas Surgery, Department of General Surgery, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen518020, Guangdong, P. R. China
| | - Jilin Yang
- Division of Hepatobiliary and Pancreas Surgery, Department of General Surgery, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen518020, Guangdong, P. R. China
| | - Han Zhang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, and Otolaryngology Department and Biobank of the First Affiliated Hospital, Health Science Center, Shenzhen Second People’s Hospital, Shenzhen University, Shenzhen518060, Guangdong, P. R. China
| | - Liping Liu
- Division of Hepatobiliary and Pancreas Surgery, Department of General Surgery, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen518020, Guangdong, P. R. China
| |
Collapse
|
31
|
Zhou J, Wang H, Wang W, Ma Z, Chi Z, Liu S. A Cationic Amphiphilic AIE Polymer for Mitochondrial Targeting and Imaging. Pharmaceutics 2022; 15:103. [PMID: 36678732 PMCID: PMC9866158 DOI: 10.3390/pharmaceutics15010103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/09/2022] [Accepted: 12/15/2022] [Indexed: 12/29/2022] Open
Abstract
Mitochondria are important organelles that play key roles in generating the energy needed for life and in pathways such as apoptosis. Direct targeting of antitumor drugs, such as doxorubicin (DOX), to mitochondria into cells is an effective approach for cancer therapy and inducing cancer cell death. To achieve targeted and effective delivery of antitumor drugs to tumor cells, to enhance the therapeutic effect, and to reduce the side effects during the treatment, we prepared a cationic amphiphilic polymer with aggregation-induced emission (AIE) characteristic. The polymer could be localized to mitochondria with excellent organelle targeting, and it showed good mitochondrial targeting with low toxicity. The polymer could also self-assemble into doxorubicin-loaded micelles in phosphate buffer, with a particle size of about 4.3 nm, an encapsulation rate of 11.03%, and micelle drug loading that reached 0.49%. The results of in vitro cytotoxicity experiments showed that the optimal dosage was 2.0 μg/mL, which had better inhibitory effect on tumor cells and less biological toxicity on heathy cells. Therefore, the cationic amphiphilic polymer can partially replace expensive commercial mitochondrial targeting reagents, and it can be also used as a drug loading tool to directly target mitochondria in cells for corresponding therapeutic research.
Collapse
Affiliation(s)
| | | | | | | | | | - Siwei Liu
- PCFM Lab, GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
32
|
Pharmacological targeting of the mitochondrial calcium-dependent potassium channel KCa3.1 triggers cell death and reduces tumor growth and metastasis in vivo. Cell Death Dis 2022; 13:1055. [PMID: 36539400 PMCID: PMC9768205 DOI: 10.1038/s41419-022-05463-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022]
Abstract
Ion channels are non-conventional, druggable oncological targets. The intermediate-conductance calcium-dependent potassium channel (KCa3.1) is highly expressed in the plasma membrane and in the inner mitochondrial membrane (mitoKCa3.1) of various cancer cell lines. The role mitoKCa3.1 plays in cancer cells is still undefined. Here we report the synthesis and characterization of two mitochondria-targeted novel derivatives of a high-affinity KCa3.1 antagonist, TRAM-34, which retain the ability to block channel activity. The effects of these drugs were tested in melanoma, pancreatic ductal adenocarcinoma and breast cancer lines, as well as in vivo in two orthotopic models. We show that the mitochondria-targeted TRAM-34 derivatives induce release of mitochondrial reactive oxygen species, rapid depolarization of the mitochondrial membrane, fragmentation of the mitochondrial network. They trigger cancer cell death with an EC50 in the µM range, depending on channel expression. In contrast, inhibition of the plasma membrane KCa3.1 by membrane-impermeant Maurotoxin is without effect, indicating a specific role of mitoKCa3.1 in determining cell fate. At sub-lethal concentrations, pharmacological targeting of mitoKCa3.1 significantly reduced cancer cell migration by enhancing production of mitochondrial reactive oxygen species and nuclear factor-κB (NF-κB) activation, and by downregulating expression of Bcl-2 Nineteen kD-Interacting Protein (BNIP-3) and of Rho GTPase CDC-42. This signaling cascade finally leads to cytoskeletal reorganization and impaired migration. Overexpression of BNIP-3 or pharmacological modulation of NF-κB and CDC-42 prevented the migration-reducing effect of mitoTRAM-34. In orthotopic models of melanoma and pancreatic ductal adenocarcinoma, the tumors at sacrifice were 60% smaller in treated versus untreated animals. Metastasis of melanoma cells to lymph nodes was also drastically reduced. No signs of toxicity were observed. In summary, our results identify mitochondrial KCa3.1 as an unexpected player in cancer cell migration and show that its pharmacological targeting is efficient against both tumor growth and metastatic spread in vivo.
Collapse
|
33
|
Kampa RP, Sęk A, Bednarczyk P, Szewczyk A, Calderone V, Testai L. Flavonoids as new regulators of mitochondrial potassium channels: contribution to cardioprotection. J Pharm Pharmacol 2022; 75:466-481. [PMID: 36508341 DOI: 10.1093/jpp/rgac093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/18/2022] [Indexed: 12/14/2022]
Abstract
Abstract
Objectives
Acute myocardial ischemia is one of the major causes of illness in western society. Reduced coronary blood supply leads to cell death and loss of cardiomyocyte population, resulting in serious and often irreversible consequences on myocardial function. Mitochondrial potassium (mitoK) channels have been identified as fine regulators of mitochondrial function and, consequently, in the metabolism of the whole cell, and in the mechanisms underlying the cardioprotection. Interestingly, mitoK channels represent a novel putative target for treating cardiovascular diseases, particularly myocardial infarction, and their modulators represent an interesting tool for pharmacological intervention. In this review, we took up the challenge of selecting flavonoids that show cardioprotective properties through the activation of mitoK channels.
Key findings
A brief overview of the main information on mitoK channels and their participation in the induction of cytoprotective processes was provided. Then, naringenin, quercetin, morin, theaflavin, baicalein, epigallocatechin gallate, genistein, puerarin, luteolin and proanthocyanidins demonstrated to be effective modulators of mitoK channels activity, mediating many beneficial effects.
Summary
The pathophysiological role of mitoK channels has been investigated as well as the impact of flavonoids on this target with particular attention to their potential role in the prevention of cardiovascular disorders.
Collapse
Affiliation(s)
- Rafał P Kampa
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology PAS , Warsaw , Poland
- Department of Pharmacy, University of Pisa , Italy
| | - Aleksandra Sęk
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology PAS , Warsaw , Poland
- Faculty of Chemistry, University of Warsaw , Warsaw , Poland
| | - Piotr Bednarczyk
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences, SGGW , Warsaw , Poland
| | - Adam Szewczyk
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology PAS , Warsaw , Poland
| | | | - Lara Testai
- Department of Pharmacy, University of Pisa , Italy
| |
Collapse
|
34
|
Wang Y, Shi GJ, Xue XL, Zhang Q, Wang KP, Chen S, Tang L, Hu ZQ. A hemicyanine-based near-infrared fluorescent probe for visualizing biothiols fluctuations induced by Ag+ in mitochondria. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
35
|
Pei Y, Sun Y, Huang M, Zhang Z, Yan D, Cui J, Zhu D, Zeng Z, Wang D, Tang B. Ir(III) Complexes with AIE Characteristics for Biological Applications. BIOSENSORS 2022; 12:1104. [PMID: 36551071 PMCID: PMC9775350 DOI: 10.3390/bios12121104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Both biological process detection and disease diagnosis on the basis of luminescence technology can provide comprehensive insights into the mechanisms of life and disease pathogenesis and also accurately guide therapeutics. As a family of prominent luminescent materials, Ir(III) complexes with aggregation-induced emission (AIE) tendency have been recently explored at a tremendous pace for biological applications, by virtue of their various distinct advantages, such as great stability in biological media, excellent fluorescence properties and distinctive photosensitizing features. Significant breakthroughs of AIE-active Ir(III) complexes have been achieved in the past few years and great progress has been witnessed in the construction of novel AIE-active Ir(III) complexes and their applications in organelle-specific targeting imaging, multiphoton imaging, biomarker-responsive bioimaging, as well as theranostics. This review systematically summarizes the basic concepts, seminal studies, recent trends and perspectives in this area.
Collapse
Affiliation(s)
- Yu Pei
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Yan Sun
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Meijia Huang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Zhijun Zhang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Dingyuan Yan
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jie Cui
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Dongxia Zhu
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Zebing Zeng
- Shenzhen Research Institute of Hunan University, Shenzhen 518000, China
| | - Dong Wang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Benzhong Tang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen 518172, China
| |
Collapse
|
36
|
Wang H, Zhang L, Jin X, Tian P, Ding X, Chang J. A water-soluble fluorescent probe for monitoring mitochondrial GSH fluctuations during oxidative stress. RSC Adv 2022; 12:33922-33927. [PMID: 36505695 PMCID: PMC9703030 DOI: 10.1039/d2ra04732b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/07/2022] [Indexed: 11/29/2022] Open
Abstract
In this research, we constructed a styrylpyridine derivative-based fluorescent probe MITO-PQDNs to monitor mitochondrial glutathione (GSH). The probe MITO-PQDNs could react rapidly (20 min) with GSH in PBS buffer and exhibited a strong fluorescence signal (586 nm) as well as a significant Stokes shift (200 nm). Moreover, MITO-PQDNs could quantitatively detect GSH with high sensitivity (LOD = 253 nM). Meanwhile, MITO-PQDNs possessed favorable biocompatibility and could detect both endogenous and exogenous GSH in MCF-7 cells. Above all, MITO-PQDNs enabled the detection of fluctuations in mitochondrial GSH concentrations during oxidative stress.
Collapse
Affiliation(s)
- Huayu Wang
- School of Basic Medical Sciences, Xinxiang Medical University Xinxiang 453003 China
| | - Luan Zhang
- Jiangsu Mai Jian Biotechnology Development Company Wuxi 214135 China
| | - Xia Jin
- Jiangsu Mai Jian Biotechnology Development Company Wuxi 214135 China
| | - Peijiao Tian
- Jiangsu Mai Jian Biotechnology Development Company Wuxi 214135 China
| | - Xiaojun Ding
- Jiangsu Mai Jian Biotechnology Development Company Wuxi 214135 China
| | - Jing Chang
- Jiangsu Mai Jian Biotechnology Development Company Wuxi 214135 China
| |
Collapse
|
37
|
Yang J, Griffin A, Qiang Z, Ren J. Organelle-targeted therapies: a comprehensive review on system design for enabling precision oncology. Signal Transduct Target Ther 2022; 7:379. [PMID: 36402753 PMCID: PMC9675787 DOI: 10.1038/s41392-022-01243-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 11/21/2022] Open
Abstract
Cancer is a major threat to human health. Among various treatment methods, precision therapy has received significant attention since the inception, due to its ability to efficiently inhibit tumor growth, while curtailing common shortcomings from conventional cancer treatment, leading towards enhanced survival rates. Particularly, organelle-targeted strategies enable precise accumulation of therapeutic agents in organelles, locally triggering organelle-mediated cell death signals which can greatly reduce the therapeutic threshold dosage and minimize side-effects. In this review, we comprehensively discuss history and recent advances in targeted therapies on organelles, specifically including nucleus, mitochondria, lysosomes and endoplasmic reticulum, while focusing on organelle structures, organelle-mediated cell death signal pathways, and design guidelines of organelle-targeted nanomedicines based on intervention mechanisms. Furthermore, a perspective on future research and clinical opportunities and potential challenges in precision oncology is presented. Through demonstrating recent developments in organelle-targeted therapies, we believe this article can further stimulate broader interests in multidisciplinary research and technology development for enabling advanced organelle-targeted nanomedicines and their corresponding clinic translations.
Collapse
Affiliation(s)
- Jingjing Yang
- grid.24516.340000000123704535Institute of Nano and Biopolymeric Materials, School of Materials Science and Engineering, Tongji University, 201804 Shanghai, China
| | - Anthony Griffin
- grid.267193.80000 0001 2295 628XSchool of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, MS 39406 USA
| | - Zhe Qiang
- grid.267193.80000 0001 2295 628XSchool of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, MS 39406 USA
| | - Jie Ren
- grid.24516.340000000123704535Institute of Nano and Biopolymeric Materials, School of Materials Science and Engineering, Tongji University, 201804 Shanghai, China
| |
Collapse
|
38
|
Chuen Chan W, Phin Ng M, Hoe Tan C, Wei Ang C, Shin Sim K, Yin Xin Tiong S, Amira Solehah Pungut N, Hee Ng C, Wai Tan K. A new lipophilic cationic rhodamine-based chemosensor for detection of Al(III)/Cu(II) and intracellular pH change and its application as a smartphone-assisted sensor in water sample analysis. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
39
|
Wang H, Wang Z, Gao H, Liu J, Qiao Z, Zhao B, Liang Z, Jiang B, Zhang L, Zhang Y. A photo-oxidation driven proximity labeling strategy enables profiling of mitochondrial proteome dynamics in living cells. Chem Sci 2022; 13:11943-11950. [PMID: 36320915 PMCID: PMC9580500 DOI: 10.1039/d2sc04087e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/27/2022] [Indexed: 07/21/2023] Open
Abstract
Mapping the proteomic landscape of mitochondria with spatiotemporal precision plays a pivotal role in elucidating the delicate biological functions and complex relationship with other organelles in a variety of dynamic physiological processes which necessitates efficient and controllable chemical tools. We herein report a photo-oxidation driven proximity labeling strategy to profile the mitochondrial proteome by light dependence in living cells with high spatiotemporal resolution. Taking advantage of organelle-localizable organic photoactivated probes generating reactive species and nucleophilic substrates for proximal protein oxidation and trapping, mitochondrial proteins were selectively labeled by spatially limited reactions in their native environment. Integration of photo-oxidation driven proximity labeling and quantitative proteomics facilitated the plotting of the mitochondrial proteome in which up to 310 mitochondrial proteins were identified with a specificity of 64% in HeLa cells. Furthermore, mitochondrial proteome dynamics was deciphered in drug resistant Huh7 and LPS stimulated HMC3 cells which were hard-to-transfect. A number of differential proteins were quantified which were intimately linked to critical processes and provided insights into the related molecular mechanisms of drug resistance and neuroinflammation in the perspective of mitochondria. The photo-oxidation driven proximity labeling strategy offers solid technical support to a highly precise proteomic platform in time and finer space for more knowledge of subcellular biology.
Collapse
Affiliation(s)
- He Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Zhiting Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Hang Gao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jianhui Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Zichun Qiao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Baofeng Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Zhen Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Bo Jiang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Lihua Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Yukui Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| |
Collapse
|
40
|
Deus CM, Teixeira J, Raimundo N, Tucci P, Borges F, Saso L, Oliveira PJ. Modulation of cellular redox environment as a novel therapeutic strategy for Parkinson's disease. Eur J Clin Invest 2022; 52:e13820. [PMID: 35638352 DOI: 10.1111/eci.13820] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/25/2022] [Accepted: 05/29/2022] [Indexed: 12/01/2022]
Abstract
Parkinson's disease (PD) is an incurable neurodegenerative movement disorder. PD affects 2% of the population above 65 years old; however, with the growing number of senior citizens, PD prevalence is predicted to increase in the following years. Pathologically, PD is characterized by dopaminergic cell neurodegeneration in the substantia nigra, resulting in decreased dopamine levels in the nigrostriatal pathway, triggering motor symptoms. Although the pathological mechanisms leading to PD are still unclear, large evidence indicates that oxidative stress plays an important role, not only because it increases with age which is the most significant risk factor for PD development, but also as a result of alterations in several processes, particularly mitochondria dysfunction. The modulation of oxidative stress, especially using dietary mitochondriotropic antioxidants, represents a promising approach to prevent or treat PD. Although most mitochondria-targeted antioxidants with beneficial effects in PD-associated models have failed to show any therapeutic benefit in clinical trials, several questions remain to be clarified. Hereby, we review the role played by oxidative stress in PD pathogenesis, emphasizing mitochondria as reactive oxygen species (ROS) producers and as targets for oxidative stress-related dysfunctional mechanisms. In addition, we also describe the importance of using dietary-based mitochondria-targeted antioxidants as a valuable strategy to counteract the deleterious effects of ROS in pre-clinical and/or clinical trials of PD, pointing out their significance to slow, and possibly halt, the progression of PD.
Collapse
Affiliation(s)
- Cláudia M Deus
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,PhD Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - José Teixeira
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Nuno Raimundo
- Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, Pennsylvania, USA.,Multidisciplinary Institute of Ageing (MIA), University of Coimbra, Coimbra, Portugal
| | - Paolo Tucci
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Fernanda Borges
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Roma, Italy
| | - Paulo J Oliveira
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,PhD Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| |
Collapse
|
41
|
Feng Z, Ducos B, Scerbo P, Aujard I, Jullien L, Bensimon D. The Development and Application of Opto-Chemical Tools in the Zebrafish. Molecules 2022; 27:6231. [PMID: 36234767 PMCID: PMC9572478 DOI: 10.3390/molecules27196231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/18/2022] Open
Abstract
The zebrafish is one of the most widely adopted animal models in both basic and translational research. This popularity of the zebrafish results from several advantages such as a high degree of similarity to the human genome, the ease of genetic and chemical perturbations, external fertilization with high fecundity, transparent and fast-developing embryos, and relatively low cost-effective maintenance. In particular, body translucency is a unique feature of zebrafish that is not adequately obtained with other vertebrate organisms. The animal's distinctive optical clarity and small size therefore make it a successful model for optical modulation and observation. Furthermore, the convenience of microinjection and high embryonic permeability readily allow for efficient delivery of large and small molecules into live animals. Finally, the numerous number of siblings obtained from a single pair of animals offers large replicates and improved statistical analysis of the results. In this review, we describe the development of opto-chemical tools based on various strategies that control biological activities with unprecedented spatiotemporal resolution. We also discuss the reported applications of these tools in zebrafish and highlight the current challenges and future possibilities of opto-chemical approaches, particularly at the single cell level.
Collapse
Affiliation(s)
- Zhiping Feng
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Bertrand Ducos
- Laboratoire de Physique de l’Ecole Normale Supérieure, Paris Sciences Letters University, Sorbonne Université, Université de Paris, Centre National de la Recherche Scientifique, 24 Rue Lhomond, 75005 Paris, France
- High Throughput qPCR Core Facility, Ecole Normale Supérieure, Paris Sciences Letters University, 46 Rue d’Ulm, 75005 Paris, France
| | - Pierluigi Scerbo
- Laboratoire de Physique de l’Ecole Normale Supérieure, Paris Sciences Letters University, Sorbonne Université, Université de Paris, Centre National de la Recherche Scientifique, 24 Rue Lhomond, 75005 Paris, France
- Inovarion, 75005 Paris, France
| | - Isabelle Aujard
- Laboratoire PASTEUR, Département de Chimie, Ecole Normale Supérieure, Paris Sciences Letters University, Sorbonne Université, Centre National de la Recherche Scientifique, 24 Rue Lhomond, 75005 Paris, France
| | - Ludovic Jullien
- Laboratoire PASTEUR, Département de Chimie, Ecole Normale Supérieure, Paris Sciences Letters University, Sorbonne Université, Centre National de la Recherche Scientifique, 24 Rue Lhomond, 75005 Paris, France
| | - David Bensimon
- Laboratoire de Physique de l’Ecole Normale Supérieure, Paris Sciences Letters University, Sorbonne Université, Université de Paris, Centre National de la Recherche Scientifique, 24 Rue Lhomond, 75005 Paris, France
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
42
|
McCartin C, Mathieu E, Dontenwill M, Herold-Mende C, Idbaih A, Bonfiglio A, Mauro M, Fournel S, Kichler A. An N-heterocyclic carbene iridium(III) complex as a potent anti-cancer stem cell therapeutic. Chem Biol Interact 2022; 367:110167. [PMID: 36087816 DOI: 10.1016/j.cbi.2022.110167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/12/2022] [Accepted: 09/02/2022] [Indexed: 12/20/2022]
Abstract
Cancer stem cells (CSCs) represent a difficult to treat cellular niche within tumours due to their unique characteristics, which give them a high propensity for resistance to classical anti-cancer treatments and the ability to repopulate the tumour mass. An attribute that may be implicated in the high rates of recurrence of certain tumours. However, other characteristics specific to these cells, such as their high dependence on mitochondria, may be exploited for the development of new therapeutic agents that are effective against the niche. As such, a previously described phosphorescent N-heterocyclic carbene iridium(III) compound which showed a high level of cytotoxicity against classical tumour cell lines with mitochondria-specific effects was studied for its potential against CSCs. The results showed a significantly higher level of activity against several CSC lines compared to non-CSCs. Mitochondrial localisation and superoxide production were confirmed. Although the cell death involved caspase activation, their role in cell death was not definitive, with a potential implication of other, non-apoptotic pathways shown. A cytostatic effect of the compound was also displayed at low mortality doses. This study thus provides important insights into the mechanisms and the potential for this class of molecule in the domain of anti-CSC therapeutics.
Collapse
Affiliation(s)
- Conor McCartin
- 3Bio Team, CAMB UMR7199 CNRS-Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, F-67401 Illkirch cedex, France
| | - Eric Mathieu
- Institut National de la Santé et de la Recherche Médicale, Inserm UMR_S 1121 Biomaterials and Bioengineering, Strasbourg, F-67085, France; Université de Strasbourg, Faculté de Chirurgie Dentaire de Strasbourg, Strasbourg, F-67000, France
| | - Monique Dontenwill
- Laboratoire de bioimagerie et pathologies UMR CNRS 7021 (LBP), Faculté de Pharmacie, 74 route du Rhin, F-67401, Illkirch cedex, France
| | - Christel Herold-Mende
- Division of Neurosurgical Research, Department of Neurosurgery, University of Heidelberg, Heidelberg, Germany
| | - Ahmed Idbaih
- Sorbonne Université, AP-HP, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, DMU Neurosciences, Service de Neurologie 2-Mazarin, F-75013, Paris, France
| | - Anna Bonfiglio
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS) UMR7504, Université de Strasbourg & CNRS 23 rue du Loess, 67083, Strasbourg, France
| | - Matteo Mauro
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS) UMR7504, Université de Strasbourg & CNRS 23 rue du Loess, 67083, Strasbourg, France
| | - Sylvie Fournel
- 3Bio Team, CAMB UMR7199 CNRS-Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, F-67401 Illkirch cedex, France.
| | - Antoine Kichler
- 3Bio Team, CAMB UMR7199 CNRS-Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, F-67401 Illkirch cedex, France.
| |
Collapse
|
43
|
Miljkovic JL, Burger N, Gawel JM, Mulvey JF, Norman AAI, Nishimura T, Tsujihata Y, Logan A, Sauchanka O, Caldwell ST, Morris JL, Prime TA, Warrington S, Prudent J, Bates GR, Aksentijević D, Prag HA, James AM, Krieg T, Hartley RC, Murphy MP. Rapid and selective generation of H 2S within mitochondria protects against cardiac ischemia-reperfusion injury. Redox Biol 2022; 55:102429. [PMID: 35961099 PMCID: PMC9382561 DOI: 10.1016/j.redox.2022.102429] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/22/2022] [Accepted: 08/01/2022] [Indexed: 02/02/2023] Open
Abstract
Mitochondria-targeted H2S donors are thought to protect against acute ischemia-reperfusion (IR) injury by releasing H2S that decreases oxidative damage. However, the rate of H2S release by current donors is too slow to be effective upon administration following reperfusion. To overcome this limitation here we develop a mitochondria-targeted agent, MitoPerSulf that very rapidly releases H2S within mitochondria. MitoPerSulf is quickly taken up by mitochondria, where it reacts with endogenous thiols to generate a persulfide intermediate that releases H2S. MitoPerSulf is acutely protective against cardiac IR injury in mice, due to the acute generation of H2S that inhibits respiration at cytochrome c oxidase thereby preventing mitochondrial superoxide production by lowering the membrane potential. Mitochondria-targeted agents that rapidly generate H2S are a new class of therapy for the acute treatment of IR injury.
Collapse
Affiliation(s)
- Jan Lj Miljkovic
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, CB2 0XY, UK
| | - Nils Burger
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, CB2 0XY, UK
| | - Justyna M Gawel
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK
| | - John F Mulvey
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | | | - Takanori Nishimura
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK; Innovative Biology Laboratories, Neuroscience Drug Discovery Unit, Takeda Pharmaceutical Company Limited, 251-8555, Japan
| | - Yoshiyuki Tsujihata
- Innovative Biology Laboratories, Neuroscience Drug Discovery Unit, Takeda Pharmaceutical Company Limited, 251-8555, Japan
| | - Angela Logan
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, CB2 0XY, UK
| | - Olga Sauchanka
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | | | - Jordan L Morris
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, CB2 0XY, UK
| | - Tracy A Prime
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, CB2 0XY, UK
| | | | - Julien Prudent
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, CB2 0XY, UK
| | - Georgina R Bates
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, CB2 0XY, UK
| | - Dunja Aksentijević
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, United Kingdom
| | - Hiran A Prag
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, CB2 0XY, UK; Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Andrew M James
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, CB2 0XY, UK
| | - Thomas Krieg
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | | | - Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, CB2 0XY, UK; Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
44
|
Grymel M, Lalik A, Kazek-Kęsik A, Szewczyk M, Grabiec P, Erfurt K. Design, Synthesis and Preliminary Evaluation of the Cytotoxicity and Antibacterial Activity of Novel Triphenylphosphonium Derivatives of Betulin. Molecules 2022; 27:molecules27165156. [PMID: 36014398 PMCID: PMC9416257 DOI: 10.3390/molecules27165156] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/04/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
For several decades, natural products have been widely researched and their native scaffolds are the basis for the design and synthesis of new potential therapeutic agents. Betulin is an interesting biologically attractive natural parent molecule with a high safety profile and can easily undergo a variety of structural modifications. Herein, we describe the synthesis of new molecular hybrids of betulin via covalent linkage with an alkyltriphenylphosphonium moiety. The proposed strategy enables the preparation of semi-synthetic derivatives (28-TPP⊕ BN and 3,28-bisTPP⊕ BN) from betulin through simple transformations in high yields. The obtained results showed that the presence of a lipophilic cation improved the solubility of the tested analogs compared to betulin, and increased their cytotoxicity. Among the triphenylphosphonium derivatives tested, analogs 7a (IC50 of 5.56 µM) and 7b (IC50 of 5.77 µM) demonstrated the highest cytotoxicity against the colorectal carcinoma cell line (HCT 116). TPP⊕-conjugates with betulin showed antimicrobial properties against Gram-positive reference Staphylococcus aureus ATCC 25923 and Staphylococcus epidermidis ATCC 12228 bacteria, at a 200 µM concentration in water. Hence, the conjugation of betulin's parent backbone with a triphenylphosphonium moiety promotes transport through the hydrophobic barriers of the mitochondrial membrane, making it a promising strategy to improve the bioavailability of natural substances.
Collapse
Affiliation(s)
- Mirosława Grymel
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland
- Department of Chemical Organic Technology and Petrochemistry, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland
- Biotechnology Center, Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland
- Correspondence: ; Tel.: +48-032-237-1873; Fax: +48-032-237-2094
| | - Anna Lalik
- Biotechnology Center, Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland
- Department of Systems Biology and Engineering, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland
| | - Alicja Kazek-Kęsik
- Department of Inorganic, Analytical Chemistry and Electrochemistry, Silesian University of Technology, B. Krzywoustego 6, 44-100 Gliwice, Poland
| | - Marietta Szewczyk
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland
| | - Patrycja Grabiec
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland
| | - Karol Erfurt
- Department of Chemical Organic Technology and Petrochemistry, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland
| |
Collapse
|
45
|
Arafa KK, Hamzawy MA, Mousa SA, El-Sherbiny IM. Mitochondria-targeted alginate/triphenylphosphonium-grafted-chitosan for treatment of hepatocellular carcinoma. RSC Adv 2022; 12:21690-21703. [PMID: 35975035 PMCID: PMC9350814 DOI: 10.1039/d2ra03240f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/18/2022] [Indexed: 11/21/2022] Open
Abstract
Mitochondrial targeting of anticancer drugs can effectively eradicate chemotherapy-refractory cells through different mechanisms. This work presents the rational designing of mitochondria-targeted core–shell polymeric nanoparticles (NPs) for efficient delivery of doxorubicin (DOX) to the hepatic carcinoma mitochondria. DOX was electrostatically nano-complexed with sodium alginate (SAL) then coated with mitotropic triphenylphosphonium-grafted chitosan (TPP+-g-CS) nanoshell. Polyvinyl alcohol (PVA) was co-solubilized into the TPP+-g-CS solution to enhance the stability of the developed NPs. The optimum NPs formula is composed of TPP+-g-CS (0.05% w/v) coating a DOX-SAL core complex (0.05% w/v), with 0.2% PVA relative to CS (w/w). The optimum NPs attained an entrapment efficiency of 63.33 ± 10.18%; exhibited a spherical shape with particle size of 70–110 nm and a positive surface charge which enhances mitochondrial uptake. FTIR and DSC studies results were indicative of an efficacious poly-complexation. In vitro biological experiments proved that the developed mitotropic NPs exhibited a significantly lower IC50, effectively induced apoptotic cell death and cell cycle arrest. Moreover, the in vivo studies demonstrated an enhanced antitumor bioactivity for the mitotropic NPs along with a reduced biological toxicity profile. In conclusion, this study proposes a promising nanocarrier system for the efficient targeting of DOX to the mitochondria of hepatic tumors. Mitochondrial targeting of anticancer drugs can effectively eradicate tumour cells. TPP+-grafted-chitosan based core–shell nanoparticles were successfully internalized into the mitochondria of HCC cells. Also exhibited antiproliferative activity against liver cancer.![]()
Collapse
Affiliation(s)
- Kholoud K Arafa
- Nanomedicine Research Labs, Center for Materials Science (CMS), Zewail City of Science and Technology Ahmed Zewail Road, October Gardens, 6th of October City 12578 Giza Egypt
| | - Mohamed A Hamzawy
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Fayoum University Fayoum Egypt
| | - Shaker A Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences Rensselaer NY 12144 USA
| | - Ibrahim M El-Sherbiny
- Nanomedicine Research Labs, Center for Materials Science (CMS), Zewail City of Science and Technology Ahmed Zewail Road, October Gardens, 6th of October City 12578 Giza Egypt
| |
Collapse
|
46
|
Huang D, Liu Q, Zhang M, Guo Y, Cui Z, Li T, Luo D, Xu B, Huang C, Guo J, Tam KY, Zhang M, Zhang SL, He Y. A Mitochondria-Targeted Phenylbutyric Acid Prodrug Confers Drastically Improved Anticancer Activities. J Med Chem 2022; 65:9955-9973. [PMID: 35818137 DOI: 10.1021/acs.jmedchem.2c00640] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Phenylbutyric acid (PBA) has been reported as a dual inhibitor of pyruvate dehydrogenase kinases (PDKs) and histone deacetylases (HDACs), exhibiting anticancer effects. However, the low membrane permeability and poor cellular uptake limit its access to the target organelle, resulting in weak potencies against the intended targets. Herein, we report the design and identification of a novel 4-CF3-phenyl triphenylphosphonium-based PBA conjugate (53) with improved in vitro and in vivo anticancer activities. Compound 53 exhibited an IC50 value of 2.22 μM against A375 cells, outperforming the parent drug PBA by about 4000-fold. In the A375 cell-derived xenograft mouse model, 53 reduced the tumor growth by 76% at a dose of 40 mg/kg, while PBA only reduced the tumor growth by 10% at a dose of 80 mg/kg. On the basis of these results, 53 may be considered for further preclinical evaluations for cancer therapy.
Collapse
Affiliation(s)
- Ding Huang
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing 401331, P. R. China
| | - Qingwang Liu
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Maojie Zhang
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing 401331, P. R. China
| | - Yizhen Guo
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR 999078, P. R. China
| | - Zhiying Cui
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing 401331, P. R. China
| | - Tao Li
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing 401331, P. R. China
| | - Dong Luo
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing 401331, P. R. China
| | - Biao Xu
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Chao Huang
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing 401331, P. R. China
| | - Jian Guo
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing 401331, P. R. China
| | - Kin Yip Tam
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR 999078, P. R. China
| | - Min Zhang
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing 401331, P. R. China
| | - Shao-Lin Zhang
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing 401331, P. R. China
| | - Yun He
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing 401331, P. R. China
| |
Collapse
|
47
|
Pawar A, Kamble R. Design and development of novel docetaxel –loaded DQAsomes for inducing apoptosis and anti-cancer effect on the breast cancer cells, an in vitro study. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
48
|
Short O-GlcNAcase Is Targeted to the Mitochondria and Regulates Mitochondrial Reactive Oxygen Species Level. Cells 2022; 11:cells11111827. [PMID: 35681522 PMCID: PMC9180253 DOI: 10.3390/cells11111827] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/18/2022] [Accepted: 05/26/2022] [Indexed: 02/01/2023] Open
Abstract
O-GlcNAcylation is a reversible post-translational modification involved in the regulation of cytosolic, nuclear, and mitochondrial proteins. Only two enzymes, OGT (O-GlcNAc transferase) and OGA (O-GlcNAcase), control the attachment and removal of O-GlcNAc on proteins, respectively. Whereas a variant OGT (mOGT) has been proposed as the main isoform that O-GlcNAcylates proteins in mitochondria, identification of a mitochondrial OGA has not been performed yet. Two splice variants of OGA (short and long isoforms) have been described previously. In this work, using cell fractionation experiments, we show that short-OGA is preferentially recovered in mitochondria-enriched fractions from HEK-293T cells and RAW 264.7 cells, as well as mouse embryonic fibroblasts. Moreover, fluorescent microscopy imaging confirmed that GFP-tagged short-OGA is addressed to mitochondria. In addition, using a Bioluminescence Resonance Energy Transfer (BRET)-based mitochondrial O-GlcNAcylation biosensor, we show that co-transfection of short-OGA markedly reduced O-GlcNAcylation of the biosensor, whereas long-OGA had no significant effect. Finally, using genetically encoded or chemical fluorescent mitochondrial probes, we show that short-OGA overexpression increases mitochondrial ROS levels, whereas long-OGA has no significant effect. Together, our work reveals that the short-OGA isoform is targeted to the mitochondria where it regulates ROS homoeostasis.
Collapse
|
49
|
Liu B, Chen Z, Li Y, Du XF, Zhang W, Zhang W, Lai Y, Li Y. Brominated cyclometalated iridium(III) complexes for mitochondrial immobilization as potential anticancer agents. Dalton Trans 2022; 51:7650-7657. [PMID: 35510904 DOI: 10.1039/d2dt00587e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mitochondria-targeted iridium complexes for anticancer studies have received increasing attention in recent years. Herein, three cyclometalated iridium(III) complexes Ir1-Ir3 [Ir(N^C)2(N^N)](PF6) (N^N = 2,2'-bipyridine (bpy)) or 2-(5-bromopyridin-2-yl)benzo[d]thiazole (bpybt); [N^C = 2-phenylpyridine (ppy) or 2-phenylquinoline (pq) or 2-(4-bromophenyl)benzo[d]thiazole (bpbt)] had been explored as potential mitochondria-targeted anticancer agents. All of the complexes mainly localized in the mitochondria and could be fixed on the mitochondria through a nucleophilic reaction with reactive mitochondrial proteins. Further studies revealed that these complexes showed high anticancer activity, induced mitochondrial depolarization, elevated intracellular reactive oxygen species (ROS) levels, restrained thioredoxin reductase (TrxR) activity, and inhibited the formation of tumor cell colonies and angiogenesis. Further mechanistic studies showed that complex Ir2 could markedly stimulate the activation of caspase-3, regulate the expression of Bax and KI67, and trigger apoptosis.
Collapse
Affiliation(s)
- Ben Liu
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China.
| | - Zhiyin Chen
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China.
| | - Yu Li
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China.
| | - Xiang-Fu Du
- Centre for Translational Medicine Research & Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Wenjing Zhang
- Centre for Translational Medicine Research & Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China. .,University of Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wei Zhang
- Centre for Translational Medicine Research & Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China. .,University of Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yuxiao Lai
- Centre for Translational Medicine Research & Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China. .,University of Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yi Li
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China.
| |
Collapse
|
50
|
Nagarajan S, Poyer F, Fourmois L, Naud‐Martin D, Medjoubi K, Somogyi A, Schanne G, Henry L, Delsuc N, Policar C, Bertrand HC, Mahuteau‐Betzer F. Cellular Detection of a Mitochondria Targeted Brominated Vinyl Triphenylamine Optical Probe (TP−Br) by X‐Ray Fluorescence Microscopy. Chemistry 2022; 28:e202104424. [DOI: 10.1002/chem.202104424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Indexed: 11/06/2022]
Affiliation(s)
- Sounderya Nagarajan
- CNRS UMR9187, Inserm U1196, Chemistry and Modeling for the Biology of Cancer Institut Curie Université PSL 91400 Orsay France
- CNRS UMR9187, Inserm U1196, Chemistry and Modeling for the Biology of Cancer Université Paris-Saclay 91400 Orsay France
| | - Florent Poyer
- CNRS UMR9187, Inserm U1196, Chemistry and Modeling for the Biology of Cancer Institut Curie Université PSL 91400 Orsay France
- CNRS UMR9187, Inserm U1196, Chemistry and Modeling for the Biology of Cancer Université Paris-Saclay 91400 Orsay France
| | - Laura Fourmois
- CNRS UMR9187, Inserm U1196, Chemistry and Modeling for the Biology of Cancer Institut Curie Université PSL 91400 Orsay France
- CNRS UMR9187, Inserm U1196, Chemistry and Modeling for the Biology of Cancer Université Paris-Saclay 91400 Orsay France
| | - Delphine Naud‐Martin
- CNRS UMR9187, Inserm U1196, Chemistry and Modeling for the Biology of Cancer Institut Curie Université PSL 91400 Orsay France
- CNRS UMR9187, Inserm U1196, Chemistry and Modeling for the Biology of Cancer Université Paris-Saclay 91400 Orsay France
| | - Kadda Medjoubi
- Synchrotron SOLEIL, BP 48 Saint-Aubin 91192 Gif sur Yvette France
| | - Andrea Somogyi
- Synchrotron SOLEIL, BP 48 Saint-Aubin 91192 Gif sur Yvette France
| | - Gabrielle Schanne
- Laboratoire des biomolécules, LBM, Département de chimie Ecole normale supérieure PSL University Sorbonne université, CNRS 75005 Paris France
| | - Lucas Henry
- Laboratoire des biomolécules, LBM, Département de chimie Ecole normale supérieure PSL University Sorbonne université, CNRS 75005 Paris France
| | - Nicolas Delsuc
- Laboratoire des biomolécules, LBM, Département de chimie Ecole normale supérieure PSL University Sorbonne université, CNRS 75005 Paris France
| | - Clotilde Policar
- Laboratoire des biomolécules, LBM, Département de chimie Ecole normale supérieure PSL University Sorbonne université, CNRS 75005 Paris France
| | - Helene C. Bertrand
- Laboratoire des biomolécules, LBM, Département de chimie Ecole normale supérieure PSL University Sorbonne université, CNRS 75005 Paris France
| | - Florence Mahuteau‐Betzer
- CNRS UMR9187, Inserm U1196, Chemistry and Modeling for the Biology of Cancer Institut Curie Université PSL 91400 Orsay France
- CNRS UMR9187, Inserm U1196, Chemistry and Modeling for the Biology of Cancer Université Paris-Saclay 91400 Orsay France
| |
Collapse
|