1
|
Phan NM, Nguyen TL, Min DK, Kim J. Mesoporous polydopamine nanoparticle-based tolerogenic vaccine induces antigen-specific immune tolerance to prevent and treat autoimmune multiple sclerosis. Biomaterials 2025; 316:122997. [PMID: 39662275 DOI: 10.1016/j.biomaterials.2024.122997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 10/24/2024] [Accepted: 12/04/2024] [Indexed: 12/13/2024]
Abstract
Multiple sclerosis (MS) is a chronic neurological disorder derived from autoreactive immune system attacking the protective myelin sheath that surrounds nerves in the central nervous system (CNS). Here, a tolerogenic nanovaccine for generating an antigen-specific immune tolerance for treating MS is proposed. It consisted of a mesoporous polydopamine (mPDA) nanoparticle, characterized by high reactive oxygen species (ROS)-scavenging property, loaded with MS-derived autoantigen. Intravenous vaccination of autoantigen-loaded mPDA could induce tolerogenic dendritic cells (DCs) with low expression of co-stimulatory molecules while presenting peptide epitopes. The tolerogenic DCs induced peripheral regulatory T-cells (Tregs), thereby reducing infiltration of autoreactive CD4+ T-cells and inflammatory antigen-presenting cells (APCs) into the CNS. In MS-mimicking mouse model, the tolerogenic nanovaccine prevented MS development in the early therapeutic setup and exhibited an enhanced recovery from complete paralysis in the late therapeutic model. The current platform could be exploited to treat other autoimmune diseases where disease-dependent autoantigen peptides are delivered.
Collapse
Affiliation(s)
- Ngoc Man Phan
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Thanh Loc Nguyen
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Dong Kwang Min
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Jaeyun Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea; Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea; Department of MetaBioHealth, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea; Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea; Institute of Quantum Biophysics (IQB), Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
2
|
Wang S, Mei Z, Chen J, Zhao K, Kong R, McClements L, Zhang H, Liao A, Liu C. Maternal Immune Activation: Implications for Congenital Heart Defects. Clin Rev Allergy Immunol 2025; 68:36. [PMID: 40175706 DOI: 10.1007/s12016-025-09049-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2025] [Indexed: 04/04/2025]
Abstract
Congenital heart defects (CHD) are the most common major birth defects and one of the leading causes of death from congenital defects after birth. CHD can arise in pregnancy from the combination of genetic and non-genetic factors. The maternal immune activation (MIA) hypothesis is widely implicated in embryonic neurodevelopmental abnormalities. MIA has been found to be associated with the development of asthma, diabetes mellitus, and other diseases in the offspring. Given the important role of cardiac immune cells and cytokines in embryonic heart development, it is hypothesized that MIA may play a significant role in embryonic heart development. This review aims to stimulate further investigation into the relationship between MIA and CHD and to highlight the gaps in the knowledge. It evaluates the impact of MIA on CHD in the context of pregnancy complications, immune-related diseases, infections, and environmental and lifestyle factors. The review outlines the mechanisms by which immune cells and their secretome indirectly regulate the immuno-microenvironment of the embryonic heart by influencing placental development. Furthermore, the inflammatory cytokines cross the placenta to induce related reactions including oxidative stress in the embryonic heart directly. This review delineates the role of MIA in CHD and underscores the impact of maternal factors, especially immune factors, as well as the embryonic cardiac immuno-microenvironment, on embryonic heart development. This review extends our understanding of the importance of MIA in the pathogenesis of CHD and provides important insights into prenatal prevention and treatment strategies for this congenital condition.
Collapse
Affiliation(s)
- Sixing Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
- Second Clinical Department, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Zilin Mei
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Jin Chen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Kai Zhao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Ruize Kong
- Department of Vascular Surgery, NHC Key Laboratory of Healthy Birth and Birth Defect Prevention in Western China First People'S Hospital of Yunnan Province, Kunming, PR China
| | - Lana McClements
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Huiping Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.
| | - Aihua Liao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.
| | - Chunyan Liu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.
| |
Collapse
|
3
|
Rogozynski NP, Dyke SAR, Dixon B. Development of a novel assay for extensive characterization of the germination conditions of Spraguea americanus: a microsporidian parasite of the American anglerfish (Lophius americanus). Int J Parasitol 2025:S0020-7519(25)00037-2. [PMID: 40043896 DOI: 10.1016/j.ijpara.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/14/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025]
Abstract
The microsporidia are a widespread group of intracellular parasites which infect a broad range of hosts across the animal kingdom. In particular, the microsporidian Spraguea americanus has received considerable attention in recent years due to its role as an endemic pathogen in American anglerfish (Lophius americanus), a species of highly valued finfish currently at risk due to overfishing. However, like many species of microsporidia, the germination responses of S. americanus remain poorly described. This study outlines a novel in vitro germination assay for microsporidians, which is then used to comprehensively survey the germination responses of S. americanus under a variety of conditions. The results of this investigation indicate that S. americanus is responsive to mechanical pressure, hydrogen peroxide, sodium carbonate/bicarbonate and divalent cations, but not to mucus or mucin proteins as seen in closely related species. These observations provide evidence to refute the predominant hypothesis that members of Spraguea enter their hosts via the subcutaneous mucosal glands. In addition to providing much needed insight into the transmission of Spraguea spp., this study is among the first to extensively assess the germination responses of a single species of microsporidia; data which may lend itself to a more complete understanding of the mechanisms underlying the initiation of germination in microsporidia or support the establishment of new in vitro models for economically relevant species.
Collapse
Affiliation(s)
| | - Sophie A R Dyke
- Department of Biology, University of Waterloo, Waterloo, Canada
| | - Brian Dixon
- Department of Biology, University of Waterloo, Waterloo, Canada.
| |
Collapse
|
4
|
Dourado TMH, Nascimento DC, Rosa MH, Assis VO, Pimenta GF, Alves-Filho JC, Tirapelli CR. Mineralocorticoid receptor antagonism partially prevents dysfunction of T cell maturation in rats chronically treated with ethanol. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:1707-1720. [PMID: 39172146 DOI: 10.1007/s00210-024-03382-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024]
Abstract
Ethanol consumption induces thymic atrophy and affects T cell maturation in the thymus. However, the mechanisms underlying such effects still need to be fully understood. We attempted to investigate the role of mineralocorticoid receptors (MR) on ethanol-induced thymic atrophy, T cell maturation dysfunction, and the role of oxidative stress in such responses. Male Wistar Hannover rats were treated with ethanol (20%; in volume ratio) and/or potassium canrenoate, an antagonist of MR (MRA; 30 mg/kg/day, gavage) for five weeks. Blockade of MR prevented ethanol-induced increases in the number of double-positive (CD4+CD8+), CD8+ single-positive (CD4-CD8+), CD4+ single-positive (CD4+CD8-), and Foxp3+CD4+ (Treg) cells in the thymus. Ethanol increased NOX2-derived superoxide (O2•-), lipoperoxidation, and superoxide dismutase (SOD) activity in the thymus. Pretreatment with the MRA fully prevented these responses. Apocynin, an antioxidant, prevented ethanol-induced increases in the number of double-positive and CD8+ single-positive cells but failed to prevent the rise in the number of CD4+ single-positive and Treg cells induced by ethanol. Apocynin, but not the MRA, prevented thymic atrophy induced by ethanol. Our findings provided novel evidence for the participation of MR in thymic dysfunction induced by ethanol consumption. Oxidative stress mediates the increase in double-positive and CD8+ single-positive cells in response to MR activation, while positive regulation of CD4+ single-positive and Treg cells is independent of oxidative stress. Oxidative stress is a significant mechanism of thymic atrophy associated with ethanol consumption, but this response is independent of MR activation.
Collapse
Affiliation(s)
- Thales M H Dourado
- Laboratório de Farmacologia, Escola de Enfermagem de Ribeirão Preto, Universidade de São Paulo (USP), Avenida Bandeirantes 3900, Ribeirão Preto, São Paulo, CEP 14040-902, Brazil
- Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto, USP, Ribeirão Preto, São Paulo, Brazil
| | - Daniele C Nascimento
- Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto, USP, Ribeirão Preto, São Paulo, Brazil
- Centro de Pesquisa Em Doenças Inflamatórias, Faculdade de Medicina de Ribeirão Preto, USP, Ribeirão Preto, São Paulo, Brazil
| | - Marcos H Rosa
- Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto, USP, Ribeirão Preto, São Paulo, Brazil
- Centro de Pesquisa Em Doenças Inflamatórias, Faculdade de Medicina de Ribeirão Preto, USP, Ribeirão Preto, São Paulo, Brazil
| | - Victor O Assis
- Laboratório de Farmacologia, Escola de Enfermagem de Ribeirão Preto, Universidade de São Paulo (USP), Avenida Bandeirantes 3900, Ribeirão Preto, São Paulo, CEP 14040-902, Brazil
- Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto, USP, Ribeirão Preto, São Paulo, Brazil
| | - Gustavo F Pimenta
- Laboratório de Farmacologia, Escola de Enfermagem de Ribeirão Preto, Universidade de São Paulo (USP), Avenida Bandeirantes 3900, Ribeirão Preto, São Paulo, CEP 14040-902, Brazil
- Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto, USP, Ribeirão Preto, São Paulo, Brazil
| | - José C Alves-Filho
- Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto, USP, Ribeirão Preto, São Paulo, Brazil
- Centro de Pesquisa Em Doenças Inflamatórias, Faculdade de Medicina de Ribeirão Preto, USP, Ribeirão Preto, São Paulo, Brazil
| | - Carlos R Tirapelli
- Laboratório de Farmacologia, Escola de Enfermagem de Ribeirão Preto, Universidade de São Paulo (USP), Avenida Bandeirantes 3900, Ribeirão Preto, São Paulo, CEP 14040-902, Brazil.
- Departamento de Ciências BioMoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, USP, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
5
|
Costa B, Gouveia MJ, Vale N. Oxidative Stress Induced by Antivirals: Implications for Adverse Outcomes During Pregnancy and in Newborns. Antioxidants (Basel) 2024; 13:1518. [PMID: 39765846 PMCID: PMC11727424 DOI: 10.3390/antiox13121518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 01/15/2025] Open
Abstract
Oxidative stress plays a critical role in various physiological and pathological processes, particularly during pregnancy, where it can significantly affect maternal and fetal health. In the context of viral infections, such as those caused by Human Immunodeficiency Virus (HIV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), oxidative stress may exacerbate complications by disrupting cellular function and immune responses. Antiviral drugs, while essential in managing these infections, can also contribute to oxidative stress, potentially impacting both the mother and the developing fetus. Understanding the mechanisms by which antivirals can contribute to oxidative stress and examination of pharmacokinetic changes during pregnancy that influence drug metabolism is essential. Some research indicates that antiretroviral drugs can induce oxidative stress and mitochondrial dysfunction during pregnancy, while other studies suggest that their use is generally safe. Therefore, concerns about long-term health effects persist. This review delves into the complex interplay between oxidative stress, antioxidant defenses, and antiviral therapies, focusing on strategies to mitigate potential oxidative damage. By addressing gaps in our understanding, we highlight the importance of balancing antiviral efficacy with the risks of oxidative stress. Moreover, we advocate for further research to develop safer, more effective therapeutic approaches during pregnancy. Understanding these dynamics is essential for optimizing health outcomes for both mother and fetus in the context of viral infections during pregnancy.
Collapse
Affiliation(s)
- Bárbara Costa
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Centre for Parasite Biology and Immunology, Department of Infectious Diseases, National Health Institute Dr. Ricardo Jorge, 4000-055 Porto, Portugal;
| | - Maria João Gouveia
- Centre for Parasite Biology and Immunology, Department of Infectious Diseases, National Health Institute Dr. Ricardo Jorge, 4000-055 Porto, Portugal;
- Center for the Study in Animal Science (CECA/ICETA), University of Porto, 4051-401 Porto, Portugal
| | - Nuno Vale
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| |
Collapse
|
6
|
Li J, Tian Z, Zhang T, Jin J, Zhang X, Xie P, Lin H, Gu J, Wu Y, Wang X, Zhang S, Yan X, Guo D, Wang Z, Zhang Q. Single-cell view and a novel protective macrophage subset in perivascular adipose tissue in T2DM. Cell Mol Biol Lett 2024; 29:148. [PMID: 39627688 PMCID: PMC11616190 DOI: 10.1186/s11658-024-00668-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 11/14/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Vasculopathy underlies diabetic complications, with perivascular adipose tissue (PVAT) playing crucial roles in its development. However, the changes in the cellular composition and function of PVAT, including the specific cell subsets and mechanisms implicated in type 2 diabetes mellitus (T2DM) vasculopathy, remain unclear. METHODS To address the above issues, we performed single-cell RNA sequencing on the stromal vascular fraction (SVF) of PVAT from normal and T2DM rats. Then, various bioinformatics tools and functional experiments were used to investigate the characteristic changes in the cellular profile of diabetic PVAT SVF, their implications, and the underlying mechanisms. RESULTS Our study reveals the single-cell landscape of the SVF of PVAT, demonstrating its considerable heterogeneity and significant alterations in T2DM, including an enhanced inflammatory response and elevated proportions of macrophages and natural killer (NK) cells. Moreover, macrophages are critical hubs for cross-talk among various cell populations. Notably, we identified a decreased Pdpn+ macrophage subpopulation in the PVAT of T2DM rats and confirmed this in mice and humans. In vitro and in vivo studies demonstrated that Pdpn+ macrophages alleviated insulin resistance and modulated adipokine/cytokine expression in adipocytes via the Pla2g2d-DHA/EPA-GPR120 pathway. This subset also enhances the function of vascular endothelial and smooth muscle cells, inhibits vascular inflammation and oxidative stress, and improves vasodilatory function, thereby protecting blood vessels. CONCLUSION Pdpn+ macrophages exhibit significant vascular protective effects by alleviating insulin resistance and modulating adipokine/cytokine expression in PVAT adipocytes. This macrophage subtype may therefore play pivotal roles in mitigating vascular complications in T2DM. Our findings also underscore the critical role of immune-metabolic cross-talk in maintaining tissue homeostasis.
Collapse
Affiliation(s)
- Jiaxuan Li
- Department of Cardiology, State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, 250012, China
- Shandong Provincial Hospital, Shandong Laboratory Animal Center, Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, 250021, China
- Key Laboratory of Endocrine Glucose and Lipids Metabolism and Brain Aging, Chinese Ministry of Education, Shandong First Medical University, Jinan, 250021, China
| | - Zhenyu Tian
- Department of Cardiology, State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Tongxue Zhang
- Department of Cardiology, State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Jiajia Jin
- Department of Cardiology, State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Xinjie Zhang
- Department of Biology, University College London, London, NW1 2HE, UK
| | - Panpan Xie
- Department of Breast and Thyroid Surgery, Liaocheng People's Hospital, Liaocheng, 252000, China
| | - Haiyan Lin
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Junfei Gu
- Department of Cardiology, State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, 250012, China
- Department of Geriatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Yingjie Wu
- Shandong Provincial Hospital, Shandong Laboratory Animal Center, Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, 250021, China
- Key Laboratory of Endocrine Glucose and Lipids Metabolism and Brain Aging, Chinese Ministry of Education, Shandong First Medical University, Jinan, 250021, China
| | - Xiaowei Wang
- Department of Cardiology, State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Shucui Zhang
- Department of Cardiology, State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Xuefang Yan
- Department of Cardiology, State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Dong Guo
- Department of Neurology, Liaocheng People's Hospital, Liaocheng, 252000, China.
| | - Zhe Wang
- Department of Geriatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China.
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China.
| | - Qunye Zhang
- Department of Cardiology, State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, 250012, China.
| |
Collapse
|
7
|
Kuehu DL, Fu Y, Nasu M, Yang H, Khadka VS, Deng Y. Effects of Heat-Induced Oxidative Stress and Astaxanthin on the NF-kB, NFE2L2 and PPARα Transcription Factors and Cytoprotective Capacity in the Thymus of Broilers. Curr Issues Mol Biol 2024; 46:9215-9233. [PMID: 39194761 DOI: 10.3390/cimb46080544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024] Open
Abstract
The thymus, a central lymphoid organ in animals, serves as the site for T cell development, differentiation and maturation, vital to adaptive immunity. The thymus is critical for maintaining tissue homeostasis to protect against tumors and tissue damage. An overactive or prolonged immune response can lead to oxidative stress from increased production of reactive oxygen species. Heat stress induces oxidative stress and overwhelms the natural antioxidant defense mechanisms. This study's objectives were to investigate the protective properties of astaxanthin against heat-induced oxidative stress and apoptosis in the chicken thymus, by comparing the growth performance and gene signaling pathways among three groups: thermal neutral, heat stress, and heat stress with astaxanthin. The thermal neutral temperature was 21-22 °C, and the heat stress temperature was 32-35 °C. Both heat stress groups experienced reduced growth performance, while the astaxanthin-treated group showed a slightly lesser decline. The inflammatory response and antioxidant defense system were activated by the upregulation of the NF-kB, NFE2L2, PPARα, cytoprotective capacity, and apoptotic gene pathways during heat stress compared to the thermal neutral group. However, expression levels showed no significant differences between the thermal neutral and heat stress with antioxidant groups, suggesting that astaxanthin may mitigate inflammation and oxidative stress damage.
Collapse
Affiliation(s)
- Donna Lee Kuehu
- Bioinformatics Core, Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
- Department of Molecular Biosciences and Bioengineering, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Yuanyuan Fu
- Bioinformatics Core, Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - Masaki Nasu
- Bioinformatics Core, Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - Hua Yang
- Bioinformatics Core, Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - Vedbar S Khadka
- Bioinformatics Core, Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - Youping Deng
- Bioinformatics Core, Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| |
Collapse
|
8
|
Lei S, Liu C, Zheng TX, Fu W, Huang MZ. The relationship of redox signaling with the risk for atherosclerosis. Front Pharmacol 2024; 15:1430293. [PMID: 39148537 PMCID: PMC11324460 DOI: 10.3389/fphar.2024.1430293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/09/2024] [Indexed: 08/17/2024] Open
Abstract
Oxidative balance plays a pivotal role in physiological homeostasis, and many diseases, particularly age-related conditions, are closely associated with oxidative imbalance. While the strategic role of oxidative regulation in various diseases is well-established, the specific involvement of oxidative stress in atherosclerosis remains elusive. Atherosclerosis is a chronic inflammatory disorder characterized by plaque formation within the arteries. Alterations in the oxidative status of vascular tissues are linked to the onset, progression, and outcome of atherosclerosis. This review examines the role of redox signaling in atherosclerosis, including its impact on risk factors such as dyslipidemia, hyperglycemia, inflammation, and unhealthy lifestyle, along with dysregulation, vascular homeostasis, immune system interaction, and therapeutic considerations. Understanding redox signal transduction and the regulation of redox signaling will offer valuable insights into the pathogenesis of atherosclerosis and guide the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Sujuan Lei
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Chen Liu
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Tian-Xiang Zheng
- Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, Academician (Expert) Workstation of Sichuan Province, Department of General Surgery (Hepatopancreatobiliary Surgery), Chongqing, Sichuan, China
| | - Wenguang Fu
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, Academician (Expert) Workstation of Sichuan Province, Department of General Surgery (Hepatopancreatobiliary Surgery), Chongqing, Sichuan, China
| | - Mei-Zhou Huang
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, Academician (Expert) Workstation of Sichuan Province, Department of General Surgery (Hepatopancreatobiliary Surgery), Chongqing, Sichuan, China
| |
Collapse
|
9
|
Gao Y, Huang D, Huang S, Li H, Xia B. Rational design of ROS generation nanosystems to regulate innate immunity of macrophages, dendrtical and natural killing cells for immunotherapy. Int Immunopharmacol 2024; 139:112695. [PMID: 39024751 DOI: 10.1016/j.intimp.2024.112695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/01/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
Innate immunity serves as the first line of host defense in the body against pathogenic infections or malignant diseases. Reactive oxygen species (ROS), as vital signaling mediators, can efficiently elicit innate immune responses to oxidative-related stress or damage. In the era of nanomedicine, various immunostimulatory nanosystems have been extensively designed and synthesized to elicit immune responses for the immunotherapy of cancer or infectious diseases. In this review, we emphasize that ROS derived from nanosystems regulates innate immune cells to potentiate immunotherapeutic efficacy, such as primarily dendritic cells, macrophages, or natural killer cells. Meanwhile, we also summarize the pathway of ROS generation triggered by exogenous nanosystems in innate immune cells of DCs, macrophages, and NK cells.
Collapse
Affiliation(s)
- Yan Gao
- College of Science, State Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing 210037, PR China
| | - Di Huang
- College of Science, State Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing 210037, PR China
| | - Shuodan Huang
- College of Science, State Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing 210037, PR China
| | - Huiying Li
- Department of Geriatric Oncology, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, PR China.
| | - Bing Xia
- College of Science, State Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing 210037, PR China; Department of Geriatric Oncology, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, PR China.
| |
Collapse
|
10
|
Ramos-González EJ, Bitzer-Quintero OK, Ortiz G, Hernández-Cruz JJ, Ramírez-Jirano LJ. Relationship between inflammation and oxidative stress and its effect on multiple sclerosis. Neurologia 2024; 39:292-301. [PMID: 38553104 DOI: 10.1016/j.nrleng.2021.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/28/2021] [Indexed: 04/02/2024] Open
Abstract
INTRODUCTION This paper highlights the relationship of inflammation and oxidative stress as damage mechanisms of Multiple Sclerosis (MS), considered an inflammatory and autoimmune disease. DEVELOPMENT The oxidative stress concept has been defined by an imbalance between oxidants and antioxidants in favor of the oxidants. There is necessary to do physiological functions, like the respiration chain, but in certain conditions, the production of reactive species overpassed the antioxidant systems, which could cause tissue damage. On the other hand, it is well established that inflammation is a complex reaction in the vascularized connective tissue in response to diverse stimuli. However, an unregulated prolonged inflammatory process also can induce tissue damage. CONCLUSION Both inflammation and oxidative stress are interrelated since one could promote the other, leading to a toxic feedback system, which contributes to the inflammatory and demyelination process in MS.
Collapse
Affiliation(s)
- E J Ramos-González
- Unidad de Investigacion Biomedica de Zacatecas, Instituto Mexicano del Seguro Social, Zacatecas, Zacatecas, Mexico
| | - O K Bitzer-Quintero
- División de Neurociencias, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, Mexico
| | - G Ortiz
- Departamento de Diciplinas Metodológicas y Filosóficas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - J J Hernández-Cruz
- Departamento de Diciplinas Metodológicas y Filosóficas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - L J Ramírez-Jirano
- División de Neurociencias, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, Mexico.
| |
Collapse
|
11
|
Han X, Zhang M, Yan L, Fu Y, Kou H, Shang C, Wang J, Liu H, Jiang C, Wang J, Cheng T. Role of dendritic cells in spinal cord injury. CNS Neurosci Ther 2024; 30:e14593. [PMID: 38528832 PMCID: PMC10964036 DOI: 10.1111/cns.14593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/15/2023] [Accepted: 12/10/2023] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND Inflammation can worsen spinal cord injury (SCI), with dendritic cells (DCs) playing a crucial role in the inflammatory response. They mediate T lymphocyte differentiation, activate microglia, and release cytokines like NT-3. Moreover, DCs can promote neural stem cell survival and guide them toward neuron differentiation, positively impacting SCI outcomes. OBJECTIVE This review aims to summarize the role of DCs in SCI-related inflammation and identify potential therapeutic targets for treating SCI. METHODS Literature in PubMed and Web of Science was reviewed using critical terms related to DCs and SCI. RESULTS The study indicates that DCs can activate microglia and astrocytes, promote T-cell differentiation, increase neurotrophin release at the injury site, and subsequently reduce secondary brain injury and enhance functional recovery in the spinal cord. CONCLUSIONS This review highlights the repair mechanisms of DCs and their potential therapeutic potential for SCI.
Collapse
Affiliation(s)
- Xiaonan Han
- Department of OrthopaedicsThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Mingkang Zhang
- Department of OrthopaedicsThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Liyan Yan
- Department of OrthopaedicsThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Yikun Fu
- Department of OrthopaedicsThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Hongwei Kou
- Department of OrthopaedicsThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Chunfeng Shang
- Department of OrthopaedicsThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Junmin Wang
- Department of Anatomy, School of Basic Medical SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Hongjian Liu
- Department of OrthopaedicsThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Chao Jiang
- Department of NeurologyThe Fifth Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Jian Wang
- Department of Anatomy, School of Basic Medical SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Tian Cheng
- Department of OrthopaedicsThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| |
Collapse
|
12
|
Wang Y, Zhang Q, He T, Wang Y, Lu T, Wang Z, Wang Y, Lin S, Yang K, Wang X, Xie J, Zhou Y, Hong Y, Liu WH, Mao K, Cheng SC, Chen X, Li Q, Xiao N. The transcription factor Zeb1 controls homeostasis and function of type 1 conventional dendritic cells. Nat Commun 2023; 14:6639. [PMID: 37863917 PMCID: PMC10589231 DOI: 10.1038/s41467-023-42428-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 10/11/2023] [Indexed: 10/22/2023] Open
Abstract
Type 1 conventional dendritic cells (cDC1) are the most efficient cross-presenting cells that induce protective cytotoxic T cell response. However, the regulation of their homeostasis and function is incompletely understood. Here we observe a selective reduction of splenic cDC1 accompanied by excessive cell death in mice with Zeb1 deficiency in dendritic cells, rendering the mice more resistant to Listeria infection. Additionally, cDC1 from other sources of Zeb1-deficient mice display impaired cross-presentation of exogenous antigens, compromising antitumor CD8+ T cell responses. Mechanistically, Zeb1 represses the expression of microRNA-96/182 that target Cybb mRNA of NADPH oxidase Nox2, and consequently facilitates reactive-oxygen-species-dependent rupture of phagosomal membrane to allow antigen export to the cytosol. Cybb re-expression in Zeb1-deficient cDC1 fully restores the defective cross-presentation while microRNA-96/182 overexpression in Zeb1-sufficient cDC1 inhibits cross-presentation. Therefore, our results identify a Zeb1-microRNA-96/182-Cybb pathway that controls cross-presentation in cDC1 and uncover an essential role of Zeb1 in cDC1 homeostasis.
Collapse
Affiliation(s)
- Yan Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Quan Zhang
- National Institute for Data Science in Health and Medicine, Xiamen University, Fujian, 361102, China
- School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Tingting He
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Yechen Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Tianqi Lu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Zengge Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Yiyi Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Shen Lin
- School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Kang Yang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xinming Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Jun Xie
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Ying Zhou
- National Institute for Data Science in Health and Medicine, Xiamen University, Fujian, 361102, China
- School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Yazhen Hong
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Wen-Hsien Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Kairui Mao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Shih-Chin Cheng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xin Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Qiyuan Li
- National Institute for Data Science in Health and Medicine, Xiamen University, Fujian, 361102, China.
- School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China.
- Department of Hematology, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, China.
| | - Nengming Xiao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China.
| |
Collapse
|
13
|
Blander JM, Yee Mon KJ, Jha A, Roycroft D. The show and tell of cross-presentation. Adv Immunol 2023; 159:33-114. [PMID: 37996207 DOI: 10.1016/bs.ai.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Cross-presentation is the culmination of complex subcellular processes that allow the processing of exogenous proteins and the presentation of resultant peptides on major histocompatibility class I (MHC-I) molecules to CD8 T cells. Dendritic cells (DCs) are a cell type that uniquely specializes in cross-presentation, mainly in the context of viral or non-viral infection and cancer. DCs have an extensive network of endovesicular pathways that orchestrate the biogenesis of an ideal cross-presentation compartment where processed antigen, MHC-I molecules, and the MHC-I peptide loading machinery all meet. As a central conveyor of information to CD8 T cells, cross-presentation allows cross-priming of T cells which carry out robust adaptive immune responses for tumor and viral clearance. Cross-presentation can be canonical or noncanonical depending on the functional status of the transporter associated with antigen processing (TAP), which in turn influences the vesicular route of MHC-I delivery to internalized antigen and the cross-presented repertoire of peptides. Because TAP is a central node in MHC-I presentation, it is targeted by immune evasive viruses and cancers. Thus, understanding the differences between canonical and noncanonical cross-presentation may inform new therapeutic avenues against cancer and infectious disease. Defects in cross-presentation on a cellular and genetic level lead to immune-related disease progression, recurrent infection, and cancer progression. In this chapter, we review the process of cross-presentation beginning with the DC subsets that conduct cross-presentation, the signals that regulate cross-presentation, the vesicular trafficking pathways that orchestrate cross-presentation, the modes of cross-presentation, and ending with disease contexts where cross-presentation plays a role.
Collapse
Affiliation(s)
- J Magarian Blander
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, United States; Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, United States; Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, United States; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Cornell University, New York, NY, United States; Immunology and Microbial Pathogenesis Programs, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, United States.
| | - Kristel Joy Yee Mon
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, United States; Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Atimukta Jha
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, United States; Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Dylan Roycroft
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, United States; Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, United States
| |
Collapse
|
14
|
Influenza Virus Infection during Pregnancy as a Trigger of Acute and Chronic Complications. Viruses 2022; 14:v14122729. [PMID: 36560733 PMCID: PMC9786233 DOI: 10.3390/v14122729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
Influenza A virus (IAV) infection during pregnancy disrupts maternal and fetal health through biological mechanisms, which are to date poorly characterised. During pregnancy, the viral clearance mechanisms from the lung are sub-optimal and involve hyperactive innate and adaptive immune responses that generate wide-spread inflammation. Pregnancy-related adaptations of the immune and the cardiovascular systems appear to result in delayed recovery post-viral infection, which in turn promotes a prolonged inflammatory phenotype, increasing disease severity, and causing maternal and fetal health problems. This has immediate and long-term consequences for the mother and fetus, with complications including acute cardiopulmonary distress syndrome in the mother that lead to perinatal complications such as intrauterine growth restriction (IUGR), and birth defects; cleft lip, cleft palate, neural tube defects and congenital heart defects. In addition, an increased risk of long-term neurological disorders including schizophrenia in the offspring is reported. In this review we discuss the pathophysiology of IAV infection during pregnancy and its striking similarity to other well-established complications of pregnancy such as preeclampsia. We discuss general features of vascular disease with a focus on vascular inflammation and define the "Vascular Storm" that is triggered by influenza infection during pregnancy, as a pivotal disease mechanism for short and long term cardiovascular complications.
Collapse
|
15
|
Rana M, Setia M, Suvas PK, Chakraborty A, Suvas S. Diphenyleneiodonium Treatment Inhibits the Development of Severe Herpes Stromal Keratitis Lesions. J Virol 2022; 96:e0101422. [PMID: 35946937 PMCID: PMC9472634 DOI: 10.1128/jvi.01014-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 07/21/2022] [Indexed: 11/20/2022] Open
Abstract
Reactive oxygen species (ROS) play an important role in tissue inflammation. In this study, we measured the intracellular level of ROS in herpes stromal keratitis (HSK) corneas and determined the outcome of manipulating ROS level on HSK severity. Our results showed the predominance of ROS generation in neutrophils but not CD4 T cells in HSK corneas. NADPH oxidase 2 (NOX2) enzyme is known to generate ROS in myeloid cells. Our results showed baseline expression of different NOX2 subunits in uninfected corneas. After corneal herpes simplex virus-1 (HSV-1) infection, an enhanced expression of NOX2 subunits was detected in infected corneas. Furthermore, flow cytometry results showed a higher level of gp91 (Nox2 subunit) protein in neutrophils from HSK corneas, suggesting the involvement of NOX2 in generating ROS. However, no significant decrease in ROS level was noticed in neutrophils from HSV-1-infected gp91-/- mice than in C57BL/6J (B6) mice, suggesting NOX2 is not the major contributor in generating ROS in neutrophils. Next, we used diphenyleneiodonium (DPI), a flavoenzyme inhibitor, to pharmacologically manipulate the ROS levels in HSV-1-infected mice. Surprisingly, the neutrophils from peripheral blood and corneas of the DPI-treated group exhibited an increased level of ROS than the vehicle-treated group of infected B6 mice. Excessive ROS is known to cause cell death. Accordingly, DPI treatment resulted in a significant decrease in neutrophil frequency in peripheral blood and corneas of infected mice and was associated with reduced corneal pathology. Together, our results suggest that regulating ROS levels in neutrophils can ameliorate HSK severity. IMPORTANCE Neutrophils are one of the primary immune cell types involved in causing tissue damage after corneal HSV-1 infection. This study demonstrates that intracellular ROS production in the neutrophils in HSK lesions is not NOX2 dependent. Furthermore, manipulating ROS levels in neutrophils ameliorates the severity of HSK lesions. Our findings suggest that excessive intracellular ROS in neutrophils disrupt redox homeostasis and affect their survival, resulting in a decrease in HSK lesion severity.
Collapse
Affiliation(s)
- Mashidur Rana
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Mizumi Setia
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Pratima K. Suvas
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Anish Chakraborty
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Susmit Suvas
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
16
|
Zhao C, Deng H, Chen X. Harnessing immune response using reactive oxygen Species-Generating/Eliminating inorganic biomaterials for disease treatment. Adv Drug Deliv Rev 2022; 188:114456. [PMID: 35843505 DOI: 10.1016/j.addr.2022.114456] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/27/2022] [Accepted: 07/11/2022] [Indexed: 11/25/2022]
Abstract
With the increasing understanding of various biological functions mediated by reactive oxygen species (ROS) in the immune system, a number of studies have been designed to develop ROS-generating/eliminating strategies to selectively modulate immunogenicity for disease treatment. These strategies potentially exploit ROS-modulating inorganic biomaterials to harness host immunity to maximize the therapeutic potency by eliciting a favorable immune response. Inorganic biomaterial-guided in vivo ROS scavenging can exhibit several effects to: i) reduce the secretion of pro-inflammatory factors, ii) induce the phenotypic transition of macrophages from inflammatory M1 to immunosuppressive M2 phase, iii) minimize the recruitment and infiltration of immune cells. and/or iv) suppress the activation of nuclear factor kappa-B (NF-κB) pathway. Inversely, ROS-generating inorganic biomaterials have been found to be capable of: i) inducing immunogenic cell death (ICD), ii) reprograming tumor-associated macrophages from M2 to M1 phenotypes, iii) activating inflammasomes to stimulate tumor immunogenicity, and/or iv) recruiting phagocytes for antimicrobial therapy. This review provides a systematic and up-to-date overview on the progress related to ROS-nanotechnology mediated immunomodulation. We highlight how the ROS-generating/eliminating inorganic biomaterials can converge with immunomodulation and ultimately elicit an effective immune response against inflammation, autoimmune diseases, and/or cancers. We expect that contents presented in this review will be beneficial for the future advancements of ROS-based nanotechnology and its potential applications in this evolving field.
Collapse
Affiliation(s)
- Caiyan Zhao
- Engineering Research Center of Molecular & Neuroimaging, Ministry of Education School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Hongzhang Deng
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore 119074, Singapore; Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore 119074, Singapore; Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
| |
Collapse
|
17
|
LONG-TERM EFFECTS OF SHAM SURGERY ON PHAGOCYTE FUNCTIONS IN RATS. BIOTECHNOLOGIA ACTA 2022. [DOI: 10.15407/biotech15.02.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Animal models of inflammatory disorders, including those of the nervous system are commonly used to explore the pathophysiological role of immune cell response in disease triggering and course and to develop biotechnology products for therapeutic use. Modeling some of these disorders, particularly neurodegenerative diseases, implies surgical manipulations for the intracerebral introduction of disease-initiating substances (toxins, amyloids etc.). Design of these experiments involves the use of sham-operated animals as a control of non-specific intrinsic side-effects elicited by surgical manipulations per se, including local and systemic inflammation, where phagocytic cells are key participants. Short-term post-surgical immunomodulatory effects are widely reported. However, no study thus far has examined the long term effects of sham-surgery on phagocyte functions. The purpose of this study was to evaluate the effect of sham-surgery, commonly used for modeling neurodegenerative diseases, on phagocyte functions in the far terms after the surgical manipulations. Materials and Methods. Adult male Wistar rats were used in the study. Sham surgery consisted of stereotactic unilateral injection of saline solution into the median forebrain bundle (sham-operated 1, SO1) or directly into the substantia nigra (sham-operated 2, SO2). Before the placebo surgery, animals were anaesthetized using nembutal and ketamine/xylazine correspondingly. Functional characteristics (phagocytic activity, oxidative metabolism, CD80/86 and CD206 expression) of phagocytes (microglia, peritoneal macrophages, circulating monocytes and granulocytes) were examined by flow cytometry. Differential leukocyte count was conducted using hematological analyzer. Results. Phagocytes from animals underwent of different protocols of placebo surgery, demonstrated various patterns of functional changes on day 29 after the manipulations. In animals from SO1 group, we observed signs of residual neuroinflammation (pro-inflammatory shift of microglia functional profile) along with ongoing resolution of systemic inflammation (anti-inflammatory metabolic shift of circulating phagocytes and peritoneal macrophages). In rats from SO2 group, pro-inflammatory polarized activation of peritoneal phagocytes was registered along with anti-inflammatory shift in microglia and circulating phagocytes. Conclusions. Sham surgery influences functions of phagocytic cells of different locations even in the far terms after the manipulations. These effects can be considered as combined long-term consequences of surgical brain injury and the use of anesthetics. Our observations evidences, that sham associated non-specific immunomodulatory effects should always be taken into consideration in animal models of inflammatory central nervous system diseases.
Collapse
|
18
|
Yang G, Postoak JL, Song W, Martinez J, Zhang J, Wu L, Van Kaer L. Dendritic cell PIK3C3/VPS34 controls the pathogenicity of CNS autoimmunity independently of LC3-associated phagocytosis. Autophagy 2022; 18:161-170. [PMID: 33960279 PMCID: PMC8865280 DOI: 10.1080/15548627.2021.1922051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/12/2021] [Accepted: 04/19/2021] [Indexed: 01/13/2023] Open
Abstract
PIK3C3/VPS34 is a key player in macroautophagy/autophagy and MAP1LC3/LC3-associated phagocytosis (LAP), which play critical roles in dendritic cell (DC) function. In this study, we assessed the contribution of PIK3C3 to DC function during experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). We found that Pik3c3-deficient DCs exhibit attenuated capacity to reactivate encephalitogenic T cells in the central nervous system, leading to reduced incidence and severity of EAE in DC-specific Pik3c3-deficient mice. Additionally, animals with a DC-specific deficiency in Rb1cc1/Fip200 but not Rubcn were protected against EAE, suggesting that the EAE phenotype of DC-specific Pik3c3-deficient mice is due to defective canonical autophagy rather than LAP. Collectively, our studies have revealed a critical role of PIK3C3 in DC function and the pathogenicity of these cells during EAE, with important implications for the development of immunotherapies for autoimmune diseases such as MS.Abbreviations: ATG: autophagy-related; CNS: central nervous system; DC: dendritic cell; DEG: differentially expressed gene; EAE: experimental autoimmune encephalomyelitis; LAP: LC3-associated phagocytosis; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MHC: major histocompatibility complex; MOG: myelin oligodendrocyte glycoprotein; MS: multiple sclerosis; PIK3C3/VPS34: phosphatidylinositol 3-kinase catalytic subunit type 3; ROS: reactive oxygen species.
Collapse
Affiliation(s)
- Guan Yang
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - J. Luke Postoak
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Wenqiang Song
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jennifer Martinez
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Jianhua Zhang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Veterans Affairs, Birmingham Veterans Affairs Medical Center, Birmingham, AL, USA
| | - Lan Wu
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
19
|
Relationship between inflammation and oxidative stress and its effect on multiple sclerosis. Neurologia 2021. [DOI: 10.1016/j.nrl.2021.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
20
|
Su R, Chong G, Dong H, Gu J, Zang J, He R, Sun J, Zhang T, Zhao Y, Zheng X, Yang Y, Li Y, Li Y. Nanovaccine biomineralization for cancer immunotherapy: a NADPH oxidase-inspired strategy for improving antigen cross-presentation via lipid peroxidation. Biomaterials 2021; 277:121089. [PMID: 34481292 DOI: 10.1016/j.biomaterials.2021.121089] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 12/22/2022]
Abstract
Current efforts to develop novel vaccine nanotechnologies to increase cytotoxic T lymphocytes have met the challenges of the limited efficacy of antigen cross-presentation. Recent studies have uncovered a unique biological mechanism by which activation of the NADPH oxidase 2 (NOX2) complex, a major source of reactive oxygen species (ROS), enhances the cross-presentation by antigen-presenting cells (APCs). Inspired by the NOX2 mechanism, we devise biomineralized nanovaccines named NVscp, which are developed by in situ growth of calcium peroxide on nanovaccines self-assembled with the model antigen ovalbumin. The ~80 nm NVscp efficiently flow to the draining lymph nodes, where they accumulate within APC endo-/lysosomes, and generate a rapid burst of ROS in response to the acidic endo-/lysosomal environment with the subsequent endo-/lysosomal lipid peroxidation. Accompanied by the process, NVscp stimulate distinct APCs maturation and antigen presentation to T lymphocytes. Notably, high levels of antigen-specific CD8+ T cell responses, accompanied by the induction of CD4+ T helper cells, are achieved. More importantly, NVscp significantly increase the ratios of intratumoral CD8+ T/regulatory T cells and achieve prominent tumor therapy effects. The NOX2-inspired biomineralized NVscp represent an effective and easily applicable strategy that enables the strong cross-presentation of exogenous vaccine antigens.
Collapse
Affiliation(s)
- Runping Su
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092, PR China
| | - Gaowei Chong
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092, PR China
| | - Haiqing Dong
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092, PR China
| | - Jingjing Gu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092, PR China
| | - Jie Zang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092, PR China
| | - Ruiqing He
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092, PR China
| | - Juanjuan Sun
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092, PR China
| | - Tingting Zhang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092, PR China
| | - Yuge Zhao
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092, PR China
| | - Xiao Zheng
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092, PR China
| | - Yan Yang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092, PR China
| | - Yan Li
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092, PR China
| | - Yongyong Li
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092, PR China.
| |
Collapse
|
21
|
Yang G, Van Kaer L. Therapeutic Targeting of Immune Cell Autophagy in Multiple Sclerosis: Russian Roulette or Silver Bullet? Front Immunol 2021; 12:724108. [PMID: 34531871 PMCID: PMC8438236 DOI: 10.3389/fimmu.2021.724108] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 08/18/2021] [Indexed: 12/15/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) in which the immune system damages the protective insulation surrounding nerve fibers that project from neurons. The pathological hallmark of MS is multiple areas of myelin loss accompanied by inflammation within the CNS, resulting in loss of cognitive function that ultimately leads to paralysis. Recent studies in MS have focused on autophagy, a cellular self-eating process, as a potential target for MS treatment. Here, we review the contribution of immune cell autophagy to the pathogenesis of experimental autoimmune encephalomyelitis (EAE), the prototypic animal model of MS. A better understanding of the role of autophagy in different immune cells to EAE might inform the development of novel therapeutic approaches in MS and other autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Guan Yang
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States
| |
Collapse
|
22
|
Dumas A, Knaus UG. Raising the 'Good' Oxidants for Immune Protection. Front Immunol 2021; 12:698042. [PMID: 34149739 PMCID: PMC8213335 DOI: 10.3389/fimmu.2021.698042] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/18/2021] [Indexed: 12/12/2022] Open
Abstract
Redox medicine is a new therapeutic concept targeting reactive oxygen species (ROS) and secondary reaction products for health benefit. The concomitant function of ROS as intracellular second messengers and extracellular mediators governing physiological redox signaling, and as damaging radicals instigating or perpetuating various pathophysiological conditions will require selective strategies for therapeutic intervention. In addition, the reactivity and quantity of the oxidant species generated, its source and cellular location in a defined disease context need to be considered to achieve the desired outcome. In inflammatory diseases associated with oxidative damage and tissue injury, ROS source specific inhibitors may provide more benefit than generalized removal of ROS. Contemporary approaches in immunity will also include the preservation or even elevation of certain oxygen metabolites to restore or improve ROS driven physiological functions including more effective redox signaling and cell-microenvironment communication, and to induce mucosal barrier integrity, eubiosis and repair processes. Increasing oxidants by host-directed immunomodulation or by exogenous supplementation seems especially promising for improving host defense. Here, we summarize examples of beneficial ROS in immune homeostasis, infection, and acute inflammatory disease, and address emerging therapeutic strategies for ROS augmentation to induce and strengthen protective host immunity.
Collapse
Affiliation(s)
- Alexia Dumas
- Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| | - Ulla G Knaus
- Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
23
|
Targeting Mitochondrial Damage as a Therapeutic for Ileal Crohn's Disease. Cells 2021; 10:cells10061349. [PMID: 34072441 PMCID: PMC8226558 DOI: 10.3390/cells10061349] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 12/15/2022] Open
Abstract
Paneth cell defects in Crohn's disease (CD) patients (called the Type I phenotype) are associated with worse clinical outcomes. Recent studies have implicated mitochondrial dysfunction in Paneth cells as a mediator of ileitis in mice. We hypothesized that CD Paneth cells exhibit impaired mitochondrial health and that mitochondrial-targeted therapeutics may provide a novel strategy for ileal CD. Terminal ileal mucosal biopsies from adult CD and non-IBD patients were characterized for Paneth cell phenotyping and mitochondrial damage. To demonstrate the response of mitochondrial-targeted therapeutics in CD, biopsies were treated with vehicle or Mito-Tempo, a mitochondrial-targeted antioxidant, and RNA transcriptome was analyzed. During active CD inflammation, the epithelium exhibited mitochondrial damage evident in Paneth cells, goblet cells, and enterocytes. Independent of inflammation, Paneth cells in Type I CD patients exhibited mitochondrial damage. Mito-Tempo normalized the expression of interleukin (IL)-17/IL-23, lipid metabolism, and apoptotic gene signatures in CD patients to non-IBD levels. When stratified by Paneth cell phenotype, the global tissue response to Mito-Tempo in Type I patients was associated with innate immune, lipid metabolism, and G protein-coupled receptor (GPCR) gene signatures. Targeting impaired mitochondria as an underlying contributor to inflammation provides a novel treatment approach for CD.
Collapse
|
24
|
Clemen R, Freund E, Mrochen D, Miebach L, Schmidt A, Rauch BH, Lackmann J, Martens U, Wende K, Lalk M, Delcea M, Bröker BM, Bekeschus S. Gas Plasma Technology Augments Ovalbumin Immunogenicity and OT-II T Cell Activation Conferring Tumor Protection in Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003395. [PMID: 34026437 PMCID: PMC8132054 DOI: 10.1002/advs.202003395] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/22/2021] [Indexed: 05/04/2023]
Abstract
Reactive oxygen species (ROS/RNS) are produced during inflammation and elicit protein modifications, but the immunological consequences are largely unknown. Gas plasma technology capable of generating an unmatched variety of ROS/RNS is deployed to mimic inflammation and study the significance of ROS/RNS modifications using the model protein chicken ovalbumin (Ova vs oxOva). Dynamic light scattering and circular dichroism spectroscopy reveal structural modifications in oxOva compared to Ova. T cells from Ova-specific OT-II but not from C57BL/6 or SKH-1 wild type mice presents enhanced activation after Ova addition. OxOva exacerbates this activation when administered ex vivo or in vivo, along with an increased interferon-gamma production, a known anti-melanoma agent. OxOva vaccination of wild type mice followed by inoculation of syngeneic B16F10 Ova-expressing melanoma cells shows enhanced T cell number and activation, decreased tumor burden, and elevated numbers of antigen-presenting cells when compared to their Ova-vaccinated counterparts. Analysis of oxOva using mass spectrometry identifies three hot spots regions rich in oxidative modifications that are associated with the increased T cell activation. Using Ova as a model protein, the findings suggest an immunomodulating role of multi-ROS/RNS modifications that may spur novel research lines in inflammation research and for vaccination strategies in oncology.
Collapse
Affiliation(s)
- Ramona Clemen
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix‐Hausdorff‐Str. 2Greifswald17489Germany
| | - Eric Freund
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix‐Hausdorff‐Str. 2Greifswald17489Germany
- Department of GeneralVisceralThoracicand Vascular SurgeryUniversity Medicine GreifswaldSauerbruchstr. DZ7Greifswald17475Germany
| | - Daniel Mrochen
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix‐Hausdorff‐Str. 2Greifswald17489Germany
- Department of ImmunologyUniversity Medicine GreifswaldSauerbruchstr. DZ7Greifswald17475Germany
| | - Lea Miebach
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix‐Hausdorff‐Str. 2Greifswald17489Germany
- Department of GeneralVisceralThoracicand Vascular SurgeryUniversity Medicine GreifswaldSauerbruchstr. DZ7Greifswald17475Germany
| | - Anke Schmidt
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix‐Hausdorff‐Str. 2Greifswald17489Germany
| | - Bernhard H. Rauch
- Institute of Pharmacology (C_Dat)University Medicine GreifswaldFelix‐Hausdorff‐Str. 1Greifswald17489Germany
| | - Jan‐Wilm Lackmann
- CECAD proteomics facilityUniversity of CologneJoseph‐Stelzmann‐Str. 26Cologne50931Germany
| | - Ulrike Martens
- ZIK HIKEUniversity of GreifswaldFleischmannstr. 42–44Greifswald17489Germany
- Institute of BiochemistryUniversity of GreifswaldFelix‐Hausdorff‐Str. 4Greifswald17489Germany
| | - Kristian Wende
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix‐Hausdorff‐Str. 2Greifswald17489Germany
| | - Michael Lalk
- Institute of BiochemistryUniversity of GreifswaldFelix‐Hausdorff‐Str. 4Greifswald17489Germany
| | - Mihaela Delcea
- ZIK HIKEUniversity of GreifswaldFleischmannstr. 42–44Greifswald17489Germany
- Institute of BiochemistryUniversity of GreifswaldFelix‐Hausdorff‐Str. 4Greifswald17489Germany
| | - Barbara M. Bröker
- Department of ImmunologyUniversity Medicine GreifswaldSauerbruchstr. DZ7Greifswald17475Germany
| | - Sander Bekeschus
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix‐Hausdorff‐Str. 2Greifswald17489Germany
| |
Collapse
|
25
|
Catalase Inhibitors with Dual Pro‐Oxidant Effect as New Therapeutic Agents in Castration‐Resistant Prostate Cancer. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202000164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
26
|
Saccorhiza polyschides used to synthesize gold and silver nanoparticles with enhanced antiproliferative and immunostimulant activity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 123:111960. [PMID: 33812588 DOI: 10.1016/j.msec.2021.111960] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/02/2021] [Accepted: 02/08/2021] [Indexed: 02/07/2023]
Abstract
Over the last years, there has been an increasing trend towards the use of environmentally friendly processes to synthesize nanomaterials. In the case of nanomedicine, the use of bionanofactories with associated biological properties, such as seaweed, has emerged as a promising field of work due to the possibility they open for both the preservation of those properties in the nanomaterials synthesized and/or the reduction of their toxicity. In the present study, gold (Au@SP) and silver (Ag@SP) nanoparticles were synthesized using an aqueous extract of Saccorhiza polyschides (SP). Several techniques showed that the nanoparticles formed were spherical and stable, with mean diameters of 14 ± 2 nm for Au@SP and 15 ± 3 nm for Ag@SP. The composition of the biomolecules in the extract and the nanoparticles were also analyzed. The analyses performed indicate that the extract acts as a protective medium, with the particles embedded in it preventing aggregation and coalescence. Au@SP and Ag@SP showed superior immunostimulant and antiproliferative activity on immune and tumor cells, respectively, to that of the SP extract. Moreover, the nanoparticles were able to modulate the release of reactive oxygen species depending on the concentration. Hence, both nanoparticles have a significant therapeutic potential for the treatment of cancer or in immunostimulant therapy.
Collapse
|
27
|
Saksida T, Jevtić B, Djedović N, Miljković Đ, Stojanović I. Redox Regulation of Tolerogenic Dendritic Cells and Regulatory T Cells in the Pathogenesis and Therapy of Autoimmunity. Antioxid Redox Signal 2021; 34:364-382. [PMID: 32458699 DOI: 10.1089/ars.2019.7999] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Significance: Autoimmune diseases are progressively affecting westernized societies, as the proportion of individuals suffering from autoimmunity is steadily increasing over the past decades. Understanding the role of reactive oxygen species (ROS) in modulation of the immune response in the pathogenesis of autoimmune disorders is of utmost importance. The focus of this review is the regulation of ROS production within tolerogenic dendritic cells (tolDCs) and regulatory T (Treg) cells that have the essential role in the prevention of autoimmune diseases and significant potency in their therapy. Recent Advances: It is now clear that ROS are extremely important for the proper function of both DC and T cells. Antigen processing/presentation and the ability of DC to activate T cells depend upon the ROS availability. Treg differentiation, suppressive function, and stability are profoundly influenced by ROS presence. Critical Issues: Although a plethora of results on the relation between ROS and immune cells exist, it remains unclear whether ROS modulation is a productive way for skewing T cells and DCs toward a tolerogenic phenotype. Also, the possibility of ROS modulation for enhancement of regulatory properties of DC and Treg during their preparation for use in cellular therapy has to be clarified. Future Directions: Studies of DC and T cell redox regulation should allow for the improvement of the therapy of autoimmune diseases. This could be achieved through the direct therapeutic application of ROS modulators in autoimmunity, or indirectly through ROS-dependent enhancement of tolDC and Treg preparation for cell-based immunotherapy. Antioxid. Redox Signal. 34, 364-382.
Collapse
Affiliation(s)
- Tamara Saksida
- Department of Immunology, Institute for Biological Research "Siniša Stanković," National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Bojan Jevtić
- Department of Immunology, Institute for Biological Research "Siniša Stanković," National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Neda Djedović
- Department of Immunology, Institute for Biological Research "Siniša Stanković," National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Đorđe Miljković
- Department of Immunology, Institute for Biological Research "Siniša Stanković," National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ivana Stojanović
- Department of Immunology, Institute for Biological Research "Siniša Stanković," National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
28
|
Goess C, Terrillon S, Mayo M, Bousquet P, Wallace C, Hart M, Mathieu S, Twomey R, Donnelly-Roberts D, Namovic M, Jung P, Hu M, Richardson P, Esbenshade T, Cuff CA. NRF2 activator A-1396076 ameliorates inflammation in autoimmune disease models by inhibiting antigen dependent T cell activation. J Transl Autoimmun 2021; 4:100079. [PMID: 33490940 PMCID: PMC7809192 DOI: 10.1016/j.jtauto.2020.100079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/16/2020] [Accepted: 12/20/2020] [Indexed: 10/26/2022] Open
Abstract
Nuclear factor (erythroid-derived 2) like 2 (NRF2) is a nuclear transcription factor activated in response to oxidative stress that induces a gene program that dampens inflammation and can limit cell damage that perpetuates the inflammatory response. We have identified A-1396076, a potent and selective NRF2 activator with demonstrated KEAP1 binding and modulation of cellular NRF2 mediated effects. In vivo administration of A-1396076 inhibits inflammation across several rodent models of autoimmunity when administered at or before the time of antigen challenge while also inducing NRF2 modulated gene transcription in the liver of the animals. It was not effective when administered after the time of antigen challenge or in a T cell independent model of arthritis induced by passive transfer of anti-collagen antibodies. A-1396076 inhibited antigen dependent T cell activation as measured by IFN-γ production in an ex vivo re-stimulation assay and following anti-CD3 challenge of MOG-sensitized mice. A-1396076 reduced costimulatory molecule expression on dendritic cells in the lungs of OVA LPS challenged mice suggesting that the mechanism of T cell inhibition was mediated at least partially by interfering with antigen presentation. These data suggest that NRF2 activation may be an effective strategy to dampen inflammation for treatment of autoimmune disease.
Collapse
Affiliation(s)
- Christian Goess
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA, 01605, USA
| | - Sonia Terrillon
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA, 01605, USA
| | - Martha Mayo
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA, 01605, USA
| | - Peter Bousquet
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA, 01605, USA
| | - Craig Wallace
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA, 01605, USA
| | - Michelle Hart
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA, 01605, USA
| | - Suzanne Mathieu
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA, 01605, USA
| | - Rachel Twomey
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA, 01605, USA
| | | | - Marian Namovic
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL, 60064, USA
| | - Paul Jung
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL, 60064, USA
| | - Min Hu
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL, 60064, USA
| | - Paul Richardson
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL, 60064, USA
| | - Tim Esbenshade
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL, 60064, USA
| | - Carolyn A Cuff
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA, 01605, USA
| |
Collapse
|
29
|
Yang D, Zhao C, Zhang M, Zhang S, Zhai J, Gao X, Liu C, Lv X, Zheng S. Changes in oxidation-antioxidation function on the thymus of chickens infected with reticuloendotheliosis virus. BMC Vet Res 2020; 16:483. [PMID: 33308224 PMCID: PMC7731740 DOI: 10.1186/s12917-020-02708-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 12/02/2020] [Indexed: 12/25/2022] Open
Abstract
Background Reticuloendotheliosis virus (REV) is a retrovirus that causes severe immunosuppression in poultry. Animals grow slowly under conditions of oxidative stress. In addition, long-term oxidative stress can impair immune function, as well as accelerate aging and death. This study aimed to elucidate the pathogenesis of REV from the perspective of changes in oxidative-antioxidative function following REV infection. Methods A total of 80 one-day-old specific pathogen free (SPF) chickens were randomly divided into a control group (Group C) and an REV-infected group (Group I). The chickens in Group I received intraperitoneal injections of REV with 104.62/0.1 mL TCID50. Thymus was collected on day 1, 3, 7, 14, 21, 28, 35, and 49 for histopathology and assessed the status of oxidative stress. Results In chickens infected with REV, the levels of H2O2 and MDA in the thymus increased, the levels of TAC, SOD, CAT, and GPx1 decreased, and there was a reduction in CAT and Gpx1 mRNA expression compared with the control group. The thymus index was also significantly reduced. Morphological analysis showed that REV infection caused an increase in the thymic reticular endothelial cells, inflammatory cell infiltration, mitochondrial swelling, and nuclear damage. Conclusions These results indicate that an increase in oxidative stress enhanced lipid peroxidation, markedly decreased antioxidant function, caused thymus atrophy, and immunosuppression in REV-infected chickens.
Collapse
Affiliation(s)
- Dahan Yang
- College of Veterinary Medicine, Northeast Agricultural University, 150030, Harbin, People's Republic of China.,Heilongjiang Key Laboratory of Laboratory Animals and Comparative Medicine Harbin, 150030, Harbin, People's Republic of China
| | - Chenhui Zhao
- College of Veterinary Medicine, Northeast Agricultural University, 150030, Harbin, People's Republic of China.,Heilongjiang Key Laboratory of Laboratory Animals and Comparative Medicine Harbin, 150030, Harbin, People's Republic of China
| | - Meixi Zhang
- College of Veterinary Medicine, Northeast Agricultural University, 150030, Harbin, People's Republic of China.,WuXi AppTec (Suzhou)Co., Ltd, 215000, Suzhou, People's Republic of China
| | - Shujun Zhang
- College of Veterinary Medicine, Northeast Agricultural University, 150030, Harbin, People's Republic of China.,Heilongjiang Key Laboratory of Laboratory Animals and Comparative Medicine Harbin, 150030, Harbin, People's Republic of China
| | - Jie Zhai
- College of Veterinary Medicine, Northeast Agricultural University, 150030, Harbin, People's Republic of China.,Heilongjiang Key Laboratory of Laboratory Animals and Comparative Medicine Harbin, 150030, Harbin, People's Republic of China
| | - XueLi Gao
- College of Veterinary Medicine, Northeast Agricultural University, 150030, Harbin, People's Republic of China.,Heilongjiang Key Laboratory of Laboratory Animals and Comparative Medicine Harbin, 150030, Harbin, People's Republic of China
| | - Chaonan Liu
- College of Veterinary Medicine, Northeast Agricultural University, 150030, Harbin, People's Republic of China.,Heilongjiang Key Laboratory of Laboratory Animals and Comparative Medicine Harbin, 150030, Harbin, People's Republic of China
| | - Xiaoping Lv
- College of Veterinary Medicine, Northeast Agricultural University, 150030, Harbin, People's Republic of China.,Heilongjiang Key Laboratory of Laboratory Animals and Comparative Medicine Harbin, 150030, Harbin, People's Republic of China
| | - Shimin Zheng
- College of Veterinary Medicine, Northeast Agricultural University, 150030, Harbin, People's Republic of China. .,Heilongjiang Key Laboratory of Laboratory Animals and Comparative Medicine Harbin, 150030, Harbin, People's Republic of China.
| |
Collapse
|
30
|
NOX2-Derived Reactive Oxygen Species in Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7095902. [PMID: 33312338 PMCID: PMC7721506 DOI: 10.1155/2020/7095902] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/21/2019] [Indexed: 12/16/2022]
Abstract
The formation of reactive oxygen species (ROS) by the myeloid cell NADPH oxidase NOX2 is critical for the destruction of engulfed microorganisms. However, recent studies imply that ROS, formed by NOX2+ myeloid cells in the malignant microenvironment, exert multiple actions of relevance to the growth and spread of neoplastic cells. By generating ROS, tumor-infiltrating myeloid cells and NOX2+ leukemic myeloid cells may thus (i) compromise the function and viability of adjacent cytotoxic lymphocytes, including natural killer (NK) cells and T cells, (ii) oxidize DNA to trigger cancer-promoting somatic mutations, and (iii) affect the redox balance in cancer cells to control their proliferation and survival. Here, we discuss the impact of NOX2-derived ROS for tumorigenesis, tumor progression, regulation of antitumor immunity, and metastasis. We propose that NOX2 may be a targetable immune checkpoint in cancer.
Collapse
|
31
|
Aquaporin-3 regulates endosome-to-cytosol transfer via lipid peroxidation for cross presentation. PLoS One 2020; 15:e0238484. [PMID: 33232321 PMCID: PMC7685505 DOI: 10.1371/journal.pone.0238484] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/03/2020] [Indexed: 01/23/2023] Open
Abstract
Antigen cross presentation, whereby exogenous antigens are presented by MHC class I molecules to CD8+ T cells, is essential for generating adaptive immunity to pathogens and tumor cells. Following endocytosis, it is widely understood that protein antigens must be transferred from endosomes to the cytosol where they are subject to ubiquitination and proteasome degradation prior to being translocated into the endoplasmic reticulum (ER), or possibly endosomes, via the TAP1/TAP2 complex. Revealing how antigens egress from endocytic organelles (endosome-to-cytosol transfer, ECT), however, has proved vexing. Here, we used two independent screens to identify the hydrogen peroxide-transporting channel aquaporin-3 (AQP3) as a regulator of ECT. AQP3 overexpression increased ECT, whereas AQP3 knockout or knockdown decreased ECT. Mechanistically, AQP3 appears to be important for hydrogen peroxide entry into the endosomal lumen where it affects lipid peroxidation and subsequent antigen release. AQP3-mediated regulation of ECT was functionally significant, as AQP3 modulation had a direct impact on the efficiency of antigen cross presentation in vitro. Finally, AQP3-/- mice exhibited a reduced ability to mount an anti-viral response and cross present exogenous extended peptide. Together, these results indicate that the AQP3-mediated transport of hydrogen peroxide can regulate endosomal lipid peroxidation and suggest that compromised membrane integrity and coordinated release of endosomal cargo is a likely mechanism for ECT.
Collapse
|
32
|
González-Ballesteros N, Diego-González L, Lastra-Valdor M, Rodríguez-Argüelles MC, Grimaldi M, Cavazza A, Bigi F, Simón-Vázquez R. Immunostimulant and biocompatible gold and silver nanoparticles synthesized using the Ulva intestinalis L. aqueous extract. J Mater Chem B 2020; 7:4677-4691. [PMID: 31364682 DOI: 10.1039/c9tb00215d] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This is the first study to report on the biocompatible and immunogenic properties of one-pot synthesised gold and silver nanoparticles (Au@UI and Ag@UI) using the macroalgae Ulva intestinalis (UI). The UI aqueous extract, Au@UI, and Ag@UI were obtained under sterile conditions and fully characterized by UV-vis spectroscopy, TEM, HRTEM, STEM and FTIR spectroscopy. Moreover, for the first time, the composition of carbohydrates in the UI extract has been reported along with the changes observed after nanoparticle synthesis by size exclusion chromatography, in order to investigate their possible role in the biosynthetic process. This study suggested that the polysaccharide fraction of the extract is involved in the formation and stabilization of the nanoparticles. The potential toxicity of the samples was evaluated using different cell lines and the hemocompatibility was tested in mouse erythrocytes. In addition, ROS production, complement activation and cytokine release were evaluated to determine the immunogenicity. The results showed that Au@UI and Ag@UI exhibit good biocompatibility and hemocompatibility, with the exception of Ag@UI nanoparticles at high concentration, which were hemolytic. The samples induced ROS release and complement activation, two key mechanisms in innate immunity. The samples also induced the release of cytokines from Th1 and Th2 profiles, and other cytokines implicated in the activation of the immune system. Au@UI and Ag@UI were biocompatible and preserved the immunostimulant properties of the UI extract. Hence, Au@UI and Ag@UI could be useful as adjuvants in vaccine development and promote a balanced Th1 and Th2 immune response mediated by ROS production, cytokine release and complement activation.
Collapse
Affiliation(s)
- N González-Ballesteros
- Departamento de Química Inorgánica, Centro de Investigaciones Biomédicas (CINBIO), Universidade de Vigo, 36210 Vigo, Spain.
| | - L Diego-González
- Inmunología. Centro de Investigaciones Biomédicas (CINBIO), Instituto de Investigación Sanitaria Galicia Sur (IIS-GS), Universidade de Vigo, 36210 Vigo, Spain
| | - M Lastra-Valdor
- Estación de Ciencias Marinas de Toralla (ECIMAT), Universidade de Vigo, 36210 Vigo, Spain
| | - M C Rodríguez-Argüelles
- Departamento de Química Inorgánica, Centro de Investigaciones Biomédicas (CINBIO), Universidade de Vigo, 36210 Vigo, Spain.
| | - M Grimaldi
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale (SCVSA), Università di Parma, 43124 Parma, Italy
| | - A Cavazza
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale (SCVSA), Università di Parma, 43124 Parma, Italy
| | - F Bigi
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale (SCVSA), Università di Parma, 43124 Parma, Italy and IMEM-CNR Parma, 43124 Parma, Italy
| | - R Simón-Vázquez
- Inmunología. Centro de Investigaciones Biomédicas (CINBIO), Instituto de Investigación Sanitaria Galicia Sur (IIS-GS), Universidade de Vigo, 36210 Vigo, Spain
| |
Collapse
|
33
|
Levin-Konigsberg R, Mantegazza AR. A guide to measuring phagosomal dynamics. FEBS J 2020; 288:1412-1433. [PMID: 32757358 PMCID: PMC7984381 DOI: 10.1111/febs.15506] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/07/2020] [Accepted: 07/31/2020] [Indexed: 02/06/2023]
Abstract
Phagocytosis is an essential mechanism for immunity and homeostasis, performed by a subset of cells known as phagocytes. Upon target engulfment, de novo formation of specialized compartments termed phagosomes takes place. Phagosomes then undergo a series of fusion and fission events as they interact with the endolysosomal system and other organelles, in a dynamic process known as phagosome maturation. Because phagocytes play a key role in tissue patrolling and immune surveillance, phagosome maturation is associated with signaling pathways that link phagocytosis to antigen presentation and the development of adaptive immune responses. In addition, and depending on the nature of the cargo, phagosome integrity may be compromised, triggering additional cellular mechanisms including inflammation and autophagy. Upon completion of maturation, phagosomes enter a recently described phase: phagosome resolution, where catabolites from degraded cargo are metabolized, phagosomes are resorbed, and vesicles of phagosomal origin are recycled. Finally, phagocytes return to homeostasis and become ready for a new round of phagocytosis. Altogether, phagosome maturation and resolution encompass a series of dynamic events and organelle crosstalk that can be measured by biochemical, imaging, photoluminescence, cytometric, and immune‐based assays that will be described in this guide.
Collapse
Affiliation(s)
| | - Adriana R Mantegazza
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
34
|
Neutrophils acquire antigen-presenting cell features after phagocytosis of IgG-opsonized erythrocytes. Blood Adv 2020; 3:1761-1773. [PMID: 31182561 DOI: 10.1182/bloodadvances.2018028753] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 03/23/2019] [Indexed: 12/29/2022] Open
Abstract
Neutrophils are particularly well known for their antimicrobial function. Although historically they are regarded as strictly a phagocyte of the innate immune system, over time it has become clear that neutrophils are versatile cells with numerous functions including innate and adaptive immune regulation. We have previously described a role for human neutrophils in antibody-mediated red blood cell (RBC) clearance. Under homeostatic conditions, neutrophils do not take up RBCs. Yet, when RBCs are immunoglobulin G (IgG) opsonized, which can occur in alloimmunization or autoimmunization reactions, neutrophils can effectively phagocytose RBCs. In the present study, we show that human neutrophils acquire an antigen-presenting cell (APC) phenotype following RBC phagocytosis. Subsequent to RBC phagocytosis, neutrophils expressed major histocompatibility complex class II (MHC-II) and costimulatory molecules such as CD40 and CD80. Moreover, in classical APCs, the respiratory burst is known to regulate antigen presentation. We found that the respiratory burst in neutrophils is reduced after IgG-mediated RBC phagocytosis. Additionally, following RBC phagocytosis, neutrophils were demonstrated to elicit an antigen-specific T-cell response, using tetanus toxoid (TT) as an antigen to elicit an autologous TT-specific CD4+ T-cell response. Lastly, although the "don't eat me" signal CD47 is known to have a powerful restrictive role in the activation of immunity against RBCs in dendritic cells, CD47 does not seem to have a significant effect on the antigen-presenting function of neutrophils in this context. Overall, these findings reveal that besides their classical antimicrobial role, neutrophils show plasticity in their phenotype.
Collapse
|
35
|
The Influence of Reactive Oxygen Species in the Immune System and Pathogenesis of Multiple Sclerosis. Autoimmune Dis 2020; 2020:5793817. [PMID: 32789026 PMCID: PMC7334772 DOI: 10.1155/2020/5793817] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 04/14/2020] [Accepted: 05/22/2020] [Indexed: 02/08/2023] Open
Abstract
Multiple roles have been indicated for reactive oxygen species (ROS) in the immune system in recent years. ROS have been extensively studied due to their ability to damage DNA and other subcellular structures. Noticeably, they have been identified as a pivotal second messenger for T-cell receptor signaling and T-cell activation and participate in antigen cross-presentation and chemotaxis. As an agent with direct toxic effects on cells, ROS lead to the initiation of the autoimmune response. Moreover, ROS levels are regulated by antioxidant systems, which include enzymatic and nonenzymatic antioxidants. Enzymatic antioxidants include superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase. Nonenzymatic antioxidants contain vitamins C, A, and E, glutathione, and thioredoxin. Particularly, cellular antioxidant systems have important functions in maintaining the redox system homeostasis. This review will discuss the significant roles of ROS generation and antioxidant systems under normal conditions, in the immune system, and pathogenesis of multiple sclerosis.
Collapse
|
36
|
Mao D, Hu F, Yi Z, Kenry K, Xu S, Yan S, Luo Z, Wu W, Wang Z, Kong D, Liu X, Liu B. AIEgen-coupled upconversion nanoparticles eradicate solid tumors through dual-mode ROS activation. SCIENCE ADVANCES 2020; 6:eabb2712. [PMID: 32637621 PMCID: PMC7319755 DOI: 10.1126/sciadv.abb2712] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/15/2020] [Indexed: 05/20/2023]
Abstract
Reactive oxygen species (ROS) are essential for the regulation of antitumor immune responses, where they could induce immunogenic cell death, promote antigen presentation, and activate immune cells. Here, we report the development of near-infrared (NIR)-driven immunostimulants, based on coupling upconversion nanoparticles with aggregation-induced emission luminogens (AIEgens), to integrate the immunological effects of ROS for enhanced adaptive antitumor immune responses. Intratumorally injected AIEgen-upconversion nanoparticles produce high-dose ROS under high-power NIR irradiation, which induces immunogenic cell death and antigen release. These nanoparticles can also capture the released antigens and deliver them to lymph nodes. Upon subsequent low-power NIR treatment of lymph nodes, low-dose ROS are generated to further trigger efficient T cell immune responses through activation of dendritic cells, preventing both local tumor recurrence and distant tumor growth. The utility of dual-mode pumping power on AIEgen-coupled upconversion nanoparticles offers a powerful and controllable platform to activate adaptive immune systems for tumor immunotherapy.
Collapse
Affiliation(s)
- Duo Mao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Fang Hu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Zhigao Yi
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Kenry Kenry
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Shidang Xu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Shuangqian Yan
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Zichao Luo
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Wenbo Wu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Zhihong Wang
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Deling Kong
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Xiaogang Liu
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University, Fuzhou 350207, China
- The N.1 Institute for Health, National University of Singapore, Singapore 117456, Singapore
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University, Fuzhou 350207, China
| |
Collapse
|
37
|
Diego-González L, Crecente-Campo J, Paul MJ, Singh M, Reljic R, Alonso MJ, González-Fernández Á, Simón-Vázquez R. Design of Polymeric Nanocapsules for Intranasal Vaccination against Mycobacterium Tuberculosis: Influence of the Polymeric Shell and Antigen Positioning. Pharmaceutics 2020; 12:E489. [PMID: 32481601 PMCID: PMC7355676 DOI: 10.3390/pharmaceutics12060489] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/26/2020] [Accepted: 05/26/2020] [Indexed: 02/07/2023] Open
Abstract
Tuberculosis (TB) is the leading cause of death from a single infectious microorganism and Bacillus Calmette Guerin (BCG), the only authorized vaccine, does not confer protection against pulmonary TB. Based on the hypothesis that mucosal protection could help to prevent the infection at the site of entrance, the objective of this work was to develop an intranasal vaccine against Mycobacterium tuberculosis (Mtb), the microorganism that causes TB. Our approach consisted of the use of polymeric nanocapsules (NCs) with an oily core and a polymer shell made of chitosan (CS) or inulin/polyarginine (INU/pArg). The immunostimulant Imiquimod, a Toll-like receptor-7 (TLR-7) agonist, was encapsulated in the oily core and a fusion protein, formed by two antigens of Mtb, was absorbed either onto the NC surface (CS:Ag and INU:pArg:Ag) or between two polymer layers (INU:Ag:pArg) in order to assess the influence of the antigen positioning on the immune response. Although CS NCs were more immunostimulant than the INU/pArg NCs in vitro, the in vivo experiments showed that INU:pArg:Ag NCs were the only prototype inducing an adequate immunoglobulin A (IgA) response. Moreover, a previous immunization with BCG increased the immune response for CS NCs but, conversely, decreased for INU/pArg NCs. Further optimization of the antigen and the vaccination regime could provide an efficacious vaccine, using the INU:pArg:Ag NC prototype as nanocarrier.
Collapse
Affiliation(s)
- Lara Diego-González
- Inmunología, Centro de Investigaciones Biomédicas, CINBIO, Universidade de Vigo, Campus Universitario Lagoas Marcosende, 36310 Vigo, Spain; (L.D.-G.); (Á.G.-F.)
- Instituto de Investigación Sanitaria Galicia Sur (IIS-GS), SERGAS-UVIGO, Estrada de Clara Campoamor, 341, 36312 Vigo, PO, Spain
| | - José Crecente-Campo
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, Campus Vida, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), IDIS Research Institute, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Matthew John Paul
- Institute for Infection and Immunity, St George’s Medical School, London SW17 0RE, UK; (M.J.P.); (R.R.)
| | | | - Rajko Reljic
- Institute for Infection and Immunity, St George’s Medical School, London SW17 0RE, UK; (M.J.P.); (R.R.)
| | - María José Alonso
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, Campus Vida, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), IDIS Research Institute, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - África González-Fernández
- Inmunología, Centro de Investigaciones Biomédicas, CINBIO, Universidade de Vigo, Campus Universitario Lagoas Marcosende, 36310 Vigo, Spain; (L.D.-G.); (Á.G.-F.)
- Instituto de Investigación Sanitaria Galicia Sur (IIS-GS), SERGAS-UVIGO, Estrada de Clara Campoamor, 341, 36312 Vigo, PO, Spain
| | - Rosana Simón-Vázquez
- Inmunología, Centro de Investigaciones Biomédicas, CINBIO, Universidade de Vigo, Campus Universitario Lagoas Marcosende, 36310 Vigo, Spain; (L.D.-G.); (Á.G.-F.)
- Instituto de Investigación Sanitaria Galicia Sur (IIS-GS), SERGAS-UVIGO, Estrada de Clara Campoamor, 341, 36312 Vigo, PO, Spain
| |
Collapse
|
38
|
To EE, Erlich JR, Liong F, Luong R, Liong S, Esaq F, Oseghale O, Anthony D, McQualter J, Bozinovski S, Vlahos R, O'Leary JJ, Brooks DA, Selemidis S. Mitochondrial Reactive Oxygen Species Contribute to Pathological Inflammation During Influenza A Virus Infection in Mice. Antioxid Redox Signal 2020; 32:929-942. [PMID: 31190565 PMCID: PMC7104903 DOI: 10.1089/ars.2019.7727] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Aims: Reactive oxygen species (ROS) are highly reactive molecules generated in different subcellular sites or compartments, including endosomes via the NOX2-containing nicotinamide adenine dinucleotide phosphate oxidase during an immune response and in mitochondria during cellular respiration. However, while endosomal NOX2 oxidase promotes innate inflammation to influenza A virus (IAV) infection, the role of mitochondrial ROS (mtROS) has not been comprehensively investigated in the context of viral infections in vivo. Results: In this study, we show that pharmacological inhibition of mtROS, with intranasal delivery of MitoTEMPO, resulted in a reduction in airway/lung inflammation, neutrophil infiltration, viral titers, as well as overall morbidity and mortality in mice infected with IAV (Hkx31, H3N2). MitoTEMPO treatment also attenuated apoptotic and necrotic neutrophils and macrophages in airway and lung tissue. At an early phase of influenza infection, that is, day 3 there were significantly lower amounts of IL-1β protein in the airways, but substantially higher amounts of type I IFN-β following MitoTEMPO treatment. Importantly, blocking mtROS did not appear to alter the initiation of an adaptive immune response by lung dendritic cells, nor did it affect lung B and T cell populations that participate in humoral and cellular immunity. Innovation/Conclusion: Influenza virus infection promotes mtROS production, which drives innate immune inflammation and this exacerbates viral pathogenesis. This pathogenic cascade highlights the therapeutic potential of local mtROS antioxidant delivery to alleviate influenza virus pathology.
Collapse
Affiliation(s)
- Eunice E To
- Program in Chronic Infectious and Inflammatory Diseases, Oxidant and Inflammation Biology Group, School of Health Sciences and Biomedical Sciences, College of Science, Engineering & Health, RMIT University, Melbourne, Australia
| | - Jonathan R Erlich
- Program in Chronic Infectious and Inflammatory Diseases, Oxidant and Inflammation Biology Group, School of Health Sciences and Biomedical Sciences, College of Science, Engineering & Health, RMIT University, Melbourne, Australia
| | - Felicia Liong
- Program in Chronic Infectious and Inflammatory Diseases, Oxidant and Inflammation Biology Group, School of Health Sciences and Biomedical Sciences, College of Science, Engineering & Health, RMIT University, Melbourne, Australia
| | - Raymond Luong
- Infection and Immunity Program, Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Stella Liong
- Program in Chronic Infectious and Inflammatory Diseases, Oxidant and Inflammation Biology Group, School of Health Sciences and Biomedical Sciences, College of Science, Engineering & Health, RMIT University, Melbourne, Australia
| | - Farisha Esaq
- Program in Chronic Infectious and Inflammatory Diseases, Oxidant and Inflammation Biology Group, School of Health Sciences and Biomedical Sciences, College of Science, Engineering & Health, RMIT University, Melbourne, Australia
| | - Osezua Oseghale
- Program in Chronic Infectious and Inflammatory Diseases, Oxidant and Inflammation Biology Group, School of Health Sciences and Biomedical Sciences, College of Science, Engineering & Health, RMIT University, Melbourne, Australia
| | - Desiree Anthony
- Program in Chronic Infectious and Inflammatory Diseases, Oxidant and Inflammation Biology Group, School of Health Sciences and Biomedical Sciences, College of Science, Engineering & Health, RMIT University, Melbourne, Australia
| | - Jonathan McQualter
- Program in Chronic Infectious and Inflammatory Diseases, Oxidant and Inflammation Biology Group, School of Health Sciences and Biomedical Sciences, College of Science, Engineering & Health, RMIT University, Melbourne, Australia
| | - Steven Bozinovski
- Program in Chronic Infectious and Inflammatory Diseases, Oxidant and Inflammation Biology Group, School of Health Sciences and Biomedical Sciences, College of Science, Engineering & Health, RMIT University, Melbourne, Australia
| | - Ross Vlahos
- Program in Chronic Infectious and Inflammatory Diseases, Oxidant and Inflammation Biology Group, School of Health Sciences and Biomedical Sciences, College of Science, Engineering & Health, RMIT University, Melbourne, Australia
| | - John J O'Leary
- Department of Histopathology Trinity College Dublin, Sir Patrick Dun's Laboratory, Central Pathology Laboratory, St James's Hospital, Dublin, Ireland.,Molecular Pathology Laboratory, Coombe Women and Infants' University Hospital, Dublin, Ireland
| | - Doug A Brooks
- Division of Health Sciences, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Stavros Selemidis
- Program in Chronic Infectious and Inflammatory Diseases, Oxidant and Inflammation Biology Group, School of Health Sciences and Biomedical Sciences, College of Science, Engineering & Health, RMIT University, Melbourne, Australia
| |
Collapse
|
39
|
Griffiths HR, Rooney MCO, Perrie Y. Does Dysregulation of Redox State Underpin the Decline of Innate Immunity with Aging? Antioxid Redox Signal 2020; 32:1014-1030. [PMID: 31989832 DOI: 10.1089/ars.2020.8021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Significance: Antibacterial defense invokes the innate immune system as a first responder, with neutrophils phagocytozing and forming neutrophil extracellular traps around pathogens in a reactive oxygen species (ROS)-dependent manner. Increased NOX2 activity and mitochondrial ROS production in phagocytic, antigen-presenting cells (APCs) affect local cytokine secretion and proteolysis of antigens for presentation to T cells at the immune synapse. Uncontrolled oxidative post-translational modifications to surface and cytoplasmic proteins in APCs during aging can impair innate immunity. Recent Advances: NOX2 plays a role in the maturation of dendritic cells, but paradoxically NOX2 activity has also been shown to promote viral pathogenicity. Accumulating evidence suggests that a reducing environment is essential to inhibit pathogen proliferation, facilitate antigenic processing in the endosomal lumen, and enable an effective immune synapse between APCs and T cells. This suggests that the kinetics and location of ROS production and reducing potential are important for effective innate immunity. Critical Issues: During aging, innate immune cells are less well able to phagocytoze, kill bacteria/viruses, and process proteins into antigenic peptides-three key steps that are necessary for developing a specific targeted response to protect against future exposure. Aberrant control of ROS production and impaired Nrf2-dependent reducing potential may contribute to age-associated immune decline. Future Directions: Local changes in redox potential may be achieved through adjuvant formulations to improve innate immunity. Further work is needed to understand the timing of delivery for redox modulators to facilitate innate immune cell recruitment, survival, antigen processing and presentation activity without disrupting essential ROS-dependent bacterial killing.
Collapse
Affiliation(s)
- Helen R Griffiths
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Matthew C O Rooney
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Yvonne Perrie
- Department of Pharmacy, University of Strathclyde, Glasgow, Scotland
| |
Collapse
|
40
|
The Dynll1-Cox4i1 Complex Regulates Intracellular Pathogen Clearance via Release of Mitochondrial Reactive Oxygen Species. Infect Immun 2020; 88:IAI.00738-19. [PMID: 32041786 PMCID: PMC7093135 DOI: 10.1128/iai.00738-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 01/28/2020] [Indexed: 12/16/2022] Open
Abstract
Cellular membrane proteins are a critical part of the host defense mechanisms against infection and intracellular survival of Listeria monocytogenes The complex spatiotemporal regulation of bacterial infection by various membrane proteins has been challenging to study. Here, using mass spectrometry analyses, we depicted the dynamic expression landscape of membrane proteins upon L. monocytogenes infection in dendritic cells. We showed that Dynein light chain 1 (Dynll1) formed a persistent complex with the mitochondrial cytochrome oxidase Cox4i1, which is disturbed by pathogen insult. We discovered that the dissociation of the Dynll1-Cox4i1 complex is required for the release of mitochondrial reactive oxygen species and serves as a regulator of intracellular proliferation of Listeria monocytogenes Our study shows that Dynll1 is an inhibitor of mitochondrial reactive oxygen species and can serve as a potential molecular drug target for antibacterial treatment.
Collapse
|
41
|
The Role of Melanin in Fungal Pathogenesis for Animal Hosts. Curr Top Microbiol Immunol 2019; 422:1-30. [PMID: 31278515 DOI: 10.1007/82_2019_173] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Melanins are a class of pigments that are ubiquitous throughout biology. They play incredibly diverse and important roles ranging from radiation protection to immune defense, camouflage, and virulence. Fungi have evolved to use melanin to be able to persist in the environment and within organisms. Fungal melanins are often located within the cell well and are able to neutralize reactive oxygen species and other radicals, defend against UV radiation, bind and sequester non-specific peptides and compounds, and produce a physical barrier that defends the cell. For this reason, melanized fungi are often well-suited to be human pathogens-melanin allows fungi to neutralize the microbicidal oxidative bursts of our innate immune system, bind and inactivate to antimicrobial peptides and enzymes, sequester antifungal pharmaceuticals, and create a shield to block immune recognition of the fungus. Due to the importance and pervasiveness of melanin in fungal virulence, mammalian immune systems have evolved antifungal strategies that involve directly detecting and binding to fungal melanins. Such strategies include the use of melanin-specific antibody responses and C-type lectins like the newly discovered melanin-specific MelLec receptor.
Collapse
|
42
|
Radical Stress Is More Cytotoxic in the Nucleus than in Other Organelles. Int J Mol Sci 2019; 20:ijms20174147. [PMID: 31450682 PMCID: PMC6747261 DOI: 10.3390/ijms20174147] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/21/2019] [Accepted: 08/23/2019] [Indexed: 12/31/2022] Open
Abstract
Cells are exposed to reactive oxygen species (ROS) as a by-product of mitochondrial metabolism, especially under hypoxia. ROS are also enzymatically generated at the plasma membrane during inflammation. Radicals cause cellular damage leading to cell death, as they react indiscriminately with surrounding lipids, proteins, and nucleotides. However, ROS are also important for many physiological processes, including signaling, pathogen killing and chemotaxis. The sensitivity of cells to ROS therefore likely depends on the subcellular location of ROS production, but how this affects cell viability is poorly understood. As ROS generation consumes oxygen, and hypoxia-mediated signaling upregulates expression of antioxidant transcription factor Nrf2, it is difficult to discern hypoxic from radical stress. In this study, we developed an optogenetic toolbox for organelle-specific generation of ROS using the photosensitizer protein SuperNova which produces superoxide anion upon excitation with 590 nm light. We fused SuperNova to organelle specific localization signals to induce ROS with high precision. Selective ROS production did not affect cell viability in most organelles except for the nucleus. SuperNova is a promising tool to induce locally targeted ROS production, opening up new possibilities to investigate processes and organelles that are affected by localized ROS production.
Collapse
|
43
|
Kotsias F, Cebrian I, Alloatti A. Antigen processing and presentation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 348:69-121. [PMID: 31810556 DOI: 10.1016/bs.ircmb.2019.07.005] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dendritic cells are at the center of immune responses. They are defined by their ability to sense the environment, take up and process antigen, migrate to secondary lymphoid organs, where they present antigens to the adaptive immune system. In particular, they present lipids and proteins from pathogens, which they encountered in peripheral tissues, to T cells in order to induce a specific effector immune response. These complex antigens need to be broken down into peptides of a certain length in association with Major Histocompatibility Complex (MHC) molecules. Presentation of MHC/antigen complexes alongside costimulatory molecules and secretion of proinflammatory cytokines will induce an appropriate immune response. This interaction between dendritic cells and T cells takes place at defined locations within secondary lymphoid organs. In this review, we discuss the current knowledge and recent advances on the cellular and molecular mechanisms that underlie antigen processing and the subsequent presentation to T lymphocytes.
Collapse
Affiliation(s)
- Fiorella Kotsias
- Cátedra de Virología, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina; Instituto de Investigaciones en Producción Animal (INPA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Ignacio Cebrian
- Facultad de Ciencias Médicas, Instituto de Histología y Embriología de Mendoza (IHEM)-CONICET/Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Andrés Alloatti
- Facultad de Ciencias Médicas, Instituto de Inmunología Clínica y Experimental de Rosario (IDICER)-CONICET/Universidad Nacional de Rosario, Rosario, Argentina.
| |
Collapse
|
44
|
Paardekooper LM, Dingjan I, Linders PTA, Staal AHJ, Cristescu SM, Verberk WCEP, van den Bogaart G. Human Monocyte-Derived Dendritic Cells Produce Millimolar Concentrations of ROS in Phagosomes Per Second. Front Immunol 2019; 10:1216. [PMID: 31191556 PMCID: PMC6548834 DOI: 10.3389/fimmu.2019.01216] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 05/13/2019] [Indexed: 01/07/2023] Open
Abstract
Neutrophils kill ingested pathogens by the so-called oxidative burst, where reactive oxygen species (ROS) are produced in the lumen of phagosomes at very high rates (mM/s), although these rates can only be maintained for a short period (minutes). In contrast, dendritic cells produce ROS at much lower rates, but they can sustain production for much longer after pathogen uptake (hours). It is becoming increasingly clear that this slow but prolonged ROS production is essential for antigen cross-presentation to activate cytolytic T cells, and for shaping the repertoire of antigen fragments for presentation to helper T cells. However, despite this importance of ROS production by dendritic cells for activation of the adaptive immune system, their actual ROS production rates have never been quantified. Here, we quantified ROS production in human monocyte-derived dendritic cells by measuring the oxygen consumption rate during phagocytosis. Although a large variation in oxygen consumption and phagocytic capacity was present among individuals and cells, we estimate a ROS production rate of on average ~0.5 mM/s per phagosome. Quantitative microscopy approaches showed that ROS is produced within minutes after pathogen encounter at the nascent phagocytic cup. H2DCFDA measurements revealed that ROS production is sustained for at least ~10 h after uptake. While ROS are produced by dendritic cells at an about 10-fold lower rate than by neutrophils, the net total ROS production is approximately similar. These are the first quantitative estimates of ROS production by a cell capable of antigen cross-presentation. Our findings provide a quantitative insight in how ROS affect dendritic cell function.
Collapse
Affiliation(s)
- Laurent M Paardekooper
- Tumor Immunology Lab, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
| | - Ilse Dingjan
- Tumor Immunology Lab, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Peter T A Linders
- Tumor Immunology Lab, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
| | - Alexander H J Staal
- Tumor Immunology Lab, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
| | - Simona M Cristescu
- Department of Molecular and Laser Physics, Institute of Molecules and Materials, Radboud University, Nijmegen, Netherlands
| | - Wilco C E P Verberk
- Animal Ecology and Ecophysiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | - Geert van den Bogaart
- Tumor Immunology Lab, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands.,Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| |
Collapse
|
45
|
Thang DC, Wang Z, Lu X, Xing B. Precise cell behaviors manipulation through light-responsive nano-regulators: recent advance and perspective. Theranostics 2019; 9:3308-3340. [PMID: 31244956 PMCID: PMC6567964 DOI: 10.7150/thno.33888] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 04/08/2019] [Indexed: 02/07/2023] Open
Abstract
Nanotechnology-assisted spatiotemporal manipulation of biological events holds great promise in advancing the practice of precision medicine in healthcare systems. The progress in internal and/or external stimuli-responsive nanoplatforms for highly specific cellular regulations and theranostic controls offer potential clinical translations of the revolutionized nanomedicine. To successfully implement this new paradigm, the emerging light-responsive nanoregulators with unparalleled precise cell functions manipulation have gained intensive attention, providing UV-Vis light-triggered photocleavage or photoisomerization studies, as well as near-infrared (NIR) light-mediated deep-tissue applications for stimulating cellular signal cascades and treatment of mortal diseases. This review discusses current developments of light-activatable nanoplatforms for modulations of various cellular events including neuromodulations, stem cell monitoring, immunomanipulation, cancer therapy, and other biological target intervention. In summary, the propagation of light-controlled nanomedicine would place a bright prospect for future medicine.
Collapse
Affiliation(s)
- Do Cong Thang
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Zhimin Wang
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Xiaoling Lu
- International Nanobody Research Center of Guangxi, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Bengang Xing
- Sino-Singapore International Joint Research Institute (SSIJRI), Guangzhou 510000, China
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
46
|
Napoletano C, Mattiucci S, Colantoni A, Battisti F, Zizzari IG, Rahimi H, Nuti M, Rughetti A. Anisakis pegreffii impacts differentiation and function of human dendritic cells. Parasite Immunol 2019; 40:e12527. [PMID: 29569735 DOI: 10.1111/pim.12527] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 03/13/2018] [Indexed: 02/07/2023]
Abstract
Human dendritic cells (DCs) show remarkable phenotypic changes when matured in the presence of helminth-derived products. These modifications frequently elicited a polarization towards Th2 cells and regulatory T cells thus contributing to immunological tolerance against these pathogens. In this study, the interaction between DCs and larvae of the zoonotic anisakid nematode Anisakis pegreffii was investigated. A. pegreffii larvae were collected from fish hosts, and monocyte-derived DCs were cocultured in the presence of the live larvae (L) or its crude extracts (CE). In both experimental conditions, A. pegreffii impacted DC viability, hampered DC maturation by reducing the expression of molecules involved in antigen presentation and migration (ie HLA-DR, CD86, CD83 and CCR7), increased the phagosomal radical oxygen species (ROS) levels and modulated the phosphorylation of ERK1,2 pathway. These biological changes were accompanied by the impairment of DCs to activate a T-cell-mediated IFNγ. Interestingly, live larvae appeared to differently modulate DC secretion of cytokines and chemokines as compared to CE. These results demonstrate, for the first time, the immunomodulatory role of A. pegreffii on DCs biology and functions. In addition, they suggest a dynamic contribution of DCs to the induction and maintenance of the inflammatory response against A. pegreffii.
Collapse
Affiliation(s)
- C Napoletano
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - S Mattiucci
- Department of Public Health and Infectious Diseases, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, University Hospital "Policlinico Umberto I", "Sapienza" University of Rome, Rome, Italy
| | - A Colantoni
- Department of Public Health and Infectious Diseases, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, University Hospital "Policlinico Umberto I", "Sapienza" University of Rome, Rome, Italy
| | - F Battisti
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - I G Zizzari
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - H Rahimi
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - M Nuti
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - A Rughetti
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| |
Collapse
|
47
|
Paardekooper LM, Vos W, van den Bogaart G. Oxygen in the tumor microenvironment: effects on dendritic cell function. Oncotarget 2019; 10:883-896. [PMID: 30783517 PMCID: PMC6368231 DOI: 10.18632/oncotarget.26608] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 01/09/2019] [Indexed: 12/13/2022] Open
Abstract
Solid tumors grow at a high speed leading to insufficient blood supply to tumor cells. This makes the tumor hypoxic, resulting in the Warburg effect and an increased generation of reactive oxygen species (ROS). Hypoxia and ROS affect immune cells in the tumor micro-environment, thereby affecting their immune function. Here, we review the known effects of hypoxia and ROS on the function and physiology of dendritic cells (DCs). DCs can (cross-)present tumor antigen to activate naive T cells, which play a pivotal role in anti-tumor immunity. ROS might enter DCs via aquaporins in the plasma membrane, diffusion across the plasma membrane or via extracellular vesicles (EVs) released by tumor cells. Hypoxia and ROS exert complex effects on DCs, and can both inhibit and activate maturation of immature DCs. Furthermore, ROS transferred by EVs and/or produced by the DC can both promote antigen (cross-)presentation through phagosomal alkalinization, which preserves antigens by inhibiting proteases, and by direct oxidative modification of proteases. Hypoxia leads to a more migratory and inflammatory DC phenotype. Lastly, hypoxia alters DCs to shift the T- cell response towards a tumor suppressive Th17 phenotype. From numerous studies, the concept is emerging that hypoxia and ROS are mutually dependent effectors on DC function in the tumor micro-environment. Understanding their precise roles and interplay is important given that an adaptive immune response is required to clear tumor cells.
Collapse
Affiliation(s)
- Laurent M Paardekooper
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Willemijn Vos
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Geert van den Bogaart
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
48
|
Baranov MV, Bianchi F, Schirmacher A, van Aart MAC, Maassen S, Muntjewerff EM, Dingjan I, Ter Beest M, Verdoes M, Keyser SGL, Bertozzi CR, Diederichsen U, van den Bogaart G. The Phosphoinositide Kinase PIKfyve Promotes Cathepsin-S-Mediated Major Histocompatibility Complex Class II Antigen Presentation. iScience 2018; 11:160-177. [PMID: 30612035 PMCID: PMC6319320 DOI: 10.1016/j.isci.2018.12.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 11/28/2018] [Accepted: 12/14/2018] [Indexed: 02/07/2023] Open
Abstract
Antigen presentation to T cells in major histocompatibility complex class II (MHC class II) requires the conversion of early endo/phagosomes into lysosomes by a process called maturation. Maturation is driven by the phosphoinositide kinase PIKfyve. Blocking PIKfyve activity by small molecule inhibitors caused a delay in the conversion of phagosomes into lysosomes and in phagosomal acidification, whereas production of reactive oxygen species (ROS) increased. Elevated ROS resulted in reduced activity of cathepsin S and B, but not X, causing a proteolytic defect of MHC class II chaperone invariant chain Ii processing. We developed a novel universal MHC class II presentation assay based on a bio-orthogonal "clickable" antigen and showed that MHC class II presentation was disrupted by the inhibition of PIKfyve, which in turn resulted in reduced activation of CD4+ T cells. Our results demonstrate a key role of PIKfyve in the processing and presentation of antigens, which should be taken into consideration when targeting PIKfyve in autoimmune disease and cancer.
Collapse
Affiliation(s)
- Maksim V Baranov
- Department of Tumor Immunology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525GA Nijmegen, the Netherlands
| | - Frans Bianchi
- Department of Tumor Immunology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525GA Nijmegen, the Netherlands; Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, Groningen 9747 AG, the Netherlands
| | - Anastasiya Schirmacher
- Institute of Organic and Biomolecular Chemistry, Georg-August-University of Göttingen, Tammannstr. 2, 37077 Göttingen, Germany
| | - Melissa A C van Aart
- Department of Tumor Immunology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525GA Nijmegen, the Netherlands
| | - Sjors Maassen
- Department of Tumor Immunology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525GA Nijmegen, the Netherlands; Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, Groningen 9747 AG, the Netherlands
| | - Elke M Muntjewerff
- Department of Tumor Immunology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525GA Nijmegen, the Netherlands
| | - Ilse Dingjan
- Department of Tumor Immunology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525GA Nijmegen, the Netherlands
| | - Martin Ter Beest
- Department of Tumor Immunology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525GA Nijmegen, the Netherlands
| | - Martijn Verdoes
- Department of Tumor Immunology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525GA Nijmegen, the Netherlands
| | | | - Carolyn R Bertozzi
- Department of Chemistry and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Ulf Diederichsen
- Institute of Organic and Biomolecular Chemistry, Georg-August-University of Göttingen, Tammannstr. 2, 37077 Göttingen, Germany
| | - Geert van den Bogaart
- Department of Tumor Immunology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525GA Nijmegen, the Netherlands; Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, Groningen 9747 AG, the Netherlands.
| |
Collapse
|
49
|
Bacterial Clearance Is Enhanced by α2,3- and α2,6-Sialyllactose via Receptor-Mediated Endocytosis and Phagocytosis. Infect Immun 2018; 87:IAI.00694-18. [PMID: 30396896 PMCID: PMC6300625 DOI: 10.1128/iai.00694-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 10/20/2018] [Indexed: 12/03/2022] Open
Abstract
Sialyllactose (SL) is a representative human milk oligosaccharide (HMO) of human breast milk. The roles of SL in infant brain development and immunity have been reported in previous studies. Sialyllactose (SL) is a representative human milk oligosaccharide (HMO) of human breast milk. The roles of SL in infant brain development and immunity have been reported in previous studies. In this study, we identified the impact of SL on innate immunity. Our results showed that the administration of SL had significant efficacy on bacterial clearance in Pseudomonas aeruginosa K-infected mice. We also examined the role of SL in the human THP-1 macrophage-like cell line. SL effectively promoted receptor-mediated endocytosis and phagocytosis. Furthermore, SL accelerated the recruitment of Rac1 to the cell membrane, leading to the generation of reactive oxygen species for the elimination of phagocytosed bacteria. Our findings provide a new perspective on the role of SL in breast milk and suggest its application as a therapeutic agent to treat bacterial and viral infections.
Collapse
|
50
|
Nordzieke DE, Medraño-Fernandez I. The Plasma Membrane: A Platform for Intra- and Intercellular Redox Signaling. Antioxidants (Basel) 2018; 7:antiox7110168. [PMID: 30463362 PMCID: PMC6262572 DOI: 10.3390/antiox7110168] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/15/2018] [Accepted: 11/17/2018] [Indexed: 02/06/2023] Open
Abstract
Membranes are of outmost importance to allow for specific signal transduction due to their ability to localize, amplify, and direct signals. However, due to the double-edged nature of reactive oxygen species (ROS)—toxic at high concentrations but essential signal molecules—subcellular localization of ROS-producing systems to the plasma membrane has been traditionally regarded as a protective strategy to defend cells from unwanted side-effects. Nevertheless, specialized regions, such as lipid rafts and caveolae, house and regulate the activated/inhibited states of important ROS-producing systems and concentrate redox targets, demonstrating that plasma membrane functions may go beyond acting as a securing lipid barrier. This is nicely evinced by nicotinamide adenine dinucleotide phosphate (NADPH)-oxidases (NOX), enzymes whose primary function is to generate ROS and which have been shown to reside in specific lipid compartments. In addition, membrane-inserted bidirectional H2O2-transporters modulate their conductance precisely during the passage of the molecules through the lipid bilayer, ensuring time-scaled delivery of the signal. This review aims to summarize current evidence supporting the role of the plasma membrane as an organizing center that serves as a platform for redox signal transmission, particularly NOX-driven, providing specificity at the same time that limits undesirable oxidative damage in case of malfunction. As an example of malfunction, we explore several pathological situations in which an inflammatory component is present, such as inflammatory bowel disease and neurodegenerative disorders, to illustrate how dysregulation of plasma-membrane-localized redox signaling impacts normal cell physiology.
Collapse
Affiliation(s)
- Daniela E Nordzieke
- Institute of Microbiology and Genetics, Department of Genetics of Eukaryotic Microorganisms, Georg August University Göttingen, Grisebachstr. 8, D-37077 Göttingen, Germany.
| | - Iria Medraño-Fernandez
- Protein Transport and Secretion Unit, Division of Genetics and Cell Biology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Università Vita-Salute San Raffaele, 20132 Milan, Italy.
| |
Collapse
|